Addendum to BIA Submission

in connection with proposed development at

No. 52 Eton Avenue Camden London NW3 3HN

for

Natalie Matalon & Izzy Tepekoylu

LBH4564a Ver. 1.0 May 2019

LBH WEMBLEY ENGINEERING

Document Control								
Version	Date	Comment		Authorised				
			Darcy Kitson-Boyce MEng (Hons) GMICE FGS FRGS	Seamus Lefroy-Brooks BSc(hons) MSc CEng MICE CGeol FGS CEnv MIEnvSc FRGS SiLC RoGEP UK Registered Ground Engineering Adviser NQMS SQP DoWCoP QP				
1.0	16 th May 2019							

LBH WEMBLEY ENGINEERING

12 Little Balmer

Buckingham Industrial Park

Buckingham

MK18 1TF

Tel: 01280 812310 email: enquiry@lbhgeo.co.uk website: www.lbhgeo.co.uk

LBH Wembley (2003) Limited. Unit 12 Little Balmer, Buckingham Industrial Park, Buckingham, MK18 1TF. Registered in England No. 4922494

Contents

Co	ontents 3					
Fo	reword-	Guidance Notes	4			
1.	Introdu	ction	5			
	1.1	Background	5			
	1.2	Policy	5			
2.	Respor	nse to CRH initial Audit Report	7			
	2.1	Drawings	7			
	2.2	Calculations	7			
	2.3	Programme	7			
	2.4	Tree Protection	8			
	2.5	Sewer	8			
	2.6	Ground Investigation	8			
	2.6.1	Ground Conditions	8			
	2.6.2	Soil Parameters	8			
	2.6.3	Bearing Capacity	9			
	2.6.4	Excavation Support	9			
	2.7	Ground Movement Assessment	9			
3.	Conclu	sion	10			
Ap	Appendix 11					

Foreword-Guidance Notes

GENERAL

This report has been prepared for a specific client and to meet a specific brief. The preparation of this report may have been affected by limitations of scope, resources or time scale required by the client. Should any part of this report be relied on by a third party, that party does so wholly at its own risk and LBH Wembley Engineering disclaims any liability to such parties.

The observations and conclusions described in this report are based solely upon the agreed scope of work. LBH Wembley Engineering has not performed any observations, investigations, studies or testing not specifically set out in the agreed scope of work and cannot accept any liability for the existence of any condition, the discovery of which would require performance of services beyond the agreed scope of work.

VALIDITY

Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances shall be at the client's sole and own risk. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should therefore not be relied upon in the future and any such reliance on the report in the future shall again be at the client's own and sole risk.

THIRD PARTY INFORMATION

The report may present an opinion based upon information received from third parties. However, no liability can be accepted for any inaccuracies or omissions in that information.

1. Introduction

1.1 Background

It is proposed to construct a basement beneath the entire footprint of an existing three storey property at No. 52 Eton Avenue that will extend to approximately 3m depth. The basement will also laterally extend to the front and side of the existing building.

A Basement Impact Assessment was prepared in January 2019 to support a full planning application to the London Borough of Camden.

As a result of site ownership issues, access to the site was not possible in January and hence the assessment was submitted for initial review by the council's retained BIA consultant Campbell Reith Hill Structural Engineers (CRH) without the benefit of any site specific ground investigation.

1.2 Policy

According to their (own) terms of reference¹ for their services to Camden, where Campbell Reith Hill (CRH) "have concerns about the technical content or considerations of the audit material which should be addressed prior to planning permission being granted, then <u>they will advise the case officer and the applicant's consultants of their concerns and any suggested remedy</u>. The applicant will be required to submit details to address the concerns to Campbell Reith's satisfaction <u>prior to completion of the Initial Audit Report</u>."

In this case it seems that CRH have proceeded prematurely to the completion and issue of an initial audit report ²

Although the audit has been based upon the specification provided by the CGHHS³, the terms of reference for this audit have exceeded the originally conceived non-technical evaluation of the information supplied and include elements of technical evaluation rather than a simple audit.

This technical evaluation is classed under the guidance as an independent technical verification rather than a non-technical audit of the information supplied, and is applicable where CRH "Category B" conditions apply.

"Category B:

Residential single basement or commercial development with single or double basement where the Screening Stage of the Basement Impact Assessment identifies matters of concern which need further investigation: Submitted BIA anticipates potential impact:

- to a listed building;
- on land stability;

¹ Campbell Reith Hill: BIA Terms of Reference & Audit Process14th May 2015.

² Campbell Reith Hill: BIA Audit Ref: 12985-48 Rev: D1 dated 29th April 2019.

³ London Borough of Camden: Camden geological, hydrogeological and hydrological study: Guidance for subterranean

Development Issue01 | Ove Arup & Partners Limited (November 2010)

- · on groundwater flow;
- on potential for surface water flooding ;
- · on underground tunnels or infrastructure; and
- · cumulative impact on ground stability and the water environment. "

The process for this independent verification that Camden requires where a scheme requires applicants to proceed beyond the Screening stage of the Basement Impact Assessment (i.e. where a matter of concern has been identified which requires the preparation of a full Basement Impact Assessment) is described by Section 4.36 of the guidance⁴ and it may be reasonably expected that this independent verification demands the services of a basement expert who should as a minimum match the detailed competency levels that have been laid down by Camden for BIA work.

⁴ London Borough of Camden: Camden Planning Guidance: Basements (March 2018)

2. Response to CRH initial Audit Report

A detailed response to the CRH audit checklist comments is appended to this report. For the purposes of enabling CRH to complete a positive report it will be necessary to "close out" the seven CRH audit queries which are listed as follows:

- 1 Drawings with clear indication of the dimensions of the existing and proposed structures to be presented.
- 2 Outline design calculations and drawings for the proposed temporary and permanent works.
- 3 A construction works programme should be provided for the main works including any proposed works for the western perimeter wall.
- 4 Contradictory information presented in the BIA about protection of trees
- 5 Consultation with drainage/sewer utility owners should be confirmed
- 6 A ground investigation should be carried out to establish ground conditions, ground water level, soil parameters, bearing capacity of founding stratum, the details regarding foundations of neighbouring structures and the feasibility of underpinning through backfilled demolition material.
- 7 The ground movement assessment should be revisited once the information from the ground investigation is available.

2.1 Drawings

See attached Structural Engineer's Drawings.

2.2 Calculations

See attached Structural Engineer's Calculations.

2.3 Programme

See attached construction works programme.

2.4 Tree Protection

It is confirmed that the upper 1m of excavation is to be undertaken under arboricultural supervision and, where necessary, root pruning undertaken.

2.5 Sewer

It is confirmed that Thames Water Developer Services were consulted on 15th April 2019 to discuss the proposed scheme including the drainage diversion.

However, it is noted that this query has been raised as a Hydrological issue and that the surface water report has demonstrated all that needs to have been demonstrated for BIA validation purposes that surface water flood risks will be satisfactory and not adversely impacted.

2.6 Ground Investigation

As described in the initial BIA, a programme of trial pits has now been undertaken to confirm the ground conditions and to expose the configuration of the existing foundations.

The records are appended to this addendum.

2.6.1 Ground Conditions

As expected, a backfilled basement is present beneath the existing property and garden areas.

2.6.1.1 Made Ground

The fill material generally comprises brown silty sandy clay and brick fill with stones.

The fill material extends to up to approximately 3m beneath the building beneath the existing property and to a lesser depth (<2m) in the garden area.

2.6.1.2 London Clay

The London Clay Formation is present beneath the fill material and comprises typical firm to stiff pale brown silty clay, confirming that any capping of downwash deposits overlying the clay had been removed during the construction of the former villa.

2.6.1.3 Groundwater

The pits have confirmed that there is no groundwater table present beneath the site.

2.6.2 Soil Parameters

The following parameters may be considered in the design of the retaining walls:-

Stratum	Bulk Unity Weight	Effective Cohesion	Effective Friction Angle
	(kg/m³)	(c' - kN/m²)	(φ'- degrees)
Made Ground	17	Zero	18
London Clay Formation	20	Zero	25

Site: No. 52 Eton Avenue, Camden, London, NW3 3HN Client: Natalie Matalon & Izzy Tepekoylu

2.6.3 Bearing Capacity

A presumed net bearing capacity of 120kN/m² may be adopted for the firm to stiff London Clay that is to be adopted as the founding soil for the new basement underpinning.

2.6.4 Excavation Support

The trial pit excavations themselves have demonstrated the feasibility of underpinning through the backfilled basement material.

2.7 Ground Movement Assessment

The ground movement assessment presented in section 7 of audited report was based upon the worst credible conditions with soil parameters drawn from accepted sources.

The ground investigation information confirms the assumed conditions and thus the ground movement assessment undertaken as part of the initial impact assessment remains valid, resulting in no worse than Burland Category 1 damage.

3. Conclusion

The BIA has demonstrated that the proposed scheme will not

- adversely affect the drainage and run off or cause other damage to the water
- result in cumulative impacts on structural stability or the water environment in the local area
- put at risk the structural stability of the building or any neighbouring properties

As explained above, the ground investigation information confirms that the proposed development will not result in an unacceptable result in no worse than Burland Category 1 damage.

Audit Query No.	Audit Query	Location of additional Information Submitted	Status
1	Drawings with clear indication of the dimensions of the existing and proposed structures to be presented.	Appendix	Addressed
2	Outline design calculations and drawings for the proposed temporary and permanent works.	Appendix	Addressed
З	A construction works programme should be provided for the main works including any proposed works for the western perimeter wall.	Appendix	Addressed
4	Contradictory information presented in the BIA about protection of trees	See section 2.4	Addressed
5	Consultation with drainage/sewer utility owners should be confirmed	See section 2.5	Addressed
6	A ground investigation should be carried out to establish ground conditions, ground water level, soil parameters, bearing capacity of founding stratum, the details regarding foundations of neighbouring structures and the feasibility of underpinning through backfilled demolition material.	See sections 2.6 and Appendix	Addressed
7	The ground movement assessment should be revisited once the information from the ground investigation is available.	See section 2.7	Addressed

Appendix

Structural Engineer's Drawings Structural Engineer's Calculations Programme Ground Investigation

Full Response to CRH Audit Checklist comments

UNDERPINNING NOTES

AVENUE

ETON

50

B.1

S200

S101

- 2. CONTRACTOR IS TO ENSURE THAT THE SITE IS KEPT CLEAN AND TIDY AT ALL TIMES THROUGHOUT THE PROPOSED WORKS. ALL DEBRIS IS TO BE BAGGED UP AT THE END OF EACH DAY AND REMOVED FROM SITE.
- 3. SECTIONS WITH THE SAME LETTER CAN BE EXCAVATED SIMULTANEOUSLY, CAST BASES MARKED 'A' COMPLETING ALL BASES BEFORE PROCEEDING WITH BASES MARKED 'B' ETC.
- 4. THE NEXT LETTERED SECTION IS NOT TO BE EXCAVATED UNTIL THE PREVIOUS SECTION HAS BEEN PINNED AND CURED,
- 5. THE UNDERSIDE OF THE EXISTING FOUNDATION IS TO BE THOROUGHLY CLEANED OF ALL SOIL BEFORE UNDERPINNING COMMENCES.
- 6. ALL EXCAVATED SECTIONS TO BE CONCRETED THE SAME DAY. PLYWOOD SHEETS ARE TO BE PROVIDED OVER SHALLOW TRENCHES LEFT OPEN OVERNIGHT.
- 7. BOTTOMS OF ALL EXCAVATIONS TO BE INSPECTED AND AGREED BY THE BUILDING INSPECTOR BEFORE CONCRETE IS POURED.
- 8. ALL EXCAVATIONS AND THE SURROUNDING SITE TO BE KEPT FREE OF WATER.
- 9. CONCRETE TO UNDERPINNING TO BE GRADE C30 (MAXIMUM NOMINAL SIZE OF AGGREGATE TO BE 20MM) AND CAST UP TO WITHIN 50MM OF THE UNDERSIDE OF THE EXISTING FOUNDATION.
- 10. A PERIOD OF AT LEAST FOUR DAYS SHALL BE ALLOWED BEFORE PINNING UP THE LAST 50MM.
- 11. USING A CLUB HAMMER AND A 25MM SQ. STEEL ROD, 1:3 SEMI-DRY SAND/CEMENT MORTAR WITH A PROPRIETARY NON-SHRINK ADDITIVE, TO BE WELL RAMMED HOME BETWEEN TOP OF UNDERPINNING AND UNDERSIDE OF EXISTING FOUNDATION.
- 12. BEFORE CASTING AGAINST A PREVIOUSLY CAST PIN, THE SURFACE OF THE EXISTING CONCRETE SHALL BE THOROUGHLY ROUGHENED TO REMOVE ALL LAITANCE AND TO EXPOSE THE COURSE AGGREGATE. THE PREPARED SURFACE MUST BE THOROUGHLY CLEANED OF ALL LOOSE MATERIAL INCLUDING DIRT AND DUST (WITHOUT USING WATER) BEFORE CASTING ADJACENT PINS.

13. A FOUR DAY PERIOD MUST PASS BEFORE TWO BASES ARE CAST AGAINST EACH OTHER TO ALLOW FOR CONCRETE TO CURE.

14. ON COMPLETION OF UNDERPINNING BACKFILL EXCAVATED TRENCHES IN 150MM LAYERS, WELL COMPACTING EACH LAYER.

TZG	PARTNERSHI	P NSULTANTS			
Orc	Orchard House, 114-118 Cherry Orchard Road, CR0 6BA T: +44(0)20 8681 2137 F: +44(0)20 8667 1328				
SCALE AS S		GH	03.19		
CONTRACT N	o. DRG. 2 No.	S001	REVISION		

AND ARCHITECTS DRAWINGS. 5. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS OTHERWISE STATED. 6. A CONTRACTOR USED TO WORKING WITH MATERIALS SHOWN ON THIS DRAWING SHOULD FIND NO UNEXPECTED HAZARDS. ANY ADDITIONAL RISKS ARE NOTED ON THE DRAWING

REV. DATE DESCRIPTION

PRELIMINARY

REV. DATE DESCRIPTION

CONTRACT NO

6722

DRG No.

S002

REVISION

1ST FLOOR S.F.L.

_GROUND FLOOR S.S.L.

BASEMENT LEVEL S.S.L.

SCALE		DRAW	ыл F:	DATE	
SCALE		DRAW	N		
SCALE	T: +44(0)20		137 F:	+44(0)20 8667 1328	
4	TZG PARTNERSHIP ENGINEERING CONSULTANTS Orchard House 114-118 Cherry Orchard Road, CR0 6BA				

NOTES								CLIENT
1. IT IS RECOMMENDED THAT NO WORK IS CARRIED OUT UNTIL BUILDING REGULATIONS APPROVAL HAS BEEN OBTAINED.								- N. Matalon and I. Tepekoylu
2. IT IS ESSENTIAL THAT TZG ARE NOTIFIED OF ANY DISCREPANCIES OR								
SUBSEQUENT CHANGES PRIOR TO THEM BEING IMPLEMENTED.								CONTRACT
3. DO NOT SCALE FROM THIS DRAWING.								Eton Avenue
4. THIS DRG IS TO BE READ IN CONJUNCTION WITH THE SPECIFICATION								
5 ALL DIMENSIONS ARE IN MILLIMETRES LINEESS OTHERWISE STATED	DESIGN STAGE							
6. A CONTRACTOR USED TO WORKING WITH MATERIALS SHOWN ON								
THIS DRAWING SHOULD FIND NO UNEXPECTED HAZARDS. ANY								Ground floor details sheet 1
ADDITIONAL RISKS ARE NOTED ON THE DRAWING		REV.	DATE	DESCRIPTION	REV.	DATE	DESCRIPTION	

TZG PARTN ENGINEERIN Orchard Hou T: +44(0)20	ERSHIP NG CONSULTANTS Ise, 114-118 Cherry Ord 8681 2137 F:	hard Road, CR0 6BA +44(0)20 8667 1328
 AS SHOWN	GH	03.19
CONTRACT №. 6722	^{DRG.} №. S210	REVISION

Original size A3

								•
NOTES								CLIENT
1. IT IS RECOMMENDED THAT NO WORK IS CARRIED OUT UNTIL BUILDING REGULATIONS APPROVAL HAS BEEN OBTAINED.								N. Matalon and I. Tepekoylu
2. IT IS ESSENTIAL THAT TZG ARE NOTIFIED OF ANY DISCREPANCIES OR								CONTRACT
SUBSEQUENT CHANGES PRIOR TO THEM BEING IMPLEMENTED.								
4 THIS DRG IS TO BE READ IN CONJUNCTION WITH THE SPECIFICATION								Eton Avenue
AND ARCHITECTS DRAWINGS.	DESIGN STAGE							
5. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS OTHERWISE STATED.								TITLE
6. A CONTRACTOR USED TO WORKING WITH MATERIALS SHOWN ON								First floor details sheet 1
ADDITIONAL RISKS ARE NOTED ON THE DRAWING		BEV	DATE	DESCRIPTION	BEV	DATE	DESCRIPTION	
			D. IL		··· L V.	5. II C	becommended and the second sec	

1ST FLOOR S.F.L.

SHELF ANGLE 6 FW TO SIDE OF RHS HIT AND MISS 50:50:50

	TZG PARTNE ENGINEERIN Orchard Hou T: +44(0)20	ERSHIF IG CON se, 114 8681 2 ⁻	ISULTANTS -118 Cherry Orc 137 F:	NTS erry Orchard Road, CR0 6BA F: +44(0)20 8667 1328		
 SCALE	AS SHOWN	DRAW	GH	03.19		
CONTR.	act №. 5 722	DRG. No.	S220	REVISION		

BUILDING REGULATIONS	APPROVAL	HAS BEEN	OBTAINED.
2. IT IS ESSENTIAL THAT	TZG ARE NO	OTIFIED OF	ANY DISCREPA

TI S ESSENTIAL THAT IZG ARE NOTIFIED OF ANY DISCREPANCIES OR SUBSEQUENT CHANGES PRIOR TO THEM BEING IMPLEMENTED.
 DO NOT SCALE FROM THIS DRAWING.
 THIS DRG IS TO BE READ IN CONJUNCTION WITH THE SPECIFICATION

DESIGN STAGE

PRELIMINARY

THIS DRG IS TO BE READ IN CONJUNCTION WITH THE SPECIFICATION AND ARCHITECTS DRAWINGS.
 ALL DIMENSIONS ARE IN MILLIMETRES UNLESS OTHERWISE STATED.
 A CONTRACTOR USED TO WORKING WITH MATERIALS SHOWN ON THIS DRAWING SHOULD FIND NO UNEXPECTED HAZARDS. ANY ADDITIONAL RISKS ARE NOTED ON THE DRAWING

REV.	DATE	DESCRIPTION

Eton Avenue TITLE Underground drainage GA

REV. DATE DESCRIPTION

CONTRACT

TZG PAI ENGINE	RTNERSHIP ERING CON		
Orchard T: +44(House, 114- 0)20 8681 21	-118 Cherry Orc 37 F:	hard Road, CR0 6BA +44(0)20 8667 1328
SCALE AS SHO	WN DRAWN	GH	03.19
CONTRACT №. 6722	DRG. No.	S400	REVISION

THIS DRAWING SHOULD FIND NO UNEXPECTED HAZARDS. AN'
ADDITIONAL RISKS ARE NOTED ON THE DRAWING

REV. DATE DESCRIPTION

S300

CONTRACT: Eton Avenue

CONTRACT NO. 6722

DATE: 04/2019

BY: GH

PRELIMINARY STRUCTURAL CALCULATIONS FOR PLANNING

CONTRACT	Eton Ave
PAGE No.	FD2
CONTRACT No.	6722
DATE	04/19
BY	GH

INTRODUCTION

Eton Avenue is an existing 3 storey end of terrace house constructed with loadbearing masonry, timber floors and timber flat roof. The following calculations are for a basement extension and alterations to the existing property above ground

Calculations make reference to the following design codes

- BS EN 1990 Eurocode 0: Basis of Structural Design
- BS EN 1991 Eurocode 1: Actions on Structures
- BS EN 1992 Eurocode 2: Design on Concrete Structure
- BS EN 1993 Eurocode 3: Design of Steel Structures
- BS EN 1995 Eurocode 5: Design of Timber Structures

Frame calculations are performed with Nemetschek SCIA Engineer and code checks performed in Fitzroy SAND

CONTRACT	Eton Ave
PAGE No.	FD3
CONTRACT No.	6722
DATE	04/19
BY	GH

Contents

INTRODUCTION
LOADINGS
Dead and Live Load7
WIND LOAD
FRAMING DIAGRAMS
Roof level13
Second Floor14
First Floor15
Ground Floor16
Basement Floor
ROOF LOAD TAKEDOWN
J3.1
B3.1
ВЗ.219
B3.3
B3.4
B3.5
B3.6
Second floor Load Takedown
J2.1
B2.1
B2.2
B2.3
B2.4
B2.5
B2.6
First floor Load Takedown
B1.1
B1.2
J1.1

TZG PARTNERSHIP	CONTRACT	Eton Ave
ENGINEERING CONSULTANTS	PAGE No.	FD4
114-118 Cherry Orchard Road	CONTRACT No.	6722
T: +44 (0)20 8681 2137	DATE	04/19
E: admin@tzgpartnership.com W: www.tzgpartnership.com	ВҮ	GH
B1.3		29
B1.4		
B1.5		31
B1.6		
C1.1		
C1.2		
C1.3		
C1.4		34
GROUND FLOOR LOAD TAKEDOWN		35
J0.1		35
B0.1		
B0.2		
B0.3		
B0.5		
B0.6		40
B0.7		41
C0.1		41
C0.2		42
C0.3		42
C0.4		42
C0.5		43
C0.6		43
B0.8		44
B0.9		45
B0.10		45
Basement Load Takedown		46
RW.1		46
RW.2		47
RW.3		48
S0.1		49
PW0.1 existing		51

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
	ENGINEERING CONSULTANTS	PAGE No.	FD5
<i>.</i>	114-118 Cherry Orchard Road Crovdon CR0 6BA	CONTRACT No.	6722
	T: +44 (0)20 8681 2137	DATE _	
	F: +44 (U)2U 8b6/ 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com	BY .	GH
PW0.1	proposed		51
PW0.2	existing		52
PW0.2	2 proposed upper bound		52
PW0.2	proposed lower bound		53
Roof Me	MBER DESIGN		54
J3.1 D	esign		54
B3.1 C	Design		56
B3.2 D	Design		58
B3.3 D	Design		62
B3.4 C	Design		66
B3.5 D	Design		70
B3.6 D	esign		72
Second F	LOOR MEMBER DESIGN		74
B2.1 C	Design		74
B2.2 D	Design		76
B2.3 D	Design		
B2.4 C	Design		
B2.5 C	Design		84
B2.6 D	Design		
First Flo	or Member Design		
B1.1 C	Design		
B1.2 C	Design		95
J1.1 D	esign		
B1.3 C	Design		
B1.4 C	Design		
B1.5 C	Design		
B1.6 C	esign		
C1.1 D	esign		
C1.2 D	esign		
C1.3 D	esign		
C1.4 D	Design		

TZG PARTNERSHIP	CONTRACT	Eton Ave
ENGINEERING CONSULTANTS	PAGE No.	FD6
114-118 Cherry Orchard Road	CONTRACT No.	
T: +44 (0)20 8681 2137	DATE	
F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com	BY	GH
W: www.tzgpartnership.com		
GROUND FLOOR MEMBER DESIGN		
J0.1 Design		
B0.1 Design		
B0.2 Design		
B0.3 Design		135
B0.5 Design		
B0.6 Design		
B0.7 Design		146
C0.1 Design		150
C0.3 Design		151
C0.6 Design		155
B0.8 Design		158
B0.9 Design		
B0.10 Design		
Basement Member Design		167
RW.1 Design		
RW.2 Design		
RW.3 Design		
S0.1 Design		

CONTRACT	Eton Ave
PAGE No.	
CONTRACT No.	6722
DATE	04/19
BY	GH

LOADINGS

Dead and Live Load

Pitch Roofs

liles	$= 0.60 \text{ kN/m}^2$
Battens + Felt	= 0.10 kN/m ²
Plasterboard	= 0.15 kN/m²
Rafters	= <u>0.15 kN/m²</u>
Total dead along rafter	= 1.00 kN/m ²
On plan	$=\frac{1.00}{cos_{30}}=1.15$ kN/m ²
Live on plan	= 0.75 kN/m²

Existing roof Space

	Joists + Insulation	$= 0.15 \text{ kN/m}^2$
	Soffit	= <u>0.15 kN/m²</u>
	Total dead	$= 0.30 \text{ kN/m}^2$
	Live	$= 0.25 \text{ kN/m}^2$
Pitch Boof to	extension	
	Tiles	$= 0.60 \text{ kN/m}^2$
	Battens + Felt	$= 0.10 \text{ kN/m}^2$
	Joists + Insulation	$= 0.15 \text{ kN/m}^2$
	Soffit	= <u>0.15 kN/m²</u>
	Total dead along rafter	$= 1.00 \text{ kN/m}^2$
	On plan	$=\frac{1.00}{cos30}=1.15$ kN/m ²
	Live on plan	= 0.75 kN/m²`

CONTRACT	Eton Ave
PAGE No.	FD8
CONTRACT No.	6722
DATE	04/19
BY	GH

Flat Roof to extension

Chippings + Felt	$= 0.35 \text{ kN/m}^2$
Boards + Joists + Fittings	$= 0.30 \text{ kN/m}^2$
Soffit + Insulation	= <u>0.15 kN/m²</u>
Total dead	$= 0.80 \text{ kN/m}^2$
Live on plan	$= 0.75 \text{ kN/m}^2$

Exg timber Floors

Boards + Joists	$= 0.35 \text{ kN/m}^2$
20 lath and plaster	= 0.44 kN/m ²
Total dead	$= 0.80 \text{ kN/m}^2$
Live	$= 1.50 \text{ kN/m}^2$

New timber Floors

Boards + Joists	$= 0.35 \text{ kN/m}^2$
Plasterboard soffit	= <u>0.15 kN/m²</u>
Total dead	$= 0.50 \ kN/m^2$
Live	$= 1.50 \text{ kN/m}^2$

Existing First floor slab

250 RC slab	$= 6.00 \text{ kN/m}^2$
Insulation	$= 0.05 \ kN/m^2$
50 screed	$= 1.20 \text{ kN/m}^2$
Tiles	$= 0.20 \text{ kN/m}^2$
Total dead	$= 7.45 \text{ kN/m}^2$
Live	$= 1.50 \text{ kN/m}^2$

CONTRACT	Eton Ave
PAGE No.	FD9
CONTRACT No.	6722
DATE	04/19
ВҮ	GH

First floor comflor slab

150 Comflor 60	= 2.96 kN/m ²
Insulation	$= 0.05 \ kN/m^2$
50 screed	$= 1.20 \ kN/m^2$
Tiles	$= 0.20 \text{ kN/m}^2$
Total dead	$= 4.41 \text{ kN/m}^2$
Live	$= 1.50 \text{ kN/m}^2$

CONTRACT	Eton Ave
PAGE No.	FD10
CONTRACT No.	6722
DATE	04/19
BY	GH

Walls

Timber stud internal

Plasterboard	$= 0.15 \text{ kN/m}^2$
Studs	$= 0.10 \ kN/m^2$
Plasterboard	= <u>0.15 kN/m²</u>
Total dead	$= 0.40 \text{ kN/m}^2$

Block Partition internal

Block 100mm	= 1.00 kN/m ²
Plaster (two faces)	= <u>0.50 kN/m²</u>
Total dead	= 1.50 kN/m ²

Brick and Blockwork

Brick 102.5mm	$= 2.00 \text{ kN/m}^2$
Block 100mm	$= 1.60 \text{ kN/m}^2$
Plaster (one face)	= 0.30 kN/m ²
Total dead	= 3.90 kN/m ²

Brick 215mm

Brick 215mm	$= 4.00 \text{ kN/m}^2$
Plaster (2 faces)	= 0.60 kN/m ²
Total dead	= 4.60 kN/m ²

CONTRACT	Eton Ave
PAGE No.	FD11
CONTRACT No.	6722
DATE	04/19
BY	GH

Brick 330mm

Brick 330mm	$= 6.00 \text{ kN/m}^2$
Plaster (one face)	= 0.30 kN/m ²
Total dead	= 6.30 kN/m ²

WIND LOAD

CONTRACT	Eton Ave
PAGE No.	FD12
CONTRACT No.	6722
DATE	04/19
BY	GH

Displacement heights

Wind	1	бНо			1
Profil displacement	e of height] ▼	2Ho He 	~ ~ ~ ~ ~ ~ ~	Hr	-
Ho=Mean height of other buildin	gs				
Building referen upwind of site Upwind spacing o Displacement hei Displacement hei Building type fa Building height Standard wind lo	ce height f building ght ght ctor	Hr=7.5 m Ho=7.500 m Xo=15 m Hdw0=6 m Hdw90=6 m Kb=0.5 H=7.5 m			
Basic wind speed Site altitude ab Direction factor Direction factor	ove mean sea leve	Vb=21 m/s l deltaS=44 m Sdw0=1 Sdw90=1			
DESIGN SUMMARY	Effective height Effective height Altitude factor Direction factor Direction factor Seasonal factor Probability facto Dynamic wind pres	<pre>(long face) (short face) (long face) (short face) (long face) (short face) r sure (long face) sure (short face)</pre>	Hew0 Hew90 Saw0 Saw90 Sdw0 Sdw90 Ss Sp qsw0 qsw90	3 m 3 m 1.044 1.044 1 1 1 0.4013 0.4013	kN/m² kN/m²

FRAMING DIAGRAMS

CONTRACT	Eton Ave
PAGE No.	FD13
CONTRACT No.	6722
DATE	04/19
BY	GH

Roof level

Second Floor

31.4

CIN

(1.4)

CE

ster Bedroo

Теггасе

(813)

e

.

green roof over south exter

First Floor

Bis

0

30.5

Q.

#

Ground Floor

AARAA AAAAAAAAA

Ġ

Ċ

30

Basement Floor

CONTRACT	Eton Ave
PAGE No.	FD18
CONTRACT No.	6722
DATE	04/19
BY	GH

ROOF LOAD TAKEDOWN

J3.1 New roof joist span = 3.9m

$w_{\rm D} = 0.8 \times 0.4 =$	
$w_L = 1.5 \times 0.4 =$	

200x50 C24@400

B3.1

New roof beam supports storage wall and roof span = 2.7m

	Dead	Live
$w_D = 0.8 \times 0.4 + 0.8 \times 1.8 + 0.8 \times \frac{1.7}{2} =$	2.5kN/m	
$w_L = 1.5 \times 0.4 + 1.5 \times \frac{1.7}{2} =$		1.9kN/m

Dead	Live
0.32kN/m	
	0.6kN/m

	TZG PARTNERSHIP ENGINEERING CONSULTANTS
6.	Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA
	T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com

Eton Ave
FD19
6722
04/19
GH

New roof beam supports storage wall and roof span = 3.9m

from the second second

w _D =	0.8 ×	0.4 +	0.8 ×	< 1.8 +	0.8	$\times \frac{1.7}{2} =$
$w_L =$	1.5 × (0.4 + 3	1.5 ×	$\frac{1.7}{2} =$		

Dead Live 2.5kN/m 1.9kN/m

CONTRACT	Eton Ave
PAGE No.	FD20
CONTRACT No.	6722
DATE	04/19
BY	GH

New roof beam supports span = 5.8m

	Dead	Live
$w_{1D} = 0.8 \times \frac{6.5}{2} =$	2.6kN/m	
$w_{1L} = 1.5 \times \frac{6.5}{2} =$		4.9kN/m
$w_{2D} = 1.6 \times \frac{6.5}{2} =$	5.2kN/m	
$w_{2L} = 0.75 \times \frac{6.5}{2} =$		2.5kN/m

203UC46 + 500x100x215 padstone

CONTRACT	Eton Ave
PAGE No.	FD21
CONTRACT No.	6722
DATE	04/19
BY	GH

Lintel supports wall and B3.3 span = 5m

	Dead	Live
$w_D = 6.6 \times 0.5 =$	3.3kN/m	
$P_D =$	13.3kN	
$P_{L} =$		16.3kN

203UC46 + 300 bearing

CONTRACT	Eton Ave
PAGE No.	FD22
CONTRACT No.	6722
DATE	04/19
BY	GH

New roof beam supports rooflight span = 3.9m

	Dead	Live
$w_D = 0.8 \times \frac{1.4}{2} =$	0.6kN/m	
$w_{L} = 1.5 \times \frac{1.4}{2} =$		1.1kN/m

4No 200x50 C24

B3.6 New roof beam supports rooflight span = 2.7m

	Dead	Live
$w_{\rm D} = 0.8 \times \frac{1.4}{2} =$	0.6kN/m	
$w_{L} = 1.5 \times \frac{1.4}{2} =$		1.1kN/m

CONTRACT	Eton Ave
PAGE No.	FD23
CONTRACT No.	6722
DATE	04/19
BY	GH

Live

0.6kN/m

SECOND FLOOR LOAD TAKEDOWN

J2.1

New floor joist span = 3.9m

Dead	
0.32kN/m	

 $w_D = 0.8 \times 0.4 =$

 $w_{L} = 1.5 \times 0.4 =$

200x50 C24@400

B2.1

New floor beam supports partition span = 3.9m

Dead	Live
1.82kN/m	
	0.6kN/m

 $w_D = 0.8 \times 0.4 + 0.5 \times 3 =$ $w_L = 1.5 \times 0.4 =$

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4111	ENGINEERING CONSULTANTS	PAGE No.	FD24
4.	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
	Lroydon LKU 6BA	DATE	04/19
	E: admin@tzgpartnership.com W: www.tzgpartnership.com	BY	GH

B2.2 New trimmer span = 3.9m

	Dead	Live
$w_D = 0.8 \times \frac{1.2}{2} + 0.8 \times 1.1 =$	1.4kN/m	
$w_{L} = 1.5 \times \frac{1.2}{2} =$		0.9kN/m

3No 200x50 C24

B2.3 New floor beam supports partition span = 2.9m

	Dead	Live
$w_D = 0.8 \times 0.4 + 0.5 \times 3 =$	1.82kN/m	
$w_L = 1.5 \times 0.4 =$		0.6kN/m

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4111	ENGINEERING CONSULTANTS	PAGE No.	FD25
	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
1.14	Croydon CRU 6BA	DATE	04/19
	F: +44 (0)20 8067 1328 F: +44 (0)20 8667 1328	BY	GH
	W: www.tzgpartnership.com		

B2.4 Floor beam span = 5.8m

	Dead	Live
$w_{\rm D} = 1.6 \times \frac{6.5}{2} =$	5.2kN/m	
$w_L = 1.5 \times \frac{6.5}{2} =$		4.9kN/m

203UC52

B2.5

Lintel supports new wall span = 5m

Dead	Live
23kN/m	

 $w_{D} = 6.6 \times 3.5 =$

2No IG HD BOX 140

	TZG PARTNERSHIP ENGINEERING CONSULTANTS
6.	Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA
	T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com

CONTRACT	Eton Ave
PAGE No.	FD26
CONTRACT No.	6722
DATE	04/19
BY	GH

B2.6

Lintel supports new wall and reaction from B2.4 and B3.4 span = 5.7m

	Dead	Live
$w_{\rm D} = 6.6 \times 3.5 =$	23kN/m	
$P_{1D} =$	22.7kN	
$P_{1L} =$		16.3kN
B3.4		
$P_{2D} =$	16.6kN	
$P_{2L} =$		14.2kN
B2.4		

CONTRACT	Eton Ave
PAGE No.	FD27
CONTRACT No.	6722
DATE	04/19
BY	GH

FIRST FLOOR LOAD TAKEDOWN

B1.1

Beam supports wall, glass roof, $1^{st} 2^{nd}$ and roof span = 6m

	Dead	Live
$w_{\rm D} = 6.5 \times 5.5 \times 0.85 + 0.8 \times \frac{1.6}{2} + 0.5 \times \frac{2.8}{2} \times 2 + 1.6 \times \frac{2.8}{2} =$	34kN/m	
$w_L = 0.75 \times \frac{1.6}{2} + 1.5 \times \frac{2.8}{2} \times 2 + 1.5 \times \frac{2.8}{2} =$		7kN/m

457x191x67UB + 300x100 PFC to top flange

B1.2

Beam supports glass roof and B1.4 span = 5.1m

	Dead	Live
$w_{\rm D} = 0.8 \times \frac{1.6}{2} =$	0.64kN/m	
$w_{L} = 0.75 \times \frac{1.6}{2} =$		0.6kN/m
$P_D =$	131kN	
$P_L =$		31kN

200x100x12.5 RHS

_	Dead	Live
$w_D =$	4.4kN/m ²	
$w_L =$		2.5kN/m ²

CONTRACT	Eton Ave
PAGE No.	FD29
CONTRACT No.	6722
DATE	04/19
BY	GH

B1.3

Beam supports wall, 1st, B2.6 span = 2m

	Dead	Live
$w_{1D} = 4.4 \times \frac{3.1}{2} =$	6.9kN/m	
$w_{1L} = 2.5 \times \frac{3.1}{2} =$		3.9kN/m
$w_{2D} = 6.5 \times 5.5 =$	36.3kN/m	
$P_D =$	16kN	
$P_L =$		8kN

CONTRACT	Eton Ave
PAGE No.	FD30
CONTRACT No.	6722
DATE	04/19
BY	GH

B1.4

Beam supports wall, 1st B1.1, B2.6 span = 4.2m

	Dead	Live
$w_{1D} = 4.4 \times \frac{3.1}{2} =$	6.9kN/m	
$w_{1L} = 2.5 \times \frac{3.1}{2} =$		3.9kN/m
$w_{2D} = 6.5 \times 5.5 =$	36.3kN/m	
$P_{1D} = 34 \times \frac{6}{2} =$	102kN	
$P_{1L} = 7 \times \frac{6}{2} =$		21kN
$P_{2D} =$	57kN	
$P_{2L} =$		23kN

CONTRACT	Eton Ave
PAGE No.	FD31
CONTRACT No.	6722
DATE	04/19
BY	GH

B1.5

Beam supports floor and masonry span = 5.1m

	Dead	Live
$w_D = 4.4 \times \frac{3.1}{2} + 4.8 \times 0.45 =$	9kN/m	
$w_{L} = 2.5 \times \frac{3.1}{2} =$		4kN/m

250x150x10 RHS

B1.6

Floor beam supports B1.4 and B1.3span = 6m

	Dead	Live
$w_{\rm D} = 1.6 \times \frac{6.5}{2} =$	5.2kN/m	
$w_{L} = 1.5 \times \frac{6.5}{2} =$		4.9kN/m
$P_{\rm D} = 112 + 20 =$	132kN	
$P_L = 30 + 7.1 =$		37kN

Eton Ave
FD32
6722
04/19
GH

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4	ENGINEERING CONSULTANTS	PAGE No.	FD33
4	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
1.14	Croydon CR0 6BA	DATE	04/19
	F: +44 (0)20 8067 12137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com	BY	GH
	vv: www.tzgpartnersnip.com		

C1.1 Post supports B1.1

	Dead	Live
$P_{1D} = 34 \times \frac{6}{2} =$	102kN	
$P_{1L} = 7 \times \frac{6}{2} =$		21kN

C1.2 Post supports B1.6

		Dead	Live
$P_D =$		141kN	
$P_L =$			50kN
-	139.7x8 CHS		I

C1.3

Post supports B1.5

	Dead	Live
$P_{\rm D} = 25 + 4.8 \times 0.45 \times \frac{2.2}{2}$	28kN	
$P_L =$		11kN

	TZG PARTNERSHIP	CONTRACT	Eton Ave
- 4111	ENGINEERING CONSULTANTS	PAGE No.	FD34
4.	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
	Croydon CKU 6BA	DATE	04/19
	F: +44 (0)20 8667 1328 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com	BY	GH
	The transfer of the test of te		

C1.4 Post supports B1.2

	Dead	Live
$P_D =$	125kN	
$P_L =$		30kN

100x100x8 SHS

CONTRACT	Eton Ave
PAGE No.	FD35
CONTRACT No.	6722
DATE	04/19
BY	GH

GROUND FLOOR LOAD TAKEDOWN

J0.1 Comflor span = 4.6m

	Dead	Live
$w_D =$	4.4kN/m ²	
$w_L =$		2.5kN/m ²

Tata Comflor 60 1.2mm gauge 150 slab A393 top H8 in trough single row of props in temporary condition

CONTRACT	Eton Ave
PAGE No.	FD36
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.1 Beam supports C1.2 and floor span = 3.6m

203UC86 S355

CONTRACT	Eton Ave
PAGE No.	FD37
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.2 Beam supports B0.9 span = 5m

	Dead	Live
$P_{2D} =$	20N	
$P_{2L} =$		10kN

CONTRACT	Eton Ave
PAGE No.	FD38
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.3 Beam B0.6 and B0.9 span = 4.7m

	Dead	Live
$P_{1D} =$	45N	
$P_{1L} =$		15kN
$P_{2D} =$	20N	
$P_{2L} =$		10kN

CONTRACT	Eton Ave
PAGE No.	FD39
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.5 Beam supports floorspan = 2.5m

	Dead	Live
$w_D = 4.4 \times \frac{6.5}{2} =$	15kN/m	
$w_L = 1.5 \times \frac{6.5}{2} =$		5kN/m

CONTRACT	Eton Ave
PAGE No.	FD40
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.6 Beam supports floor and B1.3 span = 3.5m

	Dead	Live
$w_D = 4.4 \times \frac{4.5}{2} =$	10kN/m	
$w_L = 1.5 \times \frac{4.5}{2} =$		3.5kN/m
$P_D =$	45N	
$P_{L} =$		15kN

CONTRACT	Eton Ave
PAGE No.	FD41
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.7

Beam supports braced frame span = 3.1m

152UC30

C0.1 Post supports B0.1 and B0.5

	Dead	Live
$P_{\rm D} = 100 + 20 =$	120kN	
$P_{L} = 40 + 10 =$		50kN

100x100x10 RHS

TZG PARTNERSHIP	CONTRACT Eton Ave
ENGINEERING CONSULTANTS	PAGE No. FD42
Orchard House 114-118 Cherry Orchard Road	CONTRACT No. 6722
Croydon CRU 6BA	DATE 04/19
F: +44 (0)20 8667 1328 F: 444 (0)20 8667 1328 F: admin@tzgpartnership.com W: www.tzgpartnership.com	BY GH

C0.2 Post supports B0.1

	Dead	Live
$P_D =$	100N	
$P_L =$		40kN

100x100x10 RHS

C0.3

Post supports B0.5, B0.7, B0.2 and B1.2

Dead	Live
170N	
	62kN
	Dead 170N

150x100x10 RHS

C0.4

Post supports B0.6

	Dead	Live
$P_{\rm D} =$	45N	
$P_L =$		20kN

100x100x10 RHS

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4	ENGINEERING CONSULTANTS	PAGE No.	FD43
e. 1	Orchard House 114-118 Cherry Orchard Road Crowder CPD SPA	CONTRACT No.	6722
	T: +44 (0)20 8681 2137	DATE	04/19
	F: +44 (0)20 8067 1328 E: admin@tzgpartnership.com	BY	GH
	www.tzgpatnersnip.com		

C0.5 Post supports B0.2 and B1.2

	Dead	Live
$P_{\rm D} = 15 + 15 =$	30N	
$P_{L} = 5 + 8 =$		13kN

100x100x10 RHS

C0.6

Post supports B0.3 and B0.10

	Dead	Live
$P_{\rm D} = 20 + 35 =$	55N	
$P_{L} = 10 + 15 =$		25kN

88.9x6.3CHS

CONTRACT	Eton Ave
PAGE No.	FD44
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.8 Waler to top of lining wall span = 5.6m

Prop force from retaining wall design

 $w_{ULS} =$

15.7kN/m

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4	ENGINEERING CONSULTANTS	PAGE No.	FD45
e. 1	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
		DATE	04/19
	F: +44 (0)20 8667 1328 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com	BY	GH
	······································		

B0.9

Beam supports floor span = 4.8m

	Dead	Live
$w_D = 4.4 \times \frac{3.5}{2} =$	7.7kN/m	
$w_L = 1.5 \times \frac{3.5}{2} =$		2.7kN/m

B0.10 Beam supports floor span = 5m

	Dead	Live
$w_D = 4.4 \times \frac{5.5}{2} =$	12.1kN/m	
$w_L = 1.5 \times \frac{5.5}{2} =$		4.2kN/m

CONTRACT	Eton Ave
PAGE No.	FD46
CONTRACT No.	6722
DATE	04/19
BY	GH

BASEMENT LOAD TAKEDOWN

RW.1

Lining RC wall to underpins D = 3.4m

Active pressure coefficient

 $K_a = 0.48$

Density of earth

 $\rho = 18 \text{kN}/\text{m}^3$

150THK RC

CONTRACT	Eton Ave
PAGE No.	FD47
CONTRACT No.	6722
DATE	04/19
ЗY	GH

RW.2

Retaining wall adjacent to highway D = 3.6m

Active pressure coefficient

 $K_a = 0.48$

Density of earth

 $\rho = 18 k \text{N}/\text{m}^3$

350THK RC

CONTRACT	Eton Ave
PAGE No.	FD48
CONTRACT No.	6722
DATE	04/19
ЗY	GH

RW.3

Retaining wall adjacent to garden D = 3.4m

Active pressure coefficient

 $K_a = 0.48$

Density of earth

 $\rho = 18 k \text{N}/\text{m}^3$

250THK RC

CONTRACT	Eton Ave
PAGE No.	FD49
CONTRACT No.	6722
DATE	04/19
BY	GH

S0.1

Basement slab supports point loads

	Dead	Live
C0.5		
$P_{1D} = 15 + 15 =$	30N	
$P_{1L} = 5 + 8 =$		13kN
C0.3		
$P_{2D} = 20 + 8 + 10 + 130$	170N	
$P_{2L} = 10 + 17 + 5 + 30$		62kN
C0.1		
$P_{3D} = 100 + 20 =$	120kN	
$P_{3L} = 40 + 10 =$		50kN
C0.2		
$P_{4D} =$	100N	
$P_{4L} =$		40kN
C0.6		
$P_{5D} = 20 + 35 =$	55N	
$P_{5L} = 10 + 15 =$		25kN
B1.1		
$P_{6D} =$	110N	
$P_{6L} =$		25kN
B0.10		
$P_{7D} =$	32N	
$P_{7L} =$		12kN

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4	ENGINEERING CONSULTANTS	PAGE No.	FD50
4	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
1.04		DATE	04/19
	E: +44 (0)20 8667 1328 E: admin@tzqpartnership.com	BY	GH
3 66 7	W: www.tzgpartnership.com		

	Dead	Live
B0.6		
$P_{8D} =$	45N	
$P_{8L} =$		15kN
B1.5		
$P_{9D} =$	35N	
$P_{9L} =$		15kN
B1.5+B0.7		
$P_{10D} = 35 + 8 =$	43N	
$P_{10L} = 15 + 20$		35kN

CONTRACT	Eton Ave
PAGE No.	FD51
CONTRACT No.	6722
DATE	04/19
BY	GH

PW0.1 existing

Party wall between 52 Eton avenue and 50 Eton Avenue existing load takedown

$$\begin{array}{c|c} & \underline{\text{Dead}} & \underline{\text{Live}} \\ \hline \\ w_{\text{D}} = 7.5 \times \frac{5.5}{2} + 7.5 \times \frac{5.5}{2} + 0.5 \times \frac{10}{2} + 4.6 \times 11.3 = \\ \hline \\ & \text{Ground First Second 215 wall} \\ \hline \\ w_{\text{L}} = 1.5 \times \frac{5.5}{2} + 1.5 \times \frac{5.5}{2} + 1.5 \times \frac{10}{2} = \\ \hline \\ & 16 \text{kN/m} \end{array}$$

PW0.1 proposed

Party wall between 52 Eton avenue and 50 Eton Avenue new load takedown

	Dead	Live
$w_{\rm D} = 7.5 \times \frac{2.75}{2} + 0.5 \times \frac{5.7}{2} + 0.5 \times \frac{7.5}{2} + 0.8 \times \frac{2.7}{2} + 4.6 \times 11.3 + 0.10 \times 10^{-10}$	$0.4 \times 1.7 \times 2$	24 =
Ground First Second Roof 215 wall	Underpin	
	83kN/m	
$w_{L} = 1.5 \times \frac{2.75}{2} + 1.5 \times \frac{5.7}{2} + 1.5 \times \frac{7.5}{2} + 0.75 \times \frac{2.7}{2} =$		13kN/m

CONTRACT	Eton Ave
PAGE No.	FD52
CONTRACT No.	6722
DATE	04/19
BY	GH

PW0.2 existing

Party wall between 52 Eton avenue and 30 Crossfield road existing load takedown

						Dead	Live
$w_{\rm D} = 7.5 \times \frac{6}{2} +$	- 7.5 × $\frac{6}{2}$ +	$-0.5 \times \frac{6}{2} + 0$	$0.8 \times \frac{12}{2} +$	- 6.6 × 7.4 +	- 4.6 × 3.2 =	= 115kN/m	
Ground	First	Second	Roof	330 wall	215 wall		
Floor loads are	e allowan	ce from AC)				
$w_{L} = 1.5 \times \frac{6}{2} +$	$1.5 \times \frac{6}{2} +$	$-1.5 \times \frac{6}{2} + 0$	$0.75 \times \frac{6}{2} =$	=			18kN/m

PW0.2 proposed upper bound

Party wall between Eton avenue and 30 Crossfield road new load takedown

	Dead	Live
$w_{D} = 7.5 \times \frac{6}{2} + 0.5 \times \frac{5.5}{2} \times \frac{6}{9} + 7.5 \times \frac{6}{2} + 0.5 \times \frac{5.5}{2} \times \frac{6}{9} + 0.5 \times \frac{6}{2} + 0.8$ 4.6 × 3.2 + 0.4 × 1.7 × 24 =	$\times \frac{12}{2} + 6.6 \times 133$ kN/m	\$ 7.4 +
Ground New first First New second Second Roof	330 wall	
215 wall Underpin		
$w_{L} = 1.5 \times \frac{6}{2} + 1.5 \times \frac{5.5}{2} \times \frac{6}{9} + 1.5 \times \frac{6}{2} + 1.5 \times \frac{5.5}{2} \times \frac{6}{9} + 1.5 \times \frac{6}{2} + 0.75$	$5 \times \frac{12}{2} =$	24kN/m

Increase = $\frac{133 + 24}{115 + 18} - 1 = 18\%$

Considered okay

Eton Ave
FD53
6722
04/19
GH

PW0.2 proposed lower bound

Party wall between Eton avenue and 30 Crossfield road new load takedown

	Dead	Live
$w_{\rm D} = 0.5 \times \frac{5.5}{2} \times \frac{6}{9} + 0.5 \times \frac{5.5}{2} \times \frac{6}{9} + 0.8 \times \frac{6}{2} + 6.6 \times 7.4 + 4.6 \times 3.2 + 6.6 \times 7.4 + 6.6 \times 7.4 + 4.6 \times 3.2 + 6.6 \times 7.4 + 7.4 \times 7.4 + 7.4 \times 7.4 + 7.4 \times $	0.4 × 1.7 ×	24 =
	85kN/m	
New first New second Second Roof 330 wall		
215 wall Underpin		
$w_{L} = 1.5 \times \frac{5.5}{2} \times \frac{6}{9} + 1.5 \times \frac{5.5}{2} \times \frac{6}{9} + 0.75 \times \frac{6}{2} =$		8kN/m

Magnitude of loads equivalent to PW01 therefore considered okay

ROOF MEMBER DESIGN

Eton Ave
FD54
6722
04/19
GH

J3.1 Design

Timber beam analysis & design to EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A2:2014 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 1.7.02

Support B

Permanent × 1.35

Variable \times 1.50

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD55 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 . DATE +44 (0)20 8681 2137 F +44 (0)20 8667 1328 GH ΒY admin@tzgpartnership.com . W: www.tzgpartnership.com Analysis results Design moment; M = 2.615 kNm; Design shear; F = 2.682 kNTotal load on member; W_{tot} = 5.365 kN R_{A min} = 2.682 kN Reactions at support A; $R_{A max} = 2.682 \text{ kN}$; Unfactored permanent load reaction at support A; R_{A Permanent} = 0.687 kN Unfactored variable load reaction at support A; R_{A Variable} = 1.170 kN $R_{B_{min}} = 2.682 \text{ kN}$ Reactions at support B; $R_{B max} = 2.682 \text{ kN}$; Unfactored permanent load reaction at support B; R_B Permanent = 0.687 kN Unfactored variable load reaction at support B; R_{B Variable} = 1.170 kN 200 → 47 🖛 **|-**−100**--|** Timber section details Breadth of section: b = 47 mm;Depth of section; h = 200 mmNumber of sections; N = 1; Breadth of member; $b_{\rm b} = 47 \, {\rm mm}$ Timber strength class; C24 Member details Service class of timber; 2; Load duration; Long-term Length of span; $L_{s1} = 3900 \text{ mm}$ Length of bearing; $L_{b} = 100 \text{ mm}$ In accordance with cl.6.6 the member is one of several similar and equally spaced members laterally connected by a continuous load distribution system capable of transferring loads from one member to the neighboring members. Compression perpendicular to grain - cl.6.1.4 Design compressive stress; $\sigma_{c.90.d} = 0.571 \text{ N/mm}^2$; Design compressive strength; $f_{c.90.d} =$ 1.481 N/mm² PASS - Design compressive strength exceeds design compressive stress at bearing Bending - cl 6.1.6 Design bending stress; $\sigma_{m.d} = 8.347 \text{ N/mm}^2$; Design bending strength; $f_{m.d} = 8.611 \text{ N/mm}^2$ PASS - Design bending strength exceeds design bending stress Shear - cl.6.1.7 Applied shear stress; $\tau_{\rm d} = 0.639 \, \rm N/mm^2;$ Permissible shear stress; $f_{v,d} = 2.369 \text{ N/mm}^2$ PASS - Design shear strength exceeds design shear stress Deflection - cl.7.2 Deflection limit; $\delta_{\text{lim}} = 14.000 \text{ mm}$; Total final deflection; $\delta_{fin} = 12.529 \text{ mm}$ PASS - Total final deflection is less than the deflection limit

Therefore use 200x50 C24@400

	TZG PARTNERSHIP ENGINEERING CONSULTANTS
6.	Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA
	T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com

Eton Ave
FD56
6722
04/19
GH

B3.1 Design

Timber beam analysis & design to EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A2:2014 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 1.7.02

Therefore use 2No 200x50 C24

Eton Ave
FD58
6722
04/19
GH

B3.2 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD59
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable imes 1.50

Analysis results Maximum moment; M_{max} = 12.4 kNm; $M_{min} = 0 \text{ kNm}$ V_{max} = 12.7 kN; V_{min} = -12.7 kN Maximum shear; Deflection; δ_{max} = 5.3 mm; δ_{min} = 0 mm R_{A_max} = 12.7 kN; Maximum reaction at support A; $R_{A min} = 12.7 \text{ kN}$ Unfactored permanent load reaction at support A; R_{A Permanent} = 5.3 kN Unfactored variable load reaction at support A; R_{A_Variable} = 3.7 kN Maximum reaction at support B; $R_{B_{max}} = 12.7 \text{ kN};$ $R_{B_{min}} = 12.7 \text{ kN}$ Unfactored permanent load reaction at support B; $R_{B_{Permanent}} = 5.3 \text{ kN}$ Unfactored variable load reaction at support B; R_{B Variable} = 3.7 kN Section details Section type; UC 152x152x23 (BS4-1) Steel grade; S275 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 6.8 \text{ mm}$ Nominal yield strength; $f_y = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm² 6.8

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_v = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; K_{LT.A} = 1.400; + 2 × h K_{LT.B} = 1.400; + 2 × h Classification of cross sections - Section 5.5

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD60 PAGE No. J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.com W: www.tzgpartnership.com $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.92$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 123.6 mm c / t_w = 23.1 × ε <= 72 × ε ; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 65.6 \text{ mm}$ c / t_f = $10.4 \times \varepsilon \le 14 \times \varepsilon$; Class 3 Section is class 3 Check shear - Section 6.2.6 Height of web: $h_w = h - 2 \times t_f = 138.8 \text{ mm}$ Shear area factor; $\eta = 1.000$ $h_w/t_w < 72 \times \epsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 12.7 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 997 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 158.4 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 Design bending moment; $M_{Ed} = max(abs(M_{s1 max}), abs(M_{s1 min})) = 12.4 kNm$ Design bending resistance moment - eq 6.14; $M_{c,Rd} = M_{el,Rd} = W_{el,Y} \times f_y / \gamma_{M0} = 45.1 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_c = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5Curvature factor; $g = \sqrt{[1 - (I_z / I_y)]} = 0.825$ Poissons ratio: v = 0.3Shear modulus; $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained length; $L = 1.4 \times L_{s1} + 2 \times h = 5765 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 43.1 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{el.v} \times f_v / M_{cr})} = 1.534$ Limiting slenderness ratio; $\overline{\lambda}_{LT,0} = 0.4$ $\lambda_{LT} > \lambda_{LT,0}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; h Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2] = 1.576$ LTB reduction determination factor; LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.413$ f = min(1 - 0.5 × (1 - k_c)× [1 - 2 × ($\overline{\lambda}_{LT}$ - 0.8)²], 1) = 1.000 Modification factor; Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.413$ Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{el.y} \times f_y / \gamma_{M1} = 18.6 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1 Consider deflection due to permanent and variable loads Limiting deflection; $\delta_{\text{lim}} = L_{s1} / 250 = 15.6 \text{ mm}$

CONTRACT	Eton Ave
PAGE No.	FD61
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\begin{array}{ll} \mbox{Maximum deflection span 1;} & \delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 5.308 \mbox{ mm} \\ PASS - Maximum deflection does not exceed deflection limit \\ \end{array}$

Therefore use 152UC23

CONTRACT	Eton Ave
PAGE No.	FD62
CONTRACT No.	6722
DATE	04/19
BY	GH

B3.3 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$

Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD64 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE +44 (0)20 8681 2137 +44 (0)20 8667 1328 GH ΒY admin@tzgpartnership.com W: www.tzgpartnership.com Lateral restraint Span 1 has lateral restraint at supports plus third points Effective length factors Effective length factor in major axis; $K_v = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; $K_{LT.A} = 1.400; + 2 \times h$ $K_{LT,B} = 1.400; + 2 \times h$ Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.92$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section: c = d = 160.8 mm c / t_w = 24.2 × ε <= 72 × ε ; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) $c = (b - t_w - 2 \times r) / 2 = 88 \text{ mm}$ Width of section; $c/t_f = 8.7 \times \epsilon \le 9 \times \epsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 181.2 \text{ mm}$ Shear area factor; η = 1.000 $h_w / t_w < 72 \times \varepsilon / \eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 42.4 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 1698 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 269.5 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Check bending moment at span 1 segment 2 major (y-y) axis - Section 6.2.5 Design bending moment; $M_{Ed} = max(abs(M_{s1 seg2 max}), abs(M_{s1 seg2 min})) = 70.9 kNm$ Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 136.8 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_{c} = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5 Curvature factor; $g = \sqrt{[1 - (I_z / I_y)]} = 0.813$ Poissons ratio; v = 0.3Shear modulus; $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained length; $L = 1.2 \times L_{s1_seg2} = 2320 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 811.1 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{pl.v} \times f_v / M_{cr})} = 0.616$ Limiting slenderness ratio; $\lambda_{LT.0} = 0.4$ $\overline{\lambda_{LT}} > \overline{\lambda_{LT,0}}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT.0}) + \beta \times \overline{\lambda}_{LT}^2] = 0.679$ LTB reduction determination factor;

CONTRACT	Eton Ave
PAGE No.	FD65
CONTRACT No.	6722
DATE	04/19
BY	GH

LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.910$ Modification factor; $f = \min(1 - 0.5 \times (1 - k_c) \times [1 - 2 \times (\overline{\lambda}_{LT} - 0.8)^2], 1) = 1.000$ Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = \min(\chi_{LT} / f, 1) = 0.910$ Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{pLy} \times f_y / \gamma_{M1} = 124.5$ kNm *PASS - Design buckling resistance moment exceeds design bending moment* Check vertical deflection - Section 7.2.1 Consider deflection due to permanent and variable loads Limiting deflection; $\delta_{lim} = L_{s1} / 250 = 23.2$ mm Maximum deflection span 1; $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 17.541$ mm *PASS - Maximum deflection does not exceed deflection limit*

Therefore use 203UC46 + 500x100x215 padstone

Eton Ave
FD66
6722
04/19
GH

B3.4 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD67
CONTRACT No.	6722
DATE	04/19
BY	GH

 $R_{A min} = 55.1 \text{ kN}$

 $R_{B_{min}} = 55.1 \text{ kN}$

Section type; UKC 203x203x46 (Tata Steel Advance) Steel grade; S275 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 11.0 \text{ mm}$ Nominal yield strength; $f_y = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ $\gamma_{M2} = 1.10$ Resistance of tensile members to fracture; Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_v = 1.000$ Effective length factor in minor axis; $K_z = 1.000$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD68 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 GH ΒY admin@tzgpartnership.com W: www.tzgpartnership.com Effective length factor for torsion; K_{LT.A} = 1.400; + 2 × h $K_{ITB} = 1.400: + 2 \times h$ Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.92$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section: c = d = 160.8 mm c / t_w = 24.2 × ε <= 72 × ε ; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) $c = (b - t_w - 2 \times r) / 2 = 88 mm$ Width of section; $c/t_f = 8.7 \times \varepsilon \le 9 \times \varepsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 181.2 \text{ mm}$ Shear area factor; η = 1.000 $h_w/t_w < 72 \times \varepsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 55.1 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 1698 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_y / \sqrt{[3]}) / \gamma_{M0} = 269.5 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 Design bending moment; $M_{Ed} = max(abs(M_{s1 max}), abs(M_{s1 min})) = 58.2 kNm$ Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 136.8 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_{c} = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5 $g = \sqrt{[1 - (I_z / I_y)]} = 0.813$ Curvature factor; Poissons ratio; v = 0.3Shear modulus; G = E / $[2 \times (1 + v)]$ = 80769 N/mm² Unrestrained length; $L = 1.4 \times L_{s1} + 2 \times h = 7406 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 143.6 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{pl.v} \times f_v / M_{cr})} = 1.464$ Limiting slenderness ratio; $\lambda_{LT,0} = 0.4$ $\overline{\lambda_{LT}} > \overline{\lambda_{LT,0}}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ LTB reduction determination factor; $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2] = 1.485$ LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.443$ Modification factor; f = min(1 - 0.5 × (1 - k_c)× [1 - 2 × (λ_{LT} - 0.8)²], 1) = 1.000 Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.443$ Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{pLy} \times f_y / \gamma_{M1} = 60.6 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment

CONTRACT	Eton Ave
PAGE No.	FD69
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\begin{array}{ll} \mbox{Check vertical deflection - Section 7.2.1} \\ \mbox{Consider deflection due to permanent and variable loads} \\ \mbox{Limiting deflection;} & \delta_{lim} = L_{s1} / 250 = 20 \mbox{ mm} \\ \mbox{Maximum deflection span 1;} & \delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 12.312 \mbox{ mm} \\ \mbox{PASS - Maximum deflection does not exceed deflection limit} \\ \end{array}$

Therefore use 203UC46 +300 bearing

CONTRACT	Eton Ave
PAGE No.	FD70
CONTRACT No.	6722
DATE	04/19
BY	GH

B3.5 Design

Timber beam analysis & design to EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A2:2014 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 1.7.02

TZG PARTNERSHIP	CONTRACT	Eton Ave
ENGINEERING CONSULTANTS	PAGE No.	FD71
Orchard House	CONTRACT No.	6722
	DATE	04/19
F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com	BY	GH
Reactions at support A; $R_{A_{max}} = 5.137 \text{ kN}$; $R_{A_{min}}$ Unfactored permanent load reaction at support A; Unfactored variable load reaction at support A; $R_{A_{varia}}$ Reactions at support B; $R_{B_{max}} = 5.137 \text{ kN}$; $R_{B_{min}}$ Unfactored permanent load reaction at support B; Unfactored variable load reaction at support B; $R_{B_{varia}}$	= 5.137 kN R _{A_Permanent} = 1.422 kN able = 2.145 kN = 5.137 kN R _{B_Permanent} = 1.422 kN able = 2.145 kN	
Timber section details		
Breadth of section; b = 47 mm; Depth of secti	on; h = 200 mm	
Number of sections; N = 4; Breadth of member;	b _b = 188 mm	
Timber strength class; C24		
Member details		
Service class of timber; 2; Load duration; Long-	term	
Length of span; $L_{s1} = 3900 \text{ mm}$		
Length of bearing; $L_b = 100 \text{ mm}$		
Compression perpendicular to grain - cl.6.1.4	Decise concerns to the	e e e e e e e e e e e e e e e e e e e
Design compressive stress; $\sigma_{c.90.d} = 0.273$ N/mm ² ; 1.346 N/mm ²	Design compressive str	ength; $T_{c.90.d} =$
PASS - Design compressive strength exceeds design cor	npressive stress at bearin	lg
Bending - cl 6.1.6		
Design bending stress; $\sigma_{m,d} = 3.996 \text{ N/mm}^2$; Design PASS - Design bending strength exceeds design bending Shear - cl.6.1.7	۱ bending strength; g stress	f _{m.d} = 12.923 N/mm ²
Applied shear stress; $\tau_d = 0.306 \text{ N/mm}^2$; Permi PASS - Design shear strength exceeds design shear stre	ssible shear stress; ess	f _{v.d} = 2.154 N/mm ²
Deflection limit; $\delta_{lim} = 14.000 \text{ mm}$; Total final deflection limit; $\delta_{lim} = 14.000 \text{ mm}$; Total final deflection limit final deflection limit for a set of the set of	lection; δ_{fin} = 6.083 mm imit	1

Therefore use 4No 200x50 C24

	TZG PARTNERSHIP ENGINEERING CONSULTANTS	
6.	Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA	
	T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com	

CONTRACT	Eton Ave
PAGE No.	FD72
CONTRACT No.	6722
DATE	04/19
BY	GH

B3.6 Design

TIMBER BEAM ANALYSIS & DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A2:2014 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 1.7.02

Therefore use 2No 200x50 C24

CONTRACT	Eton Ave
PAGE No.	
CONTRACT No.	6722
DATE	04/19
BY	GH

SECOND FLOOR MEMBER DESIGN

B2.1 Design

Timber beam analysis & design to EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A2:2014 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 1.7.02

TZG PARTNERSHIP ENGINEERING CONSULTANTS Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com	CONTRACT PAGE No. CONTRACT No. DATE BY	Eton Ave FD75 6722 04/19 GH
Total load on member; $W_{tot} = 13.602 \text{ kN}$ Reactions at support A; $R_{A_max} = 6.801 \text{ kN}$; $R_{A_min} = 0.000 \text{ C}$ Unfactored permanent load reaction at support A; R_{A_Varia} Reactions at support B; $R_{B_max} = 6.801 \text{ kN}$; $R_{B_min} = 0.0000 \text{ C}$ Unfactored permanent load reaction at support B; $R_{B_min} = 0.0000000000000000000000000000000000$	= 6.801 kN R _{A_Permanent} = 3.738 kN able = 1.170 kN = 6.801 kN R _{B_Permanent} = 3.738 kN able = 1.170 kN	
Timber section details Breadth of section; $b = 47 \text{ mm}$; Depth of section Number of sections; $N = 3$; Breadth of member; Timber strength class; C24 Member details Service class of timber; 2; Load duration; Long-t Length of span; L _{s1} = 3900 mm Length of bearing; L _b = 100 mm <i>In accordance with cl.6.6 the member is one of several</i> <i>connected by a continuous load distribution system cap</i> <i>to the neighboring members</i> . Compression perpendicular to grain - cl.6.1.4 Design compressive stress; $\sigma_{c.90.d} = 0.482 \text{ N/mm}^2$; 1.481 N/mm ² <i>PASS - Design compressive strength exceeds design com</i> Bending - cl 6.1.6 Design bending stress; $\sigma_{md} = 7.054 \text{ N/mm}^2$. Design	on; h = 200 mm b _b = 141 mm similar and equally space bable of transferring loads Design compressive stre mpressive stress at bearing	d members laterally s from one member ength; f _{c.90.d} = g fm d = 14.215 N/mm ²
Design bending stress; $\sigma_{m,d} = 7.054 \text{ N/mm}^2$; Design PASS - Design bending strength exceeds design bending Shear - cl.6.1.7 Applied shear stress; $\tau_d = 0.540 \text{ N/mm}^2$; Permis PASS - Design shear strength exceeds design shear stress Deflection - cl.7.2 Deflection limit; $\delta_{lim} = 14.000 \text{ mm}$; Total final defl PASS - Total final deflection is less than the deflection limit	ssible shear strengtn; ssible shear stress; ss lection; $\delta_{fin} = 12.711 \text{ mr}$	f _{v.d} = 14.215 N/mm ⁻ f _{v.d} = 2.369 N/mm ²

Therefore use 3No 200x50 C24

CONTRACT	Eton Ave
PAGE No.	FD76
CONTRACT No.	6722
DATE	04/19
BY	GH

B2.2 Design

Timber beam analysis & design to EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A2:2014 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 1.7.02

Variable imes 1.50

Support B

Analysis resultsDesign moment;M = 6.408 kNm; Design shear;F = 6.573 kNTotal load on member; $W_{tot} = 13.146 kN$ Reactions at support A; $R_{A_max} = 6.573 kN$; $R_{A_min} = 6.573 kN$ Unfactored permanent load reaction at support A; $R_{A_permanent} = 2.919 kN$

Permanent × 1.35

Therefore use 3No 200x50 C24

	TZG PARTNERSHIP ENGINEERING CONSULTANTS
6.	Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA
	T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com

CONTRACT	Eton Ave
PAGE No.	FD78
CONTRACT No.	6722
DATE	04/19
BY	GH

B2.3 Design

Timber beam analysis & design to EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A2:2014 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 1.7.02

W: www.tzgpartnership.com	
Reactions at support A; $R_{A_max} = 4.994 \text{ kN}$; $R_{A_min} = 4.994 \text{ kN}$ Unfactored permanent load reaction at support A; $R_{A_Permanent} = 2.733 \text{ kN}$ Unfactored variable load reaction at support A; $R_{A_Variable} = 0.870 \text{ kN}$ Reactions at support B; $R_{B_max} = 4.994 \text{ kN}$; $R_{B_min} = 4.994 \text{ kN}$ Unfactored permanent load reaction at support B; $R_{B_Permanent} = 2.733 \text{ kN}$ Unfactored variable load reaction at support B; $R_{B_Variable} = 0.870 \text{ kN}$ $\int_{e_94}^{e} \int_{e_94}^{e} \int_{e_100}^{e} \int_{e_10}^{e} \int_{e_100}^{e} \int_{e_100}^{$	
Timber section details Breadth of section; $b = 47 \text{ mm}$; Depth of section; $h = 200 \text{ mm}$ Number of sections; $N = 2$; Breadth of member; $b_b = 94 \text{ mm}$ Timber strength class; C24 Member details Service class of timber; 2; Load duration; Long-term Length of span; $L_{s1} = 2900 \text{ mm}$ Length of bearing; $L_b = 100 \text{ mm}$ In accordance with cl.6.6 the member is one of several similar and equally spaced members later connected by a continuous load distribution system capable of transferring loads from one member to the neighboring members. Compression perpendicular to grain - cl.6.1.4 Design compressive stress; $\sigma_{c.90.d} = 0.531 \text{ N/mm}^2$; Design compressive strength; $f_{c.90.d} = 1.481 \text{ N/mm}^2$ PASS - Design compressive strength exceeds design compressive stress at bearing Bending - cl 6.1.6 Design bending stress; $\sigma_{v.v.} = 5.778 \text{ N/mm}^2$; Design bending strength; $f_{v.v.} = 14.215 \text{ N/m}^2$	ally ber
Design bending stress; $\sigma_{m.d} = 5.778 \text{ N/mm}^2$; Design bending strength; $f_{m.d} = 14.215 \text{ N/}$ <i>PASS - Design bending strength exceeds design bending stress</i> Shear - cl.6.1.7 Applied shear stress; $\tau_d = 0.595 \text{ N/mm}^2$; Permissible shear stress; $f_{v.d} = 2.369 \text{ N/m}$ <i>PASS - Design shear strength exceeds design shear stress</i> Deflection - cl.7.2 Deflection limit; $\delta_{lim} = 11.600 \text{ mm}$; Total final deflection; $\delta_{fin} = 5.928 \text{ mm}$	nm² m²

Therefore use 2No 200x50 C24

CONTRACT	Eton Ave
PAGE No.	FD80
CONTRACT No.	6722
DATE	04/19
BY	GH

B2.4 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD81
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable imes 1.50

Analysis results Maximum moment; M_{max} = 63.3 kNm; $M_{min} = 0 \text{ kNm}$ V_{max} = 43.7 kN; V_{min} = -43.7 kN Maximum shear; Deflection; δ_{max} = 14.2 mm; δ_{min} = 0 mm Maximum reaction at support A; $R_{A max} = 43.7 \text{ kN};$ $R_{A min} = 43.7 \text{ kN}$ Unfactored permanent load reaction at support A; R_{A Permanent} = 16.6 kN Unfactored variable load reaction at support A; R_{A_Variable} = 14.2 kN R_{B_min} = 43.7 kN Maximum reaction at support B; $R_{B_{max}} = 43.7 \text{ kN};$ Unfactored permanent load reaction at support B; $R_{B_{Permanent}} = 16.6 \text{ kN}$ Unfactored variable load reaction at support B; R_{B Variable} = 14.2 kN Section details UKC 203x203x52 (Tata Steel Advance) Section type; Steel grade; S275 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 12.5 mm$ Nominal yield strength; $f_y = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm² 12.5

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_v = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; $K_{LT,A} = 1.400; + 2 \times h$ K_{LT.B} = 1.400; + 2 × h Classification of cross sections - Section 5.5

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD82 PAGE No. J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.com W: www.tzgpartnership.com $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.92$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 160.8 mm c / t_w = 22.0 × ε <= 72 × ε ; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 88 \text{ mm}$ $c/t_f = 7.6 \times \epsilon \le 9 \times \epsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 181.2 \text{ mm}$ Shear area factor; $\eta = 1.000$ $h_w/t_w < 72 \times \varepsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 43.7 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 1875 \text{ mm}^2$ $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 297.6 \text{ kN}$ Design shear resistance - cl 6.2.6(2); PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 Design bending moment; $M_{Ed} = max(abs(M_{s1 max}), abs(M_{s1 min})) = 63.3 kNm$ Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = W_{pl,Y} \times f_y / \gamma_{M0} = 156 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_c = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5Curvature factor; $g = \sqrt{[1 - (I_z / I_y)]} = 0.814$ Poissons ratio: v = 0.3Shear modulus; $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained length; $L = 1.4 \times L_{s1} + 2 \times h = 8532 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 152.4 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{pl.v} \times f_v / M_{cr})} = 1.518$ Limiting slenderness ratio; $\overline{\lambda}_{LT,0} = 0.4$ $\lambda_{LT} > \lambda_{LT,0}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; h Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2] = 1.554$ LTB reduction determination factor; LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.420$ f = min(1 - 0.5 × (1 - k_c)× [1 - 2 × ($\overline{\lambda}_{LT}$ - 0.8)²], 1) = 1.000 Modification factor; Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.420$ Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{pl.y} \times f_y / \gamma_{M1} = 65.5 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1 Consider deflection due to permanent and variable loads Limiting deflection; $\delta_{\text{lim}} = L_{s1} / 250 = 23.2 \text{ mm}$

CONTRACT	Eton Ave
PAGE No.	FD83
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\begin{array}{ll} \mbox{Maximum deflection span 1;} & \delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 14.157 \mbox{ mm} \\ \mbox{PASS - Maximum deflection does not exceed deflection limit} \end{array}$

Therefore use 203UC52

B2.5 Design

CONTRACT	Eton Ave
PAGE No.	FD84
CONTRACT No.	6722
DATE	04/19
BY	GH

HD BOX 140				
Manufactured length 150mm increments	600- 1200	1350- 1800	1950- 2400	2550- 2700
Height 'h'	150	150	215	215
Thickness	2.5	2.5	2.5	2.5
Total UDL kN	50	50	50	45

For heavy duty loading conditions to support concrete floors and point loads. Used to support internal and external openings in 150mm wide walls.

Therefore use 2No IG HD BOX 140

CONTRACT	Eton Ave
PAGE No.	FD85
CONTRACT No.	6722
DATE	04/19
BY	GH

B2.6 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

Load combinations

CONTRACT	Eton Ave
PAGE No.	FD86
CONTRACT No.	6722
DATE	04/19
BY	GH

Support BPermanent × 1.35

Variable \times 1.50 Analysis results Maximum moment; M_{max} = 118.4 kNm; $M_{min} = 0 \text{ kNm}$ Maximum shear; V_{max} = 110 kN; V_{min} = -32.6 kN Deflection: δ_{max} = 11.8 mm; δ_{min} = 0 mm Maximum reaction at support A; $R_{A_{max}} = 110 \text{ kN}; R_{A_{min}} = 110 \text{ kN}$ Unfactored permanent load reaction at support A; $R_{A Permanent} = 56.4 \text{ kN}$ Unfactored variable load reaction at support A; R_{A_Variable} = 22.6 kN Maximum reaction at support B; $R_{B max} = 32.6 \text{ kN};$ R_{B min} = 32.6 kN Unfactored permanent load reaction at support B; R_B Permanent = 15.3 kN Unfactored variable load reaction at support B; R_{B Variable} = 7.9 kN Section details Section type; UKC 203x203x86 (Tata Steel Advance) Steel grade; S275 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; t = max(t_f, t_w) = 20.5 mm Nominal yield strength; $f_v = 265 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ $\gamma_{M2} = 1.10$ Resistance of tensile members to fracture; Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_v = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; K_{LT.A} = 1.400; + 2 × h K_{LT.B} = 1.400; + 2 × h
Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD87 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.94$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 160.8 mm c / t_w = $13.4 \times \varepsilon \leq 72 \times \varepsilon$; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) $c = (b - t_w - 2 \times r) / 2 = 88 mm$ Width of section; $c/t_f = 4.6 \times \varepsilon \le 9 \times \varepsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 181.2 \text{ mm}$ Shear area factor; η = 1.000 $h_w/t_w < 72 \times \epsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 110 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 3069 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 469.6 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 Design bending moment; $M_{Ed} = max(abs(M_{s1 max}), abs(M_{s1 min})) = 118.4 kNm$ Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 258.8 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_{c} = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5 Curvature factor; $g = \sqrt{[1 - (I_z / I_y)]} = 0.818$ Poissons ratio; v = 0.3Shear modulus; $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained length; $L = 1.4 \times L_{s1} + 2 \times h = 8424 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 404.4 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{pl.v} \times f_v / M_{cr})} = 1.2$ Limiting slenderness ratio; $\lambda_{LT.0} = 0.4$ $\overline{\lambda_{LT}} > \overline{\lambda_{LT,0}}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2] = 1.176$ LTB reduction determination factor; LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.579$ f = min(1 - 0.5 × (1 - k_c)× [1 - 2 × (λ_{LT} - 0.8)²], 1) = 1.000 Modification factor: Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.579$ Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{pl,y} \times f_y / \gamma_{M1} = 149.9 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1 Consider deflection due to permanent and variable loads

CONTRACT	Eton Ave
PAGE No.	FD88
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\begin{array}{ll} \mbox{Limiting deflection;} & \delta_{\mbox{lim}} = L_{s1} \, / \, 250 = 22.8 \mbox{ mm} \\ \mbox{Maximum deflection span 1;} & \delta = \max(abs(\delta_{\mbox{max}}), abs(\delta_{\mbox{min}})) = 11.82 \mbox{ mm} \\ \mbox{PASS - Maximum deflection does not exceed deflection limit} \\ \end{array}$

Therefore use 203UC86

FIRST FLOOR MEMBER DESIGN

CONTRACT	Eton Ave
PAGE No.	FD89
CONTRACT No.	6722
DATE	04/19
BY	GH

B1.1 Design

Dead load

Live load

Bending moment

Shear force

CONTRACT	Eton Ave
PAGE No.	FD91
CONTRACT No.	6722
DATE	04/19
BY	GH

21.00

Dead reaction

Live reaction

EC-EN 1993 Steel check ULS

Linear calculation Combination: ULS D+L Coordinate system: Principal Extreme 1D: Global Selection: B3

EN 1993-1-1 Code Check

National annex: Standard EN

Member B3 3.000 / 6.000 m I + Ud (UB457/191/67, S 275 ULS D+L 0.66 - UKPFC300/100/45.50)
--

Combination key ULS D+L / 1.35*LC1 + 1.35*Dead + 1.50*Live

Partial safety factors	
γ_{M0} for resistance of cross-sections	1.00
γ_{M1} for resistance to instability	1.00
γ_{M2} for resistance of net sections	1.25

Material		
Yield strength fy	275.0	MPa
Ultimate strength fu	430.0	MPa
Fabrication	Welded	

...::SECTION CHECK::...

The critical check is on position 3.000 m

Eton Ave
FD92
6722
04/19
GH

Internal forces	Calculated	Unit
N _{Ed}	0.00	kN
V _{y,Ed}	0.00	kN
V _{z,Ed}	0.00	kN
T _{Ed}	0.00	kNm
M _{y,Ed}	260.51	kNm
M _{z,Ed}	0.00	kNm

Classification for cross-section design

Classification according to EN 1993-1-1 article 5.5.2 Classification of Internal and Outstand parts according to EN 1993-1-1 Table 5.2 Sheet 1 & 2

Id	Туре	c [mm]	t [mm]	σ ₁ [kN/m²]	σ ₂ [kN/m²]	Ψ [-]	k₀ [-]	a [-]	c/t [-]	Class 1 Limit [-]	Class 2 Limit [-]	Class 3 Limit [-]	Class
1	UO	95	13	-1.772e+05	-1.772e+05								
2	Ι	95	22	8.386e+04	8.386e+04	1.0		1.0	4.4	30.5	35.1	38.8	1
3	I	95	22	8.386e+04	8.386e+04	1.0		1.0	4.4	30.5	35.1	38.8	1
4	UO	95	13	-1.772e+05	-1.772e+05								
5	I	6	9	-1.772e+05	-1.735e+05								
6	Ι	428	9	-1.735e+05	7.750e+04	-2.2		0.3	50.4	107.8	124.3	277.8	1
7	Ι	6	9	7.750e+04	8.122e+04	1.0		1.0	0.7	30.5	35.1	39.4	1
8	UO	96	17	3.158e+04	8.759e+04	0.4	0.8	1.0	5.8	8.3	9.2	17.6	1
9	Ι	47	9	8.759e+04	8.759e+04	1.0		1.0	5.2	30.5	35.1	38.8	1
10	UO	95	17	8.759e+04	3.158e+04	0.4	0.8	1.0	5.8	8.3	9.2	17.6	1
11	Ι	47	9	8.759e+04	8.759e+04	1.0		1.0	5.2	30.5	35.1	38.8	1

The cross-section is classified as Class 1

Bending moment check for M_y According to EN 1993-1-1 article 6.2.5 and formula (6.12),(6.13)

W _{pl,y}	1.9574e-03	m ³
M _{pl,y,Rd}	538.30	kNm
Unity check	0.48	-

Shear check for V_z

According to EN 1993-1-1 article 6.2.6 and formula (6.19)

Tvz,Ed	0.0	MPa
TRd	158.8	MPa
Unity check	0.00	-

Note: No shear area is given for this section/fabrication, therefore the plastic shear resistance cannot be determined. As a result the elastic shear resistance according to EN 1993-1-1 article 6.2.6(4) is verified.

Combined bending, axial force and shear force check

According to EN 1993-1-1 article 6.2.1(5) and formula (6.1)

Elastic verification					
Fibre	2				
σ _{N,Ed}	0.0	MPa			
σ _{My,Ed}	-181.2	MPa			
σ _{Mz,Ed}	0.0	MPa			
σtot,Ed	-181.2	MPa			
T _{Vy,Ed}	0.0	MPa			
Tvz,Ed	0.0	MPa			
Tt,Ed	0.0	MPa			
Ttot,Ed	0.0	MPa			
σvon Mises.Ed	181.2	MPa			

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4000	ENGINEERING CONSULTANTS	PAGE No.	FD93
4	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
	Croydon CKU 6BA	DATE	04/19
	F: +44 (0)20 8061 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com	BY	GH
Seé P	W: www.tzgpartnership.com		
Elastic v	erification		

Note: For this section no plastic shear resistance and corresponding Rho value can be determined. Therefore the elastic yield criterion according to EN 1993-1-1 article 6.2.1(5) is verified.

The member satisfies the section check.

...::STABILITY CHECK::...

Unity check 0.66

Classification for member buckling design

-

Decisive position for stability classification: 3.000 m Classification according to EN 1993-1-1 article 5.5.2 Classification of Internal and Outstand parts according to EN 1993-1-1 Table 5.2 Sheet 1 & 2

Id	Туре	c [mm]	t [mm]	σ1 [kN/m²]	σ ₂ [kN/m²]	Ψ [-]	k₀ [-]	a [-]	c/t [-]	Class 1 Limit [-]	Class 2 Limit [-]	Class 3 Limit [-]	Class
1	UO	95	13	-1.772e+05	-1.772e+05								
2	Ι	95	22	8.386e+04	8.386e+04	1.0		1.0	4.4	30.5	35.1	38.8	1
3	Ι	95	22	8.386e+04	8.386e+04	1.0		1.0	4.4	30.5	35.1	38.8	1
4	UO	95	13	-1.772e+05	-1.772e+05								
5	Ι	6	9	-1.772e+05	-1.735e+05								
6	Ι	428	9	-1.735e+05	7.750e+04	-2.2		0.3	50.4	107.8	124.3	277.8	1
7	Ι	6	9	7.750e+04	8.122e+04	1.0		1.0	0.7	30.5	35.1	39.4	1
8	UO	96	17	3.158e+04	8.759e+04	0.4	0.8	1.0	5.8	8.3	9.2	17.6	1
9	Ι	47	9	8.759e+04	8.759e+04	1.0		1.0	5.2	30.5	35.1	38.8	1
10	UO	95	17	8.759e+04	3.158e+04	0.4	0.8	1.0	5.8	8.3	9.2	17.6	1
11	I	47	9	8.759e+04	8.759e+04	1.0		1.0	5.2	30.5	35.1	38.8	1

The cross-section is classified as Class 1

Lateral Torsional Buckling check

According to EN 1993-1-1 article 6.3.2.1 & 6.3.2.2 and formula (6.54)

LTB parameters		
Method for LTB curve	General case	
Plastic section modulus W _{pl,y}	1.9574e-03	m ³
Elastic critical moment M _{cr}	2006.24	kNm
Relative slenderness $\lambda_{rel,LT}$	0.52	
Limit slenderness $\lambda_{rel,LT,0}$	0.20	
LTB curve	d	
Imperfection aLT	0.76	
Reduction factor XLT	0.77	
Design buckling resistance M _{b,Rd}	412.72	kNm
Unity check	0.63	-

Mcr parameters		
LTB length L	6.000	m
Influence of load position	no influence	
Correction factor k	1.00	
Correction factor k _w	1.00	
LTB moment factor C ₁	1.13	
LTB moment factor C ₂	0.45	
LTB moment factor C ₃	0.53	
Shear center distance dz	139	mm
Distance of load application zg	0	mm
Mono-symmetry constant β_y	-407	mm
Mono-symmetry constant z _j	204	mm

Note: C parameters are determined according to ECCS 119 2006 / Galea 2002.

Eton Ave
FD94
6722
04/19
GH

The member satisfies the stability check.

Therefore use 457x191x89UB + 230x90 PFC to top flange

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4	ENGINEERING CONSULTANTS	PAGE No.	FD95
	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
	Croydon CR0 6BA	DATE	04/19
	1: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 F: administratorschip.com	BY	GH
	W: www.tzgpartnership.com		

B1.2 Design

Steel beam analysis & design (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex TEDDS calculation version 3.0.13

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4	ENGINEERING CONSULTANTS	PAGE No.	FD96
- A.	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
		DATE	04/19
	F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com	BY	GH
3 46 7	W: www.tzgpartnership.com		
Unfactore	d permanent load reaction at support A;	RA_Permanent = 123.7 kN	

Unfactored variable load reaction at support A; Maximum reaction at support B; R_{B_max} = 23.8 kN; R_{B_min} = 23.8 kN Unfactored permanent load reaction at support B; Unfactored variable load reaction at support B;

RA_Variable = 30.1 kN RB Permanent = 13.2 kN $R_{B_{variable}} = 4 \text{ kN}$

Section details

¥

Section type: RHS 200x100x12.5 (Tata Steel Celsius) Steel grade; S355H EN 10210-1:2006 - Hot finished structural hollow sections of non-alloy and fine grain steels Nominal thickness of element: t = **12.5** mm f_y = **355** N/mm² Nominal yield strength; Nominal ultimate tensile strength; fu = 470 N/mm² Modulus of elasticity; E = 210000 N/mm² Ś 4-12.5

_100____ Partial factors - Section 6.1 Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; γM1 = **1.00** Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; Ky = 1.000 Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; $K_{LT.A} = 1.400; + 2 \times h$ K_{LT.B} = **1.400**; + 2 × h **Classification of cross sections - Section 5.5** $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.81$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; $c = h - 3 \times t = 162.5 \text{ mm}$ $c/t = 16.0 \times \varepsilon \le 72 \times \varepsilon;$ Class 1 Internal compression parts subject to compression only - Table 5.2 (sheet 1 of 3) Width of section; $c = b - 3 \times t = 62.5 \text{ mm}$ $c/t = 6.1 \times \epsilon \le 33 \times \epsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t = 175 \text{ mm}$ η = **1.000** Shear area factor: $h_w/t < 72 \times \epsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 212.1 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = A \times h / (b + h) = 4472 \text{ mm}^2$

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4000	ENGINEERING CONSULTANTS	PAGE No.	FD97
4.	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
	T: +44 (0)20 8681 2137	DATE	04/19
	E: 444 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com	BY	GH
Design sh PASS - D e	ear resistance - cl 6.2.6(2); esign shear resistance exceeds	$V_{c,Rd} = V_{pl,Rd} = A_v \times (f_y \ / \ \sqrt[]{3]}) \ / \ \gamma_{M0} = \textbf{916.5} \ kI$ design shear force	N

 $\begin{array}{l} \textit{PASS - Design shear resistance exceeds design shear force} \\ \textit{Check bending moment major (y-y) axis - Section 6.2.5} \\ \textit{Design bending moment;} & \textit{M}_{Ed} = max(abs(\textit{M}_{s1_max}), abs(\textit{M}_{s1_min})) = 84.6 \ \text{kNm} \\ \textit{Design bending resistance moment - eq 6.13;} & \textit{M}_{c,Rd} = \textit{M}_{pl,Rd} = \textit{W}_{pl.y} \times f_y \ / \ \gamma_{M0} = 144.9 \ \text{kNm} \\ \textit{PASS - Design bending resistance moment exceeds design bending moment} \\ \textit{Check vertical deflection - Section 7.2.1} \\ \textit{Consider deflection due to permanent and variable loads} \\ \textit{Limiting deflection;} & \delta_{lim} = L_{s1} \ / \ 250 = 20.4 \ \text{mm} \\ \textit{Maximum deflection span 1;} & \delta = max(abs(\delta_{max}), abs(\delta_{min})) = 18.561 \ \text{mm} \\ \textit{PASS - Maximum deflection does not exceed deflection limit} \\ \end{array}$

Therefore use 200x100x12.5 RHS

CONTRACT	Eton Ave
PAGE No.	FD98
CONTRACT No.	6722
DATE	04/19
BY	GH

J1.1 Design

ComFlor® 60 normal weight concrete / using mesh / unpropped / Eurocode

Single span deck continuous slab (m) - Mesh and Deck Fire Method - Beam width 152mm (Note: Single span deck single span slab is only permitted using Bar Fire Method.)

							Total	applied load (kN/m²)			
Props	Fire	Slab depth	Mesh 0.2%	5.00	7.50	10.00	5.00	7.50	10.00	5.00	7.50	10.00
-	periou	(mm)	min.requ		0.90mm			1.00mm			1.20mm	
		120***	A142	3.50 (A142)	3.09 (A193)	2.51 (A193)	3.68 (A193)	3.09 (A193)	2.55 (A193)	3.94 (A193)	3.18 (A193)	2.64 (A193)
		130	A142	3.41 (A142)	3.40 (A252)	3.39 (A393)	3.59 (A142)	3.58 (A252)	3.56 (A393)	3.84 (A142)	3.82 (A393)	3.81 (2xA252)
	es i	140	A193	3.32 (A193)	3.32 (A193)	3.30 (A393)	3.50 (A193)	3.50 (A193)	3.48 (A393)	3.74 (A193)	3.74 (A252)	3.73 (A393)
e	5	150	A193	3.24 (A193)	3.24 (A193)	3.23 (A252)	3.42 (A193)	3.42 (A193)	3.40 (A393)	3.66 (A193)	3.66 (A193)	3.65 (A393)
ю	- <u>E</u>	160	A252	3.16 (A252)	3.16 (A252)	3.16 (A252)	3.34 (A252)	3.34 (A252)	3.34 (A252)	3.58 (A252)	3.58 (A252)	3.57 (A252)
z		170	A252	3.09 (A252)	3.09 (A252)	3.09 (A252)	3.27 (A252)	3.27 (A252)	3.27 (A252)	3.51 (A252)	3.51 (A252)	3.51 (A252)
	00	180	A252	3.03 (A252)	3.03 (A252)	3.03 (A252)	3.21 (A252)	3.21 (A252)	3.21 (A252)	3.44 (A252)	3.44 (A252)	3.44 (A252)
		190	A393	2.96 (A393)	2.96 (A393)	2.96 (A393)	3.15 (A393)	3.15 (A393)	3.15 (A393)	3.37 (A393)	3.37 (A393)	3.37 (A393)
		200	A393	2.90 (A393)	2.90 (A393)	2.90 (A393)	3.10 (A393)	3.10 (A393)	3.10 (A393)	3.32 (A393)	3.32 (A393)	3.32 (A393)
		130	A142	3.40 (A252)	3.39 (A393)	3.38 (2xA252)	3.58 (A252)	3.57 (A393)	3.32 (2xA252)	3.83 (A252)	3.82 (A393)	3.19 (2xA252)
		140	A193	3.32 (A193)	3.30 (A393)	3.30 (2xA252)	3.50 (A193)	3.48 (A393)	3.48 (2xA252)	3.74 (A252)	3.73 (A393)	3.72 (2xA252)
	te	150	A193	3.24 (A193)	3.23 (A252)	3.23 (A393)	3.42 (A193)	3.40 (A393)	3.40 (2xA252)	3.66 (A193)	3.65 (A393)	3.64 (2xA252)
ne	2	160	A252	3.16 (A252)	3.16 (A252)	3.15 (A393)	3.34 (A252)	3.34 (A252)	3.33 (A393)	3.58 (A252)	3.57 (A393)	3.56 (2xA252)
٩	Ē	170	A252	3.09 (A252)	3.09 (A252)	3.09 (A252)	3.27 (A252)	3.27 (A252)	3.27 (A252)	3.51 (A252)	3.51 (A252)	3.50 (A393)
	8	180	A252	3.03 (A252)	3.03 (A252)	3.03 (A252)	3.21 (A252)	3.21 (A252)	3.21 (A252)	3.44 (A252)	3.44 (A252)	3.44 (A252)
		190	A393	2.96 (A393)	2.96 (A393)	2.96 (A393)	3.15 (A393)	3.15 (A393)	3.15 (A393)	3.37 (A393)	3.37 (A393)	3.37 (A393)
		200	A393	2.90 (A393)	2.90 (A393)	2.90 (A393)	3.10 (A393)	3.10 (A393)	3.10 (A393)	3.32 (A393)	3.32 (A393)	3.32 (A393)
		140	A193	3.31 (A252)	3.30 (A393)	3.28 (2xA393)	3.49 (A252)	3.48 (A393)	3.46 (2xA393)	3.73 (A393)	3.72 (2xA252)	3.70 (2xA393)
	S	150	A193	3.24 (A193)	3.23 (A393)	3.22 (2xA252)	3.41 (A252)	3.40 (A393)	3.40 (2xA252)	3.65 (A252)	3.65 (A393)	3.62 (2xA393)
ē	2	160	A252	3.16 (A252)	3.16 (A252)	3.15 (A393)	3.34 (A252)	3.34 (A252)	3.33 (2xA252)	3.58 (A252)	3.57 (A393)	3.56 (2xA252)
LO LO	in the second se	170	A252	3.09 (A252)	3.09 (A252)	3.09 (A252)	3.27 (A252)	3.27 (A252)	3.27 (A393)	3.51 (A252)	3.51 (A252)	3.50 (A393)
z	ō	180	A252	3.03 (A252)	3.03 (A252)	3.03 (A252)	3.21 (A252)	3.21 (A252)	3.21 (A252)	3.44 (A252)	3.44 (A252)	3.43 (A393)
	12	190	A393	2.96 (A393)	2.96 (A393)	2.96 (A393)	3.15 (A393)	3.15 (A393)	3.15 (A393)	3.37 (A393)	3.37 (A393)	3.37 (A393)
		200	A393	2.90 (A393)	2.90 (A393)	2.90 (A393)	3.10 (A393)	3.10 (A393)	3.10 (A393)	3.32 (A393)	3.32 (A393)	3.32 (A393)

Therefore use 150 slab Comflor 60 0.9mm gauge + A193 top

CONTRACT	Eton Ave
PAGE No.	FD99
CONTRACT No.	6722
DATE	04/19
BY	GH

B1.3 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD100 PAGE No. J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 E ΒY GH admin@tzgpartnership.com . W: www.tzgpartnership.com Load combination 1 Permanent × 1.35 Support A Variable \times 1.50 Permanent × 1.35 Variable \times 1.50 Permanent × 1.35 Support B Variable \times 1.50 Permanent × 1.35 Variable \times 1.50 Support C Permanent × 1.35 Variable \times 1.50 Analysis results Maximum moment; $M_{max} = 7.5 \text{ kNm};$ M_{min} = -7.1 kNm Maximum moment span 1; $M_{s1 max} = 0 kNm;$ $M_{s1 min} = -7.1 kNm$ Maximum moment span 2; $M_{s2 min} = -7.1 \text{ kNm}$ $M_{s2 max} = 7.5 kNm;$ Maximum shear; V_{max} = 57.9 kN; V_{min} = -31.3 kN Maximum shear span 1; V_{s1_max} = 1.1 kN; V_{s1_min} = -15.3 kN Maximum shear span 2; $V_{s2 max}$ = 57.9 kN; $V_{s2 min} = -31.3 \text{ kN}$ Deflection; $\delta_{max} = 0 \text{ mm}; \quad \delta_{min} = 0 \text{ mm}$ Deflection span 1; $\delta_{s1 max} = 0 mm; \delta_{s1 min} = 0 mm$ Deflection span 2; $\delta_{s2 max} = 0 mm; \delta_{s2 min} = 0 mm$ Maximum reaction at support A: $R_{A max} = 1.1 \text{ kN}; R_{A min} = 1.1 \text{ kN}$ Unfactored permanent load reaction at support A; $R_{A Permanent} = -0.2 \text{ kN}$ Unfactored variable load reaction at support A; R_{A Variable} = 0.9 kN R_{B_min} = 73.2 kN Maximum reaction at support B; $R_{B_{max}} = 73.2 \text{ kN};$ Unfactored permanent load reaction at support B; R_{B_Permanent} = 40.4 kN Unfactored variable load reaction at support B; R_{B_Variable} = 12.4 kN Maximum reaction at support C; $R_{C max} = 31.3 \text{ kN};$ $R_{C min} = 31.3 \text{ kN}$ Unfactored permanent load reaction at support C; $R_{C_{Permanent}} = 20.4 \text{ kN}$ Unfactored variable load reaction at support C; R_{C Variable} = 2.5 kN Section details Section type; 2 x UKC 203x203x46 (Tata Steel Advance) Steel grade; S275 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 11.0 \text{ mm}$ Nominal yield strength; $f_v = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

CONTRACT	Eton Ave
PAGE No.	FD102
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\begin{array}{ll} \mbox{Check bending moment at span 2 major (y-y) axis - Section 6.2.5} \\ \mbox{Design bending moment;} & M_{Ed} = max(abs(M_{s2_max}), abs(M_{s2_min})) = 7.5 \ \mbox{kNm} \\ \mbox{Design bending resistance moment - eq 6.13;} & M_{c,Rd} = M_{pl,Rd} = N \times W_{pl.y} \times f_y \ \gamma_{M0} = 273.6 \ \mbox{kNm} \\ \mbox{PASS - Design bending resistance moment exceeds design bending moment} \\ \mbox{Check vertical deflection - Section 7.2.1} \\ \mbox{Consider deflection due to permanent and variable loads} \\ \mbox{Limiting deflection;} & \delta_{lim} = L_{s2} \ / \ \mbox{180} = 5.6 \ \mbox{mm} \\ \mbox{Maximum deflection span 2;} & \delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.028 \ \mbox{mm} \\ \mbox{PASS - Maximum deflection does not exceed deflection limit} \\ \end{array}$

Therefore use 203UC46

CONTRACT	Eton Ave
PAGE No.	FD103
CONTRACT No.	6722
DATE	04/19
BY	GH

B1.4 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

Support A Vertically restrained Rotationally free Support B Vertically restrained Rotationally free Applied loading Beam loads Permanent self weight of beam $\times 1$ Permanent full UDL 6.9 kN/m Variable full UDL 3.9 kN/m Permanent partial UDL 36.3 kN/m from 1400 mm to 2700 mm Permanent point load 102 kN at 1400 mm Variable point load 21 kN at 1400 mm Permanent point load 57 kN at 2700 mm Variable point load 23 kN at 2700 mm Load combinations Load combination 1 Support A Permanent × 1.35 Variable \times 1.50

CONTRACT	Eton Ave
PAGE No.	FD104
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable \times 1.50 Support B Permanent × 1.35 Variable \times 1.50 Analysis results Maximum moment; M_{max} = 299.5 kNm; M_{min} = 0 kNm Maximum shear; V_{max} = 221.8 kN; V_{min} = -195.8 kN Deflection; δ_{max} = 9.9 mm; δ_{min} = 0 mm R_{A_max} = 221.8 kN; Maximum reaction at support A; R_{A min} = 221.8 kN Unfactored permanent load reaction at support A; R_{A Permanent} = 130.5 kN Unfactored variable load reaction at support A; R_{A_Variable} = 30.4 kN Maximum reaction at support B; R_{B_max} = 195.8 kN; $R_{B_{min}} = 195.8 \text{ kN}$ Unfactored permanent load reaction at support B; R_{B_Permanent} = 111.7 kN Unfactored variable load reaction at support B; R_{B Variable} = 30 kN Section details Section type; 2 x UKC 203x203x86 (Tata Steel Advance) Steel grade; S355 EN 10025-2:2004 - Hot rolled products of structural steels

Nominal yield strength; f_y = 345 N/mm² Nominal ultimate tensile strength; f_u = 470 N/mm²

Nominal thickness of element; $t = max(t_f, t_w) = 20.5 mm$

Modulus of elasticity; E = 210000 N/mm²

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_y = 1.000$ Effective length factor in minor axis; $K_z = 1.000$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS PAGE No. FD105 Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com Effective length factor for torsion; $K_{LT.A} = 2.400;$ $K_{LT,B} = 1.400; + 2 \times h$ Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.83$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 160.8 mm c / t_w = $15.3 \times \varepsilon \leq 72 \times \varepsilon$; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) $c = (b - t_w - 2 \times r) / 2 = 88 mm$ Width of section; c / t_f = 5.2 × ϵ <= 9 × ϵ ; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 181.2 \text{ mm}$ Shear area factor; η = 1.000 $h_w/t_w < 72 \times \varepsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 221.8 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 3069 \text{ mm}^2$ $V_{c,Rd} = V_{pl,Rd} = N \times A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 1222.6 \text{ kN}$ Design shear resistance - cl 6.2.6(2); PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 $M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = 299.5 kNm$ Design bending moment; Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = N \times W_{pl,y} \times f_y / \gamma_{M0} = 673.9 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_{c} = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5 Curvature factor; $g = \sqrt{[1 - (I_z / I_y)]} = 0.818$ Poissons ratio; v = 0.3Shear modulus; $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained length; $L = (1.4 \times L_{s1} + 1.4 \times L_{s1} + 2 \times h) / 2 = 6102 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 577.6 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{pl,v} \times f_v / M_{cr})} = 1.146$ Limiting slenderness ratio; $\lambda_{LT.0} = 0.4$ $\overline{\lambda_{LT}} > \overline{\lambda_{LT,0}}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ $\phi_{\text{LT}} = 0.5 \times [1 + \alpha_{\text{LT}} \times (\overline{\lambda}_{\text{LT}} - \overline{\lambda}_{\text{LT},0}) + \beta \times \overline{\lambda}_{\text{LT}}^2] = 1.119$ LTB reduction determination factor; LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.611$ Modification factor; f = min(1 - 0.5 × (1 - k_c)× [1 - 2 × (λ_{LT} - 0.8)²], 1) = 1.000 Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.611$ Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times N \times W_{pl.y} \times f_y / \gamma_{M1} = 411.8 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment

CONTRACT	Eton Ave
PAGE No.	FD106
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\begin{array}{ll} \mbox{Check vertical deflection - Section 7.2.1} \\ \mbox{Consider deflection due to permanent and variable loads} \\ \mbox{Limiting deflection;} & & & & \\ \mbox{\delta}_{iim} = L_{s1} / 180 = 23.3 \mbox{ mm} \\ \mbox{Maximum deflection span 1;} & & & \\ \mbox{\delta} = max(abs(\delta_{max}), abs(\delta_{min})) = 9.873 \mbox{ mm} \\ \mbox{PASS - Maximum deflection does not exceed deflection limit} \\ \end{array}$

Therefore use 203UC86

CONTRACT	Eton Ave
PAGE No.	FD107
CONTRACT No.	6722
DATE	04/19
BY	GH

B1.5 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD108
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable imes 1.50

Analysis results

Maximum moment; M_{max} = 61.5 kNm; $M_{min} = 0 \text{ kNm}$ Maximum shear; V_{max} = 48.3 kN; V_{min} = -48.3 kN Deflection; δ_{max} = 9.2 mm; δ_{min} = 0 mm Maximum reaction at support A; $R_{A max} = 48.3 \text{ kN};$ $R_{A min} = 48.3 \text{ kN}$ Unfactored permanent load reaction at support A; $R_{A_Permanent} = 24.4 \text{ kN}$ Unfactored variable load reaction at support A; R_{A Variable} = 10.2 kN R_{B_min} = 48.3 kN Maximum reaction at support B; $R_{B_{max}} = 48.3 \text{ kN};$ Unfactored permanent load reaction at support B; $R_{B_{Permanent}} = 24.4 \text{ kN}$ Unfactored variable load reaction at support B; R_{B Variable} = 10.2 kN Section details RHS 250x150x10.0 (Tata Steel Celsius) Section type; Steel grade; S355H EN 10210-1:2006 - Hot finished structural hollow sections of non-alloy and fine grain steels Nominal thickness of element; t = 10.0 mm Nominal yield strength; $f_y = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity; $E = 210000 \text{ N/mm}^2$

Partial factors - Section 6.1 Resistance of cross-sections; γ_{M0}

 $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_v = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; K_{LT.A} = 1.400; + 2 × h $K_{LT,B} = 1.400; + 2 \times h$ Classification of cross sections - Section 5.5

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD109 PAGE No. J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com ΒY GH $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.81$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; $c = h - 3 \times t = 220 mm$ $c/t = 27.0 \times \varepsilon \le 72 \times \varepsilon;$ Class 1 Internal compression parts subject to compression only - Table 5.2 (sheet 1 of 3) Width of section; $c = b - 3 \times t = 120 mm$ $c/t = 14.7 \times \varepsilon \le 33 \times \varepsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t = 230 \text{ mm}$ Shear area factor; η = 1.000 $h_w/t < 72 \times \varepsilon/\eta$ Shear buckling resistance can be ignored $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 48.3 \text{ kN}$ Design shear force; Shear area - cl 6.2.6(3); $A_v = A \times h / (b + h) = 4683 \text{ mm}^2$ $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 959.8 \text{ kN}$ Design shear resistance - cl 6.2.6(2); PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 Design bending moment; $M_{Ed} = max(abs(M_{s1 max}), abs(M_{s1 min})) = 61.5 kNm$ Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = W_{pl,V} \times f_V / \gamma_{M0} = 216.8 \text{ kNm}$ PASS - Design bending resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1 Consider deflection due to permanent and variable loads Limiting deflection; $\delta_{\text{lim}} = L_{s1} / 250 = 20.4 \text{ mm}$ Maximum deflection span 1; $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 9.225 \text{ mm}$ PASS - Maximum deflection does not exceed deflection limit

Therefore use 250x150x10 RHS

CONTRACT	Eton Ave
PAGE No.	FD110
CONTRACT No.	6722
DATE	04/19
BY	GH

B1.6 Design

Steel beam analysis & design (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

Support conditions Support A Vertically restrained Rotationally free Support B Vertically restrained Rotationally free Applied loading Beam loads Permanent self weight of beam \times 1 Permanent full UDL 5.2 kN/m Variable full UDL 4.9 kN/m Permanent point load 132 kN at 400 mm Variable point load 37 kN at 400 mm Load combinations Load combination 1 Support A Permanent × 1.35 Variable × 1.50 Permanent × 1.35 Variable \times 1.50 Support B Permanent × 1.35

CONTRACT	Eton Ave
PAGE No.	FD111
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable imes 1.50

Analysis results Maximum moment; M_{max} = 123.6 kNm; $M_{min} = 0 \text{ kNm}$ V_{max} = 264 kN; V_{min} = -61.5 kN Maximum shear; Deflection; δ_{max} = 21 mm; δ_{min} = 0 mm Maximum reaction at support A; $R_{A max} = 264 \text{ kN}; R_{A min} = 264 \text{ kN}$ Unfactored permanent load reaction at support A; R_{A Permanent} = 140.9 kN Unfactored variable load reaction at support A; R_{A Variable} = 49.2 kN Maximum reaction at support B; $R_{B_{max}} = 61.5 \text{ kN};$ $R_{B_{min}} = 61.5 \text{ kN}$ $R_{B_{Permanent}} = 26.5 \text{ kN}$ Unfactored permanent load reaction at support B; Unfactored variable load reaction at support B; R_{B Variable} = 17.2 kN Section details Section type; UKC 203x203x71 (Tata Steel Advance) Steel grade; S355 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 17.3 \text{ mm}$ Nominal yield strength; $f_y = 345 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_v = 1.000$ $K_z = 1.000$ Effective length factor in minor axis; Effective length factor for torsion; $K_{LT.A} = 1.000;$ K_{LT.B} = 1.400; + 2 × h Classification of cross sections - Section 5.5

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD112 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA 6722 CONTRACT No. 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.com W: www.tzgpartnership.com $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.83$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 160.8 mm c / t_w = $19.5 \times \varepsilon \le 72 \times \varepsilon$; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 88 \text{ mm}$ $c/t_f = 6.2 \times \epsilon \le 9 \times \epsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 181.2 \text{ mm}$ Shear area factor; $\eta = 1.000$ $h_w/t_w < 72 \times \epsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 264 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 2427 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 483.5 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Combined bending and shear - Section 6.2.8 Reduction factor - cl.6.2.8(3); $\rho_v = [(2 \times V_{Ed} / V_{pl,Rd}) - 1]^2 = 0.009$ Check bending moment major (y-y) axis - Section 6.2.5 $M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = 123.6 kNm$ Design bending moment; Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = [(W_{pl,y} - t_w \times h^2 / 4) + (t_w \times h^2 / 4) \times (1 + t_w \times h^2 / 4)]$ $-\rho_v$)] × f_y / γ_{M0} = 275.2 kNm Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_{c} = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5 $g = \sqrt{[1 - (I_z / I_y)]} = 0.817$ Curvature factor; Poissons ratio; v = 0.3Shear modulus; $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained length; $L = (1.0 \times L_{s1} + 1.4 \times L_{s1} + 2 \times h) / 2 = 7416 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 326.2 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{([(W_{pl.y} - t_w \times h^2 / 4) + (t_w \times h^2 / 4) \times (1 - t_w \times h^2 / 4))]}$ (ρ_v)] × f_y / M_{cr}) = 1.378 $\overline{\lambda}_{LT.0} = 0.4$ Limiting slenderness ratio; $\overline{\lambda_{LT}} > \overline{\lambda_{LT,0}}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; b Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2] = 1.378$ LTB reduction determination factor; LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.484$ Modification factor; $f = min(1 - 0.5 \times (1 - k_c) \times [1 - 2 \times (\overline{\lambda}_{LT} - 0.8)^2], 1) = 1.000$ Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.484$

CONTRACT	Eton Ave
PAGE No.	FD113
CONTRACT No.	6722
DATE	04/19
BY	GH

Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times [(W_{pl.y} - t_w \times h^2 / 4) + (t_w \times h^2 / 4) \times (1 - \rho_v)] \times f_y / \gamma_{M1} = 133.1 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1 Consider deflection due to permanent and variable loads Limiting deflection; $\delta_{lim} = L_{s1} / 250 = 24 \text{ mm}$ Maximum deflection span 1; $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 20.951 \text{ mm}$ PASS - Maximum deflection does not exceed deflection limit

Therefore use 203UC71

C1.1 Design

CONTRACT	Eton Ave
PAGE No.	FD114
CONTRACT No.	6722
DATE	04/19
BY	GH

Steel member design (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex Tedds calculation version 4.3.01 Partial factors - Section 6.1 Resistance of cross-sections; $\gamma_{M0} = 1$ Resistance of members to instability; γ_{M1} = 1 Resistance of tensile members to fracture; $\gamma_{M2} = 1.1$ Design section 1 Section details RHS 160x80x10.0 (Tata Steel Celsius) Section type; Steel grade - EN 10210-1:2006; S275H Nominal thickness of element; $t_{nom} = t = 10 \text{ mm}$ Nominal yield strength; $f_v = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity; $E = 210000 \text{ N/mm}^2$ RHS 160x80x10.0 (Tata Steel Celsius) Section depth, h, 160 mm Section breadth b 80 mm Mass of section, Mass, 33.7 kg/m Section thickness, t, 10 mm Area of section, A, 4293 mm² Radius of gyration about y-axis, iv 54.702 mm Radius of gyration about z-axis, L, 30.951 mm Elastic section modulus about y-axis, W_{el.y}, 160561 mm³ Elastic section modulus about z-axis, Welz, 102805 mm3 Plastic section modulus about y-axis, $W_{\text{pl.y}}^{--}$ 209013 mm³ Plastic section modulus about z-axis, $W_{\text{pl.z}}$, 125305 mm³ 10 Second moment of area about y-axis, I_v, 12844910 mm⁴ Second moment of area about z-axis, I, 4112196 mm⁴ * -80-• Analysis results Design bending moment - Minor axis; M_{z,Ed} = 12 kNm Design axial compression force; N_{Ed} = 225 kN **Restraint spacing** Major axis lateral restraint; $L_v = 3000 \text{ mm}$ Minor axis lateral restraint; $L_z = 3000 \text{ mm}$ L_T = 3000 mm Torsional restraint; Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.92$ Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3)

Width of section; $c = b - 3 \times t = 50 \text{ mm}$

 $\alpha = \min([h / 2 + N_{Ed} / (2 \times 2 \times t \times f_y) - 3 \times t / 2] / c, 1) = 1.000$ $c / t = 5 = 5.4 \times \epsilon <= 396 \times \epsilon / (13 \times \alpha - 1);$ Class 1

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD115 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com GH ΒY E: admin@tzgpartnership.co W: www.tzgpartnership.com Internal compression parts subject to compression - Table 5.2 (sheet 1 of 3) Width of section; c = h - 3 × t = 130 mm $c/t = 13 = 14.1 \times \varepsilon \le 33 \times \varepsilon$; Class 1 Section is class 1 Check compression - Section 6.2.4 Design compression force; $N_{Ed} = 225 \text{ kN}$ Design resistance of section - eq 6.10; $N_{c,Rd} = N_{pl,Rd} = A \times f_y / \gamma_{M0} = 1180.5 \text{ kN}$ $N_{Ed} / N_{c,Rd} = 0.191$ PASS - Design compression resistance exceeds design compression Slenderness ratio for y-y axis flexural buckling - Section 6.3.1.3 Critical buckling length; L_{cr,y} = L_{y s1} = 3000 mm Critical buckling force; $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr,y}^2 = 2958.1 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\overline{\lambda}_{y} = \sqrt{(A \times f_{y} / N_{cr,y})} = 0.632$ Check y-y axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_y = 0.21$ Buckling reduction determination factor; $\phi_{\rm y} = 0.5 \times (1 + \alpha_{\rm y} \times (\overline{\lambda}_{\rm y} - 0.2) + \overline{\lambda}_{\rm y}^2) = 0.745$ Buckling reduction factor - eq 6.49; $\chi_v = \min(1/(\phi_v + \sqrt{(\phi_v^2 - \overline{\lambda}_v^2)}), 1) = 0.878$ Design buckling resistance - eq 6.47; $N_{b,y,Rd} = \chi_y \times A \times f_y / \gamma_{M1} = 1036 \text{ kN}$ $N_{Ed} / N_{b,y,Rd} = 0.217$ PASS - Design buckling resistance exceeds design compression Slenderness ratio for z-z axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,z} = L_{z s1} = 3000 \text{ mm}$ Critical buckling force; $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr,z}^2 = 947 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\overline{\lambda}_z = \sqrt{(A \times f_y / N_{cr,z})} = 1.116$ Check z-z axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_z = 0.21$ Buckling reduction determination factor; $\phi_z = 0.5 \times (1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2) = 1.22$ Buckling reduction factor - eq 6.49; $\chi_z = \min(1 / (\phi_z + \sqrt{(\phi_z^2 - \overline{\lambda}_z^2)}), 1) = 0.585$ Design buckling resistance - eq 6.47; $N_{b,z,Rd} = \chi_z \times A \times f_y / \gamma_{M1} = 690.3 \text{ kN}$ $N_{Ed} / N_{b,z,Rd} = 0.326$ PASS - Design buckling resistance exceeds design compression Check bending moment - Section 6.2.5 Design bending moment; $M_{z,Ed} = 12 \text{ kNm}$ Design bending resistance moment - eq 6.13; $M_{c,z,Rd} = M_{pl,z,Rd} = W_{pl,z} \times f_v / \gamma_{M0} = 34.5 \text{ kNm}$ $M_{z.Ed} / M_{c.z.Rd} = 0.348$ PASS - Design bending resistance moment exceeds design bending moment Check bending and axial force - Section 6.2.9 Normal force to plastic resistance force ratio; $n = N_{Ed} / N_{pl,Rd} = 0.191$ $a_f = min((A - 2 \times h \times t) / A, 0.5) = 0.255$ Reduced plastic moment resistance - Eq.6.40; $M_{N,z,Rd} = M_{pl,z,Rd} \times min((1 - n) / (1 - 0.5 \times a_f), 1) = 32.0$ kNm $M_{z,Ed} / M_{N,z,Rd} = 0.375$ PASS - Reduced bending resistance moment exceeds design bending moment Check combined bending and compression - Section 6.3.3

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD116 PAGE No. ų Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com DATE ΒY GH Equivalent uniform moment factors - Table B.3; C_{my} = 1.000 $C_{mz} = 1.000$ $C_{mLT} = 1.000$ Interaction factors k_{ij} for members not susceptible to torsional deformations - Table B.1 Characteristic moment resistance; $M_{y,Rk} = W_{pl.y} \times f_y = 57.5 \text{ kNm}$ $M_{z,Rk} = W_{pl.z} \times f_y = 34.5 \text{ kNm}$ Characteristic moment resistance; $N_{Rk} = A \times f_{v} = 1180.5 \text{ kN}$ Characteristic resistance to normal force; $k_{zz} = C_{mz} \times (1 + min(\overline{\lambda}_z - 0.2, 0.8) \times N_{Ed} / (\chi_z \times N_{Rk} / \gamma_{M1})) = 1.261$ Interaction factors; $k_{yz} = 0.6 \times k_{zz} = 0.756$ $\chi_{LT} = 1.000$; Interaction formulae - eq 6.61 & eq 6.62; $N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1}) + k_{yz} \times M_{z,Ed} / (M_{z,Rk} / \gamma_{M1}) =$ 0.481 N_{Ed} / ($\chi_z \times N_{Rk}$ / γ_{M1}) + $k_{zz} \times M_{z,Ed}$ / ($M_{z,Rk}$ / γ_{M1}) = 0.765

PASS - Combined bending and compression checks are satisfied

Therefore use 160x80x10 RHS

CONTRACT	Eton Ave
PAGE No.	FD117
CONTRACT No.	6722
DATE	04/19
BY	GH

C1.2 Design

Steel member design (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex Tedds calculation version 4.3.01 Partial factors - Section 6.1 Resistance of cross-sections; $\gamma_{M0} = 1$ Resistance of members to instability; γ_{M1} = 1 Resistance of tensile members to fracture; $\gamma_{M2} = 1.1$ Design section 1 Section details CHS 139.7x8.0 (Tata Steel Celsius) Section type; Steel grade - EN 10210-1:2006; S355H Nominal thickness of element; t_{nom} = t = 8 mm Nominal yield strength; $f_y = 355 \text{ N/mm}^2$ $f_u = 470 \text{ N/mm}^2$ Nominal ultimate tensile strength; Modulus of elasticity; E = 210000 N/mm² CHS 139.7x8.0 (Tata Steel Celsius)

CHS 139.7x8.0 (Tata Steel Celsius) Diameter, d, 139.7 mm Mass of section, Mass, 26 kg/m Section thickness, t, 8 mm Area of section, A, 3310 mm² Radius of gyration about y-axis, i_y, 46.649 mm Radius of gyration about z-axis, i_z, 46.649 mm Elastic section modulus about y-axis, W_{el.y}, 103119 mm³ Elastic section modulus about z-axis, W_{el.y}, 103119 mm³ Plastic section modulus about y-axis, W_{pl.y}, 138930 mm³ Plastic section modulus about z-axis, W_{pl.y}, 138930 mm³ Second moment of area about y-axis, I_y, 7202889 mm⁴

Analysis results Design bending moment - Major axis; $M_{v,Ed} = 14$ kNm Design axial compression force; N_{Ed} = 270 kN **Restraint spacing** Major axis lateral restraint; $L_v = 2700 \text{ mm}$ $L_z = 2700 \text{ mm}$ Minor axis lateral restraint; Torsional restraint; L_T = 2700 mm Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2/f_y]} = 0.81$ Tubular sections - Table 5.2 (sheet 3 of 3) d / t = 17.5 = 26.4 × ϵ^2 <= 50 × ϵ^2 ; Class 1 Section is class 1 Check compression - Section 6.2.4 Design compression force; $N_{Ed} = 270 \text{ kN}$ Design resistance of section - eq 6.10; $N_{c,Rd} = N_{pl,Rd} = A \times f_v / \gamma_{M0} = 1175 \text{ kN}$

CONTRACT	Eton Ave
PAGE No.	FD118
CONTRACT No.	6722
DATE	04/19
BY	GH

$N_{Ed} / N_{c,Rd} = 0.23$

PASS - Design compression resistance exceeds design compression Slenderness ratio for y-y axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,y} = L_{y_s1} = 2700 \text{ mm}$ Critical buckling force; $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr,y}^2 = 2047.9 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\lambda_v = \sqrt{(A \times f_v / N_{cr.v})} = 0.757$ Check y-y axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_y = 0.21$ $\phi_v = 0.5 \times (1 + \alpha_v \times (\overline{\lambda}_v - 0.2) + \overline{\lambda}_v^2) = 0.845$ Buckling reduction determination factor; Buckling reduction factor - eq 6.49; $\chi_v = \min(1/(\phi_v + \sqrt{(\phi_v^2 - \overline{\lambda_v}^2)}), 1) = 0.819$ Design buckling resistance - eq 6.47; $N_{b,y,Rd} = \chi_y \times A \times f_y / \gamma_{M1} = 962.5 \text{ kN}$ $N_{Ed} / N_{b,y,Rd} = 0.281$ PASS - Design buckling resistance exceeds design compression Slenderness ratio for z-z axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,z} = L_{z s1} = 2700 \text{ mm}$ Critical buckling force; $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr,z}^2 = 2047.9 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\overline{\lambda}_z = \sqrt{(A \times f_v / N_{cr,z})} = 0.757$ Check z-z axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; α_z = 0.21 Buckling reduction determination factor; $\phi_z = 0.5 \times (1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2) = 0.845$ Buckling reduction factor - eq 6.49; $\chi_z = \min(1/(\phi_z + \sqrt{(\phi_z^2 - \overline{\lambda}_z^2)}), 1) = 0.819$ Design buckling resistance - eq 6.47; $N_{b,z,Rd} = \chi_z \times A \times f_y / \gamma_{M1} = 962.5 \text{ kN}$ $N_{Ed} / N_{b,z,Rd} = 0.281$ PASS - Design buckling resistance exceeds design compression Check bending moment - Section 6.2.5 Design bending moment; $M_{y,Ed} = 14 \text{ kNm}$ Design bending resistance moment - eq 6.13; $M_{c,y,Rd} = M_{pl,y,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 49.3 \text{ kNm}$ $M_{y,Ed} / M_{c,y,Rd} = 0.284$ PASS - Design bending resistance moment exceeds design bending moment Check bending and axial force - Section 6.2.9 Normal force to plastic resistance force ratio; $n = N_{Ed} / N_{pl,Rd} = 0.23$ Reduced plastic moment resistance - Eq.6.39; $M_{N,y,Rd} = M_{pl,y,Rd} \times (1 - n^{1.7}) = 45.3 \text{ kNm}$ $M_{y,Ed} / M_{N,y,Rd} = 0.309$ PASS - Reduced bending resistance moment exceeds design bending moment Check combined bending and compression - Section 6.3.3 Equivalent uniform moment factors - Table B.3; C_{my} = 1.000 $C_{mz} = 1.000$ $C_{mLT} = 1.000$ Interaction factors k_{ij} for members not susceptible to torsional deformations - Table B.1 $M_{y,Rk} = W_{pl,y} \times f_y = 49.3 \text{ kNm}$ Characteristic moment resistance; $M_{z,Rk} = W_{pl,z} \times f_v = 49.3 \text{ kNm}$ Characteristic moment resistance; Characteristic resistance to normal force; $N_{Rk} = A \times f_v = 1175 \text{ kN}$ $k_{yy} = C_{my} \times (1 + min(\lambda_y - 0.2, 0.8) \times N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1})) = 1.156$ Interaction factors; $k_{zv} = 0.6 \times k_{vv} = 0.694$

CONTRACT	Eton Ave
PAGE No.	FD119
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\chi_{LT} = 1.000$

;

Interaction formulae - eq 6.61 & eq 6.62; 0.609

 $N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1}) + k_{yy} \times M_{y,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) =$

 $N_{Ed} / (\chi_z \times N_{Rk} / \gamma_{M1}) + k_{zy} \times M_{y,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) = 0.477$ PASS - Combined bending and compression checks are satisfied

Therefore use 139.7x8 CHS

C1.3 Design

CONTRACT	Eton Ave
PAGE No.	FD120
CONTRACT No.	6722
DATE	04/19
BY	GH

Steel member design (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex Tedds calculation version 4.3.01 Partial factors - Section 6.1 Resistance of cross-sections; $\gamma_{M0} = 1$ Resistance of members to instability; γ_{M1} = 1 Resistance of tensile members to fracture; $\gamma_{M2} = 1.1$ Design section 1 Section details Section type; CHS 76.1x6.3 (Tata Steel Celsius) Steel grade - EN 10210-1:2006; S355H Nominal thickness of element; $t_{nom} = t = 6.3 \text{ mm}$ Nominal yield strength; $f_v = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

CHS 76.1x6.3 (Tata Steel Celsius) Diameter, d, 76.1 mm Mass of section, Mass, 10.8 kg/m Section thickness, t, 6.3 mm Area of section, A, 1381 mm² Radius of gyration about y-axis, i_y 24.778 mm Radius of gyration about y-axis, i_y 24.778 mm Elastic section modulus about y-axis, W_{el y}, 22291 mm³ Elastic section modulus about z-axis, W_{el y}, 22291 mm³ Plastic section modulus about z-axis, W_{pl y}, 30777 mm³ Second moment of area about z-axis, I_y, 848185 mm⁴ Second moment of area about z-axis, I_y, 848185 mm⁴

Analysis results Design bending moment - Major axis; $M_{y,Ed} = 2 \text{ kNm}$ Design axial compression force; N_{Ed} = 55 kN **Restraint spacing** Major axis lateral restraint; $L_v = 3000 \text{ mm}$ Minor axis lateral restraint; L_z = 3000 mm Torsional restraint; L_T = 3000 mm Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.81$ Tubular sections - Table 5.2 (sheet 3 of 3) d / t = 12.1 = $18.2 \times \varepsilon^2 <= 50 \times \varepsilon^2$; Class 1 Section is class 1 Check compression - Section 6.2.4

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS PAGE No. FD121 Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 admin@tzgpartnership.com GH ΒY E: admin@tzgpartnership.co W: www.tzgpartnership.com Design compression force; $N_{Ed} = 55 \text{ kN}$ Design resistance of section - eq 6.10; $N_{c,Rd} = N_{pl,Rd} = A \times f_y / \gamma_{M0} = 490.4 \text{ kN}$ $N_{Ed} / N_{c,Rd} = 0.112$ PASS - Design compression resistance exceeds design compression Slenderness ratio for y-y axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,y} = L_{y_s1} = 3000 \text{ mm}$ Critical buckling force; $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr,y}^2 = 195.3 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\overline{\lambda}_{v} = \sqrt{(A \times f_{v} / N_{cr,v})} = 1.585$ Check y-y axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_y = 0.21$ Buckling reduction determination factor; $\phi_{y} = 0.5 \times (1 + \alpha_{y} \times (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}) = 1.901$ Buckling reduction factor - eq 6.49; $\chi_y = \min(1/(\phi_y + \sqrt{(\phi_y^2 - \overline{\lambda}_y^2)}), 1) = 0.339$ Design buckling resistance - eq 6.47; $N_{b,y,Rd} = \chi_y \times A \times f_y / \gamma_{M1} = 166.2 \text{ kN}$ $N_{Ed} / N_{b,y,Rd} = 0.331$ PASS - Design buckling resistance exceeds design compression Slenderness ratio for z-z axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,z} = L_{z s1} = 3000 \text{ mm}$ Critical buckling force; $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr,z}^2 = 195.3 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\lambda_z = \sqrt{(A \times f_y / N_{cr,z})} = 1.585$ Check z-z axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_z = 0.21$ Buckling reduction determination factor; $\phi_z = 0.5 \times (1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2) = 1.901$ Buckling reduction factor - eq 6.49; $\chi_z = \min(1/(\phi_z + \sqrt{(\phi_z^2 - \overline{\lambda}_z^2)}), 1) = 0.339$ $N_{b.z,Rd} = \chi_z \times A \times f_v / \gamma_{M1} = 166.2 \text{ kN}$ Design buckling resistance - eq 6.47; $N_{Ed} / N_{b,z,Rd} = 0.331$ PASS - Design buckling resistance exceeds design compression Check bending moment - Section 6.2.5 Design bending moment; $M_{y,Ed} = 2 \text{ kNm}$ Design bending resistance moment - eq 6.13; $M_{c,y,Rd} = M_{pl,y,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 10.9 \text{ kNm}$ $M_{y,Ed} / M_{c,y,Rd} = 0.183$ PASS - Design bending resistance moment exceeds design bending moment Check bending and axial force - Section 6.2.9 Normal force to plastic resistance force ratio; $n = N_{Ed} / N_{pl,Rd} = 0.112$ Reduced plastic moment resistance - Eq.6.39; $M_{N,y,Rd} = M_{pl,y,Rd} \times (1 - n^{1.7}) = 10.7 \text{ kNm}$ $M_{y,Ed} / M_{N,y,Rd} = 0.188$ PASS - Reduced bending resistance moment exceeds design bending moment Check combined bending and compression - Section 6.3.3 Equivalent uniform moment factors - Table B.3; $C_{my} = 1.000$ $C_{mz} = 1.000$ $C_{mLT} = 1.000$ Interaction factors k_{ii} for members not susceptible to torsional deformations - Table B.1 Characteristic moment resistance; $M_{y,Rk} = W_{pl.y} \times f_y = 10.9 \text{ kNm}$ Characteristic moment resistance; $M_{z,Rk} = W_{pl.z} \times f_y = 10.9 \text{ kNm}$ $N_{Rk} = A \times f_v = 490.4 \text{ kN}$ Characteristic resistance to normal force;

	TZG PARTNERSHIP ENGINEERING CONSULTANTS
6.	Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA
	T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com

CONTRACT	Eton Ave
PAGE No.	FD122
CONTRACT No.	6722
DATE	04/19
BY	GH

Interaction factors; $k_{yy} = C_{my} \times (1 + min(\overline{\lambda}_y - 0.2, 0.8) \times N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1})) = 1.265$

 $k_{zy} = 0.6 \times k_{yy} = 0.759$

$$\chi_{LT} = 1.000$$

;

Interaction formulae - eq 6.61 & eq 6.62; 0.562

 N_{Ed} / ($\chi_y \times N_{Rk}$ / γ_{M1}) + $k_{yy} \times M_{y,Ed}$ / ($\chi_{LT} \times M_{y,Rk}$ / γ_{M1}) =

 $N_{Ed} / (\chi_z \times N_{Rk} / \gamma_{M1}) + k_{zy} \times M_{y,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) = 0.47$ PASS - Combined bending and compression checks are satisfied

Therefore use 76.1x6.3 CHS

C1.4 Design

CONTRACT	Eton Ave
PAGE No.	FD123
CONTRACT No.	6722
DATE	04/19
BY	GH

Steel member design (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex Tedds calculation version 4.3.01 Partial factors - Section 6.1 Resistance of cross-sections; $\gamma_{M0} = 1$ Resistance of members to instability; γ_{M1} = 1 Resistance of tensile members to fracture; $\gamma_{M2} = 1.1$ Design section 1 Section details Section type; SHS 100x100x8.0 (Tata Steel Celsius) Steel grade - EN 10210-1:2006; S355H Nominal thickness of element; t_{nom} = t = 8 mm Nominal yield strength; $f_v = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm² SHS 100x100x8.0 (Tata Steel Celsius) Section depth, h, 100 mm Section breadth, b, 100 mm

SHS 100x100x8.0 (Tata Steel Celsius)
Section depth, h, 100 mm
Section breadth, b, 100 mm
Mass of section, Mass, 22.6 kg/m
Section thickness, t, 8 mm
Area of section, A, 2875 mm²
Radius of gyration about y-axis, i_y, 37.279 mm
Radius of gyration about y-axis, i_y, 37.279 mm
Elastic section modulus about y-axis, W_{el,y}, 79919 mm³
Plastic section modulus about z-axis, W_{el,y}, 79919 mm³
Plastic section modulus about z-axis, W_{pl,y}, 98184 mm³
Plastic section modulus about z-axis, i_y, 3995961 mm⁴

Analysis results

Design bending moment - Major axis; $M_{y,Ed} = 11 \text{ kNm}$ Design axial compression force; $N_{Ed} = 240 \text{ kN}$ Restraint spacing

Major axis lateral restraint; $L_y = 2700 \text{ mm}$

Minor axis lateral restraint; $L_z = 2700 \text{ mm}$

Torsional restraint; $L_T = 2700 \text{ mm}$ Classification of cross sections - Section 5.5

 $\varepsilon = \sqrt{[235 \text{ N/mm}^2/f_v]} = 0.81$

Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3) Width of section; $c = h - 3 \times t = 76 \text{ mm}$

 $\alpha = min([h / 2 + N_{Ed} / (2 \times 2 \times t \times f_y) - 3 \times t / 2] / c, 1) = 0.778$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD124 PAGE No. ų Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 GH ΒY E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com $c/t = 9.5 = 11.7 \times \varepsilon \le 396 \times \varepsilon / (13 \times \alpha - 1);$ Class 1 Internal compression parts subject to compression - Table 5.2 (sheet 1 of 3) Width of section; $c = b - 3 \times t = 76 mm$ $c/t = 9.5 = 11.7 \times \varepsilon \le 33 \times \varepsilon$; Class 1 Section is class 1 Check compression - Section 6.2.4 Design compression force; $N_{Ed} = 240 \text{ kN}$ Design resistance of section - eq 6.10; $N_{c,Rd} = N_{pl,Rd} = A \times f_y / \gamma_{M0} = 1020.7 \text{ kN}$ $N_{Ed} / N_{c,Rd} = 0.235$ PASS - Design compression resistance exceeds design compression Slenderness ratio for y-y axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,y} = L_{y_s1} = 2700 \text{ mm}$ Critical buckling force; $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr,y}^2 = 1136.1 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\overline{\lambda}_y = \sqrt{(A \times f_y / N_{cr,y})} = 0.948$ Check y-y axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_y = 0.21$ Buckling reduction determination factor; $\phi_v = 0.5 \times (1 + \alpha_v \times (\overline{\lambda}_v - 0.2) + \overline{\lambda}_v^2) = 1.028$ Buckling reduction factor - eq 6.49; $\chi_y = \min(1/(\phi_y + \sqrt{(\phi_y^2 - \overline{\lambda}_y^2)}), 1) = 0.702$ Design buckling resistance - eq 6.47; $N_{b,y,Rd} = \chi_y \times A \times f_y / \gamma_{M1} = 716.3 \text{ kN}$ $N_{Ed} / N_{b,v,Rd} = 0.335$ PASS - Design buckling resistance exceeds design compression Slenderness ratio for z-z axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,z} = L_{z s1} = 2700 \text{ mm}$ Critical buckling force; $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr,z}^2 = 1136.1 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\overline{\lambda}_z = \sqrt{(A \times f_v / N_{cr,z})} = 0.948$ Check z-z axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_z = 0.21$ $\phi_z = 0.5 \times (1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2) = 1.028$ Buckling reduction determination factor; Buckling reduction factor - eq 6.49; $\chi_z = \min(1/(\phi_z + \sqrt{(\phi_z^2 - \overline{\lambda}_z^2)}), 1) = 0.702$ Design buckling resistance - eq 6.47; $N_{b,z,Rd} = \chi_z \times A \times f_y / \gamma_{M1} = 716.3 \text{ kN}$ $N_{Ed} / N_{b,z,Rd} = 0.335$ PASS - Design buckling resistance exceeds design compression Check bending moment - Section 6.2.5 Design bending moment; $M_{y,Ed} = 11 \text{ kNm}$ Design bending resistance moment - eq 6.13; $M_{c,v,Rd} = M_{pl,v,Rd} = W_{pl,v} \times f_v / \gamma_{M0} = 34.9 \text{ kNm}$ $M_{v,Ed} / M_{c,v,Rd} = 0.316$ PASS - Design bending resistance moment exceeds design bending moment Check bending and axial force - Section 6.2.9 Normal force to plastic resistance force ratio; $n = N_{Ed} / N_{pl,Rd} = 0.235$ $a_w = min((A - 2 \times b \times t) / A, 0.5) = 0.444$ Reduced plastic moment resistance - Eq.6.39; $M_{N,y,Rd} = M_{pl,y,Rd} \times min((1 - n) / (1 - 0.5 \times a_w), 1) = 34.3$ kNm $M_{y,Ed} / M_{N,y,Rd} = 0.321$ PASS - Reduced bending resistance moment exceeds design bending moment

CONTRACT	Eton Ave
PAGE No.	FD125
CONTRACT No.	6722
DATE	04/19
BY	GH

Check combined bending and compression - Section 6.3.3 Equivalent uniform moment factors - Table B.3; C_{my} = 1.000

 $C_{mz} = 1.000$ $C_{mLT} = 1.000$ Interaction factors k_{ij} for members not susceptible to torsional deformations - Table B.1 Characteristic moment resistance; $M_{y,Rk} = W_{pl.y} \times f_y = 34.9 \text{ kNm}$ $M_{z,Rk} = W_{pl.z} \times f_y = 34.9 \text{ kNm}$ Characteristic moment resistance; $N_{Rk} = A \times f_{v} = 1020.7 \text{ kN}$ Characteristic resistance to normal force; $k_{yy} = C_{my} \times (1 + min(\overline{\lambda}_y - 0.2, 0.8) \times N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1})) = 1.251$ Interaction factors; $k_{zy} = 0.6 \times k_{yy} = 0.750$ $\chi_{LT} = 1.000$; $N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1}) + k_{yy} \times M_{y,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) =$ Interaction formulae - eq 6.61 & eq 6.62; 0.73 $N_{Ed} / (\chi_z \times N_{Rk} / \gamma_{M1}) + k_{zy} \times M_{y,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) = 0.572$ PASS - Combined bending and compression checks are satisfied

Therefore use 100x100x6.3 SHS

CONTRACT	Eton Ave
PAGE No.	FD126
CONTRACT No.	6722
DATE	04/19
BY	GH

GROUND FLOOR MEMBER DESIGN

J0.1 Design

SCI		Tata Steel		v9.0.30.0
Job Reference:			Date:	13/3/2019
Deck Reference: CF60/1.2_	350		Time:	15:38:22
Company Name:			Job No:	
Client Name:			Calcs By:	
Checked By:			File Name:	J0.1.pmd
	Sur	mmary Output		
Note: Section	Designed to Eur	ocodes, United	Kingdom Nation	al Annex
Construction Stage:	PASS	Max Unity	/ Factor:	0.52
Normal Stage:	PASS	Max Unity	Factor:	0.48
Fire Condition:	PASS	Max Unity	Factor:	0.00
Serviceability:	SATISFACTORY	Max Unity	Factor:	0.86
	*** Sec	tion Adequate	***	
Floor Plan Data (propped cor	nposite construct	tion with CornF	lor 60/1.2/S350 d	lecking)
Beam centres	4.60 m	Profile spa	n type	Single
Beam or wall width	152 mm	Propping		Single (at 1/2 span)
Prop width	100 mm			
		Concrete s	pan type	Single
Profile Data (ComFlor 60/1.2/	S350 decking. G	ade C30/37)		
Depth	60 mm	Pitch of de	ck ribs	300 mm
Trough width	120 mm	Crest width	ı	130.7 mm
Nominal sheet thickness	1.20 mm	Design she	eet thickness	1.16 mm
Deck weight	0.14 kN/m²	Yield stren	gth	350 N/mm²
Concrete Slab (Normal Weigh	nt Concrete ; Mes	sh:A393)		
Overall slab depth	150 mm	,		
Concrete characteristic strength	30 N/mm ²	Concrete w	vet density	2550 kg/m³
Modular ratio	10	Concrete d	ry density	2450 kg/m ³
Bar reinforcement :				
Diameter	8 mm	Yield stren	gth	500 N/mm ²
Distance from slab soffit	30 mm			
Mesh reinforcement :				
Mesh	A393	Yield stren	gth	500 N/mm²
Cover to Mesh	30 mm	Mesh Laye	ers	Single
Account for End Anchorage	No	Shear con	nectors per rib	N/A
Diameter of Shear Connectors	N/A			
Screed depth	75 mm	Screed der	nsity	2000 kg/m³
Section Properties				
*** Note - 1: All values of inertia a	are expressed in st	eel units		
*** Note - 2: Average inertia is us	sed for deflection c	alculations for th	e composite stage	
*** Note - 3: Cracked dynamic in	ertia is used for na	tural frequency c	alculations	
Deck Profile				

Sagging Inertia, Iy132.910 cm4/mArea of profile (Net), Ap1721 mm²/mHogging Inertia, Iy121.600 cm4/mEffective area of profile1576.00 mm²/m

TZG PARTNERSHIP ENGINEERING CONSULTANTS Orchard House 114-118 Cherry Orchard Road Croydon CR0 6BA T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com		CONTRACT PAGE No. CONTRACT No. DATE BY	Eton Ave FD127 6722 04/19 GH
Composite Inertia, ly - Uncracked Average inertia Shear bond coefficients - Mr Concrete volume	2472 cm4/m 1928 cm4/m 178.39 0.118 m³/m/m	Inertia, ly - Cracked Cracked inertia (dynamic) Kr	1385 cm4/m 1569 cm4/m 0.099400
Loads Acting on Slab (Actions) *** Note: Slab subjected to uniformly dis Imposed (occupancy) Ceilings and services Self weight of concrete slab (wet) Self weight of concrete slab (dry) Construction load Line Loads Perpendicular to Deck	stributed loads (UDL) ONL 1.50 kN/m ² 0.20 kN/m ² 2.96 kN/m ² 2.84 kN/m ² 1.50 kN/m ² Span (Actions)	Y Partitions Finishes Self weight of decking Self weight of screeds	0.00 kN/m² 0.80 kN/m² 0.14 kN/m² 1.47 kN/m²
None Line Loads Perpendicular to Deck	(Actions)		
Fire Data Design method Non-permanent imposed loads	Bar Method N/A	Fire resistance period	30 mins
Partial Safety Factors Actions Permanent, gamma G Permanent - accidental, gamma GA Variable, gamma Q Combination factor - Fire, psi 1 Combination factor, psi 0	1.35 N/A 1.50 0.70 0.70	Materials Structural steel - elastic, gamma Structural steel - buckling, gamm Concrete, gamma C Reinforcement, gamma S Combination factor, psi 2	M0 1.00 na M1 1.00 1.50 1.15 0.60

Therefore use Tata Comflor 60 1.2mm gauge 150 slab A393 top H8 in trough single row of props in temporary condition

CONTRACT	Eton Ave
PAGE No.	FD128
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.1 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD129
CONTRACT No.	6722
DATE	04/19
BY	GH

$\begin{array}{ll} \mbox{Variable} \times 1.50 \\ \mbox{Support B} & \mbox{Permanent} \times 1.35 \end{array}$

Variable imes 1.50

Analysis results

Maximum moment; M_{max} = 285.6 kNm; $M_{min} = 0 kNm$ Maximum shear: V_{max} = 184.7 kN; V_{min} = -184.7 kN δ_{max} = 11.7 mm; δ_{min} = 0 mm Deflection: Maximum reaction at support A; $R_{A max} = 184.7 \text{ kN};$ $R_{A min} = 184.7 \text{ kN}$ Unfactored permanent load reaction at support A; R_{A Permanent} = 99 kN Unfactored variable load reaction at support A; R_{A Variable} = 34 kN Maximum reaction at support B; R_{B max} = 184.7 kN; R_{B min} = 184.7 kN $R_{B_{Permanent}} = 99 \text{ kN}$ Unfactored permanent load reaction at support B; Unfactored variable load reaction at support B; R_{B_Variable} = 34 kN Section details Section type; UKC 203x203x86 (Tata Steel Advance) Steel grade; S355 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 20.5 mm$ Nominal yield strength; $f_y = 345 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity; $E = 210000 \text{ N/mm}^2$

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_y = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; $K_{LTA} = 0.800$;

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD130 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 . 04/19 DATE T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 GH ΒY admin@tzgpartnership.com W: www.tzgpartnership.com $K_{LT.B} = 0.800;$ Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.83$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 160.8 mm c / t_w = $15.3 \times \varepsilon \leq 72 \times \varepsilon$; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 88 \text{ mm}$ $c / t_f = 5.2 \times \epsilon \le 9 \times \epsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 181.2 \text{ mm}$ Shear area factor; η = 1.000 $h_w/t_w < 72 \times \epsilon/\eta$ Shear buckling resistance can be ignored $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 184.7 \text{ kN}$ Design shear force; Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 3069 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 611.3 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 $M_{Ed} = max(abs(M_{s1 max}), abs(M_{s1 min})) = 285.6 kNm$ Design bending moment; Design bending resistance moment - eq 6.13; $M_{c.Rd} = M_{pl.Rd} = W_{pl.y} \times f_y / \gamma_{M0} = 337 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_{c} = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5 $g = \sqrt{[1 - (I_z / I_y)]} = 0.818$ Curvature factor; Poissons ratio; v = 0.3Shear modulus; G = E / $[2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained length; $L = 0.8 \times L_{s1} = 2880 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 1489.7 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{pl,v} \times f_v / M_{cr})} = 0.713$ $\overline{\lambda}_{LT.0} = 0.4$ Limiting slenderness ratio; $\lambda_{LT} > \lambda_{LT,0}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; b Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ LTB reduction determination factor; $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2] = 0.744$ LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.863$ f = min(1 - 0.5 × (1 - k_c)× [1 - 2 × (λ_{LT} - 0.8)²], 1) = 1.000 Modification factor; Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod}$ = min(χ_{LT} / f, 1) = 0.863 Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{pl,y} \times f_y / \gamma_{M1} = 290.8 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1

CONTRACT	Eton Ave
PAGE No.	FD131
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\begin{array}{ll} \mbox{Consider deflection due to permanent and variable loads} \\ \mbox{Limiting deflection;} & & & & \\ \delta_{lim} = L_{s1} \,/ \, 250 = 14.4 \mbox{ mm} \\ \mbox{Maximum deflection span 1;} & & & \\ \delta = \max(abs(\delta_{max}), \, abs(\delta_{min})) = 11.654 \mbox{ mm} \\ \mbox{PASS - Maximum deflection does not exceed deflection limit} \\ \end{array}$

Therefore use 203UC86 S355

CONTRACT	Eton Ave
PAGE No.	FD132
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.2 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD133
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable imes 1.50

Analysis results Maximum moment; M_{max} = 48.2 kNm; $M_{min} = 0 \text{ kNm}$ V_{max} = 15.3 kN; V_{min} = -28.7 kN Maximum shear; Deflection; δ_{max} = 6.2 mm; δ_{min} = 0 mm Maximum reaction at support A; $R_{A max} = 15.3 \text{ kN};$ $R_{A min} = 15.3 \text{ kN}$ Unfactored permanent load reaction at support A; R_{A Permanent} = 7.5 kN Unfactored variable load reaction at support A; R_{A_Variable} = 3.4 kN Maximum reaction at support B; $R_{B_{max}} = 28.7 \text{ kN};$ $R_{B_{min}} = 28.7 \text{ kN}$ Unfactored permanent load reaction at support B; $R_{B_Permanent}$ = 13.9 kN Unfactored variable load reaction at support B; R_{B Variable} = 6.6 kN Section details Section type; UKC 152x152x30 (Tata Steel Advance) Steel grade; S275 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 9.4 mm$ Nominal yield strength; $f_y = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

Partial factors - Section 6.1 Resistance of cross-sections; γ_{M0} = 1.00 Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has full lateral restraint Effective length factors Effective length factor in major axis; $K_v = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; $K_{LT.A} = 0.800;$ $K_{LT,B} = 0.800;$ Classification of cross sections - Section 5.5

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD134 PAGE No. •, Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com GH ΒY $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.92$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 123.6 mm c / t_w = $20.6 \times \varepsilon \le 72 \times \varepsilon$; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 65.6 \text{ mm}$ $c/t_f = 7.5 \times \epsilon \le 9 \times \epsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 138.8 \text{ mm}$ Shear area factor; η = 1.000 $h_w/t_w < 72 \times \varepsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 28.7 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 1156 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 183.5 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 Design bending moment; $M_{Ed} = max(abs(M_{s1 max}), abs(M_{s1 min})) = 48.2 kNm$ Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 68.1 \text{ kNm}$ PASS - Design bending resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1 Consider deflection due to variable loads $\delta_{\text{lim}} = L_{s1} / 360 = 13.9 \text{ mm}$ Limiting deflection; Maximum deflection span 1; $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 6.177 \text{ mm}$ PASS - Maximum deflection does not exceed deflection limit

Therefore use 152UC30

CONTRACT	Eton Ave
PAGE No.	FD135
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.3 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD136
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable × 1.50 Support B Permanent × 1.35

Variable imes 1.50

Analysis results

Maximum moment; M_{max} = 51.8 kNm; M_{min} = 0 kNm Maximum shear: V_{max} = 92.3 kN; V_{min} = -34.8 kN $\delta_{max} = 6.6 \text{ mm}; \quad \delta_{min} = 0 \text{ mm}$ Deflection: Maximum reaction at support A; $R_{A max} = 92.3 \text{ kN};$ $R_{A min} = 92.3 \text{ kN}$ Unfactored permanent load reaction at support A; R_{A Permanent} = 49.2 kN Unfactored variable load reaction at support A; R_{A_Variable} = 17.2 kN R_{B_min} = 34.8 kN Maximum reaction at support B; $R_{B max} = 34.8 \text{ kN};$ R_{B_Permanent} = 17.2 kN Unfactored permanent load reaction at support B; Unfactored variable load reaction at support B; R_{B_Variable} = 7.8 kN Section details Section type; UKC 152x152x30 (Tata Steel Advance) Steel grade; S275 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 9.4 \text{ mm}$ Nominal yield strength; $f_y = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity; $E = 210000 \text{ N/mm}^2$

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has full lateral restraint Effective length factors Effective length factor in major axis; $K_y = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; $K_{LT.A} = 0.800$;

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD137 PAGE No. J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 GH ΒY E: admin@tzgpartnership.com W: www.tzgpartnership.com $K_{LT.B} = 0.800;$ Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.92$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 123.6 mm c / t_w = 20.6 × ε <= 72 × ε ; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 65.6 \text{ mm}$ c / t_f = 7.5 $\times\,\epsilon$ <= 9 $\times\,\epsilon;$ Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 138.8 \text{ mm}$ Shear area factor; η = 1.000 $h_w/t_w < 72 \times \epsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 92.3 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 1156 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 183.5 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Combined bending and shear - Section 6.2.8 Reduction factor - cl.6.2.8(3); $\rho_v = [(2 \times V_{Ed} / V_{pl,Rd}) - 1]^2 = 0$ Check bending moment major (y-y) axis - Section 6.2.5 $M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = 51.8 \text{ kNm}$ Design bending moment; Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = [(W_{pl,y} - t_w \times h^2/4) + (t_w \times h^2/4) \times (1)]$ $-\rho_{v}$] × f_v / γ_{M0} = 68.1 kNm PASS - Design bending resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1 Consider deflection due to variable loads $\delta_{\text{lim}} = L_{s1} / 360 = 13.1 \text{ mm}$ Limiting deflection; Maximum deflection span 1; $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 6.569 \text{ mm}$ PASS - Maximum deflection does not exceed deflection limit

Therefore use 152UC30

CONTRACT	Eton Ave
PAGE No.	FD138
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.5 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD139
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable imes 1.50

Analysis results Maximum moment; M_{max} = 21.9 kNm; $M_{min} = 0 \text{ kNm}$ Maximum shear: V_{max} = 35.1 kN; V_{min} = -35.1 kN Deflection; δ_{max} = 1 mm; $\delta_{min} = 0 \text{ mm}$ Maximum reaction at support A; $R_{A max} = 35.1 \text{ kN};$ $R_{A min} = 35.1 \text{ kN}$ Unfactored permanent load reaction at support A; R_{A_Permanent} = 19 kN Unfactored variable load reaction at support A; R_{A Variable} = 6.3 kN Maximum reaction at support B; $R_{B_{max}} = 35.1 \text{ kN};$ $R_{B_{min}} = 35.1 \text{ kN}$ Unfactored permanent load reaction at support B; $R_{B_{Permanent}} = 19 \text{ kN}$ Unfactored variable load reaction at support B; R_{B Variable} = 6.3 kN Section details UKC 152x152x23 (Tata Steel Advance) Section type; Steel grade; S355 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 6.8 \text{ mm}$ Nominal yield strength; $f_y = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_v = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; $K_{LT.A} = 1.200; + 2 \times h$ $K_{LT,B} = 1.200; + 2 \times h$ Classification of cross sections - Section 5.5

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD140 PAGE No. J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 GH ΒY E: admin@tzgpartnership.com W: www.tzgpartnership.com $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.81$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 123.6 mm c / t_w = 26.2 × ε <= 72 × ε ; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 65.6 \text{ mm}$ $c / t_f = 11.9 \times \varepsilon \le 14 \times \varepsilon;$ Class 3 Section is class 3 Check shear - Section 6.2.6 Height of web: $h_w = h - 2 \times t_f = 138.8 \text{ mm}$ Shear area factor; $\eta = 1.000$ $h_w/t_w < 72 \times \epsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 35.1 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 997 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 204.4 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 Design bending moment; $M_{Ed} = max(abs(M_{s1 max}), abs(M_{s1 min})) = 21.9 kNm$ Design bending resistance moment - eq 6.14; $M_{c,Rd} = M_{el,Rd} = W_{el,y} \times f_y / \gamma_{MO} = 58.2 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_c = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5Curvature factor; $g = \sqrt{[1 - (I_z / I_y)]} = 0.825$ Poissons ratio; v = 0.3Shear modulus; $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained length; $L = 1.2 \times L_{s1} + 2 \times h = 3305 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 93.1 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{el,v} \times f_v / M_{cr})} = 1.186$ Limiting slenderness ratio; $\overline{\lambda}_{LT,0} = 0.4$ $\lambda_{LT} > \lambda_{LT,0}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; h Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2] = 1.161$ LTB reduction determination factor; LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.587$ f = min(1 - 0.5 × (1 - k_c)× [1 - 2 × ($\overline{\lambda}_{LT}$ - 0.8)²], 1) = 1.000 Modification factor; Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.587$ Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{el.y} \times f_y / \gamma_{M1} = 34.2 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1 Consider deflection due to variable loads Limiting deflection; $\delta_{\text{lim}} = L_{s1} / 360 = 6.9 \text{ mm}$

Eton Ave
FD141
6722
04/19
GH

 $\begin{array}{ll} \mbox{Maximum deflection span 1;} & \delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.969 \mbox{ mm} \\ PASS - Maximum deflection does not exceed deflection limit \\ \end{array}$

Therefore use 152UC23

CONTRACT	Eton Ave
PAGE No.	FD142
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.6 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD143
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable \times 1.50 Support B Permanent \times 1.35 Variable \times 1.50

Analysis results

Maximum moment; M_{max} = 102.6 kNm; $M_{min} = 0 kNm$ Maximum shear: $V_{max} = 75.6 \text{ kN}; V_{min} = -75.6 \text{ kN}$ δ_{max} = 1.8 mm; δ_{min} = 0 mm Deflection: Maximum reaction at support A; $R_{A max} = 75.6 \text{ kN};$ $R_{A min} = 75.6 \text{ kN}$ Unfactored permanent load reaction at support A; R_{A Permanent} = 40.9 kN Unfactored variable load reaction at support A; R_{A_Variable} = 13.6 kN Maximum reaction at support B; $R_{B max} = 75.6 \text{ kN};$ R_{B min} = 75.6 kN $R_{B_{Permanent}} = 40.9 \text{ kN}$ Unfactored permanent load reaction at support B; Unfactored variable load reaction at support B; R_{B_Variable} = 13.6 kN Section details Section type; UKC 203x203x52 (Tata Steel Advance) Steel grade; S275 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 12.5 mm$ Nominal yield strength; $f_y = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity; $E = 210000 \text{ N/mm}^2$

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_y = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; $K_{LT.A} = 1.200; + 2 \times h$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD144 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com -K_{LT.B} = 1.200; + 2 × h Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.92$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 160.8 mm c / t_w = 22.0 × ε <= 72 × ε ; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 88 \text{ mm}$ c / t_f = 7.6 × ϵ <= 9 × ϵ ; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 181.2 \text{ mm}$ η = 1.000 Shear area factor; $h_w/t_w < 72 \times \varepsilon/\eta$ Shear buckling resistance can be ignored $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 75.6 \text{ kN}$ Design shear force; Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 1875 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 297.6 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 $M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = 102.6 \text{ kNm}$ Design bending moment; Design bending resistance moment - eq 6.13; $M_{c.Rd} = M_{pl.Rd} = W_{pl.y} \times f_y / \gamma_{M0} = 156 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_{c} = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5 $g = \sqrt{[1 - (I_z / I_y)]} = 0.814$ Curvature factor; Poissons ratio; v = 0.3Shear modulus; $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained length; $L = 1.2 \times L_{s1} + 2 \times h = 4612 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 331.1 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{pl,v} \times f_v / M_{cr})} = 1.03$ Limiting slenderness ratio; $\lambda_{LT,0} = 0.4$ $\lambda_{LT} > \lambda_{LT,0}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2] = 1.005$ LTB reduction determination factor; LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.681$ Modification factor; f = min(1 - 0.5 × (1 - k_c)× [1 - 2 × (λ_{LT} - 0.8)²], 1) = 1.000 Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod}$ = min(χ_{LT} / f, 1) = 0.681 Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{pl,y} \times f_y / \gamma_{M1} = 106.3 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1

CONTRACT	Eton Ave
PAGE No.	FD145
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\begin{array}{ll} \mbox{Consider deflection due to variable loads} \\ \mbox{Limiting deflection;} & & & & \\ \mbox{$\delta_{lim}=L_{s1}$/$360=9.7 mm} \\ \mbox{Maximum deflection span 1;} & & & \\ \mbox{$\delta=max(abs(\delta_{max}), abs(\delta_{min}))=1.832 mm} \\ \mbox{$PASS-Maximum deflection does not exceed deflection limit} \\ \end{array}$

Therefore use 203UC52

CONTRACT	Eton Ave
PAGE No.	FD146
CONTRACT No.	6722
DATE	04/19
BY	GH

B0.7 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD147
CONTRACT No.	6722
DATE	04/19
BY	GH

M_{max} = 0 kNm; M_{min} = -39.5 kNm Maximum moment; V_{max} = 25.5 kN; V_{min} = -25.5 kN Maximum shear: $\delta_{max} = 0 mm;$ Deflection: δ_{min} = 5.7 mm $R_{A_{min}}$ = -25.5 kN Maximum reaction at support A; $R_{A max} = -25.5 \text{ kN};$ Unfactored variable load reaction at support A; RA Variable = -17 kN Maximum reaction at support B; $R_{B max} = -25.5 \text{ kN};$ $R_{B min} = -25.5 \text{ kN}$ Unfactored variable load reaction at support B; R_{B Variable} = -17 kN Section details Section type; UKC 152x152x30 (Tata Steel Advance) Steel grade; S275 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 9.4 \text{ mm}$ Nominal yield strength; $f_y = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

Partial factors - Section 6.1 Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_v = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; $K_{LT.A} = 0.850;$ $K_{LT,B} = 0.850;$ Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.92$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 123.6 mm c / t_w = 20.6 $\times \epsilon$ <= 72 $\times \epsilon$; Class 1

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD148 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 . DATE 04/19 T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 65.6 \text{ mm}$ c / t_f = 7.5 × ϵ <= 9 × ϵ ; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 138.8 \text{ mm}$ Shear area factor; η = 1.000 $h_w/t_w < 72 \times \epsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 25.5 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 1156 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 183.5 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 Design bending moment; $M_{Ed} = max(abs(M_{s1 max}), abs(M_{s1 min})) = 39.5 kNm$ Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = W_{pl,Y} \times f_y / \gamma_{M0} = 68.1 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_{c} = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5Curvature factor; $g = \sqrt{[1 - (I_z / I_y)]} = 0.824$ Poissons ratio; v = 0.3Shear modulus; G = E / $[2 \times (1 + v)]$ = 80769 N/mm² Unrestrained length; $L = 0.85 \times L_{s1} = 2635$ mm Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 208.7 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{pl.v} \times f_v / M_{cr})} = 0.857$ Limiting slenderness ratio; $\lambda_{LT.0} = 0.4$ $\overline{\lambda_{LT}} > \overline{\lambda_{LT,0}}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; b Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2] = 0.853$ LTB reduction determination factor; LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.785$ f = min(1 - 0.5 × (1 - k_c)× [1 - 2 × ($\overline{\lambda}_{LT}$ - 0.8)²], 1) = 1.000 Modification factor; Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.785$ Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{pl.y} \times f_y / \gamma_{M1} = 53.5 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1 Consider deflection due to permanent and variable loads Limiting deflection; $\delta_{\text{lim}} = L_{s1} / 250 = 12.4 \text{ mm}$ Maximum deflection span 1; $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 5.748 \text{ mm}$ PASS - Maximum deflection does not exceed deflection limit

Therefore use 152UC30

CONTRACT	Eton Ave
PAGE No.	FD149
CONTRACT No.	6722
DATE	04/19
BY	GH

C0.1 Design

CONTRACT	Eton Ave
PAGE No.	FD150
CONTRACT No.	6722
DATE	04/19
BY	GH

Steel member design (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex Tedds calculation version 4.3.01 Partial factors - Section 6.1 Resistance of cross-sections; γmo = **1** Resistance of members to instability; γM1 = **1** Resistance of tensile members to fracture; $\gamma_{M2} = 1.1$ **Design section 1** Section details SHS 100x100x10.0 (Tata Steel Celsius) Section type; Steel grade - EN 10210-1:2006; S275H Nominal thickness of element; t_{nom} = t = **10** mm Nominal yield strength; fy = 275 N/mm² Nominal ultimate tensile strength; fu = 410 N/mm² E = 210000 N/mm² Modulus of elasticity; SHS 100x100x10.0 (Tata Steel Celsius) Section depth, h, 100 mm Section breadth, b. 100 mm Mass of section, Mass, 27.4 kg/m Section thickness, t, 10 mm Area of section, A, 3493 mm² Radius of gyration about y-axis, iv, 36.373 mm Radius of gyration about z-axis, iz, 36.373 mm Elastic section modulus about y-axis, W_{el.v}, 92418 mm³ ġ Elastic section modulus about z-axis, W_{elz}, 92418 mm³ Plastic section modulus about y-axis, $W_{pl.y}^{a.r.}$, 116232 mm³ Plastic section modulus about z-axis, W_{pl.z}, 116232 mm³ Second moment of area about y-axis, I_y, 4620898 mm⁴ **∢**10⊧ Second moment of area about z-axis, I_z , 4620898 mm⁴ ¥ -100-Analysis results Design bending moment - Major axis; $M_{y,Ed} = 12 \text{ kNm}$ Design axial compression force; N_{Ed} = **240** kN **Restraint spacing** Major axis lateral restraint; Ly = 3300 mm Minor axis lateral restraint; $L_z = 3300 \text{ mm}$ Torsional restraint; L_T = **3300** mm **Classification of cross sections - Section 5.5** $\epsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.92$ Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3) Width of section; $c = h - 3 \times t = 70 \text{ mm}$ $\alpha = min([h / 2 + N_{Ed} / (2 \times 2 \times t \times f_y) - 3 \times t / 2] / c, 1) = 0.812$ $c / t = 7 = 7.6 \times \epsilon \le 396 \times \epsilon / (13 \times \alpha - 1);$ Class 1 Internal compression parts subject to compression - Table 5.2 (sheet 1 of 3) Width of section; $c = b - 3 \times t = 70 \text{ mm}$ $c/t = 7 = 7.6 \times \varepsilon \le 33 \times \varepsilon;$ Class 1 Section is class 1 **Check compression - Section 6.2.4** Design compression force; N_{Ed} = 240 kN Design resistance of section - eq 6.10; $N_{c,Rd} = N_{pl,Rd} = A \times f_{y} / \gamma_{M0} = 960.5 \text{ kN}$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD151 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 GH ΒY E: admin@tzgpartnership.com W: www.tzgpartnership.com $N_{Ed} / N_{c,Rd} = 0.25$ PASS - Design compression resistance exceeds design compression Slenderness ratio for y-y axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,y} = L_{y_s1} = 3300 \text{ mm}$ $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr,y}^2 = \textbf{879.5 kN}$ Critical buckling force; Slenderness ratio for buckling - eq 6.50; $\overline{\lambda}_y = \sqrt{(A \times f_y / N_{cr,y})} = 1.045$ Check y-y axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; a Imperfection factor - Table 6.1; α_v = **0.21** Buckling reduction determination factor: $\phi_y = 0.5 \times (1 + \alpha_y \times (\overline{\lambda}_y - 0.2) + \overline{\lambda}_y^2) = 1.135$ Buckling reduction factor - eq 6.49; $\chi_y = min(1 / (\phi_y + \sqrt{(\phi_y^2 - \overline{\lambda}_y^2)}), 1) = 0.634$ Design buckling resistance - eq 6.47; $N_{b,y,Rd} = \chi_y \times A \times f_y / \gamma_{M1} = 609 \text{ kN}$ $N_{Ed} / N_{b,y,Rd} = 0.394$ PASS - Design buckling resistance exceeds design compression Slenderness ratio for z-z axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,z} = L_{z s1} = 3300 \text{ mm}$ $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr,z}^2 = 879.5 \text{ kN}$ Critical buckling force; Slenderness ratio for buckling - eq 6.50; $\overline{\lambda}_z = \sqrt{(A \times f_y / N_{cr,z})} = 1.045$ Check z-z axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; a Imperfection factor - Table 6.1; α_z = **0.21** Buckling reduction determination factor; $\phi_z = 0.5 \times (1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2) = 1.135$ Buckling reduction factor - eq 6.49; $\chi_z = \min(1 / (\phi_z + \sqrt{(\phi_z^2 - \overline{\lambda}_z^2)}), 1) = 0.634$ $N_{b,z,Rd} = \chi_z \times A \times f_y / \gamma_{M1} = 609 \text{ kN}$ Design buckling resistance - eq 6.47; $N_{Ed} / N_{b,z,Rd} = 0.394$ PASS - Design buckling resistance exceeds design compression Check bending moment - Section 6.2.5 Design bending moment; $M_{y,Ed} = 12 \text{ kNm}$ Design bending resistance moment - eq 6.13; $M_{c,y,Rd} = M_{pl,y,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 32 \text{ kNm}$ $M_{v,Ed}$ / $M_{c,v,Rd} = 0.375$ PASS - Design bending resistance moment exceeds design bending moment Check bending and axial force - Section 6.2.9 Normal force to plastic resistance force ratio; $n = N_{Ed} / N_{pl,Rd} = 0.25$ $a_w = min((A - 2 \times b \times t) / A, 0.5) = 0.427$ Reduced plastic moment resistance - Eq.6.39; $M_{N,y,Rd} = M_{pl,y,Rd} \times min((1 - n) / (1 - 0.5 \times a_w), 1) = 30.5 \text{ kNm}$ $M_{y,Ed} / M_{N,y,Rd} = 0.394$ PASS - Reduced bending resistance moment exceeds design bending moment Check combined bending and compression - Section 6.3.3 Equivalent uniform moment factors - Table B.3; C_{my} = **1.000** $C_{mz} = \textbf{1.000}$ CmLT = 1.000 Interaction factors kij for members not susceptible to torsional deformations - Table B.1 Characteristic moment resistance; $M_{y,Rk} = W_{pl.y} \times f_y = 32 \text{ kNm}$ Characteristic moment resistance; $M_{z,Rk} = W_{pl,z} \times f_y = 32 \text{ kNm}$ Characteristic resistance to normal force; $N_{Rk} = A \times f_y = 960.5 \text{ kN}$ Interaction factors; $k_{yy} = C_{my} \times (1 + min(\overline{\lambda}_y - 0.2, 0.8) \times N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1})) = 1.315$ $k_{zy} = 0.6 \times k_{yy} = 0.789$ χ_{LT} = **1.000** Interaction formulae - eq 6.61 & eq 6.62; $N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1}) + k_{yy} \times M_{y,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) = 0.888$ $N_{Ed} \ / \ (\chi_z \times N_{Rk} \ / \ \gamma_{M1}) + k_{zy} \times M_{y,Ed} \ / \ (\chi_{LT} \times M_{y,Rk} \ / \ \gamma_{M1}) = 0.69$ PASS - Combined bending and compression checks are satisfied

Therefore use 100x100x10 RHS C0.3 Design

Eton Ave
FD152
6722
04/19
GH

Steel member design (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex Tedds calculation version 4.3.01 Partial factors - Section 6.1 Resistance of cross-sections; $\gamma_{M0} = 1$ Resistance of members to instability; γ_{M1} = 1 Resistance of tensile members to fracture; $\gamma_{M2} = 1.1$ Design section 1 Section details Section type; RHS 150x100x10.0 (Tata Steel Celsius) Steel grade - EN 10210-1:2006; S275H Nominal thickness of element; $t_{nom} = t = 10 \text{ mm}$ Nominal yield strength; $f_v = 275 \text{ N/mm}^2$ $f_u = 410 \text{ N/mm}^2$ Nominal ultimate tensile strength; Modulus of elasticity; E = 210000 N/mm² RHS 150x100x10.0 (Tata Steel Celsius) Section depth, h, 150 mm Section breadth, b, 100 mm Mass of section, Mass, 35.3 kg/m Section thickness, t, 10 mm Area of section, A, 4493 mm² Radius of gyration about y-axis, i_{y} , 53.426 mm Radius of gyration about z-axis, iz, 38.485 mm Elastic section modulus about y-axis, W_{el.y}, 170984 mm³ 50 Elastic section modulus about z-axis, W_{elz}, 133085 mm³ Plastic section modulus about y-axis, W_{pl.y}, 216049 mm³ Plastic section modulus about z-axis, W_{pl.z}, 161232 mm³ Second moment of area about y-axis, Iv, 12823765 mm4 10 ┥ Second moment of area about z-axis, I2, 6654232 mm4 4 ____100-Analysis results Design bending moment - Major axis; $M_{y,Ed} = 16$ kNm Design axial compression force; N_{Ed} = 322 kN **Restraint spacing** Major axis lateral restraint; $L_v = 3300 \text{ mm}$ Minor axis lateral restraint; $L_z = 3300 \text{ mm}$ L_T = 3300 mm Torsional restraint; Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.92$ Internal compression parts subject to bending and compression - Table 5.2 (sheet 1 of 3) Width of section; $c = h - 3 \times t = 120 mm$ $\alpha = \min([h / 2 + N_{Ed} / (2 \times 2 \times t \times f_v) - 3 \times t / 2] / c, 1) = 0.744$ $c/t = 12 = 13 \times \varepsilon \le 396 \times \varepsilon / (13 \times \alpha - 1);$ Class 1 Internal compression parts subject to compression - Table 5.2 (sheet 1 of 3) Width of section; $c = b - 3 \times t = 70 mm$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS PAGE No. FD153 ų Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com GH ΒY E: admin@tzgpartnership.co W: www.tzgpartnership.com c / t = 7 = 7.6 $\times \epsilon$ <= 33 $\times \epsilon$; Class 1 Section is class 1 Check compression - Section 6.2.4 Design compression force; $N_{Ed} = 322 \text{ kN}$ Design resistance of section - eq 6.10; $N_{c,Rd} = N_{pl,Rd} = A \times f_y / \gamma_{M0} = 1235.5 \text{ kN}$ $N_{Ed} / N_{c.Rd} = 0.261$ PASS - Design compression resistance exceeds design compression Slenderness ratio for y-y axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,y} = L_{y_s1} = 3300 \text{ mm}$ Critical buckling force; $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr,y}^2 = 2440.7 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\lambda_y = \sqrt{(A \times f_y / N_{cr,y})} = 0.711$ Check y-y axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_v = 0.21$ $\phi_{\rm v} = 0.5 \times (1 + \alpha_{\rm y} \times (\overline{\lambda}_{\rm y} - 0.2) + \overline{\lambda}_{\rm y}^2) = 0.807$ Buckling reduction determination factor; $\chi_y = \min(1 / (\phi_y + \sqrt{(\phi_y^2 - \overline{\lambda}_y^2)}), 1) = 0.842$ Buckling reduction factor - eq 6.49; $N_{b,y,Rd} = \chi_y \times A \times f_y / \gamma_{M1} = 1040.6 \text{ kN}$ Design buckling resistance - eq 6.47; $N_{Ed} / N_{b,v,Rd} = 0.309$ PASS - Design buckling resistance exceeds design compression Slenderness ratio for z-z axis flexural buckling - Section 6.3.1.3 Critical buckling length; L_{cr,z} = L_{z s1} = 3300 mm Critical buckling force; $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr,z}^2 = 1266.5 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\overline{\lambda}_z = \sqrt{(A \times f_y / N_{cr,z})} = 0.988$ Check z-z axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_z = 0.21$ Buckling reduction determination factor; $\phi_z = 0.5 \times (1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2) = 1.07$ Buckling reduction factor - eq 6.49; $\chi_z = \min(1/(\phi_z + \sqrt{(\phi_z^2 - \overline{\lambda}_z^2)}), 1) = 0.674$ Design buckling resistance - eq 6.47; $N_{b,z,Rd} = \chi_z \times A \times f_y / \gamma_{M1} = 833 \text{ kN}$ $N_{Ed} / N_{b.z.Rd} = 0.387$ PASS - Design buckling resistance exceeds design compression Check bending moment - Section 6.2.5 Design bending moment; $M_{v,Ed} = 16 \text{ kNm}$ Design bending resistance moment - eq 6.13; $M_{c,y,Rd} = M_{pl,y,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 59.4 \text{ kNm}$ $M_{y,Ed} / M_{c,y,Rd} = 0.269$ PASS - Design bending resistance moment exceeds design bending moment Check bending and axial force - Section 6.2.9 Normal force to plastic resistance force ratio; $n = N_{Ed} / N_{pl,Rd} = 0.261$ $a_w = min((A - 2 \times b \times t) / A, 0.5) = 0.5$ Reduced plastic moment resistance - Eq.6.39; $M_{N,y,Rd} = M_{pl,y,Rd} \times min((1 - n) / (1 - 0.5 \times a_w), 1) = 58.6$ kNm $M_{y,Ed} / M_{N,y,Rd} = 0.273$ PASS - Reduced bending resistance moment exceeds design bending moment Check combined bending and compression - Section 6.3.3 Equivalent uniform moment factors - Table B.3; $C_{my} = 1.000$ $C_{mz} = 1.000$

CONTRACT	Eton Ave
PAGE No.	FD154
CONTRACT No.	6722
DATE	04/19
BY	GH

$C_{mLT} = 1.000$

Interaction factors k_{ii} for members not susceptible to torsional deformations - Table B.1 Characteristic moment resistance; $M_{y,Rk} = W_{pl.y} \times f_y = 59.4 \text{ kNm}$ Characteristic moment resistance; $M_{z,Rk} = W_{pl.z} \times f_y = 44.3 \text{ kNm}$ Characteristic resistance to normal force; $N_{Rk} = A \times f_y = 1235.5 \text{ kN}$ $k_{yy} = C_{my} \times (1 + min(\overline{\lambda}_y - 0.2, 0.8) \times N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1})) = 1.158$ Interaction factors; $k_{zy} = 0.6 \times k_{yy} = 0.695$ $\chi_{LT} = 1.000$; $N_{Ed} / (\chi_v \times N_{Rk} / \gamma_{M1}) + k_{vv} \times M_{v,Ed} / (\chi_{LT} \times M_{v,Rk} / \gamma_{M1}) =$ Interaction formulae - eq 6.61 & eq 6.62; 0.621 N_{Ed} / ($\chi_z \times N_{Rk}$ / γ_{M1}) + $k_{zy} \times M_{y,Ed}$ / ($\chi_{LT} \times M_{y,Rk}$ / γ_{M1}) = 0.574

PASS - Combined bending and compression checks are satisfied

Therefore use 150x100x10 RHS

C0.6 Design

CONTRACT	Eton Ave
PAGE No.	FD155
CONTRACT No.	6722
DATE	04/19
BY	GH

Steel member design (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex Tedds calculation version 4.3.01 Partial factors - Section 6.1 Resistance of cross-sections; $\gamma_{M0} = 1$ Resistance of members to instability; γ_{M1} = 1 Resistance of tensile members to fracture; $\gamma_{M2} = 1.1$ Design section 1 Section details Section type; CHS 88.9x6.3 (Tata Steel Celsius) Steel grade - EN 10210-1:2006; S355H Nominal thickness of element; $t_{nom} = t = 6.3 \text{ mm}$ Nominal yield strength; $f_v = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

CHS 88.9x6.3 (Tata Steel Celsius) Diameter, d, 88.9 mm Mass of section, Mass, 12.8 kg/m Section thickness, t, 6.3 mm Area of section, A, 1635 mm² Radius of gyration about y-axis, i_y , 29.288 mm Radius of gyration about y-axis, i_y , 29.288 mm Elastic section modulus about y-axis, $W_{el,y}$ 31549 mm³ Elastic section modulus about y-axis, $W_{el,y}$ 31549 mm³ Plastic section modulus about y-axis, $W_{pl,y}$ 43067 mm³ Plastic section modulus about z-axis, $W_{pl,y}$ 43067 mm³ Second moment of area about y-axis, I_y , 1402361 mm⁴

Analysis results Design bending moment - Major axis; M_{v.Ed} = 5.5 kNm Design axial compression force; N_{Ed} = 115 kN **Restraint spacing** Major axis lateral restraint; $L_v = 3000 \text{ mm}$ $L_z = 3000 \text{ mm}$ Minor axis lateral restraint; Torsional restraint; L_T = 3000 mm Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.81$ Tubular sections - Table 5.2 (sheet 3 of 3) d / t = 14.1 = 21.3 × ε^2 <= 50 × ε^2 ; Class 1 Section is class 1 Check compression - Section 6.2.4

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS PAGE No. FD156 Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 admin@tzgpartnership.com GH ΒY E: admin@tzgpartnership.co W: www.tzgpartnership.com Design compression force; $N_{Ed} = 115 \text{ kN}$ Design resistance of section - eq 6.10; $N_{c,Rd} = N_{pl,Rd} = A \times f_v / \gamma_{M0} = 580.4 \text{ kN}$ $N_{Ed} / N_{c,Rd} = 0.198$ PASS - Design compression resistance exceeds design compression Slenderness ratio for y-y axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,y} = L_{y_s1} = 3000 \text{ mm}$ Critical buckling force; $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr,y}^2 = 323 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\overline{\lambda}_{v} = \sqrt{(A \times f_{v} / N_{cr,v})} = 1.341$ Check y-y axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_y = 0.21$ Buckling reduction determination factor; $\phi_{y} = 0.5 \times (1 + \alpha_{y} \times (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2}) = 1.518$ Buckling reduction factor - eq 6.49; $\chi_y = \min(1/(\phi_y + \sqrt{(\phi_y^2 - \overline{\lambda}_y^2)}), 1) = 0.448$ Design buckling resistance - eq 6.47; $N_{b,y,Rd} = \chi_y \times A \times f_y / \gamma_{M1} = 260.1 \text{ kN}$ $N_{Ed} / N_{b,y,Rd} = 0.442$ PASS - Design buckling resistance exceeds design compression Slenderness ratio for z-z axis flexural buckling - Section 6.3.1.3 Critical buckling length; $L_{cr,z} = L_{z s1} = 3000 \text{ mm}$ Critical buckling force; $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr,z}^2 = 323 \text{ kN}$ Slenderness ratio for buckling - eq 6.50; $\lambda_z = \sqrt{(A \times f_y / N_{cr,z})} = 1.341$ Check z-z axis flexural buckling resistance - Section 6.3.1.1 Buckling curve - Table 6.2; а Imperfection factor - Table 6.1; $\alpha_z = 0.21$ Buckling reduction determination factor; $\phi_z = 0.5 \times (1 + \alpha_z \times (\overline{\lambda}_z - 0.2) + \overline{\lambda}_z^2) = 1.518$ Buckling reduction factor - eq 6.49; $\chi_z = \min(1/(\phi_z + \sqrt{(\phi_z^2 - \overline{\lambda}_z^2)}), 1) = 0.448$ Design buckling resistance - eq 6.47; $N_{b,z,Rd} = \chi_z \times A \times f_v / \gamma_{M1} = 260.1 \text{ kN}$ $N_{Ed} / N_{b,z,Rd} = 0.442$ PASS - Design buckling resistance exceeds design compression Check bending moment - Section 6.2.5 Design bending moment; $M_{y,Ed} = 5.5 \text{ kNm}$ Design bending resistance moment - eq 6.13; $M_{c,y,Rd} = M_{pl,y,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 15.3 \text{ kNm}$ $M_{v,Ed} / M_{c,v,Rd} = 0.36$ PASS - Design bending resistance moment exceeds design bending moment Check bending and axial force - Section 6.2.9 Normal force to plastic resistance force ratio; $n = N_{Ed} / N_{pl,Rd} = 0.198$ Reduced plastic moment resistance - Eq.6.39; $M_{N,y,Rd} = M_{pl,y,Rd} \times (1 - n^{1.7}) = 14.3 \text{ kNm}$ $M_{y,Ed} / M_{N,y,Rd} = 0.384$ PASS - Reduced bending resistance moment exceeds design bending moment Check combined bending and compression - Section 6.3.3 Equivalent uniform moment factors - Table B.3; $C_{my} = 1.000$ $C_{mz} = 1.000$ $C_{mLT} = 1.000$ Interaction factors k_{ii} for members not susceptible to torsional deformations - Table B.1 Characteristic moment resistance; $M_{y,Rk} = W_{pl.y} \times f_y = 15.3 \text{ kNm}$ Characteristic moment resistance; $M_{z,Rk} = W_{pl.z} \times f_{y} = 15.3 \text{ kNm}$ $N_{Rk} = A \times f_{v} = 580.4 \text{ kN}$ Characteristic resistance to normal force;

4	TZG PARTNERSHIP ENGINEERING CONSULTANTS	
6.	Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA	
	T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com	

CONTRACT	Eton Ave
PAGE No.	FD157
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\text{Interaction factors;} \qquad k_{yy} = C_{my} \times (1 + \min(\overline{\lambda}_y - 0.2, 0.8) \times N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1})) = 1.354$

 $k_{zy} = 0.6 \times k_{yy} = 0.812$

 $\chi_{LT} = 1.000$

;

Interaction formulae - eq 6.61 & eq 6.62; 0.929 $N_{Ed} / (\chi_y \times N_{Rk} / \gamma_{M1}) + k_{yy} \times M_{y,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) =$

 $N_{Ed} / (\chi_z \times N_{Rk} / \gamma_{M1}) + k_{zy} \times M_{y,Ed} / (\chi_{LT} \times M_{y,Rk} / \gamma_{M1}) = 0.734$ PASS - Combined bending and compression checks are satisfied

Therefore use 88.9x6.3CHS

B0.8 Design

CONTRACT Eton Ave PAGE No. FD158 CONTRACT No. 6722 DATE 04/19 BY GH

Bending in rectangular beams

Calculations are in accordance with EC2: Design of concrete structures and assume the use of a simplified rectangular concrete stress-block and that the depth to the neutral axis is restricted to 0.45*d.

 d^2

Design BM before redistribution Mbef=62.0 kNm Beam being analysed is considered as non-continuous. Char yield strength of reinf'ment fyk=500 N/mm² Max.aggregate size (for bar spc.) hagg=20 mm Diameter of tension bars dia=25 mm Diameter of link legs dial=10 mm

Section properties

Effective depth of section Number of bars to be used

Overall depth DESIGN 300 mm SUMMARY Effective depth 238 mm 200 mm Width of section FLEXURE Parameter K 0.1368 Parameter K' 0.1684 0.8596 Lever arm ratio z/d TENSION REINFORCEMENT Steel area required 697 mm² Steel area provided 2454 mm² Diameter of bars 25 mm Number of bars 5 Steel percentage req.1.464 %Minimum area of steel86.85 mm²Maximum area of steel2400 mm²

d=238 mm

nbart=5

Deflection check

Effective span of beam L=5.6 m Actual span to depth ratio l'd=L*1000/d=23.53 Allowable span/depth ratio l'da=k*N*F1*F2*F3=29.44 Actual 1/d ratio DESIGN 23.53 Basic 1/d ratio SUMMARY 15.1 Span factor DEFLECTION 1.3 Flange beam factor F1 1 Long spans factor F2 1 Steel stress factor F3 1.5 Allowable 1/d ratio 29.44
TZG PARTNERSHIP ENGINEERING CONSULTANTS Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA T: +44 (0)20 8661 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com		C P C D B	CONTRACT PAGE No. CONTRACT No DATE SY	Eton Ave FD159 6722 04/19 GH
Location for shear calculation Shear force due to ultimate lo Design shear stress Concrete strut capacity Angle of inclination of strut Number of shear legs	n: Dad	VEd=44 kN vEd=VEd*10^3/ vRdm=0.124*fc} theta'=22° ns1=2	(0.9*bw*d k*(1-fck/))=1.027 N/mm² 250)=4.166 N/mm²
SHEAR SUMMARY	Des Des Con Are Dia Are Max (ba Act	ign shear force ign shear stres crete strut cap a/spacing ratio meter of links a of links imum spacing sed on 0.75d) ual spacing	e 4 ss 1 pacity 4 p 0 1 1 1 1	4 kN .027 N/mm ² .166 N/mm ² .2024 0 mm 57 mm ² 78.5 mm 78.5 mm

Eton Ave
FD160
6722
04/19
GH

B0.9 Design

Steel beam analysis & design (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

CONTRACT	Eton Ave
PAGE No.	FD161
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable imes 1.50

Analysis results Maximum moment; $M_{max} = 43 \text{ kNm}; M_{min} = 0 \text{ kNm}$ V_{max} = 35.8 kN; V_{min} = -35.8 kN Maximum shear: δ_{max} = 4 mm; Deflection; $\delta_{min} = 0 \text{ mm}$ Maximum reaction at support A; R_{A max} = 35.8 kN; $R_{A min} = 35.8 \text{ kN}$ Unfactored permanent load reaction at support A; R_{A_Permanent} = 19.4 kN Unfactored variable load reaction at support A; R_{A Variable} = 6.5 kN R_{B_min} = 35.8 kN Maximum reaction at support B; R_{B_max} = 35.8 kN; $R_{B_Permanent}$ = 19.4 kN Unfactored permanent load reaction at support B; Unfactored variable load reaction at support B; R_{B Variable} = 6.5 kN Section details Section type; UKC 152x152x37 (Tata Steel Advance) Steel grade; S355 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; $t = max(t_f, t_w) = 11.5 mm$ Nominal yield strength; $f_y = 355 \text{ N/mm}^2$ Nominal ultimate tensile strength; $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

Partial factors - Section 6.1

Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; $\gamma_{M2} = 1.10$ Lateral restraint Span 1 has lateral restraint at supports only Effective length factors Effective length factor in major axis; $K_v = 1.000$ Effective length factor in minor axis; $K_z = 1.000$ Effective length factor for torsion; $K_{LT.A} = 1.200; + 2 \times h$ $K_{LT,B} = 1.200; + 2 \times h$ Classification of cross sections - Section 5.5

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD162 PAGE No. J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 GH ΒY E: admin@tzgpartnership.com W: www.tzgpartnership.com $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.81$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 123.6 mm c / t_w = 19.0 × ε <= 72 × ε ; Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 65.6 \text{ mm}$ $c/t_f = 7.0 \times \epsilon \le 9 \times \epsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 Height of web; $h_w = h - 2 \times t_f = 138.8 \text{ mm}$ Shear area factor; $\eta = 1.000$ $h_w/t_w < 72 \times \epsilon/\eta$ Shear buckling resistance can be ignored Design shear force; $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 35.8 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 1427 \text{ mm}^2$ $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{[3]}) / \gamma_{M0} = 292.4 \text{ kN}$ Design shear resistance - cl 6.2.6(2); PASS - Design shear resistance exceeds design shear force Check bending moment major (y-y) axis - Section 6.2.5 Design bending moment; $M_{Ed} = max(abs(M_{s1 max}), abs(M_{s1 min})) = 43 kNm$ Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 109.6 \text{ kNm}$ Slenderness ratio for lateral torsional buckling Correction factor - Table 6.6; $k_c = 1$ $C_1 = 1 / k_c^2 = 1$ Destabilised load condition factor; D = 1.5Curvature factor; $g = \sqrt{[1 - (I_z / I_y)]} = 0.825$ Poissons ratio; v = 0.3Shear modulus; $G = E / [2 \times (1 + v)] = 80769 \text{ N/mm}^2$ Unrestrained length; $L = 1.2 \times L_{s1} + 2 \times h = 6084 \text{ mm}$ Elastic critical buckling moment; $M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times \sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z)]} =$ 101.5 kNm Slenderness ratio for lateral torsional buckling; $\overline{\lambda}_{LT} = D \times \sqrt{(W_{pl.v} \times f_v / M_{cr})} = 1.559$ Limiting slenderness ratio; $\overline{\lambda}_{LT,0} = 0.4$ $\lambda_{LT} > \lambda_{LT,0}$ - Lateral torsional buckling cannot be ignored Design resistance for buckling - Section 6.3.2.1 Buckling curve - Table 6.5; h Imperfection factor - Table 6.3; $\alpha_{LT} = 0.34$ Correction factor for rolled sections; $\beta = 0.75$ $\phi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT}^2] = 1.608$ LTB reduction determination factor; LTB reduction factor - eq 6.57; $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.403$ f = min(1 - 0.5 × (1 - k_c)× [1 - 2 × ($\overline{\lambda}_{LT}$ - 0.8)²], 1) = 1.000 Modification factor; Modified LTB reduction factor - eq 6.58; $\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.403$ Design buckling resistance moment - eq 6.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{pl.y} \times f_y / \gamma_{M1} = 44.2 \text{ kNm}$ PASS - Design buckling resistance moment exceeds design bending moment Check vertical deflection - Section 7.2.1 Consider deflection due to variable loads Limiting deflection; $\delta_{\text{lim}} = L_{s1} / 360 = 13.3 \text{ mm}$

CONTRACT	Eton Ave
PAGE No.	FD163
CONTRACT No.	6722
DATE	04/19
BY	GH

 $\begin{array}{ll} \mbox{Maximum deflection span 1;} & \delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 4.02 \mbox{ mm} \\ PASS - Maximum deflection does not exceed deflection limit \\ \end{array}$

Therefore use 152UC37

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
	ENGINEERING CONSULTANTS	PAGE No.	FD164
4.	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
		DATE	04/19
	E: +44 (0)20 8667 1328 E: admin@tzgpartnership.com	BY	GH
	W: www.tzgpartnership.com		

B0.10 Design

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex TEDDS calculation version 3.0.13

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
	ENGINEERING CONSULTANTS	PAGE No.	FD165
	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
1.25	Croydon CR0 6BA	DATE	04/19
	F: +44 (0)20 8667 1328	BY	GH
	W: www.tzgpartnership.com		

Unfactored variable load reaction at support A; RA Variable = 10.5 kN Maximum reaction at support B; $R_{B_{max}} = 57.8 \text{ kN};$ $R_{B_{min}} = 57.8 \text{ kN}$ Unfactored permanent load reaction at support B; R_{B Permanent} = 31.2 kN Unfactored variable load reaction at support B; R_{B Variable} = 10.5 kN Section details UKC 152x152x37 (Tata Steel Advance) Section type; Steel grade; S355 EN 10025-2:2004 - Hot rolled products of structural steels Nominal thickness of element; t = max(t_f, t_w) = 11.5 mm Nominal yield strength; f_y = 355 N/mm² Nominal ultimate tensile strength; $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity; E = 210000 N/mm²

Partial factors - Section 6.1 Resistance of cross-sections; $\gamma_{M0} = 1.00$ Resistance of members to instability; $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture; γ_{M2} = 1.10 Lateral restraint Span 1 has full lateral restraint Effective length factors Effective length factor in major axis; K_y = 1.000 Effective length factor in minor axis; K_z = 1.000 Effective length factor for torsion; K_{LT.A} = 1.200; + 2 × h K_{LT.B} = 1.200; + 2 × h Classification of cross sections - Section 5.5 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_v]} = 0.81$ Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3) Width of section; c = d = 123.6 mm $c / t_w = 19.0 \times \varepsilon \le 72 \times \varepsilon;$ Class 1 Outstand flanges - Table 5.2 (sheet 2 of 3) Width of section; $c = (b - t_w - 2 \times r) / 2 = 65.6 \text{ mm}$ c / t_f = 7.0 $\times \epsilon \leq 9 \times \epsilon$; Class 1 Section is class 1 Check shear - Section 6.2.6 $h_w = h - 2 \times t_f = 138.8 \text{ mm}$ Height of web; Shear area factor; $\eta = 1.000$ $h_w / t_w < 72 \times \varepsilon / \eta$ Shear buckling resistance can be ignored Design shear force; V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 57.8 kN

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4	ENGINEERING CONSULTANTS	PAGE No.	FD166
4	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
	Croydon CKU 6BA	DATE	04/19
	F: +44 (0)20 8667 1328	BY	GH
	W: www.tzgpartnership.com		

Shear area - cl 6.2.6(3); $A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \eta \times h_w \times t_w) = 1427 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_y / \sqrt{[3]}) / \gamma_{M0} = 292.4 \text{ kN}$ *PASS - Design shear resistance exceeds design shear force* Check bending moment major (y-y) axis - Section 6.2.5 Design bending resistance moment - eq 6.13; $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 109.6 \text{ kNm}$ *PASS - Design bending resistance moment exceeds design bending moment* Check vertical deflection - Section 7.2.1 Consider deflection due to variable loads Limiting deflection; $\delta_{lim} = L_{s1} / 360 = 13.9 \text{ mm}$ Maximum deflection span 1; $\delta = max(abs(\delta_{max}), abs(\delta_{min})) = 7.363 \text{ mm}$ *PASS - Maximum deflection does not exceed deflection limit*

Therefore use 152UC37

CONTRACT	Eton Ave
PAGE No.	FD167
CONTRACT No.	6722
DATE	04/19
BY	GH

BASEMENT MEMBER DESIGN RW.1 Design

Retaining wall analysis In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1 Tedds calculation version 2.9.04 Retaining wall details Stem type; Propped cantilever h_{stem} = 3400 mm Stem height; $h_{prop} = 3300 \text{ mm}$ Prop height; Stem thickness; t_{stem} = 150 mm α = 90 deg Angle to rear face of stem; Stem density; $\gamma_{\text{stem}} = 25 \text{ kN/m}^3$ Toe length; $I_{toe} = 6000 \text{ mm}$ Base thickness; t_{base} = 300 mm Base density; $\gamma_{\text{base}} = 25 \text{ kN/m}^3$ Height of retained soil; $h_{ret} = 3400 \text{ mm}$ $\beta = 0 \deg$ Angle of soil surface; Depth of cover; d_{cover} = 0 mm Height of water; h_{water} = 2200 mm Water density; $\gamma_w = 9.8 \text{ kN/m}^3$ **Retained soil properties** Soil type; Organic clay Moist density; $\gamma_{mr} = 18 \text{ kN/m}^3$ Saturated density; $\gamma_{sr} = 18 \text{ kN/m}^3$ Characteristic effective shear resistance angle; $\phi'_{r,k} = 18 \text{ deg}$ $\delta_{r,k} = 9 \text{ deg}$ Characteristic wall friction angle; Base soil properties Soil type; Firm clay Soil density; $\gamma_b = 18 \text{ kN/m}^3$ Characteristic effective shear resistance angle; $\phi'_{b,k} = 18 \text{ deg}$ Characteristic wall friction angle; $\delta_{b.k}$ = 9 deg Characteristic base friction angle; $\delta_{bb.k}$ = 12 deg $P_{\text{bearing}} = 100 \text{ kN/m}^2$ Presumed bearing capacity; Loading details $Surcharge_G = 7.8 \text{ kN/m}^2$ Permanent surcharge load; Variable surcharge load; Surcharge_Q = 4 kN/m^2

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
	ENGINEERING CONSULTANTS	PAGE No.	FD168
	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
	Croydon CKU 6BA	DATE	04/19
	F: +44 (0)20 8667 1328 F: admin@tzopartnership.com	BY	GH
	W: www.tzgpartnership.com		

Calculate retaining wall geometry $I_{\text{base}} = I_{\text{toe}} + t_{\text{stem}} = 6150 \text{ mm}$ Base length; Saturated soil height; $h_{sat} = h_{water} + d_{cover} = 2200 \text{ mm}$ Moist soil height; $h_{moist} = h_{ret} - h_{water} = 1200 \text{ mm}$ Length of surcharge load; $I_{sur} = I_{heel} = 0 \text{ mm}$ - Distance to vertical component; $x_{sur_v} = I_{base} - I_{heel} / 2 = 6150 \text{ mm}$ Effective height of wall; $h_{eff} = h_{base} + d_{cover} + h_{ret} = 3700 \text{ mm}$ - Distance to horizontal component; $x_{sur_h} = h_{eff} / 2 = 1850 \text{ mm}$ $A_{stem} = h_{stem} \times t_{stem} = 0.51 \text{ m}^2$ Area of wall stem; - Distance to vertical component; $x_{stem} = I_{toe} + t_{stem} / 2 = 6075 \text{ mm}$ Area of wall base; $A_{base} = I_{base} \times t_{base} = 1.845 \text{ m}^2$ - Distance to vertical component; $x_{base} = I_{base} / 2 = 3075 \text{ mm}$ Using Coulomb theory $K_A = \sin(\alpha + \phi'_{r,k})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r,k}) \times [1 + \sqrt{\sin(\phi'_{r,k} + \delta_{r,k})} \times (1 + \sqrt{\sin(\phi'_{r,k} + \delta_{r,k})})$ Active pressure coefficient; $\sin(\phi'_{r,k} - \beta) / (\sin(\alpha - \delta_{r,k}) \times \sin(\alpha + \beta))]^2) = 0.483$ $K_P = \sin(90 - \phi'_{b,k})^2 / (\sin(90 + \delta_{b,k}) \times [1 - \sqrt{(\sin(\phi'_{b,k} + \delta_{b,k})) \times (\phi'_{b,k})} / (\sin(90 + \delta_{b,k})) \times (1 - \sqrt{(\sin(\phi'_{b,k} + \delta_{b,k})) \times (\phi'_{b,k})})$ Passive pressure coefficient; $(\sin(90 + \delta_{b,k}))]^2) = 2.359$ Bearing pressure check Vertical forces on wall Wall stem; $F_{stem} = A_{stem} \times \gamma_{stem} = 12.8 \text{ kN/m}$ Wall base; $F_{base} = A_{base} \times \gamma_{base} = 46.1 \text{ kN/m}$ Total; $F_{total_v} = F_{stem} + F_{base} + F_{water_v} = 58.9 \text{ kN/m}$ Horizontal forces on wall Surcharge load; $F_{sur_h} = K_A \times cos(\delta_{r,k}) \times (Surcharge_G + Surcharge_Q) \times h_{eff} = 20.8 \text{ kN/m}$ Saturated retained soil; $F_{sat h} = K_A \times \cos(\delta_{r,k}) \times (\gamma_{sr} - \gamma_w) \times (h_{sat} + h_{base})^2 / 2 = 12.2 \text{ kN/m}$ Water; $F_{water h} = \gamma_w \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 30.7 \text{ kN/m}$ $F_{moist_h} = K_A \times cos(\delta_{r,k}) \times \gamma_{mr} \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{eff} - h_{base})^2 / 2 + (h_{eff} - h_{base}) \times (h_{eff} - h_{base})^2 / 2 + (h_{eff} - h_{base}) \times (h_{eff} - h_{b$ Moist retained soil; h_{base})) = 31.9 kN/m $F_{pass h} = -K_P \times cos(\delta_{b.k}) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -1.9 \text{ kN/m}$ Base soil;

Total; F_{total_h} = F_{sat_h} + F_{moist_h} + F_{pass_h} + F_{water_h} + F_{sur_h} = 93.8 kN/m Moments on wall Wall stem: $M_{stem} = F_{stem} \times x_{stem} = 77.5 \text{ kNm/m}$ $M_{base} = F_{base} \times x_{base} = 141.8 \text{ kNm/m}$ Wall base; Surcharge load; $M_{sur} = -F_{sur h} \times x_{sur h} = -38.5 \text{ kNm/m}$ Saturated retained soil; $M_{sat} = -F_{sat h} \times x_{sat h} = -10.2 \text{ kNm/m}$ Water; $M_{water} = -F_{water h} \times x_{water h} = -25.5 \text{ kNm/m}$ Moist retained soil; $M_{moist} = -F_{moist_h} \times x_{moist_h} = -50.1 \text{ kNm/m}$ Total; M_{total} = M_{stem} + M_{base} + M_{sat} + M_{moist} + M_{water} + M_{sur} = 94.9 kNm/m Check bearing pressure Propping force to stem; $F_{prop_stem} = (F_{total_v} \times I_{base} / 2 - M_{total}) / (h_{prop} + t_{base}) = 23.9 \text{ kN/m}$ Propping force to base; F_{prop base} = F_{total h} - F_{prop stem} = 69.8 kN/m Moment from propping force; $M_{prop} = F_{prop stem} \times (h_{prop} + t_{base}) = 86.1 \text{ kNm/m}$ Distance to reaction; $x = (M_{total} + M_{prop}) / F_{total v} = 3075 \text{ mm}$ Eccentricity of reaction; $e = x - I_{base} / 2 = 0 \text{ mm}$ Loaded length of base; I_{load} = I_{base} = 6150 mm Bearing pressure at toe; $q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = 9.6 \text{ kN/m}^2$ Bearing pressure at heel; $q_{heel} = F_{total_v} / I_{base} \times (1 + 6 \times e / I_{base}) = 9.6 \text{ kN/m}^2$ Factor of safety; $FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 10.446$ PASS - Allowable bearing pressure exceeds maximum applied bearing pressure Retaining wall design In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 Tedds calculation version 2.9.04 Concrete details - Table 3.1 - Strength and deformation characteristics for concrete Concrete strength class; C30/37 Characteristic compressive cylinder strength; $f_{ck} = 30 \text{ N/mm}^2$ $f_{ck.cube} = 37 \text{ N/mm}^2$ Characteristic compressive cube strength; Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$ Mean value of axial tensile strength; $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$ 5% fractile of axial tensile strength; $f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$ $E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 32837$ Secant modulus of elasticity of concrete; N/mm² Partial factor for concrete - Table 2.1N; γ_c = 1.50 Compressive strength coefficient - cl.3.1.6(1); $\alpha_{cc} = 0.85$ $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 17.0 \text{ N/mm}^2$ Design compressive concrete strength - exp.3.15; Maximum aggregate size; $h_{agg} = 20 \text{ mm}$ Ultimate strain - Table 3.1; $\epsilon_{cu2} = 0.0035$ Shortening strain - Table 3.1; $\varepsilon_{cu3} = 0.0035$ Effective compression zone height factor; $\lambda = 0.80$ Effective strength factor; $\eta = 1.00$ Bending coefficient k_1 ; $K_1 = 0.40$ Bending coefficient k₂; $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ Bending coefficient k_3 ; $K_3 = 0.40$ Bending coefficient k₄; $K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ **Reinforcement details** Characteristic yield strength of reinforcement; $f_{yk} = 500 \text{ N/mm}^2$

	TZG PARTNERSHIP ENGINEERING CONSULTANTS
6.	Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA
	T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com

CONTRACT	Eton Ave
PAGE No.	FD170
CONTRACT No.	6722
DATE	04/19
BY	GH

Modulus of elasticity of reinforcement; $E_s = 200000 \text{ N/mm}^2$ Partial factor for reinforcing steel - Table 2.1N; $\gamma_s = 1.15$ Design yield strength of reinforcement; $f_{yd} = f_{yk} / \gamma_s = 435 \text{ N/mm}^2$ Cover to reinforcement Front face of stem; $c_{sf} = 25 \text{ mm}$ Rear face of stem; $c_{sr} = 50 \text{ mm}$ Top face of base; $c_{bt} = 50 \text{ mm}$ Bottom face of base; $c_{bb} = 75 \text{ mm}$

TZ	G PARTNERSHIP		CONTRACT	Eton Ave
Or 11-	chard House 4-118 Cherry Orchard Road		PAGE No. CONTRACT No.	6722
T:	+44 (0)20 8681 2137		DATE	04/19
F: E: W:	+44 (0)20 8667 1328 admin@tzgpartnership.com www.tzgpartnership.com		BY	GH
oading details - Combination	1 No.2 - kN/m ²	Shear force - Combination No.2 - kN/m		
			20.7	

Check stem design at 1860 mm Depth of section; h = 150 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1;M = 21.4 kNm/m Depth to tension reinforcement; $d = h - c_{sf} - \phi_{sx} - \phi_{sfM} / 2 = 107 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.062$ $\mathsf{K}' = (2 \times \eta \times \alpha_{\mathsf{cc}}/\gamma_{\mathsf{C}}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 101 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 16 \text{ mm}$ Area of tension reinforcement required; $A_{sfM.rea} = M / (f_{vd} \times z) = 489 \text{ mm}^2/\text{m}$ Tension reinforcement provided; 12 dia.bars @ 150 c/c Area of tension reinforcement provided; $A_{sfM,prov} = \pi \times \phi_{sfM}^2 / (4 \times s_{sfM}) = 754 \text{ mm}^2/\text{m}$ Minimum area of reinforcement - exp.9.1N; $A_{sfM.min} = max(0.26 \times f_{ctm} / f_{vk}, 0.0013) \times d = 161$ mm²/m Maximum area of reinforcement - cl.9.2.1.1(3); $A_{sfM.max} = 0.04 \times h = 6000 \text{ mm}^2/\text{m}$ max(A_{sfM.req}, A_{sfM.min}) / A_{sfM.prov} = 0.648 PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output Deflection control - Section 7.4 Reference reinforcement ratio; $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$ Required tension reinforcement ratio; $\rho = A_{sfM.reg} / d = 0.005$ Required compression reinforcement ratio; $\rho' = A_{sfM.2.reg} / d_2 = 0.000$ Structural system factor - Table 7.4N; $K_b = 1$ Reinforcement factor - exp.7.17; $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sfM.req} / A_{sfM.prov}), 1.5) = 1.5$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD172 PAGE No. J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 E: +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com W: www.tzgpartnership.com min(K_s × K_b × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × ρ_0 / ρ + Limiting span to depth ratio - exp.7.16.a; $3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times (\rho_0 / \rho - 1)^{3/2}], 40 \times K_b} = 33.6$ Actual span to depth ratio; $h_{prop} / d = 30.8$ PASS - Span to depth ratio is less than deflection control limit Crack control - Section 7.3 Limiting crack width; $W_{max} = 0.3 \text{ mm}$ Variable load factor - EN1990 – Table A1.1; $\Psi_2 = 0.6$ Serviceability bending moment; M_{sls} = 15.1 kNm/m Tensile stress in reinforcement; $\sigma_s = M_{sls} / (A_{sfM,prov} \times z) = 199.3 \text{ N/mm}^2$ Load duration; Long term Load duration factor; $k_t = 0.4$ Effective area of concrete in tension; $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ $A_{c.eff} = 44790 \text{ mm}^2/\text{m}$ Mean value of concrete tensile strength; $f_{ct,eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sfM.prov} / A_{c.eff} = 0.017$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.091$ Bond property coefficient; k₁ = 0.8 Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$ Maximum crack spacing - exp.7.11; $s_{r.max} = k_3 \times c_{sf} + k_1 \times k_2 \times k_4 \times \phi_{sfM} / \rho_{p.eff} = 206 \text{ mm}$ Maximum crack width - exp.7.8; $w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$ $w_k = 0.127 \text{ mm}$ $w_k / w_{max} = 0.424$ PASS - Maximum crack width is less than limiting crack width Check stem design at base of stem Depth of section; h = 150 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1;M = 47 kNm/m Depth to tension reinforcement; $d = h - c_{sr} - \phi_{sr} / 2 = 90 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.194$ $\mathsf{K}' = (2 \times \eta \times \alpha_{cc}/\gamma_{c}) \times (1 - \lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2})) \times (\lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2}))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 70 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 49 \text{ mm}$ Area of tension reinforcement required; $A_{sr,req} = M / (f_{vd} \times z) = 1538 \text{ mm}^2/\text{m}$ Tension reinforcement provided; 20 dia.bars @ 150 c/c $A_{sr,prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 2094 \text{ mm}^2/\text{m}$ Area of tension reinforcement provided; Minimum area of reinforcement - exp.9.1N; $A_{sr.min} = max(0.26 \times f_{ctm} / f_{vk}, 0.0013) \times d = 136$ mm²/m Maximum area of reinforcement - cl.9.2.1.1(3); $A_{sr.max} = 0.04 \times h = 6000 \text{ mm}^2/\text{m}$ $max(A_{sr.req}, A_{sr.min}) / A_{sr.prov} = 0.734$ PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output Deflection control - Section 7.4 Reference reinforcement ratio; $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD173 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com . W: www.tzgpartnership.com Required tension reinforcement ratio; $\rho = A_{sr.reg} / d = 0.017$ Required compression reinforcement ratio; $\rho' = A_{sr.2.reg} / d_2 = 0.000$ Structural system factor - Table 7.4N; $K_b = 1$ $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr.reg} / A_{sr.prov}), 1.5) = 1.362$ Reinforcement factor - exp.7.17; Limiting span to depth ratio - exp.7.16.b; min(K_s × K_b × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × $\rho_0 / (\rho$ - ρ') + $\sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \sqrt{(\rho' / \rho_0) / 12}, 40 \times K_b) = 18.6$ Actual span to depth ratio; $h_{prop} / d = 36.7$ FAIL - Span to depth ratio exceeds deflection control limit Crack control - Section 7.3 Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor - EN1990 - Table A1.1; $\Psi_2 = 0.6$ Serviceability bending moment; M_{sls} = 33.5 kNm/m Tensile stress in reinforcement; $\sigma_s = M_{sls} / (A_{sr,prov} \times z) = 227.5 \text{ N/mm}^2$ Load duration; Long term Load duration factor; $k_{t} = 0.4$ Effective area of concrete in tension; $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ $A_{c.eff} = 33609 \text{ mm}^2/\text{m}$ $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Mean value of concrete tensile strength; Reinforcement ratio; $\rho_{p.eff} = A_{sr.prov} / A_{c.eff} = 0.062$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.091$ Bond property coefficient; k₁ = 0.8 Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$ Maximum crack spacing - exp.7.11; $s_{r.max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr} / \rho_{p.eff} = 225 \text{ mm}$ Maximum crack width - exp.7.8; $w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$ w_k = 0.227 mm $w_k / w_{max} = 0.756$ PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 84.3 kN/m $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 2.000$ Longitudinal reinforcement ratio; $\rho_{\rm I} = \min(A_{\rm sr.prov} / d, 0.02) = 0.020$ v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.542 N/mm² Design shear resistance - exp.6.2a & 6.2b; $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ $\times d$ $V_{Rd.c} = 84.6 \text{ kN/m}$ $V / V_{Rd.c} = 0.997$ PASS - Design shear resistance exceeds design shear force Check stem design at prop Depth of section; h = 150 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1;M = 0 kNm/m Depth to tension reinforcement; $d = h - c_{sr} - \phi_{sr1} / 2 = 94 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.000$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD174 , y PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com $\mathsf{K}' = (2 \times \eta \times \alpha_{\rm cc}/\gamma_{\rm C}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 89 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 12 \text{ mm}$ Area of tension reinforcement required; $A_{sr1.reg} = M / (f_{yd} \times z) = 1 \text{ mm}^2/\text{m}$ Tension reinforcement provided; 12 dia.bars @ 200 c/c Area of tension reinforcement provided; $A_{sr1.prov} = \pi \times \phi_{sr1}^2 / (4 \times s_{sr1}) = 565 \text{ mm}^2/\text{m}$ Minimum area of reinforcement - exp.9.1N; $A_{sr1.min} = max(0.26 \times f_{ctm} / f_{vk}, 0.0013) \times d = 142$ mm²/m Maximum area of reinforcement - cl.9.2.1.1(3); $A_{sr1.max} = 0.04 \times h = 6000 \text{ mm}^2/\text{m}$ $max(A_{sr1.req}, A_{sr1.min}) / A_{sr1.prov} = 0.25$ PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output Deflection control - Section 7.4 Reference reinforcement ratio; $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$ Required tension reinforcement ratio; $\rho = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio; $\rho' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N; $K_b = 0.4$ Reinforcement factor - exp.7.17; $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.reg} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a; min(K_s × K_b × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × ρ_0 / ρ + $3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2) \times (\rho_0 / \rho - 1)^{3/2}]}, 40 \times K_b) = 16$ Actual span to depth ratio; $(h_{stem} - h_{prop}) / d = 1.1$ PASS - Span to depth ratio is less than deflection control limit Crack control - Section 7.3 w_{max} = 0.3 mm Limiting crack width; Variable load factor - EN1990 - Table A1.1; $\Psi_2 = 0.6$ Serviceability bending moment; M_{sls} = 0 kNm/m Tensile stress in reinforcement; $\sigma_s = M_{sls} / (A_{sr1,prov} \times z) = 0.5 \text{ N/mm}^2$ Load duration; Long term Load duration factor; $k_t = 0.4$ Effective area of concrete in tension; $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ $A_{c.eff} = 46083 \text{ mm}^2/\text{m}$ Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sr1.prov} / A_{c.eff} = 0.012$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.091$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$ Maximum crack spacing - exp.7.11; $s_{r,max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr1} / \rho_{p,eff} = 336 \text{ mm}$ Maximum crack width - exp.7.8; $w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$ $w_k = 0 \text{ mm}$ $w_k / w_{max} = 0.002$ PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 25.5 kN/m

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS PAGE No. FD175 J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.com W: www.tzgpartnership.com $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 2.000$ Longitudinal reinforcement ratio; $\rho_{\rm I} = \min(A_{\rm sr1.prov} / d, 0.02) = 0.006$ $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{f}_{ck}^{0.5} = 0.542 \text{ N/mm}^2$ Design shear resistance - exp.6.2a & 6.2b; $V_{\text{Rd.c}} = \max(C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{\text{ck}})^{1/3}, v_{\text{min}})$ $\times d$ $V_{Rd.c} = 59.2 \text{ kN/m}$ $V / V_{Rd.c} = 0.430$ PASS - Design shear resistance exceeds design shear force Horizontal reinforcement parallel to face of stem - Section 9.6 Minimum area of reinforcement – cl.9.6.3(1); $A_{sx,reg} = max(0.25 \times A_{sr,prov}, 0.001 \times t_{stem}) = 524$ mm²/m Maximum spacing of reinforcement – cl.9.6.3(2); $s_{sx max} = 400 \text{ mm}$ 12 dia.bars @ 200 c/c Transverse reinforcement provided; $A_{sx,prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 565 \text{ mm}^2/\text{m}$ Area of transverse reinforcement provided; PASS - Area of reinforcement provided is greater than area of reinforcement required Check base design at toe Depth of section; h = 300 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1;M = 50.4 kNm/m Depth to tension reinforcement; $d = h - c_{bb} - \phi_{bb} / 2 = 215 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.036$ $\mathsf{K}' = (2 \times \eta \times \alpha_{\rm cc}/\gamma_{\rm C}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 204 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 27 \text{ mm}$ Area of tension reinforcement required; $A_{bb,req} = M / (f_{vd} \times z) = 567 \text{ mm}^2/\text{m}$ Tension reinforcement provided; 20 dia.bars @ 200 c/c Area of tension reinforcement provided; $A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 1571 \text{ mm}^2/\text{m}$ Minimum area of reinforcement - exp.9.1N; $A_{bb.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 324$ mm²/m Maximum area of reinforcement - cl.9.2.1.1(3); $A_{bb,max} = 0.04 \times h = 12000 \text{ mm}^2/\text{m}$ $max(A_{bb.req}, A_{bb.min}) / A_{bb.prov} = 0.361$ PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output Crack control - Section 7.3 Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor - EN1990 - Table A1.1; $\Psi_2 = 0.6$ Serviceability bending moment; M_{sls} = 37.3 kNm/m Tensile stress in reinforcement; $\sigma_s = M_{sls} / (A_{bb.prov} \times z) = 116.3 \text{ N/mm}^2$ Load duration; Long term Load duration factor; $k_{t} = 0.4$ Effective area of concrete in tension; $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ $A_{c.eff} = 91042 \text{ mm}^2/\text{m}$ $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Mean value of concrete tensile strength; Reinforcement ratio; $\rho_{p.eff} = A_{bb.prov} / A_{c.eff} = 0.017$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD176 PAGE No. ų Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.com W: www.tzgpartnership.com Modular ratio; $\alpha_e = E_s / E_{cm} = 6.091$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$ Maximum crack spacing - exp.7.11; $s_{r,max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_{bb} / \rho_{p,eff} = 452 \text{ mm}$ Maximum crack width - exp.7.8; $w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$ w_k = 0.158 mm $w_k / w_{max} = 0.526$ PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 16.8 kN/m $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.964$ Longitudinal reinforcement ratio; $\rho_{\rm I} = \min(A_{\rm bb,prov} / d, 0.02) = 0.007$ v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.528 N/mm² Design shear resistance - exp.6.2a & 6.2b; $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ imes d $V_{Rd.c} = 141.8 \text{ kN/m}$ $V / V_{Rd.c} = 0.118$ PASS - Design shear resistance exceeds design shear force Secondary transverse reinforcement to base - Section 9.3 Minimum area of reinforcement – cl.9.3.1.1(2); $A_{bx.req} = 0.2 \times A_{bb.prov} = 314 \text{ mm}^2/\text{m}$ Maximum spacing of reinforcement – cl.9.3.1.1(3); $s_{bx max} = 450 mm$ Transverse reinforcement provided; 12 dia.bars @ 200 c/c $A_{bx.prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 565 \text{ mm}^2/\text{m}$ Area of transverse reinforcement provided; PASS - Area of reinforcement provided is greater than area of reinforcement required

4	TZG PARTNERSHIP	CONTRACT <u>Eton</u>	ı Ave
4000	ENGINEERING CONSULTANTS	PAGE No.	D177
A. 1	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
1.04	Croydon CRU 6BA	DATE)4/19
	1: +44 (0)20 8067 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com	ВҮ	GH
		12 dia bars @ 200 of cps horizontal reinforcement parallel to face of stem 10 de to vero ≈ 200 of c	

12 dia.bars @ 200 c/c transverse reinforcement in base

Reinforcement details

RW.2 Design

CONTRACT	Eton Ave
PAGE No.	FD178
CONTRACT No.	6722
DATE	04/19
BY	GH

Retaining wall analysis In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1 Tedds calculation version 2.9.04 Retaining wall details Cantilever Stem type; Stem height; h_{stem} = 3600 mm Stem thickness; t_{stem} = 350 mm Angle to rear face of stem; α = 90 deg Stem density; $\gamma_{\text{stem}} = 25 \text{ kN/m}^3$ Toe length; $I_{toe} = 6000 \text{ mm}$ Base thickness; t_{base} = 350 mm Base density; $\gamma_{\text{base}} = 25 \text{ kN/m}^3$ Height of retained soil; h_{ret} = 3600 mm Angle of soil surface; $\beta = 0 \deg$ Depth of cover; $d_{cover} = 0 \text{ mm}$ h_{water} = 2200 mm Height of water; Water density; $\gamma_w = 9.8 \text{ kN/m}^3$ **Retained soil properties** Soil type; Organic clay Moist density; $\gamma_{mr} = 18 \text{ kN/m}^3$ $\gamma_{sr} = 18 \text{ kN/m}^3$ Saturated density; Characteristic effective shear resistance angle; $\phi'_{r,k} = 18 \text{ deg}$ Characteristic wall friction angle; $\delta_{r.k}$ = 9 deg Base soil properties Soil type; Firm clay $\gamma_{\rm b}$ = 18 kN/m³ Soil density; Characteristic effective shear resistance angle; $\phi'_{b.k} = 18 \text{ deg}$ Characteristic wall friction angle; $\delta_{b,k} = 9 \text{ deg}$ Characteristic base friction angle; $\delta_{bb.k}$ = 12 deg Presumed bearing capacity; $P_{\text{bearing}} = 100 \text{ kN/m}^2$ Loading details Variable surcharge load; Surcharge_Q = 10 kN/m^2

20.4 kN/m²

General arrangement

Calculate retaining wall geometry $I_{\text{base}} = I_{\text{toe}} + t_{\text{stem}} = 6350 \text{ mm}$ Base length; Saturated soil height; $h_{sat} = h_{water} + d_{cover} = 2200 \text{ mm}$ $h_{moist} = h_{ret} - h_{water} = 1400 \text{ mm}$ Moist soil height; Length of surcharge load; $I_{sur} = I_{heel} = 0 \text{ mm}$ - Distance to vertical component; $x_{sur v} = I_{base} - I_{heel} / 2 = 6350 \text{ mm}$ Effective height of wall; $h_{eff} = h_{base} + d_{cover} + h_{ret} = 3950 \text{ mm}$ - Distance to horizontal component; $x_{sur_h} = h_{eff} / 2 = 1975 mm$ Area of wall stem; $A_{\text{stem}} = h_{\text{stem}} \times t_{\text{stem}} = 1.26 \text{ m}^2$ - Distance to vertical component; $x_{stem} = I_{toe} + t_{stem} / 2 = 6175 \text{ mm}$ Area of wall base; $A_{base} = I_{base} \times t_{base} = 2.223 \text{ m}^2$ - Distance to vertical component; $x_{base} = I_{base} / 2 = 3175 \text{ mm}$ Using Coulomb theory $K_A = \sin(\alpha + \phi'_{r,k})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r,k}) \times [1 + \sqrt{\sin(\phi'_{r,k} + \delta_{r,k})} \times (1 + \sqrt{\sin(\phi'_{r,k} + \delta_{r,k})})$ Active pressure coefficient; $\sin(\phi'_{r,k} - \beta) / (\sin(\alpha - \delta_{r,k}) \times \sin(\alpha + \beta))]^2) = 0.483$ $K_{P} = \sin(90 - \phi'_{b.k})^{2} / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{(\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})}))$ Passive pressure coefficient; $(\sin(90 + \delta_{b.k}))]^2$ = 2.359 Bearing pressure check Vertical forces on wall Wall stem; $F_{stem} = A_{stem} \times \gamma_{stem} = 31.5 \text{ kN/m}$ $F_{base} = A_{base} \times \gamma_{base} = 55.6 \text{ kN/m}$ Wall base; Total; $F_{total_v} = F_{stem} + F_{base} + F_{water_v} = 87.1 \text{ kN/m}$ Horizontal forces on wall Surcharge load; $F_{sur_h} = K_A \times cos(\delta_{r,k}) \times Surcharge_Q \times h_{eff} = 18.8 \text{ kN/m}$ Saturated retained soil; $F_{sat h} = K_A \times cos(\delta_{r.k}) \times (\gamma_{sr} - \gamma_w) \times (h_{sat} + h_{base})^2 / 2 = 12.7 \text{ kN/m}$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD180 PAGE No. J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com . W: www.tzgpartnership.com Water; $F_{water h} = \gamma_w \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 31.9 \text{ kN/m}$ $F_{\text{moist }h} = K_A \times \cos(\delta_{r.k}) \times \gamma_{mr} \times ((h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}}) \times (h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})$ Moist retained soil: h_{base})) = 39.1 kN/m $F_{pass h} = -K_P \times cos(\delta_{b.k}) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -2.6 \text{ kN/m}$ Base soil; Total; $F_{total_h} = F_{sat_h} + F_{moist_h} + F_{pass_h} + F_{water_h} + F_{sur_h} = 100 \text{ kN/m}$ Moments on wall M_{stem} = F_{stem} × x_{stem} = 194.5 kNm/m Wall stem: $M_{base} = F_{base} \times x_{base} = 176.4 \text{ kNm/m}$ Wall base; Surcharge load; $M_{sur} = -F_{sur h} \times x_{sur h} = -37.2 \text{ kNm/m}$ Saturated retained soil; $M_{sat} = -F_{sat_h} \times x_{sat_h} = -10.8 \text{ kNm/m}$ Water; $M_{water} = -F_{water h} \times x_{water h} = -27.1 \text{ kNm/m}$ Moist retained soil; $M_{moist} = -F_{moist_h} \times x_{moist_h} = -64.5 \text{ kNm/m}$ Total: M_{total} = M_{stem} + M_{base} + M_{sat} + M_{moist} + M_{water} + M_{sur} = 231.3 kNm/m Check bearing pressure Propping force; F_{prop_base} = F_{total_h} = 100 kN/m Distance to reaction; $x = M_{total} / F_{total v} = 2657 \text{ mm}$ Eccentricity of reaction; $e = x - I_{base} / 2 = -518 \text{ mm}$ Loaded length of base; $I_{load} = I_{base} = 6350 \text{ mm}$ Bearing pressure at toe; $q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = 20.4 \text{ kN/m}^2$ Bearing pressure at heel; $q_{heel} = F_{total v} / I_{base} \times (1 + 6 \times e / I_{base}) = 7 \text{ kN/m}^2$ Factor of safety: $FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 4.896$ PASS - Allowable bearing pressure exceeds maximum applied bearing pressure Retaining wall design In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 Tedds calculation version 2.9.04 Concrete details - Table 3.1 - Strength and deformation characteristics for concrete Concrete strength class; C30/37 $f_{ck} = 30 \text{ N/mm}^2$ Characteristic compressive cylinder strength; Characteristic compressive cube strength; $f_{ck,cube} = 37 \text{ N/mm}^2$ Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$ Mean value of axial tensile strength; $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$ 5% fractile of axial tensile strength; $f_{ctk.0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$ $E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 32837$ Secant modulus of elasticity of concrete; N/mm² Partial factor for concrete - Table 2.1N; $\gamma_c = 1.50$ Compressive strength coefficient - cl.3.1.6(1); $\alpha_{cc} = 0.85$ Design compressive concrete strength - exp.3.15; $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 17.0 \text{ N/mm}^2$ Maximum aggregate size; $h_{agg} = 20 \text{ mm}$ Ultimate strain - Table 3.1; $\varepsilon_{cu2} = 0.0035$ $\epsilon_{cu3} = 0.0035$ Shortening strain - Table 3.1; Effective compression zone height factor; $\lambda = 0.80$ Effective strength factor; η = 1.00 Bending coefficient k_1 ; $K_1 = 0.40$ Bending coefficient k₂; $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ Bending coefficient k_3 ; $K_3 = 0.40$

CONTRACT	Eton Ave
PAGE No.	FD181
CONTRACT No.	6722
DATE	04/19
BY	GH

Bending coefficient k4; K4 = $1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ Reinforcement details

 $\begin{array}{ll} \mbox{Characteristic yield strength of reinforcement;} & f_{yk} = 500 \ \mbox{N/mm}^2 \\ \mbox{Modulus of elasticity of reinforcement;} & E_s = 200000 \ \mbox{N/mm}^2 \\ \mbox{Partial factor for reinforcing steel - Table 2.1N;} & \gamma_S = 1.15 \\ \mbox{Design yield strength of reinforcement;} & f_{yd} = f_{yk} / \gamma_S = 435 \ \mbox{N/mm}^2 \\ \mbox{Cover to reinforcement} \\ \mbox{Front face of stem;} & c_{sf} = 30 \ \mbox{mm} \\ \mbox{Rear face of stem;} & c_{sr} = 35 \ \mbox{mm} \\ \mbox{Top face of base;} & c_{bt} = 50 \ \mbox{mm} \end{array}$

Bottom face of base; $c_{bb} = 75 \text{ mm}$

TZG PARTNERSHIP		CONTRACT	Eton Ave
ENGINEERING CONSULTANTS		PAGE No.	FD182
Orchard House 114-118 Cherry Orchard Road		CONTRACT No.	6722
Croydon CKU 6BA		DATE	04/19
F: +44 (0)20 8667 2137 F: +44 (0)20 8667 1328 F: admin@tzgpartnership.com		BY	GH
oading details - Combination No.2 - kN/m 2	Shear force - Combination No.2 - kN/m		

Check stem design at base of stem Depth of section; h = 350 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1;M = 148.8 kNm/m Depth to tension reinforcement; $d = h - c_{sr} - \phi_{sr} / 2 = 305 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.053$ $\mathsf{K}' = (2 \times \eta \times \alpha_{cc}/\gamma_{C}) \times (1 - \lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2})) \times (\lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2}))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 290 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 38 \text{ mm}$ Area of tension reinforcement required; $A_{sr.req} = M / (f_{yd} \times z) = 1181 \text{ mm}^2/\text{m}$ 20 dia.bars @ 200 c/c Tension reinforcement provided; $A_{sr.prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 1571 \text{ mm}^2/\text{m}$ Area of tension reinforcement provided; Minimum area of reinforcement - exp.9.1N; $A_{sr.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 459$ mm²/m Maximum area of reinforcement - cl.9.2.1.1(3); $A_{sr.max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$ $max(A_{sr.req}, A_{sr.min}) / A_{sr.prov} = 0.752$ PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output Deflection control - Section 7.4 Reference reinforcement ratio; $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$ Required tension reinforcement ratio; $\rho = A_{sr.reg} / d = 0.004$ Required compression reinforcement ratio; $\rho' = A_{sr.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N; $K_{b} = 0.4$ Reinforcement factor - exp.7.17; $K_s = min(500 \text{ N/mm}^2 / (f_{vk} \times A_{sr.reg} / A_{sr.prov}), 1.5) = 1.33$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS PAGE No. FD183 • Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com W: www.tzgpartnership.com min(K_s × K_b × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × ρ_0 / ρ + Limiting span to depth ratio - exp.7.16.a; $3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times (\rho_0 / \rho - 1)^{3/2}], 40 \times K_b) = 14.5$ $h_{stem} / d = 11.8$ Actual span to depth ratio; PASS - Span to depth ratio is less than deflection control limit Rectangular section in shear - Section 6.2 Design shear force; V = 117.7 kN/m $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.810$ Longitudinal reinforcement ratio; $\rho_{I} = \min(A_{sr, prov} / d, 0.02) = 0.005$ $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times k^{3/2} \times f_{ck}^{0.5} = 0.467 \text{ N/mm}^2$ $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ Design shear resistance - exp.6.2a & 6.2b; $\times d$ $V_{Rd.c} = 165 \text{ kN/m}$ $V / V_{Rd.c} = 0.713$ PASS - Design shear resistance exceeds design shear force Horizontal reinforcement parallel to face of stem - Section 9.6 Minimum area of reinforcement – cl.9.6.3(1); $A_{sx,reg} = max(0.25 \times A_{sr,prov}, 0.001 \times t_{stem}) = 393$ mm²/m Maximum spacing of reinforcement – cl.9.6.3(2); s_{sx max} = 400 mm Transverse reinforcement provided; 10 dia.bars @ 200 c/c $A_{sx,prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 393 \text{ mm}^2/\text{m}$ Area of transverse reinforcement provided; PASS - Area of reinforcement provided is greater than area of reinforcement required Check base design at toe Depth of section; h = 350 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1;M = 186.4 kNm/m Depth to tension reinforcement; $d = h - c_{bb} - \phi_{bb} / 2 = 263 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.090$ $\mathsf{K}' = (2 \times \eta \times \alpha_{cc}/\gamma_{C}) \times (1 - \lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2})) \times (\lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2}))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 240 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 57$ mm Area of tension reinforcement required; $A_{bb.reg} = M / (f_{yd} \times z) = 1790 \text{ mm}^2/\text{m}$ Tension reinforcement provided; 25 dia.bars @ 200 c/c $A_{bb.prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 2454 \text{ mm}^2/\text{m}$ Area of tension reinforcement provided; Minimum area of reinforcement - exp.9.1N; $A_{bb.min} = max(0.26 \times f_{ctm} / f_{vk}, 0.0013) \times d = 395$ mm²/m Maximum area of reinforcement - cl.9.2.1.1(3); $A_{bb.max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$ max(A_{bb.req}, A_{bb.min}) / A_{bb.prov} = 0.729 PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output Rectangular section in shear - Section 6.2 Design shear force; V = 44.2 kN/m $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.873$ Longitudinal reinforcement ratio; $\rho_{\rm I} = \min(A_{\rm bb.prov} / d, 0.02) = 0.009$

CONTRACT	Eton Ave
PAGE No.	FD184
CONTRACT No.	6722
DATE	04/19
BY	GH

 v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.491 N/mm²

 $\begin{array}{ll} \mbox{Design shear resistance - exp.6.2a \& 6.2b;} & V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \ \mbox{N}^2/\mbox{mm}^4 \times \rho_l \times f_{ck})^{1/3}, \nu_{min}) \\ \times \mbox{d} \end{array}$

 $V_{Rd.c} = 179.3 \text{ kN/m}$ V / V_{Rd.c} = 0.246

PASS - Design shear resistance exceeds design shear forceSecondary transverse reinforcement to base - Section 9.3Minimum area of reinforcement - cl.9.3.1.1(2); $A_{bx.req} = 0.2 \times A_{bb.prov} = 491 \text{ mm}^2/\text{m}$ Maximum spacing of reinforcement - cl.9.3.1.1(2); $A_{bx.req} = 0.2 \times A_{bb.prov} = 491 \text{ mm}^2/\text{m}$ Maximum spacing of reinforcement - cl.9.3.1.1(2); $A_{bx.req} = 0.2 \times A_{bb.prov} = 491 \text{ mm}^2/\text{m}$ Transverse reinforcement provided; 12 dia.bars @ 200 c/cArea of transverse reinforcement provided; $A_{bx.prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 565 \text{ mm}^2/\text{m}$ PASS - Area of reinforcement provided is greater than area of reinforcement required

Reinforcement details

CONTRACT	Eton Ave
PAGE No.	FD185
CONTRACT No.	6722
DATE	04/19
BY	GH

RW.3 Design

Retaining wall analysis In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1 Tedds calculation version 2.9.04 Retaining wall details Propped cantilever Stem type; h_{stem} = 3400 mm Stem height; Prop height; h_{prop} = 3300 mm Stem thickness; t_{stem} = 250 mm Angle to rear face of stem; α = 90 deg Stem density; $\gamma_{\text{stem}} = 25 \text{ kN/m}^3$ Toe length; $I_{toe} = 6000 \text{ mm}$ Base thickness; t_{base} = 350 mm Base density; $\gamma_{\text{base}} = 25 \text{ kN/m}^3$ Height of retained soil; $h_{ret} = 3400 \text{ mm}$ Angle of soil surface; $\beta = 0 \deg$ Depth of cover; $d_{cover} = 0 \text{ mm}$ Height of water; h_{water} = 2200 mm Water density; $\gamma_w = 9.8 \text{ kN/m}^3$ Retained soil properties Organic clay Soil type; Moist density; $\gamma_{mr} = 18 \text{ kN/m}^3$ $\gamma_{sr} = 18 \text{ kN/m}^3$ Saturated density; Characteristic effective shear resistance angle; $\phi'_{r,k} = 18 \text{ deg}$ Characteristic wall friction angle; $\delta_{r.k}$ = 9 deg Base soil properties Soil type; Firm clay $\gamma_{\rm b}$ = 18 kN/m³ Soil density; Characteristic effective shear resistance angle; $\phi'_{b.k} = 18 \text{ deg}$ Characteristic wall friction angle; $\delta_{b,k} = 9 \text{ deg}$ $\delta_{\text{bb.k}}$ = 12 deg Characteristic base friction angle; Presumed bearing capacity; $P_{\text{bearing}} = 100 \text{ kN/m}^2$ Loading details Variable surcharge load; Surcharge_Q = 5 kN/m^2

CONTRACT Eton Ave
PAGE No. FD186
CONTRACT No. 6722
DATE 04/19
вү <u>GH</u>

Calculate retaining wall geometry

Base length; $I_{\text{base}} = I_{\text{toe}} + t_{\text{stem}} = 6250 \text{ mm}$ Saturated soil height; $h_{sat} = h_{water} + d_{cover} = 2200 \text{ mm}$ Moist soil height; $h_{moist} = h_{ret} - h_{water} = 1200 \text{ mm}$ Length of surcharge load; $I_{sur} = I_{heel} = 0 \text{ mm}$ - Distance to vertical component; $x_{sur_v} = I_{base} - I_{heel} / 2 = 6250 \text{ mm}$ Effective height of wall; $h_{eff} = h_{base} + d_{cover} + h_{ret} = 3750 \text{ mm}$ $x_{sur_h} = h_{eff} / 2 = 1875 \text{ mm}$ - Distance to horizontal component; Area of wall stem; $A_{\text{stem}} = h_{\text{stem}} \times t_{\text{stem}} = 0.85 \text{ m}^2$ $x_{stem} = I_{toe} + t_{stem} / 2 = 6125 \text{ mm}$ - Distance to vertical component; $A_{base} = I_{base} \times t_{base} = 2.188 \text{ m}^2$ Area of wall base; - Distance to vertical component; $x_{base} = I_{base} / 2 = 3125 \text{ mm}$ Using Coulomb theory $K_{A} = \sin(\alpha + \phi'_{r,k})^{2} / (\sin(\alpha)^{2} \times \sin(\alpha - \delta_{r,k}) \times [1 + \sqrt{\sin(\phi'_{r,k} + \delta_{r,k})} \times (1 + \sqrt{\sin(\phi'_{r,k} + \delta_{r,k})}) \times (1 + \sqrt{\sin(\phi'_{r,k} + \delta_{r,k})} \times (1 + \sqrt{\sin(\phi'_{r,k} + \delta_{r,k})}))$ Active pressure coefficient; $\sin(\phi'_{r,k} - \beta) / (\sin(\alpha - \delta_{r,k}) \times \sin(\alpha + \beta))]^2) = 0.483$ $K_{P} = \sin(90 - \phi'_{b,k})^{2} / (\sin(90 + \delta_{b,k}) \times [1 - \sqrt{(\sin(\phi'_{b,k} + \delta_{b,k}) \times (\phi'_{b,k}))})$ Passive pressure coefficient; $(\sin(90 + \delta_{b.k}))]^2) = 2.359$ Bearing pressure check Vertical forces on wall Wall stem; $F_{stem} = A_{stem} \times \gamma_{stem} = 21.3 \text{ kN/m}$ Wall base; $F_{base} = A_{base} \times \gamma_{base} = 54.7 \text{ kN/m}$ Total; $F_{total v} = F_{stem} + F_{base} + F_{water v} = 75.9 \text{ kN/m}$ Horizontal forces on wall Surcharge load; $F_{sur_h} = K_A \times cos(\delta_{r.d}) \times Surcharge_Q \times h_{eff} = 9 \text{ kN/m}$ Saturated retained soil; $F_{sat_h} = K_A \times cos(\delta_{r,d}) \times (\gamma_{sr'} - \gamma_w') \times (h_{sat} + h_{base})^2 / 2 = 12.8 \text{ kN/m}$ Water; $F_{water_h} = \gamma_w' \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 31.9 \text{ kN/m}$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS PAGE No. FD187 ų Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 GH ΒY E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com Moist retained soil; $F_{\text{moist }h} = K_A \times \cos(\delta_{r,d}) \times \gamma_{mr'} \times ((h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 + (h_{\text{eff}} - h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}}) \times (h_{\text{sat}} - h_{\text{base}}) \times (h_{\text{sat}} + h_{\text{base}}$ h_{base})) = 32.6 kN/m $F_{pass_h} = -K_P \times cos(\delta_{b.d}) \times \gamma_b' \times (d_{cover} + h_{base})^2 / 2 = -2.6 \text{ kN/m}$ Base soil; Total; $F_{total_h} = F_{sat_h} + F_{moist_h} + F_{pass_h} + F_{water_h} + F_{sur_h} = 83.7 \text{ kN/m}$ Moments on wall $M_{stem} = F_{stem} \times x_{stem} = 130.2 \text{ kNm/m}$ Wall stem: Wall base; $M_{base} = F_{base} \times x_{base} = 170.9 \text{ kNm/m}$ Surcharge load; $M_{sur} = -F_{sur_h} \times x_{sur_h} = -16.8 \text{ kNm/m}$ Saturated retained soil; $M_{sat} = -F_{sat h} \times x_{sat h} = -10.8 \text{ kNm/m}$ Water; $M_{water} = -F_{water_h} \times x_{water_h} = -27.1 \text{ kNm/m}$ $M_{moist} = -F_{moist_h} \times x_{moist_h} = -52 \text{ kNm/m}$ Moist retained soil; Total; M_{total} = M_{stem} + M_{base} + M_{sat} + M_{moist} + M_{water} + M_{sur} = 194.3 kNm/m Check bearing pressure Propping force to stem; $F_{prop stem} = (F_{total v} \times I_{base} / 2 - M_{total}) / (h_{prop} + t_{base}) = 11.8 \text{ kN/m}$ Propping force to base; F_{prop_base} = F_{total_h} - F_{prop_stem} = 71.9 kN/m Moment from propping force; $M_{prop} = F_{prop_{stem}} \times (h_{prop} + t_{base}) = 43 \text{ kNm/m}$ $x = (M_{total} + M_{prop}) / F_{total_v} = 3125 \text{ mm}$ Distance to reaction; Eccentricity of reaction; $e = x - I_{base} / 2 = 0 \text{ mm}$ Loaded length of base; $I_{load} = I_{base} = 6250 \text{ mm}$ Bearing pressure at toe; $q_{toe} = F_{total v} / I_{base} \times (1 - 6 \times e / I_{base}) = 12.2 \text{ kN/m}^2$ $q_{heel} = F_{total v} / I_{base} \times (1 + 6 \times e / I_{base}) = 12.2 \text{ kN/m}^2$ Bearing pressure at heel; Factor of safety: $FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 8.23$ PASS - Allowable bearing pressure exceeds maximum applied bearing pressure Retaining wall design In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 Tedds calculation version 2.9.04 Concrete details - Table 3.1 - Strength and deformation characteristics for concrete Concrete strength class; C30/37 $f_{ck} = 30 \text{ N/mm}^2$ Characteristic compressive cylinder strength; Characteristic compressive cube strength; $f_{ck,cube} = 37 \text{ N/mm}^2$ Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$ Mean value of axial tensile strength; $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$ 5% fractile of axial tensile strength; $f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$ $E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 32837$ Secant modulus of elasticity of concrete; N/mm² Partial factor for concrete - Table 2.1N; $\gamma_c = 1.50$ Compressive strength coefficient - cl.3.1.6(1); α_{cc} = 0.85 $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 17.0 \text{ N/mm}^2$ Design compressive concrete strength - exp.3.15; Maximum aggregate size; $h_{agg} = 20 \text{ mm}$ Ultimate strain - Table 3.1; $\epsilon_{cu2} = 0.0035$ Shortening strain - Table 3.1; $\epsilon_{cu3} = 0.0035$ Effective compression zone height factor; $\lambda = 0.80$ Effective strength factor; $\eta = 1.00$ Bending coefficient k_1 ; $K_1 = 0.40$ Bending coefficient k₂; $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$

CONTRACT	Eton Ave
PAGE No.	FD188
CONTRACT No.	6722
DATE	04/19
BY	GH

Bending coefficient k_3 ; $K_3 = 0.40$

Bending coefficient k₃, k₃ = 0.40 Bending coefficient k₄; K₄ = 1.00 × (0.6 + 0.0014/ ε_{cu2}) =1.00 Reinforcement details Characteristic yield strength of reinforcement; f_{yk} = 500 N/mm² Modulus of elasticity of reinforcement; E_s = 200000 N/mm² Partial factor for reinforcing steel - Table 2.1N; γ_{s} = 1.15 Design yield strength of reinforcement; f_{yd} = f_{yk} / γ_{s} = 435 N/mm² Cover to reinforcement Front face of stem; c_{sf} = 35 mm Rear face of stem; c_{sf} = 50 mm Bottom face of base; c_{bb} = 75 mm

Check stem design at 1824 mm Depth of section; h = 250 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1;M = 18.2 kNm/m Depth to tension reinforcement; $d = h - c_{sf} - \phi_{sx} - \phi_{sfM} / 2 = 200 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.015$ $\mathsf{K}' = (2 \times \eta \times \alpha_{cc}/\gamma_{C}) \times (1 - \lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2})) \times (\lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2}))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 190 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 25$ mm Area of tension reinforcement required; $A_{sfM.req} = M / (f_{yd} \times z) = 221 \text{ mm}^2/\text{m}$ 10 dia.bars @ 200 c/c Tension reinforcement provided; Area of tension reinforcement provided; $A_{sfM,prov} = \pi \times \phi_{sfM}^2 / (4 \times s_{sfM}) = 393 \text{ mm}^2/\text{m}$ Minimum area of reinforcement - exp.9.1N; $A_{sfM.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 301$ mm²/m Maximum area of reinforcement - cl.9.2.1.1(3); $A_{sfM.max} = 0.04 \times h = 10000 \text{ mm}^2/\text{m}$ max(A_{sfM.reg}, A_{sfM.min}) / A_{sfM.prov} = 0.767 PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output Deflection control - Section 7.4 Reference reinforcement ratio; $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$ Required tension reinforcement ratio; $\rho = A_{sfM.req} / d = 0.001$ Required compression reinforcement ratio; $\rho' = A_{sfM.2.reg} / d_2 = 0.000$ Structural system factor - Table 7.4N; $K_b = 1$ Reinforcement factor - exp.7.17; $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sfM.req} / A_{sfM.prov}), 1.5) = 1.5$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD190 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 E: +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com W: www.tzgpartnership.com min(K_s × K_b × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × ρ_0 / ρ + Limiting span to depth ratio - exp.7.16.a; $3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2) \times (\rho_0 / \rho - 1)^{3/2}]}, 40 \times K_b) = 40$ Actual span to depth ratio; $h_{prop} / d = 16.5$ PASS - Span to depth ratio is less than deflection control limit Crack control - Section 7.3 Limiting crack width; $W_{max} = 0.3 \text{ mm}$ Variable load factor - EN1990 – Table A1.1; $\Psi_2 = 0.6$ Serviceability bending moment; M_{sls} = 12.6 kNm/m Tensile stress in reinforcement; $\sigma_s = M_{sls} / (A_{sfM,prov} \times z) = 169 \text{ N/mm}^2$ Load duration; Long term Load duration factor; $k_t = 0.4$ Effective area of concrete in tension; $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ $A_{c.eff} = 75000 \text{ mm}^2/\text{m}$ Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sfM.prov} / A_{c.eff} = 0.005$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.091$ Bond property coefficient; k₁ = 0.8 Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$ Maximum crack spacing - exp.7.11; $s_{r.max} = k_3 \times c_{sf} + k_1 \times k_2 \times k_4 \times \phi_{sfM} / \rho_{p.eff} = 444 \text{ mm}$ Maximum crack width - exp.7.8; $w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$ w_k = 0.225 mm $w_k / w_{max} = 0.75$ PASS - Maximum crack width is less than limiting crack width Check stem design at base of stem Depth of section; h = 250 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1;M = 41.2 kNm/m Depth to tension reinforcement; $d = h - c_{sr} - \phi_{sr} / 2 = 167 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.049$ $\mathsf{K}' = (2 \times \eta \times \alpha_{cc}/\gamma_{c}) \times (1 - \lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2})) \times (\lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2}))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 159 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 21 \text{ mm}$ Area of tension reinforcement required; $A_{sr.req} = M / (f_{yd} \times z) = 597 \text{ mm}^2/\text{m}$ Tension reinforcement provided; 16 dia.bars @ 200 c/c $A_{sr,prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 1005 \text{ mm}^2/\text{m}$ Area of tension reinforcement provided; Minimum area of reinforcement - exp.9.1N; $A_{sr.min} = max(0.26 \times f_{ctm} / f_{vk}, 0.0013) \times d = 252$ mm²/m Maximum area of reinforcement - cl.9.2.1.1(3); $A_{sr.max} = 0.04 \times h = 10000 \text{ mm}^2/\text{m}$ $max(A_{sr.req}, A_{sr.min}) / A_{sr.prov} = 0.594$ PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output Deflection control - Section 7.4 Reference reinforcement ratio; $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS PAGE No. FD191 Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com . W: www.tzgpartnership.com Required tension reinforcement ratio; $\rho = A_{sr.reg} / d = 0.004$ Required compression reinforcement ratio; $\rho' = A_{sr.2.reg} / d_2 = 0.000$ Structural system factor - Table 7.4N; $K_b = 1$ $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.5$ Reinforcement factor - exp.7.17; Limiting span to depth ratio - exp.7.16.a; min(K_s × K_b × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × ρ_0 / ρ + $3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2) \times (\rho_0 / \rho - 1)^{3/2}]}, 40 \times K_b) = 40$ Actual span to depth ratio; $h_{prop} / d = 19.8$ PASS - Span to depth ratio is less than deflection control limit Crack control - Section 7.3 Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor - EN1990 - Table A1.1; $\Psi_2 = 0.6$ Serviceability bending moment; M_{sls} = 28.8 kNm/m Tensile stress in reinforcement; $\sigma_s = M_{sls} / (A_{sr,prov} \times z) = 180.9 \text{ N/mm}^2$ Load duration; Long term Load duration factor; $k_{t} = 0.4$ Effective area of concrete in tension; $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ $A_{c.eff} = 76375 \text{ mm}^2/\text{m}$ $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Mean value of concrete tensile strength; Reinforcement ratio; $\rho_{p.eff} = A_{sr.prov} / A_{c.eff} = 0.013$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.091$ Bond property coefficient; k₁ = 0.8 Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$ Maximum crack spacing - exp.7.11; $s_{r.max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr} / \rho_{p.eff} = 462 \text{ mm}$ Maximum crack width - exp.7.8; w_k = s_{r.max} × max(σ_s - k_t × (f_{ct.eff} / $\rho_{p.eff}$) × (1 + α_e × $\rho_{p.eff}$), 0.6 × σ_s) / E_s w_k = 0.25 mm $w_k / w_{max} = 0.835$ PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 75.4 kN/m $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 2.000$ Longitudinal reinforcement ratio; $\rho_{\rm I} = \min(A_{\rm sr.prov} / d, 0.02) = 0.006$ v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.542 N/mm² Design shear resistance - exp.6.2a & 6.2b; $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ $\times d$ $V_{Rd.c} = 105.2 \text{ kN/m}$ $V / V_{Rd.c} = 0.717$ PASS - Design shear resistance exceeds design shear force Check stem design at prop Depth of section; h = 250 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1;M = 0 kNm/m Depth to tension reinforcement; $d = h - c_{sr} - \phi_{sr1} / 2 = 170 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.000$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS FD192 , y PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com $\mathsf{K}' = (2 \times \eta \times \alpha_{\rm cc}/\gamma_{\rm C}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 161 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 21 \text{ mm}$ Area of tension reinforcement required; $A_{sr1.reg} = M / (f_{yd} \times z) = 0 \text{ mm}^2/\text{m}$ Tension reinforcement provided; 10 dia.bars @ 200 c/c Area of tension reinforcement provided; $A_{sr1.prov} = \pi \times \phi_{sr1}^2 / (4 \times s_{sr1}) = 393 \text{ mm}^2/\text{m}$ Minimum area of reinforcement - exp.9.1N; $A_{sr1.min} = max(0.26 \times f_{ctm} / f_{vk}, 0.0013) \times d = 256$ mm²/m Maximum area of reinforcement - cl.9.2.1.1(3); $A_{sr1.max} = 0.04 \times h = 10000 \text{ mm}^2/\text{m}$ $max(A_{sr1.req}, A_{sr1.min}) / A_{sr1.prov} = 0.652$ PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output Deflection control - Section 7.4 Reference reinforcement ratio; $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$ Required tension reinforcement ratio; $\rho = A_{sr1.req} / d = 0.000$ Required compression reinforcement ratio; $\rho' = A_{sr1.2.req} / d_2 = 0.000$ Structural system factor - Table 7.4N; $K_b = 0.4$ Reinforcement factor - exp.7.17; $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.reg} / A_{sr1.prov}), 1.5) = 1.5$ Limiting span to depth ratio - exp.7.16.a; min(K_s × K_b × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × ρ_0 / ρ + $3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2) \times (\rho_0 / \rho - 1)^{3/2}]}, 40 \times K_b) = 16$ Actual span to depth ratio; $(h_{stem} - h_{prop}) / d = 0.6$ PASS - Span to depth ratio is less than deflection control limit Crack control - Section 7.3 w_{max} = 0.3 mm Limiting crack width; Variable load factor - EN1990 - Table A1.1; $\Psi_2 = 0.6$ Serviceability bending moment; M_{sls} = 0 kNm/m Tensile stress in reinforcement; $\sigma_s = M_{sls} / (A_{sr1,prov} \times z) = 0.1 \text{ N/mm}^2$ Load duration; Long term Load duration factor; $k_t = 0.4$ Effective area of concrete in tension; $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ $A_{c.eff} = 76250 \text{ mm}^2/\text{m}$ Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sr1.prov} / A_{c.eff} = 0.005$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.091$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$ Maximum crack spacing - exp.7.11; $s_{r,max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr1} / \rho_{p,eff} = 585 \text{ mm}$ Maximum crack width - exp.7.8; $w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$ $w_k = 0 \text{ mm}$ $w_k / w_{max} = 0.001$ PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 20.1 kN/m

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS PAGE No. FD193 J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.com W: www.tzgpartnership.com $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 2.000$ Longitudinal reinforcement ratio; $\rho_{\rm I} = \min(A_{\rm sr1.prov} / d, 0.02) = 0.002$ $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{f}_{ck}^{0.5} = 0.542 \text{ N/mm}^2$ Design shear resistance - exp.6.2a & 6.2b; $V_{\text{Rd.c}} = \max(C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{\text{ck}})^{1/3}, v_{\text{min}})$ $\times d$ $V_{Rd.c} = 92.2 \text{ kN/m}$ $V / V_{Rd.c} = 0.218$ PASS - Design shear resistance exceeds design shear force Horizontal reinforcement parallel to face of stem - Section 9.6 Minimum area of reinforcement – cl.9.6.3(1); $A_{sx,reg} = max(0.25 \times A_{sr,prov}, 0.001 \times t_{stem}) = 251$ mm²/m Maximum spacing of reinforcement – cl.9.6.3(2); $s_{sx max} = 400 \text{ mm}$ 10 dia.bars @ 200 c/c Transverse reinforcement provided; $A_{sx,prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 393 \text{ mm}^2/\text{m}$ Area of transverse reinforcement provided; PASS - Area of reinforcement provided is greater than area of reinforcement required Check base design at toe Depth of section; h = 350 mm Rectangular section in flexure - Section 6.1 Design bending moment combination 1;M = 82.6 kNm/m Depth to tension reinforcement; $d = h - c_{bb} - \phi_{bb} / 2 = 265 \text{ mm}$ $K = M / (d^2 \times f_{ck}) = 0.039$ $\mathsf{K}' = (2 \times \eta \times \alpha_{\rm cc}/\gamma_{\rm C}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 252 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 33 \text{ mm}$ Area of tension reinforcement required; $A_{bb,req} = M / (f_{vd} \times z) = 755 \text{ mm}^2/\text{m}$ Tension reinforcement provided; 20 dia.bars @ 200 c/c Area of tension reinforcement provided; $A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 1571 \text{ mm}^2/\text{m}$ Minimum area of reinforcement - exp.9.1N; $A_{bb.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 399$ mm²/m Maximum area of reinforcement - cl.9.2.1.1(3); $A_{bb,max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$ $max(A_{bb.req}, A_{bb.min}) / A_{bb.prov} = 0.481$ PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output Crack control - Section 7.3 Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor - EN1990 - Table A1.1; $\Psi_2 = 0.6$ Serviceability bending moment; M_{sls} = 61.2 kNm/m Tensile stress in reinforcement; $\sigma_s = M_{sls} / (A_{bb.prov} \times z) = 154.8 \text{ N/mm}^2$ Load duration; Long term Load duration factor; $k_t = 0.4$ Effective area of concrete in tension; $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ $A_{c.eff} = 105625 \text{ mm}^2/\text{m}$ $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Mean value of concrete tensile strength; Reinforcement ratio; $\rho_{p.eff} = A_{bb.prov} / A_{c.eff} = 0.015$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD194 PAGE No. ų Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.com W: www.tzgpartnership.com Modular ratio; $\alpha_e = E_s / E_{cm} = 6.091$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$ Maximum crack spacing - exp.7.11; $s_{r,max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_{bb} / \rho_{p,eff} = 484 \text{ mm}$ Maximum crack width - exp.7.8; $w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$ $w_k = 0.225 \text{ mm}$ $w_k / w_{max} = 0.748$ PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 27.5 kN/m $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.869$ Longitudinal reinforcement ratio; $\rho_{\rm I} = \min(A_{\rm bb,prov} / d, 0.02) = 0.006$ v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.490 N/mm² Design shear resistance - exp.6.2a & 6.2b; $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ imes d $V_{Rd.c} = 155.1 \text{ kN/m}$ $V / V_{Rd.c} = 0.178$ PASS - Design shear resistance exceeds design shear force Secondary transverse reinforcement to base - Section 9.3 Minimum area of reinforcement – cl.9.3.1.1(2); $A_{bx.req} = 0.2 \times A_{bb.prov} = 314 \text{ mm}^2/\text{m}$ Maximum spacing of reinforcement – cl.9.3.1.1(3); $s_{bx max} = 450 mm$ Transverse reinforcement provided; 10 dia.bars @ 200 c/c $A_{bx.prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 393 \text{ mm}^2/\text{m}$ Area of transverse reinforcement provided; PASS - Area of reinforcement provided is greater than area of reinforcement required
4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4	ENGINEERING CONSULTANTS	PAGE No.	FD195
	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
1.02	Croydon CR0 6BA	DATE	04/19
	F: +44 (0)20 8667 1328 F: +44 (0)20 8667 1328 F: admi@tzgoartnership.com	BY	GH
	W: www.tzgpartnership.com		

10 dia.bars @ 200 c/c transverse reinforcement in base

Reinforcement details

S0.1 Design

P1 pad

CONTRACT	Eton Ave
PAGE No.	FD196
CONTRACT No.	6722
DATE	04/19
BY	GH

Foundation analysis (EN1997-1:2004) In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1 TEDDS calculation version 3.2.15 Pad foundation details Length of foundation; L_x = 900 mm Width of foundation; $L_v = 900 \text{ mm}$ Foundation area; $A = L_x \times L_y = 0.810 \text{ m}^2$ Depth of foundation; h = 350 mm Depth of soil over foundation; $h_{soil} = 0 \text{ mm}$ Level of water; $h_{water} = 0 \text{ mm}$ Density of water; $\gamma_{water} = 9.8 \text{ kN/m}^3$ Density of concrete; $\gamma_{conc} = 25.0 \text{ kN/m}^3$ 61.8 kN/m² 61.8 kN/m² ١ 61.8 kN/m² 61.8 kN/m² Column no.1 details Length of column; l_{x1} = 100 mm Width of column; $I_{v1} = 100 \text{ mm}$

position in x-axis; $x_1 = 450 \text{ mm}$ position in y-axis; $y_1 = 450 \text{ mm}$ Soil properties

Density of soil; $\gamma_{soil} = 18.0 \text{ kN/m}^3$ Characteristic cohesion; c'_k = 0 kN/m²

CONTRACT	Eton Ave
PAGE No.	FD197
CONTRACT No.	6722
DATE	04/19
BY	GH

Characteristic effective shear resistance angle; $\phi'_{k} = 30 \text{ deg}$ Characteristic friction angle; $\delta_k = 20 \text{ deg}$ Foundation loads $F_{swt} = h \times \gamma_{conc} = 8.8 \text{ kN/m}^2$ Self weight; Column no.1 loads Permanent load in z: $F_{Gz1} = 30.0 \text{ kN}$ $F_{Qz1} = 13.0 \text{ kN}$ Variable load in z; Bearing resistance (Section 6.5.2) Forces on foundation Force in z-axis; $F_{dz} = A \times F_{swt} + F_{Gz1} + F_{Qz1} = 50.1 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1 + F_{Qz1} \times x_1 = 22.5 \text{ kNm}$ Moment in y-axis; $M_{dy} = A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1 + F_{Qz1} \times y_1 = 22.5 \text{ kNm}$ Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Pad base pressures $q_1 = F_{dz} \times (1 - 6 \times e_x / L_x - 6 \times e_y / L_y) / (L_x \times L_y) = 61.8 \text{ kN/m}^2$ $q_2 = F_{dz} \times (1 - 6 \times e_x / L_x + 6 \times e_y / L_y) / (L_x \times L_y) = 61.8 \text{ kN/m}^2$ $q_3 = F_{dz} \times (1 + 6 \times e_x / L_x - 6 \times e_y / L_y) / (L_x \times L_y) = 61.8 \text{ kN/m}^2$ $q_4 = F_{dz} \times (1 + 6 \times e_x / L_x + 6 \times e_y / L_y) / (L_x \times L_y) = 61.8 \text{ kN/m}^2$ $q_{min} = min(q_1, q_2, q_3, q_4) = 61.8 \text{ kN/m}^2$ Minimum base pressure; Maximum base pressure; $q_{max} = max(q_1, q_2, q_3, q_4) = 61.8 \text{ kN/m}^2$ Presumed bearing capacity Presumed bearing capacity; $P_{\text{bearing}} = 75.0 \text{ kN/m}^2$ PASS - Presumed bearing capacity exceeds design base pressure Design approach 1 Partial factors on actions - Combination1 Partial factor set; A1 Permanent unfavourable action - Table A.3; $\gamma_{\rm G} = 1.35$ γ_{Gf} = 1.00 Permanent favourable action - Table A.3; Variable unfavourable action - Table A.3; $\gamma_0 = 1.50$ Variable favourable action - Table A.3; $\gamma_{Qf} = 0.00$ Partial factors for spread foundations - Combination1 Resistance factor set; R1 Bearing - Table A.5; $\gamma_{R.v} = 1.00$ Sliding - Table A.5; $\gamma_{\rm R.h} = 1.00$ Forces on foundation Force in z-axis; $F_{dz} = \gamma_G \times (A \times F_{swt} + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 69.6 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = \gamma_G \times (A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_Q \times F_{Qz1} \times x_1 = 31.3 \text{ kNm}$ Moment in y-axis; $M_{dy} = \gamma_G \times (A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 31.3 \text{ kNm}$ Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Effective area of base

TZG PARTNERSHIP ENGINEERING CONSULTANTS Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA T: +44 (0)20 8681 2137 F: +44 (0)20 8687 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com

CONTRACT	Eton Ave
PAGE No.	FD198
CONTRACT No.	6722
DATE	04/19
BY	GH

 $L'_{x} = L_{x} - 2 \times e_{x} = 900 \text{ mm}$ Effective length; Effective width; $L'_{v} = L_{v} - 2 \times e_{v} = 900 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 0.810 \text{ m}^2$ Pad base pressure Design base pressure; $f_{dz} = F_{dz} / A' = 85.9 \text{ kN/m}^2$ Design approach 1 Partial factors on actions - Combination2 Partial factor set; Α2 Permanent unfavourable action - Table A.3; $\gamma_{\rm G} = 1.00$ $\gamma_{Gf} = 1.00$ Permanent favourable action - Table A.3; Variable unfavourable action - Table A.3; $\gamma_{Q} = 1.30$ Variable favourable action - Table A.3; $\gamma_{Qf} = 0.00$ Partial factors for spread foundations - Combination2 Resistance factor set; R1 Bearing - Table A.5; $\gamma_{R.v} = 1.00$ Sliding - Table A.5; $\gamma_{R.h} = 1.00$ Forces on foundation Force in z-axis; $F_{dz} = \gamma_G \times (A \times F_{swt} + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 54.0 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = \gamma_G \times (A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_Q \times F_{Qz1} \times x_1 = 24.3 \text{ kNm}$ Moment in y-axis; $M_{dy} = \gamma_G \times (A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 24.3 \text{ kNm}$ Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Effective area of base Effective length; $L'_{x} = L_{x} - 2 \times e_{x} = 900 \text{ mm}$ Effective width; $L'_y = L_y - 2 \times e_y = 900 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 0.810 \text{ m}^2$ Pad base pressure Design base pressure; $f_{dz} = F_{dz} / A' = 66.7 \text{ kN/m}^2$ Foundation design (EN1992-1-1:2004) In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 TEDDS calculation version 3.2.15 Concrete details (Table 3.1 - Strength and deformation characteristics for concrete) Concrete strength class; C30/37 $f_{ck} = 30 \text{ N/mm}^2$ Characteristic compressive cylinder strength; Characteristic compressive cube strength; $f_{ck.cube} = 37 \text{ N/mm}^2$ Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 N/mm^2 = 38 N/mm^2$ $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$ Mean value of axial tensile strength; 5% fractile of axial tensile strength; $f_{ctk.0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$ $E_{cm} = 22 \text{ kN/mm}^2 \times [f_{cm}/10 \text{ N/mm}^2]^{0.3} = 32837$ Secant modulus of elasticity of concrete; N/mm² Partial factor for concrete (Table 2.1N); $\gamma_c = 1.50$ Compressive strength coefficient (cl.3.1.6(1)); $\alpha_{cc} = 0.85$ Design compressive concrete strength (exp.3.15); $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 17.0 \text{ N/mm}^2$ Tens.strength coeff.for plain concrete (cl.12.3.1(1)); $\alpha_{\rm ct.pl}$ = 0.80

CONTRACT	Eton Ave
PAGE No.	FD199
CONTRACT No.	6722
DATE	04/19
BY	GH

Des.tens.strength for plain concrete (exp.12.1); $f_{ctd,pl} = \alpha_{ct,pl} \times f_{ctk,0.05} / \gamma_c = 1.1 \text{ N/mm}^2$ Maximum aggregate size; $h_{agg} = 20 \text{ mm}$ $\epsilon_{cu2} = 0.0035$ Ultimate strain - Table 3.1; Shortening strain - Table 3.1; ϵ_{cu3} = 0.0035 Effective compression zone height factor; $\lambda = 0.80$ Effective strength factor; η = 1.00 Bending coefficient k_1 ; $K_1 = 0.40$ Bending coefficient k₂; $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ Bending coefficient k₃; K₃ =0.40 Bending coefficient k₄; $K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ **Reinforcement details** Characteristic yield strength of reinforcement; $f_{yk} = 500 \text{ N/mm}^2$ Modulus of elasticity of reinforcement; $E_s = 210000 \text{ N/mm}^2$ Partial factor for reinforcing steel (Table 2.1N); $\gamma_s = 1.15$ Design yield strength of reinforcement; $f_{yd} = f_{yk} / \gamma_s = 435 \text{ N/mm}^2$ Nominal cover to reinforcement; $c_{nom} = 30 \text{ mm}$ Strip and pad footings (Section 12.9.3) Design base pressure; $f_{dz} = 85.9 \text{ kN/m}^2$ Projection from column face; a = 400 mm Max.projection from column face - (exp.12.13); $a_{max} = 0.85 \times h / \sqrt{[3 \times f_{dz} / f_{ctd,pl}]} = 609 \text{ mm}$ PASS - Projection from the column face doesn't exceed permissible limit for plain concrete

CONTRACT	Eton Ave
PAGE No.	FD200
CONTRACT No.	6722
DATE	04/19
BY	GH

P2 pad

Foundation analysis (EN1997-1:2004) In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1 TEDDS calculation version 3.2.15 Pad foundation details Length of foundation; $L_x = 1900 \text{ mm}$ Width of foundation; $L_v = 1900 \text{ mm}$ Foundation area; $A = L_x \times L_y = 3.610 \text{ m}^2$ Depth of foundation; h = 350 mm Depth of soil over foundation; $h_{soil} = 0 \text{ mm}$ Level of water; h_{water} = 0 mm Density of water; $\gamma_{water} = 9.8 \text{ kN/m}^3$ Density of concrete; $\gamma_{conc} = 25.0 \text{ kN/m}^3$ 73 kN/m² 73 kN/m² H 73 kN/m² 73 kN/m²

Column no.1 details Length of column; l_{x1} = 100 mm $I_{y1} = 100 \text{ mm}$ Width of column; position in x-axis; x₁ = 950 mm position in y-axis; $y_1 = 950 \text{ mm}$ Soil properties Density of soil; $\gamma_{soil} = 18.0 \text{ kN/m}^3$ Characteristic cohesion; $c'_k = 0 kN/m^2$ Characteristic effective shear resistance angle; $\phi'_{k} = 30 \text{ deg}$ Characteristic friction angle; $\delta_k = 20 \text{ deg}$ Foundation loads

CONTRACT	Eton Ave
PAGE No.	FD201
CONTRACT No.	6722
DATE	04/19
BY	GH

 $F_{swt} = h \times \gamma_{conc} = 8.8 \text{ kN/m}^2$ Self weight; Column no.1 loads Permanent load in z; F_{Gz1} = 170.0 kN Variable load in z; $F_{Qz1} = 62.0 \text{ kN}$ Bearing resistance (Section 6.5.2) Forces on foundation Force in z-axis; $F_{dz} = A \times F_{swt} + F_{Gz1} + F_{Qz1} = 263.6 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1 + F_{Qz1} \times x_1 = 250.4 \text{ kNm}$ $M_{dy} = A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1 + F_{Qz1} \times y_1 = 250.4 \text{ kNm}$ Moment in y-axis; Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Pad base pressures $q_1 = F_{dz} \times (1 - 6 \times e_x / L_x - 6 \times e_y / L_y) / (L_x \times L_y) = 73 \text{ kN/m}^2$ $q_2 = F_{dz} \times (1 - 6 \times e_x / L_x + 6 \times e_y / L_y) / (L_x \times L_y) = 73 \text{ kN/m}^2$ $q_3 = F_{dz} \times (1 + 6 \times e_x / L_x - 6 \times e_y / L_y) / (L_x \times L_y) = 73 \text{ kN/m}^2$ $q_4 = F_{dz} \times (1 + 6 \times e_x / L_x + 6 \times e_y / L_y) / (L_x \times L_y) = 73 \text{ kN/m}^2$ Minimum base pressure; $q_{min} = min(q_1, q_2, q_3, q_4) = 73 \text{ kN/m}^2$ Maximum base pressure; $q_{max} = max(q_1, q_2, q_3, q_4) = 73 \text{ kN/m}^2$ Presumed bearing capacity Presumed bearing capacity; $P_{\text{bearing}} = 75.0 \text{ kN/m}^2$ PASS - Presumed bearing capacity exceeds design base pressure Design approach 1 Partial factors on actions - Combination1 Partial factor set: A1 Permanent unfavourable action - Table A.3; $\gamma_{\rm G} = 1.35$ Permanent favourable action - Table A.3; $\gamma_{\rm Gf} = 1.00$ Variable unfavourable action - Table A.3; $\gamma_{Q} = 1.50$ Variable favourable action - Table A.3; $\gamma_{Qf} = 0.00$ Partial factors for spread foundations - Combination1 Resistance factor set; R1 Bearing - Table A.5; $\gamma_{R.v} = 1.00$ Sliding - Table A.5; $\gamma_{R.h} = 1.00$ Forces on foundation Force in z-axis; $F_{dz} = \gamma_G \times (A \times F_{swt} + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 365.1 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = \gamma_G \times (A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_Q \times F_{Qz1} \times x_1 = 346.9 \text{ kNm}$ $M_{dy} = \gamma_G \times (A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 346.9 \text{ kNm}$ Moment in y-axis; Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Effective area of base Effective length; $L'_{x} = L_{x} - 2 \times e_{x} = 1900 \text{ mm}$ Effective width; $L'_{y} = L_{y} - 2 \times e_{y} = 1900 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 3.610 \text{ m}^2$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS PAGE No. FD202 Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 . DATE 04/19 T: +44 (0)20 8681 2137 E: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com Pad base pressure Design base pressure; $f_{dz} = F_{dz} / A' = 101.1 \text{ kN/m}^2$ Design approach 1 Partial factors on actions - Combination2 Partial factor set; A2 Permanent unfavourable action - Table A.3; $\gamma_{\rm G} = 1.00$ Permanent favourable action - Table A.3; $\gamma_{\rm Gf} = 1.00$ Variable unfavourable action - Table A.3; $\gamma_{Q} = 1.30$ Variable favourable action - Table A.3; $\gamma_{Qf} = 0.00$ Partial factors for spread foundations - Combination2 Resistance factor set; R1 Bearing - Table A.5; $\gamma_{R.v} = 1.00$ Sliding - Table A.5; $\gamma_{\rm R.h} = 1.00$ Forces on foundation Force in z-axis; $F_{dz} = \gamma_G \times (A \times F_{swt} + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 282.2 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = \gamma_G \times (A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_Q \times F_{Qz1} \times x_1 = 268.1 \text{ kNm}$ $M_{dy} = \gamma_G \times (A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 268.1 \text{ kNm}$ Moment in y-axis; Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Effective area of base Effective length; $L'_{x} = L_{x} - 2 \times e_{x} = 1900 \text{ mm}$ Effective width; $L'_y = L_y - 2 \times e_y = 1900 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 3.610 \text{ m}^2$ Pad base pressure Design base pressure; $f_{dz} = F_{dz} / A' = 78.2 \text{ kN/m}^2$ Foundation design (EN1992-1-1:2004) In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 **TEDDS calculation version 3.2.15** Concrete details (Table 3.1 - Strength and deformation characteristics for concrete) Concrete strength class; C30/37 $f_{ck} = 30 \text{ N/mm}^2$ Characteristic compressive cylinder strength; Characteristic compressive cube strength; $f_{ck,cube} = 37 \text{ N/mm}^2$ Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$ Mean value of axial tensile strength; $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$ 5% fractile of axial tensile strength; $f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$ $E_{cm} = 22 \text{ kN/mm}^2 \times [f_{cm}/10 \text{ N/mm}^2]^{0.3} = 32837$ Secant modulus of elasticity of concrete; N/mm² Partial factor for concrete (Table 2.1N); $\gamma_c = 1.50$ Compressive strength coefficient (cl.3.1.6(1)); $\alpha_{cc} = 0.85$ Design compressive concrete strength (exp.3.15); $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 17.0 \text{ N/mm}^2$ Tens.strength coeff.for plain concrete (cl.12.3.1(1)); $\alpha_{\rm ct.pl}$ = 0.80 Des.tens.strength for plain concrete (exp.12.1); $f_{ctd,pl} = \alpha_{ct,pl} \times f_{ctk,0.05} / \gamma_c = 1.1 \text{ N/mm}^2$ Maximum aggregate size; $h_{agg} = 20 \text{ mm}$ Ultimate strain - Table 3.1; $\varepsilon_{cu2} = 0.0035$

CONTRACT	Eton Ave
PAGE No.	FD203
CONTRACT No.	6722
DATE	04/19
BY	GH

Shortening strain - Table 3.1; $\epsilon_{cu3} = 0.0035$ Effective compression zone height factor; $\lambda = 0.80$ Effective strength factor; η = 1.00 Bending coefficient k_1 ; $K_1 = 0.40$ Bending coefficient k₂; $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ Bending coefficient k₃; K₃ =0.40 Bending coefficient k₄; $K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ **Reinforcement details** Characteristic yield strength of reinforcement; $f_{vk} = 500 \text{ N/mm}^2$ Modulus of elasticity of reinforcement; E_s = 210000 N/mm² Partial factor for reinforcing steel (Table 2.1N); $\gamma_s = 1.15$ Design yield strength of reinforcement; $f_{yd} = f_{yk} / \gamma_s = 435 \text{ N/mm}^2$ $c_{nom} = 30 \text{ mm}$ Nominal cover to reinforcement; Shear diagram, x axis (kN) 161.3 102.5 102 5 -161.2 Moment diagram, x axis (kNm) 68.7

Rectangular section in flexure (Section 6.1) Design bending moment; $M_{Ed.x.max} = 68.7 \text{ kNm}$ Depth to tension reinforcement; $d = h - c_{nom} - \phi_{x,bot} / 2 = 312 \text{ mm}$ $K = M_{Ed,x,max} / (L_v \times d^2 \times f_{ck}) = 0.012$ $\mathsf{K}' = (2 \times \eta \times \alpha_{\rm cc}/\gamma_{\rm C}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207 *K*' > *K* - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 296 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 39 \text{ mm}$ Area of tension reinforcement required; $A_{sx,bot,req} = M_{Ed,x,max} / (f_{yd} \times z) = 533 \text{ mm}^2$ Tension reinforcement provided; 8 No.16 dia.bars bottom (260 c/c) $A_{sx.bot.prov} = 1608 \text{ mm}^2$ Area of tension reinforcement provided; Minimum area of reinforcement (exp.9.1N); $A_{s.min} = max(0.26 \times f_{ctm} / f_{vk}, 0.0013) \times L_v \times d = 893$ mm² Maximum area of reinforcement (cl.9.2.1.1(3)); $A_{s.max} = 0.04 \times L_y \times d = 23712 \text{ mm}^2$

PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control (Section 7.3)

CONTRACT	Eton Ave
PAGE No.	FD204
CONTRACT No.	6722
DATE	04/19
BY	GH

Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor (EN1990 – Table A1.1); $\Psi_2 = 0.3$ Serviceability bending moment; M_{sls.x.max} = 40.2 kNm Tensile stress in reinforcement; $\sigma_s = M_{sls.x.max} / (A_{sx.bot.prov} \times z) = 84.3 \text{ N/mm}^2$ Load duration factor; $k_{t} = 0.4$ Effective depth of concrete in tension; $h_{c.ef} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 95 mm$ Effective area of concrete in tension; $A_{c.eff} = h_{c.ef} \times L_y = 180500 \text{ mm}^2$ Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sx.bot.prov} / A_{c.eff} = 0.009$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.395$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4 = 3.4$ $k_4 = 0.425$ Maximum crack spacing (exp.7.11); $s_{r.max} = k_3 \times c_{nom} + k_1 \times k_2 \times k_4 \times \phi_{x.bot} / \rho_{p.eff} = 407 \text{ mm}$ Maximum crack width (exp.7.8); $w_k = s_{r.max} \times max([\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff})] / E_s,$ $0.6 \times \sigma_{s} / E_{s}$) = 0.098 mm PASS - Maximum crack width is less than limiting crack width Library item: Crack width output Rectangular section in shear (Section 6.2) Design shear force; V_{Ed.x.max} = 102.5 kN $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.822$ Longitudinal reinforcement ratio; $\rho_I = min(A_{sx.bot.prov} / (L_y \times d), 0.02) = 0.003$ $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times f_{ck}^{0.5} = 0.471 \text{ N/mm}^2$ $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ Design shear resistance (exp.6.2a & 6.2b); $\times L_v \times d$ $V_{Rd.c} = 265.2 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Shear diagram, y axis (kN) 161.3 102.5 102 5 161.2 Moment diagram, y axis (kNm) 68.7

Rectangular section in flexure (Section 6.1) Design bending moment; M_{Ed.y.max} = 68.7 kNm

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS PAGE No. FD205 Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com W: www.tzgpartnership.com Depth to tension reinforcement; $d = h - c_{nom} - \phi_{x.bot} - \phi_{y.bot} / 2 = 296 \text{ mm}$ $K = M_{Ed.v.max} / (L_x \times d^2 \times f_{ck}) = 0.014$ $\mathsf{K}' = (2 \times \eta \times \alpha_{\rm cc}/\gamma_{\rm C}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 281 \text{ mm}$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 37 \text{ mm}$ Area of tension reinforcement required; $A_{sy,bot,req} = M_{Ed,y,max} / (f_{yd} \times z) = 562 \text{ mm}^2$ Tension reinforcement provided; 8 No.16 dia.bars bottom (260 c/c) Area of tension reinforcement provided; $A_{sy,bot,prov} = 1608 \text{ mm}^2$ Minimum area of reinforcement (exp.9.1N); $A_{s.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times L_x \times d = 847$ mm² Maximum area of reinforcement (cl.9.2.1.1(3)); $A_{s,max} = 0.04 \times L_x \times d = 22496 \text{ mm}^2$ PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control (Section 7.3) Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor (EN1990 – Table A1.1); $\Psi_2 = 0.3$ Serviceability bending moment; M_{sls.v.max} = 40.2 kNm Tensile stress in reinforcement; $\sigma_s = M_{sls.y.max} / (A_{sy.bot.prov} \times z) = 88.9 \text{ N/mm}^2$ Load duration factor; $k_{t} = 0.4$ Effective depth of concrete in tension; $h_{c.ef} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 104 mm$ Effective area of concrete in tension; $A_{c.eff} = h_{c.ef} \times L_x = 198233 \text{ mm}^2$ Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sy.bot.prov} / A_{c.eff} = 0.008$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.395$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4 = 3.4$ $k_4 = 0.425$ Maximum crack spacing (exp.7.11); $s_{r.max} = k_3 \times (c_{nom} + \phi_{x.bot}) + k_1 \times k_2 \times k_4 \times \phi_{y.bot} / \rho_{p.eff} = 492 \text{ mm}$ Maximum crack width (exp.7.8); $w_k = s_{r.max} \times max([\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff})] / E_s,$ $0.6 \times \sigma_{s} / E_{s}$) = 0.125 mm PASS - Maximum crack width is less than limiting crack width Library item: Crack width output Rectangular section in shear (Section 6.2) Design shear force; $V_{Ed.v.max} = 102.5 \text{ kN}$ $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.822$ $\rho_{I} = min(A_{sy.bot.prov} / (L_x \times d), 0.02) = 0.003$ Longitudinal reinforcement ratio; v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.471 N/mm² $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}, v_{min})$ Design shear resistance (exp.6.2a & 6.2b); $\times L_x \times d$ $V_{Rd.c} = 265.2 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Punching shear (Section 6.4) Strength reduction factor (exp 6.6N); $v = 0.6 \times [1 - f_{ck} / 250 \text{ N/mm}^2] = 0.528$ Average depth to reinforcement; d = 304 mm

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS PAGE No. FD206 . Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com . W: www.tzgpartnership.com $v_{Rd.max}$ = 0.5 × v × f_{cd} = 4.488 N/mm² Maximum punching shear resistance (cl.6.4.5(3)); $k = min(1 + \sqrt{200 mm / d}), 2) = 1.811$ $\rho_{lx} = A_{sx.bot.prov} / (L_v \times d) = 0.003$ Longitudinal reinforcement ratio (cl.6.4.4(1)); $\rho_{ly} = A_{sy.bot.prov} / (L_x \times d) = 0.003$ $\rho_{\rm I} = \min(\sqrt{(\rho_{\rm Ix} \times \rho_{\rm Iy})}, 0.02) = 0.003$ $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.467 N/mm² Design punching shear resistance (exp.6.47); $v_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ $= 0.467 \text{ N/mm}^2$ Design punching shear resistance at 1d (exp. 6.50); $v_{Rd,c1} = (2 \times d / d) \times v_{Rd,c} = 0.934 \text{ N/mm}^2$ Column No.1 - Punching shear perimeter at column face Punching shear perimeter; u₀ = 400 mm Area within punching shear perimeter; $A_0 = 0.010 \text{ m}^2$ Maximum punching shear force; V_{Ed.max} = 321.6 kN Punching shear stress factor (fig 6.21N); β = 1.000 Maximum punching shear stress (exp 6.38); $v_{Ed.max} = \beta \times V_{Ed.max} / (u_0 \times d) = 2.645 \text{ N/mm}^2$ PASS - Maximum punching shear resistance exceeds maximum punching shear stress Column No.1 - Punching shear perimeter at 1d from column face Punching shear perimeter; u₁ = 2310 mm Area within punching shear perimeter; $A_1 = 0.422 \text{ m}^2$ Design punching shear force; V_{Ed.1} = 284.8 kN Punching shear stress factor (fig 6.21N); β = 1.000 Design punching shear stress (exp 6.38); $v_{Ed.1} = \beta \times V_{Ed.1} / (u_1 \times d) = 0.406 \text{ N/mm}^2$ PASS - Design punching shear resistance exceeds increased design punching shear stress Column No.1 - Punching shear perimeter at 2d from column face Punching shear perimeter; $u_2 = 4220 \text{ mm}$ Area within punching shear perimeter; $A_2 = 1.415 \text{ m}^2$ Design punching shear force; $V_{Ed.2} = 196.1 \text{ kN}$ Punching shear stress factor (fig 6.21N); β = 1.000 Design punching shear stress (exp 6.38); $v_{Ed,2} = \beta \times V_{Ed,2} / (u_2 \times d) = 0.153 \text{ N/mm}^2$ PASS - Design punching shear resistance exceeds design punching shear stress

8 No.16 dia.bars bottom (260 c/c)

CONTRACT	Eton Ave
PAGE No.	FD208
CONTRACT No.	6722
DATE	04/19
BY	GH

P3 pad

Foundation analysis (EN1997-1:2004) In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1 TEDDS calculation version 3.2.15 Pad foundation details Length of foundation; $L_x = 1700 \text{ mm}$ Width of foundation; $L_v = 1700 \text{ mm}$ Foundation area; $A = L_x \times L_y = 2.890 \text{ m}^2$ Depth of foundation; h = 350 mm Depth of soil over foundation; $h_{soil} = 0 \text{ mm}$ Level of water; h_{water} = 0 mm Density of water; $\gamma_{water} = 9.8 \text{ kN/m}^3$ Density of concrete; $\gamma_{conc} = 25.0 \text{ kN/m}^3$ 67.6 kN/m² 67.6 kN/m² H y 67.6 kN/m² 67.6 kN/m² Column no.1 details Length of column; l_{x1} = 100 mm l_{v1} = 100 mm Width of column; position in x-axis; x₁ = 850 mm position in y-axis; y₁ = 850 mm Soil properties Density of soil; $\gamma_{soil} = 18.0 \text{ kN/m}^3$

Characteristic cohesion; $c'_k = 0 kN/m^2$

Characteristic effective shear resistance angle; $\phi'_k = 30 \text{ deg}$ Characteristic friction angle; $\delta_k = 20 \text{ deg}$

Foundation loads

CONTRACT	Eton Ave
PAGE No.	FD209
CONTRACT No.	6722
DATE	04/19
BY	GH

 $F_{swt} = h \times \gamma_{conc} = 8.8 \text{ kN/m}^2$ Self weight; Column no.1 loads Permanent load in z; F_{Gz1} = 120.0 kN Variable load in z; $F_{Qz1} = 50.0 \text{ kN}$ Bearing resistance (Section 6.5.2) Forces on foundation Force in z-axis; $F_{dz} = A \times F_{swt} + F_{Gz1} + F_{Qz1} = 195.3 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1 + F_{Qz1} \times x_1 = 166.0 \text{ kNm}$ $M_{dy} = A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1 + F_{Qz1} \times y_1 = 166.0 \text{ kNm}$ Moment in y-axis; Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Pad base pressures $q_1 = F_{dz} \times (1 - 6 \times e_x / L_x - 6 \times e_y / L_y) / (L_x \times L_y) = 67.6 \text{ kN/m}^2$ $q_2 = F_{dz} \times (1 - 6 \times e_x / L_x + 6 \times e_y / L_y) / (L_x \times L_y) = 67.6 \text{ kN/m}^2$ $q_3 = F_{dz} \times (1 + 6 \times e_x / L_x - 6 \times e_y / L_y) / (L_x \times L_y) = 67.6 \text{ kN/m}^2$ $q_4 = F_{dz} \times (1 + 6 \times e_x / L_x + 6 \times e_y / L_y) / (L_x \times L_y) = 67.6 \text{ kN/m}^2$ Minimum base pressure; $q_{min} = min(q_1, q_2, q_3, q_4) = 67.6 \text{ kN/m}^2$ Maximum base pressure; $q_{max} = max(q_1, q_2, q_3, q_4) = 67.6 \text{ kN/m}^2$ Presumed bearing capacity Presumed bearing capacity; $P_{\text{bearing}} = 75.0 \text{ kN/m}^2$ PASS - Presumed bearing capacity exceeds design base pressure Design approach 1 Partial factors on actions - Combination1 Partial factor set: A1 Permanent unfavourable action - Table A.3; $\gamma_{\rm G} = 1.35$ Permanent favourable action - Table A.3; $\gamma_{\rm Gf} = 1.00$ Variable unfavourable action - Table A.3; $\gamma_{Q} = 1.50$ Variable favourable action - Table A.3; $\gamma_{Qf} = 0.00$ Partial factors for spread foundations - Combination1 Resistance factor set; R1 Bearing - Table A.5; $\gamma_{R.v} = 1.00$ Sliding - Table A.5; $\gamma_{R.h} = 1.00$ Forces on foundation Force in z-axis; $F_{dz} = \gamma_G \times (A \times F_{swt} + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 271.1 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = \gamma_G \times (A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_Q \times F_{Qz1} \times x_1 = 230.5 \text{ kNm}$ $M_{dy} = \gamma_G \times (A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 230.5 \text{ kNm}$ Moment in y-axis; Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Effective area of base Effective length; $L'_{x} = L_{x} - 2 \times e_{x} = 1700 \text{ mm}$ Effective width; $L'_{y} = L_{y} - 2 \times e_{y} = 1700 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 2.890 \text{ m}^2$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD210 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 . DATE 04/19 T: +44 (0)20 8681 2137 E: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com Pad base pressure Design base pressure; $f_{dz} = F_{dz} / A' = 93.8 \text{ kN/m}^2$ Design approach 1 Partial factors on actions - Combination2 Partial factor set; A2 Permanent unfavourable action - Table A.3; $\gamma_{\rm G} = 1.00$ Permanent favourable action - Table A.3; $\gamma_{\rm Gf} = 1.00$ Variable unfavourable action - Table A.3; $\gamma_{Q} = 1.30$ Variable favourable action - Table A.3; $\gamma_{Of} = 0.00$ Partial factors for spread foundations - Combination2 Resistance factor set; R1 Bearing - Table A.5; $\gamma_{R.v} = 1.00$ Sliding - Table A.5; $\gamma_{\rm R.h} = 1.00$ Forces on foundation Force in z-axis; $F_{dz} = \gamma_G \times (A \times F_{swt} + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 210.3 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = \gamma_G \times (A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_Q \times F_{Qz1} \times x_1 = 178.7 \text{ kNm}$ $M_{dy} = \gamma_G \times (A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 178.7 \text{ kNm}$ Moment in y-axis; Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Effective area of base Effective length; $L'_{x} = L_{x} - 2 \times e_{x} = 1700 \text{ mm}$ Effective width; $L'_y = L_y - 2 \times e_y = 1700 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 2.890 \text{ m}^2$ Pad base pressure Design base pressure; $f_{dz} = F_{dz} / A' = 72.8 \text{ kN/m}^2$ Foundation design (EN1992-1-1:2004) In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 **TEDDS calculation version 3.2.15** Concrete details (Table 3.1 - Strength and deformation characteristics for concrete) Concrete strength class; C30/37 $f_{ck} = 30 \text{ N/mm}^2$ Characteristic compressive cylinder strength; Characteristic compressive cube strength; $f_{ck,cube} = 37 \text{ N/mm}^2$ Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$ Mean value of axial tensile strength; $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$ 5% fractile of axial tensile strength; $f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$ $E_{cm} = 22 \text{ kN/mm}^2 \times [f_{cm}/10 \text{ N/mm}^2]^{0.3} = 32837$ Secant modulus of elasticity of concrete; N/mm² Partial factor for concrete (Table 2.1N); $\gamma_c = 1.50$ Compressive strength coefficient (cl.3.1.6(1)); $\alpha_{cc} = 0.85$ Design compressive concrete strength (exp.3.15); $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 17.0 \text{ N/mm}^2$ Tens.strength coeff.for plain concrete (cl.12.3.1(1)); $\alpha_{\rm ct.pl}$ = 0.80 Des.tens.strength for plain concrete (exp.12.1); $f_{ctd,pl} = \alpha_{ct,pl} \times f_{ctk,0.05} / \gamma_c = 1.1 \text{ N/mm}^2$ Maximum aggregate size; $h_{agg} = 20 \text{ mm}$ Ultimate strain - Table 3.1; $\varepsilon_{cu2} = 0.0035$

CONTRACT	Eton Ave
PAGE No.	FD211
CONTRACT No.	6722
DATE	04/19
BY	GH

Shortening strain - Table 3.1; $\epsilon_{cu3} = 0.0035$ Effective compression zone height factor; $\lambda = 0.80$ Effective strength factor; η = 1.00 Bending coefficient k_1 ; $K_1 = 0.40$ Bending coefficient k₂; $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ Bending coefficient k₃; K₃ =0.40 Bending coefficient k₄; $K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ **Reinforcement details** Characteristic yield strength of reinforcement; $f_{vk} = 500 \text{ N/mm}^2$ Modulus of elasticity of reinforcement; E_s = 210000 N/mm² Partial factor for reinforcing steel (Table 2.1N); $\gamma_s = 1.15$ Design yield strength of reinforcement; $f_{yd} = f_{yk} / \gamma_s = 435 \text{ N/mm}^2$ $c_{nom} = 30 \text{ mm}$ Nominal cover to reinforcement; Shear diagram, x axis (kN) 118.5 70.3 -70.3 -118.5 Moment diagram, x axis (kNm) 44.6

50.4

Rectangular section in flexure (Section 6.1) Design bending moment; $M_{Ed.x.max} = 44.6 \text{ kNm}$ Depth to tension reinforcement; $d = h - c_{nom} - \phi_{x.bot} / 2 = 312 \text{ mm}$ $K = M_{Ed.x.max} / (L_y \times d^2 \times f_{ck}) = 0.009$ $\mathsf{K}' = (2 \times \eta \times \alpha_{cc}/\gamma_{C}) \times (1 - \lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2})) \times (\lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2}))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 296 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 39 \text{ mm}$ Area of tension reinforcement required; $A_{sx,bot,req} = M_{Ed,x,max} / (f_{yd} \times z) = 346 \text{ mm}^2$ Tension reinforcement provided; 8 No.16 dia.bars bottom (230 c/c) Area of tension reinforcement provided; $A_{sx.bot.prov} = 1608 \text{ mm}^2$ Minimum area of reinforcement (exp.9.1N); $A_{s.min} = max(0.26 \times f_{ctm} / f_{vk}, 0.0013) \times L_v \times d = 799$ mm² Maximum area of reinforcement (cl.9.2.1.1(3)); $A_{s.max} = 0.04 \times L_y \times d = 21216 \text{ mm}^2$ PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control (Section 7.3)

CONTRACT	Eton Ave
PAGE No.	FD212
CONTRACT No.	6722
DATE	04/19
BY	GH

Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor (EN1990 – Table A1.1); $\Psi_2 = 0.3$ Serviceability bending moment; M_{sls.x.max} = 25.4 kNm Tensile stress in reinforcement; $\sigma_s = M_{sls.x.max} / (A_{sx.bot.prov} \times z) = 53.3 \text{ N/mm}^2$ Load duration factor; $k_{t} = 0.4$ Effective depth of concrete in tension; $h_{c.ef} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 95 mm$ Effective area of concrete in tension; $A_{c.eff} = h_{c.ef} \times L_y = 161500 \text{ mm}^2$ Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sx.bot.prov} / A_{c.eff} = 0.010$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.395$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4 = 3.4$ $k_4 = 0.425$ Maximum crack spacing (exp.7.11); $s_{r.max} = k_3 \times c_{nom} + k_1 \times k_2 \times k_4 \times \phi_{x.bot} / \rho_{p.eff} = 375 \text{ mm}$ Maximum crack width (exp.7.8); $w_k = s_{r.max} \times max([\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff})] / E_s,$ $0.6 \times \sigma_{s} / E_{s}$) = 0.057 mm PASS - Maximum crack width is less than limiting crack width Library item: Crack width output Rectangular section in shear (Section 6.2) Design shear force; $V_{Ed.x.max} = 70.3 \text{ kN}$ $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.822$ Longitudinal reinforcement ratio; $\rho_I = min(A_{sx.bot.prov} / (L_y \times d), 0.02) = 0.003$ $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times f_{ck}^{0.5} = 0.471 \text{ N/mm}^2$ $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ Design shear resistance (exp.6.2a & 6.2b); $\times L_v \times d$ $V_{Rd.c} = 237.2 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Shear diagram, y axis (kN) 118.5 70.3 70.3 -118.5 Moment diagram, y axis (kNm) 44.6

Rectangular section in flexure (Section 6.1) Design bending moment; M_{Ed.y.max} = 44.6 kNm

50.4

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS PAGE No. FD213 Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com -W: www.tzgpartnership.com Depth to tension reinforcement; $d = h - c_{nom} - \phi_{x.bot} - \phi_{y.bot} / 2 = 296 \text{ mm}$ $K = M_{Ed,v,max} / (L_x \times d^2 \times f_{ck}) = 0.010$ $\mathsf{K}' = (2 \times \eta \times \alpha_{\rm cc}/\gamma_{\rm C}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 281 \text{ mm}$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 37 \text{ mm}$ Area of tension reinforcement required; $A_{sy,bot,req} = M_{Ed,y,max} / (f_{yd} \times z) = 365 \text{ mm}^2$ Tension reinforcement provided; 8 No.16 dia.bars bottom (230 c/c) Area of tension reinforcement provided; $A_{sy,bot,prov} = 1608 \text{ mm}^2$ $A_{s.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times L_x \times d = 758$ Minimum area of reinforcement (exp.9.1N); mm² Maximum area of reinforcement (cl.9.2.1.1(3)); $A_{s,max} = 0.04 \times L_x \times d = 20128 \text{ mm}^2$ PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control (Section 7.3) Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor (EN1990 – Table A1.1); $\Psi_2 = 0.3$ Serviceability bending moment; M_{sls.v.max} = 25.4 kNm Tensile stress in reinforcement; $\sigma_s = M_{sls.y.max} / (A_{sy.bot.prov} \times z) = 56.2 \text{ N/mm}^2$ Load duration factor; $k_{t} = 0.4$ Effective depth of concrete in tension; $h_{c.ef} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 104 mm$ Effective area of concrete in tension; $A_{c.eff} = h_{c.ef} \times L_x = 177367 \text{ mm}^2$ Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sy.bot.prov} / A_{c.eff} = 0.009$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.395$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4 = 3.4$ $k_4 = 0.425$ Maximum crack spacing (exp.7.11); $s_{r.max} = k_3 \times (c_{nom} + \phi_{x.bot}) + k_1 \times k_2 \times k_4 \times \phi_{y.bot} / \rho_{p.eff} = 456 \text{ mm}$ Maximum crack width (exp.7.8); $w_k = s_{r.max} \times max([\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff})] / E_s,$ $0.6 \times \sigma_{s} / E_{s}$) = 0.073 mm PASS - Maximum crack width is less than limiting crack width Library item: Crack width output Rectangular section in shear (Section 6.2) Design shear force; $V_{Ed.v.max} = 70.3 \text{ kN}$ $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.822$ $\rho_{I} = min(A_{sy.bot.prov} / (L_x \times d), 0.02) = 0.003$ Longitudinal reinforcement ratio; v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.471 N/mm² $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}, v_{min})$ Design shear resistance (exp.6.2a & 6.2b); $\times L_x \times d$ $V_{Rd.c} = 237.2 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Punching shear (Section 6.4) Strength reduction factor (exp 6.6N); $v = 0.6 \times [1 - f_{ck} / 250 \text{ N/mm}^2] = 0.528$ Average depth to reinforcement; d = 304 mm

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD214 PAGE No. . Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com . W: www.tzgpartnership.com $v_{Rd.max}$ = 0.5 × v × f_{cd} = 4.488 N/mm² Maximum punching shear resistance (cl.6.4.5(3)); $k = min(1 + \sqrt{200 mm / d}), 2) = 1.811$ $\rho_{lx} = A_{sx.bot.prov} / (L_v \times d) = 0.003$ Longitudinal reinforcement ratio (cl.6.4.4(1)); $\rho_{ly} = A_{sy.bot.prov} / (L_x \times d) = 0.003$ $\rho_{\rm I} = \min(\sqrt{(\rho_{\rm Ix} \times \rho_{\rm Iy})}, 0.02) = 0.003$ $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.467 N/mm² Design punching shear resistance (exp.6.47); $v_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ $= 0.467 \text{ N/mm}^2$ Design punching shear resistance at 1d (exp. 6.50); $v_{Rd,c1} = (2 \times d / d) \times v_{Rd,c} = 0.934 \text{ N/mm}^2$ Column No.1 - Punching shear perimeter at column face Punching shear perimeter; u₀ = 400 mm Area within punching shear perimeter; $A_0 = 0.010 \text{ m}^2$ Maximum punching shear force; $V_{Ed.max} = 236.2 \text{ kN}$ Punching shear stress factor (fig 6.21N); β = 1.000 Maximum punching shear stress (exp 6.38); $v_{Ed.max} = \beta \times V_{Ed.max} / (u_0 \times d) = 1.942 \text{ N/mm}^2$ PASS - Maximum punching shear resistance exceeds maximum punching shear stress Column No.1 - Punching shear perimeter at 1d from column face Punching shear perimeter; u₁ = 2310 mm Area within punching shear perimeter; $A_1 = 0.422 \text{ m}^2$ Design punching shear force; $V_{Ed.1} = 202.4 \text{ kN}$ Punching shear stress factor (fig 6.21N); β = 1.000 Design punching shear stress (exp 6.38); $v_{Ed.1} = \beta \times V_{Ed.1} / (u_1 \times d) = 0.288 \text{ N/mm}^2$ PASS - Design punching shear resistance exceeds increased design punching shear stress Column No.1 - Punching shear perimeter at 2d from column face Punching shear perimeter; $u_2 = 4220 \text{ mm}$ Area within punching shear perimeter; $A_2 = 1.415 \text{ m}^2$ Design punching shear force; $V_{Ed.2} = 121 \text{ kN}$ Punching shear stress factor (fig 6.21N); β = 1.000 Design punching shear stress (exp 6.38); $v_{Ed,2} = \beta \times V_{Ed,2} / (u_2 \times d) = 0.094 \text{ N/mm}^2$ PASS - Design punching shear resistance exceeds design punching shear stress

8 No.16 dia.bars bottom (230 c/c)

CONTRACT	Eton Ave
PAGE No.	FD216
CONTRACT No.	6722
DATE	04/19
BY	GH

P4 pad

Foundation analysis (EN1997-1:2004)

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1 TEDDS calculation version 3.2.15 Pad foundation details Length of foundation; $L_x = 1700 \text{ mm}$ Width of foundation; $L_v = 1700 \text{ mm}$ $A = L_x \times L_y = 2.890 \text{ m}^2$ Foundation area; Depth of foundation; h = 350 mm Depth of soil over foundation; $h_{soil} = 0 \text{ mm}$ Level of water; h_{water} = 0 mm γ_{water} = 9.8 kN/m³ Density of water;

TZG PARTNERSHIP ENGINEERING CONSULTANTS Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 E: admin@tzgpartnership.com W: www.tzgpartnership.com

CONTRACT	Eton Ave
PAGE No.	FD217
CONTRACT No.	6722
DATE	04/19
BY	GH

Foundation loads Self weight; $F_{swt} = h \times \gamma_{conc} = 8.8 \text{ kN/m}^2$ Column no.1 loads $F_{Gz1} = 120.0 \text{ kN}$ Permanent load in z; Variable load in z; $F_{Qz1} = 50.0 \text{ kN}$ Bearing resistance (Section 6.5.2) Forces on foundation Force in z-axis; $F_{dz} = A \times F_{swt} + F_{Gz1} + F_{Qz1} = 195.3 \text{ kN}$ Moments on foundation Moment in x-axis: $M_{dx} = A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1 + F_{Qz1} \times x_1 = 166.0 \text{ kNm}$ Moment in y-axis; $M_{dy} = A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1 + F_{Qz1} \times y_1 = 166.0 \text{ kNm}$ Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_v = M_{dv} / F_{dz} - L_v / 2 = 0 \text{ mm}$ Pad base pressures $q_1 = F_{dz} \times (1 - 6 \times e_x / L_x - 6 \times e_y / L_y) / (L_x \times L_y) = 67.6 \text{ kN/m}^2$ $q_2 = F_{dz} \times (1 - 6 \times e_x / L_x + 6 \times e_y / L_y) / (L_x \times L_y) = 67.6 \text{ kN/m}^2$ $q_3 = F_{dz} \times (1 + 6 \times e_x / L_x - 6 \times e_y / L_y) / (L_x \times L_y) = 67.6 \text{ kN/m}^2$ $q_4 = F_{dz} \times (1 + 6 \times e_x / L_x + 6 \times e_y / L_y) / (L_x \times L_y) = 67.6 \text{ kN/m}^2$ Minimum base pressure; $q_{min} = min(q_1, q_2, q_3, q_4) = 67.6 \text{ kN/m}^2$ Maximum base pressure; $q_{max} = max(q_1, q_2, q_3, q_4) = 67.6 \text{ kN/m}^2$ Presumed bearing capacity Presumed bearing capacity; $P_{\text{bearing}} = 75.0 \text{ kN/m}^2$ PASS - Presumed bearing capacity exceeds design base pressure Design approach 1 Partial factors on actions - Combination1 Partial factor set; A1 Permanent unfavourable action - Table A.3; $\gamma_{\rm G} = 1.35$ Permanent favourable action - Table A.3; $\gamma_{Gf} = 1.00$ Variable unfavourable action - Table A.3; $\gamma_0 = 1.50$ Variable favourable action - Table A.3; $\gamma_{Of} = 0.00$ Partial factors for spread foundations - Combination1 Resistance factor set; R1 Bearing - Table A.5; $\gamma_{R.v} = 1.00$ Sliding - Table A.5; $\gamma_{R.h} = 1.00$ Forces on foundation Force in z-axis; $F_{dz} = \gamma_G \times (A \times F_{swt} + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 271.1 \text{ kN}$ Moments on foundation $M_{dx} = \gamma_G \times (A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_Q \times F_{Qz1} \times x_1 = 230.5 \text{ kNm}$ Moment in x-axis; Moment in y-axis; $M_{dy} = \gamma_G \times (A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 230.5 \text{ kNm}$ Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Effective area of base Effective length; $L'_{x} = L_{x} - 2 \times e_{x} = 1700 \text{ mm}$ Effective width; $L'_v = L_v - 2 \times e_v = 1700 \text{ mm}$

CONTRACT	Eton Ave
PAGE No.	FD218
CONTRACT No.	6722
DATE	04/19
BY	GH

Effective area; $A' = L'_x \times L'_y = 2.890 \text{ m}^2$ Pad base pressure Design base pressure; $f_{dz} = F_{dz} / A' = 93.8 \text{ kN/m}^2$ Design approach 1 Partial factors on actions - Combination2 Partial factor set: A2 Permanent unfavourable action - Table A.3; $\gamma_{\rm G} = 1.00$ Permanent favourable action - Table A.3; $\gamma_{\rm Gf} = 1.00$ Variable unfavourable action - Table A.3; $\gamma_0 = 1.30$ Variable favourable action - Table A.3; $\gamma_{Qf} = 0.00$ Partial factors for spread foundations - Combination2 Resistance factor set; R1 $\gamma_{R.v} = 1.00$ Bearing - Table A.5; Sliding - Table A.5; $\gamma_{\rm R.h} = 1.00$ Forces on foundation Force in z-axis; $F_{dz} = \gamma_G \times (A \times F_{swt} + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 210.3 \text{ kN}$ Moments on foundation $M_{dx} = \gamma_G \times (A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_Q \times F_{Qz1} \times x_1 = 178.7 \text{ kNm}$ Moment in x-axis; $M_{dy} = \gamma_G \times (A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 178.7 \text{ kNm}$ Moment in y-axis; Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Effective area of base Effective length; $L'_{x} = L_{x} - 2 \times e_{x} = 1700 \text{ mm}$ Effective width; $L'_{y} = L_{y} - 2 \times e_{y} = 1700 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 2.890 \text{ m}^2$ Pad base pressure Design base pressure; $f_{dz} = F_{dz} / A' = 72.8 \text{ kN/m}^2$ Foundation design (EN1992-1-1:2004) In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 **TEDDS calculation version 3.2.15** Concrete details (Table 3.1 - Strength and deformation characteristics for concrete) Concrete strength class; C30/37 Characteristic compressive cylinder strength; $f_{ck} = 30 \text{ N/mm}^2$ Characteristic compressive cube strength; $f_{ck cube} = 37 \text{ N/mm}^2$ Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$ $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$ Mean value of axial tensile strength; $f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$ 5% fractile of axial tensile strength; $E_{cm} = 22 \text{ kN/mm}^2 \times [f_{cm}/10 \text{ N/mm}^2]^{0.3} = 32837$ Secant modulus of elasticity of concrete; N/mm² Partial factor for concrete (Table 2.1N); γ_c = 1.50 Compressive strength coefficient (cl.3.1.6(1)); $\alpha_{cc} = 0.85$ Design compressive concrete strength (exp.3.15); $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 17.0 \text{ N/mm}^2$ Tens.strength coeff.for plain concrete (cl.12.3.1(1)); $\alpha_{\rm ct.pl}$ = 0.80 Des.tens.strength for plain concrete (exp.12.1); $f_{ctd,pl} = \alpha_{ct,pl} \times f_{ctk,0.05} / \gamma_c = 1.1 \text{ N/mm}^2$ $h_{agg} = 20 \text{ mm}$ Maximum aggregate size;

CONTRACT	Eton Ave
PAGE No.	FD219
CONTRACT No.	6722
DATE	04/19
BY	GH

Ultimate strain - Table 3.1; $\epsilon_{cu2} = 0.0035$ Shortening strain - Table 3.1; $\varepsilon_{cu3} = 0.0035$ Effective compression zone height factor; $\lambda = 0.80$ Effective strength factor; $\eta = 1.00$ Bending coefficient k_1 ; $K_1 = 0.40$ Bending coefficient k₂; $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ Bending coefficient k_3 ; $K_3 = 0.40$ Bending coefficient k₄; $K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ **Reinforcement details** Characteristic yield strength of reinforcement; $f_{yk} = 500 \text{ N/mm}^2$ Modulus of elasticity of reinforcement; $E_s = 210000 \text{ N/mm}^2$ Partial factor for reinforcing steel (Table 2.1N); $\gamma_s = 1.15$ Design yield strength of reinforcement; $f_{vd} = f_{vk} / \gamma_s = 435 \text{ N/mm}^2$ Nominal cover to reinforcement; $c_{nom} = 30 \text{ mm}$ Shear diagram, x axis (kN) 118.5 70.3 70.3 -118.5 Moment diagram, x axis (kNm) 44.6

Rectangular section in flexure (Section 6.1) $M_{Ed.x.max}$ = 44.6 kNm Design bending moment;

Depth to tension reinforcement; $d = h - c_{nom} - \phi_{x.bot} / 2 = 312 \text{ mm}$

 $K = M_{Ed.x.max} / (L_y \times d^2 \times f_{ck}) = 0.009$

 $\mathsf{K}' = (2 \times \eta \times \alpha_{\rm cc}/\gamma_{\rm C}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207

K' > K - No compression reinforcement is required

z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_{c}))^{0.5}, 0.95) × d = 296 mm Lever arm: Depth of neutral axis; $x = 2.5 \times (d - z) = 39 \text{ mm}$ Area of tension reinforcement required; $A_{sx,bot,req} = M_{Ed,x,max} / (f_{yd} \times z) = 346 \text{ mm}^2$ Tension reinforcement provided; 8 No.16 dia.bars bottom (230 c/c)

Area of tension reinforcement provided; $A_{sx.bot.prov} = 1608 \text{ mm}^2$

Minimum area of reinforcement (exp.9.1N); $A_{s.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times L_y \times d = 799$ mm²

Maximum area of reinforcement (cl.9.2.1.1(3)); $A_{s.max} = 0.04 \times L_v \times d = 21216 \text{ mm}^2$ PASS - Area of reinforcement provided is greater than area of reinforcement required

Eton Ave CONTRACT TZG PARTNERSHIP 4000 ENGINEERING CONSULTANTS FD220 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com -W: www.tzgpartnership.com Crack control (Section 7.3) Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor (EN1990 – Table A1.1); $\Psi_2 = 0.3$ Serviceability bending moment; M_{sls.x.max} = 25.4 kNm Tensile stress in reinforcement; $\sigma_s = M_{sls.x.max} / (A_{sx.bot.prov} \times z) = 53.3 \text{ N/mm}^2$ Load duration factor; $k_{t} = 0.4$ Effective depth of concrete in tension; $h_{c.ef} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 95 mm$ Effective area of concrete in tension; $A_{c.eff} = h_{c.ef} \times L_y = 161500 \text{ mm}^2$ Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sx.bot.prov} / A_{c.eff} = 0.010$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.395$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4 = 3.4$ k₄ = 0.425 Maximum crack spacing (exp.7.11); $s_{r.max} = k_3 \times c_{nom} + k_1 \times k_2 \times k_4 \times \phi_{x.bot} / \rho_{p.eff} = 375 \text{ mm}$ Maximum crack width (exp.7.8); $w_k = s_{r.max} \times max([\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff})] / E_s$ $0.6 \times \sigma_{\rm s} / E_{\rm s}$) = 0.057 mm PASS - Maximum crack width is less than limiting crack width Library item: Crack width output Rectangular section in shear (Section 6.2) Design shear force; $V_{Ed.x.max} = 70.3 \text{ kN}$ $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.822$ Longitudinal reinforcement ratio; $\rho_{I} = min(A_{sx.bot.prov} / (L_{y} \times d), 0.02) = 0.003$ v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.471 N/mm² Design shear resistance (exp.6.2a & 6.2b); $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}, v_{min})$ $\times L_v \times d$ $V_{Rd.c} = 237.2 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Shear diagram, y axis (kN) 118.5 70.3

Rectangular section in flexure (Section 6.1)

4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4	ENGINEERING CONSULTANTS	PAGE No.	FD221
4	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
	Uroydon UKU 6BA	DATE	04/19
	F: +44 (0)20 8667 1328	BY	GH
	W: www.tzgpartnership.com		

 $M_{Ed.y.max} = 44.6 \text{ kNm}$ Design bending moment; Depth to tension reinforcement; $d = h - c_{nom} - \phi_{x.bot} - \phi_{y.bot} / 2 = 296 \text{ mm}$ $K = M_{Ed.y.max} / (L_x \times d^2 \times f_{ck}) = 0.010$ $\mathsf{K}' = (2 \times \eta \times \alpha_{\rm cc}/\gamma_{\rm C}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 281 \text{ mm}$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 37 \text{ mm}$ Area of tension reinforcement required; $A_{sy,bot,req} = M_{Ed,y,max} / (f_{yd} \times z) = 365 \text{ mm}^2$ Tension reinforcement provided; 8 No.16 dia.bars bottom (230 c/c) Area of tension reinforcement provided; $A_{sy.bot.prov} = 1608 \text{ mm}^2$ Minimum area of reinforcement (exp.9.1N); $A_{s.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times L_x \times d = 758$ mm² Maximum area of reinforcement (cl.9.2.1.1(3)); $A_{s.max} = 0.04 \times L_x \times d = 20128 \text{ mm}^2$ PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control (Section 7.3) Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor (EN1990 – Table A1.1); $\Psi_2 = 0.3$ Serviceability bending moment; M_{sls.y.max} = 25.4 kNm Tensile stress in reinforcement; $\sigma_s = M_{sls.y.max} / (A_{sy.bot.prov} \times z) = 56.2 \text{ N/mm}^2$ Load duration factor; $k_{t} = 0.4$ Effective depth of concrete in tension; $h_{c,ef} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 104 mm$ Effective area of concrete in tension; $A_{c.eff} = h_{c.ef} \times L_x = 177367 \text{ mm}^2$ Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sy.bot.prov} / A_{c.eff} = 0.009$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.395$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4 = 3.4$ k₄ = 0.425 Maximum crack spacing (exp.7.11); $s_{r.max} = k_3 \times (c_{nom} + \phi_{x.bot}) + k_1 \times k_2 \times k_4 \times \phi_{y.bot} / \rho_{p.eff} = 456 \text{ mm}$ Maximum crack width (exp.7.8); $w_k = s_{r.max} \times max([\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff})] / E_s,$ $0.6 \times \sigma_s / E_s) = 0.073 \text{ mm}$ PASS - Maximum crack width is less than limiting crack width Library item: Crack width output Rectangular section in shear (Section 6.2) Design shear force; V_{Ed.y.max} = 70.3 kN $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.822$ Longitudinal reinforcement ratio; $\rho_{\rm I} = \min(A_{\rm sy.bot.prov} / (L_x \times d), 0.02) = 0.003$ $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{f}_{ck}^{0.5} = 0.471 \text{ N}/\text{mm}^2$ $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ Design shear resistance (exp.6.2a & 6.2b); $imes L_x imes d$ $V_{Rd.c} = 237.2 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Punching shear (Section 6.4) Strength reduction factor (exp 6.6N); $v = 0.6 \times [1 - f_{ck} / 250 \text{ N/mm}^2] = 0.528$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD222 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 +44 (0)20 8667 1328 ΒY GH admin@tzgpartnership.com . W: www.tzgpartnership.com Average depth to reinforcement; d = 304 mm Maximum punching shear resistance (cl.6.4.5(3)); $v_{Rd.max} = 0.5 \times v \times f_{cd} = 4.488 \text{ N/mm}^2$ $k = min(1 + \sqrt{200 mm / d}), 2) = 1.811$ Longitudinal reinforcement ratio (cl.6.4.4(1)); $\rho_{lx} = A_{sx.bot.prov} / (L_y \times d) = 0.003$ $\rho_{ly} = A_{sy,bot,prov} / (L_x \times d) = 0.003$ $\rho_{\rm I} = \min(\sqrt{(\rho_{\rm Ix} \times \rho_{\rm Iy}), 0.02)} = 0.003$ $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times f_{ck}^{0.5} = 0.467 \text{ N/mm}^2$ Design punching shear resistance (exp.6.47); $v_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ $= 0.467 \text{ N/mm}^2$ Design punching shear resistance at 1d (exp. 6.50); $v_{Rd,c1} = (2 \times d / d) \times v_{Rd,c} = 0.934 \text{ N/mm}^2$ Column No.1 - Punching shear perimeter at column face Punching shear perimeter; $u_0 = 400 \text{ mm}$ Area within punching shear perimeter; $A_0 = 0.010 \text{ m}^2$ Maximum punching shear force; V_{Ed.max} = 236.2 kN Punching shear stress factor (fig 6.21N); β = 1.000 Maximum punching shear stress (exp 6.38); $v_{Ed.max} = \beta \times V_{Ed.max} / (u_0 \times d) = 1.942 \text{ N/mm}^2$ PASS - Maximum punching shear resistance exceeds maximum punching shear stress Column No.1 - Punching shear perimeter at 1d from column face Punching shear perimeter; u₁ = 2310 mm Area within punching shear perimeter; $A_1 = 0.422 \text{ m}^2$ Design punching shear force; $V_{Ed.1} = 202.4 \text{ kN}$ Punching shear stress factor (fig 6.21N); β = 1.000 Design punching shear stress (exp 6.38); $v_{Ed.1} = \beta \times V_{Ed.1} / (u_1 \times d) = 0.288 \text{ N/mm}^2$ PASS - Design punching shear resistance exceeds increased design punching shear stress Column No.1 - Punching shear perimeter at 2d from column face Punching shear perimeter; u₂ = 4220 mm Area within punching shear perimeter; $A_2 = 1.415 \text{ m}^2$ Design punching shear force; $V_{Ed.2} = 121 \text{ kN}$ Punching shear stress factor (fig 6.21N); β = 1.000 Design punching shear stress (exp 6.38); $v_{Ed.2} = \beta \times V_{Ed.2} / (u_2 \times d) = 0.094 \text{ N/mm}^2$ PASS - Design punching shear resistance exceeds design punching shear stress

8 No.16 dia.bars bottom (230 c/c)

CONTRACT	Eton Ave
PAGE No.	FD224
CONTRACT No.	6722
DATE	04/19
BY	GH

P5 pad

Foundation analysis (EN1997-1:2004) In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1 TEDDS calculation version 3.2.15 Pad foundation details Length of foundation; $L_x = 1100 \text{ mm}$ Width of foundation; $L_v = 1100 \text{ mm}$ Foundation area; $A = L_x \times L_y = 1.210 \text{ m}^2$ h = 250 mm Depth of foundation; Depth of soil over foundation; $h_{soil} = 0 \text{ mm}$ Level of water; h_{water} = 0 mm Density of water; $\gamma_{water} = 9.8 \text{ kN/m}^3$ Density of concrete; $\gamma_{conc} = 25.0 \text{ kN/m}^3$ 72.4 kN/m² 72.4 kN/m² X y 72.4 kN/m² 72.4 kN/m² Column no.1 details Length of column; l_{x1} = 100 mm l_{v1} = 100 mm Width of column; position in x-axis; x₁ = 550 mm position in y-axis; $y_1 = 550 \text{ mm}$ Soil properties Density of soil; $\gamma_{soil} = 18.0 \text{ kN/m}^3$

Characteristic cohesion; $c'_k = 0 kN/m^2$

Characteristic effective shear resistance angle; $\phi'_k = 30 \text{ deg}$ Characteristic friction angle; $\delta_k = 20 \text{ deg}$

Foundation loads

CONTRACT	Eton Ave
PAGE No.	FD225
CONTRACT No.	6722
DATE	04/19
BY	GH

 $F_{swt} = h \times \gamma_{conc} = 6.3 \text{ kN/m}^2$ Self weight; Column no.1 loads Permanent load in z; $F_{Gz1} = 55.0 \text{ kN}$ Variable load in z; $F_{Qz1} = 25.0 \text{ kN}$ Bearing resistance (Section 6.5.2) Forces on foundation Force in z-axis; $F_{dz} = A \times F_{swt} + F_{Gz1} + F_{Qz1} = 87.6 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1 + F_{Qz1} \times x_1 = 48.2 \text{ kNm}$ $M_{dy} = A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1 + F_{Qz1} \times y_1 = 48.2 \text{ kNm}$ Moment in y-axis; Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Pad base pressures $q_1 = F_{dz} \times (1 - 6 \times e_x / L_x - 6 \times e_y / L_y) / (L_x \times L_y) = 72.4 \text{ kN/m}^2$ $q_2 = F_{dz} \times (1 - 6 \times e_x / L_x + 6 \times e_y / L_y) / (L_x \times L_y) = 72.4 \text{ kN/m}^2$ $q_3 = F_{dz} \times (1 + 6 \times e_x / L_x - 6 \times e_y / L_y) / (L_x \times L_y) = 72.4 \text{ kN/m}^2$ $q_4 = F_{dz} \times (1 + 6 \times e_x / L_x + 6 \times e_y / L_y) / (L_x \times L_y) = 72.4 \text{ kN/m}^2$ Minimum base pressure; $q_{min} = min(q_1, q_2, q_3, q_4) = 72.4 \text{ kN/m}^2$ Maximum base pressure; $q_{max} = max(q_1, q_2, q_3, q_4) = 72.4 \text{ kN/m}^2$ Presumed bearing capacity Presumed bearing capacity; $P_{\text{bearing}} = 75.0 \text{ kN/m}^2$ PASS - Presumed bearing capacity exceeds design base pressure Design approach 1 Partial factors on actions - Combination1 Partial factor set: A1 Permanent unfavourable action - Table A.3; $\gamma_{\rm G} = 1.35$ Permanent favourable action - Table A.3; $\gamma_{\rm Gf} = 1.00$ Variable unfavourable action - Table A.3; $\gamma_{Q} = 1.50$ Variable favourable action - Table A.3; $\gamma_{Qf} = 0.00$ Partial factors for spread foundations - Combination1 Resistance factor set; R1 Bearing - Table A.5; $\gamma_{R.v} = 1.00$ Sliding - Table A.5; $\gamma_{R.h} = 1.00$ Forces on foundation Force in z-axis; $F_{dz} = \gamma_G \times (A \times F_{swt} + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 122.0 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = \gamma_G \times (A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_Q \times F_{Qz1} \times x_1 = 67.1 \text{ kNm}$ $M_{dy} = \gamma_G \times (A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 67.1 \text{ kNm}$ Moment in y-axis; Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Effective area of base Effective length; $L'_{x} = L_{x} - 2 \times e_{x} = 1100 \text{ mm}$ Effective width; $L'_{y} = L_{y} - 2 \times e_{y} = 1100 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 1.210 \text{ m}^2$

Eton Ave CONTRACT TZG PARTNERSHIP 4 ENGINEERING CONSULTANTS FD226 PAGE No. Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 . DATE 04/19 T: +44 (0)20 8681 2137 E: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com Pad base pressure Design base pressure; $f_{dz} = F_{dz} / A' = 100.8 \text{ kN/m}^2$ Design approach 1 Partial factors on actions - Combination2 Partial factor set; A2 Permanent unfavourable action - Table A.3; $\gamma_{\rm G} = 1.00$ Permanent favourable action - Table A.3; $\gamma_{\rm Gf} = 1.00$ Variable unfavourable action - Table A.3; $\gamma_{Q} = 1.30$ Variable favourable action - Table A.3; $\gamma_{Qf} = 0.00$ Partial factors for spread foundations - Combination2 Resistance factor set; R1 Bearing - Table A.5; $\gamma_{R.v} = 1.00$ Sliding - Table A.5; $\gamma_{\rm R.h} = 1.00$ Forces on foundation Force in z-axis; $F_{dz} = \gamma_G \times (A \times F_{swt} + F_{Gz1}) + \gamma_Q \times F_{Qz1} = 95.1 \text{ kN}$ Moments on foundation Moment in x-axis; $M_{dx} = \gamma_G \times (A \times F_{swt} \times L_x / 2 + F_{Gz1} \times x_1) + \gamma_Q \times F_{Qz1} \times x_1 = 52.3 \text{ kNm}$ $M_{dy} = \gamma_G \times (A \times F_{swt} \times L_y / 2 + F_{Gz1} \times y_1) + \gamma_Q \times F_{Qz1} \times y_1 = 52.3 \text{ kNm}$ Moment in y-axis; Eccentricity of base reaction Eccentricity of base reaction in x-axis; $e_x = M_{dx} / F_{dz} - L_x / 2 = 0 \text{ mm}$ Eccentricity of base reaction in y-axis; $e_y = M_{dy} / F_{dz} - L_y / 2 = 0 \text{ mm}$ Effective area of base Effective length; $L'_{x} = L_{x} - 2 \times e_{x} = 1100 \text{ mm}$ Effective width; $L'_y = L_y - 2 \times e_y = 1100 \text{ mm}$ Effective area; $A' = L'_x \times L'_y = 1.210 \text{ m}^2$ Pad base pressure Design base pressure; $f_{dz} = F_{dz} / A' = 78.6 \text{ kN/m}^2$ Foundation design (EN1992-1-1:2004) In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 **TEDDS calculation version 3.2.15** Concrete details (Table 3.1 - Strength and deformation characteristics for concrete) Concrete strength class; C30/37 $f_{ck} = 30 \text{ N/mm}^2$ Characteristic compressive cylinder strength; Characteristic compressive cube strength; $f_{ck,cube} = 37 \text{ N/mm}^2$ Mean value of compressive cylinder strength; $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$ Mean value of axial tensile strength; $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$ 5% fractile of axial tensile strength; $f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$ $E_{cm} = 22 \text{ kN/mm}^2 \times [f_{cm}/10 \text{ N/mm}^2]^{0.3} = 32837$ Secant modulus of elasticity of concrete; N/mm² Partial factor for concrete (Table 2.1N); $\gamma_c = 1.50$ Compressive strength coefficient (cl.3.1.6(1)); $\alpha_{cc} = 0.85$ Design compressive concrete strength (exp.3.15); $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 17.0 \text{ N/mm}^2$ Tens.strength coeff.for plain concrete (cl.12.3.1(1)); $\alpha_{\rm ct.pl}$ = 0.80 Des.tens.strength for plain concrete (exp.12.1); $f_{ctd,pl} = \alpha_{ct,pl} \times f_{ctk,0.05} / \gamma_c = 1.1 \text{ N/mm}^2$ Maximum aggregate size; $h_{agg} = 20 \text{ mm}$ Ultimate strain - Table 3.1; $\varepsilon_{cu2} = 0.0035$

CONTRACT	Eton Ave
PAGE No.	FD227
CONTRACT No.	6722
DATE	04/19
BY	GH

Shortening strain - Table 3.1; $\epsilon_{cu3} = 0.0035$ Effective compression zone height factor; $\lambda = 0.80$ Effective strength factor; η = 1.00 Bending coefficient k_1 ; $K_1 = 0.40$ Bending coefficient k₂; $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ Bending coefficient k₃; K₃ =0.40 Bending coefficient k₄; $K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$ **Reinforcement details** Characteristic yield strength of reinforcement; $f_{vk} = 500 \text{ N/mm}^2$ Modulus of elasticity of reinforcement; E_s = 210000 N/mm² Partial factor for reinforcing steel (Table 2.1N); $\gamma_s = 1.15$ Design yield strength of reinforcement; $f_{yd} = f_{yk} / \gamma_s = 435 \text{ N/mm}^2$ Nominal cover to reinforcement; $c_{nom} = 30 \text{ mm}$ Shear diagram, x axis (kN) 55.9 30.9 30.9 -55.9 Moment diagram, x axis (kNm) 12.7

15.4

Rectangular section in flexure (Section 6.1) Design bending moment; M_{Ed.x.max} = 12.7 kNm Depth to tension reinforcement; $d = h - c_{nom} - \phi_{x.bot} / 2 = 212 \text{ mm}$ $K = M_{Ed.x.max} / (L_y \times d^2 \times f_{ck}) = 0.009$ $\mathsf{K}' = (2 \times \eta \times \alpha_{\mathsf{cc}}/\gamma_{\mathsf{C}}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$ K' = 0.207 K' > K - No compression reinforcement is required $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 201 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 26 \text{ mm}$ Area of tension reinforcement required; $A_{sx.bot.req} = M_{Ed.x.max} / (f_{yd} \times z) = 145 \text{ mm}^2$ Tension reinforcement provided; 5 No.16 dia.bars bottom (260 c/c) Area of tension reinforcement provided; $A_{sx.bot.prov} = 1005 \text{ mm}^2$ Minimum area of reinforcement (exp.9.1N); $A_{s.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times L_y \times d = 351$ mm²

Maximum area of reinforcement (cl.9.2.1.1(3)); $A_{s.max} = 0.04 \times L_y \times d = 9328 \text{ mm}^2$ *PASS - Area of reinforcement provided is greater than area of reinforcement required* Crack control (Section 7.3) Limiting crack width; $w_{max} = 0.3 \text{ mm}$

CONTRACT	Eton Ave
PAGE No.	FD228
CONTRACT No.	6722
DATE	04/19
BY	GH

Variable load factor (EN1990 – Table A1.1); $\psi_2 = 0.3$ Serviceability bending moment; M_{sls.x.max} = 7.1 kNm Tensile stress in reinforcement; $\sigma_s = M_{sls.x.max} / (A_{sx.bot.prov} \times z) = 35.1 \text{ N/mm}^2$ Load duration factor; $k_t = 0.4$ Effective depth of concrete in tension; $h_{c.ef} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 75 mm$ Effective area of concrete in tension; $A_{c.eff} = h_{c.ef} \times L_y = 81950 \text{ mm}^2$ $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Mean value of concrete tensile strength; Reinforcement ratio; $\rho_{p.eff} = A_{sx.bot.prov} / A_{c.eff} = 0.012$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.395$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4 = 3.4$ $k_4 = 0.425$ Maximum crack spacing (exp.7.11); $s_{r.max} = k_3 \times c_{nom} + k_1 \times k_2 \times k_4 \times \phi_{x.bot} / \rho_{p.eff} = 324 \text{ mm}$ Maximum crack width (exp.7.8); $w_k = s_{r.max} \times max([\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff})] / E_s,$ $0.6 \times \sigma_{\rm s} / E_{\rm s}$) = 0.032 mm PASS - Maximum crack width is less than limiting crack width Library item: Crack width output Rectangular section in shear (Section 6.2) Design shear force; V_{Ed.x.max} = 30.9 kN $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 2.000$ Longitudinal reinforcement ratio; $\rho_{\rm I} = \min(A_{\rm sx.bot.prov} / (L_{\rm v} \times d), 0.02) = 0.005$ v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.542 N/mm² Design shear resistance (exp.6.2a & 6.2b); $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min})$ $\times L_v \times d$ $V_{Rd.c}$ = 124.7 kN PASS - Design shear resistance exceeds design shear force

Shear diagram, y axis (kN)

 $\begin{array}{ll} \mbox{Rectangular section in flexure (Section 6.1)} \\ \mbox{Design bending moment;} & $M_{Ed.y.max}$ = 12.7 kNm \\ \mbox{Depth to tension reinforcement;} & $d = h - c_{nom}$ - $\phi_{y.bot}$ / $2 = 196 mm $ \end{array}$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS PAGE No. FD229 J Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 04/19 DATE T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.com W: www.tzgpartnership.com $K = M_{Ed.y.max} / (L_x \times d^2 \times f_{ck}) = 0.010$ $\mathsf{K}' = (2 \times \eta \times \alpha_{cc}/\gamma_{c}) \times (1 - \lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2})) \times (\lambda \times (\delta - \mathsf{K}_{1})/(2 \times \mathsf{K}_{2}))$ K' = 0.207 *K*' > *K* - *No compression reinforcement is required* $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = 186 mm$ Lever arm; Depth of neutral axis; $x = 2.5 \times (d - z) = 25 \text{ mm}$ Area of tension reinforcement required; $A_{sy,bot,reg} = M_{Ed,y,max} / (f_{yd} \times z) = 157 \text{ mm}^2$ Tension reinforcement provided; 5 No.16 dia.bars bottom (260 c/c) $A_{sy,bot,proy} = 1005 \text{ mm}^2$ Area of tension reinforcement provided; Minimum area of reinforcement (exp.9.1N); $A_{s.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times L_x \times d = 325$ mm² Maximum area of reinforcement (cl.9.2.1.1(3)); $A_{s.max} = 0.04 \times L_x \times d = 8624 \text{ mm}^2$ PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control (Section 7.3) Limiting crack width; $w_{max} = 0.3 \text{ mm}$ Variable load factor (EN1990 – Table A1.1); $\Psi_2 = 0.3$ Serviceability bending moment; M_{sls.y.max} = 7.1 kNm Tensile stress in reinforcement; $\sigma_s = M_{sls.y.max} / (A_{sy.bot.prov} \times z) = 37.9 \text{ N/mm}^2$ Load duration factor; $k_{t} = 0.4$ Effective depth of concrete in tension; $h_{c.ef} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 75 mm$ $A_{c.eff} = h_{c.ef} \times L_x = 82683 \text{ mm}^2$ Effective area of concrete in tension; Mean value of concrete tensile strength; $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ Reinforcement ratio; $\rho_{p.eff} = A_{sy.bot.prov} / A_{c.eff} = 0.012$ Modular ratio; $\alpha_e = E_s / E_{cm} = 6.395$ Bond property coefficient; $k_1 = 0.8$ Strain distribution coefficient; $k_2 = 0.5$ $k_3 = 3.4 = 3.4$ $k_4 = 0.425$ Maximum crack spacing (exp.7.11); $s_{r.max} = k_3 \times (c_{nom} + \phi_{x.bot}) + k_1 \times k_2 \times k_4 \times \phi_{y.bot} / \rho_{p.eff} = 380 \text{ mm}$ Maximum crack width (exp.7.8); $w_k = s_{r.max} \times max([\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff})] / E_s$ $0.6 \times \sigma_{\rm s} / E_{\rm s}$) = 0.041 mm PASS - Maximum crack width is less than limiting crack width Library item: Crack width output Rectangular section in shear (Section 6.2) Design shear force; $V_{Ed.y.max} = 30.9 \text{ kN}$ $C_{Rd.c} = 0.18 / \gamma_{C} = 0.120$ $k = min(1 + \sqrt{200 mm / d}), 2) = 2.000$ Longitudinal reinforcement ratio; $\rho_{I} = min(A_{sy.bot.prov} / (L_x \times d), 0.02) = 0.005$ $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{f}_{ck}^{0.5} = 0.542 \text{ N/mm}^2$ Design shear resistance (exp.6.2a & 6.2b); $V_{Rd,c} = max(C_{Rd,c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}, v_{min})$ $\times L_x \times d$ $V_{Rd.c} = 124.7 \text{ kN}$ PASS - Design shear resistance exceeds design shear force Punching shear (Section 6.4) Strength reduction factor (exp 6.6N); $v = 0.6 \times [1 - f_{ck} / 250 \text{ N/mm}^2] = 0.528$ Average depth to reinforcement; d = 204 mm Maximum punching shear resistance (cl.6.4.5(3)); $v_{Rd.max} = 0.5 \times v \times f_{cd} = 4.488 \text{ N/mm}^2$

Eton Ave CONTRACT TZG PARTNERSHIP ENGINEERING CONSULTANTS PAGE No. FD230 . Orchard House 114-118 Cherry Orchard Road Croydon CRO 6BA CONTRACT No. 6722 DATE 04/19 T: +44 (0)20 8681 2137 F: +44 (0)20 8667 1328 ΒY GH E: admin@tzgpartnership.co W: www.tzgpartnership.com admin@tzgpartnership.com $k = min(1 + \sqrt{200 mm / d}), 2) = 1.990$ Longitudinal reinforcement ratio (cl.6.4.4(1)); $\rho_{lx} = A_{sx.bot.prov} / (L_y \times d) = 0.004$ $\rho_{\text{ly}} = A_{\text{sy.bot.prov}} / (L_x \times d) = 0.004$ $\rho_{\rm I} = \min(\sqrt{(\rho_{\rm Ix} \times \rho_{\rm Iy})}, 0.02) = 0.004$ $C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$ v_{min} = 0.035 N^{1/2}/mm × k^{3/2} × f_{ck}^{0.5} = 0.538 N/mm² Design punching shear resistance (exp.6.47); $v_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}, v_{min})$ $= 0.568 \text{ N/mm}^2$ Design punching shear resistance at 1d (exp. 6.50); $v_{Rd,c1} = (2 \times d / d) \times v_{Rd,c} = 1.136 \text{ N/mm}^2$ Column No.1 - Punching shear perimeter at column face Punching shear perimeter; $u_0 = 400 \text{ mm}$ Area within punching shear perimeter; $A_0 = 0.010 \text{ m}^2$ Maximum punching shear force; V_{Ed.max} = 110.8 kN Punching shear stress factor (fig 6.21N); β = 1.000 Maximum punching shear stress (exp 6.38); $v_{Ed.max} = \beta \times V_{Ed.max} / (u_0 \times d) = 1.358 \text{ N/mm}^2$ PASS - Maximum punching shear resistance exceeds maximum punching shear stress Column No.1 - Punching shear perimeter at 1d from column face Punching shear perimeter; u₁ = 1682 mm Area within punching shear perimeter; $A_1 = 0.222 \text{ m}^2$ Design punching shear force; V_{Ed.1} = 91.2 kN Punching shear stress factor (fig 6.21N); β = 1.000 Design punching shear stress (exp 6.38); $v_{Ed.1} = \beta \times V_{Ed.1} / (u_1 \times d) = 0.266 \text{ N/mm}^2$ PASS - Design punching shear resistance exceeds increased design punching shear stress Column No.1 - Punching shear perimeter at 2d from column face Punching shear perimeter; u₂ = 2964 mm Area within punching shear perimeter; $A_2 = 0.696 \text{ m}^2$ Design punching shear force; $V_{Ed.2} = 47.5 \text{ kN}$ Punching shear stress factor (fig 6.21N); β = 1.000 Design punching shear stress (exp 6.38); $v_{Ed,2} = \beta \times V_{Ed,2} / (u_2 \times d) = 0.078 \text{ N/mm}^2$ PASS - Design punching shear resistance exceeds design punching shear stress
4	TZG PARTNERSHIP	CONTRACT	Eton Ave
4	ENGINEERING CONSULTANTS	PAGE No.	FD231
<u>.</u>	Orchard House 114-118 Cherry Orchard Road	CONTRACT No.	6722
	Croydon CKU 6BA	DATE	04/19
	E: 444 (0)20 8667 1328 E: admin@tzgpartnership.com	BY	GH
	W: www.tzgpartnership.com		

5 No.16 dia.bars bottom (260 c/c)

٨n	k Tasl	k Name	Duration	Start	Finish	Predecess		Month 1	Month 2	Month 3	Month 4	N	lonth 5	Month 6 Month 7
10	de	nning 8 Dro Construction	Working Days	-		-	D WEEK 6 5 4 3 2 1		5 6 7 8	9 10 11	12 13 14	15 16 1	/ 18 19	20 21 22 23 24 25 26 27 28
	Pidi	ase 1 Enabling Works: Shell & Core						CUNSI	RUCIIU	N PHA	SE			
	Site	setup and mobilization	2 wks	Mon Week 1	Fri Week 2	2								
	Sub	ostructures	25 days	Mon Week 3	Fri Week 8	-								
	Soft	t strin	2.5 wks	Wed Week 3	Fri Week 5	2								
	Ten	nporary Supports	2.5 wks	Wed Week 4	Fri Week 6	2	-							
	Den	molition	3.5 wks	Wed Week 5	Fri Week 8	2								
	Bas	ement Works	60.5 days	Mon Week 5	Fri Week 6									
	Und	derpinning	9 wks	Mon Week 8	Fri Week 16	3	11							r I
	Exca	avation and disposal	4 wks	Mon Week 14	Fri Week 17	5	11							
	Belo	ow ground drainage	1.5 wks	Mon Week 17	Wed Week 18	5								
	Bas	ement slab	2.5 wk	Wed Week 18	Fri Week 20	1	1							
	Sup	perstructures	37.5 days	Mon Week 6	Fri Week 24									
	Inst	tall Permanent Steelwork Above	3.5 wks	Mon Week 6	Wed Week 9	2	1							
	Base	ement Steel Columns	0.5 wks	Mon Week 21	Wed Week 21	2]]							
	Inst	tall Ground Floor Steelwork	1.5 wks	Wed Week 21	Fri Week 22	2]							
	Shu	ittering of slab	1.5 wks	Mon Week 22	Wed Week 23	2								
	Inst	tall Ground Floor Slab	1.5 wks	Wed Week 23	Fri Week 24	1								
	Sew	ver & Drainage	45 days	Mon Week 1	Fri Week 28									\longrightarrow
	Red	lirection of Sewer	6 wks	Mon Week 15	Fri Week 20	3								
	Inst	tallation of SUDS	3.5 wks	Mon Week 20	Wed Week 23	1								
	Cav	vity Drainage Waterproofing	3 wks	Mon Week 25	Fri Week 27	3								
	Con	nmissioning of pumps	2 wks	Mon Week 27	Fri Week 28	5								
	Exte	ernal envelope	20 days	Mon Week 3	Fri Week 6									
	Ener	ct Scaffolding	4 wks	Mon Week 3	Fri Week 6	2								

Ground Investigation

Issue Date: April 2019

Address: 52 Eton Avenue London NW3 3HN

TRIAL PIT 1

SECTION A - A'

Pit Constructed 21/02/19 G.L Approx. +9.7m OD All Dimensions in mm Do Not Scale

Pit constructed 03/05/19 G.L Approx. +10.1m OD All Dimensions in mm Do Not Scale

Pit constructed 03/05/19 G.L Approx. +9.9m OD All Dimensions in mm Do Not Scale

Pit constructed 03/05/19 G.L Approx. +9.9m OD All Dimensions in mm Do Not Scale

Full Response to CRH Audit Checklist comments

ltem	Yes / No	CRH Audit Comment (24 th April 2019)	LBHW ENGINEERS Response (May 2019)
Are BIA Author(s) credentials satisfactory?	Yes	The qualifications satisfy the requirements of CPG. Refer to Page 2 of the BIA (Reference LBH4564, dated January 2019).	BIA audit author qualifications?
Is data required by CI.233 of the GSD presented?	No	Insufficient information presented regarding the physical form of the development (layout, dimension etc.) since only architectural drawings are presented. Engineers' drawings are required. Further ground investigation and a work programme for construction is required. Refer to Section 4 of this report for more details.	Incorrect ? Structural engineer's drawings are not a requirement of the guidance. The architectural drawings provided include a scale and provide a good indication of the physical form, layout and dimensions of the proposed development. A ground investigation has now been undertaken. A work programme for construction is not a specific requirement of the guidance.
Does the description of the proposed development include all aspects of temporary and permanent works which might impact upon geology, hydrogeology and hydrology?	No	Since the ground investigation data presented is limited, it is not possible to assess the impact the proposed development can have on the existing geology, hydrogeology and hydrology.	Incorrect ? Worst credible conditions were adopted for the initial assessment of basement impact. CRH have acknowledged (see 1.17of the audit report) that the development will <u>not</u> impact on the hydrogeology of the area. It seems CRH are erroneously seeking to assess the impact of the proposed development on the existing geology. This would be an unusual action and is certainly not a requirement of the guidance. The hydrological impacts were covered the surface water assessment and SuDS strategy that accompanied the audited report

Are suitable plan/maps included?	No	The plans included are architectural in nature and do not have dimensions and elevations included. Engineers' drawings are requested. For maps, Refer to pages 10- 14 and the Appendix to the BIA (Reference LBH4564, dated January 2019).	Incorrect ? On the contrary the architectural drawings do include a scale. Structural engineer's drawings are not a requirement of the guidance. Accepted
Do the plans/maps show the whole of the relevant area of study and do they show it in sufficient detail?	No	The plans included are architectural in nature and do not have dimensions and elevations included. Engineers' drawings are requested. The maps included are however satisfactory and have sufficient information.	Incorrect? On the contrary the architectural drawings do include a scale. Structural engineer's drawings are not a requirement of the guidance. Accepted
Land Stability Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	Refer to Page 15 and Appendix to the BIA (Reference LBH4564, dated January 2019).	Noted
Hydrogeology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	Refer to Page 15 and Appendix to the BIA (Reference LBH4564, dated January 2019).	Noted
Hydrology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	Refer to Page 15 and Appendix to the BIA (Reference LBH4564, dated January 2019).	Noted
Is a conceptual model presented?	No		Incorrect? The conceptual ground model was presented in section 5 of the audited report and was again summarised in section 7 of that document
Land Stability Scoping Provided? Is scoping consistent with screening outcome?	Yes	Refer to Page 17 of the BIA (Reference LBH4564, dated January 2019).	Noted

Hydrogeology Scoping Provided? Is scoping consistent with screening outcome?	No	As above.	Incorrect? (assumed typo?).
Hydrology Scoping Provided? Is scoping consistent with screening outcome?	Yes	As above.	Noted
Is factual ground investigation data provided?	Yes	However, only a section of a trial pit is provided and this is considered insufficient to allow all potential impacts to be fully assessed.	Note: This trial pit log was neither included nor referred to in the audited document. The initial impact assessment was satisfactorily concluded based upon worst credible conditions.
Is monitoring data presented?	No		Note: The investigation has confirmed that there is no groundwater at this site
Is the ground investigation informed by a desk study?	NA		
Has a site walkover been undertaken?	Yes		Incorrect? (the property was under different ownership at the time of the audited report)
Is the presence/absence of adjacent or nearby basements confirmed?	Yes	Refer to Page 23 of the BIA (Reference LBH4564, dated January 2019).	Noted
Is a geotechnical interpretation presented?	Yes	The soil parameters presented for London Clay are based on widely accepted archive and empirical information. However, the depth from ground level at which London Clay is present on site has to be proven. This is further discussed under Section 4 of this report.	Note: Worst credible assumptions have been made in regard to the depth to the London Clay.
Does the geotechnical interpretation include information on retaining wall design?	No	As above.	Incorrect? see section 6.3 of the audited report.

Are reports on other investigations required by screening and scoping presented?	No	A ground investigation report and a works programme for construction as per CPG is required.	Incorrect? A works programme for construction is not a specific requirement of the guidance.
Are the baseline conditions described, based on the GSD?	No	The ground investigation data is insufficient to confirm the ground conditions. The drawings presented lack sufficient information as they are architectural in nature and require more details for a thorough assessment.	Incorrect? No ground investigation data was submitted. The baseline ground conditions have been described and the drawings submitted do provide a good indication of the physical form, layout and dimensions of the existing development.
Do the base line conditions consider adjacent or nearby basements?	Yes		Noted
Is an Impact Assessment provided?	Yes	However, this is insufficient due to the lack of sufficient ground investigation.	Incorrect? The initial impact assessment has been undertaken on the basis of worst credible assumptions
Are estimates of ground movement and structural impact presented?	No	Although a ground movement assessment has been presented, its adequacy cannot be confirmed unless a ground investigation is carried to prove the depth at which London Clay is present and that it would indeed form the bearing stratum. Engineers' drawings with details of the existing and proposed development and indicative temporary and permanent works sequencing and calculations are also required.	Incorrect? The initial ground movement assessment has been undertaken on the basis of worst credible assumptions. Foundations would be indeed be extended into the London Clay as this is to be the bearing stratum Accepted. Further details will be supplied.
Is the Impact Assessment appropriate to the matters identified by screen and scoping?	No	The impact assessment is not valid until a detailed ground investigation is carried out and appropriate soil parameters are adopted	Incorrect? CRH have acknowledged above that the adopted soil parameters have been drawn from accepted sources. The initial impact assessment is entirely valid as it has been undertaken on the basis of worst credible assumptions. Which of these assumptions is disputed?

Has the need for mitigation been considered and are appropriate mitigation methods incorporated in the scheme?	NA		
Has the need for monitoring during construction been considered?	Yes	An outline structural monitoring plan is provided. Refer to Page 30 of the BIA (Reference LBH4564, dated January 2019).	Noted
Have the residual (after mitigation) impacts been clearly identified?	No	Cannot be confirmed until the ground conditions are confirmed using detailed ground investigation.	Incorrect? The initial assessment of residual impacts, has been undertaken on the basis of worst credible assumptions.
Has the scheme demonstrated that the structural stability of the building and neighbouring properties and infrastructure will be maintained?	No	As above.	Incorrect? The initial assessment of structural stability has been undertaken on the basis of worst credible assumptions and demonstrates that the structural stability of the building and neighbouring properties and infrastructure will be maintained.
Has the scheme avoided adversely affecting drainage and run-off or causing other damage to the water environment?	Yes	However, it is recommended that Engineers drawings be presented to verify that the proposed increase/decrease to impermeable area cannot be verified.	Note: Details of the changes in impermeable areas were contained in the surface water report. That accompanied and was referred to by the audited report.
Has the scheme avoided cumulative impacts upon structural stability or the water environment in the local area?	No	Unless documents requested in Appendix 2 of this report are furnished, the cumulative impact the proposal can have on the structural stability of the neighbouring properties and the water environment cannot be confirmed.	Incorrect? The initial assessment of cumulative impact on the structural stability of the neighbouring properties and the water environment has been undertaken on the basis of worst credible assumptions.
Does report state that damage to surrounding buildings will be no worse than Burland Category 1?	No	Unless documents requested in Appendix 2 of this report are furnished, the ground movement assessment cannot be verified.	Incorrect? The initial ground movement assessment undertaken on the basis of worst credible assumptions result in no worse than Burland Category 1 damage.

Are non-technical summaries provided?	Yes	Refer to Page 6 of the BIA (Reference LBH4564, dated January 2019). However, this should be updated in accordance with the comments presented in this audit report.	Noted
---------------------------------------	-----	---	-------