Polystorm System - Recommended Installation Details

The information given in the following document has been provided to aid in the preliminary assessment of the Polystorm geocellular units' suitability for a proposed installation; however, a detailed site specific structural assessment should be undertaken before final design or construction activities commence.

It should be noted that this document is uncontrolled and updates will not be issued automatically. Polypipe reserves the right to change product specifications without prior notice.

1.0 Polystorm Unit Properties

The characteristic unit parameters detailed in Table 1 may be used for design purposes

Polystorm Unit		Lite (PSM2)	Standard (PSM1)	Polystorm-R (PSM1A)	Xtra (PSM3)
Ultimate Compressive	Vertical	200	440	610	834
Strength [kN/m ²]	Lateral	40	63	63	93
Short Term Deflection	Vertical	43	83	60.0	97.8
[mm per kN/m ²]	Lateral	6.4	4.2	4.4	7.1

1.1 Characteristic Parameters, X_k

 Table 1
 Characteristic Polystorm unit parameters

1.2 Recommended Material Factor of Safety (FoS)

Limit State	Material, fm (Cellular unit)
Ultimate (ULS)	2.75
Serviceability (SLS)	1.5

Table 2Recommended material FoS

Material factors of safety quoted in Table 2 have been based on the minimum recommendations within CIRIA C680 (RP782; 2008).

1.3 Design Parameters, X_d

 $X_d = X_k / f_m$

Polystorm Unit		Lite (PSM2)	Standard (PSM1)	Polystorm-R (PSM1A)	Xtra (PSM3)
Ultimate Compressive	Vertical	Vertical 72.7		221	303.2
Strength [kN/m ²]	Lateral	14.5	22.9	22.9	33.8
Short Term Deflection	Vertical	28.6	55.3	40.0	65.2
[mm per kN/m ²]	Lateral	4.2	2.8	2.9	4.7

Table 3Polystorm unit design parameters (based on Table 1 unit strengths and application of
Table 2 material FoS)

Please note that the information in this document is of an illustrative nature and is supplied by Polypipe Civils without charge. It does not form part of any contract or intended contract with the user. Final determination of the suitability of any information or material for the use contemplated and the manner of use is the sole responsibility of the user and the user must assume all risk and liability in connection therewith. Further information is available at www.Polypipe.com/disclaimer.

2.0 CIRIA Report C680 (2008; RP782) Parameters

2.1 Vehicle Loads

Table 4 summarises the vehicle loads suggested by Steve Wilson (2008) in CIRIA C680; *Structural design of modular geocellular drainage tanks*, Table 4.2.

Vehicle load classifications have been based on DIN 1072, where relevant / available.

	Load Case	Load I	Magnitude	by Туре	pe Tyre Footprint		
Ref	Description	UDL [kN/m²]	Point [kN]	Dynamic Factor	Width	Length	
NTA	Small gardens or landscaped areas (No vehicles)	0	0	0	0	0	
LA	Landscaped area (Motorised mower)	5	1.4	1.0	0.150	0.150	
CP-R	Driveway / Car parking (Cars < 3,000 Kg GVW) [DIN 1072 Class 3/3]	5	10	1.0	0.200	0.200	
CP-U	Parking; no height restriction (Cars & vans < 6,000 Kg GVW) [DIN 1072 Class 6/6]	5	20	1 – 1.25	0.200	0.200	
CP-LDV	Parking; no height restriction (Occasional LDV < 9,000 Kg GVW) [DIN 1072 Class 9/9]	5	30	1 – 1.5	0.200	0.260	
LAR	Parking & light access Rd (GVW < 12,000 Kg) [DIN 1072 Class 12/12]	10	40	1 – 1.5	0.200	0.300	
MEWS	Rigid vehicle parking, Mews etc (GVW < 16,000 Kg; eg. med rigid fire engine) [DIN 1072 Class 16/16]	10	50	1 – 1.5	0.200	0.400	
SER	Rigid HGV parking, access or small estate road (GVW < 30,000 Kg; eg. rigid refuse lorry) [DIN 1072 Class 30/30]	10	50	1 – 1.5	0.200	0.400	
LSR	Low speed roads (< 15 mph) (Articulated HGV < 60,000 Kg) [DIN 1072 Class 60/30]	10	100	1 – 2.0	0.200	0.600	
HA	Full HA road loading (GVW < 44,000 Kg)	10	100	1.0	0.266	0.266	

Table 4	Recommended	vehicle load	classifications	(CIRIA C680,	Table 4.2)
---------	-------------	--------------	-----------------	--------------	------------

Please note that the information in this document is of an illustrative nature and is supplied by Polypipe Civils without charge. It does not form part of any contract or intended contract with the user. Final determination of the suitability of any information or material for the use contemplated and the manner of use is the sole responsibility of the user and the user must assume all risk and liability in connection therewith. Further information is available at www.Polypipe.com/disclaimer.

2.2 Partial Factors of Safety, fm

Recommended permanent (dead) & transient (live) load partial FoS can vary according to the check being performed. Tables 7 to 9 are based on standardised load FoS (summarised in Table 5); which have been based on CIRIA C680 (RP782; 2008), Table 4.5.

Hydrostatic pressure has been assumed to act as a permanent load (highest credible water level). It should be noted that where the probable variability of an assumed ground water level is unknown, the associated hydrostatic pressures may be assumed to act as a variable load.

Limit State	Vertica	al Load	Lateral Load			
	Permanent (Dead Load); f _{DL}	Variable (Live Load); f _{LL}	Permanent (Dead Load); f _{L;DL}	Variable (Live Load); f _{L;LL}		
Ultimate (ULS)	1.4	1.6	1.35	1.5		
Serviceability (SLS)	1.0	1.0	1.0	1.0		

Table 5Recommended partial FoS [CIRIA C680 (RP782; 2008), Table 4.5;
(lateral loads - Combination 1 in EN 1997-1)]

2.3 Typical Angle of Shearing Resistance

Table 6 is an abridged reproduction of the one given in Polypipe's Polystorm BBA certificate (N° 06/4297, Product Sheet 3; table 9); indicating a typical angle of friction which can be expected for a range of soil descriptions.

This information is provided to facilitate preliminary design; the ground conditions of a proposed installation should be confirmed prior to final design or the commencement of construction activities.

Typical Soil Type (<i>Description</i>)	Soil Weight [kN/m³]	Angle of Friction (<i>Typical Shearing</i> <i>Resistance</i>), Ø		
Stiff over consolidated Clay, (e.g. London Clay)	20	24°		
Normally consolidated Silty Sandy Clay (e.g. Alluvium, Made Ground)	19	26°		
Loose Sand and Gravel	18	30°		
Medium dense Sand and Gravel	19	34°		
Dense Sand and Gravel	20	38°		

Table 6	Typical angle of fi	riction for given soil	description
---------	---------------------	------------------------	-------------

Please note that the information in this document is of an illustrative nature and is supplied by Polypipe Civils without charge. It does not form part of any contract or intended contract with the user. Final determination of the suitability of any information or material for the use contemplated and the manner of use is the sole responsibility of the user and the user must assume all risk and liability in connection therewith. Further information is available at www.Polypipe.com/disclaimer.

3.0 Maximum recommended burial depth (to cell invert)

Angle	Soil				Vehicl	e Surcharg	ge Load			
friction, Ø	[kN/m ³]	NTA $\begin{array}{c c} LA \& \\ CP-R & (GVW \leq 3,000Kg) \\ CP-U & (GVW \leq 6,000Kg) \\ CP-LDV & (GVW \leq 9,000Kg) \\ HA & (Full HA \end{array}$			LA & CP-R (GVW ≤ 3,000Kg) CP-U (GVW ≤ 6,000Kg) CP-LDV (GVW ≤ 9,000Kg)			(GVW ≤ 12) (GVW ≤ 16) (GVW ≤ 30) (GVW ≤ 60) (Full HA loa	,000Kg) ,000Kg) ,000Kg) ,000Kg) & ,000Kg) &	
U	nit	PSM2	PSM1 & PSM1A	PSM3	PSM2 3)	PSM1 & PSM1A	PSM3	PSM2 ³⁾	PSM1 & PSM1A	PSM3
a) No	groundw	ater pres	ent							
24°	20	1.477	2.212	3.075	1.227	1.962	2.825	0.977	1.712	2.575
26°		1.652	2.487	3.482	1.389	2.224	3.218	1.126	1.961	2.955
28°	19	1.771	2.674	3.757	1.508	2.411	3.494	1.244	2.148	3.231
29°		1.834	2.774	3.905	1.571	2.511	3.642	1.308	2.248	3.379
30°	18	1.996	3.028	4.280	1.718	2.751	4.002	1.440	2.473	3.725
32°		2.046	3.107	4.396	1.782	2.844	4.133	1.519	2.580	3.870
33°	19	2.124	3.230	4.577	1.860	2.966	4.314	1.597	2.703	4.051
34°		2.206	3.359	4.769	1.943	3.096	4.505	1.680	2.833	4.242
36°		2.275	3.468	4.930	2.025	3.218	4.680	1.775	2.968	4.430
38°	20	2.465	3.767	5.370	2.215	3.517	5.120	1.965	3.267	4.870
40°		2.678	4.102	5.865	2.428	3.852	5.615	2.178	3.602	5.365
b) Gro	oundwate	er assume	ed 1.0m b	elow grou	und level					
24°	20	1.365	1.800	2.274	1.216	1.652	2.125	0.977	1.504	1.977
26°		1.448	1.907	2.410	1.304	1.762	2.265	1.126	1.618	2.121
28°	19	1.495	1.963	2.478	1.359	1.827	2.342	1.223	1.691	2.205
29°		1.519	1.991	2.512	1.386	1.859	2.379	1.254	1.726	2.247
30°	18	1.577	2.066	2.609	1.445	1.934	2.477	1.314	1.803	2.346
32°		1.587	2.072	2.610	1.466	1.952	2.490	1.346	1.831	2.369
33°	19	1.609	2.098	2.642	1.492	1.982	2.526	1.376	1.865	2.409
34°		1.631	2.125	2.674	1.518	2.012	2.561	1.405	1.899	2.448
36°		1.643	2.135	2.682	1.540	2.032	2.578	1.437	1.929	2.475
38°	20	1.686	2.187	2.744	1.590	2.090	2.648	1.494	1.994	2.552
40°		1.728	2.237	2.805	1.638	2.147	2.716	1.549	2.058	2.627
Note										
1. Ma	ximum bur Ka = [Ka (l	ial depth re Live load +	commendat Dead load)]	ion has bee . fmp. + H	en based on vdrostatic p	the followin	ng expressio יחי	on:		

2. Assumed density of water = 10.0 kN/m^3

3. Polystorm Lite is not recommended for regularly trafficked areas; depths given for reference only

Please note that the information in this document is of an illustrative nature and is supplied by Polypipe Civils without charge. It does not form part of any contract or intended contract with the user. Final determination of the suitability of any information or material for the use contemplated and the manner of use is the sole responsibility of the user and the user must assume all risk and liability in connection therewith. Further information is available at www.Polypipe.com/disclaimer.

4.0 Minimum recommended cover depth above Polystorm structure

Polystorm Unit	Surcharge Load Type	NTA	LA	CP-R (≤ 3,000 Kg)	CP (≤ 6,00	2- U 00 Kg)	CP-LDV (≤ 9,000 Kg)	
	Unfactored Load @ GL [kN/m ²]		62	250	500	625	577	865
	Inc. Dynamic Load Factor	N/A	1	1	1	1.25	1	1.5
	Assumed load distribution [1 in]		2	2	2	2	2	2
	ULS	-	N/A	0.269	0.463	0.542	0.583	0.765
Polystorm Lite	SLS (0.5mm vertical deflection)	-	0.163	0.635	0.981	1.121	1.217	1.542
(PSM2)	SLS (1.0mm vertical deflection)	-	0.071	0.391	0.635	0.734	0.793	1.023
	Recommended	0.500	0.500	0.600	0.650	N/A	N/	Ά
	ULS	-	N/A	0.116	0.247	0.300	0.319	0.441
Polystorm	SLS (0.5mm vertical deflection)	-	0.075	0.401	0.650	0.751	0.812	1.046
(PSM1)	SLS (1.0mm vertical deflection)	-	0.009	0.225	0.401	0.472	0.507	0.672
	Recommended	0.500	0.500	0.600	0.600	0.750	0.600	1.050
	ULS	-	N/A	0.069	0.180	0.225	0.236	0.341
Polystorm-R	SLS (0.5mm vertical deflection)	-	0.115	0.507	0.800	0.918	0.995	1.270
(PSM1A)	SLS (1.0mm vertical deflection)	-	0.037	0.300	0.507	0.591	0.637	0.831
	Recommended	0.500	0.500	0.500	0.510	0.920	0.640	1.270
	ULS	-	N/A	0.030	0.125	0.163	0.169	0.258
Polystorm Xtra	SLS (0.5mm vertical deflection)	-	0.057	0.354	0.583	0.676	0.730	0.945
(PSM3)	SLS (1.0mm vertical deflection)	-	0.003	0.192	0.354	0.419	0.449	0.601
	Recommended	0.500	0.500	0.375	0.375	0.675	0.450	0.950

 Table 8
 Minimum cover depths recommended for stated vehicle load classification (CIRIA C680 FoS and methodology, assuming 1 in 2 load distribution)

Please note that the information in this document is of an illustrative nature and is supplied by Polypipe Civils without charge. It does not form part of any contract or intended contract with the user. Final determination of the suitability of any information or material for the use contemplated and the manner of use is the sole responsibility of the user and the user must assume all risk and liability in connection therewith. Further information is available at www.Polypipe.com/disclaimer.

Polystorm Unit	Surcharge Load Type	LA (≤ 12,0	AR 100 Kg)	ME (≤ 16,0	Ws 000 Kg)	SE (≤ 30,0	ER 100 Kg)	LS (≤ 60,0	SR)00 Kg)	HA
	Unfactored Load @ GL [kN/m ²]	667	1000	625	938	625	938	833	1667	1413
	Inc. Dynamic Load Factor	1	1.5	1	1.5	1.0	1.5	1	2.0	1.0
	Assumed load distribution [1 in]	2	2		2	2	2		2	2
	ULS	0.689	0.900	0.754	0.988	0.754	0.988	1.097	1.707	1.217
Polystorm Lite	SLS (0.5mm vertical deflection)	1.421	1.797	1.570	1.990	1.570	1.990	2.249	3.341	2.375
(PSM2)	SLS (1.0mm vertical deflection)	0.932	1.198	1.024	1.321	1.024	1.321	1.478	2.249	1.602
	Recommended	N	/A	N/A		N	/A	N	/A	N/A
	ULS	0.384	0.526	0.414	0.572	0.414	0.572	0.620	1.028	0.734
Polystorm	SLS (0.5mm vertical deflection)	0.953	1.223	1.048	1.349	1.048	1.349	1.512	2.296	1.635
(PSM1)	SLS (1.0mm vertical deflection)	0.602	0.793	0.656	0.869	0.656	0.869	0.959	1.512	1.078
	Recommended	0.600	1.225	1.050	1.350	1.050	1.350	1.525	2.300	1.650
	ULS	0.289	0.410	0.309	0.442	0.309	0.442	0.473	0.818	0.583
Polystorm-R	SLS (0.5mm vertical deflection)	1.165	1.483	1.284	1.639	1.284	1.639	1.845	2.769	1.970
(PSM1A)	SLS (1.0mm vertical deflection)	0.751	0.976	0.822	1.073	0.822	1.073	1.194	1.845	1.315
	Recommended	0.750	1.485	1.285	1.640	1.285	1.640	1.845	2.770	1.970
	ULS	0.212	0.315	0.223	0.337	0.223	0.337	0.353	0.646	0.460
Polystorm Xtra	SLS (0.5mm vertical deflection)	0.859	1.108	0.942	1.220	0.942	1.220	1.363	2.085	1.485
(PSM3)	SLS (1.0mm vertical deflection)	0.535	0.711	0.581	0.777	0.581	0.777	0.854	1.363	0.972
	Recommended	0.550	1.125	0.950	1.225	0.950	1.225	1.375	2.100	1.500

 Table 9
 Minimum cover depths recommended for stated vehicle load classification (CIRIA C680 FoS and methodology, assuming 1 in 2 load distribution)

Please note that the information in this document is of an illustrative nature and is supplied by Polypipe Civils without charge. It does not form part of any contract or intended contract with the user. Final determination of the suitability of any information or material for the use contemplated and the manner of use is the sole responsibility of the user and the user must assume all risk and liability in connection therewith. Further information is available at www.Polypipe.com/disclaimer.