SUDS REPORT FOR 36 REDINGTON ROAD, HAMPSTEAD, LONDON, NW3 7RT

DOCUMENT NUMBER.: C2131-R1-REV-B

PREPARED BY

Contents

1.	INTRODUCTION	3
	1.1 Appointment	3
	1.2 Objectives	3
	1.3 Limitations	4
2.	SUSTAINABLE URBAN DRAINAGE SYSTEMS	5
3.	PROPOSED SOLUTION	8
4.	TIMESCALE AND MAINTENANCE OF WORKS	9
5.	CONCLUSIONS	10

APPENDICES

APPENDIX A – SURFACE WATER RUN OFF CALCULATIONS

APPENDIX B - DRAWINGS

1. INTRODUCTION

1.1 Appointment

Nimbus Engineering have been appointed by Zolf Aghari to provide solution on the management of Surface Water run off and to ensure that there is no risk of flooding caused by the proposed development at 36 Redington Road, Hampstead, London NW3 7RT.

The London Borough of Camden have imposed the following planning condition, relating to surface water:

7 Sustainable urban drainage:

A) Prior to commencement of development details of a sustainable urban drainage system shall be submitted to and approved in writing by the local planning authority. Such system shall be designed to accommodate all storms up to and including a 1:100 year storm with a 30% provision for climate change, and shall demonstrate that greenfield run off rates (5l/s) will be achieved.

B) Prior to occupation of the development, evidence that the sustainable drainage system has been implemented shall be submitted to the Local Authority and approved in writing. The systems shall thereafter be retained and maintained in accordance with the approved maintenance plan.

Reason: To reduce the rate of surface water run-off from the buildings and limit the impact on the storm-water drainage system in accordance with policies CS13 and CS16 of the London Borough of Camden Local Development Framework Core Strategy and policies DP22, DP23 and DP32 of the London Borough of Camden Local Development Framework Development Policies.

1.2 Objectives

This report will address the concerns raised by the Borough and provide details on a suitable Sustainable Urban Drainage System (SuDS) in order to reduce the surface water run off leaving the site and show that the proposed development will not increase Flood Risk at the site or elsewhere.

1.3 Limitations

The general limitations of this report are:

- A number of data and information sources have been used to prepare this report. Whilst Nimbus Engineering believes them to be trustworthy, Nimbus Engineering is unable to guarantee the accuracy of data and information that has been provided by others;
- This report has been prepared using the best data and information that was available at the time of writing. There is the potential for further information or data to become available, leading to changes in the conclusions drawn by this report, for which Nimbus Engineering cannot be held responsible.

2. SUSTAINABLE URBAN DRAINAGE SYSTEMS

Surface water arising from a developed site should, as far as is practicable, be managed in a sustainable manner to mimic the surface water flows arising from the site prior to the proposed development, while reducing the flood risk to the site itself and elsewhere, taking climate change into account.

Reducing the rate of surface water discharge from urban sites is one of the most effective ways of reducing and managing flood risk.

Traditional piped surface water systems work by removing surface water from our developments as quickly as possible, however this can cause various adverse impacts:

- Increased downstream flooding, and sudden rises in flow rates and water levels in local water courses.
- Reduction in groundwater levels and dry weather flows in watercourses.
- Reduce amenity and adversely affect biodiversity due to the surface water runoff containing contaminants such as oil, organic matter and toxic materials.

SuDS are defined as a sequence of management principles and control structures designed to drain surface water in a more sustainable fashion than conventional piped drainage techniques. SuDS should utilise the natural landscape of an area which as well as slowing down the rate of runoff provides a number of environmental, ecological and social benefits.

These include:

• Protection and enhancement of water quality. As well as providing on-site attenuation, SuDS treat the water, resulting in an improved quality of water leaving the site. This is achieved when the water passes through fine soils and the roots of specially selected plants. Pollutants washed off the hard landscaping by rainfall will be safely removed before the water reaches the natural receiving water course.

- A sympathetic approach to the environmental setting by providing opportunities to create habitats for flora and fauna in urban watercourses and open spaces.
- Meeting the amenity and social needs of the local community and residents in the creation of attractive green spaces.

The various types of SuDS include:

Permeable paving	
Soakaways;	
Swales and basins;	
Bioretention/ rain gardens;	
Green roofs and rainwater re- use;	

6

Preferably a combination of these techniques should be used as part of the surface water management train, and it is important for all stakeholders, such as developers, architects, landscape architects and engineers to work in order to determine a feasible solution.

3. PROPOSED SOLUTION

The total site area is 474 m², with the impermeable areas at the existing site being 165 m². Following the development at this site, the impermeable areas will have increased to 263 m².

Pre and post development peak flow rate of run off and peak flow storage calculations were carried out using these pre and post development impermeable area figures in order to determine a suitable surface water management solution, as requested by the London Borough of Camden. All surface water calculations are included in Appendix A.

In order to ensure that the SuDS management train has been considered fully, the proposed solution involve porous surfacing at all proposed hardstanding areas.

One wall mounted rainwater harvesting tank will also be provided in order to recycle the rainwater.

The remaining surface water run off from the proposed development site will be attenuated into a crate system attenuation tank, with restricted flow leaving the site set to 0.325 l/s, which is the existing site's greenfield rate.

Hydrograph storage calculations were carried out for a 1 in 100 year storm event plus 40% climate change allowance, these show that 16.6m³ of storage is required.

The proposed SuDS solution and details can be found on drawing number C2131-01 and C2131-02 in Appendix B.

We believe the Sustainable Urban Drainage System hierarchy has been considered fully, and the above solution meets the requirements of the London Plan and London Borough of Camden's Local Plans and policies.

4. TIMESCALE AND MAINTENANCE OF WORKS

All drainage works will be completed prior to first occupation and there will be no adoption of any of the drainage works within the site, and the homeowner will be responsible to oversee the long term maintenance their drains.

- Regular inspection and cleaning of catchment, gutters reduce the likelihood of contamination, typically every 3 to 6 months.
- Regular jet-washing of permeable block paving can be used to keep joints and voids clear, this should be carried out every 6 months.
- The catch pit chamber and flow control chamber should be emptied every 3 months, and after every large storm event to ensure that there are no blockages.
- The inlets and outlets to the rainwater harvesting tanks should be checked every 3 months, and after every large storm event to ensure that there are no blockages

5. CONCLUSIONS

The purpose of this report and associated drawings, is to satisfy the planning condition relating to surface water flows arising due to the development at this site.

As requested, SuDS have been incorporated into the design, in the form of one outdoor rainwater harvesters, in order to re-use rainwater.

All hard standing surfaces will be formed of permeable paving, with the driveway and parking areas underlain by a hydrocarbon removing geotextile membrane, to also ensure there is no contamination of the receiving groundwater.

All remaining surface water will then be conveyed into an attenuation tank at the site with a flow restriction leaving the site set to 0.325 l/s.

The timetable of works is to complete all drainage prior to occupation of dwellings, and maintenance requirements are also included in this report, therefore it is considered that all requirements of part a of the planning condition have been met, and therefore can be discharged.

APPENDIX A - SURFACE WATER RUN OFF CALCULATIONS

	Nimb	ue En	ainoor	ina	Kemp	House,				Job No. C2131			
	Consultants Ltd					London, EC1V 2NX Mob:0772 339 3155				Sheet no. 1			
	www.nimbusengineering.co.uk email: info@nimbusengineering.co.uk						Date						
MasterDrain HY 10.01	^{Project} 36 Redington Road, Hampstead, London NW3 7RT							^{ву} S.L	Checked	Reviewed			
	Title Pre & Post	t Devt SV	V Calcs										
Data													
Data:-													
Hydrology Location =	(FSR):-	וחשמו			WDAD		-	Δ					
Long refer	ence = 54()190			Grid	refere	nce = '						
M5-60 (mm)	= 20	100			SAAR	(mm/vr	() = (510					
r	= 0.43	3			Soil	(/ 1 -	=0	47					
Hyd. area	= 6				Hyd.	zone	= 8	3					
Hydrograph	= Wint	er			Area	= Engl	and & W	Vales					
C i to a 1 a a a													
Site values	used in des	sign:-	0474 h	-	C1 i ma	to abo	ngo fo	+	- 10%				
Dro-dow ar	area	- 0.	04/4 H	a >		dow ar	nge lac	inod -	- 40° - 0 020	53 ha			
Tmperm run	off factor	= 0. = 10	0102 II	a	Post-	runoff	factor		- 0.020 = 20%	55 IIa			
Imperm Iun		- 10			I GIM	LUNOLL	ractor	-	- 200				
Pre-develo	pment												
Area to so	akaways	= 0.	.0000 ha	a	Area	to oth	er SUDS	5 =	= 0.000)0 ha			
Perv. area	to SUDS	= 0.	0000 h	a	Pre-d	lev flo	w to di	ain =	= 0.00	1/s			
Post-devel	opment												
Area to so	akaways	= 0.	0000 h	a	Area	to oth	er SUDS	5 =	= 0.000	00 ha			
Perv. area	to SUDS	= 0.	.0000 ha	a	Post-	dev fl	ow to a	drain =	= 0.00	1/s			
Calculations	:-												
Revised Po Equiv. Pos Equiv. Pos Total Pre- Total Post 100 vr 6 h	st-dev Imper t-dev Imper t-dev Perm dev equiv. -dev equiv	erm. ar cm. area area h area h area	ea = 0 ea = 0 = 0 ha = 0 ha = 0 ex = 10	.026 ha .026 ha .004 ha .023 ha .031 ha .13mm/l	a a a a hr								
			1	· - •									
Results:-	-1-61			_ \									
Pre-dev pe	15 20	60 511 (1/	120	240	360	180	600	Max	CCF	Fina	л р	Ъ	
к.г. 1 г	50 33	2 0	1 2	0 8	0 6	480	0 4	5 0	N/A	5 0	T K		
30 1	12.3 7.9	4.9	2.9	1.7	1.2	1.0	0.8	12.3	N/A	12.3	3	0	
100 1	L5.9 10.3	6.4	3.8	2.2	1.6	1.3	1.1	15.9	N/A	15.9	10	0	
Post-dev p	eakflow run	noff (1	./s)									_	
R.P.		60	120	240	360	480	600	Max	CCF	Fina	l R	P.	
20 1	0.8 4.4	2.1	1./	1.0	0.8	0.6	0.5	6.8 16 F	40	9.5	2	1	
100	10.5 10.0	8.5	5.9	2.3	1./ 2 1	1.3	1.1 1 /	10.5 21 <i>A</i>	40	20.1	د 10		
100 2	1.4 15.7	0.0	5.1	5.0	2.1	1.7	1.4	21.7	40	50.0	10	0	
100 year 6	hour (x C	Limate	Change	Factor	r) sto	rm give	es:-						
	I	re-dev	runof:	f volu	ne m³ =	= 13.8n	n ³						
	I	ost-de	ev rain:	fall vo	olume	= 26.	. 0m ³						
	I	Post-de	ev volu	me m³	(excess	s above	SUDS)	= 26.	Om ³				
	-	LUU yr	6 hour	mean :	Intens	tty = 1	LU.13mm	/hr m ³					
	I -	re-dev	volum	e to di	rain at		s = 0.0	m ³					
	1 T		v volu		urain a lumo -	ac U 1/ = 26 0-	rsi = U. n ³	U m ³					
	I T		TV SLOIG	aye vo. imporr		- 20.01 - 1 7	11- 2 m 3						
	I T	Post-de	v 5mm	oerm w	olume =	= 1 1 m	, n ³						
	-					H							
Q	$e_{BAB(rural)} = 0.1$	L95 1/s	s or 4	.110 1,	/s/ha d	or 0.00	00 cume	cs - f	rom Io	Н 124.			
_													

The rainfall rates are calculated using the location specific values above in accordance with the Wallingford procedure.

Nimbus Engineerin		Kemp House, 152 City Road,	C2131			
	Consultants Ltd	London, EC1V 2NX Mob:0772 339 3155	Sheet no.	2		
	www.nimbusengineering.co.uk	email: info@nimbusengineering.co.uk	Date	21/05/19		
MasterDrain	^{Project} 36 Redington Road, Hampstead, Lor	ndon NW3 7RT	Ву	Checked	Reviewed	
HT 10.01	Title Pre & Post Devt SW Calcs		- 3.L			
		ata summary				
Use the data	below for the SUR1 form	ala summary.				
Site areas:-						
Total si	te area =	0.0474 ha ;473.6 m² [3A]			
Pre-dev	velopment impermeable area =	0.0165 ha [3B]				
Pre-dev	velopment permeable area =	0.0309 ha				
Post-de	evelopment impermeable area =	0.0263 ha [3C]				
Post-de	evelopment permeable area =	0.0211 ha				
Peak runoff:-						
Pre-dev	velopment 1 year storm (15min) =	5.0 l/s [6A]				
Pre-dev	velopment 100 year storm (15min) =	15.9 l/s [6C]				
Post-de	evelopment 1 year storm (15min) =	6.8 l/s [6B]				
Post-de	evelopment 100 year storm (15min)=	21.44 l/s [6D]				
Greenfield ru	noff:-					
Q _{BAR(rural}	$_{0}$ = 0.195 l/s or 4.110 l/s/ha	or 0.000 cumecs - from IoH 12	4.			
Climate ch	hange factor:-					
C	CCF = 40%					
Volumes:-						
F	Pre-development 100 yr/6hr sto	orm [12A]= 19.3m ³				
E	Post-development 100 yr/6hr sto	orm (add. volume with no SUDS	3) [12B]	= 26.0	m ³	
E	Post-development 100 yr/6hr sto	orm (add. volume with SUDS)		= 26.01	m ³	
E	ost-development add. predicted	a volume (No SUDS) [12C]		= 6./m	5	
You may al	lso require					
Γ	ata relating to the infiltration	ion test calculations (if appl	icable)			
E	ividence to show runoff reduction	lon (if applicable)	heet \			
L	Information on calculation metr	noos (11 applicable see next s	neet)			
Note						

Numbers in square brackets relate to the Nov. 2010 v1.1 / issued 11/02/10 copy of SUR1 $\,$

MasterDrain HY 10.01

Nimbus Engineering	152 City Road, London, EC1V 2NX	C2131 Sheet no.	3	
www.nimbusengineering.co.uk	Mob:0772 339 3155 email: info@nimbusengineering.co.uk	Date	21/05/19)
Project 36 Redington Road, Hampstead, Lou	By	Checked	Reviewed	
Title Pre & Post Devt SW Calcs	5.L			

Job No

Definitions and methods

12 - mar = 1 | - . . . - -

Hydrology The hydrological constants are derived from the Wallingford maps. They are used to calculate location specific rainfall figures.

Site values and factors

Areas of the site should be entered in hectares (10000 m²). If the Pre-development site is a green field, this box is blank.

Climate Change Factor is initially set at 20% - this may be changed as required.

Greenfield runoff is calculated using the method described in IoH 124.

Runoff factors

The impermeable runoff factor is initially set at 98%

The permeable runoff factor is initially set at 20%

Note: the CCF and the runoff factors may be changed by the user to suit the development The areas draining to soakaways and other SUDS are entered in the appropriate box (in hectares)

Calculations

The post-development area is reduced by subtracting the areas that drain to soakaways or other SUDS, to give a revised figure.

All areas are then multiplied by the appropriate runoff factor to give an equivalent area with 100% runoff. These are then summated.

This gives a total pre-development equivalent area, and a similar figure for the post-development area.

The 'Post-dev volume to drain (no SUDS)' gives the total runoff to drain if no SUDS were used.

Results

The pre- and post-development areas are subjected to 1,30 and 100 year return period storms with a duration of 15 to 600 minutes.

The Revised Post-dev Imperm. area is the area (in ha) that is not going to SUDS x impervious runoff factor.

The runoff rates are calculated for the chosen hydrograph (Summer or Winter) as I/s. Figures in red indicate m³/s The peak value is measured, multiplied by the CCF and the total maximum rate is shown.

The pre- and post-development volumes for a 100 year / 6 hour storm are calculated from the area under the hydrograph curve.

Post-dev volume (i.e. excess above SUDS) is that volume produced by the drained area that does not go to SUDS. Qbar(rural) is calculated in accordance with the procedure laid down in IoH 124

	Nimbus Engineering	Kemp House, 152 City Boad		Job No. C2131			
	Consultants Ltd	London, EC1V 2NX Mob:0772 339 3155		Sheet no. 1			
	www.nimbusengineering.co.uk	email: info@nimbusengine	ering.co.uk	Date	21/05/19)	
MasterDrain HY 10.01	^{Project} 36 Redington Road, Hampstead, Lo	^{Project} 36 Redington Road, Hampstead, London NW3 7RT					
	Title IoH 124 (Qbar(urban))Runoff calcs						
Hudrologia	al Data:-						
FSR Hydro	ology:-						
Location	= LONDON (NORTH)	Grid reference	= TQ4090				
M5-60 (m	m) = 20	r	= 0.43				
Soil run	off = 0.45	SAAR (mm/yr)	= 610				
WRAP	= 4	Area = England	& Wales				
Hydrolog	ical area = 6	Hydrological zo:	ne = 8				
Soil cla	ssification for WRAP type 4						
Clayey, o	or loamy over clayey soils with	an impermeable l	ayer at shallo	w dept	h.		
Design data	a:-		· · · · · · ·				
Area = U	$0.004/4 \text{ km}^2 - 0.04/ \text{ Ha}$	- 4/4 m²	% Urbanisati	on = 3	5.00%		
Calculation	n method:-						
Runoff is	s calculated from:-						
Q _{BA}	$AR(urban)$; = $Q_{BAR(rural)}$ (1 + URBAN) ^{2NC} [1 -	URBAN { (21/CIND)	-0.3}]				
where:-							
N	C varies with the value of SAAR	:-					
	for 500 <saar<1100 mm="" t<="" td=""><td>hen NC = $0.92 - 0$</td><td>.00024SAAR</td><td></td><td></td><td></td></saar<1100>	hen NC = $0.92 - 0$.00024SAAR				
	for 1100 <saar<3000 mm="" t<="" td=""><td>hen NC = $0.74 - 0$</td><td>.000082SAAR</td><td></td><td></td><td></td></saar<3000>	hen NC = $0.74 - 0$.000082SAAR				
C	IND = 102.4SOIL + 0.28(CWI - 12	5) CWI = Cato	hment Wetness	Index			
so							
C	IND =28.528 CWI =62	.313 NC =	0.774				
	For areas less than 504a a	modified calculat	ion which mult	inlies			
	the 50Ha runoff value by the Reducing factor used i	ratio of the site for these calcula	area to 50Ha tions is 0.001	is use	d		
Q	$_{BAR(rural)} = 0.177 (1/s)$						
Q	$_{BAR(urban)} = 0.325 (1/s)$						
Q	_{BAR(urban)} is then multiplied by a q eturn periods derived from EA p	growth factor - G ublication W5-074	C(T) - for dif: /A.	ferent	storm		

MD	Nimbus Engineering Consultants Ltd www.nimbusengineering.co.uk	Kemp House, 152 City Road, London, EC1V 2NX Mob:0772 339 3155 email: info@nimbusengineering.co.uk	Job No. C2131 Sheet no. Date	2 21/05/19	
MasterDrain	^{Project} 36 Redington Road, Hampstead, London NW3 7RT			Checked	Reviewed
Calculated data:-	Title IoH 124 (Qbar(urban))Runoff calcs		J.L		

Mean Annual Peak Flow $Q_{BAR(urban)} = 0.32$ 1/s

Values for $Q_{BAR(urban)}$

Ret. per. 1yr	m³/hr 0.000	1/s 0.276	1/s/ha 5.829	Ret. per. 100yr	m³/hr 0.001	1/s 1.023	1/s/ha 21.602
2yr	0.000	0.286	6.035	100yr+20%	0.001	1.228	25.923
5yr	0.000	0.416	8.778	100yr+30%	0.001	1.330	28.083
10yr	0.001	0.526	11.110	200yr	0.001	1.202	25.374
30yr	0.001	0.724	15.293	200yr + 30%	0.002	1.562	32.987
50yr	0.001	0.851	17.968	500yr	0.001	1.458	30.792
				1000yr	0.002	1.676	35.387

Growth factors -1yr 2yr 5yr 10yr 30yr 50yr 100yr 200yr 500yr 1000yr 2.23 3.15 0.85 1.62 2.62 3.70 0.88 1.28 4.49 5.16

The above is based on the Institute of Hydrology Report 124 to which you are referred for further details (see Sect 7). Note that the 200 year growth curve was taken from W5-074/A.

For WRAP type 1 soils, CIND can become negative for lower values of SAAR. In this case the CIND value is multiplied by -1 to return a positive value (CIND is very small at this point).

Nimbus Engineering			oring	K	emp House,		Job No.	Job No.				
				ening	1: Le	52 City Road, ondon, EC1V 2	NX	Sheet no.	<u>'</u> 1			
		Consultants Ltd Mob:0772 339 315				155	Date		•			
	Illillin.	WWW	nimbusengineering	.CO.UK	email: info@nimbusengineering.co.uk				21/05/1	9		
MasterDra	in	36 Redington Road						By	Checked	Reviewed		
SW		Title Hydrograph storage calcs with Qb			oar discl	harge		S.L				
Data:-		7 - 3 - 1	3			- J-						
Dutui	Locat	tion = I ON		4)	Grid re	eference =	TQ4090					
	M5-6	0 (mm) = 20)	•,	r	= 0.43						
	Soil index $= 0.45$				SAAR	(mm/yr) =	= 610					
	Retur	n period = 10	00		WRAP = 4							
	UCW	l = 0.0			Climat	e change	= 40%					
	Clavey, or loamy over clavey soils with an impermeable laver at shallow (
	Claye	ey, or loanry o	ver clayey so		an impe		ayer at shallow (Jepin.				
	Pipel	ine storage =	: 0.0 m ³		Availal	ble MH sto	prage = 0.0 m ³					
	Offlin	e storage =	0.0 m ³				•					
		U										
	Perce	entage runoff	= 100.0% (m	nanual se	etting)							
	Impe	rv. area = 263	8 m²		Pervio	us area =	0 m ²					
	Total	area = 263	m²		Equiva	area = 2	63 m^2 (Tot. area	x % runoff).				
	Total	runoff = 20.7	′ m ³		Discha	irge rate =	0.325 I/S					
	Stora	ge $(m^3) = 16.$		ali balai	nce qua	antities)						
	l otal	rainfall deptr	n = 78.6 mm									
Calculati	.ons :	-										
Time		%Mean	Rain	Inflo	w	Outflow	Balance	Cumulativ	e			
(hrs)		intens	mm/hr	(m3)	1	(m3)	(m3)	(m3)				
0.040)	20.0	3.9	0.04	1	0.047	0.000	0.000				
0.120)	21.0	4.1	0.04	3	0.047	0.000	0.000				
0.160)	21.0	4.1	0.04	3	0.047	0.000	0.000				
0.200		22.0	4.3	0.04	5	0.047	0.000	0.000				
0.240		24.0	4.7	0.04	0	0.047	0.003	0.001				
0.320)	26.0	5.1	0.05	4	0.047	0.007	0.011				
0.360		27.0	5.3	0.05	6	0.047	0.009	0.020				
0.440		31.0	6.1	0.06	4	0.047	0.013	0.050				
0.480)	32.0	6.3	0.06	6	0.047	0.019	0.069				
0.520)	33.0	6.5	0.06	8	0.047	0.021	0.091				
0.560		34.0	6.7 7.1	0.07	4	0.047	0.024	0.114				
0.640)	38.0	7.5	0.07	9	0.047	0.032	0.174				
0.680)	39.0	7.7	0.08	1	0.047	0.034	0.208				
0.720		40.0	7.9	0.08	3	0.047	0.036	0.244				
0.800)	45.0	8.8	0.09	3	0.047	0.046	0.330				
0.840)	49.0	9.6	0.10	1	0.047	0.055	0.384				
0.880		53.0	10.4	0.11	0	0.047	0.063	0.447				
0.920)	62.0	12.2	0.11	° 8	0.047	0.071	0.518				
1.000)	66.0	13.0	0.13	6	0.047	0.090	0.689				
1.040)	71.0	14.0	0.14	7	0.047	0.100	0.789				
1.080)	77.0 84.0	15.1	0.15	9 4	0.047	0.112 0.127	0.902				
1.160)	91.0	17.9	0.18	8	0.047	0.141	1.170				
1.200)	98.0	19.3	0.20	3	0.047	0.156	1.326				
1.240)	105.0 114 0	20.6	U.21 0 23	<i>י</i> 6	0.047 0.047	0.170 0.189	1.496				
1.320)	125.0	24.6	0.25	8	0.047	0.212	1.897				
1.360)	135.0	26.5	0.27	9	0.047	0.232	2.129				
1.400		143.0	28.1	0.29	б 8		0.249	2.378				
1.480)	164.0	32.2	0.31	9	0.047	0.292	2.942				
1.520)	173.0	34.0	0.35	8	0.047	0.311	3.253				
1.560)	183.0	36.0	0.37	8	0.047	0.332	3.584				
1.600	1	194.0	38.1	0.40	T	0.047	0.354	3.939				

	Nimbus Engineering Consultants Ltd			Kemp House,	Job No.	Job No. C2131			
				152 City Road, London EC1V 2NX	Sheet no. 2				
				Mob:0772 339 3155	Date	Date a sus a sus			
	www	w.nimbusengineering	.co.uk	email: info@nimbus	engineering.co.uk	Date	21/05/19)	
MasterDrain SW	^{Project} 36 Reding	gton Road				By	Checked	Reviewed	
0.1	Title Hydrogra	oh storage calc	s with Qbar d	lischarge		0.2			
Calculations	(cont.) :-								
Time	%Mean	Rain	Inflow	Outflow	Balance	Cumulativ	e		
(hrs)	intens	mm/hr	(m3)	(m3)	(m3)	(m3)			
1.640	204.0 212 0	40.1 41 7	0.422	0.047	0.375	4.314			
1.720	219.0	43.0	0.453	0.047	0.406	5.111			
1.760	226.0	44.4	0.467	0.047	0.421	5.532			
1.800	233.0	45.8	0.482	0.047	0.435	5.967			
1.840	239.0	47.0	0.494	0.047	0.447	6.414			
1.880	244.0	48.0	0.505	0.047	0.458	6.872			
1.920	248.0	48.7	0.513	0.047	0.466	7.338			
2.000	250.0	49.1	0.517	0.047	0.470	8.276			
2.040	250.0	49.1	0.517	0.047	0.470	8.746			
2.080	249.0	48.9	0.515	0.047	0.468	9.214			
2.120	248.0	48.7	0.513	0.047	0.466	9.680			
2.160	244.0	48.0	0.505	0.047	0.458	10.138			
2.200	239.0	47.0	0.494	0.047	0.447	10.586			
2.240	226.0	43.8	0.467	0.047	0.421	11.021			
2.320	219.0	43.0	0.453	0.047	0.406	11.847			
2.360	212.0	41.7	0.438	0.047	0.392	12.239			
2.400	204.0	40.1	0.422	0.047	0.375	12.614			
2.440	194.0	38.1	0.401	0.047	0.354	12.968			
2.480	183.0	36.0	0.378	0.047	0.332	13.300			
2.520	164 0	34.0	0.338	0.047	0.311	13.011			
2.600	154.0	30.3	0.318	0.047	0.272	14.175			
2.640	143.0	28.1	0.296	0.047	0.249	14.423			
2.680	135.0	26.5	0.279	0.047	0.232	14.656			
2.720	125.0	24.6	0.258	0.047	0.212	14.868			
2.760	114.0	22.4	0.236	0.047	0.189	15.056			
2.800	98 0	20.8	0.217	0.047	0.170	15.227			
2.880	91.0	17.9	0.188	0.047	0.141	15.524			
2.920	84.0	16.5	0.174	0.047	0.127	15.651			
2.960	77.0	15.1	0.159	0.047	0.112	15.763			
3.000	71.0	14.0	0.147	0.047	0.100	15.863			
3.040	66.U	13.0	0.136	0.047	0.090	15.953			
3.120	57.0	11.2	0.118	0.047	0.071	16.105			
3.160	53.0	10.4	0.110	0.047	0.063	16.168			
3.200	49.0	9.6	0.101	0.047	0.055	16.223			
3.240	45.0	8.8	0.093	0.047	0.046	16.269			
3.280	42.0	8.3	0.087	0.047	0.040	16.309			
3.320	40.0	7.9 7 7	0.083	0.047	0.036	16.345			
3.400	38.0	7.5	0.079	0.047	0.034	16.411			
3.440	36.0	7.1	0.074	0.047	0.028	16.438			
3.480	34.0	6.7	0.070	0.047	0.024	16.462			
3.520	33.0	6.5	0.068	0.047	0.021	16.483			
3.560	32.0	6.3	0.066	0.047	0.019	16.503			
3.600 3.640	31.U 29 0	0.1 5 7	0.064	0.04/	0.017 0.013	16.520 16 522			
3.680	27.0	5.3	0.056	0.047	0.009	16.542			
3.720	26.0	5.1	0.054	0.047	0.007	16.549			
3.760	24.0	4.7	0.050	0.047	0.003	16.552			
3.800	23.0	4.5	0.048	0.047	0.001	16.553			
3.840	22.0	4.3	0.045	0.047	0.000	16.551			
3.880	21.0	4.1	0.043	0.047	0.000	16.548			
3,960	21.0	4.⊥ 3.9	0.043	0.047	0.000	16 539			
4.000	20.0	3.9	0.041	0.047	0.000	16.534			

Storage volume (m³) = 16.6 m³ (Sum of all balance quantities)

Nimbus Engineering Consultants Ltd www.nimbusengineering.co.uk

Kemp House,
152 City Road,
London, EC1V 2NX
Mob:0772 339 3155
email: info@nimbusengineering.co.uk

Job No. C2131 Sheet no.

Date

Ву

4 21/05/19 Checked Reviewed S.L

MasterDrain SW

Project 36 Redington Road

Title Hydrograph storage calcs with Qbar discharge

Maximum storage volumes for varying duration storms.

Storm length	Max. Vol	Max. Vol	Mean intens	Step time.	Peak found
(hrs)	(m³)	time	(mm/hr)	(mins)	
0.25	9.26	0.25	141.69	0.2	
0.5	11.80	0.50	91.88	0.3	
1	14.12	1.00	56.71	0.6	
2	15.90	2.00	33.84	1.2	
3	16.47	3.00	24.70	1.8	
4	16.55	4.00	19.66	2.4	Peak found
5	16.44		16.41	3.0	
6	16.27		14.18	3.6	
7	16.06		12.52	4.2	
8	15.83		11.25	4.8	
9	15.59		10.23	5.4	
10	15.32		9.39	6.0	
12	14.75		8.10	7.2	
15	13.82		6.76	9.0	
18	12.87		5.83	10.8	
20	12.24		5.35	12.0	
24	10.97		4.61	14.4	
30	9.15		3.84	18.0	
36	7.41		3.31	21.6	
42	5.81		2.91	25.2	
48	4.35		2.61	28.8	
54	3.05		2.37	32.4	
60	1.90		2.17	36.0	
66	0.97		2.01	39.6	
72	0.28		1.87	43.2	
84	0.00		1.65	50.4	
96	0.00		1.47	57.6	
120	0.00		1.22	72.0	
150	0.00		1.02	90.0	
175	0.00		0.89	105.0	
200	0.00		0.80	120.0	
250	0.00		0.66	150.0	
300	0.00		0.57	180.0	
375	0.00		0.47	225.0	
500	0.00		0.37	300.0	
750	0.00		0.27	450.0	
1000	0.00		0.21	600.0	
1250	0.00		0.17	750.0	
1500	0.00		0.15	900.0	
1570	0.00		0.14	942.0	
2000	0.00		0.12	1200.0	
2500	0.00		0.10	1500.0	
3000	0.00		0.08	1800.0	
3500	0.00		0.07	2100.0	
4000	0.00		0.07	2400.0	

MasterDrain SW	Nimbus Engineering Consultants Ltd www.nimbusengineering.co.uk	Kemp House, 152 City Road, London, EC1V 2NX Mob:0772 339 3155 email: info@nimbusengineering.co.uk	Job C Shee	Job No. C2131 Sheet no. 5		
			Date	te	21/05/19	
	Project 36 Redington Road		Ву	e i	Checked	Reviewed
	Title Hydrograph storage calcs with Qbar discharge			5.L		

Storm duration (hours)

Nimbus Engineering Consultants Ltd

www.nimbusengineering.co.uk

	Kemp House,
	152 City Road,
	London, EC1V 2NX
	Mob:0772 339 3155
	email: info@nimbusengineering.co.uk
-	

Project 36 Redington Road

Title Hydrograph storage calcs with Qbar discharge

Explanatory notes for Peak Flow Storage

- 1) This system uses the rainfall intensity/ duration curve calculated using either the Wallingford or FEH method as selected.
- 2) The balance is calculated from the inflow minus the outflow.
- 3) The storage volume is the maximum value of the balance curve.
- 4) This method was described by Davis (1963) see Butler & Davies, 2nd edition, p294
- 5) References to 'storm duration' relate only to the hydrograph method (qv).
- 6) There are always 600 steps in the calculation process, thus a 'run' time of 10 hours will be sampled every minute,

Explanatory notes for Hydrograph Storage

- 1) The user has the choice of Summer or Winter curves
- 2) The mean intensity varies with the duration of the storm curve
- 3) There are always 120 steps in the calculation process, irrespective of storm duration.
- 4) The balance is calculated from the inflow minus the outflow.
- 5) The storage volume is the sum of the balance values for each step.
- 6) Varying durations should be tried to find the maximum storage value this can be narrowed down very closely.

*Modelling using the flow characteristics of the restrictor is available using Vortex Control modelling function. Please be aware that this function needs the full design data file to function.

Why do the two methods give different results?

The rainfall characteristics for each method are very different.

The Peak flow (using the Intensity/Duration/Frequency curve) does not model the actual rainfall. This curve is joined points which represent the mean intensity of a storm at a given duration i.e. a value of 19.5 mm/hr for a 60 minute storm indicates that over the sixty minute period, the mean intensity was 19.5 mm/hr. The calculation method samples the IDF curve for a given location and frequency (Return Period) and calculates the storage for that rate and duration less the outflow volume. The maximum value is displayed as the 'worst case' storage.

The hydrograph method uses a standard curve for either Winter or Summer storms. Traditionally these are symmetrical about the central peak. UK rainfall does not fit into this convenient curve, so the calculations are dealing with a stylised set of data. The mean intensity for the storm is calculated from the IDF curve and applied to the curve data, calculating the storage for that step less the outflow volume. The final storage volume is the sum of the storage for all the steps.

It can be seen that these two methods are very different, and the user may have the choice of which result to use. This is not an exact science, though is often treated as such by those that do not understand the principles of the calculations.

APPENDIX B – DRAWINGS

C2131-02 SIZE: DATE: A1 24-05-19

	mOVE								
IC	SIZE	COVER LEVEL	INVERT LEVEL	APPROX DEPTH	NOTES				
S1	0.45Ø	91.350	90.950	0.400					
S2	0.45Ø	91.350	90.855	0.495					
S3	0.45Ø	T.B.C	93.800	T.B.C					
S4	0.45Ø	T.B.C	93.500	T.B.C					
S5	0.45Ø	93.950	93.350	0.600					
S6	0.45Ø	T.B.C	92.970	T.B.C					
S7	0.45Ø	94.500	92.833	1.667					

IMPORTANT

THIS DRAWING IS TO BE CHECKED ON SITE BY THE CONTRACTOR PRIOR TO THE COMMENCEMENT OF THE WORKS. ANY DISCREPANCY MUST BE REPORTED TO THE ENGINEER.

NO DEVIATION MAY BE MADE FROM THE CONTENTS OF THIS DRAWING WITHOUT PRIOR PERMISSION FROM THE ENGINEER.

THIS DRAWING IS TO BE REMOVED FROM CURRENCY IMMEDIATELY AFTER A REVISED EDITION HAS BEEN ISSUED.

ALL RIGHTS DESCRIBED IN CHAPTER IV OF THE COPYRIGHT DESIGN ACTS 1988

