

Energy Strategy Report

19-5503

25-26 Redington Gardens, London, NW3 7RX

May 2019

Quality Standards Control

The signatories below verify that this document has been prepared in accordance with our quality control requirements. These procedures do not affect the content and views expressed by the originator.

Revision	Initial	Rev A	Rev B	Rev C
Date	30/04/2019	09/05/2019		
Prepared by	S. Lee	S. Lee		
Checked by	V. Mwenze	V. Mwenze		
Authorised by	E. Cao	E. Cao		

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

T: 0118 402 8520

Limitations

Syntegra Consulting Ltd ("SC") has prepared this report for the sole use of client in accordance with the agreement under which our services were performed. No other warranty, expressed or implied, is made as to the professional advice included in this report or any other services provided by SC.

The conclusions and recommendations contained in this report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by SC has not been independently verified by SC, unless otherwise stated in the report.

The methodology adopted and the sources of information used by SC in providing its services are outlined in this report. The work described in this report was undertaken in **May 2019** and is based on the conditions encountered and the information available during the said period of time. The scope of this report and the services are accordingly factually limited by these circumstances.

This renewable report and energy pre-assessment modelling were generated based on the provided drawings and building information assumptions. Although every effort has been made to provide accurate content within this report, SC makes no warranty or assumes no legal liability or responsibility for the accuracy or completeness of information contained in this report.

SC also wishes to make aware that this document is guidance only on energy strategy and should not be seen as a building design document. It is the responsibility of the appointed Building Services / Design Team to develop, select and implement appropriate energy efficiency measures to ensure compliance.

Where assessments of works or costs identified in this report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

SC disclaim any undertaking or obligation to advise any person of any change in any matter affecting the report, which may come or be brought to SC's attention after the date of the report.

Certain statements made in the report that are not historical facts may constitute estimates, projections or other forwardlooking statements and even though they are based on reasonable assumptions as of the date of the report, such forwardlooking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. SC specifically does not guarantee or warrant any estimate or projections contained in this report.

Costs may vary outside the ranges quoted. Whilst cost estimates are provided for individual issues in this report, these are based upon information at the time which can be incomplete. Cost estimates for such issues may therefore vary from those provided. Where costs are supplied, these estimates should be considered in aggregate only. No reliance should be made in relation to any division of aggregate costs, including in relation to any issue, site or other subdivision.

No allowance has been made for changes in prices or exchange rates or changes in any other conditions which may result in price fluctuations in the future. Where assessments of works or costs necessary to achieve compliance have been made, these are based upon measures which, in SC's experience, could normally be negotiated with the relevant authorities under present legislation and enforcement practice, assuming a pro-active and reasonable approach by site management.

Forecast cost estimates do not include such costs associated with any negotiations, appeals or other non- technical actions associated with the agreement on measures to meet the requirements of the authorities, nor are potential business loss and interruption costs considered that may be incurred as part of any technical measures.

Copyright

© This report is the copyright of SC. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

T: 0118 402 8520

SYNTEG RA

1.	EXECUTIVE SUMMARY
2.	INTRODUCTION
3.	PLANNING POLICY
4.	ASSESSMENT METHODOLOGY13
5.	BASELINE – TARGET EMISSION RATE14
6.	BE LEAN – ENERGY EFFICIENT DESIGN15
7.	BE CLEAN – CHP & DECENTRALISED ENERGY NETWORKS19
8.	BE GREEN – RENEWABLE ENERGY
9.	CONCLUSION
10.	APPENDIX A – SAP REPORTS

T: 0118 402 8520

100

1. Executive Summary

This Energy Statement demonstrates the predicted energy performance and carbon dioxide emissions of the proposed development at **25-26 Redington Gardens, London, NW3 7RX** based on the information provided by the design team. The proposed development is **new construction of two houses in the London Borough of Camden.**

1.1. Policy Requirements

The Council requires new developments to incorporate sustainable design and construction measures. The table below summarises the local policy requirements for this minor development.

Policies	Requirements	Compliance Notes	
Camden Local Policy CC1 8.8	All new residential development will be required to demonstrate a 19% CO2 reduction below Part L 2013 Building Regulations	The proposed development achieved an overall 24.2% carbon reduction via energy efficient measures and Air Source Heat Pumps (VRF systems). Detailed strategies can be found in the table below and section 6-8 of this report.	
London Plan 5.15 and Camden Local Policy CC3 8.55	Water use of 110 litres/person/day or less (including an allowance of 5litres or less) is required for the new dwellings.	Water consumption of 110 litres/person/day or less achieved using energy efficient fittings. Design stage calculations are in section 6.1 of this report.	

Table 1 Policy Requirements

1.2. Methodology and Strategies

The methodology used to determine the CO₂ emissions is in accordance with the London Plan's threestep Energy Hierarchy (Policy 5.2). The below table shows the Energy Hierarchy and suggested strategies for the proposed development.

Stages	Strategies
BE LEAN Energy efficient design	 U-values and air permeability better than Building Regulations Part L1A 2013 Use of accredited construction details at all thermal bridging junctions Mechanical Ventilation with Heat Recovery (MVHR) system Low water consumption 100% Low energy lights
BE CLEAN District heat networks or CHP	• Not feasible on the site. Details are in Section 7.
BE GREEN On-site renewable technologies	• Air Source Heat Pumps (VRF) for space heating and cooling. Details are in Section 8.2.

Table 2 Energy Hierarchy and suggested strategies

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

0.000

T: 0118 402 8520

energy

1.3. Assessment Results

After the application of all strategies based on the Energy Hierarchy, the regulated carbon dioxide emissions have been reduced as follows;

	Energy Hierarchy	Regulated Carbon Emissions (Tonnes CO ₂ /yr)
BASELINE	TER set by Building Regulations 2013 Part L	25.43
BE LEAN	After energy demand reduction	19.96
BE CLEAN	After CHP/ Communal Heating	19.96
BE GREEN	After renewable energy	19.28

Table 3 Carbon Emissions after each stage of the proposed strategy

The carbon savings from each stage can be calculated based on the results above. The table below clearly shows that the development meets the 19% targeted carbon reduction.

Energy Hierarchy		Regulated Carbon Savings	
			%
BE LEAN	After energy demand reduction	5.47	21.52 %
BE CLEAN	BE CLEAN After heat network/ CHP		0 %
BE GREEN After renewable energy		0.68	3.42 %
Total Cumulative Savings		6.16	24.20 %
Total Target Savings		4.83	19 %

Table 4 Carbon dioxide Emissions after each stage of the Energy Hierarchy

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

T: 0118 402 8520

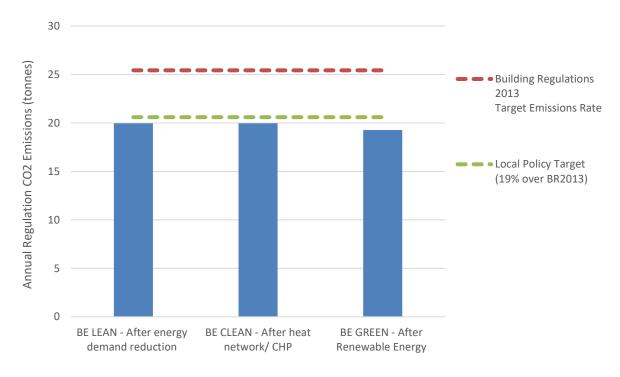


Figure 1 below illustrates the hierarchical approach adopted and the resultant reduction in overall CO_2 emissions.

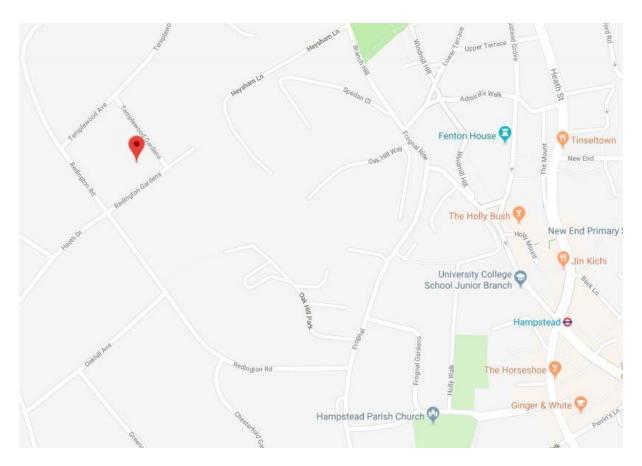
The Energy Hierarchy

Figure 1 Carbon emissions in Energy Hierarchy

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

0.000

T: 0118 402 8520



2. Introduction

This Energy Statement will be included as part of the planning application that addresses the environmental impact of the development. This report focuses on the energy strategy for the proposed scheme and how energy consumption and carbon emissions will be minimised and to meet the targeted carbon emissions in accordance with the London Plan and Local planning policy.

This development is to be located in the London Borough of Camden and it is in close proximity to Hampstead station (approx 0.6miles to the South-East). The proposal is **new construction of two houses at 25-26 Redington Gardens, London, NW3 7RX.**

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

T: 0118 402 8520

The Government approved software, i.e. FSAP 2012 has been utilised to carry out Standard Assessment Procedure (SAP) calculations. Syntegra received the architectural drawings and relevant documents, and they were used to undertake the energy assessments. The document references are listed in table below.

No.	Document Name	Format	Received Date
1	1011-1012 - Site Plans-Sheet - 1011 - Proposed Site Plan (roof)	dwg	25/03/2019
2	1011-1012 - Site Plans-Sheet - 1012 - Proposed Site Plan (basement)	dwg	25/03/2019
4	1101	dwg	25/03/2019
5	1102	dwg	25/03/2019
6	1103	dwg	25/03/2019
7	1104	dwg	25/03/2019
8	1105	dwg	25/03/2019
9	1106	dwg	25/03/2019
10	1111	dwg	25/03/2019
11	1112	dwg	25/03/2019
12	1113	dwg	25/03/2019
13	1114	dwg	25/03/2019
14	1115	dwg	25/03/2019
15	1116	dwg	25/03/2019
16	1201	dwg	25/03/2019
17	1202	dwg	25/03/2019
18	1203	dwg	25/03/2019
19	1204	dwg	25/03/2019
20	1205	dwg	25/03/2019
21	1206	dwg	25/03/2019
22	1207	dwg	25/03/2019
23	1208	dwg	25/03/2019
24	1209	dwg	25/03/2019
25	1301	dwg	25/03/2019
26	1302	dwg	25/03/2019
27	1303	dwg	25/03/2019
28	1304	dwg	25/03/2019
29	1311	dwg	25/03/2019
30	1312	dwg	25/03/2019
31	1313	dwg	25/03/2019
32	1314	dwg	25/03/2019

Table 5 The document list

STROMA

ENERGY

T: 0118 402 8520

3. Planning Policy

3.1. National Planning Policy Framework (February 2019)

The National Planning Policy Framework is a key part of our reforms to make the planning system less complex and more accessible, to protect the environment and to promote sustainable growth.

3.2. The London Plan (March 2016)

Policy 5.2, 5.4, 5.5, 5.6, & 5.7

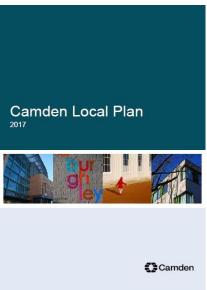
According to Policy 5.2 all major new developments should show carbon emissions reduction through the Mayor's energy hierarchy (Be Lean, Be Clean and Be Green), unless it can be demonstrated that such provision is not feasible. From October 2016 Zero Carbon Standard apply to all new major residential development (10 or more units). This means that at least 35% of carbon reductions against a Building Regulations Part L 2013 must be achieved on-site, with the remaining emissions, up to 100%, to be offset through a contribution to the Council's Carbon Offset Fund. For the non-residential development, must achieve a 35% reduction in CO₂ emissions against a Building Regulations Part L 2013 baseline.

For retrofitting developments, it will be a challenge to meet these targets. However, available reductions in carbon emissions should be demonstrated along with water saving measures as per Policy 5.4.

Furthermore, intent must be shown for connecting to a Decentralised Energy Network and utilizing a Combined Heat & Power according to Policy 5.5 and 5.6. The Mayor and boroughs should in their DPDs adopt a presumption that developments will achieve a reduction in carbon dioxide emissions of 20% from onsite renewable energy generation according to paragraph 5.42 of Policy 5.7

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

T: 0118 402 8520



3.3. London Borough of Camden

Camden Local Plan (Adopted in 2017)

Policy CC1 Climate Change Mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;

require all major development to demonstrate how
 London Plan targets for carbon dioxide emissions have been meet;

- a. ensure that the location of development and mix of land uses minimize the need to travel by car and help to support decentralized energy networks;
- b. support and encourage sensitive energy efficiency improvements to existing buildings;
- c. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and
- d. expect all developments to optimize resource efficiency.

For decentralised energy networks, we will promote decentralised energy by:

- e. working with local organizations and developers to implement decentralized energy networks in the parts of Camden most likely to support them;
- f. protecting existing decentralized energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and
- g. requiring all major developments to assess the feasibility of connecting to an existing decentralized energy network, or where this is not possible establishing a new network.

To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

.....

8.8 All developments involving five or more dwellings and/or more than 500 sqm of (gross internal) any floorspace will be required to submit an energy statement demonstrating how the energy hierarchy has been applied to make the fullest contribution to CO2 reduction. All new residential development will also be required to demonstrate a 19% CO2 reduction below Part L 2013 Building Regulations (in addition to any requirements for renewable energy). This can be demonstrated through an energy statement or sustainability statement.

.....

10 000

T: 0118 402 8520

8.11 The Council will expect developments of five or more dwellings and/or more than 500 sqm of any gross internal floorspace to achieve a 20% reduction in carbon dioxide emissions from on-site renewable energy generation (which can include sources of site related decentralised renewable energy), unless it can be demonstrated that such provision is not feasible. This is in line with stage three of the energy hierarchy 'BE green'. The 20% reduction should be calculated from the regulated CO2 emissions of the development after all proposed energy efficiency measures and any CO2 reduction from non-renewable decentralised energy (e.g. CHP) have been incorporated.

Policy CC3 Water and Flooding

The Council will seek to ensure that development does not increase flood risk and reduces the risk of flooding where possible.

We will require development to:

- a. incorporate water efficiency measures;
- b. avoid harm to the water environment and improve water quality;
- c. consider the impact of development in areas at risk of flooding (including drainage);
- d. incorporate flood resilient measures in areas prone to flooding;
- e. utilise Sustainable Drainage Systems (SuDS) in line with the drainage hierarchy to achieve a greenfield run-off rate where feasible; and
- f. not locate vulnerable development in flood-prone areas.

Where an assessment of flood risk is required, developments should consider surface water flooding in detail and groundwater flooding where applicable.

The Council will protect the borough's existing drinking water and foul water infrastructure, including the reservoirs at Barrow Hill, Hampstead Heath, Highgate and Kidderpore.

.....

8.55 Developments must be designed to be water efficient. This can be achieved through the installation of water efficient fittings and appliances (which can help reduce energy consumption as well as water consumption) and by capturing and re-using rain water and grey water on-site. **Residential developments will be expected to meet the requirement of 110 litres per person per day (including 5 litres for external water use).** Refurbishments and other non-domestic development will be expected to meet BREEAM water efficiency credits. Major developments and high or intense water use developments, such as hotels, hostels and student housing, should include a grey water and rainwater harvesting system. Where such a system is not feasible or practical, developers must demonstrate to the Council's satisfaction that this is the case.

T: 0118 402 8520


4. Assessment Methodology

4.1. Mayor's Energy Hierarchy

The energy hierarchy is a classification of different methods to improve energy performance in a parallel sequence. This includes primarily a focus on reducing energy use by avoiding unnecessary use, to then improving the efficiency of energy systems to minimise loss, this is followed by exploiting renewable energy sources and then low carbon energy solutions for energy needs and finally, any remaining demand can be catered for by conventional fuel sources.

The Mayor's Energy Strategy adopts a set of principles to guide design development and decisions regarding energy, balanced with the need to optimise environmental and economic benefits. These guiding principles have been reordered since the publication of the Mayor's Energy Strategy in Feb 2004 and the adopted replacement London Plan 2011 with further alterations in 2015 stating that the following hierarchy should be used to assess applications:

- **BE LEAN** By using less energy and taking into account the further energy efficiency measure in comparison to the baseline building.
- **BE CLEAN** By supplying energy efficiently. The clean building looks at further carbon dioxide emission savings over the lean building by taking into consideration the use of decentralise energy via CHP.
- **BE GREEN** By integrating renewable energy into the scheme which can further reduce the carbon dioxide emission rate.

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

T: 0118 402 8520

5. Baseline – Target Emission Rate

The baseline (known as Target Emission Rate), as calculated in line with the Building Regulation 2013, is the maximum amount of carbon dioxide a dwelling or non-residential unit is allowed to emit. The Target Emission Rate (TER) includes carbon dioxide emissions which are covered by Part L of the Building Regulations, known as regulated emissions (space and water heating, ventilation, lighting, pumps, fans & controls). The baseline energy uses and resulting CO₂ emissions rates of the development have been assessed using the Government approved software.

The 'baseline' regulated CO_2 emissions for the development as a whole are presented in the tables below:

BASELINE	Regulated CO ₂ Emissions (Tonnes CO ₂ /yr)
25 Redington Gardens	13.12
26 Redington Gardens	12.31
Total	25.43

BASELINE

Table 6 Regulated Carbon Emissions at Baseline

T: 0118 402 8520

6. BE LEAN – Energy Efficient Design

This section outlines the energy efficient measures taken in order to minimise the building's energy demand and therefore reduce energy use and CO₂ emissions further than the Baseline requirements (Building Regulations 2013 Part L compliance).

6.1. Passive Design Measures

• Enhanced Building Elements

At the 'BE LEAN' stage of the energy hierarchy, energy efficient building elements have been incorporated into the build. The heat loss of different building element is dependent upon their U-value and air tightness. Therefore, better U-values and air permeability than the minimum values set in the Part L 2013 have been suggested in this development. And, Accredited Construction Detail for Part L was also applied at all thermal bridging junctions to reduce the heat loss from the thermal bridging. Please see below more specifically.

		Part L1A 2013 min. required values	Proposed building values	
	Wall	0.30	0.13	
	Window	2.0	1.4	
U-value	Roof lights	2.0	1.4	
(W/m² K)	Floor	0.25	0.11	
	Roof	0.20	0.11	
Door		1.0 (notional)	1.4	
Air Permeability (m ³ /h.m ² at 50 Pa)		10	4	
Accredited Construction Details for Part L		-	Applied to all thermal bridge junctions	

Table 7 Proposed building elements

• Orientation & Natural Daylighting

Passive solar gain reduces the amount of energy required for space heating during the winter months. The houses are positioned having front roads and rear gardens, which can maximise the passive solar gains into the building throughout the day. Moreover, the internal layout, windows, and roof lights have been designed to improve daylighting in all habitable spaces, as a way of improving the health and wellbeing of occupants.

T: 0118 402 8520

energy

• Efficient Use of Water

In accordance with London Plan Policy 5.15 and Local Plan, the development will be based upon the specification of water efficient fittings including low volume dual flush WCs, and low flow taps/ showers/bath. These measures will result in the total water consumption rate of 110 litres/person/day or less including the external water use. Design stage calculations are below.

Installation Type	Unit of Measure	Capacity/ flow rate (1)	Use factor (2)	Fixed use (litres/head/ day) (3)	Total Consumption Litres/head/day [(1)x(2)]+(3) =(4)
wc	Full Flush Volume (litres)	6	1.46	0	8.76
(dual flush)	Part flush Volume (litres)	4	2.96	0	11.85
Taps (excluding kitchen/ utility room taps)	Flow rate (litres/minute)	6.5	1.58	1.58	11.85
Bath (where shower also present)	Capacity to overflow (litres)	120	0.11	0	13.20
Shower (where bath also present)	Flow rate (litres/minute)	7.5	4.37	0	32.78
Kitchen / utility room sink taps	Flow rate (litres/minute)	6.5	0.44	10.36	13.22
Washing machine	Litres/kg dry load	9	2.1	0	18.90
Dishwasher	Litres/place setting	1.2	3.6	0	4.32
Waste disposal unit	Litres/use	If present = 1 If absent = 0	3.08	0.00	0
Water Softener	Litres/person/day - 1.00 0.00				-
(5)	Total calculated use (litres/person/day) = Sum column 4			114.9	
(6)	Contribution from greywater (litres/person/day)			0	
(7)	Contribution from rainwater (litres/person/day)			0	
(8)	Normalisation Factor			0.91	
(9)	Total internal water consumption = (5) X (8)			104.5	
(10)	(10) External water use 5				5
Total	Total water consumption (litres/person/day) = (9) + (10) 109.5				109.5

Table 8 Water Use Calculations

10,000

ACCREDITED

ENERGY ASSESSOR T: 0118 402 8520

• Solar Shading

The dwelling will incorporate internal blinds or curtains to reduce the solar heat coming into the dwelling, and thus can reduce the cooling demand during summer.

• Mechanical Ventilation with Heat Recovery (MVHR)

MVHR systems have been proposed to ensure appropriate indoor air quality and noise level from the road. The mechanical ventilation will also include heat recovery to improve its efficiency and reduce any heat loss from the building. During the hot summer months, the MVHR unit will operate in summer bypass mode so that no heat recovery and no overheating occurs. For the Design Stage SAP calculation, the specifications below have been used. However, this should be reviewed with the mechanical engineers during the design development and can be substituted with other products having similar or better performance.

Ventilation Type	Balanced with heat recovery	
Number of Wet rooms excluding kitchen	10	
Duct insulation Type	Insulation	
Ducting Type	Rigid	
Specific Fan Power	1.3 W/(litre/sec)	
Heat Exchanger Efficiency	80 %	

Table 9 Design Stage MVHR Specifications

6.2. Active Design Measures

• Heating, Cooling and Hot Water System

At the 'BE LEAN' stage, individual condensing gas boilers (89.5% efficiency) have been examined for space heating and hot water, and the active cooling is provided by electrically powered equipment. Detailed specifications used at BE LEAN stage are in the table below.

Please note that the heating system below has been used only for carbon emissions calculation at BE LEAN stage as per GLA Guidance on energy assessment. The suggested system will be mentioned at BE GREEN stage as renewable technology (ASHPs) has been suggested – Section 8.2.

Systems	General Specification	Controls/ Other inputs
Heating	Condensing boilers with fan coil units (efficiency of 89.5%)	 Controls – Programmer and at least two room thermostats Gas-fired warm air with fan-assisted flue

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

10.000

T: 0118 402 8520

Cooling		Split/multiple system	 EER – 3.1 Compressor control – Systems with on/off control Cooled area – bedrooms, gym, cinema, games room & bar, snug, living room, formal dining
Но	ot-water	Electric immersion cylinder	 Cylinder – 250 litres per dwelling Loss factor - 1.7 kWh/day Cylinder in heated space Cylinderstate

Table 10 Heating and Hot water systems

• High Efficiency Lighting

The proposed light fittings will be low energy efficient fittings. These can be T5 fluorescent fittings with high frequency ballasts, or LED fittings. The suggested specifications should be reviewed at detailed design stage with electric engineers.

The following table demonstrates the reduction in CO_2 emissions from the energy efficiency measures mentioned above. As shown in the table below, the carbon reduction of <u>21.52%</u> can be achieved on the site at BE LEAN stage against the Baseline set by Building Regulations Part L 2013.

	Regulated CO ₂ Emiss	Carbon Reduction	
	BASELINE	BE LEAN	(%)
25 Redington Gardens	13.12	10.28	21.66 %
26 Redington Gardens	12.31	9.68	21.38 %
Total	25.43	19.96	21.52 %

🖊 BE LEAN STAGE

Table 11 Regulated Carbon Emissions at Be Lean Stage

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

T: 0118 402 8520

7. BE CLEAN – CHP & Decentralised Energy Networks

The Energy Hierarchy encourages the use of a CHP system and the connection to District Heating system to reduce CO_2 emissions further.

7.1. Decentralised Energy Network

The Mayor's Energy Strategy favours community heating systems because they offer:

- Potential economies of scale in respect of efficiency and therefore reduced carbon emissions; and
- Greater potential for future replacement with Low or Zero Carbon (LZC) technologies.

The feasibility of connecting into an existing heating network or providing the building with its own combined heat and power plant has been assessed alongside the **London Heat Map Study for the London Borough of Camden** as part of this assessment. The study identifies that the site is not located near the existing/ potential district heating networks. This is demonstrated clearly from the London Heat Map (http://www.londonheatmap.org.uk) snapshot below.

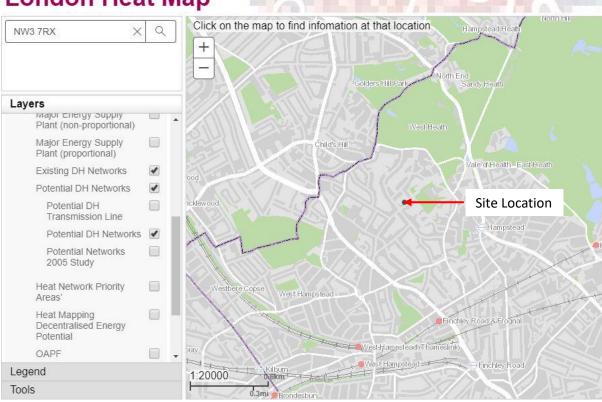


Figure 3 London Heat Map near the site

T: 0118 402 8520

E: mail@syntegragroup.com VAT Registration No. 980016044 Registered Company Number. 06408056

London Heat Map

Moreover, the London heat map below identifies existing DH networks in more broaden area, and it could not find any existing DH networks (in yellow) within 1Km radius from the property. The costs involved in extending the existing DH network would outweigh the advantages in this small development. Therefore, utilisation of the DH network has not been a feasible option for this development.

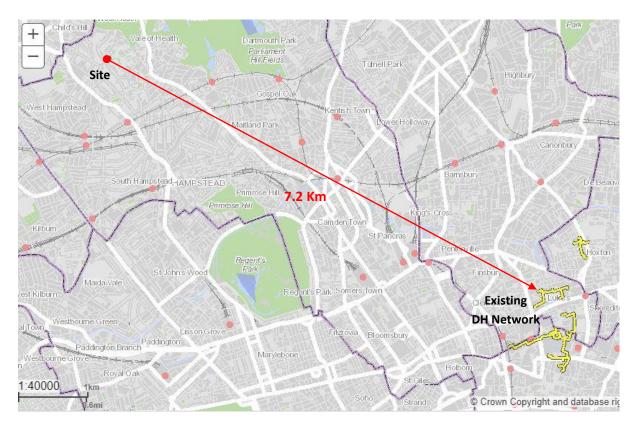


Figure 4 Existing DH Network near the site

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

UK GREEN BUILDING COUNCIL

carbon

T: 0118 402 8520

7.2. **CHP**

The Energy Hierarchy identifies the combined heat and power (CHP) as a method of producing heat and electricity with much lower emissions than separate heat and power. Also, it encourages the creation of district heating systems supplied by CHP. The implementation of a CHP strategy should be decided according to good practice design. Key factors for the efficient implementation of the CHP system are:

- Development with high heating load for the majority of the year.
- CHP operation based on maximum heat load for minimum 10 hours per day.
- CHP operation at maximum capacity of 90% of its operating period.

To ensure that CHP is financially viable it is essential that the unit is selected to meet the base heat load and that this load is maintained over a large proportion of the day (a figure of 14 - 17 hours per day is often quoted subject to the load profiles and gas and electricity prices) to ensure that the additional costs (maintenance) associated with running a CHP unit can be recovered. This need to run the CHP plant, as far as possible continuously makes the building load profile of prime importance when reviewing the viability of such solutions and in particular the summer time heat load profile. To enable the CHP plant to run continuously when it is operating, a thermal store is often used so that excess CHP capacity can be used to generate hot water for use at a later time.

Since this development consists of only 2 dwellings that does not require high heating loads, installing the CHP system would not be beneficial given the cost. According to the Local Plan Policy LP22, developments of 50 units or more will need to provide an assessment of the provision of CHP. Hence the CHP system has not been considered for this development at BE CLEAN stage.

T: 0118 402 8520

In this section the viable renewable energy technologies that could reduce the development's CO₂ emissions are examined. In determining the appropriate renewable technology for the site, the following factors were considered;

- Renewable energy resource or fuel availability of the LZC technology on the site.
- Space limitations due to building design and urban location of the site.
- Capital, operating and maintenance cost.
- Planning Permission
- Implementation with regards the overall M&E design strategy for building type
- Available Grants

The table below summarises the various low zero carbon technologies considered for the projects, and we have identified that **Air Source Heat Pumps (ASHP)** would be the most appropriate option in this development.

Technology	Local Planning Requirements	Carbon Payback	Grants/ Funding	Feasibility
Air Source Heat Pumps (ASHP)	Noise Issues from External units	High	Renewable Heat Incentive (RHI)	HIGH
Photovoltaic (PV)	Spatial and Shadowing	High	-	LOW
Solar Thermal	Spatial and Shadowing	Low	Renewable Heat Incentive (RHI)	MEDIUM
Ground Source Heat Pumps (GSHP)	Spatial issues for boring holes and noise	Medium	Renewable Heat Incentive (RHI)	MEDIUM
Biomass	Spatial requirement for fuel storage and biomass odour	High	Renewable Heat Incentive (RHI)	LOW
Wind Power	Extensive planning requirements for noise and local biodiversity	Low	-	LOW
Hydro Power	Extensive planning requirements for noise and water quality	None	-	ZERO

Table 12 Feasibility Study of LZC Technologies

T: 0118 402 8520

8.1. Non-feasible Technology

• Photovoltaic (PV)

The required size and angle of any proposed PV cells on the roof would mean a visible increase of approximately 1m above the current parapet height making the panels noticeable from the streetscape. The panels would also need to sit an oblique angle (due south) to the façade to be most effective and efficient creating an unattractive saw tooth like addition to the roof/ façade of the proposal.

Also, the available roof space is limited to install enough PV panels to have an impact on carbon emissions of the development. Since the proposed renewable technology (Air Source Heat Pumps) reduced the carbon emissions significantly, further carbon reduction via PV panels has not been considered.

• Ground Source Heat Pumps (GSHP)

Ground source heat pump would be a feasible option to meet the space heating requirements, however, it requires to bore ground holes to extract the ground heat to be utilised for space heating requirements. The costs involved in installing GSHP would outweigh the advantages in this minor development. Therefore, utilization of the GSHP has not been a feasible option for this development.

• Solar Thermal

The use of solar thermal for this development would be limited to domestic hot water only. The use of solar thermal for space heating would not be practical as it is not required when solar thermal is at its most effective during the summer months. Therefore, this system would require additional plumbing and space for hot water storage, incurring additional financial cost. Moreover, the amount of carbon offset from the system is generally lower than other technologies. Therefore, this technology is deemed to be unsuitable for this development.

• Hydro power

Although River Thames is close to the site, there is no river or lake within the development site boundaries. Therefore, small scale hydro-electric will not be studied any further because of the location and the spatial limitations of the development.

• Wind Power

Wind turbines need extensive planning requirements and they are only feasible at consistent wind speed. Moreover, since the development is located in an urban area, the site does not have sufficient wind speed to operate wind turbine at the height of 10 meters as shown below (http://www.renew-reuse-recycle.com/noabl.pl?n=503). Hence this option has been discounted.

T: 0118 402 8520

Estimated average windspeeds around NW3 7..

Wind speed at 10m above ground level (m/s)		Wind speed at 25m above ground level (m/s)		Wind speed at 45m above ground level (m/s)				
5	5.5	5.8	5.8	6.3	6.5	6.3	6.7	6.9
5	5.7	5.9	5.8	6.4	6.6	6.3	6.8	7
4.9	5.3	5.6	5.7	6	6.3	6.2	6.5	6.7

Squares surrounding the central square correspond to wind speeds for surrounding grid squares. Power generated is related to windspeed by a cubic ratio. That means if you halve the windspeed, the power goes down by a factor of 8 (which is $2 \times 2 \times 2$). A quarter of the windspeed gives you a 64^{th} of the power ($4 \times 4 \times 4$). As a rough guide, if your turbine is rated at producing 1KW at 12m/s then it will produce 125W at 6m/s and 15W at 3m/s.

Please note that bear in mind that the NOABL windspeed dataset used here is a model of windspeeds across the country, assuming completely flat terrain. It isn't a database of measured windspeeds. Other factors such as hills, houses, trees and other obstructions in your vicinity need to be considered as well as they can have a significant effect. If you're thinking about installing a wind turbine, you should perform your own windspeed measurements using an anemometer to determine what the actual figures are.

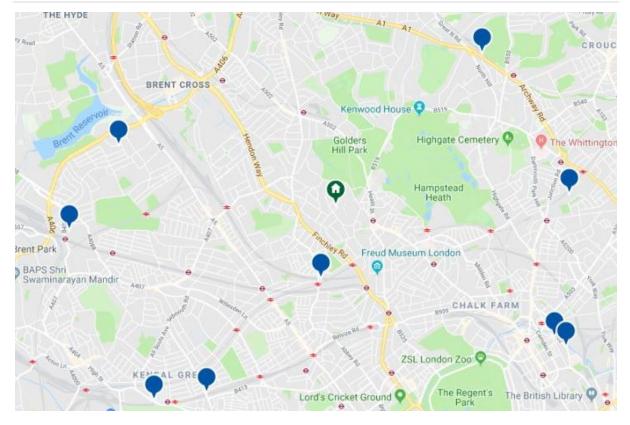
• Biomass

A biomass system designed for this development would be fueled by wood pellets which have a high energy content. However, a biomass system would not be an appropriate technology for the site for the following reasons:

- i. The burning of wood pellets releases substantially more NOx emissions when compared to similar gas boilers. As the development is situated within an urban area, the installation of a biomass boiler would further impact on the air quality in this area.
- ii. the lack of spaces for pellet boiler and storage on the site.
- iii. Pellets would need to be transported from local pellet suppliers, which causes carbon emissions to the air.

However, if the biomass system is considered at detailed design stage, local suppliers can be found near the site as shown in the map below (http://biomass-suppliers-list.service.gov.uk).

T: 0118 402 8520



Company name	Postcode	Contact	Fuel Supplied	Telephone
Travis Perkins Trading Co. Ltd	NW6 1SD	www.travisperkins.co.uk johnny.farmer@travisperkins.co.uk	Pellets	020 7794 8151
Wolseley UK Ltd	N6 4JD	www.draincenter.co.uk qdn.Highgate@wolseley.co.uk	Pellets	0208 3400793
Wolseley UK Ltd	NW2 7LZ	www.plumbcenter.co.uk YH.StaplesCorner@wolseley.co.uk	Pellets	0208 8309106
Travis Perkins Trading Co. Ltd	NW10 3NB	www.travisperkins.co.uk lee.gilmore@travisperkins.co.uk	Pellets	020 8964 9000
Travis Perkins Trading Co. Ltd	N19 5UN	www.travisperkins.co.uk toby.duncan@travisperkins.co.uk	Pellets	0207 561 0516
Wolseley UK Ltd	NW10BY	www.plumbcenter.co.uk FFP.Camden@wolseley.co.uk	Pellets	0207 4240957
Travis Perkins Trading Co. Ltd	NW10 5NY	www.travisperkins.co.uk daniel.mccafferty@travisperkins.co.uk	Pellets	0208 969 2000
Travis Perkins Trading Co. Ltd	NW10 1RZ	www.travisperkins.co.uk phil.pilditch@travisperkins.co.uk	Pellets	0208 4386 715
Travis Perkins Trading Co. Ltd	NW1 OPT	www.travisperkins.co.uk sean.mahon@travisperkins.co.uk	Pellets	0207 380 6480
Travis Perkins Trading Co. Ltd	W2 6NA	www.travisperkins.co.uk liam.clancy@travisperkins.co.uk	Pellets	020 7262 6602

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

T: 0118 402 8520

100

E: <u>mail@syntegragroup.com</u> VAT Registration No. 980016044 Registered Company Number. 06408056

Carbon SMART Subsciences

8.2. Proposed Technology

• Air Source Heat Pumps (ASHP)

ASHP can meet the space heating demands on site efficiently in comparison with gas boilers. Although this low carbon technology consumes electricity to operate, due to higher efficiency the heat output is much greater. Therefore, Variable Refrigerant Flow (VRF) system has been suggested for the space heating and cooling. However, the mechanical engineer should be reviewed the specification during the design development.

Systems	General Specification	Controls/ Other inputs
Heating	VRF systems with fan coil units, 361% efficiency (electric air source heat pumps)	 Heating Fuel – heat from electric heat pump Emitter – fan coil units Control – Programmer and at least two room thermostats Heat distribution system - unknown
Cooling	Split/multiple system (as part of VRF)	 EER – 3.1 Compressor control – Systems with on/off control Cooled area – bedrooms, gym, cinema, games room & bar, snug, living room, formal dining

Table 13 Be Green Stage Heating and cooling systems

Given the proposed LZC technologies on the site (**ASHP**), the overall CO_2 reduction at BE GREEN stage can be calculated as shown below. And, it can be seen that the overall CO_2 reduction via on-site renewables is <u>**3.42%</u>** against the BE LEAN stage.</u>

\rm BE GREEN stage

	Regulated CO ₂ Emiss	Carbon Reduction	
	BE LEAN	(%)	
25 Redington Gardens	10.28	9.95	3.23 %
26 Redington Gardens	9.68	9.33	3.61 %
TOTAL	19.96	19.28	3.42 %

Table 14 Regulated Energy Use and Carbon Reduction at Be Green Stage

10.000

T: 0118 402 8520

9. Conclusion

This report assesses the predicted energy performance and carbon dioxide emissions of the proposed development at **25-26 Redington Gardens, London, NW3 7RX,** based on the information provided by the design team.

In line with the local Council's three step energy hierarchy, the regulated CO₂ emissions for the development have been reduced by 24.2% over Building Regulation Part L 2013, once all measures in the table below are taken into account.

Stages	Strategies
BE LEAN Energy efficient design	 U-values and air permeability better than Building Regulations Part L1A 2013 Use of accredited construction details at all thermal bridging junctions Mechanical Ventilation with Heat Recovery (MVHR) system Low water consumption 100% Low energy lights
BE CLEAN District heat networks or CHP	• Not feasible on the site. Details are in Section 7.
BE GREEN On-site renewable technologies	• Air Source Heat Pumps (VRF) for space heating and cooling. Details are in Section 8.2.

Table 15 Energy Hierarchy and suggested strategies

The table below clearly shows that the development meets the 19% targeted carbon reduction.

	Energy Hierarchy	Regulated Carbon Savings		
			%	
BE LEAN	After energy demand reduction	5.47	21.52 %	
BE CLEAN	BE CLEAN After heat network/ CHP		0 %	
BE GREEN	After renewable energy	0.68	3.42 %	
Total Cumul	ative Savings	6.16	24.20 %	
Total Target	Savings	4.83	19 %	

Table 16 Carbon dioxide Emissions after each stage of the Energy Hierarchy

T: 0118 402 8520

10. Appendix A – SAP Reports

Syntegra House, 63 Milford Road, Reading, Berkshire, RG18LG

T: 0118 402 8520

Block Compliance WorkSheet: 25-26 Redington Gardens - BE GREEN

Assessor Name: Software Name:	Su Lee Stroma FSAP		Stroma Number: Software Version:		STRO031315 Version: 1.0.4.17	
Calculation Details						
Dwelling		DER	TER	DFEE	TFEE	TFA
25 Redington Gardens		14.98	19.76	47.4	59.8	663.935
26 Redington Gardens	15.21	20.07	47.9	60.6	613.53	

Calculation Summary

Total Floor Area	1277.47
Average TER	19.91
Average DER	15.09
Average DFEE	47.64
Average TFEE	60.18
Compliance	Pass
% Improvement DER TER	24.21
% Improvement DFEE TFEE	20.84

Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.4.17 *Printed on 09 May 2019 at 12:01:06*

Project Information	on:			
Assessed By:	Su Lee (STRO03 ²	1315)	Building Type:	Semi-detached House
Dwelling Details:				
NEW DWELLING	DESIGN STAGE		Total Floor Area: 6	63.93m ²
Site Reference :	BE GREEN		Plot Reference:	25 Redington Gardens
Address :	25, Redington Ga	rdens, LONDON, NW3 7RX		
Client Details:				
Name:				
Address :				
-		ithin the SAP calculations.		
-	ete report of regulat	ions compliance.		
1a TER and DEF	ing system: Electrici	ty (c)		
Fuel factor: 1.55 (e	0,	(C)		
•	oxide Emission Rate	(TER)	19.76 kg/m²	
-	Dioxide Emission Ra		14.98 kg/m ²	ОК
1b TFEE and DF				
Target Fabric Ene	rgy Efficiency (TFEE	E)	59.8 kWh/m ²	
Dwelling Fabric Er	nergy Efficiency (DF	EE)	47.4 kWh/m²	
				OK
2 Fabric U-value				
Element		Average	Highest	01/
External Party wal		0.13 (max. 0.30) 0.00 (max. 0.20)	0.13 (max. 0.70)	OK OK
Floor	II	0.11 (max. 0.25)	- 0.11 (max. 0.70)	OK
Roof		0.11 (max. 0.20)	0.11 (max. 0.35)	OK
Openings	5	1.40 (max. 2.00)	1.40 (max. 3.30)	ОК
2a Thermal brid	ging			
Thermal	bridging calculated f	rom linear thermal transmittan	ces for each junction	
3 Air permeabili	ty			
•	bility at 50 pascals		4.00 (design valu	
Maximum			10.0	OK
4 Heating efficie	ency			
Main Heatir	ng system:	Community heating scheme Community heat pump	es - Heat pump	
Secondary	heating system:	None		
5 Cylinder insul	ation			
Hot water S	Storage:	Measured cylinder loss: 1.7 Permitted by DBSCG: 2.56	-	ок
Primary pip	ework insulated:	No primary pipework	-	

Regulations Compliance Report

6 Controls

Space heating controls Hot water controls: 7 Low energy lights	Flat rate charging, progra Cylinderstat	Flat rate charging, programmer and at least two room thermostats Cylinderstat						
Percentage of fixed lights with I	ow-energy fittings	100.0%						
Minimum	5, 5	75.0%	ок					
8 Mechanical ventilation								
Continuous supply and extract	system							
Specific fan power:		1.3						
Maximum		1.5	ОК					
MVHR efficiency:		80%						
Minimum		70%	ОК					
9 Summertime temperature								
Overheating risk (Thames valle	v):	Not significant	ОК					
Based on:	• •	5 1 1 1	-					
Overshading:		Average or unknown						
Windows facing: South East		5.66m ²						
Windows facing: South East		2.26m ²						
Windows facing: North West		19.6m ²						
Windows facing: South East		1.72m ²						
Windows facing: South East		3.94m ²						
Windows facing: South East		4.52m ²						
Windows facing: South East		1.99m ²						
Windows facing: South East		2.3m ²						
Windows facing: North West		4.12m ²						
Windows facing: North West		2.57m ²						
Windows facing: North West		2.98m ²						
Windows facing: North West		2.48m ²						
Windows facing: North West		3.99m ²						
Windows facing: North West		2.09m ²						
Windows facing: North West		2.5m ²						
Windows facing: South East		2.62m ²						
Roof windows facing: Horizonta	al	4.43m ²						
Roof windows facing: Horizonta	al	3.28m ²						
Roof windows facing: Horizonta	al	3.61m ²						
Roof windows facing: Horizonta	al	3.48m ²						
Roof windows facing: Horizonta	al	2.48m ²						
Roof windows facing: Horizonta	al	2.21m ²						
Roof windows facing: Horizonta	al	3.56m ²						
Roof windows facing: Horizonta	al	2.81m ²						
Ventilation rate:		4.00						
Blinds/curtains:		None						
10 Key features								
Roofs U-value		0.11 W/m²K						

External Walls U-value Party Walls U-value 0.11 W/m²K 0.13 W/m²K 0 W/m²K

Regulations Compliance Report

Floors U-value Community heating, heat from electric heat pump Fixed cooling system 0.11 W/m²K

	l l	Jser Details:				
Assessor Name: Software Name:	Su Lee Stroma FSAP 2012	Stroma Nu Software V	STRO031 Version: 1	RO031315 sion: 1.0.4.17		
		perty Address: 25 F	Redington Gardens			
Address :	25, Redington Gardens, LONI	DON, NW3 7RX				
1. Overall dwelling dimen	SIONS:	A ==== (=== 2)	Av Height(m)	V.	a lu una a (una 3)	
Basement		Area(m ²)	Av. Height(m) x 3.69	(2a) =	olume(m ³)	(3a)
Ground floor		145.26 (1b)		(2b) =	501.13] (3b)
First floor		103.52 (1c)		(2c) =	341.6](3c)
Second floor		103.59 (1d)		(2d) =	310.77	(3d)
Third floor		72.45 (1e)	x 2.76	(2e) =	200.1	(3e)
Total floor area TFA = (1a)	+(1b)+(1c)+(1d)+(1e)+(1n)	663.93 (4)				1
Dwelling volume		(3a)+	-(3b)+(3c)+(3d)+(3e)+	(3n) =	2235.98	(5)
2. Ventilation rate:				L		1
	main secondary heating heating	other	total	m	³ per hour	
Number of chimneys	heating heating	+ 0 =	0 x 4	0 =	0	(6a)
Number of open flues	0 + 0	+ 0 =	0 × 2	0 =	0	(6b)
Number of intermittent fans	3		0 x 1	0 =	0	(7a)
Number of passive vents			0 x 1	0 =	0	(7b)
Number of flueless gas fire	s		0 × 4	0 =	0	(7c)
				Air chang	es per hou	ır
Infiltration due to chimneys	s, flues and fans = $(6a)+(6b)+(7a)$	+(7b)+(7c) =	0 ÷	(5) =	0	(8)
If a pressurisation test has bee	en carried out or is intended, proceed t	o (17), otherwise continu	ue from (9) to (16)			-
Number of storeys in the	e dwelling (ns)				0	(9)
Additional infiltration				1]x0.1 =	0	(10)
	5 for steel or timber frame or 0 sent, use the value corresponding to the state of	•			0	(11)
deducting areas of opening		ie greater wan area (alte	:r			
If suspended wooden flo	or, enter 0.2 (unsealed) or 0.1	(sealed), else enter	r 0		0	(12)
If no draught lobby, ente	r 0.05, else enter 0				0	(13)
Percentage of windows a	and doors draught stripped				0	(14)
Window infiltration		0.25 - [0.2 x (14))÷100] =		0	(15)
Infiltration rate		(8) + (10) + (11)	+ (12) + (13) + (15) =		0	(16)
	50, expressed in cubic metres		e metre of envelope	area	4	(17)
	$/ \text{ value, then } (18) = [(17) \div 20] + (8),$		ility in boing word		0.2	(18)
Number of sides sheltered	if a pressurisation test has been done	or a degree air permeab	niny is being used		2	(19)
Shelter factor		(20) = 1 - [0.075	x (19)] =		2 0.85	(20)
Infiltration rate incorporatin	g shelter factor	(21) = (18) x (20) =		0.17	(21)

Infiltration ra	te modifie	d for mo	nthly wir	nd speed	1								
Jar	n Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly ave	rage wind	speed fi	rom Tabl	e 7									
(22)m= 5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)m \div 4													
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjusted infiltration rate (allowing for shelter and wind speed) = $(21a) \times (22a)m$													
0.22 Calculate efi		0.21 Change	0.19 rate for t	0.18 he appli	0.16 cable ca	0.16 se	0.16	0.17	0.18	0.19	0.2		
If mechan		-									[0.5	(23a)
If exhaust air	r heat pump	using App	endix N, (2	3b) = (23a	a) × Fmv (e	equation	(N5)) , othe	erwise (23b	o) = (23a)		[0.5	(23b)
If balanced v	vith heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fro	om Table 4h	n) =			[68	(23c)
a) If balan	ced mech	anical ve	entilation	with hea	at recove	ery (M	VHR) (24	a)m = (2	2b)m + (23b) × [′	1 – (23c)	÷ 100]	
(24a)m= 0.38	0.37	0.37	0.35	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.36		(24a)
b) If balan	ced mech	anical ve	entilation	without	heat rec	overy	(MV) (24	o)m = (2	2b)m + (2	23b)	·1		
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole				•					F (00)	、			
· · · ·)m < 0.5 >	r í	then (240	, ,	, 			$\frac{b}{m+0}$	· · · ·	<u> </u>			(24c)
(0	0		0	0		0		0	0	0		(240)
d) If natura if (22b	al ventilation) m = 1, th								0.5]				
(24d)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effective a	air change	rate - er	nter (24a) or (24b	o) or (24	c) or (2	24d) in bo	x (25)	-				
(25)m= 0.38	0.37	0.37	0.35	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.36		(25)
3. Heat loss	ses and he	eat loss	paramete	er:									
ELEMENT		SS	Openin m	gs	Net Ar A ,r		U-val W/m2		A X U (W/		k-value kJ/m²·k		A X k kJ/K
Doors Type	1				4.86)	1.4	=	6.8082				(26)
Doors Type	2				2.08	,	(1.4	=	2.9106				(26)
Doors Type	3				2.34	>	1.4	=	3.269				(26)
Doors Type	4				1.12)	1.4	=	1.575				(26)
Doors Type	5				2.41)	1.4	=	3.3726				(26)
Doors Type	6				1.37		1.4	=	1.9166				(26)
Doors Type	7				1.33)	1.4	=	1.8662				(26)
Doors Type	8				2.34	>	1.4	=	3.269				(26)
Doors Type	9				2.04	>	1.4	=	2.849				(26)
Windows Ty	pe 1				5.655	5)	<mark>ر1/[1/(1.4)</mark> +	- 0.04] =	7.5				(27)
Windows Ty	pe 2				2.261)	<mark>(1/[1/(1.4)</mark> +	- 0.04] =	3				(27)
Windows Ty	pe 3				19.60	1	<mark>(1/[1/(1.4)</mark> +	- 0.04] =	25.99				(27)
Windows Ty	pe 4				1.715	5)	(1/[1/(1.4)+	- 0.04] =	2.27				(27)

Windows Type 5	3.938		x1/	[1/(1.4)+ 0.04	4] =	5.22				(27)
Windows Type 6	4.518		x1/	[1/(1.4)+ 0.04	4] =	5.99				(27)
Windows Type 7	1.988		x1/	[1/(1.4)+ 0.04	4] =	2.64				(27)
Windows Type 8	2.301		x1/	[1/(1.4)+ 0.04	4] =	3.05				(27)
Windows Type 9	4.119		x1/	[1/(1.4)+ 0.04	4] =	5.46				(27)
Windows Type 10	2.565	Ī	x1/	[1/(1.4)+ 0.04	4] =	3.4				(27)
Windows Type 11	2.981		x1/	[1/(1.4)+ 0.04	4] =	3.95				(27)
Windows Type 12	2.48		x1/	[1/(1.4)+ 0.04	4] =	3.29				(27)
Windows Type 13	3.993		x1/	[1/(1.4)+ 0.04	4] =	5.29				(27)
Windows Type 14	2.093		x1/	[1/(1.4)+ 0.04	4] =	2.77				(27)
Windows Type 15	2.499		x1/	[1/(1.4)+ 0.04	4] =	3.31				(27)
Windows Type 16	1.31		x1/	[1/(1.4)+ 0.04	4] =	1.74				(27)
Rooflights Type 1	4.434		x1/	[1/(1.4) + 0.04	4] =	6.2076				(27b)
Rooflights Type 2	3.276		x1/	[1/(1.4) + 0.04	4] =	4.5864				(27b)
Rooflights Type 3	3.611		x1/	[1/(1.4) + 0.04	4] =	5.0554				(27b)
Rooflights Type 4	3.485		x1/	[1/(1.4) + 0.04	4] =	4.879				(27b)
Rooflights Type 5	2.477		x1/	[1/(1.4) + 0.04	4] =	3.4678				(27b)
Rooflights Type 6	2.212		x1/	[1/(1.4) + 0.04	4] =	3.0968				(27b)
Rooflights Type 7	3.564		x1/	[1/(1.4) + 0.04	4] =	4.9896				(27b)
Rooflights Type 8	2.811		x1/	[1/(1.4) + 0.04	4] =	3.9354				(27b)
Floor	239.124		×	0.11	=	26.30364				(28)
Walls Type1 75.32 0	75.32		x	0.13	=	9.79				(29)
Walls Type2 123.88 27.29	96.59		x	0.13	=	12.56				(29)
Walls Type3 100.8 28.3	72.5		x	0.13	=	9.42				(29)
Walls Type4 91.64 24.5	67.13		x	0.13	=	8.73				(29)
Walls Type5 26.17 0	26.17		x	0.13	=	3.4				(29)
Walls Type6 18.82 5.12	13.7		x	0.13	=	1.78				(29)
Roof Type1 93.87 11.27	82.6		x	0.11	=	9.09				(30)
Roof Type2 42.51 3.61	38.9		x	0.11	=	4.28				(30)
Roof Type3 6.81 0	6.81		x	0.11	=	0.75				(30)
Roof Type4 22.77 0	22.77		x	0.11	=	2.51				(30)
Roof Type5 49.51 10.98	38.53		x	0.11	=	4.24				(30)
Total area of elements, m ²	891.22									(31)
Party wall	183.62		x	0	=	0				(32)
Party wall	63.53		x	0	=	0				(32)
Party wall	43.08		x	0	=	0				(32)
Party wall	39.16		x	0] =	0				(32)
Party wall	29.44		x	0] =	0				(32)
* for windows and roof windows, use effective window U-	alue calculated	dus	- sina	formula 1/[(1/	/I Lvali	م 22 [40 (لمراجر	ivon i	n naragranh 3	2	

for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 ** include the areas on both sides of internal walls and partitions

Fabric heat loss, $W/K = S (A \times U)$

(26)...(30) + (32) =

(33) 241.58

Heat c	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	0	(34)
Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m ² K Indicative Value											: Medium		250	(35)
	-		ere the de tailed calci	tails of the ulation.	constructi	ion are no	t known pr	ecisely the	e indicative	e values of	TMP in Ta	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix l	K						54.39	(36)
if details	s of therma	l bridging	are not kn	nown (36) =	= 0.05 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			295.98	(37)
Ventila	ation hea	t loss ca	alculated	monthly	у	_	-	-	(38)m	= 0.33 × (25)m x (5)	-	_	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	277.99	274.86	271.72	256.04	252.91	237.23	237.23	234.09	243.5	252.91	259.18	265.45		(38)
Heat t	ransfer o	oefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	573.97	570.84	567.7	552.02	548.88	533.2	533.2	530.07	539.48	548.88	555.16	561.43		
Heat lo	oss para	meter (H	HLP), W∕	/m²K						Average = = (39)m ÷		12 /12=	551.24	(39)
(40)m=	0.86	0.86	0.86	0.83	0.83	0.8	0.8	0.8	0.81	0.83	0.84	0.85		
Numb	er of day	rs in mor	nth (Tab	le 1a)					,	Average =	Sum(40)1.	12 /12=	0.83	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
													1	
A \N/2	ater heat	ing ener	rgy requi	irement:								kWh/y	ear.	
1		ing ono	gy loqu	in official.									our.	
if TF		9, N = 1		: [1 - exp	(-0.0003	349 x (TF	-A -13.9)2)] + 0.(0013 x (⁻	TFA -13.		61]	(42)
	A £ 13.9		ater usar	ge in litre	es ner da	w Vd av	erane -	(25 x N)	+ 36		110	9.82	1	(43)
Reduce	the annua	al average	hot water	usage by a r day (all w	5% if the a	lwelling is	designed			se target o		5.02	J	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Hot wat	L			ach month			<u> </u>		000			200	1	
(44)m=	131.8	127.01	122.22	117.42	112.63	107.84	107.84	112.63	117.42	122.22	127.01	131.8]	
										I Total = Su			1437.84	(44)
Energy	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D)))))))))))))))))))						
(45)m=	195.46	170.95	176.4	153.79	147.57	127.34	118	135.41	137.02	159.69	174.31	189.29]	
If in a tain	(I		enten O in	haven (40		Total = Su	m(45) ₁₁₂ =	=	1885.23	(45)
			, ,	t of use (no	i	i		1	i			r	1	
(46)m=	29.32 storage	25.64	26.46	23.07	22.14	19.1	17.7	20.31	20.55	23.95	26.15	28.39		(46)
	•		includir	ng any so	olar or M	///HRS	storade	within sa	ame ves	مما		250	1	(47)
-							-			301		250	J	(47)
	•	-		ank in dw er (this in	-			. ,	ers) ente	er '0' in <i>(</i>	47)			
	storage				13100001	iotanta					•••			
	-		eclared I	oss facto	or is kno	wn (kWł	n/day):				1	.7]	(48)
	erature f						- /				<u> </u>		1	
		20101 110		ZD							0	.6		(49)
Enera				∘ ∠b e, kWh/ye	ear			(48) x (49)) =			.6]	(49) (50)

If com	munity h	age loss leating s from Ta	ee secti	rom Tabl on 4.3	le 2 (kW	h/litre/da	ay)				г	0		(51)
		actor fro		e 2b								0 0		(52) (53)
•				e, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
		(54) in (5	-	, ,						,		02		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)ı	m			I	
(56)m=	31.62	28.56	31.62	30.6	31.62	30.6	31.62	31.62	30.6	31.62	30.6	31.62		(56)
If cylinde	er contain	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	31.62	28.56	31.62	30.6	31.62	30.6	31.62	31.62	30.6	31.62	30.6	31.62		(57)
Primar	v circuit	loss (ar	nual) fro	, om Table	- <u>-</u> 3							0		(58)
	•	•	,	for each		59)m = ((58) ÷ 36	65 × (41)	m				1	
(mo	dified by	factor fi	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	n month ((61)m =	(60) ÷ 30	65 × (41))m					'	
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	, (59)m + (61)m	
(62)m=	227.08	199.51	208.02	184.39	179.19	157.94	149.62	167.03	167.62	, 191.31	204.91	220.91		(62)
Solar DI	-IW input	L calculated	using App	endix G or	I r Appendix	I H (negati	ve quantity	/) (enter '0	if no sola	r contribut	on to wate	er heating)	1	
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter										I	
(64)m=	227.08	199.51	208.02	184.39	179.19	157.94	149.62	167.03	167.62	191.31	204.91	220.91		
					•			Outp	but from wa	ater heate	r (annual)₁	12	2257.53	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)m	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]	
(65)m=	90.29	79.69	83.95	75.62	74.36	66.82	64.53	70.32	70.04	78.39	82.44	88.24		(65)
inclu	de (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	leating	
5. Int	ternal ga	ains (see	e Table 5	5 and 5a):	-		-					-	
Metab	olic gain	is (Table	5) Wat	ts	/									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	180.25	180.25	180.25	180.25	180.25	180.25	180.25	180.25	180.25	180.25	180.25	180.25		(66)
Lightin	g gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5				I	
(67)m=	67.56	60.01	48.8	36.95	27.62	23.32	25.19	32.75	43.95	55.81	65.14	69.44		(67)
Applia	nces ga	ins (calc	ulated ir	n Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5			I	
(68)m=	712.12	719.51	700.89	661.25	611.2	564.17	532.75	525.36	543.98	583.62	633.67	680.7		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5			J	
(69)m=	41.03	41.03	41.03	41.03	41.03	41.03	41.03	41.03	41.03	41.03	41.03	41.03		(69)
Pumps	and fai	ns gains	(Table :	5a)										
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0		(70)
	s e.a. ev	aporatio	n (nega	ı tive valu	es) (Tab	le 5)	1	1					1	
(71)m=	-144.2	-144.2	-144.2	-144.2	-144.2	-144.2	-144.2	-144.2	-144.2	-144.2	-144.2	-144.2		(71)
	heating	ı gains (T	able 5)	!	ļ	ļ	ļ	ļ					1	
(72)m=	121.35	118.58	112.84	105.02	99.95	92.81	86.74	94.51	97.28	105.37	114.5	118.6		(72)
	L	I		I	I	I	I	I			I	1	i	

Total internal	gains =				(66	6)m + (67)m	n + (68	3)m + (69)n	n + (70)n	n + (71)m + (72)	m		
(73)m= 978.11	975.18	939.6	880.29	815.85	757.37	721.75	729	.7 762.	.29 82	1.87	890.38	945.81]	(73)
6. Solar gains	S:													
Solar gains are o	calculated (using sola	r flux from	Table 6a	and asso	ciated equa	tions	to convert	to the ap	plica		on.		
Orientation: A	Access F Fable 6d	actor	Area m²			ux able 6a		g_ Table	6h	_	FF Fable 6c		Gains	
_						able da		Table	00	-			(W)	_
Southeast 0.9x	0.77	X	5.6	66	×	36.79	X	0.76	;	×	0.7	=	76.71	(77)
Southeast 0.9x	0.77	X	2.2	26	×	36.79	X	0.76	;	×	0.7	=	30.67	(77)
Southeast 0.9x	0.77	х	1.7	72	x	36.79	x	0.76	;	×	0.7	=	23.26	(77)
Southeast 0.9x	0.77	x	3.9	94	x	36.79	x	0.76	i	×	0.7	=	53.42	(77)
Southeast 0.9x	0.77	x	4.5	52	x	36.79	x	0.76	i	×	0.7	=	61.29	(77)
Southeast 0.9x	0.77	x	1.9	99	x	36.79	x	0.76	;	×	0.7	=	26.97	(77)
Southeast 0.9x	0.77	x	2.	3	x	36.79	x	0.76	;	×	0.7	=	31.21	(77)
Southeast 0.9x	0.77	x	1.:	31	x	36.79	x	0.76	;	×	0.7	=	35.54	(77)
Southeast 0.9x	0.77	x	5.6	66	x	62.67	x	0.76	i	x [0.7	=	130.67	(77)
Southeast 0.9x	0.77	x	2.2	26	x	62.67	x	0.76	i	× [0.7	=	52.24	(77)
Southeast 0.9x	0.77	x	1.7	72	x	62.67	x	0.76	;	x [0.7	=	39.63	(77)
Southeast 0.9x	0.77	x	3.9	94	x	62.67	x	0.76	;	x [0.7	=	90.99	(77)
Southeast 0.9x	0.77	x	4.	52	x	62.67	x	0.76	;	x [0.7	=	104.39	(77)
Southeast 0.9x	0.77	x	1.9	99	x	62.67	x	0.76	;	x [0.7	=	45.94	(77)
Southeast 0.9x	0.77	x	2.	3	x	62.67	x	0.76	;	x [0.7	=	53.17	(77)
Southeast 0.9x	0.77	x	1.3	31	x	62.67	x	0.76	i	x [0.7	=	60.54	(77)
Southeast 0.9x	0.77	x	5.6	66	x	85.75	x	0.76	;	x [0.7	=	178.78	(77)
Southeast 0.9x	0.77	x	2.2	26	x	85.75	x	0.76	;	×	0.7	=	71.48	(77)
Southeast 0.9x	0.77	x	1.7	72	x	85.75	x	0.76	;	×	0.7	=	54.22	(77)
Southeast 0.9x	0.77	x	3.9	94	x	85.75	x	0.76	;	×	0.7	=	124.5	(77)
Southeast 0.9x	0.77	x	4.	52	x	85.75	x	0.76	;	×	0.7	=	142.84	(77)
Southeast 0.9x	0.77	x	1.9	99	x	85.75	x	0.76	;	×	0.7	=	62.85	(77)
Southeast 0.9x	0.77	x	2.	3	x	85.75	x	0.76	;	×	0.7	=	72.75	(77)
Southeast 0.9x	0.77	x	1.:	31	x	85.75	x	0.76	;	×	0.7	=	82.83	(77)
Southeast 0.9x	0.77	x	5.6	66	x	106.25	x	0.76	;	×	0.7	=	221.52	(77)
Southeast 0.9x	0.77	x	2.2	26	x	106.25	x	0.76	;	×	0.7	=	88.57	(77)
Southeast 0.9x	0.77	x	1.7	72	x	106.25	x	0.76	;	×	0.7	=	67.18	(77)
Southeast 0.9x	0.77	x	3.9	94	x	106.25	x	0.76	;	×	0.7	=	154.26	(77)
Southeast 0.9x	0.77	x	4.5	52	x	106.25	x	0.76	;	×	0.7	=	176.98	(77)
Southeast 0.9x	0.77	x	1.9	99	x	106.25	x	0.76	;	×	0.7	=	77.87	(77)
Southeast 0.9x	0.77	x	2.			106.25	x	0.76	;	×	0.7		90.14	(77)
Southeast 0.9x	0.77	x	1.:			106.25	x	0.76		×「	0.7	=	102.63	(77)
Southeast 0.9x	0.77	x	5.0			119.01	x	0.76		×「	0.7	=	248.12	(77)
Southeast 0.9x	0.77	x	2.2			119.01	x	0.76		×	0.7		99.2	(77)
L			L		L		. I	-		L			L	

Southeast 0 av 0.77 x 0.72 x 1.12 x 10.01 x 0.76 x 0.7 = 72.25 (7) Southeast 0 av 0.77 x 3.84 x 119.01 x 0.76 x 0.7 = 79.25 (7) Southeast 0 av 0.77 x 2.5 x 119.01 x 0.76 x 0.7 = 79.25 (7) Southeast 0 av 0.77 x 2.5 x 119.01 x 0.76 x 0.7 = 712.79 Southeast 0 av 0.77 x 2.5 x 119.01 x 0.76 x 0.7 = 712.79 Southeast 0 av 0.77 x 2.5 x 119.01 x 0.76 x 0.7 = 714.07 Southeast 0 av 0.77 x 2.56 x 118.15 x 0.76 x 0.7 = 714.77 Southeast 0 av 0.77 x 2.56 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.22 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.22 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.33 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.32 x 113.8 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.32 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.32 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 104.9 x 107.8 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 104.9 x 107.8 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 104.9 x 107.8 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.32 x 104.9 x 107.8 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.32 x 104.9 x 107.8 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.31 x 104.9 x 107.8 x 0.7 = 1	Southoost o o		1		1		1		1		1		⊐
Southeast 0.sk 0.77 × 4.62 × 110.01 × 0.76 × 0.77 = 1492.2 (7) Southeast 0.sk 0.77 × 2.3 × 119.01 × 0.76 × 0.77 = 97.23 (7) Southeast 0.sk 0.77 × 2.3 × 119.01 × 0.76 × 0.77 = 97.23 (7) Southeast 0.sk 0.77 × 5.66 × 118.15 × 0.76 × 0.77 = 98.49 (7) Southeast 0.sk 0.77 × 1.72 × 118.15 × 0.76 × 0.77 = 98.49 (7) Southeast 0.sk 0.77 × 1.45.15 × 0.76 × 0.77 = 98.49 (7) Southeast 0.sk 0.77 × 1.45.2 × 111.15 × 0.76 × 0.77 = 10.02.3 <td>L</td> <td></td> <td>X</td> <td>Г</td> <td>X</td> <td></td> <td>X</td> <td></td> <td>X</td> <td></td> <td>=</td> <td></td> <td>4</td>	L		X	Г	X		X		X		=		4
Southeast 0.sx 0.77 × 1.190 × 0.76 × 0.77 = 0.72 (77 Southeast 0.sx 0.77 × 2.3 × 119.01 × 0.76 × 0.77 = 100.096 (77) Southeast 0.sx 0.77 × 1.31 × 119.01 × 0.76 × 0.77 = 144.86 (77) Southeast 0.sx 0.77 × 2.26 × 118.15 × 0.76 × 0.77 = 246.33 (77) Southeast 0.sx 0.77 × 1.22 × 118.15 × 0.76 × 0.77 = 198.61 (77) Southeast 0.sx 0.77 × 1.31 × 118.15 × 0.76 × 0.77 = 198.61 (77) Southeast 0.sx 0.77 × 1.31 × 118.15 × 0.76 × 0.77 = 198.6	L	0.77	X	3.94	X	119.01	X	0.76	X	0.7	=	172.79	4
Southeast 0.x 0.77 × 2.3 × 11201 × 0.76 × 0.77 = 100.09 (T) Southeast 0.x 0.77 × 1.31 × 119.01 × 0.76 × 0.77 = 144.66 (T) Southeast 0.x 0.77 × 2.26 × 118.15 × 0.76 × 0.77 = 98.49 (T) Southeast 0.x 0.77 × 1.22 × 118.15 × 0.76 × 0.77 = 98.49 (T) Southeast 0.x 0.77 × 1.42 × 118.15 × 0.76 × 0.77 = 98.66 (T) Southeast 0.x 0.77 × 2.28 × 113.14 0.76 × 0.77 = 94.65 (T) Southeast 0.x 0.77 × 2.26 × 113.91 × 0.76 × 0.77 = <t< td=""><td>L</td><td>0.77</td><td>X</td><td>4.52</td><td>X</td><td>119.01</td><td>X</td><td>0.76</td><td>X</td><td>0.7</td><td>=</td><td>198.23</td><td>4</td></t<>	L	0.77	X	4.52	X	119.01	X	0.76	X	0.7	=	198.23	4
Southeast 0,x 0.77 × 1.31 × 110.01 × 0.76 × 0.77 = 114.86 (77) Southeast 0,x 0.77 × 2.26 × 118.15 × 0.76 × 0.77 = 246.33 (77) Southeast 0,x 0.77 × 1.22 × 118.15 × 0.76 × 0.77 = 747.77 Southeast 0,x 0.77 × 1.22 × 118.15 × 0.76 × 0.77 = 171.54 (77) Southeast 0,x 0.77 × 1.39 × 118.15 × 0.76 × 0.77 = 114.12 (77) Southeast 0,x 0.77 × 1.33 × 113.91 × 0.76 × 0.77 = 114.12 (77) Southeast 0,x 0.77 × 1.22 × 113.91 × 0.76 × 0.77 =	L	0.77	x	1.99	X	119.01	X	0.76	X	0.7	=	87.23	(77)
Southeast 0.3x 0.77 x 5.66 x 118.15 x 0.76 x 0.77 = 246.33 (77) Southeast 0.3x 0.77 x 1.72 x 118.15 x 0.76 x 0.77 = 98.49 (77) Southeast 0.3x 0.77 x 1.72 x 118.15 x 0.76 x 0.7 = 74.7 (77) Southeast 0.3x 0.77 x 4.52 x 118.15 x 0.76 x 0.7 = 196.66 (77) Southeast 0.3x 0.77 x 1.39 x 118.15 x 0.76 x 0.7 = 114.12 (77) Southeast 0.3x 0.77 x 1.31 x 118.15 x 0.76 x 0.7 = 94.65 (77) Southeast 0.3x 0.77 x 2.36 x 113.91 x 0.76 x 0.7 = 94.65 (77) Southeast 0.3x 0.77 x 3.44	L	0.77	x	2.3	x	119.01	x	0.76	x	0.7	=	100.96	(77)
Southeast 0.3x 0.77 x 2.28 x 118.15 x 0.76 x 0.77 = 98.49 (7) Southeast 0.3x 0.77 x 1.72 x 118.15 x 0.76 x 0.77 = 74.7 (7) Southeast 0.3x 0.77 x 4.62 x 118.15 x 0.76 x 0.7 = 196.48 (7) Southeast 0.3x 0.77 x 4.62 x 118.15 x 0.76 x 0.7 = 196.86 (7) Southeast 0.3x 0.77 x 2.3 x 118.15 x 0.76 x 0.7 = 100.23 (7) Southeast 0.3x 0.77 x 2.36 x 113.91 x 0.76 x 0.7 = 237.48 (7) Southeast 0.3x 0.77 x 2.26 x 113.91 x 0.76 x 0.7	L	0.77	x	1.31	x	119.01	x	0.76	x	0.7	=	114.96	(77)
Southeast 0.3x 0.77 x 1.72 x 118.15 x 0.76 x 0.77 = 74.7 (7) Southeast 0.3x 0.77 x 3.94 x 118.15 x 0.76 x 0.77 = 171.54 (7) Southeast 0.3x 0.77 x 1.99 x 118.15 x 0.76 x 0.77 = 196.8 (7) Southeast 0.3x 0.77 x 1.31 x 118.15 x 0.76 x 0.77 = 100.23 (7) Southeast 0.3x 0.77 x 1.31 x 118.15 x 0.76 x 0.77 = 94.55 (7) Southeast 0.3x 0.77 x 1.226 x 113.91 x 0.76 x 0.7 = 77.56.66 (7) Southeast 0.3x 0.77 x 14.52 x 113.91 x 0.76 x 0.7 =	L	0.77	x	5.66	x	118.15	x	0.76	x	0.7	=	246.33	(77)
Southeast 0.5k 0.77 x 0.344 x 118.15 x 0.76 x 0.77 = 171.54 (7) Southeast 0.5k 0.77 x 4.62 x 118.15 x 0.76 x 0.77 = 196.8 (77) Southeast 0.5k 0.77 x 1.99 x 118.15 x 0.76 x 0.77 = 196.8 (77) Southeast 0.5k 0.77 x 1.33 x 118.15 x 0.76 x 0.77 = 114.12 (77) Southeast 0.5k 0.77 x 1.34 x 113.91 x 0.76 x 0.77 = 94.95 (77) Southeast 0.5k 0.77 x 1.32 x 113.91 x 0.76 x 0.77 = 146.74 (77) Southeast 0.5k 0.77 x 4.52 x 113.91 x 0.76 x 0.77	Southeast 0.9x	0.77	x	2.26	x	118.15	x	0.76	x	0.7	=	98.49	(77)
Southeast 0.5% 0.77 x 4.52 x 118.15 x 0.76 x 0.77 = 196.8 (77) Southeast 0.5% 0.77 x 1.39 x 118.15 x 0.76 x 0.77 = 100.23 (77) Southeast 0.5% 0.77 x 2.3 x 118.15 x 0.76 x 0.77 = 110.23 (77) Southeast 0.5% 0.77 x 5.66 x 113.91 x 0.76 x 0.77 = 94.95 (77) Southeast 0.5% 0.77 x 1.566 x 113.91 x 0.76 x 0.77 = 94.95 (77) Southeast 0.5% 0.77 x 4.52 x 113.91 x 0.76 x 0.77 = 188.74 (77) Southeast 0.5% 0.77 x 1.43 113.91 x 0.76 x 0.77 =	Southeast 0.9x	0.77	x	1.72	x	118.15	x	0.76	x	0.7	=	74.7	(77)
Southeast 0.9; 0.77 x 1.99 x 118.15 x 0.76 x 0.77 = 86.6 (7) Southeast 0.9; 0.77 x 1.31 x 118.15 x 0.76 x 0.7 = 100.23 (7) Southeast 0.9; 0.77 x 5.66 x 113.91 x 0.76 x 0.7 = 223.49 (7) Southeast 0.9; 0.77 x 5.66 x 113.91 x 0.76 x 0.7 = 94.96 (77) Southeast 0.9; 0.77 x 1.394 x 0.76 x 0.7 = 189.74 (77) Southeast 0.9; 0.77 x 4.52 x 113.91 x 0.76 x 0.7 = 83.49 (77) Southeast 0.9; 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 217.64	Southeast 0.9x	0.77	x	3.94	x	118.15	x	0.76	x	0.7	=	171.54	(77)
Southeast 0.9 0.77 x 2.3 x 118.15 x 0.76 x 0.77 x 1.31 x 118.15 x 0.76 x 0.77 x 1.31 x 118.15 x 0.76 x 0.77 x 5.66 x 113.91 x 0.76 x 0.77 z 237.49 (77) Southeast 0.9 0.77 x 1.72 x 113.91 x 0.76 x 0.77 z 236.8 (77) Southeast 0.9 0.77 x 1.72 x 113.91 x 0.76 x 0.77 z 149.70 x 1.77 x 113.91 x 0.76 x 0.77 z 189.74 (77) Southeast 0.9 0.77 x 1.31 x 113.91 x 0.76 x 0.77 z 1.66.3 (77) Southeast 0.9 0.77 x 1.226 104.39	Southeast 0.9x	0.77	x	4.52	x	118.15	x	0.76	x	0.7	=	196.8	(77)
Southeast 0.9x 0.77 x 1.31 x 118.15 x 0.76 x 0.7 = 114.12 (77) Southeast 0.9x 0.77 x 5.66 x 113.91 x 0.76 x 0.7 = 237.49 (77) Southeast 0.9x 0.77 x 2.26 x 113.91 x 0.76 x 0.7 = 94.95 (77) Southeast 0.9x 0.77 x 1.72 x 113.91 x 0.76 x 0.7 = 94.95 (77) Southeast 0.9x 0.77 x 3.94 x 113.91 x 0.76 x 0.7 = 165.38 (77) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 83.49 (77) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 666 (77) Southeast 0.9x 0.77 x 1.34	Southeast 0.9x	0.77	x	1.99	x	118.15	x	0.76	x	0.7	=	86.6	(77)
Southeast 0,8x 0.77 x 5.66 x 113.91 x 0.76 x 0.77 = 237.49 (77) Southeast 0,9x 0.77 x 2.26 x 113.91 x 0.76 x 0.7 = 237.49 (77) Southeast 0,9x 0.77 x 1.72 x 113.91 x 0.76 x 0.7 = 237.49 (77) Southeast 0,9x 0.77 x 1.72 x 113.91 x 0.76 x 0.7 = 148.74 (77) Southeast 0,9x 0.77 x 1.99 x 113.91 x 0.76 x 0.7 = 68.63 (77) Southeast 0,9x 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 66.6 (77) Southeast 0,9x 0.77 x 1.22.6 x 104.39 x 0.76 x 0.7 <td>Southeast 0.9x</td> <td>0.77</td> <td>x</td> <td>2.3</td> <td>x</td> <td>118.15</td> <td>x</td> <td>0.76</td> <td>x</td> <td>0.7</td> <td>=</td> <td>100.23</td> <td>(77)</td>	Southeast 0.9x	0.77	x	2.3	x	118.15	x	0.76	x	0.7	=	100.23	(77)
Southeast 0.sx 0.77 x 2.26 x 113.91 x 0.76 x 0.77 = 94.95 (7) Southeast 0.sx 0.77 x 1.72 x 113.91 x 0.76 x 0.7 = 94.95 (7) Southeast 0.sx 0.77 x 3.94 x 113.91 x 0.76 x 0.7 = 94.95 (7) Southeast 0.sx 0.77 x 4.52 x 113.91 x 0.76 x 0.7 = 98.97.4 (7) Southeast 0.sx 0.77 x 1.99 x 113.91 x 0.76 x 0.7 = 96.63 (7) Southeast 0.sx 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 110.03 (7) Southeast 0.sx 0.77 x 1.26 x 104.39 x 0.76 x 0.7	Southeast 0.9x	0.77	x	1.31	x	118.15	x	0.76	x	0.7	=	114.12	(77)
Southeast 0.9x 0.77 x 1.72 x 113.91 x 0.76 x 0.77 = 72.02 77 Southeast 0.9x 0.77 x 3.94 x 113.91 x 0.76 x 0.77 = 1165.38 (77) Southeast 0.9x 0.77 x 4.52 x 113.91 x 0.76 x 0.77 = 189.74 (77) Southeast 0.9x 0.77 x 1.99 x 113.91 x 0.76 x 0.77 = 83.49 (77) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.77 = 217.64 (77) Southeast 0.9x 0.77 x 1.266 x 104.39 x 0.76 x 0.77 = 217.64 (77) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 151.56 (77) Southeast 0.9x 0.77 x 1.52	Southeast 0.9x	0.77	x	5.66	x	113.91	x	0.76	x	0.7	=	237.49	(77)
Southeast 0.5x 0.77 x 3.94 x 113.91 x 0.76 x 0.7 = 165.38 77 Southeast 0.9x 0.77 x 4.52 x 113.91 x 0.76 x 0.7 = 165.38 77 Southeast 0.9x 0.77 x 1.99 x 113.91 x 0.76 x 0.7 = 189.74 (77) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 96.63 (77) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 110.03 (77) Southeast 0.9x 0.77 x 1.326 x 104.39 x 0.76 x 0.7 = 87.02 (77) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.7 = 151.56 (77) Southeast 0.9x 0.77 x 1.72	Southeast 0.9x	0.77	x	2.26	x	113.91	x	0.76	x	0.7	=	94.95	(77)
Southeast 0.9, 0.77 x 4.52 x 113.91 x 0.76 x 0.77 = 189.74 (7) Southeast 0.9, 0.77 x 1.99 x 113.91 x 0.76 x 0.77 = 88.49 (7) Southeast 0.9, 0.77 x 2.3 x 113.91 x 0.76 x 0.77 = 96.63 (7) Southeast 0.9, 0.77 x 1.31 x 113.91 x 0.76 x 0.77 = 110.03 (7) Southeast 0.9, 0.77 x 5.66 x 104.39 x 0.76 x 0.77 = 217.64 (7) Southeast 0.9, 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 87.02 (7) Southeast 0.9, 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 151.56 (7) Southeast 0.9, 0.77 x 4.52 x 104.39 x 0.76 x 0.77	Southeast 0.9x	0.77	x	1.72	x	113.91	x	0.76	x	0.7	=	72.02	(77)
Southeast 0.9x 0.77 x 1.99 x 113.91 x 0.76 x 0.77 = 83.49 (7) Southeast 0.9x 0.77 x 2.3 x 113.91 x 0.76 x 0.77 = 98.63 (7) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.77 = 110.03 (7) Southeast 0.9x 0.77 x 5.66 x 104.39 x 0.76 x 0.77 = 217.64 (7) Southeast 0.9x 0.77 x 2.26 x 104.39 x 0.76 x 0.77 = 87.02 (7) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 151.56 (7) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.77 = 151.56 (7) Southeast 0.9x 0.77 x 1.31	Southeast 0.9x	0.77	x	3.94	x	113.91	x	0.76	x	0.7	=	165.38	(77)
Southeast 0.9x 0.77 x 2.3 x 113.91 x 0.76 x 0.77 = 96.63 (7) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.77 = 110.03 (7) Southeast 0.9x 0.77 x 5.66 x 104.39 x 0.76 x 0.77 = 217.64 (7) Southeast 0.9x 0.77 x 2.26 x 104.39 x 0.76 x 0.77 = 87.02 (7) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 66.6 (7) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 165.61 (7) Southeast 0.9x 0.77 x 1.52 x 104.39 x 0.76 x 0.7 = 165.61 (7) Southeast 0.9x 0.77 x 1.31	Southeast 0.9x	0.77	x	4.52	x	113.91	x	0.76	x	0.7	=	189.74	(77)
Southeast 0.9x 0.77 × 1.31 × 113.91 × 0.76 × 0.77 = 110.03 (7) Southeast 0.9x 0.77 × 5.66 × 104.39 × 0.76 × 0.77 = 217.64 (7) Southeast 0.9x 0.77 × 2.26 × 104.39 × 0.76 × 0.77 = 217.64 (7) Southeast 0.9x 0.77 × 1.72 × 104.39 × 0.76 × 0.77 = 666 (77) Southeast 0.9x 0.77 × 1.943 × 0.76 × 0.7 = 151.56 (77) Southeast 0.9x 0.77 × 4.52 × 104.39 × 0.76 × 0.7 = 173.88 (77) Southeast 0.9x 0.77 × 2.3 × 104.39 × 0.76 × 0.7 = 88.56	Southeast 0.9x	0.77	x	1.99	x	113.91	x	0.76	x	0.7	=	83.49	(77)
Southeast 0.9x 0.77 x 5.66 x 104.39 x 0.76 x 0.7 = 217.64 (77) Southeast 0.9x 0.77 x 2.26 x 104.39 x 0.76 x 0.7 = 87.02 (77) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.7 = 66 (77) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.7 = 666 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 173.88 (77) Southeast 0.9x 0.77 x 1.99 x 104.39 x 0.76 x 0.7 = 88.56 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 193.58 (77) Southeast 0.9x 0.77 x 1.31 <t< td=""><td>Southeast 0.9x</td><td>0.77</td><td>x</td><td>2.3</td><td>x</td><td>113.91</td><td>x</td><td>0.76</td><td>x</td><td>0.7</td><td>=</td><td>96.63</td><td>(77)</td></t<>	Southeast 0.9x	0.77	x	2.3	x	113.91	x	0.76	x	0.7	=	96.63	(77)
Southeast 0.9x 0.77 x 2.26 x 104.39 x 0.76 x 0.7 = 87.02 (77) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.7 = 66 (77) Southeast 0.9x 0.77 x 3.94 x 104.39 x 0.76 x 0.7 = 66 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 151.56 (77) Southeast 0.9x 0.77 x 1.99 x 104.39 x 0.76 x 0.7 = 173.88 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 88.56 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 100.83 (77) Southeast 0.9x 0.77 x 2.26 <td< td=""><td>Southeast 0.9x</td><td>0.77</td><td>x</td><td>1.31</td><td>x</td><td>113.91</td><td>x</td><td>0.76</td><td>x</td><td>0.7</td><td>=</td><td>110.03</td><td>(77)</td></td<>	Southeast 0.9x	0.77	x	1.31	x	113.91	x	0.76	x	0.7	=	110.03	(77)
Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.7 = 66 (77) Southeast 0.9x 0.77 x 3.94 x 104.39 x 0.76 x 0.7 = 66 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 151.56 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 173.88 (77) Southeast 0.9x 0.77 x 1.99 x 104.39 x 0.76 x 0.7 = 173.88 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 185.56 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 193.58 (77) Southeast 0.9x 0.77 x 1.72 <	Southeast 0.9x	0.77	x	5.66	x	104.39	x	0.76	x	0.7	=	217.64	(77)
Southeast 0.9x 0.77 x 3.94 x 104.39 x 0.76 x 0.7 = 151.56 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 151.56 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 173.88 (77) Southeast 0.9x 0.77 x 1.99 x 104.39 x 0.76 x 0.7 = 76.51 (77) Southeast 0.9x 0.77 x 2.3 x 104.39 x 0.76 x 0.7 = 88.56 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 100.83 (77) Southeast 0.9x 0.77 x 2.26 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast 0.9x 0.77 x 1.72	Southeast 0.9x	0.77	x	2.26	x	104.39	x	0.76	x	0.7	=	87.02	(77)
Southeast $0.9x$ 0.77×4.52×104.39×0.76×0.7=173.88(77)Southeast $0.9x$ 0.77×1.99×104.39×0.76×0.7=76.51(77)Southeast $0.9x$ 0.77×2.3×104.39×0.76×0.7=76.51(77)Southeast $0.9x$ 0.77×2.3×104.39×0.76×0.7=88.56(77)Southeast $0.9x$ 0.77×1.31×104.39×0.76×0.7=100.83(77)Southeast $0.9x$ 0.77×5.66×92.85×0.76×0.7=193.58(77)Southeast $0.9x$ 0.77×2.26×92.85×0.76×0.7=77.4(77)Southeast $0.9x$ 0.77×1.72×92.85×0.76×0.7=58.71(77)Southeast $0.9x$ 0.77×3.94×92.85×0.76×0.7=134.81(77)Southeast $0.9x$ 0.77×4.52×92.85×0.76×0.7=154.66(77)Southeast $0.9x$ 0.77×1.31×92.85×0.76×0.7=68.05(77)Southeast $0.9x$ 0.77×2.3×92.8	Southeast 0.9x	0.77	x	1.72	x	104.39	x	0.76	x	0.7	=	66	(77)
Southeast $0.9x$ 0.77 x 1.99 x 104.39 x 0.76 x 0.7 $=$ 76.51 (77) Southeast $0.9x$ 0.77 x 2.3 x 104.39 x 0.76 x 0.7 $=$ 88.56 (77) Southeast $0.9x$ 0.77 x 1.31 x 104.39 x 0.76 x 0.7 $=$ 88.56 (77) Southeast $0.9x$ 0.77 x 1.31 x 104.39 x 0.76 x 0.7 $=$ 190.83 (77) Southeast $0.9x$ 0.77 x 5.66 x 92.85 x 0.76 x 0.7 $=$ 193.58 (77) Southeast $0.9x$ 0.77 x 2.26 x 92.85 x 0.76 x 0.7 $=$ 58.71 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 $=$ 58.71 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 $=$ 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 $=$ 134.81 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 $=$ 78.77 (77) Southeast $0.9x$ <	Southeast 0.9x	0.77	x	3.94	x	104.39	x	0.76	x	0.7	=	151.56	(77)
Southeast $0.9x$ 0.77 x 2.3 x 104.39 x 0.76 x 0.7 = 88.56 (77) Southeast $0.9x$ 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 100.83 (77) Southeast $0.9x$ 0.77 x 5.66 x 92.85 x 0.76 x 0.7 = 193.58 (77) Southeast $0.9x$ 0.77 x 2.26 x 92.85 x 0.76 x 0.7 = 77.4 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.33 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.33 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.33 x 92.85 x 0.76 x	Southeast 0.9x	0.77	x	4.52	x	104.39	x	0.76	x	0.7	=	173.88	(77)
Southeast $0.9x$ 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 100.83 (77) Southeast $0.9x$ 0.77 x 5.66 x 92.85 x 0.76 x 0.7 = 193.58 (77) Southeast $0.9x$ 0.77 x 2.26 x 92.85 x 0.76 x 0.7 = 77.4 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 3.94 x 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 = 154.66 (77) Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 2.26 69.27 x 0.76 x <td< td=""><td>Southeast 0.9x</td><td>0.77</td><td>x</td><td>1.99</td><td>x</td><td>104.39</td><td>x</td><td>0.76</td><td>x</td><td>0.7</td><td>=</td><td>76.51</td><td>(77)</td></td<>	Southeast 0.9x	0.77	x	1.99	x	104.39	x	0.76	x	0.7	=	76.51	(77)
Southeast $0.9x$ 0.77 x 5.66 x 92.85 x 0.76 x 0.7 = 193.58 (77) Southeast $0.9x$ 0.77 x 2.26 x 92.85 x 0.76 x 0.7 = 77.4 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 3.94 x 92.85 x 0.76 x 0.7 = 154.66 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 = 154.66 (77) Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x $0.$	Southeast 0.9x	0.77	x	2.3	x	104.39	x	0.76	x	0.7] =	88.56	(77)
Southeast $0.9x$ 0.77 x 2.26 x 92.85 x 0.76 x 0.7 = 77.4 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 3.94 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 92.85 x 0.76 x 0.7 = 154.66 (77) Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	1.31	x	104.39	x	0.76	x	0.7] =	100.83	(77)
Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 $=$ 58.71 (77) Southeast $0.9x$ 0.77 x 3.94 x 92.85 x 0.76 x 0.7 $=$ 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 $=$ 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 $=$ 154.66 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 $=$ 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 $=$ 78.77 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 $=$ 78.77 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 $=$ 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 $=$ 57.74 (77)	Southeast 0.9x	0.77	x	5.66	x	92.85	x	0.76	x	0.7	=	193.58	(77)
Southeast $0.9x$ 0.77 x 3.94 x 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 = 154.66 (77) Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	2.26	x	92.85	x	0.76	x	0.7	=	77.4	(77)
Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 $=$ 154.66 (77) Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 $=$ 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 $=$ 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 $=$ 78.77 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 $=$ 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 $=$ 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 $=$ 57.74 (77)	Southeast 0.9x	0.77	x	1.72	x	92.85	×	0.76	x	0.7	=	58.71	(77)
Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	3.94	x	92.85	x	0.76	x	0.7	=	134.81	(77)
Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	4.52	x	92.85	x	0.76	x	0.7	=	154.66	(77)
Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	1.99	×	92.85	×	0.76	x	0.7	=	68.05	(77)
Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 144.41 (77)	Southeast 0.9x	0.77	x	2.3	×	92.85	×	0.76	x	0.7	=	78.77	(77)
Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	1.31	×	92.85	×	0.76	x	0.7	=	89.69	(77)
	Southeast 0.9x	0.77	x	5.66	×	69.27	×	0.76	x	0.7] =	144.41	(77)
Southeast $0.9x$ 0.77 x 1.72 x 69.27 x 0.76 x 0.7 = 43.8 (77)	L	0.77	x	2.26	×	69.27	×	0.76	x	0.7	=	57.74	(77)
	Southeast 0.9x	0.77	x	1.72	x	69.27	×	0.76	x	0.7	=	43.8	(77)

Southeast 0.9x	0.77] ×	3.94	×	69.27) ×	0.76	x	0.7	=	100.57	(77)
Southeast 0.9x	0.77] ×	4.52	x	69.27	x	0.76	x	0.7	=	115.38](77)
Southeast 0.9x	0.77] x	1.99	×	69.27	x	0.76	x	0.7	=	50.77	(77)
L Southeast 0.9x	0.77] x	2.3	x	69.27	」 】 ×	0.76	x	0.7	=	58.76](77)
Southeast 0.9x	0.77] x	1.31	x	69.27	x	0.76	x	0.7	=	66.91] (77)
Southeast 0.9x	0.77	x	5.66	x	44.07	x	0.76	x	0.7	=	91.88	 (77)
Southeast 0.9x	0.77	x	2.26	x	44.07	×	0.76	x	0.7	=	36.74	(77)
Southeast 0.9x	0.77	x	1.72	x	44.07	×	0.76	x	0.7	=	27.86	(77)
Southeast 0.9x	0.77	x	3.94	x	44.07	×	0.76	x	0.7	=	63.98	(77)
Southeast 0.9x	0.77	x	4.52	x	44.07	×	0.76	x	0.7	=	73.41	(77)
Southeast 0.9x	0.77	x	1.99	x	44.07	×	0.76	x	0.7	=	32.3	(77)
Southeast 0.9x	0.77	x	2.3	x	44.07	x	0.76	x	0.7	=	37.39	(77)
Southeast 0.9x	0.77	x	1.31	×	44.07	×	0.76	x	0.7	=	42.57	(77)
Southeast 0.9x	0.77	x	5.66	x	31.49	x	0.76	x	0.7	=	65.65	(77)
Southeast 0.9x	0.77	x	2.26	x	31.49	×	0.76	x	0.7	=	26.25	(77)
Southeast 0.9x	0.77	x	1.72	x	31.49	×	0.76	x	0.7	=	19.91	(77)
Southeast 0.9x	0.77	x	3.94	x	31.49	×	0.76	x	0.7	=	45.72	(77)
Southeast 0.9x	0.77	x	4.52	x	31.49	×	0.76	x	0.7	=	52.45	(77)
Southeast 0.9x	0.77	x	1.99	x	31.49	x	0.76	x	0.7	=	23.08	(77)
Southeast 0.9x	0.77	x	2.3	x	31.49	x	0.76	x	0.7	=	26.71	(77)
Southeast 0.9x	0.77	x	1.31	×	31.49	x	0.76	x	0.7	=	30.42	(77)
Northwest 0.9x	0.77	x	19.6	x	11.28	x	0.76	x	0.7	=	81.54	(81)
Northwest 0.9x	0.77	x	4.12	x	11.28	x	0.76	x	0.7	=	17.13	(81)
Northwest 0.9x	0.77	x	2.57	x	11.28	x	0.76	x	0.7	=	10.67	(81)
Northwest 0.9x	0.77	x	2.98	x	11.28	x	0.76	x	0.7	=	12.4	(81)
Northwest 0.9x	0.77	x	2.48	×	11.28	x	0.76	x	0.7	=	10.32	(81)
Northwest 0.9x	0.77	x	3.99	x	11.28	×	0.76	x	0.7	=	16.61	(81)
Northwest 0.9x	0.77	x	2.09	x	11.28	x	0.76	x	0.7	=	8.71	(81)
Northwest 0.9x	0.77	x	2.5	x	11.28	×	0.76	x	0.7	=	10.4	(81)
Northwest 0.9x	0.77	x	19.6	x	22.97	×	0.76	x	0.7	=	165.97	(81)
Northwest 0.9x	0.77	x	4.12	x	22.97	×	0.76	x	0.7	=	34.88	(81)
Northwest 0.9x	0.77	x	2.57	x	22.97	×	0.76	x	0.7	=	21.72	(81)
Northwest 0.9x	0.77	×	2.98	x	22.97	×	0.76	x	0.7	=	25.24	(81)
Northwest 0.9x	0.77	x	2.48	x	22.97	×	0.76	x	0.7	=	21	(81)
Northwest 0.9x	0.77	×	3.99	x	22.97	×	0.76	x	0.7	=	33.81	(81)
Northwest 0.9x	0.77	x	2.09	x	22.97	X	0.76	X	0.7	=	17.72	(81)
Northwest 0.9x	0.77	×	2.5	×	22.97	×	0.76	x	0.7	=	21.16	(81)
Northwest 0.9x	0.77	×	19.6	×	41.38	×	0.76	x	0.7	=	299.02	(81)
Northwest 0.9x	0.77	×	4.12	×	41.38	×	0.76	x	0.7	=	62.84	(81)
Northwest 0.9x	0.77	×	2.57	×	41.38	×	0.76	x	0.7	=	39.13	(81)
Northwest 0.9x	0.77	×	2.98	×	41.38	×	0.76	x	0.7	=	45.48	(81)

Northwest 0.9x	0.77] ×	2.48	x	41.38	×	0.76	x	0.7	=	37.83	(81)
Northwest 0.9x	0.77	」 ^] x	3.99	x	41.38	x x	0.76	x	0.7		60.91	(81)
Northwest 0.9x	0.77] ^] x	2.09	x	41.38	x	0.76	x	0.7	-	31.93	(81)
Northwest 0.9x	0.77] ^] x	2.09	x	41.38	x x	0.76	x	0.7	=	38.12	(81)
Northwest 0.9x	0.77] ^] x	19.6	x	67.96	x	0.76	x	0.7	=	491.08	(81)
Northwest 0.9x	0.77) ^ x	4.12	x	67.96	x	0.76	x	0.7	=	103.2	(81)
Northwest 0.9x	0.77	」 】 x	2.57	x	67.96	 x	0.76	x	0.7	=	64.26	(81)
Northwest 0.9x	0.77] x	2.98	x	67.96	x	0.76	x	0.7	=	74.69	(81)
Northwest 0.9x	0.77	x	2.48	x	67.96	x	0.76	x	0.7	=	62.13	(81)
Northwest 0.9x	0.77	x	3.99	x	67.96	×	0.76	x	0.7	=	100.04	(81)
Northwest 0.9x	0.77	x	2.09	x	67.96	×	0.76	x	0.7	=	52.44	(81)
Northwest 0.9x	0.77	x	2.5	x	67.96	x	0.76	x	0.7	=	62.61	(81)
Northwest 0.9x	0.77	x	19.6	x	91.35	×	0.76	x	0.7	=	660.1	(81)
Northwest 0.9x	0.77	x	4.12	x	91.35	×	0.76	x	0.7	=	138.72	(81)
Northwest 0.9x	0.77	x	2.57	x	91.35	×	0.76	x	0.7	=	86.38	(81)
Northwest 0.9x	0.77	x	2.98	x	91.35	×	0.76	x	0.7	=	100.39	(81)
Northwest 0.9x	0.77	x	2.48	x	91.35	x	0.76	x	0.7	=	83.52	(81)
Northwest 0.9x	0.77	x	3.99	x	91.35	×	0.76	x	0.7	=	134.47	(81)
Northwest 0.9x	0.77	x	2.09	x	91.35	×	0.76	x	0.7	=	70.49	(81)
Northwest 0.9x	0.77	x	2.5	x	91.35	×	0.76	x	0.7	=	84.16	(81)
Northwest 0.9x	0.77	x	19.6	x	97.38	x	0.76	x	0.7	=	703.74	(81)
Northwest 0.9x	0.77	x	4.12	x	97.38	×	0.76	x	0.7	=	147.89	(81)
Northwest 0.9x	0.77	x	2.57	x	97.38	×	0.76	x	0.7	=	92.09	(81)
Northwest 0.9x	0.77	x	2.98	x	97.38	X	0.76	x	0.7	=	107.03	(81)
Northwest 0.9x	0.77	x	2.48	x	97.38	×	0.76	x	0.7	=	89.04	(81)
Northwest 0.9x	0.77	x	3.99	x	97.38	x	0.76	x	0.7	=	143.36	(81)
Northwest 0.9x	0.77	x	2.09	x	97.38	x	0.76	x	0.7	=	75.15	(81)
Northwest 0.9x	0.77	x	2.5	x	97.38	x	0.76	x	0.7	=	89.72	(81)
Northwest 0.9x	0.77	x	19.6	x	91.1	×	0.76	x	0.7	=	658.34	(81)
Northwest 0.9x	0.77	x	4.12	x	91.1	×	0.76	x	0.7	=	138.34	(81)
Northwest 0.9x	0.77	x	2.57	x	91.1	×	0.76	x	0.7	=	86.15	(81)
Northwest 0.9x	0.77	x	2.98	x	91.1	×	0.76	x	0.7	=	100.12	(81)
Northwest 0.9x	0.77	x	2.48	x	91.1	×	0.76	x	0.7	=	83.3	(81)
Northwest 0.9x	0.77	x	3.99	x	91.1	×	0.76	x	0.7	=	134.11	(81)
Northwest 0.9x	0.77	x	2.09	x	91.1	×	0.76	x	0.7	=	70.3	(81)
Northwest 0.9x	0.77	×	2.5	x	91.1	×	0.76	x	0.7	=	83.93	(81)
Northwest 0.9x	0.77	×	19.6	x	72.63	×	0.76	x	0.7	=	524.83	(81)
Northwest 0.9x	0.77	×	4.12	x	72.63	×	0.76	x	0.7	=	110.29	(81)
Northwest 0.9x	0.77	×	2.57	x	72.63	×	0.76	x	0.7	=	68.68	(81)
Northwest 0.9x	0.77	×	2.98	x	72.63	×	0.76	x	0.7	=	79.82	(81)
Northwest 0.9x	0.77	×	2.48	X	72.63	×	0.76	x	0.7	=	66.4	(81)

Northwest 0.9x	0.77) ×	3.99	×	72.63	x	0.76	x	0.7	=	106.92	(81)
Northwest 0.9x	0.77] x	2.09	x	72.63	x	0.76	x	0.7	=	56.04	(81)
Northwest 0.9x	0.77	x l	2.5	x	72.63	x	0.76	x	0.7	=	66.91	(81)
Northwest 0.9x	0.77] x	19.6	x	50.42	x	0.76	x	0.7	=	364.36	(81)
Northwest 0.9x	0.77] x	4.12	x	50.42	x	0.76	x	0.7	=	76.57	(81)
Northwest 0.9x	0.77] x	2.57	×	50.42	x	0.76	x	0.7	=	47.68	(81)
Northwest 0.9x	0.77] x	2.98	x	50.42	x	0.76	x	0.7	=	55.41	(81)
Northwest 0.9x	0.77	x	2.48	x	50.42	x	0.76	x	0.7	=	46.1	(81)
Northwest 0.9x	0.77	x	3.99	x	50.42	x	0.76	x	0.7	=	74.23	(81)
Northwest 0.9x	0.77	x	2.09	x	50.42	x	0.76	x	0.7	=	38.91	(81)
Northwest 0.9x	0.77	x	2.5	x	50.42	x	0.76	x	0.7	=	46.45	(81)
Northwest 0.9x	0.77	x	19.6	x	28.07	x	0.76	x	0.7	=	202.83	(81)
Northwest 0.9x	0.77	x	4.12	x	28.07	x	0.76	x	0.7	=	42.62	(81)
Northwest 0.9x	0.77	x	2.57	x	28.07	x	0.76	x	0.7	=	26.54	(81)
Northwest 0.9x	0.77	x	2.98	x	28.07	x	0.76	x	0.7	=	30.85	(81)
Northwest 0.9x	0.77	x	2.48	x	28.07	x	0.76	x	0.7	=	25.66	(81)
Northwest 0.9x	0.77	x	3.99	x	28.07	x	0.76	x	0.7	=	41.32	(81)
Northwest 0.9x	0.77	x	2.09	x	28.07	x	0.76	x	0.7	=	21.66	(81)
Northwest 0.9x	0.77	x	2.5	x	28.07	x	0.76	x	0.7	=	25.86	(81)
Northwest 0.9x	0.77	x	19.6	x	14.2	x	0.76	x	0.7	=	102.59	(81)
Northwest 0.9x	0.77	x	4.12	×	14.2	x	0.76	x	0.7	=	21.56	(81)
Northwest 0.9x	0.77	x	2.57	×	14.2	x	0.76	x	0.7	=	13.43	(81)
Northwest 0.9x	0.77	x	2.98	×	14.2	x	0.76	x	0.7	=	15.6	(81)
Northwest 0.9x	0.77	x	2.48	x	14.2	x	0.76	x	0.7	=	12.98	(81)
Northwest 0.9x	0.77	x	3.99	x	14.2	x	0.76	x	0.7	=	20.9	(81)
Northwest 0.9x	0.77	x	2.09	x	14.2	x	0.76	x	0.7	=	10.95	(81)
Northwest 0.9x	0.77	x	2.5	x	14.2	x	0.76	x	0.7	=	13.08	(81)
Northwest 0.9x	0.77	x	19.6	x	9.21	x	0.76	x	0.7	=	66.59	(81)
Northwest 0.9x	0.77	x	4.12	x	9.21	x	0.76	x	0.7	=	13.99	(81)
Northwest 0.9x	0.77	x	2.57	x	9.21	x	0.76	x	0.7	=	8.71	(81)
Northwest 0.9x	0.77	x	2.98	x	9.21	x	0.76	x	0.7	=	10.13	(81)
Northwest 0.9x	0.77	×	2.48	x	9.21	x	0.76	x	0.7	=	8.42	(81)
Northwest 0.9x	0.77	×	3.99	x	9.21	x	0.76	x	0.7	=	13.56	(81)
Northwest 0.9x	0.77	×	2.09	x	9.21	x	0.76	x	0.7	=	7.11	(81)
Northwest 0.9x	0.77	×	2.5	x	9.21	x	0.76	x	0.7	=	8.49	(81)
Rooflights 0.9x	1	×	4.43	x	26	x	0.76	X	0.7	=	55.2	(82)
Rooflights 0.9x	1	×	3.28	×	26	x	0.76	x	0.7	=	40.78	(82)
Rooflights 0.9x	1	×	3.61	×	26	x	0.76	x	0.7	=	44.95	(82)
Rooflights 0.9x	1	×	3.48	x	26	x	0.76	x	0.7	=	43.38	(82)
Rooflights 0.9x	1	×	2.48	x	26	x	0.76	x	0.7	=	30.84	(82)
Rooflights 0.9x	1	x	2.21	×	26	x	0.76	x	0.7	=	27.54	(82)

Rooflights 0.9x	1] ×	3.56	×	26	×	0.76	x	0.7] =	44.37	(82)
Rooflights 0.9x	1	」 】 ×	2.81	x	26	l X	0.76	x	0.7	=	34.99	(82)
Rooflights 0.9x	1	」 】 ×	4.43	x	54	x	0.76	x	0.7	=	114.64	(82)
Rooflights 0.9x	1] ×	3.28	x	54	x	0.76	x	0.7	=	84.7	(82)
Rooflights 0.9x	1] ×	3.61	x	54	x	0.76	x	0.7	=	93.36	(82)
Rooflights 0.9x	1] ×	3.48	x	54	×	0.76	x	0.7	=	90.11	(82)
Rooflights 0.9x	1] ×	2.48	x	54	×	0.76	x	0.7	=	64.04	(82)
Rooflights 0.9x	1] ×	2.21	x	54	×	0.76	x	0.7	=	57.19	(82)
Rooflights 0.9x	1	×	3.56	x	54	×	0.76	x	0.7	i =	92.15	(82)
Rooflights 0.9x	1	x	2.81	x	54	×	0.76	x	0.7	=	72.68	(82)
Rooflights 0.9x	1	×	4.43	×	96	×	0.76	x	0.7	=	203.81	(82)
Rooflights 0.9x	1	×	3.28	x	96	×	0.76	x	0.7	=	150.58	(82)
Rooflights 0.9x	1	x	3.61	x	96	×	0.76	x	0.7	=	165.98	(82)
Rooflights 0.9x	1	x	3.48	x	96	x	0.76	x	0.7	=	160.19	(82)
Rooflights 0.9x	1	×	2.48	x	96	×	0.76	x	0.7	=	113.85	(82)
Rooflights 0.9x	1	×	2.21	x	96	×	0.76	x	0.7	=	101.67	(82)
Rooflights 0.9x	1	x	3.56	x	96	×	0.76	x	0.7	=	163.82	(82)
Rooflights 0.9x	1	x	2.81	x	96	x	0.76	x	0.7	=	129.21	(82)
Rooflights 0.9x	1	x	4.43	x	150	×	0.76	x	0.7	=	318.45	(82)
Rooflights 0.9x	1	×	3.28	x	150	×	0.76	x	0.7	=	235.28	(82)
Rooflights 0.9x	1	×	3.61	x	150	×	0.76	x	0.7	=	259.34	(82)
Rooflights 0.9x	1	×	3.48	x	150	x	0.76	x	0.7	=	250.29	(82)
Rooflights 0.9x	1	×	2.48	x	150	×	0.76	x	0.7	=	177.9	(82)
Rooflights 0.9x	1	x	2.21	x	150	×	0.76	x	0.7	=	158.87	(82)
Rooflights 0.9x	1	x	3.56	x	150	×	0.76	x	0.7	=	255.97	(82)
Rooflights 0.9x	1	x	2.81	x	150	×	0.76	x	0.7	=	201.89	(82)
Rooflights 0.9x	1	×	4.43	x	192	×	0.76	x	0.7	=	407.62	(82)
Rooflights 0.9x	1	x	3.28	x	192	x	0.76	x	0.7	=	301.16	(82)
Rooflights 0.9x	1	×	3.61	×	192	×	0.76	x	0.7	=	331.96	(82)
Rooflights 0.9x	1	×	3.48	×	192	×	0.76	x	0.7	=	320.37	(82)
Rooflights 0.9x	1	×	2.48	x	192	x	0.76	x	0.7	=	227.71	(82)
Rooflights 0.9x	1	×	2.21	x	192	×	0.76	x	0.7	=	203.35	(82)
Rooflights 0.9x	1	×	3.56	X	192	×	0.76	x	0.7	=	327.64	(82)
Rooflights 0.9x	1	×	2.81	x	192	X	0.76	x	0.7	=	258.41	(82)
Rooflights 0.9x	1	×	4.43	×	200	×	0.76	x	0.7	=	424.6	(82)
Rooflights 0.9x	1	×	3.28	X	200	X	0.76	x	0.7	=	313.71	(82)
Rooflights 0.9x	1	×	3.61	×	200	×	0.76	x	0.7	=	345.79	(82)
Rooflights 0.9x	1	×	3.48	×	200	×	0.76	x	0.7	=	333.72	(82)
Rooflights 0.9x	1	×	2.48	×	200	×	0.76	x	0.7	=	237.2	(82)
Rooflights 0.9x	1	×	2.21	×	200	×	0.76	x	0.7	=	211.82	(82)
Rooflights 0.9x	1	×	3.56	X	200	×	0.76	x	0.7	=	341.29	(82)

Rooflights 0.9x	1	x	2.81	×	200	×	0.76	x	0.7	=	269.18	(82)
Rooflights 0.9x	1] x	4.43	x	189	x	0.76	x	0.7	=	401.25	(82)
Rooflights 0.9x	1	x	3.28	×	189	x	0.76	x	0.7	=	296.46	(82)
Rooflights 0.9x	1	x	3.61	×	189	×	0.76	x	0.7	=	326.77	(82)
Rooflights 0.9x	1	x	3.48	×	189	×	0.76	x	0.7	=	315.37	(82)
Rooflights 0.9x	1	x	2.48	×	189	x	0.76	x	0.7	=	224.15	(82)
Rooflights 0.9x	1	x	2.21	×	189	×	0.76	x	0.7	=	200.17	(82)
Rooflights 0.9x	1	x	3.56	×	189	×	0.76	x	0.7	=	322.52	(82)
Rooflights 0.9x	1	x	2.81	x	189	x	0.76	x	0.7	=	254.38	(82)
Rooflights 0.9x	1	x	4.43	×	157	×	0.76	x	0.7	=	333.31	(82)
Rooflights 0.9x	1	x	3.28	×	157	×	0.76	x	0.7	=	246.26	(82)
Rooflights 0.9x	1	x	3.61	x	157	x	0.76	x	0.7	=	271.44	(82)
Rooflights 0.9x	1	x	3.48	×	157	x	0.76	x	0.7	=	261.97	(82)
Rooflights 0.9x	1	x	2.48	×	157	×	0.76	x	0.7	=	186.2	(82)
Rooflights 0.9x	1	x	2.21	×	157	×	0.76	x	0.7	=	166.28	(82)
Rooflights 0.9x	1	x	3.56	×	157	×	0.76	x	0.7	=	267.91	(82)
Rooflights 0.9x	1	x	2.81	×	157	×	0.76	x	0.7	=	211.31	(82)
Rooflights 0.9x	1	x	4.43	×	115	×	0.76	x	0.7	=	244.14	(82)
Rooflights 0.9x	1	x	3.28	×	115	×	0.76	x	0.7	=	180.38	(82)
Rooflights 0.9x	1	x	3.61	×	115	x	0.76	x	0.7	=	198.83	(82)
Rooflights 0.9x	1	x	3.48	×	115	×	0.76	x	0.7	=	191.89	(82)
Rooflights 0.9x	1	x	2.48	×	115	×	0.76	x	0.7	=	136.39	(82)
Rooflights 0.9x	1	x	2.21	×	115	×	0.76	x	0.7	=	121.8	(82)
Rooflights 0.9x	1	x	3.56	×	115	×	0.76	x	0.7	=	196.24	(82)
Rooflights 0.9x	1	x	2.81	×	115	×	0.76	x	0.7	=	154.78	(82)
Rooflights 0.9x	1	x	4.43	×	66	×	0.76	x	0.7	=	140.12	(82)
Rooflights 0.9x	1	x	3.28	×	66	x	0.76	x	0.7	=	103.52	(82)
Rooflights 0.9x	1	x	3.61	×	66	x	0.76	x	0.7	=	114.11	(82)
Rooflights 0.9x	1	x	3.48	×	66	×	0.76	x	0.7	=	110.13	(82)
Rooflights 0.9x	1	x	2.48	×	66	×	0.76	x	0.7	=	78.28	(82)
Rooflights 0.9x	1	x	2.21	×	66	×	0.76	x	0.7	=	69.9	(82)
Rooflights 0.9x	1	x	3.56	×	66	×	0.76	x	0.7	=	112.63	(82)
Rooflights 0.9x	1	x	2.81	×	66	×	0.76	x	0.7	=	88.83	(82)
Rooflights 0.9x	1	x	4.43	×	33	x	0.76	X	0.7	=	70.06	(82)
Rooflights 0.9x	1	×	3.28	×	33	×	0.76	x	0.7	=	51.76	(82)
Rooflights 0.9x	1	x	3.61	×	33	x	0.76	X	0.7	=	57.06	(82)
Rooflights 0.9x	1	×	3.48	×	33	×	0.76	x	0.7	=	55.06	(82)
Rooflights 0.9x	1	×	2.48	×	33	×	0.76	x	0.7	=	39.14	(82)
Rooflights 0.9x	1	×	2.21	×	33	×	0.76	x	0.7	=	34.95	(82)
Rooflights 0.9x	1	×	3.56	×	33	×	0.76	x	0.7	=	56.31	(82)
Rooflights 0.9x	1	×	2.81	×	33	×	0.76	x	0.7	=	44.41	(82)

Rooflig	hts <mark>0.9x</mark>	1	x	4.4	43	x [21	x	0.76	x	0.7	=	44.58	(82)
Rooflig	hts <mark>0.9x</mark>	1	x	3.2	28	x [21	x	0.76	x	0.7	=	32.94	(82)
Rooflig	hts <mark>0.9x</mark>	1	x	3.6	61	x [21	x	0.76	x	0.7	=	36.31	(82)
Rooflig	hts 0.9x	1	x	3.4	18	× [21	x	0.76	x	0.7	=	35.04	(82)
Rooflig	hts 0.9x	1	x	2.4	18	× [21	x	0.76		0.7	=	24.91	(82)
Rooflig	hts 0.9x	1	x	2.2	21	×		21	x	0.76		0.7	=	22.24	(82)
Rooflig	hts 0.9x	1	×	3.5	56	x		21	x	0.76	×	0.7	=	35.84	(82)
Rooflig	hts 0.9x	1	×	2.8	31	× [21	x	0.76	X	0.7	=	28.26	(82)
						L									
Solar	nains in	watts ca	alculated	for eac	h month				(83)m = 5	Sum(74)m .	(82)m				
(83)m=	828.89		2594.62				14.13	4745.37	3986.59			8 1025.98	687.3]	(83)
			and solar						0000.00	0020.00	101011	1020.00	00110		()
-	1807	2563.11	r	. ,	5649.03	r Ì	771.5	5467.12	4716.28	3792.12	2695.0	5 1016 26	1633.11	1	(84)
(84)m=	1807	2563.11	3534.22	4727.87	5649.03	5/	71.5	5467.12	47 10.28	3792.12	2695.0	5 1916.30	1033.11		(04)
7. Me	an inter	nal temp	berature	(heating	season)									
Temp	oerature	during h	eating p	eriods ir	n the livi	ng a	area f	rom Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	ation fac	ctor for a	ains for I	ivina are	ea. h1.m	(se	е Та	ble 9a)							
	Jan	Feb	Mar	Apr	May	È	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	1	1	1	0.97	0.82).58	0.43	0.51	0.86	1	1	1		(86)
															(00)
Mean	interna	l temper	ature in I	iving ar	ea T1 (fo	ollo	w ste	ps 3 to 7	in Tab	e 9c)	i		•		
(87)m=	19.84	20.01	20.3	20.68	20.93	2	0.99	21	21	20.93	20.55	20.13	19.83		(87)
Temr	erature	during h	eating p	eriods ir	n rest of	dw	ellina	from Ta	ble 9 T	ከ2 (°C)					
(88)m=	20.2	20.2	20.21	20.23	20.23	-	0.25	20.25	20.25	20.24	20.23	20.22	20.21		(88)
			LI												
	ation fac	tor for g	ains for r	est of d	welling,	1			9a)		·			1	
(89)m=	1	1	1	0.96	0.77	C).52	0.36	0.43	0.8	0.99	1	1		(89)
Mean	interna	l temper	ature in t	the rest	of dwelli	na	T2 (fo	ollow ste	ps 3 to	7 in Tabl	e 9c)				
	19.11	19.28	19.57	19.97	20.18	<u> </u>	0.25	20.25	20.25	20.2	, 19.84	19.42	19.11		(90)
, í										l f		ing area ÷ (4		0.05	(91)
												J (, ,	0.00	(0.)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling	g) = fl	_A × T1	+ (1 – fl	<u>A) × T2</u>					
(92)m=	19.14	19.31	19.6	20	20.22	2	0.28	20.29	20.29	20.24	19.87	19.45	19.15		(92)
Apply	v adjustr	nent to t	he mean	interna	l temper	atu	re fro	m Table	4e, whe	ere appro	opriate		-		
(93)m=	19.14	19.31	19.6	20	20.22	2	0.28	20.29	20.29	20.24	19.87	19.45	19.15		(93)
8. Sp	ace hea	ting requ	uirement								-		•		
Set T	i to the	mean int	ernal ten	nperatu	re obtair	ned	at ste	ep 11 of	Table 9	b, so tha	t Ti,m=	:(76)m an	d re-cald	culate	
			or gains u					-			-		-	_	
	Jan	Feb	Mar	Apr	May	,	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	:											
(94)m=	1	1	1	0.95	0.77	C).52	0.36	0.44	0.8	0.99	1	1		(94)
Usefu	ul gains.	hmGm	, W = (94	l)m x (8	4)m	I						1	1	1	
(95)m=			3518.49	, ,	<u> </u>	30	11.83	1964.15	2057.48	3049.78	2675.8	1916.02	1633.08		(95)
			rnal tem							I		1		1	
(96)m=	4.3	4.9	6.5	8.9	11.7	<u> </u>	4.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
										I (96)m		1	L	l	
(97)m=		8228.38	· · · · ·					1965.39	,	<u> </u>		7 6856.44	8391.26]	(97)
(01)11-	0010.11		1.00.00	5.21.01	I .07 0.02	1.00	55.00	1000.00	2001.07		0000.2		0001.20	l	()

Space	e heatin	g require	ement fo	r each m	honth, k	Nh/mont	th = 0.02	24 x [(97))m – (95)m] x (4′	1)m			
(98)m=	4993.12	3807.75	2916.85	1172.39	225.82	0	0	0	0	1795.62	3557.1	5028.09		
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	23496.75	(98)
Space	e heatin	g require	ement in	kWh/m²	/year								35.39	(99)
8c. Sp	bace co	oling req	luiremer	nt										
Calcu	lated fo	r June, J	July and	August.	See Tal	ple 10b							L	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
1		r È	i			· · · ·	1	and exte		·		, 		(100)
(100)m=	0	0	0	0	0	5012.11	3945.71	4028.51	0	0	0	0	l	(100)
		tor for lo	1	0	0	0.96	0.98	0.06	0	0	0	0		(101)
(101)m=				0	0 (101)m		0.98	0.96	0	0	0	0	I	(101)
(102)m=	0	mLm (W	a(s) = 0			4794.79	3877.82	3876.39	0	0	0	0		(102)
	-	-	-	-	-			e Table	_	Ŭ	0	Ŭ		()
(103)m=	0		0	0	0	6567.9	6228.5	5424.16	0	0	0	0		(103)
· · ·	e coolin	a require	ement fo	r month.	whole d	l Iwelling,	continuo	us (kW	(h) = 0.0	L 24 x [(1()3) <i>m – (</i>	102)m];	x (41)m	
		zero if (``	,		, (<i>,</i> <u>,</u>		
(104)m=	0	0	0	0	0	1276.64	1748.9	1151.54	0	0	0	0		_
_										= Sum(=	4177.08	(104)
	l fraction		- 	\					fC=	cooled a	area ÷ (4	1) =	0.49	(105)
(106)m=		actor (Ta)	0	0.25	0.25	0.25	0	0	0	0		
(100)11-	0	Ŭ	Ů	Ŭ		0.20	0.20	0.20	_	l l = Sum(=	0	(106)
Space	cooling	requirer	nent for	month =	(104)m	× (105)	× (106)r	n	7014	ounq	100001/			
(107)m=	0	0	0	0	0	155.83	213.47	140.56	0	0	0	0		
									Total	= Sum(107)	=	509.85	(107)
Space	cooling	requirer	nent in k	:Wh/m²/y	/ear				(107)) ÷ (4) =			0.77	(108)
9b. Ene	ergy red	quiremer	nts – Cor	nmunity	heating	scheme	•							
								ting prov			unity scł	neme.		-
Fractio	n of spa	ace heat	from se	condary/	supplen	nentary l	neating ((Table 1	1) '0' if n	one			0	(301)
Fractio	n of spa	ace heat	from co	mmunity	system	1 – (301	1) =						1	(302)
	•	-						allows for		up to four o	other heat	sources; tl	he latter	
		eat pumps at from C	-			rom powei	r stations.	See Apper	ndıx C.				1	(303a)
		al space			•	eat pum)			(3	02) x (303	a) =	1	(304a)
					•			unity hea	itina svs		, ,	,	1.05	`´´](305)
		ss factor				,		•	5-7-				1.5	(306)
	heating		(10010				.9 0) 010						kWh/year	
-		heating	requirem	nent									23496.75	7
Space	heat fro	om Comr	munity h	eat pum	р				(98) x (30	04a) x (305	5) x (306) :	=	37007.39	(307a)
Efficier	ncy of s	econdary	y/supple	mentary	heating	system	in % (fro	om Table	4a or A	ppendix	E)		0	(308
Space	heating	requirer	ment fro	m secon	dary/su	oplemen	tary syst	tem	(98) x (30	01) x 100 ÷	÷ (308) =		0	(309)

Water heating Annual water heating requirement				Г	2257.53	1
If DHW from community scheme: If DHW by immersion or instantaneous he Efficiency of water heater	eater within dwelling:				100	_](311)
Water heated by immersion or instantane	ous heater	(64) x 100 ÷ (31	1) =		2257.53	(312)
Electricity used for heat distribution			e) + (310a)(310e)] =		370.07	(313)
Cooling System Energy Efficiency Ratio					3.87	(314)
Space cooling (if there is a fixed cooling s	ystem, if not enter 0) = (107) ÷ (314)	=		131.57	(315)
Electricity for pumps and fans within dwel mechanical ventilation - balanced, extract		m outside			4964.76	(330a)
warm air heating system fans				Γ	0	(330b)
pump for solar water heating					0	(330g)
Total electricity for the above, kWh/year		=(330a) + (330b	o) + (330g) =		4964.76	(331)
Energy for lighting (calculated in Appendix	x L)				1193.15	(332)
12b. CO2 Emissions – Community heatin	g scheme					
			The state of the second s	— г .		
		Energy kWh/year	Emission facto kg CO2/kWh		g CO2/year	
CO2 from other sources of space and wat Efficiency of heat source 1 (%)		kWh/year	kg CO2/kWh	kg](367a)
	If there is CHP us	kWh/year	kg CO2/kWh	kg	g CO2/year](367a)](367)
Efficiency of heat source 1 (%)	If there is CHP us	kWh/year) ing two fuels repeat (363) to	kg CO2/kWh (366) for the second fr	kç	361	
Efficiency of heat source 1 (%) CO2 associated with heat source 1	If there is CHP us [(307b	kWh/year) ing two fuels repeat (363) to)+(310b)] x 100 ÷ (367b) x	kg CO2/kWh (366) for the second fr 0.52 0.52	kg uel =	361 5320.45	(367)
Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution	If there is CHP us [(307b	kWh/year) ing two fuels repeat (363) to)+(310b)] x 100 ÷ (367b) x [(313) x	kg CO2/kWh (366) for the second fr 0.52 0.52	kg uel =	361 5320.45 192.07](367)](372)
Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community sys	If there is CHP us [(307b stems ndary)	kWh/year) ing two fuels repeat (363) to ()+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(372 (309) x	kg CO2/kWh (366) for the second fi 0.52 0.52	kç = = =	361 5320.45 192.07 5512.52	(367) (372) (373)
Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community sys CO2 associated with space heating (seco	If there is CHP us [(307b stems ndary) on heater or instanta	kWh/year) ing two fuels repeat (363) to ()+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(372 (309) x	kg CO2/kWh (366) for the second for 0.52 0.52	kg uel = =	361 5320.45 192.07 5512.52 0](367)](372)](373)](374)
Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community sys CO2 associated with space heating (seco CO2 associated with water from immersio	If there is CHP us [(307b stems ndary) on heater or instanta	kWh/year) ing two fuels repeat (363) to ()+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(372 (309) x neous heater (312) x	kg CO2/kWh (366) for the second for 0.52 0.52	kg uel = =	361 5320.45 192.07 5512.52 0 1171.66	(367) (372) (373) (374) (375)
Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community sys CO2 associated with space heating (seco CO2 associated with water from immersic Total CO2 associated with space and wat	If there is CHP us [(307b stems ndary) on heater or instanta er heating	kWh/year) ing two fuels repeat (363) to ()+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(372 (309) x neous heater (312) x (373) + (374) + (375) = (315) x	kg CO2/kWh (366) for the second for 0.52 0.52	kg = = =	CO2/year 361 5320.45 192.07 5512.52 0 1171.66 6684.18	(367) (372) (373) (373) (374) (375) (376)
Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community sys CO2 associated with space heating (seco CO2 associated with water from immersic Total CO2 associated with space and wat CO2 associated with space cooling	If there is CHP us [(307b stems ndary) on heater or instanta er heating and fans within dwe	kWh/year) ing two fuels repeat (363) to ()+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(372 (309) x neous heater (312) x (373) + (374) + (375) = (315) x	kg CO2/kWh (366) for the second fu 0.52 0.52 0.52	kg = = = =	CO2/year 361 5320.45 192.07 5512.52 0 1171.66 6684.18 68.29	(367) (372) (373) (373) (374) (375) (376) (377)
Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community sys CO2 associated with space heating (seco CO2 associated with space heating (seco CO2 associated with space and wat CO2 associated with space cooling CO2 associated with electricity for pumps CO2 associated with electricity for lighting	If there is CHP us [(307b stems ndary) on heater or instanta er heating and fans within dwe	kWh/year)) sing two fuels repeat (363) to ()+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(372 (309) x neous heater (312) x (373) + (374) + (375) = (315) x elling (331)) x	kg CO2/kWh (366) for the second fu 0.52 0.52 0.52 0.52 0.52 0.52	kç 	CO2/year 361 5320.45 192.07 5512.52 0 1171.66 6684.18 68.29 2576.71	(367) (372) (373) (373) (374) (375) (376) (377) (377) (378)
Efficiency of heat source 1 (%) CO2 associated with heat source 1 Electrical energy for heat distribution Total CO2 associated with community sys CO2 associated with space heating (seco CO2 associated with space heating (seco CO2 associated with space and wat CO2 associated with space cooling CO2 associated with space cooling CO2 associated with electricity for pumps CO2 associated with electricity for lighting Total CO2, kg/year	If there is CHP us [(307b stems ndary) on heater or instanta er heating and fans within dwe	kWh/year)) sing two fuels repeat (363) to ()+(310b)] x 100 ÷ (367b) x [(313) x (363)(366) + (368)(372 (309) x neous heater (312) x (373) + (374) + (375) = (315) x elling (331)) x	kg CO2/kWh (366) for the second fu 0.52 0.52 0.52 0.52 0.52 0.52	kç 	CO2/year 361 5320.45 192.07 5512.52 0 1171.66 6684.18 68.29 2576.71 619.24	(367) (372) (373) (373) (374) (375) (376) (377) (377) (378) (379)

Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.4.17 *Printed on 09 May 2019 at 12:00:56*

Project Information				
Assessed By:	Su Lee (STRO03 ²	1315)	Building Type:	Semi-detached House
Dwelling Details:				
NEW DWELLING	DESIGN STAGE		Total Floor Area: 6	613.53m²
Site Reference :	BE GREEN		Plot Reference:	26 Redington Gardens
Address :				
Client Details:				
Name:				
Address :				
-	s items included w te report of regulat	ithin the SAP calculations. ions compliance.		
1a TER and DER	2			
	ing system: Electrici	ty (c)		
Fuel factor: 1.55 (e	, ,			
-	xide Emission Rate		20.07 kg/m ²	01/
1b TFEE and DF	Dioxide Emission Ra	te (DER)	15.21 kg/m ²	OK
	rgy Efficiency (TFEE	:)	60.6 kWh/m²	
-	nergy Efficiency (DFI		47.9 kWh/m ²	
		/		ОК
2 Fabric U-value	s			
Element		Average	Highest	
External		0.13 (max. 0.30)	0.13 (max. 0.70)	OK
Party wal	I	0.00 (max. 0.20)	-	OK
Floor Roof		0.11 (max. 0.25) 0.11 (max. 0.20)	0.11 (max. 0.70) 0.11 (max. 0.35)	OK OK
Openings	3	1.40 (max. 2.00)	1.40 (max. 3.30)	OK
2a Thermal brid		1.40 (max. 2.00)	1.40 (max. 0.00)	UK
		rom linear thermal transmittan	ces for each junction	
3 Air permeabili				
Air permeal	oility at 50 pascals		4.00 (design val	ue)
Maximum			10.0	OK
4 Heating efficie	ency			
Main Heatir	ng system:	Community heating scheme Community heat pump	es - Heat pump	
Secondary	heating system:	None		
5 Cylinder insula	ation			
Hot water S	storage:	Measured cylinder loss: 1.7	-	
	ework insulated:	Permitted by DBSCG: 2.56 No primary pipework	kWh/day	OK

Regulations Compliance Report

6 Controls

Space heating controls Hot water controls: 7 Low energy lights	Flat rate charging, progra Cylinderstat	ammer and at least two room thermostats	OK OK
Percentage of fixed lights with lo	w-energy fittings	100.0%	
Minimum		75.0%	ок
8 Mechanical ventilation			
Continuous supply and extract s	ystem		
Specific fan power:	·	1.3	
Maximum		1.5	ΟΚ
MVHR efficiency:		80%	
Minimum		70%	ОК
9 Summertime temperature			
Overheating risk (Thames valley):	Not significant	ок
Based on:		5	
Overshading:		Average or unknown	
Windows facing: South East		5.66m ²	
Windows facing: South East		2.26m ²	
Windows facing: North West		18.38m²	
Windows facing: South East		1.72m ²	
Windows facing: South East		3.94m ²	
Windows facing: South East		4.52m ²	
Windows facing: South East		1.99m ²	
Windows facing: South East		2.3m ²	
Windows facing: North West		4.12m ²	
Windows facing: North West		2.57m ²	
Windows facing: North West		2.98m ²	
Windows facing: North West		2.48m ²	
Windows facing: North West		3.99m ²	
Windows facing: North West		2.09m ²	
Windows facing: North West		2.5m ²	
Windows facing: South East		2.62m ²	
Roof windows facing: Horizontal		4.43m ²	
Roof windows facing: Horizontal		3.28m ²	
Roof windows facing: Horizontal		3.61m ²	
Roof windows facing: Horizontal		3.48m ²	
Roof windows facing: Horizontal		2.48m ²	
Roof windows facing: Horizontal		2.21m ²	
Roof windows facing: Horizontal		3.56m ²	
Roof windows facing: Horizontal		2.81m ²	
Ventilation rate:		4.00	
Blinds/curtains:		None	
10 Key features			
Roofs U-value		0.11 W/m²K	

External Walls U-value Party Walls U-value 0.11 W/m²K 0.13 W/m²K 0 W/m²K

Regulations Compliance Report

Floors U-value Community heating, heat from electric heat pump Fixed cooling system 0.11 W/m²K

	ι	Jser Details:					
	Su Lee Stroma FSAP 2012	Strom Softw				031315 n: 1.0.4.17	
	Pro	perty Address	: 26 Re	dington Gardens			
Address :							
1. Overall dwelling dimensi	ons:						
Pacamont		Area(m ²)	14-2-11	Av. Height(m)		Volume(m ³)	-
Basement		191.28	(1a) x	3.69	(2a) =	705.81	(3a)
Ground floor		142.64	(1b) x	3.45	(2b) =	492.11	(3b)
First floor		103.49	(1c) x	3.3	(2c) =	341.52	(3c)
Second floor		103.49	(1d) x	3	(2d) =	310.48	(3d)
Third floor		72.63	(1e) x	2.76	(2e) =	200.6	(3e)
Total floor area TFA = (1a)+	(1b)+(1c)+(1d)+(1e)+(1n)	613.53	(4)				
Dwelling volume			(3a)+(3ł	o)+(3c)+(3d)+(3e)+	(3n) =	2050.52	(5)
2. Ventilation rate:					-		_
	main secondary heating heating	other		total		m ³ per hour	
Number of chimneys	$\begin{bmatrix} 0 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix}$	+ 0] = [0 ×	40 =	0	(6a)
Number of open flues		+ 0	 = [0 ×	20 =	0	(6b)
Number of intermittent fans				0 ×	10 =	0	(7a)
Number of passive vents			Ľ	0 ×	10 =	0	_ (7b)
Number of flueless gas fires			L [0 ×	40 =	0	(7c)
			L		Air ch	anges per hou	
Infiltration due to chimpour	flues and fans $(62)\pm(6b)\pm(72)$	+(7h)+(7c) =	г				-
•	flues and fans = $(6a)+(6b)+(7a)$ carried out or is intended, proceed to		continue f		÷ (5) =	0	(8)
Number of storeys in the		,,				0	(9)
Additional infiltration				[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0.25	for steel or timber frame or 0	.35 for mason	ry const	ruction		0	(11)
if both types of wall are prese deducting areas of openings)	nt, use the value corresponding to th ; if equal user 0.35	e greater wall are	a (after)				
	r, enter 0.2 (unsealed) or 0.1	(sealed), else	enter 0			0	(12)
If no draught lobby, enter	0.05, else enter 0					0	(13)
Percentage of windows an	nd doors draught stripped				Ì	0	(14)
Window infiltration		0.25 - [0.2	2 x (14) ÷	100] =	ĺ	0	(15)
Infiltration rate		(8) + (10)	+ (11) + (12) + (13) + (15) =		0	(16)
Air permeability value, q50), expressed in cubic metres	per hour per s	quare n	netre of envelope	area	4	(17)
	value, then $(18) = [(17) \div 20] + (8)$,					0.2	(18)
Air permeability value applies if a Number of sides sheltered	a pressurisation test has been done	or a degree air pe	rmeability	r is being used	I	2	(19)
Shelter factor		(20) = 1 -	[0.075 x ([19)] =		2	(19)
Infiltration rate incorporating	shelter factor	(21) = (18	3) x (20) =			0.17	(21)

Infiltration rate	modifie	d for mo	nthly wir	nd speed	I								
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly avera	ge wind	speed fr	om Tabl	e 7									
(22)m= 5.1	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (2	22a)m =	(22)m ÷	4										
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjusted infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	= (21a) x	(22a)m					
0.22 Calculate effe	0.21 Ctive air	0.21 change	0.19 rate for t	0.18 he appli	0.16 Cable ca	0.16 se	0.16	0.17	0.18	0.19	0.2		
If mechanica	al ventila	ation:									[0.5	(23a)
If exhaust air h	eat pump	using Appe	endix N, (2	3b) = (23a	ı) × Fmv (e	equation (N5)), othe	rwise (23b) = (23a)		[0.5	(23b)
If balanced with	n heat reco	overy: effic	iency in %	allowing f	or in-use f	actor (fror	m Table 4h) =			[68	(23c)
a) If balance	ed mech	anical ve	entilation	with hea	at recove	ery (MV	HR) (24a	a)m = (22	2b)m + (23b) × [′	1 – (23c)	÷ 100]	
<mark>(24a)m=</mark> 0.38	0.37	0.37	0.35	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.36		(24a)
b) If balance			1				MV) (24b	ŕ	, <u>,</u>	, I	·1		
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole h				•	•				E (00h				
If (22D)n (24c)m= 0	n < 0.5 >	(23D), t	nen (240	C) = (230)); otnerv		lc) = (22b)	$\frac{5}{10}$ m + 0.	$5 \times (230)$	0	0		(24c)
(= ,	_	_		Ţ	-	-			0	0	0		(240)
d) If natural if (22b)n							0.5 + [(2		0.5]				
(24d)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effective air	change	rate - er	nter (24a) or (24t	o) or (24	c) or (24	1d) in boy	x (25)	-				
(25)m= 0.38	0.37	0.37	0.35	0.34	0.32	0.32	0.32	0.33	0.34	0.35	0.36		(25)
3. Heat losse	s and he	eat loss i	paramete	er:									
ELEMENT		SS	Openin m	gs	Net Ar A ,r		U-valı W/m2		A X U (W/I		k-value kJ/m²⋅k		A X k kJ/K
Doors Type 1					4.86	x	1.4	=	6.8082				(26)
Doors Type 2					2.08	x	1.4	=	2.9106				(26)
Doors Type 3					2.34	x	1.4	=	3.269				(26)
Doors Type 4					1.12	x	1.4	=	1.575				(26)
Doors Type 5					2.41	x	1.4	=	3.3726				(26)
Doors Type 6					1.37	x	1.4	=	1.9166				(26)
Doors Type 7					1.33	x	1.4	=	1.8662				(26)
Doors Type 8					2.34	x	1.4	=	3.269				(26)
Doors Type 9					2.04	x	1.4	=	2.849				(26)
Windows Type	e 1				5.655	; x1	I/[1/(1.4)+	0.04] =	7.5				(27)
Windows Type	e 2				2.261	x 1	I/[1/(1.4)+	0.04] =	3				(27)
Windows Type	e 3				18.38	3 X1	I/[1/(1.4)+	0.04] =	24.37				(27)
Windows Type	e 4				1.715	; x1	I/[1/(1.4)+	0.04] =	2.27				(27)

Windows Type 5	3.938	x1/[1/(1.4)+ 0.04] =	5.22	(27)
Windows Type 6	4.518	x1/[1/(1.4)+ 0.04] =	5.99	(27)
Windows Type 7	1.988	x1/[1/(1.4)+ 0.04] =	2.64	(27)
Windows Type 8	2.301	x1/[1/(1.4)+ 0.04] =	3.05	(27)
Windows Type 9	4.119	x1/[1/(1.4)+ 0.04] =	5.46	(27)
Windows Type 10	2.565	x1/[1/(1.4)+ 0.04] =	3.4	(27)
Windows Type 11	2.981	x1/[1/(1.4)+ 0.04] =	3.95	(27)
Windows Type 12	2.48	x1/[1/(1.4)+ 0.04] =	3.29	(27)
Windows Type 13	3.993	x1/[1/(1.4)+ 0.04] =	5.29	(27)
Windows Type 14	2.093	x1/[1/(1.4)+ 0.04] =	2.77	(27)
Windows Type 15	2.499	x1/[1/(1.4)+ 0.04] =	3.31	(27)
Windows Type 16	1.31	x1/[1/(1.4)+ 0.04] =	1.74	(27)
Rooflights Type 1	4.434	$x^{1/[1/(1.4) + 0.04]} =$	6.2076	(27b)
Rooflights Type 2	3.276	$x^{1/[1/(1.4) + 0.04]} =$	4.5864	(27b)
Rooflights Type 3	3.611	$x^{1/[1/(1.4) + 0.04]} =$	5.0554	(27b)
Rooflights Type 4	3.485	$x^{1/[1/(1.4) + 0.04]} =$	4.879	(27b)
Rooflights Type 5	2.477	$x^{1/[1/(1.4) + 0.04]} =$	3.4678	(27b)
Rooflights Type 6	2.212	$x^{1/[1/(1.4) + 0.04]} =$	3.0968	(27b)
Rooflights Type 7	3.564	$x^{1/[1/(1.4) + 0.04]} =$	4.9896	(27b)
Rooflights Type 8	2.811	$x^{1/[1/(1.4) + 0.04]} =$	3.9354	(27b)
Floor	191.276	x 0.11 =	21.04036	(28)
Walls Type1 149.87 0	149.87	x 0.13 =	19.48	(29)
Walls Type2 123.87 26.07	97.8	x 0.13 =	12.71	(29)
Walls Type3 100.8 28.3	72.5	x 0.13 =	9.42	(29)
Walls Type4 91.64 24.5	67.13	x 0.13 =	8.73	(29)
Walls Type5 26.17 0	26.17	x 0.13 =	3.4	(29)
Walls Type6 18.82 5.12	13.7	x 0.13 =	1.78	(29)
Roof Type1 50.79 11.27	39.51	x 0.11 =	4.35	(30)
Roof Type2 39.9 3.61	36.29	x 0.11 =	3.99	(30)
Roof Type3 6.81 0	6.81	x 0.11 =	0.75	(30)
Roof Type3 6.81 0 Roof Type4 22.77 0	6.81 22.77	x 0.11 = x 0.11 =	0.75 2.51	(30)
Roof Type4 22.77 0	22.77	x 0.11 =	2.51	(30)
Roof Type4 22.77 0 Roof Type5 49.51 10.98	22.77 38.53	x 0.11 =	2.51	(30)
Roof Type422.770Roof Type549.5110.98Total area of elements, m²	22.77 38.53 872.22	x 0.11 = x 0.11 =	2.51 4.24	(30) (30) (31)
Roof Type422.770Roof Type549.5110.98Total area of elements, m²Party wall	22.77 38.53 872.22 94.78	x 0.11 = x 0.11 = x 0.11 =	2.51 4.24 0	(30) (30) (31) (32)
Roof Type422.770Roof Type549.5110.98Total area of elements, m²Party wallParty wallParty wall	22.77 38.53 872.22 94.78 63.53	x 0.11 = x 0.11 = x 0.11 = x 0 = x 0 =	2.51 4.24 0	(30) (30) (31) (32) (32)
Roof Type422.770Roof Type549.5110.98Total area of elements, m²Party wallParty wallParty wallParty wall	22.77 38.53 872.22 94.78 63.53 43.08	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.51 4.24 0 0	(30) (30) (31) (32) (32) (32) (32)

for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 ** include the areas on both sides of internal walls and partitions

Fabric heat loss, $W/K = S (A \times U)$

(26)...(30) + (32) =

(33) 239.53

Heat c														
	apacity	Cm = S((Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	0	(34)
Therm	al mass	parame	ter (TMF	- = Cm +	÷ TFA) ir	n kJ/m²K			Indica	tive Value	Medium		250	(35)
	-	sments wh ad of a de			construct	ion are no	t known pr	ecisely the	indicative	values of	TMP in Ta	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix l	<						52.82	(36)
if details	s of therma	al bridging	are not kn	nown (36) =	= 0.05 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			292.35	(37)
Ventila	ation hea	at loss ca	alculated	monthl	y				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	254.94	252.06	249.18	234.81	231.93	217.55	217.55	214.67	223.3	231.93	237.68	243.43		(38)
Heat t	ransfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	547.29	544.41	541.54	527.16	524.28	509.9	509.9	507.03	515.66	524.28	530.04	535.79		_
Heat lo	oss para	meter (H	HLP), W	/m²K						Average = = (39)m ÷	Sum(39) ₁ (4)	12 /12=	526.44	(39)
(40)m=	0.89	0.89	0.88	0.86	0.85	0.83	0.83	0.83	0.84	0.85	0.86	0.87		
Numb	er of day	/s in moi	nth (Tab	le 1a)					1	Average =	Sum(40)1.	12 /12=	0.86	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
1 \//	ator hoa	ting enei		iromont:								kWh/y	oar:	
- T . VVC		ung ener	igy iequ	nement.								K V V I // Y	cal.	
		upancy, l										54]	(42)
	-A > 13. -A £ 13.		+ 1.76 x	: [1 - exp	(-0.0003	849 x (TF	-A -13.9)2)] + 0.0)013 x (FFA -13	9)			
											-,			
Reduce	the annua		ater usad	ae in litre	es per da	ay Vd.av	erage =	(25 x N)			·	3.26	I	(43)
not mor	e that 125	al average	hot water	usage by	5% if the a	welling is	designed	(25 x N) to achieve	+ 36		118	3.26]	(43)
		al average	hot water		5% if the a	welling is	designed		+ 36		118	3.26]	(43)
	Jan	al average litres per p Feb	hot water person per Mar	usage by r day (all w Apr	5% if the d vater use, l May	lwelling is hot and co	designed i ld) Jul	o achieve Aug	+ 36		118	3.26 Dec]	(43)
Hot wat		al average litres per p Feb	hot water person per Mar	usage by r day (all w	5% if the d vater use, l May	lwelling is hot and co	designed i ld) Jul	o achieve Aug	+ 36 a water us	se target o	118]	(43)
		al average litres per p Feb	hot water person per Mar	usage by r day (all w Apr	5% if the d vater use, l May	lwelling is hot and co	designed i ld) Jul	o achieve Aug	+ 36 a water us	se target o	118]]	(43)
(44)m=	er usage i 130.09	al average litres per f Feb n litres per 125.36	hot water person per Mar day for ea 120.63	usage by r day (all w Apr ach month 115.9	5% if the c vater use, l May Vd,m = fa 111.17	hvelling is hot and co Jun ctor from 7 106.44	designed i ld) Jul Table 1c x 106.44	Aug (43) 111.17	+ 36 a water us Sep 115.9	Oct 120.63 Total = Su	Nov 125.36 m(44)112 =	Dec 130.09	1419.16	(43)
(44)m=	er usage i 130.09 content of	al average litres per f Feb n litres per 125.36	hot water person per Mar day for ea 120.63	usage by r day (all w Apr ach month 115.9	5% if the c vater use, I May Vd,m = fa 111.17 onthly = 4.	fivelling is hot and co Jun ctor from 7 106.44 190 x Vd,r	designed i ld) Table 1c x 106.44 n x nm x E	Aug (43) 111.17 07m / 3600	+ 36 a water us Sep 115.9	Oct 120.63 Total = Su	Nov 125.36 m(44)112 =	Dec 130.09 c, 1d)	1419.16	_
(44)m= Energy	er usage i 130.09	al average litres per f Feb n litres per 125.36	hot water person per Mar day for ea 120.63	usage by r day (all w Apr ach month 115.9	5% if the c vater use, l May Vd,m = fa 111.17	hvelling is hot and co Jun ctor from 7 106.44	designed i ld) Jul Table 1c x 106.44	Aug (43) 111.17	+ 36 a water us Sep 115.9 kWh/mon 135.24	Coct Oct 120.63 Total = Su oth (see Ta 157.61	118 Nov 125.36 m(44) ₁₁₂ = ables 1b, 1 172.05	Dec 130.09 c, 1d) 186.83	1419.16	(44)
(44)m= Energy (45)m=	er usage i 130.09 content of 192.92	al average litres per p Feb 125.36 hot water 168.73	hot water person per Mar day for ea 120.63 used - cal 174.11	usage by r day (all w Apr ach month 115.9 culated mo 151.8	5% if the c vater use, l May Vd,m = fa 111.17 onthly = 4.	Ivelling is hot and co Jun ctor from 1 106.44 190 x Vd,r 125.69	designed i ld) Table 1c x 106.44 n x nm x E 116.47	Aug (43) 111.17 07m / 3600 133.65	+ 36 a water us Sep 115.9 kWh/mon 135.24	Coct Oct 120.63 Total = Su oth (see Ta 157.61	Nov 125.36 m(44)112 ables 1b, 1	Dec 130.09 c, 1d) 186.83	1419.16	_
(44)m= Energy (45)m= If instan	er usage i 130.09 content of 192.92 taneous w	al average litres per j Feb n litres per 125.36 hot water 168.73 vater heati	hot water person per Mar day for ea 120.63 used - cal 174.11 ng at point	usage by r day (all w Apr ach month 115.9 culated mo 151.8 t of use (no	5% if the c vater use, I May Vd,m = fa 111.17 onthly = 4. 145.65	fivelling is hot and co Jun ctor from 1 106.44 190 x Vd,r 125.69 r storage),	designed i ld) Table 1c x 106.44 n x nm x E 116.47 enter 0 in	Aug (43) 111.17 07m / 3600 133.65 boxes (46,	+ 36 a water us Sep 115.9 kWh/mon 135.24 to (61)	oct Oct 120.63 Total = Su 157.61 Total = Su	118 Nov 125.36 m(44) ₁₁₂ = ables 1b, 1 172.05 m(45) ₁₁₂ =	Dec 130.09 c, 1d) 186.83		(44)
(44)m= Energy (45)m= If instan (46)m=	er usage i 130.09 content of 192.92 taneous w 28.94	al average litres per j Feb 125.36 hot water 168.73 vater heatii 25.31	hot water person per Mar day for ea 120.63 used - cal 174.11	usage by r day (all w Apr ach month 115.9 culated mo 151.8	5% if the c vater use, l May Vd,m = fa 111.17 onthly = 4.	Ivelling is hot and co Jun ctor from 1 106.44 190 x Vd,r 125.69	designed i ld) Table 1c x 106.44 n x nm x E 116.47	Aug (43) 111.17 07m / 3600 133.65	+ 36 a water us Sep 115.9 kWh/mon 135.24	Coct Oct 120.63 Total = Su oth (see Ta 157.61	118 Nov 125.36 m(44) ₁₁₂ = ables 1b, 1 172.05	Dec 130.09 c, 1d) 186.83		(44)
(44)m= Energy (45)m= If instan (46)m= Water	er usage i 130.09 content of 192.92 taneous w 28.94 storage	al average litres per j Feb 125.36 hot water 168.73 vater heati 25.31 loss:	hot water person per Mar day for ea 120.63 used - cal 174.11 ng at point 26.12	usage by r day (all w Apr ach month 115.9 culated mo 151.8 t of use (no 22.77	5% if the c vater use, I May Vd, $m = fa$ 111.17 onthly = 4. 145.65 o hot water 21.85	Jun Jun ctor from 106.44 190 x Vd,r 125.69 r storage), 18.85	designed i ld) Table 1c x 106.44 n x nm x E 116.47 enter 0 in 17.47	Aug (43) 111.17 07m / 3600 133.65 boxes (46, 20.05	+ 36 a water us Sep 115.9 kWh/mon 135.24 to (61) 20.29	Se target o Oct 120.63 Total = Su 157.61 Total = Su 23.64	118 Nov 125.36 m(44) ₁₁₂ = ables 1b, 1 172.05 m(45) ₁₁₂ = 25.81	Dec 130.09 c, 1d) 186.83 28.02		(44) (45) (46)
(44)m= Energy (45)m= If instan (46)m= Water Storag	content of 130.09 content of 192.92 staneous w 28.94 storage ge volum	al average litres per j Feb 125.36 hot water 168.73 vater heatil 25.31 loss: he (litres)	hot water person per day for ea 120.63 used - cal 174.11 ng at point 26.12	usage by r day (all w Apr ach month 115.9 culated mo 151.8 t of use (no 22.77	5% if the of vater use, I May $Vd,m = fa$ 1111.17 onthly = 4. 145.65 o hot water 21.85	Invelling is hot and co Jun ctor from 7 106.44 190 x Vd,r 125.69 r storage), 18.85 /WHRS	designed i ld) Table 1c x 106.44 n x nm x E 116.47 enter 0 in 17.47 storage	Aug (43) 111.17 07m / 3600 133.65 boxes (46, 20.05 within sa	+ 36 a water us Sep 115.9 kWh/mon 135.24 to (61) 20.29	Se target o Oct 120.63 Total = Su 157.61 Total = Su 23.64	118 Nov 125.36 m(44) ₁₁₂ = ables 1b, 1 172.05 m(45) ₁₁₂ = 25.81	Dec 130.09 c, 1d) 186.83		(44)
(44)m= Energy (45)m= If instan (46)m= Water Storag If com	er usage i 130.09 content of 192.92 taneous w 28.94 storage ge volum munity h	al average litres per j Feb n litres per 125.36 hot water 168.73 vater heatin 25.31 loss: ne (litres) neating a	hot water person per Mar day for ea 120.63 used - cal 174.11 ng at point 26.12 includir	usage by r day (all w Apr ach month 115.9 roulated mo 151.8 t of use (no 22.77 ng any so ank in dw	5% if the c vater use, I May Vd,m = fa 111.17 onthly = 4. 145.65 o hot water 21.85 olar or W velling, e	welling is hot and co Jun ctor from 7 106.44 190 x Vd,r 125.69 r storage), 18.85 /WHRS onter 110	designed i Id) Jul Table 1c x 106.44 n x nm x E 116.47 enter 0 in 17.47 storage	Aug (43) 111.17 07m / 3600 133.65 boxes (46, 20.05 within sa (47)	+ 36 a water us Sep 115.9 kWh/mon 135.24 0 to (61) 20.29 ame vess	Se target o Oct 120.63 Total = Su 157.61 Total = Su 23.64 Sel	118 Nov 125.36 m(44)112 ables 1b, 1 172.05 m(45)112 25.81	Dec 130.09 c, 1d) 186.83 28.02		(44) (45) (46)
(44)m= Energy (45)m= If instan (46)m= Water Storag If com	er usage i 130.09 content of 192.92 ataneous w 28.94 storage ge volum munity h wise if no	al average litres per j Feb n litres per 125.36 i hot water 168.73 vater heatin 25.31 loss: ne (litres) neating a p stored	hot water person per Mar day for ea 120.63 used - cal 174.11 ng at point 26.12 includir	usage by r day (all w Apr ach month 115.9 roulated mo 151.8 t of use (no 22.77 ng any so ank in dw	5% if the c vater use, I May Vd,m = fa 111.17 onthly = 4. 145.65 o hot water 21.85 olar or W velling, e	welling is hot and co Jun ctor from 7 106.44 190 x Vd,r 125.69 r storage), 18.85 /WHRS onter 110	designed i Id) Jul Table 1c x 106.44 n x nm x E 116.47 enter 0 in 17.47 storage	Aug (43) 111.17 07m / 3600 133.65 boxes (46, 20.05 within sa	+ 36 a water us Sep 115.9 kWh/mon 135.24 0 to (61) 20.29 ame vess	Se target o Oct 120.63 Total = Su 157.61 Total = Su 23.64 Sel	118 Nov 125.36 m(44)112 ables 1b, 1 172.05 m(45)112 25.81	Dec 130.09 c, 1d) 186.83 28.02		(44) (45) (46)
(44)m= Energy (45)m= (46)m= Water Storag If com Otherv Water	er usage i 130.09 content of 192.92 taneous w 28.94 storage ge volum munity h wise if no storage	al average litres per j Feb n litres per 125.36 hot water 168.73 vater heatin 25.31 loss: ne (litres) neating a p stored loss:	hot water person per day for ea 120.63 used - cal 174.11 ng at point 26.12 includir nd no ta hot wate	usage by r day (all w Apr ach month 115.9 roulated mo 151.8 t of use (no 22.77 ng any so ank in dw	5% if the c vater use, I May Vd,m = fa 111.17 onthly = 4. 145.65 o hot water 21.85 olar or W velling, e ncludes i	welling is hot and co Jun ctor from 7 106.44 190 x Vd,r 125.69 r storage), 18.85 /WHRS nter 110 nstantar	designed i Id) Jul Table 1c x 106.44 n x nm x E 116.47 enter 0 in 17.47 storage litres in neous co	Aug (43) 111.17 07m / 3600 133.65 boxes (46, 20.05 within sa (47)	+ 36 a water us Sep 115.9 kWh/mon 135.24 0 to (61) 20.29 ame vess	Se target o Oct 120.63 Total = Su 157.61 Total = Su 23.64 Sel	118 Nov 125.36 m(44)112 ables 1b, 1 172.05 m(45)112 25.81 25.81	Dec 130.09 c, 1d) 186.83 28.02		(44) (45) (46)
(44)m= Energy (45)m= (46)m= Water Storag If com Otherv Water a) If m	er usage i 130.09 content of 192.92 taneous w 28.94 storage ge volum munity h wise if no storage nanufact	al average litres per j Feb n litres per 125.36 hot water 168.73 vater heatin 25.31 loss: heating a p stored loss: curer's de	hot water person per Mar day for ea 120.63 used - cal 174.11 ng at point 26.12 includir nd no ta hot wate	usage by r day (all w Apr ach month 115.9 roulated mo 151.8 t of use (no 22.77 ng any so ank in dw er (this in oss facto	5% if the c vater use, I May Vd,m = fa 111.17 onthly = 4. 145.65 o hot water 21.85 olar or W velling, e ncludes i	welling is hot and co Jun ctor from 7 106.44 190 x Vd,r 125.69 r storage), 18.85 /WHRS nter 110 nstantar	designed i Id) Jul Table 1c x 106.44 n x nm x E 116.47 enter 0 in 17.47 storage litres in neous co	Aug (43) 111.17 07m / 3600 133.65 boxes (46, 20.05 within sa (47)	+ 36 a water us Sep 115.9 kWh/mon 135.24 0 to (61) 20.29 ame vess	Se target o Oct 120.63 Total = Su 157.61 Total = Su 23.64 Sel	Nov 125.36 m(44) ₁₁₂ = ables 1b, 1 172.05 m(45) ₁₁₂ = 25.81 (47) 1	Dec 130.09 c, 1d) 186.83 28.02 250 .7		(44) (45) (46) (47) (48)
(44)m= Energy (45)m= (45)m= Water Storag If com Otherv Water a) If m	er usage i 130.09 content of 192.92 taneous w 28.94 Storage ge volum munity h wise if no storage hanufact erature f	al average litres per j Feb n litres per 125.36 hot water 168.73 vater heatin 25.31 loss: ne (litres) neating a postored loss: surer's de actor fro	hot water person per Mar day for ea 120.63 used - cal 174.11 ng at point 26.12 includir and no ta hot wate eclared I m Table	usage by r day (all w Apr ach month 115.9 roulated mo 151.8 t of use (no 22.77 ng any so ank in dw er (this in oss facto	5% if the c vater use, I May Vd,m = fa 111.17 onthly = 4. 145.65 o hot water 21.85 olar or W velling, e ncludes i or is kno	welling is hot and co Jun ctor from 7 106.44 190 x Vd,r 125.69 r storage), 18.85 /WHRS nter 110 nstantar	designed i Id) Jul Table 1c x 106.44 n x nm x E 116.47 enter 0 in 17.47 storage litres in neous co n/day):	Aug (43) 111.17 07m / 3600 133.65 boxes (46, 20.05 within sa (47)	+ 36 a water us Sep 115.9 kWh/mon 135.24 0 to (61) 20.29 ame vess ers) ente	Se target o Oct 120.63 Total = Su 157.61 Total = Su 23.64 Sel	118 Nov 125.36 m(44) ₁₁₂ = ables 1b, 1 172.05 m(45) ₁₁₂ = 25.81 25.81 47)	Dec 130.09 <i>c, 1d)</i> 186.83 28.02 250		(44) (45) (46) (47)

		age loss			le 2 (kW	h/litre/da	ıy)					0		(51)
	•	heating s		on 4.3										
		from Tal		2 h								0		(52)
•		actor fro										0		(53)
0.		m water	•	e, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
	. ,	(54) in (5									1.	02		(55)
Water	storage	loss cal	culated	for each	month	_	-	((56)m = (55) × (41)ı	m	-			
(56)m=	31.62	28.56	31.62	30.6	31.62	30.6	31.62	31.62	30.6	31.62	30.6	31.62		(56)
If cylinde	er contains	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	31.62	28.56	31.62	30.6	31.62	30.6	31.62	31.62	30.6	31.62	30.6	31.62		(57)
Primar	v circuit	loss (an	nual) fro	om Table	e 3							0		(58)
	•	loss cal	,			59)m = ((58) ÷ 36	65 × (41)	m					
	•	factor fi					. ,	• •		r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	n month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	Leat regi	uired for	water h	eating ca	ı alculatec	l for eac	n h month	(62)m =	0 85 x ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	224.54	197.29	205.73	182.4	177.27	156.29	148.09	165.27	165.84	189.23	202.65	218.45		(62)
														(02)
		calculated								rcontribut	ion to wate	er neating)		
(63)m=									0	0	0	0		(63)
		-	-	Ů	Ů	Ů	Ů	Ŭ			Ŭ	•		()
(64)m=	224.54	ater hea 197.29	205.73	182.4	177.27	156.29	148.09	165.27	165.84	189.23	202.65	218.45		
(04)11-	224.04	107.20	200.70	102.4	111.21	100.20	140.00		out from wa				2233.05	(64)
			h											
-				r	r		· ·	· · ·	-		· · ·	+ (59)m]	
(65)m=	89.44	78.95	83.19	74.95	73.73	66.27	64.02	69.73	69.45	77.7	81.69	87.42		(65)
inclu	ıde (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	olic gain	s (Table	5), Wat	ts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	176.98	176.98	176.98	176.98	176.98	176.98	176.98	176.98	176.98	176.98	176.98	176.98		(66)
Lightin	g gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see ⁻	Table 5					
(67)m=	63.64	56.53	45.97	34.8	26.02	21.96	23.73	30.85	41.41	52.57	61.36	65.41		(67)
Applia	nces ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), alsc	see Ta	ble 5				
(68)m=	680.2	687.25	669.47	631.6	583.8	538.88	508.87	501.81	519.59	557.46	605.26	650.18		(68)
Cookir	na aains	(calcula	ted in A	r Doendix	L. equat	tion L15	or L15a), also se	e Table	5	I			
(69)m=	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7		(69)
		ns gains												
(70)m=				0	0	0	0	0	0	0	0	0		(70)
		l vaporatio	_					-	-	-		-		
		-141.58	· -	-141.58	, , 1	-141.58	-141.58	-141.58	-141.58	-141.58	-141.58	-141.58		(71)
							1 11.00	1 11.00	1 11.00		1 11.00	111.00		x -7
	<u> </u>	gains (T	, <u> </u>	104.4	00.00	02.04	06.05	02.70	06.40	104 44	140 45	147 -		(72)
(72)m=	120.22	117.49	111.81	104.1	99.09	92.04	86.05	93.73	96.46	104.44	113.45	117.5		(12)

Total internal gai	1 S =				(66)m + (67)m	n + (68	3)m + (69)m -	+ (70)m +	(71)m + (72)	m		
(73)m= 940.15 937	.36 903.34	4 ε	846.6 7	85	728.98	694.74	702	.48 733.55	5 790.5	7 856.17	909.19		(73)
6. Solar gains:						-							
Solar gains are calcul	ated using so	olar flu	ux from Tabl	e 6a a	and assoc	iated equa	tions	to convert to	the applic		ion.		
Orientation: Acce			Area		Flu			g_ Table 6l	_	FF Table 6a		Gains	
Table	9 60	_	m²	_	1a	ble 6a		Table 6	<u> </u>	Table 6c		(W)	
Southeast 0.9x	0.77	×	5.66		×;	36.79	x	0.76	x	0.7	=	76.71	(77)
	0.77	×	2.26		×;	36.79	x	0.76	x	0.7	=	30.67	(77)
	0.77	×	1.72		×;	36.79	x	0.76	x	0.7	=	23.26	(77)
	0.77	×	3.94		×;	36.79	x	0.76	x	0.7	=	53.42	(77)
Southeast 0.9x	0.77	×	4.52		×;	36.79	x	0.76	x	0.7	=	61.29	(77)
Southeast 0.9x	0.77	×	1.99		×;	36.79	x	0.76	x	0.7	=	26.97	(77)
Southeast 0.9x	0.77	×	2.3		x;	36.79	x	0.76	x	0.7	=	31.21	(77)
Southeast 0.9x	0.77	×	1.31		x :	36.79	x	0.76	x	0.7	=	35.54	(77)
Southeast 0.9x	0.77	x	5.66		× (62.67	x	0.76	x	0.7	=	130.67	(77)
Southeast 0.9x	0.77	×	2.26		× (62.67	x	0.76	x	0.7	=	52.24	(77)
Southeast 0.9x	0.77	×	1.72		x (62.67	x	0.76	x	0.7	=	39.63	(77)
Southeast 0.9x	0.77	x	3.94		X (62.67	x	0.76	x	0.7	=	90.99	(77)
Southeast 0.9x	0.77	×	4.52		X (62.67	x	0.76	x	0.7	=	104.39	(77)
Southeast 0.9x	0.77	×	1.99		× (62.67	x	0.76	x	0.7	=	45.94	(77)
Southeast 0.9x	0.77	×	2.3		× (62.67	x	0.76	x	0.7	=	53.17	(77)
Southeast 0.9x	0.77	×	1.31		× (62.67	x	0.76	x	0.7	=	60.54	(77)
Southeast 0.9x	0.77	×	5.66		x t	35.75	x	0.76	x	0.7	=	178.78	(77)
Southeast 0.9x	0.77	×	2.26		x t	35.75	x	0.76	x	0.7	=	71.48	(77)
Southeast 0.9x	0.77	×	1.72		x t	35.75	x	0.76	x	0.7	=	54.22	(77)
Southeast 0.9x	0.77	×	3.94		x t	35.75	x	0.76	x	0.7	=	124.5	(77)
Southeast 0.9x	0.77	×	4.52		x t	35.75	x	0.76	x	0.7	=	142.84	(77)
Southeast 0.9x	0.77	×	1.99		x t	35.75	x	0.76	x	0.7	=	62.85	(77)
Southeast 0.9x	0.77	×	2.3		x t	35.75	x	0.76	x	0.7	=	72.75	(77)
Southeast 0.9x	0.77	×	1.31		x E	35.75	x	0.76	x	0.7	=	82.83	(77)
Southeast 0.9x	0.77	×	5.66		× 1	06.25	x	0.76	x	0.7	=	221.52	(77)
Southeast 0.9x	0.77	×「	2.26		x 1	06.25	x	0.76	x	0.7	=	88.57	(77)
Southeast 0.9x	0.77	× 「	1.72		× 1	06.25	x	0.76	x	0.7	=	67.18	(77)
Southeast 0.9x	0.77	×Ē	3.94		× 1	06.25	x	0.76	x	0.7	=	154.26	(77)
Southeast 0.9x	0.77	×Г	4.52		× 1	06.25	x	0.76	x	0.7	=	176.98	(77)
Southeast 0.9x	0.77	×Г	1.99		× 1	06.25	x	0.76	x	0.7	=	77.87	(77)
Southeast 0.9x	0.77	×Г	2.3			06.25	x	0.76	×	0.7	=	90.14	(77)
Southeast 0.9x	0.77	×Г	1.31	Ħ		06.25	x	0.76	x	0.7		102.63	(77)
		×Г	5.66	Ħ		19.01	x	0.76	x	0.7	-	248.12	(77)
		×Г	2.26	Ħ		19.01	x	0.76	x	0.7	=	99.2	(77)
L					L		. 1					I	

Southeast 0 av 0.77 x 0.72 x 1.12 x 10.01 x 0.76 x 0.7 = 72.25 (7) Southeast 0 av 0.77 x 3.84 x 119.01 x 0.76 x 0.7 = 79.25 (7) Southeast 0 av 0.77 x 2.5 x 119.01 x 0.76 x 0.7 = 79.25 (7) Southeast 0 av 0.77 x 2.5 x 119.01 x 0.76 x 0.7 = 712.79 Southeast 0 av 0.77 x 2.5 x 119.01 x 0.76 x 0.7 = 712.79 Southeast 0 av 0.77 x 2.5 x 119.01 x 0.76 x 0.7 = 714.07 Southeast 0 av 0.77 x 2.56 x 118.15 x 0.76 x 0.7 = 714.77 Southeast 0 av 0.77 x 2.56 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.22 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.22 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.33 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 74.7 Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.34 x 118.15 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.32 x 113.8 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.32 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.32 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 113.9 x 0.76 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 104.9 x 107.8 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 104.9 x 107.8 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.72 x 104.9 x 107.8 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.32 x 104.9 x 107.8 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.32 x 104.9 x 107.8 x 0.7 = 109.8 (7) Southeast 0 av 0.77 x 1.31 x 104.9 x 107.8 x 0.7 = 1	Southoost o o		1		1		1				1		⊐
Southeast 0.sk 0.77 × 4.62 × 110.01 × 0.76 × 0.77 = 1492.2 (7) Southeast 0.sk 0.77 × 2.3 × 119.01 × 0.76 × 0.77 = 97.23 (7) Southeast 0.sk 0.77 × 2.3 × 119.01 × 0.76 × 0.77 = 97.23 (7) Southeast 0.sk 0.77 × 5.66 × 118.15 × 0.76 × 0.77 = 98.49 (7) Southeast 0.sk 0.77 × 1.72 × 118.15 × 0.76 × 0.77 = 98.49 (7) Southeast 0.sk 0.77 × 1.45.15 × 0.76 × 0.77 = 98.49 (7) Southeast 0.sk 0.77 × 1.45.2 × 111.15 × 0.76 × 0.77 = 10.02.3 <td>L</td> <td></td> <td>X</td> <td>Г</td> <td>X</td> <td></td> <td>X</td> <td></td> <td>X</td> <td></td> <td>=</td> <td></td> <td>4</td>	L		X	Г	X		X		X		=		4
Southeast 0.sx 0.77 × 1.190 × 0.76 × 0.77 = 0.72 (77 Southeast 0.sx 0.77 × 2.3 × 119.01 × 0.76 × 0.77 = 100.096 (77) Southeast 0.sx 0.77 × 1.31 × 119.01 × 0.76 × 0.77 = 144.86 (77) Southeast 0.sx 0.77 × 2.26 × 118.15 × 0.76 × 0.77 = 246.33 (77) Southeast 0.sx 0.77 × 1.22 × 118.15 × 0.76 × 0.77 = 198.61 (77) Southeast 0.sx 0.77 × 1.31 × 118.15 × 0.76 × 0.77 = 198.61 (77) Southeast 0.sx 0.77 × 1.31 × 118.15 × 0.76 × 0.77 = 198.6	L	0.77	X	3.94	X	119.01	X	0.76	X	0.7	=	172.79	4
Southeast 0.x 0.77 × 2.3 × 11201 × 0.76 × 0.77 = 100.09 (T) Southeast 0.x 0.77 × 1.31 × 119.01 × 0.76 × 0.77 = 144.66 (T) Southeast 0.x 0.77 × 2.26 × 118.15 × 0.76 × 0.77 = 98.49 (T) Southeast 0.x 0.77 × 1.22 × 118.15 × 0.76 × 0.77 = 98.49 (T) Southeast 0.x 0.77 × 1.42 × 118.15 × 0.76 × 0.77 = 98.66 (T) Southeast 0.x 0.77 × 2.28 × 113.14 0.76 × 0.77 = 94.65 (T) Southeast 0.x 0.77 × 2.26 × 113.91 × 0.76 × 0.77 = <t< td=""><td>L</td><td>0.77</td><td>X</td><td>4.52</td><td>X</td><td>119.01</td><td>X</td><td>0.76</td><td>X</td><td>0.7</td><td>=</td><td>198.23</td><td>4</td></t<>	L	0.77	X	4.52	X	119.01	X	0.76	X	0.7	=	198.23	4
Southeast 0,x 0.77 × 1.31 × 110.01 × 0.76 × 0.77 = 114.86 (77) Southeast 0,x 0.77 × 2.26 × 118.15 × 0.76 × 0.77 = 246.33 (77) Southeast 0,x 0.77 × 1.22 × 118.15 × 0.76 × 0.77 = 747.77 Southeast 0,x 0.77 × 1.22 × 118.15 × 0.76 × 0.77 = 171.54 (77) Southeast 0,x 0.77 × 1.39 × 118.15 × 0.76 × 0.77 = 114.12 (77) Southeast 0,x 0.77 × 1.33 × 113.91 × 0.76 × 0.77 = 114.12 (77) Southeast 0,x 0.77 × 1.22 × 113.91 × 0.76 × 0.77 =	L	0.77	x	1.99	X	119.01	X	0.76	X	0.7	=	87.23	(77)
Southeast 0.3x 0.77 x 5.66 x 118.15 x 0.76 x 0.77 = 246.33 (77) Southeast 0.3x 0.77 x 1.72 x 118.15 x 0.76 x 0.77 = 98.49 (77) Southeast 0.3x 0.77 x 1.72 x 118.15 x 0.76 x 0.7 = 74.7 (77) Southeast 0.3x 0.77 x 4.52 x 118.15 x 0.76 x 0.7 = 196.66 (77) Southeast 0.3x 0.77 x 1.39 x 118.15 x 0.76 x 0.7 = 114.12 (77) Southeast 0.3x 0.77 x 1.31 x 118.15 x 0.76 x 0.7 = 94.65 (77) Southeast 0.3x 0.77 x 2.36 x 113.91 x 0.76 x 0.7 = 94.65 (77) Southeast 0.3x 0.77 x 3.44	L	0.77	x	2.3	x	119.01	x	0.76	x	0.7	=	100.96	(77)
Southeast 0.3x 0.77 x 2.28 x 118.15 x 0.76 x 0.77 = 98.49 (7) Southeast 0.3x 0.77 x 1.72 x 118.15 x 0.76 x 0.77 = 74.7 (7) Southeast 0.3x 0.77 x 4.62 x 118.15 x 0.76 x 0.7 = 196.48 (7) Southeast 0.3x 0.77 x 4.62 x 118.15 x 0.76 x 0.7 = 196.86 (7) Southeast 0.3x 0.77 x 2.3 x 118.15 x 0.76 x 0.7 = 100.23 (7) Southeast 0.3x 0.77 x 2.36 x 113.91 x 0.76 x 0.7 = 237.48 (7) Southeast 0.3x 0.77 x 2.26 x 113.91 x 0.76 x 0.7	L	0.77	x	1.31	x	119.01	x	0.76	x	0.7	=	114.96	(77)
Southeast 0.3x 0.77 x 1.72 x 118.15 x 0.76 x 0.77 = 74.7 (7) Southeast 0.3x 0.77 x 3.94 x 118.15 x 0.76 x 0.77 = 171.54 (7) Southeast 0.3x 0.77 x 1.99 x 118.15 x 0.76 x 0.77 = 196.8 (7) Southeast 0.3x 0.77 x 1.31 x 118.15 x 0.76 x 0.77 = 100.23 (7) Southeast 0.3x 0.77 x 1.31 x 118.15 x 0.76 x 0.77 = 94.55 (7) Southeast 0.3x 0.77 x 1.226 x 113.91 x 0.76 x 0.7 = 77.56.66 (7) Southeast 0.3x 0.77 x 14.52 x 113.91 x 0.76 x 0.7 =	L	0.77	x	5.66	x	118.15	x	0.76	x	0.7	=	246.33	(77)
Southeast 0.5k 0.77 x 0.344 x 118.15 x 0.76 x 0.77 = 171.54 (7) Southeast 0.5k 0.77 x 4.62 x 118.15 x 0.76 x 0.77 = 196.8 (77) Southeast 0.5k 0.77 x 1.99 x 118.15 x 0.76 x 0.77 = 196.8 (77) Southeast 0.5k 0.77 x 1.33 x 118.15 x 0.76 x 0.77 = 14.12 (77) Southeast 0.5k 0.77 x 1.34 x 113.91 x 0.76 x 0.77 = 94.95 (77) Southeast 0.5k 0.77 x 1.32 x 113.91 x 0.76 x 0.77 = 148.74 (77) Southeast 0.5k 0.77 x 4.52 x 113.91 x 0.76 x 0.77<	Southeast 0.9x	0.77	x	2.26	x	118.15	x	0.76	x	0.7	=	98.49	(77)
Southeast 0.5% 0.77 x 4.52 x 118.15 x 0.76 x 0.77 = 196.8 (77) Southeast 0.5% 0.77 x 1.39 x 118.15 x 0.76 x 0.77 = 100.23 (77) Southeast 0.5% 0.77 x 2.3 x 118.15 x 0.76 x 0.77 = 110.23 (77) Southeast 0.5% 0.77 x 5.66 x 113.91 x 0.76 x 0.77 = 94.95 (77) Southeast 0.5% 0.77 x 1.566 x 113.91 x 0.76 x 0.77 = 94.95 (77) Southeast 0.5% 0.77 x 4.52 x 113.91 x 0.76 x 0.77 = 188.74 (77) Southeast 0.5% 0.77 x 1.43 113.91 x 0.76 x 0.77 =	Southeast 0.9x	0.77	x	1.72	x	118.15	x	0.76	x	0.7	=	74.7	(77)
Southeast 0.9; 0.77 x 1.99 x 118.15 x 0.76 x 0.77 = 86.6 (7) Southeast 0.9; 0.77 x 1.31 x 118.15 x 0.76 x 0.77 = 100.23 (77) Southeast 0.9; 0.77 x 5.66 x 113.91 x 0.76 x 0.77 = 223.49 (77) Southeast 0.9; 0.77 x 5.66 x 113.91 x 0.76 x 0.77 = 94.96 (77) Southeast 0.9; 0.77 x 1.124 113.91 x 0.76 x 0.77 = 148.74 (77) Southeast 0.9; 0.77 x 1.39 x 113.91 x 0.76 x 0.77 = 83.49 (77) Southeast 0.9; 0.77 x 1.31 x 113.91 x 0.76 x 0.77 1.	Southeast 0.9x	0.77	x	3.94	x	118.15	x	0.76	x	0.7	=	171.54	(77)
Southeast 0.9 0.77 x 2.3 x 118.15 x 0.76 x 0.77 x 1.31 x 118.15 x 0.76 x 0.77 x 1.31 x 118.15 x 0.76 x 0.77 x 5.66 x 113.91 x 0.76 x 0.77 z 237.49 (77) Southeast 0.9 0.77 x 1.72 x 113.91 x 0.76 x 0.77 z 236.8 (77) Southeast 0.9 0.77 x 1.72 x 113.91 x 0.76 x 0.77 z 149.70 x 1.77 x 113.91 x 0.76 x 0.77 z 189.74 (77) Southeast 0.9 0.77 x 1.31 x 113.91 x 0.76 x 0.77 z 1.66.3 (77) Southeast 0.9 0.77 x 1.226 104.39	Southeast 0.9x	0.77	x	4.52	x	118.15	x	0.76	x	0.7	=	196.8	(77)
Southeast 0.9x 0.77 x 1.31 x 118.15 x 0.76 x 0.7 = 114.12 (77) Southeast 0.9x 0.77 x 5.66 x 113.91 x 0.76 x 0.7 = 237.49 (77) Southeast 0.9x 0.77 x 2.26 x 113.91 x 0.76 x 0.7 = 94.95 (77) Southeast 0.9x 0.77 x 1.72 x 113.91 x 0.76 x 0.7 = 94.95 (77) Southeast 0.9x 0.77 x 3.94 x 113.91 x 0.76 x 0.7 = 165.38 (77) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 83.49 (77) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 110.03 (77) Southeast 0.9x 0.77 x 1.31	Southeast 0.9x	0.77	x	1.99	x	118.15	x	0.76	x	0.7	=	86.6	(77)
Southeast 0,8x 0.77 x 5.66 x 113.91 x 0.76 x 0.77 = 237.49 (77) Southeast 0,9x 0.77 x 2.26 x 113.91 x 0.76 x 0.7 = 237.49 (77) Southeast 0,9x 0.77 x 1.72 x 113.91 x 0.76 x 0.7 = 237.49 (77) Southeast 0,9x 0.77 x 1.72 x 113.91 x 0.76 x 0.7 = 148.74 (77) Southeast 0,9x 0.77 x 1.99 x 113.91 x 0.76 x 0.7 = 68.63 (77) Southeast 0,9x 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 66.6 (77) Southeast 0,9x 0.77 x 1.22.6 x 104.39 x 0.76 x 0.7 <td>Southeast 0.9x</td> <td>0.77</td> <td>x</td> <td>2.3</td> <td>x</td> <td>118.15</td> <td>x</td> <td>0.76</td> <td>x</td> <td>0.7</td> <td>=</td> <td>100.23</td> <td>(77)</td>	Southeast 0.9x	0.77	x	2.3	x	118.15	x	0.76	x	0.7	=	100.23	(77)
Southeast 0.sx 0.77 x 2.26 x 113.91 x 0.76 x 0.77 = 94.95 (7) Southeast 0.sx 0.77 x 1.72 x 113.91 x 0.76 x 0.7 = 94.95 (7) Southeast 0.sx 0.77 x 3.94 x 113.91 x 0.76 x 0.7 = 94.95 (7) Southeast 0.sx 0.77 x 4.52 x 113.91 x 0.76 x 0.7 = 98.97.4 (7) Southeast 0.sx 0.77 x 1.99 x 113.91 x 0.76 x 0.7 = 96.63 (7) Southeast 0.sx 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 110.03 (7) Southeast 0.sx 0.77 x 1.26 x 104.39 x 0.76 x 0.7	Southeast 0.9x	0.77	x	1.31	x	118.15	x	0.76	x	0.7	=	114.12	(77)
Southeast 0.9x 0.77 x 1.72 x 113.91 x 0.76 x 0.77 = 72.02 77 Southeast 0.9x 0.77 x 3.94 x 113.91 x 0.76 x 0.77 = 1165.38 (77) Southeast 0.9x 0.77 x 4.52 x 113.91 x 0.76 x 0.77 = 189.74 (77) Southeast 0.9x 0.77 x 1.99 x 113.91 x 0.76 x 0.77 = 83.49 (77) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.77 = 217.64 (77) Southeast 0.9x 0.77 x 1.266 x 104.39 x 0.76 x 0.77 = 217.64 (77) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 151.56 (77) Southeast 0.9x 0.77 x 1.52	Southeast 0.9x	0.77	x	5.66	x	113.91	x	0.76	x	0.7	=	237.49	(77)
Southeast 0.5x 0.77 x 3.94 x 113.91 x 0.76 x 0.7 = 165.38 77 Southeast 0.9x 0.77 x 4.52 x 113.91 x 0.76 x 0.7 = 165.38 77 Southeast 0.9x 0.77 x 1.99 x 113.91 x 0.76 x 0.7 = 189.74 (77) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 96.63 (77) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.7 = 110.03 (77) Southeast 0.9x 0.77 x 1.326 x 104.39 x 0.76 x 0.7 = 87.02 (77) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.7 = 151.56 (77) Southeast 0.9x 0.77 x 1.72	Southeast 0.9x	0.77	x	2.26	x	113.91	x	0.76	x	0.7	=	94.95	(77)
Southeast 0.9, 0.77 x 4.52 x 113.91 x 0.76 x 0.77 = 189.74 (7) Southeast 0.9, 0.77 x 1.99 x 113.91 x 0.76 x 0.77 = 88.49 (7) Southeast 0.9, 0.77 x 2.3 x 113.91 x 0.76 x 0.77 = 96.63 (7) Southeast 0.9, 0.77 x 1.31 x 113.91 x 0.76 x 0.77 = 110.03 (7) Southeast 0.9, 0.77 x 5.66 x 104.39 x 0.76 x 0.77 = 217.64 (7) Southeast 0.9, 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 87.02 (7) Southeast 0.9, 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 151.56 (7) Southeast 0.9, 0.77 x 4.52 x 104.39 x 0.76 x 0.77	Southeast 0.9x	0.77	x	1.72	x	113.91	x	0.76	x	0.7	=	72.02	(77)
Southeast 0.9x 0.77 x 1.99 x 113.91 x 0.76 x 0.77 = 83.49 (7) Southeast 0.9x 0.77 x 2.3 x 113.91 x 0.76 x 0.77 = 98.63 (7) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.77 = 98.63 (7) Southeast 0.9x 0.77 x 5.66 x 104.39 x 0.76 x 0.77 = 217.64 (7) Southeast 0.9x 0.77 x 2.26 x 104.39 x 0.76 x 0.77 = 87.02 (7) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 151.56 (7) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.77 = 151.56 (7) Southeast 0.9x 0.77 x 1.31	Southeast 0.9x	0.77	x	3.94	x	113.91	x	0.76	x	0.7	=	165.38	(77)
Southeast 0.9x 0.77 x 2.3 x 113.91 x 0.76 x 0.77 = 96.63 (7) Southeast 0.9x 0.77 x 1.31 x 113.91 x 0.76 x 0.77 = 110.03 (7) Southeast 0.9x 0.77 x 5.66 x 104.39 x 0.76 x 0.77 = 217.64 (7) Southeast 0.9x 0.77 x 2.26 x 104.39 x 0.76 x 0.77 = 87.02 (7) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 66.6 (7) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.77 = 165.61 (7) Southeast 0.9x 0.77 x 1.52 x 104.39 x 0.76 x 0.7 = 165.61 (7) Southeast 0.9x 0.77 x 1.31	Southeast 0.9x	0.77	x	4.52	x	113.91	x	0.76	x	0.7	=	189.74	(77)
Southeast 0.9x 0.77 × 1.31 × 113.91 × 0.76 × 0.77 = 110.03 (7) Southeast 0.9x 0.77 × 5.66 × 104.39 × 0.76 × 0.77 = 217.64 (7) Southeast 0.9x 0.77 × 2.26 × 104.39 × 0.76 × 0.77 = 217.64 (7) Southeast 0.9x 0.77 × 1.72 × 104.39 × 0.76 × 0.77 = 666 (77) Southeast 0.9x 0.77 × 1.943 × 0.76 × 0.7 = 151.56 (77) Southeast 0.9x 0.77 × 4.52 × 104.39 × 0.76 × 0.7 = 173.88 (77) Southeast 0.9x 0.77 × 2.3 × 104.39 × 0.76 × 0.7 = 88.56	Southeast 0.9x	0.77	x	1.99	x	113.91	x	0.76	x	0.7	=	83.49	(77)
Southeast 0.9x 0.77 x 5.66 x 104.39 x 0.76 x 0.7 = 217.64 (77) Southeast 0.9x 0.77 x 2.26 x 104.39 x 0.76 x 0.7 = 87.02 (77) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.7 = 66 (77) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.7 = 666 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 173.88 (77) Southeast 0.9x 0.77 x 1.99 x 104.39 x 0.76 x 0.7 = 88.56 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 193.58 (77) Southeast 0.9x 0.77 x 1.31 <t< td=""><td>Southeast 0.9x</td><td>0.77</td><td>x</td><td>2.3</td><td>x</td><td>113.91</td><td>x</td><td>0.76</td><td>x</td><td>0.7</td><td>=</td><td>96.63</td><td>(77)</td></t<>	Southeast 0.9x	0.77	x	2.3	x	113.91	x	0.76	x	0.7	=	96.63	(77)
Southeast 0.9x 0.77 x 2.26 x 104.39 x 0.76 x 0.7 = 87.02 (77) Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.7 = 66 (77) Southeast 0.9x 0.77 x 3.94 x 104.39 x 0.76 x 0.7 = 66 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 151.56 (77) Southeast 0.9x 0.77 x 1.99 x 104.39 x 0.76 x 0.7 = 173.88 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 88.56 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 100.83 (77) Southeast 0.9x 0.77 x 2.26 <td< td=""><td>Southeast 0.9x</td><td>0.77</td><td>x</td><td>1.31</td><td>x</td><td>113.91</td><td>x</td><td>0.76</td><td>x</td><td>0.7</td><td>=</td><td>110.03</td><td>(77)</td></td<>	Southeast 0.9x	0.77	x	1.31	x	113.91	x	0.76	x	0.7	=	110.03	(77)
Southeast 0.9x 0.77 x 1.72 x 104.39 x 0.76 x 0.7 = 66 (77) Southeast 0.9x 0.77 x 3.94 x 104.39 x 0.76 x 0.7 = 66 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 151.56 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 173.88 (77) Southeast 0.9x 0.77 x 1.99 x 104.39 x 0.76 x 0.7 = 173.88 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 185.56 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 193.58 (77) Southeast 0.9x 0.77 x 1.72 <	Southeast 0.9x	0.77	x	5.66	x	104.39	x	0.76	x	0.7	=	217.64	(77)
Southeast 0.9x 0.77 x 3.94 x 104.39 x 0.76 x 0.7 = 151.56 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 151.56 (77) Southeast 0.9x 0.77 x 4.52 x 104.39 x 0.76 x 0.7 = 173.88 (77) Southeast 0.9x 0.77 x 1.99 x 104.39 x 0.76 x 0.7 = 76.51 (77) Southeast 0.9x 0.77 x 2.3 x 104.39 x 0.76 x 0.7 = 88.56 (77) Southeast 0.9x 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 100.83 (77) Southeast 0.9x 0.77 x 2.26 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast 0.9x 0.77 x 1.72	Southeast 0.9x	0.77	x	2.26	x	104.39	x	0.76	x	0.7	=	87.02	(77)
Southeast $0.9x$ 0.77×4.52×104.39×0.76×0.7=173.88(77)Southeast $0.9x$ 0.77×1.99×104.39×0.76×0.7=76.51(77)Southeast $0.9x$ 0.77×2.3×104.39×0.76×0.7=76.51(77)Southeast $0.9x$ 0.77×2.3×104.39×0.76×0.7=88.56(77)Southeast $0.9x$ 0.77×1.31×104.39×0.76×0.7=100.83(77)Southeast $0.9x$ 0.77×5.66×92.85×0.76×0.7=193.58(77)Southeast $0.9x$ 0.77×2.26×92.85×0.76×0.7=77.4(77)Southeast $0.9x$ 0.77×1.72×92.85×0.76×0.7=58.71(77)Southeast $0.9x$ 0.77×3.94×92.85×0.76×0.7=134.81(77)Southeast $0.9x$ 0.77×4.52×92.85×0.76×0.7=154.66(77)Southeast $0.9x$ 0.77×1.31×92.85×0.76×0.7=68.05(77)Southeast $0.9x$ 0.77×2.33×92.	Southeast 0.9x	0.77	x	1.72	x	104.39	x	0.76	x	0.7	=	66	(77)
Southeast $0.9x$ 0.77 x 1.99 x 104.39 x 0.76 x 0.7 $=$ 76.51 (77) Southeast $0.9x$ 0.77 x 2.3 x 104.39 x 0.76 x 0.7 $=$ 88.56 (77) Southeast $0.9x$ 0.77 x 1.31 x 104.39 x 0.76 x 0.7 $=$ 88.56 (77) Southeast $0.9x$ 0.77 x 1.31 x 104.39 x 0.76 x 0.7 $=$ 190.83 (77) Southeast $0.9x$ 0.77 x 5.66 x 92.85 x 0.76 x 0.7 $=$ 193.58 (77) Southeast $0.9x$ 0.77 x 2.26 x 92.85 x 0.76 x 0.7 $=$ 58.71 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 $=$ 58.71 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 $=$ 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 $=$ 134.81 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 $=$ 78.77 (77) Southeast $0.9x$ <	Southeast 0.9x	0.77	x	3.94	x	104.39	x	0.76	x	0.7	=	151.56	(77)
Southeast $0.9x$ 0.77 x 2.3 x 104.39 x 0.76 x 0.7 = 88.56 (77) Southeast $0.9x$ 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 100.83 (77) Southeast $0.9x$ 0.77 x 5.66 x 92.85 x 0.76 x 0.7 = 193.58 (77) Southeast $0.9x$ 0.77 x 2.26 x 92.85 x 0.76 x 0.7 = 77.4 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.33 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.33 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.33 x 92.85 x 0.76 x	Southeast 0.9x	0.77	x	4.52	x	104.39	x	0.76	x	0.7	=	173.88	(77)
Southeast $0.9x$ 0.77 x 1.31 x 104.39 x 0.76 x 0.7 = 100.83 (77) Southeast $0.9x$ 0.77 x 5.66 x 92.85 x 0.76 x 0.7 = 193.58 (77) Southeast $0.9x$ 0.77 x 2.26 x 92.85 x 0.76 x 0.7 = 77.4 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 3.94 x 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 = 154.66 (77) Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 2.26 69.27 x 0.76 x <td< td=""><td>Southeast 0.9x</td><td>0.77</td><td>x</td><td>1.99</td><td>x</td><td>104.39</td><td>x</td><td>0.76</td><td>x</td><td>0.7</td><td>=</td><td>76.51</td><td>(77)</td></td<>	Southeast 0.9x	0.77	x	1.99	x	104.39	x	0.76	x	0.7	=	76.51	(77)
Southeast $0.9x$ 0.77 x 5.66 x 92.85 x 0.76 x 0.7 = 193.58 (77) Southeast $0.9x$ 0.77 x 2.26 x 92.85 x 0.76 x 0.7 = 77.4 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 3.94 x 92.85 x 0.76 x 0.7 = 154.66 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 = 154.66 (77) Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x $0.$	Southeast 0.9x	0.77	x	2.3	x	104.39	x	0.76	x	0.7] =	88.56	(77)
Southeast $0.9x$ 0.77 x 2.26 x 92.85 x 0.76 x 0.7 = 77.4 (77) Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 = 58.71 (77) Southeast $0.9x$ 0.77 x 3.94 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 92.85 x 0.76 x 0.7 = 154.66 (77) Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	1.31	x	104.39	x	0.76	x	0.7] =	100.83	(77)
Southeast $0.9x$ 0.77 x 1.72 x 92.85 x 0.76 x 0.7 $=$ 58.71 (77) Southeast $0.9x$ 0.77 x 3.94 x 92.85 x 0.76 x 0.7 $=$ 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 $=$ 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 $=$ 154.66 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 $=$ 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 $=$ 78.77 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 $=$ 78.77 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 $=$ 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 $=$ 57.74 (77)	Southeast 0.9x	0.77	x	5.66	x	92.85	x	0.76	x	0.7	=	193.58	(77)
Southeast $0.9x$ 0.77 x 3.94 x 92.85 x 0.76 x 0.7 = 134.81 (77) Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 = 154.66 (77) Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	2.26	x	92.85	x	0.76	x	0.7	=	77.4	(77)
Southeast $0.9x$ 0.77 x 4.52 x 92.85 x 0.76 x 0.7 $=$ 154.66 (77) Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 $=$ 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 $=$ 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 $=$ 78.77 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 $=$ 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 $=$ 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 $=$ 57.74 (77)	Southeast 0.9x	0.77	x	1.72	x	92.85	×	0.76	x	0.7	=	58.71	(77)
Southeast $0.9x$ 0.77 x 1.99 x 92.85 x 0.76 x 0.7 = 68.05 (77) Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	3.94	x	92.85	x	0.76	x	0.7	=	134.81	(77)
Southeast $0.9x$ 0.77 x 2.3 x 92.85 x 0.76 x 0.7 = 78.77 (77) Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	4.52	x	92.85	x	0.76	x	0.7	=	154.66	(77)
Southeast $0.9x$ 0.77 x 1.31 x 92.85 x 0.76 x 0.7 = 89.69 (77) Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 144.41 (77)	Southeast 0.9x	0.77	x	1.99	×	92.85	×	0.76	x	0.7	=	68.05	(77)
Southeast $0.9x$ 0.77 x 5.66 x 69.27 x 0.76 x 0.7 = 144.41 (77) Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 144.41 (77)	Southeast 0.9x	0.77	x	2.3	×	92.85	×	0.76	x	0.7	=	78.77	(77)
Southeast $0.9x$ 0.77 x 2.26 x 69.27 x 0.76 x 0.7 = 57.74 (77)	Southeast 0.9x	0.77	x	1.31	×	92.85	×	0.76	x	0.7	=	89.69	(77)
	Southeast 0.9x	0.77	x	5.66	×	69.27	×	0.76	x	0.7] =	144.41	(77)
Southeast $0.9x$ 0.77 x 1.72 x 69.27 x 0.76 x 0.7 = 43.8 (77)	L	0.77	x	2.26	×	69.27	×	0.76	x	0.7	=	57.74	(77)
	Southeast 0.9x	0.77	x	1.72	x	69.27	×	0.76	x	0.7	=	43.8	(77)

Southeast 0.9x	0.77] ×	3.94	×	69.27	×	0.76	x	0.7] =	100.57	(77)
Southeast 0.9x	0.77] ×	4.52	x	69.27	x	0.76	x	0.7	 =	115.38](77)
Southeast 0.9x	0.77] x	1.99	×	69.27	×	0.76	x	0.7	 =	50.77	(77)
L Southeast 0.9x	0.77	」 】 x	2.3	x	69.27	 x	0.76	x	0.7	 =	58.76	
Southeast 0.9x	0.77	」 】 x	1.31	x	69.27	x	0.76	x	0.7	=	66.91	
Southeast 0.9x	0.77	x	5.66	x	44.07	x	0.76	x	0.7	=	91.88](77)
Southeast 0.9x	0.77	x	2.26	x	44.07	×	0.76	x	0.7	=	36.74	(77)
Southeast 0.9x	0.77	x	1.72	x	44.07	x	0.76	x	0.7	=	27.86	(77)
Southeast 0.9x	0.77	x	3.94	x	44.07	x	0.76	x	0.7	=	63.98	(77)
Southeast 0.9x	0.77	x	4.52	×	44.07	×	0.76	x	0.7	=	73.41	(77)
Southeast 0.9x	0.77	x	1.99	x	44.07	x	0.76	x	0.7	=	32.3	(77)
Southeast 0.9x	0.77	x	2.3	x	44.07	×	0.76	x	0.7	=	37.39	(77)
Southeast 0.9x	0.77	x	1.31	×	44.07	×	0.76	x	0.7	=	42.57	(77)
Southeast 0.9x	0.77	x	5.66	x	31.49	x	0.76	x	0.7	=	65.65	(77)
Southeast 0.9x	0.77	x	2.26	x	31.49	×	0.76	x	0.7	=	26.25	(77)
Southeast 0.9x	0.77	x	1.72	x	31.49	×	0.76	x	0.7	=	19.91	(77)
Southeast 0.9x	0.77	x	3.94	x	31.49	×	0.76	x	0.7	=	45.72	(77)
Southeast 0.9x	0.77	x	4.52	x	31.49	x	0.76	x	0.7	=	52.45	(77)
Southeast 0.9x	0.77	x	1.99	x	31.49	×	0.76	x	0.7	=	23.08	(77)
Southeast 0.9x	0.77	x	2.3	x	31.49	×	0.76	x	0.7	=	26.71	(77)
Southeast 0.9x	0.77	x	1.31	×	31.49	×	0.76	x	0.7	=	30.42	(77)
Northwest 0.9x	0.77	x	18.38	x	11.28	x	0.76	x	0.7	=	76.47	(81)
Northwest 0.9x	0.77	x	4.12	x	11.28	×	0.76	x	0.7	=	17.13	(81)
Northwest 0.9x	0.77	x	2.57	x	11.28	×	0.76	x	0.7	=	10.67	(81)
Northwest 0.9x	0.77	x	2.98	x	11.28	x	0.76	x	0.7	=	12.4	(81)
Northwest 0.9x	0.77	x	2.48	×	11.28	×	0.76	x	0.7	=	10.32	(81)
Northwest 0.9x	0.77	x	3.99	x	11.28	×	0.76	x	0.7	=	16.61	(81)
Northwest 0.9x	0.77	x	2.09	x	11.28	×	0.76	x	0.7	=	8.71	(81)
Northwest 0.9x	0.77	x	2.5	x	11.28	×	0.76	x	0.7	=	10.4	(81)
Northwest 0.9x	0.77	x	18.38	x	22.97	×	0.76	x	0.7	=	155.65	(81)
Northwest 0.9x	0.77	x	4.12	x	22.97	x	0.76	x	0.7	=	34.88	(81)
Northwest 0.9x	0.77	x	2.57	x	22.97	×	0.76	x	0.7	=	21.72	(81)
Northwest 0.9x	0.77	×	2.98	x	22.97	×	0.76	x	0.7	=	25.24	(81)
Northwest 0.9x	0.77	x	2.48	x	22.97	x	0.76	x	0.7	=	21	(81)
Northwest 0.9x	0.77	×	3.99	x	22.97	×	0.76	x	0.7	=	33.81	(81)
Northwest 0.9x	0.77	x	2.09	x	22.97	X	0.76	X	0.7	=	17.72	(81)
Northwest 0.9x	0.77	×	2.5	×	22.97	×	0.76	x	0.7	=	21.16	(81)
Northwest 0.9x	0.77	×	18.38	×	41.38	×	0.76	x	0.7	=	280.44	(81)
Northwest 0.9x	0.77	×	4.12	×	41.38	×	0.76	x	0.7	=	62.84	(81)
Northwest 0.9x	0.77	×	2.57	×	41.38	×	0.76	x	0.7	=	39.13	(81)
Northwest 0.9x	0.77	×	2.98	×	41.38	×	0.76	x	0.7	=	45.48	(81)

Northwest 0.9x	0.77] ×	2.48	×	41.38	×	0.76	x	0.7	=	37.83	(81)
Northwest 0.9x	0.77	l x	3.99	x	41.38	x x	0.76	x	0.7		60.91	(81) (81)
Northwest 0.9x	0.77	l ^ l x	2.09	×	41.38	x	0.76	x	0.7	-	31.93	(81)
Northwest 0.9x	0.77) ^ x	2.09	x	41.38	x x	0.76	x	0.7	=	38.12	(81)
Northwest 0.9x	0.77	^ x	18.38	x	67.96	x	0.76	x	0.7	=	460.56	(81)
Northwest 0.9x	0.77	x l	4.12	x	67.96	x	0.76	x	0.7	=	103.2	(81)
Northwest 0.9x	0.77	l x	2.57	x	67.96	 x	0.76	x	0.7	=	64.26	(81)
Northwest 0.9x	0.77	x	2.98	x	67.96	x	0.76	x	0.7	=	74.69	(81)
Northwest 0.9x	0.77	x	2.48	x	67.96	×	0.76	x	0.7	=	62.13	(81)
Northwest 0.9x	0.77	×	3.99	×	67.96	×	0.76	x	0.7	=	100.04	(81)
Northwest 0.9x	0.77	x	2.09	x	67.96	×	0.76	x	0.7	=	52.44	(81)
Northwest 0.9x	0.77	x	2.5	x	67.96	×	0.76	x	0.7	=	62.61	(81)
Northwest 0.9x	0.77	×	18.38	x	91.35	×	0.76	x	0.7	=	619.09	(81)
Northwest 0.9x	0.77	x	4.12	×	91.35	×	0.76	x	0.7	=	138.72	(81)
Northwest 0.9x	0.77	×	2.57	x	91.35	×	0.76	x	0.7	=	86.38	(81)
Northwest 0.9x	0.77	×	2.98	x	91.35	×	0.76	x	0.7	=	100.39	(81)
Northwest 0.9x	0.77	x	2.48	x	91.35	x	0.76	x	0.7	=	83.52	(81)
Northwest 0.9x	0.77	×	3.99	×	91.35	×	0.76	x	0.7	=	134.47	(81)
Northwest 0.9x	0.77	x	2.09	x	91.35	×	0.76	x	0.7	=	70.49	(81)
Northwest 0.9x	0.77	x	2.5	x	91.35	×	0.76	x	0.7	=	84.16	(81)
Northwest 0.9x	0.77	x	18.38	×	97.38	×	0.76	x	0.7	=	660.01	(81)
Northwest 0.9x	0.77	x	4.12	x	97.38	x	0.76	x	0.7	=	147.89	(81)
Northwest 0.9x	0.77	x	2.57	x	97.38	×	0.76	x	0.7	=	92.09	(81)
Northwest 0.9x	0.77	x	2.98	x	97.38	×	0.76	x	0.7	=	107.03	(81)
Northwest 0.9x	0.77	x	2.48	x	97.38	x	0.76	x	0.7	=	89.04	(81)
Northwest 0.9x	0.77	x	3.99	×	97.38	×	0.76	x	0.7	=	143.36	(81)
Northwest 0.9x	0.77	×	2.09	x	97.38	×	0.76	x	0.7	=	75.15	(81)
Northwest 0.9x	0.77	x	2.5	x	97.38	×	0.76	x	0.7	=	89.72	(81)
Northwest 0.9x	0.77	×	18.38	x	91.1	×	0.76	x	0.7	=	617.43	(81)
Northwest 0.9x	0.77	x	4.12	x	91.1	x	0.76	x	0.7	=	138.34	(81)
Northwest 0.9x	0.77	x	2.57	x	91.1	x	0.76	x	0.7	=	86.15	(81)
Northwest 0.9x	0.77	×	2.98	x	91.1	×	0.76	x	0.7	=	100.12	(81)
Northwest 0.9x	0.77	×	2.48	x	91.1	×	0.76	x	0.7	=	83.3	(81)
Northwest 0.9x	0.77	x	3.99	x	91.1	x	0.76	x	0.7	=	134.11	(81)
Northwest 0.9x	0.77	×	2.09	x	91.1	×	0.76	x	0.7	=	70.3	(81)
Northwest 0.9x	0.77	×	2.5	×	91.1	×	0.76	x	0.7	=	83.93	(81)
Northwest 0.9x	0.77	×	18.38	×	72.63	×	0.76	x	0.7	=	492.22	(81)
Northwest 0.9x	0.77	×	4.12	×	72.63	×	0.76	x	0.7	=	110.29	(81)
Northwest 0.9x	0.77	×	2.57	×	72.63	×	0.76	x	0.7	=	68.68	(81)
Northwest 0.9x	0.77	×	2.98	×	72.63	×	0.76	x	0.7	=	79.82	(81)
Northwest 0.9x	0.77	x	2.48	X	72.63	×	0.76	x	0.7	=	66.4	(81)

Northwest 0.9x	0.77] x	3.99	×	72.63	×	0.76	x	0.7] =	106.92	(81)
Northwest 0.9x	0.77] ×	2.09	x	72.63	x	0.76	x	0.7	 =	56.04	(81)
Northwest 0.9x	0.77] ×	2.5	×	72.63	×	0.76	x	0.7	 =	66.91	(81)
L Northwest 0.9x	0.77	」 】 ×	18.38	x	50.42	 x	0.76	x	0.7	 =	341.72	(81)
L Northwest 0.9x	0.77	」 】 x	4.12	x	50.42	l X	0.76	x	0.7	 =	76.57	(81)
Northwest 0.9x	0.77] x	2.57	x	50.42	x	0.76	x	0.7	=	47.68	(81)
Northwest 0.9x	0.77] x	2.98	x	50.42	×	0.76	x	0.7	=	55.41	(81)
Northwest 0.9x	0.77	x	2.48	x	50.42	×	0.76	x	0.7	=	46.1	(81)
Northwest 0.9x	0.77	x	3.99	x	50.42	×	0.76	x	0.7	=	74.23	(81)
Northwest 0.9x	0.77	x	2.09	x	50.42	×	0.76	x	0.7] =	38.91	(81)
Northwest 0.9x	0.77	x	2.5	x	50.42	×	0.76	x	0.7	=	46.45	(81)
Northwest 0.9x	0.77	x	18.38	x	28.07	x	0.76	x	0.7	=	190.22	(81)
Northwest 0.9x	0.77	x	4.12	x	28.07	x	0.76	x	0.7	=	42.62	(81)
Northwest 0.9x	0.77	x	2.57	×	28.07	×	0.76	x	0.7	=	26.54	(81)
Northwest 0.9x	0.77	x	2.98	x	28.07	×	0.76	x	0.7	=	30.85	(81)
Northwest 0.9x	0.77	x	2.48	x	28.07	×	0.76	x	0.7	=	25.66	(81)
Northwest 0.9x	0.77	x	3.99	x	28.07	x	0.76	x	0.7	=	41.32	(81)
Northwest 0.9x	0.77	x	2.09	x	28.07	×	0.76	x	0.7] =	21.66	(81)
Northwest 0.9x	0.77	x	2.5	×	28.07	×	0.76	x	0.7	=	25.86	(81)
Northwest 0.9x	0.77	x	18.38	x	14.2	×	0.76	x	0.7	=	96.22	(81)
Northwest 0.9x	0.77	x	4.12	x	14.2	x	0.76	x	0.7	=	21.56	(81)
Northwest 0.9x	0.77	x	2.57	x	14.2	×	0.76	x	0.7	=	13.43	(81)
Northwest 0.9x	0.77	x	2.98	x	14.2	×	0.76	x	0.7	=	15.6	(81)
Northwest 0.9x	0.77	x	2.48	x	14.2	X	0.76	x	0.7	=	12.98	(81)
Northwest 0.9x	0.77	x	3.99	x	14.2	×	0.76	x	0.7	=	20.9	(81)
Northwest 0.9x	0.77	x	2.09	x	14.2	x	0.76	x	0.7	=	10.95	(81)
Northwest 0.9x	0.77	x	2.5	x	14.2	x	0.76	x	0.7	=	13.08	(81)
Northwest 0.9x	0.77	x	18.38	x	9.21	x	0.76	x	0.7	=	62.45	(81)
Northwest 0.9x	0.77	x	4.12	×	9.21	×	0.76	x	0.7	=	13.99	(81)
Northwest 0.9x	0.77	x	2.57	×	9.21	×	0.76	x	0.7	=	8.71	(81)
Northwest 0.9x	0.77	x	2.98	x	9.21	×	0.76	x	0.7	=	10.13	(81)
Northwest 0.9x	0.77	x	2.48	x	9.21	x	0.76	x	0.7	=	8.42	(81)
Northwest 0.9x	0.77	x	3.99	x	9.21	×	0.76	x	0.7	=	13.56	(81)
Northwest 0.9x	0.77	x	2.09	x	9.21	×	0.76	x	0.7	=	7.11	(81)
Northwest 0.9x	0.77	×	2.5	x	9.21	×	0.76	x	0.7	=	8.49	(81)
Rooflights 0.9x	1	x	4.43	x	26	×	0.76	X	0.7	=	55.2	(82)
Rooflights 0.9x	1	×	3.28	×	26	×	0.76	x	0.7	=	40.78	(82)
Rooflights 0.9x	1	×	3.61	×	26	×	0.76	x	0.7	=	44.95	(82)
Rooflights 0.9x	1	×	3.48	×	26	×	0.76	x	0.7	=	43.38	(82)
Rooflights 0.9x	1	×	2.48	×	26	×	0.76	x	0.7	=	30.84	(82)
Rooflights 0.9x	1	×	2.21	X	26	x	0.76	x	0.7	=	27.54	(82)

Rooflights 0.9x	1] ×	3.56	×	26	×	0.76	x	0.7] =	44.37	(82)
Rooflights 0.9x	1	」 】 ×	2.81	x	26	l X	0.76	x	0.7	=	34.99	(82)
Rooflights 0.9x	1	」 】 ×	4.43	x	54	x	0.76	x	0.7	=	114.64	(82)
Rooflights 0.9x	1] ×	3.28	x	54	x	0.76	x	0.7	=	84.7	(82)
Rooflights 0.9x	1] ×	3.61	x	54	x	0.76	x	0.7	=	93.36	(82)
Rooflights 0.9x	1] ×	3.48	x	54	×	0.76	x	0.7	=	90.11	(82)
Rooflights 0.9x	1] ×	2.48	x	54	×	0.76	x	0.7	=	64.04	(82)
Rooflights 0.9x	1] ×	2.21	x	54	×	0.76	x	0.7	=	57.19	(82)
Rooflights 0.9x	1	×	3.56	x	54	×	0.76	x	0.7	i =	92.15	(82)
Rooflights 0.9x	1	x	2.81	x	54	×	0.76	x	0.7	=	72.68	(82)
Rooflights 0.9x	1	×	4.43	×	96	×	0.76	x	0.7	=	203.81	(82)
Rooflights 0.9x	1	×	3.28	x	96	×	0.76	x	0.7	=	150.58	(82)
Rooflights 0.9x	1	x	3.61	x	96	×	0.76	x	0.7] =	165.98	(82)
Rooflights 0.9x	1	x	3.48	x	96	x	0.76	x	0.7	=	160.19	(82)
Rooflights 0.9x	1	×	2.48	x	96	×	0.76	x	0.7	=	113.85	(82)
Rooflights 0.9x	1	x	2.21	x	96	×	0.76	x	0.7	=	101.67	(82)
Rooflights 0.9x	1	x	3.56	x	96	×	0.76	x	0.7	=	163.82	(82)
Rooflights 0.9x	1	x	2.81	x	96	x	0.76	x	0.7	=	129.21	(82)
Rooflights 0.9x	1	x	4.43	x	150	×	0.76	x	0.7	=	318.45	(82)
Rooflights 0.9x	1	×	3.28	x	150	×	0.76	x	0.7	=	235.28	(82)
Rooflights 0.9x	1	×	3.61	x	150	×	0.76	x	0.7	=	259.34	(82)
Rooflights 0.9x	1	×	3.48	x	150	x	0.76	x	0.7	=	250.29	(82)
Rooflights 0.9x	1	×	2.48	x	150	×	0.76	x	0.7	=	177.9	(82)
Rooflights 0.9x	1	x	2.21	x	150	×	0.76	x	0.7	=	158.87	(82)
Rooflights 0.9x	1	x	3.56	x	150	×	0.76	x	0.7	=	255.97	(82)
Rooflights 0.9x	1	x	2.81	x	150	×	0.76	x	0.7	=	201.89	(82)
Rooflights 0.9x	1	×	4.43	x	192	×	0.76	x	0.7	=	407.62	(82)
Rooflights 0.9x	1	x	3.28	x	192	x	0.76	x	0.7	=	301.16	(82)
Rooflights 0.9x	1	×	3.61	×	192	×	0.76	x	0.7	=	331.96	(82)
Rooflights 0.9x	1	×	3.48	×	192	×	0.76	x	0.7	=	320.37	(82)
Rooflights 0.9x	1	×	2.48	x	192	x	0.76	x	0.7	=	227.71	(82)
Rooflights 0.9x	1	×	2.21	x	192	×	0.76	x	0.7	=	203.35	(82)
Rooflights 0.9x	1	×	3.56	X	192	×	0.76	x	0.7	=	327.64	(82)
Rooflights 0.9x	1	×	2.81	x	192	X	0.76	x	0.7	=	258.41	(82)
Rooflights 0.9x	1	×	4.43	×	200	×	0.76	x	0.7	=	424.6	(82)
Rooflights 0.9x	1	×	3.28	X	200	X	0.76	x	0.7	=	313.71	(82)
Rooflights 0.9x	1	×	3.61	×	200	×	0.76	x	0.7	=	345.79	(82)
Rooflights 0.9x	1	×	3.48	×	200	×	0.76	x	0.7	=	333.72	(82)
Rooflights 0.9x	1	×	2.48	×	200	×	0.76	x	0.7	=	237.2	(82)
Rooflights 0.9x	1	×	2.21	×	200	×	0.76	x	0.7	=	211.82	(82)
Rooflights 0.9x	1	×	3.56	X	200	×	0.76	x	0.7	=	341.29	(82)

Rooflights 0.9x	1	x	2.81	×	200	×	0.76	x	0.7] =	269.18	(82)
Rooflights 0.9x	1] x	4.43	x	189	x	0.76	x	0.7	=	401.25	(82)
Rooflights 0.9x	1	x	3.28	x	189	x	0.76	x	0.7	=	296.46	(82)
Rooflights 0.9x	1	x	3.61	x	189	×	0.76	x	0.7	=	326.77	(82)
Rooflights 0.9x	1	x	3.48	x	189	×	0.76	x	0.7	=	315.37	(82)
Rooflights 0.9x	1	x	2.48	x	189	x	0.76	x	0.7	=	224.15	(82)
Rooflights 0.9x	1	x	2.21	x	189	×	0.76	x	0.7	i =	200.17	(82)
Rooflights 0.9x	1	x	3.56	x	189	×	0.76	x	0.7	i =	322.52	(82)
Rooflights 0.9x	1	x	2.81	x	189	×	0.76	x	0.7] =	254.38	(82)
Rooflights 0.9x	1	x	4.43	x	157	x	0.76	x	0.7	=	333.31	(82)
Rooflights 0.9x	1	x	3.28	x	157	x	0.76	x	0.7	=	246.26	(82)
Rooflights 0.9x	1	x	3.61	x	157	x	0.76	x	0.7	=	271.44	(82)
Rooflights 0.9x	1	x	3.48	x	157	x	0.76	x	0.7	=	261.97	(82)
Rooflights 0.9x	1	x	2.48	×	157	×	0.76	x	0.7	=	186.2	(82)
Rooflights 0.9x	1	x	2.21	x	157	×	0.76	x	0.7	=	166.28	(82)
Rooflights 0.9x	1	x	3.56	×	157	×	0.76	x	0.7	=	267.91	(82)
Rooflights 0.9x	1	x	2.81	x	157	x	0.76	x	0.7	=	211.31	(82)
Rooflights 0.9x	1	x	4.43	x	115	×	0.76	x	0.7	=	244.14	(82)
Rooflights 0.9x	1	x	3.28	x	115	x	0.76	x	0.7	=	180.38	(82)
Rooflights 0.9x	1	x	3.61	x	115	×	0.76	x	0.7	=	198.83	(82)
Rooflights 0.9x	1	x	3.48	x	115	×	0.76	x	0.7] =	191.89	(82)
Rooflights 0.9x	1	x	2.48	x	115	×	0.76	x	0.7	=	136.39	(82)
Rooflights 0.9x	1	x	2.21	x	115	×	0.76	x	0.7	=	121.8	(82)
Rooflights 0.9x	1	x	3.56	x	115	×	0.76	x	0.7	=	196.24	(82)
Rooflights 0.9x	1	x	2.81	x	115	×	0.76	x	0.7	=	154.78	(82)
Rooflights 0.9x	1	x	4.43	x	66	x	0.76	x	0.7	=	140.12	(82)
Rooflights 0.9x	1	x	3.28	x	66	x	0.76	x	0.7	=	103.52	(82)
Rooflights 0.9x	1	x	3.61	x	66	x	0.76	x	0.7	=	114.11	(82)
Rooflights 0.9x	1	x	3.48	×	66	×	0.76	x	0.7	=	110.13	(82)
Rooflights 0.9x	1	x	2.48	×	66	×	0.76	x	0.7	=	78.28	(82)
Rooflights 0.9x	1	x	2.21	x	66	×	0.76	x	0.7	=	69.9	(82)
Rooflights 0.9x	1	x	3.56	x	66	×	0.76	x	0.7	=	112.63	(82)
Rooflights 0.9x	1	x	2.81	x	66	×	0.76	x	0.7	=	88.83	(82)
Rooflights 0.9x	1	x	4.43	x	33	×	0.76	x	0.7	=	70.06	(82)
Rooflights 0.9x	1	×	3.28	x	33	×	0.76	x	0.7	=	51.76	(82)
Rooflights 0.9x	1	x	3.61	x	33	×	0.76	x	0.7	=	57.06	(82)
Rooflights 0.9x	1	×	3.48	×	33	×	0.76	x	0.7	=	55.06	(82)
Rooflights 0.9x	1	×	2.48	×	33	×	0.76	x	0.7	=	39.14	(82)
Rooflights 0.9x	1	×	2.21	×	33	×	0.76	x	0.7	=	34.95	(82)
Rooflights 0.9x	1	×	3.56	×	33	×	0.76	x	0.7	=	56.31	(82)
Rooflights 0.9x	1	×	2.81	×	33	×	0.76	X	0.7	=	44.41	(82)

Rooflig	hts <mark>0.9x</mark>	1	x	4.4	43	x		21) × [0.76	x	0.7		= 44.5	58 (82)
Rooflig	hts 0.9x	1	x	3.2	28	×		21	İ × [0.76		0.7	<u> </u>	= 32.9)4 (82)
Rooflig	hts <mark>0.9x</mark>	1	x	3.6	61	x		21	× [0.76		0.7	— ,	= 36.3	31 (82)
Rooflig	hts 0.9x	1	x	3.4	48	x		21	İ x [0.76		0.7	-	= 35.0)4 (82)
Rooflig	hts <mark>0.9x</mark>	1	x	2.4	48	x		21	× [0.76	_ × [0.7	—	= 24.9)1 (82)
Rooflig	hts <mark>0.9x</mark>	1	x	2.2	21	x		21	×		0.76	×	0.7	-	= 22.2	24 (82)
Rooflig	hts <mark>0.9x</mark>	1	x	3.5	56	x		21	× [0.76	×	0.7		= 35.8	34 (82)
Rooflig	hts <mark>0.9x</mark>	1	x	2.8	31	x		21) × [0.76	x	0.7		= 28.2	26 (82)
	_					-										
Solar g	pains in	watts, ca	alculated	for eac	h month	-			(83)m =	= Su	m(74)m .	(82)m	-			
(83)m=	823.82		2576.04		4792.16		970.4	4704.46	3953.	97 3	3007.19	1860.57	7 1019.6	683.1	6	(83)
Total g	jains – i	nternal a	and solai	' (84)m =	= (73)m	+ (8	33)m ,	, watts					_	r	_	
(84)m=	1763.97	2514.98	3479.38	4663.66	5577.17	56	99.38	5399.2	4656.	45 3	3740.74	2651.14	1875.77	1592.3	35	(84)
7. Me	an inter	nal temp	perature	(heating	l season)										
Temp	erature	during h	neating p	eriods i	n the livi	ng a	area f	rom Tab	ole 9, [·]	Th1	(°C)				21	(85)
Utilisa	ation fac	tor for g	ains for	living are	ea, h1,m	n (se	ее Та	ble 9a)								
	Jan	Feb	Mar	Apr	May		Jun	Jul	Au	g	Sep	Oct	Nov	De	С	
(86)m=	1	1	1	0.96	0.8	0).57	0.41	0.5		0.84	0.99	1	1		(86)
Mean	interna	l temper	ature in	living ar	ea T1 (fo	ollo	w ste	ps 3 to 7	7 in Ta	able	9c)					
(87)m=	19.82	20	20.29	20.69	20.93	1	0.99	21	21	-	20.94	20.54	20.11	19.81		(87)
Temr		durina h	heating p	eriods i	n rest of	dw		from Ta			2 (°C)				<u> </u>	
(88)m=	20.17	20.18	20.18	20.2	20.21	-	0.23	20.23	20.2	- 1	20.22	20.21	20.2	20.19	9	(88)
Litilio	L	l	l oine for	root of d	l wolling	ן הס							1			
(89)m=			ains for	0.95	0.75	<u> </u>	0.5	0.34	9a) 0.42	<u>, </u>	0.78	0.99	1	1	7	(89)
					ļ											()
		· · · ·	ature in	1	I	Ť	<u> </u>		ri	- 1		,	10.00	10.0-	-	(00)
(90)m=	19.06	19.25	19.55	19.95	20.16	2	0.22	20.23	20.2	3	20.18	19.82	19.38	19.07	_	(90)
											I	LA = LIVI	ng area ÷ (+) =	0.05	5 (91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling	g) = fL	_A × T1	+ (1 –	- fLA	A) × T2			-		
(92)m=	19.1	19.28	19.59	19.99	20.2	2	0.26	20.27	20.2	7	20.22	19.85	19.42	19.1		(92)
	<u> </u>	i	he mear	i	· · · ·	-			1	-	<u> </u>	•	-	i	_	()
(93)m=	19.1	19.28	19.59	19.99	20.2	2	0.26	20.27	20.2	7	20.22	19.85	19.42	19.1		(93)
			uirement							~		. —-	(= 0)			
			ternal tei or gains			ned	at ste	ep 11 of	Table	9b,	, so tha	t Ti,m=	(76)m an	d re-ca	alculate	
	Jan	Feb	Mar	Apr	May		Jun	Jul	Au	a	Sep	Oct	Nov	De	c]	
Utilisa			ains, hm		may					9	000		1101		<u></u>	
(94)m=	1	1	0.99	0.94	0.75		0.5	0.35	0.42	2	0.78	0.99	1	1	7	(94)
Usefu	ul gains,	hmGm	, W = (94	4)m x (8	4)m	-			I				1	1		
(95)m=	<u> </u>	2513.51	i	· · · · ·	4195.78	28	71.32	1868.1	1958.	05	2929.62	2625.99	1875.29	1592.	3	(95)
Montl	hly aver	age exte	ernal tem	perature	e from T	able	e 8									
(96)m=	4.3	4.9	6.5	8.9	11.7	1	14.6	16.6	16.4	1	14.1	10.6	7.1	4.2		(96)
	r		an interr	· · ·	1	-		- ,	<u> </u>	<u> </u>	<u> </u>	-				
(97)m=	8100.29	7830.66	7086.3	5846.22	4458.1	28	87.77	1869.25	1961.	83 3	3155.98	4851.91	6528.74	7985.2	26	(97)

Space	e heatin	g require	ement fo	r each n	honth, k	Wh/mon	th = 0.02	24 x [(97))m – (95)m] x (4′	1)m			
(98)m=	4714.31	3573.12	2699.15	1048.97	195.17	0	0	0	0	1656.08	3350.48	4756.36		
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	21993.64	(98)
Space	e heatin	g require	ement in	kWh/m²	/year								35.85	(99)
8c. Sp	bace co	oling req	luiremer	nt										
Calcu	lated fo	r June, J	July and	August.	See Tal	ple 10b							L	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
1		i È	i			· · · · ·	I	and exte		· · · · · · · · · · · · · · · · · · ·		, i		(100)
(100)m=	0	0	0	0	0	4793.1	3773.29	3853.42	0	0	0	0	l	(100)
Utilisa (101)m=		tor for lo		0	0	0.96	0.98	0.06	0	0	0	0		(101)
							0.98	0.96	0	0	0	0	i -	(101)
(102)m=	0	mLm (V	a(15) = 0			4600.57	3712.37	3718.02	0	0	0	0		(102)
	-	-	-	-	-			e Table	-			Ů		(-)
(103)m=	0		0	0	0	1	6138.93	1	0	0	0	0		(103)
Space	e coolin	g require	ement fo	r month,	whole c	l dwelling,	continuo	ous (kW	(h) = 0.0	24 x [(10)3)m – (*	102)m]:	x (41)m	
set (1	04)m to	zero if (104)m <	3 × (98)m	-	i		, 		, ,	· -	. ,	
(104)m=	0	0	0	0	0	1348.24	1805.36	1209.42	0	0	0	0		_
.										= Sum(=	4363.02	(104)
	l fraction	n actor (Ta	abla 10b	١					†C =	cooled a	area ÷ (4	4) =	0.47	(105)
(106)m=)	0	0.25	0.25	0.25	0	0	0	0		
(/									Total	I = Sum(=	0	(106)
Space	cooling	requirer	nent for	month =	(104)m	× (105)	× (106)r	n						
(107)m=	0	0	0	0	0	159.65	213.77	143.21	0	0	0	0		
									Total	= Sum(107)	=	516.63	(107)
Space	cooling	requirer	ment in k	(Wh/m²/y	/ear				(107)) ÷ (4) =			0.84	(108)
9b. En	ergy red	quiremer	nts – Cor	nmunity	heating	scheme	;							
								ting prov			unity sch	neme.		
	•						•	(Table 1	1) '0' if n	one			0	(301)
Fraction of space heat from community system $1 - (301) =$										1	(302)			
	•							allows for		up to four o	other heat	sources; ti	he latter	
		at from C	-			rom powei	r stations.	See Apper	naix C.				1	(303a)
		al space			•	eat pump	C			(3	02) x (303	a) =	1	 (304a)
		•			•			unity hea	iting syst	tem			1.05	(305)
		ss factor						•	0,				1.5	(306)
	heating		·	,		•	0,						kWh/year] ,
-		heating	requirem	nent									21993.64	7
Space	heat fro	om Comr	munity h	eat pum	р				(98) x (30	04a) x (305	5) x (306) =	=	34639.99	(307a)
Efficier	ncy of s	econdary	y/supple	mentary	heating	system	in % (frc	om Table	4a or A	ppendix	E)		0	(308
Space	heating	require	ment fro	m secon	dary/su	oplemen	tary syst	tem	(98) x (30	01) x 100 ÷	- (308) =		0	(309)

Water heating Annual water heating requirement					2233.05	7
If DHW from community scheme: If DHW by immersion or instantaneous hea Efficiency of water heater	ter within dwelling:				100	
Water heated by immersion or instantaneou	us heater	(64) x 100 ÷ (31	1) =		2233.05	(312)
Electricity used for heat distribution		0.01 × [(307a)(307e	e)] = [346.4	 (313)	
Cooling System Energy Efficiency Ratio					3.87	 (314)
Space cooling (if there is a fixed cooling sys	stem, if not enter 0)	= (107) ÷ (314) =	=		133.32	(315)
Electricity for pumps and fans within dwellir mechanical ventilation - balanced, extract o	ig (Table 4f):	outside			4552.98	(330a)
warm air heating system fans					0	(330b)
pump for solar water heating					0	(330g)
Total electricity for the above, kWh/year		=(330a) + (330b	Γ	4552.98	(331)	
Energy for lighting (calculated in Appendix I	_)				1123.98	(332)
12b. CO2 Emissions – Community heating	scheme					_
		Energy kWh/year	Emission fac kg CO2/kWh		missions g CO2/year	
CO2 from other sources of space and wate Efficiency of heat source 1 (%)		g two fuels repeat (363) to (366) for the secon	d fuel	361	(367a)
CO2 associated with heat source 1	[(307b)+	-(310b)] x 100 ÷ (367b) x	0.52	=	4980.1	(367)
Electrical energy for heat distribution		[(313) x	0.52	=	179.78	(372)
Total CO2 associated with community syste	ems	(363)(366) + (368)(372)	=	5159.88	(373)
CO2 associated with space heating (second	dary)	(309) x	0	=	0	(374)
CO2 associated with water from immersion	heater or instantand	eous heater (312) x	0.52	=	1158.95	(375)
Total CO2 associated with space and water	heating	(373) + (374) + (375) =			6318.83	(376)
CO2 associated with space cooling		(315) x	0.52	=	69.2	(377)
CO2 associated with electricity for pumps a	nd fans within dwell	ing (331)) x	0.52	=	2362.99	(378)
CO2 associated with electricity for lighting						
		(332))) x	0.52	=	583.34	(379)
Total CO2, kg/year sur	n of (376)(382) =	(332))) x	0.52	-	583.34 9334.36	(379)
Total OOZ, Ng/year		(332))) x	0.52			