	TECHNICAL NOTE			
PJCCE Pringuer-James Consulting Engineers (Structural & Civil Engineers) Overseas House, Elm Grove, London SW19 4HE Tel : 020 8940 4159 Email: mail@PJCE.com				
Project: 53 Fitzroy Park Lo	ondon N6 6JA	Project No. L2368		
By: Vlad Myrsikov	Date:			
Title: Drainage design fo	No. L2368-TN-001-A			

Planning Application Reference: 2018/2104/P

Introduction

This is a Supplementary Technical Note to previously issued L2368-TN-001_B. This Technical Note provides supplementary information, plans and calculations and to satisfy Planning Condition13:

Prior to commencement of development details of a sustainable urban drainage system shall be submitted to and approved in writing by the local planning authority. Such system shall be based on demonstrating 50% attenuation of all runoff. The system shall be implemented as part of the development and thereafter retained and maintained.

Additional Information

The following additional information has been provided with this technical note:

- Detailed design drawing including details.
- Breakdown of impermeable areas pre and post development.
- Infiltration test results.
- Greenfield Rate calculations.
- Detailed calculations for all SuDS components.

Since the preparation of the previous technical note, it was confirmed that the development does not have a connection to the pond and will not have a connection in the future. Only two remaining options are infiltration or pumping to the sewer.

In line with various statutory requirements and non-statutory guidance, the design has been changed to 100% infiltration and focuses to ensure all rainfall, up to 1-in-100year +40% Climate Change is captured and infiltrated on site.

If infiltration is deemed not acceptable, the design will revert to non-infiltrating SuDS and pumping to sewer at Greenfield Rate of 0.7 l/s, however this is not preferred as it disrupts natural flow of the catchment and adds unnecessary storm water to public sewers.

Impermeable Areas

The existing site is 1,283m² in size with approximately 23% occupied by an existing house and hard standing areas. The house is approximately 120m² in footprint and remaining hard standing areas approximately 185m².

No formalised drainage system or connection to public sewer has been identified during investigations (albeit one gully has been noted) and it is understood that the existing house drains all surface water into the gardens and adjoining areas.

The proposed development consists of a newly built house, car parking areas, and rear garden patio as main impermeable areas. Additionally, the large garden contains water features and a gazebo style structure.

Figure 1 (right) demonstrates areas that were considered for drainage. A full sketch is provided in the Appendix.

The gazebo has not been included in calculations as it has an open slated roof and flow-through timber decking, which overall will mimic the natural behaviour of the open ground.

The overall new impermeable area for the new development has been calculated at 610m² which is broken down into three sub-catchments, each with its own SuDS infiltration feature.

Catchment 1 – Car park (sand colour) Catchment 2 – Main roofs (orange and green) Catchment 3 – Rear patio (yellow and magenta)

Figure 1- Catchments

Catchment areas are shown in the table below:

Description of Area	Total area drained	Colour
Car Park	152 m²	Sand
Main Building Roof (Excluding green roofs)	125 m ²	Blue
Main Building Roof (Green roofs only)	142 m ²	Green (Hatched)
First floor Patio and canopy	40 m ²	Yellow
Patio	95 m ²	Magenta
Water feature	56 m ²	Magenta
TOTAL	610 m ²	

Figure 2 - Catchment Areas

Infiltration Testing

The soil conditions generally identified 1.0m to 1.4m of clean made ground over clay bed, which is consistent with expectations for an old river bed. Groundwater generally was found to be 3-4m deep, below clay layer. In some bore holes a perched water table was found, however in all boreholes this was just above underlying clay layer and not significant. Only shallow infiltration SuDS are viable, with infiltration into made ground, which mimic natural environment.

Extensive infiltration testing to BRE365 has been commissioned, to examine existing rates at different parts of the site. A total of 10 tests have been completed, showing a range of values from 2.86×10^{-4} m/s down to 5.49×10^{-6} m/s depending on location. Refer to Appendix for more information.

The SuDS will be designed using lowest obtained f value. Where long SuDs components are used, the average between different f values in the vicinity of the SuDS component will be used.

Greenfield Rate

Greenfield Rate has been calculated using HR Wellingford using FEH data on www.uksuds.com website. The resultant value is shown below, and full calculation provided in appendix.

Site Area	Greenfield Rate			
1,283 m ²	1.21 l/s			
Eigure 2 Creanfield Pate				

Figure 3 - Greenfield Rate

Modelling

Catchment 1

Catchment 1 consists of Type B, permeable car park. Although some infiltration capacity exists within the made ground underneath the car park, for the purposes of the modelling this has been assumed to be zero.

To maximise the storage usage and limit flow-down to downstream SuDS infiltration component, the car park is flow-controlled via a 17mm orifice plate.

Blockage risk is very low as the water reaching the orifice plate has been filtered through 4/20mm permeable pavement stone and perforated pipe before reaching the orifice plate.

Catchment 2

Catchment 2 consists of a bioretention basin with attenuation/infiltration tank under, and a detention basin used to contain high intensity events. The catchment receives rainwater water from the roofs and outflow from Catchment 1. All water from the upstream catchment will drain to the bioretention area, filter, and then enter the attenuation/infiltration storage.

Soil infiltration value has been derived using average of worst test result at the actual bioretention location and is equal to 0.02956m/hr (8.21x10⁻⁶ m/s) as per BRE365 methodology.

Bioretention systems are similar to permeable pavements as filtration of fines occurs outside (above) the structure, and therefore the base infiltration to be used for infiltration calculations. This is confirmed by CIRIA753 Section 18.1 which stipulates that for bioretention systems the silting and clogging will occur at transition medium layer (Geotextile) and not at the drainage layer under the bioretention media. The bioretention design will allow for 2 separate geomembranes; the first membrane would be used to wrap the tank and the second membrane as transition medium between soil layer and drainage.

Due to limitations of the MicroDrainage software, bioretention has been modelled as dry swale structure. The soil medium has been ignored as it does not provide hydraulic benefit to the model. The design detail for bioretention is presented on the design drawing in Appendix

The detention basin peak level of ponding was manually calculated by using MicroDrainage derived "flooded volume" of 7.1m³ (1-in-100year +40% Climate Change) and detention basin area of 117m³. The maximum ponding is 60mm, however conservatively, the detention basin edge levels are set at a minimum of 150mm from the detention based, giving additional factor of safety.

<u>Results</u>

Both Catchment 1 and Catchment 2 are calculated using the MicroDrainage Cascade model. This provides the most conservative result. Calculations are completed for 1-in-100 year +40% Climate Change and for 1-in-30year +40% Climate Change. The lower intensity event is used to validate that system has sufficient capacity to store water within cellular storage and pavement without flooding.

	1-in-10+40% CC model	1-in-100+40% CC model
Maximum attenuation volume	19.1 m ³	28.7 m ³
Peak water level in permeable pavement	0.257 mm	0.386 mm
Peak water level in bioretention area	80.151 mOD	80.207mOD (MicroDrainage) 80.260mOD (hand calculation)
Half drain time	316 mins	453 mins

Figure 4 - Catchment 1&2 Cascade results

Catchment 3

Catchment 3 consists of a bioretention basin, accepting sheet flow from the paving and water feature hard standing areas.

The soil infiltration value has been derived using the average of worst test results at the actual bioretention location and is equal to 0.020268 m/hr (5.63×10^{-6} m/s) as per BRE365 methodology.

Bioretention design and modelling is identical to Catchment 1 bioretention structure design methodology. Catchment 3 does not have detention basin for excess water storage and instead is designed to hold all water within crates and overflow over.

<u>Results</u>

The catchment is calculated using MicroDrainage Source Control model and the SuDS element is the only component in the drainage system.

	1-in-100 +40% CC model
Maximum attenuation volume	14.9 m ³
Peak water level	80.166 mOD
Half drain time	417 mins

Figure 5 -Catchment 3 Results

Summary

The new development at 53 Fitzroy Park will utilise SuDS principles to dispose of surface water via infiltration to the existing made ground overlaying the site. The proposal mimics natural Greenfield site pattern.

Extensive infiltration rates were proven to be good to average.

APPENDIX A

Design Drawing

• L2368-C-52-700 – Storm Water Drainage Layout and Details.

Sketches

• L2368-SK-C-010 – Catchment Areas

Reference Plans

• Landscape Masterplan

Please note: Landscape Masterplan is provided for general reference only, however it has not been updated to reflect SuDS proposed within this Technical Note. The Landscape Masterplan will be updated once SuDS design is approved by the council.

APPENDIX B

Infiltration test results and associated plan showing test locations.

The 'soil infiltration rate' is calculated using two selected water levels (BRE DG 365: 2016 "Soakaway design")

No:

The 'soil infiltration rate' is calculated using two selected water levels (BRE DG 365: 2016 "Soakaway design")

The 'soil infiltration rate' is calculated using two selected water levels (BRE DG 365: 2016 "Soakaway design")

53 Fitzroy Park, Highgate, London N6 6JA

Greenfield Runoff Rate Calculations.

Calculated by:	Vlad M
Site name:	53 Fitzroy
Site location:	53 Fitzroy

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Greenfield runoff estimation for sites

www.uksuds.com | Greenfield runoff tool

Site coordinates

Latitude:	51.56725° N
Longitude:	0.15759° W
Reference:	6426999
Date:	2019-04-10T16:17:56

Methodology FEH		Statistical					
Site characteristics							
Total site area (ha)			0.1283				
Methodology							
Qmed estimation meth	nod	Calculate from BFI and SAAR					
BFI and SPR estimation method		Specify BFI manually					
HOST class		N/A					
BFI / BFIHOST		0.508					
Qmed (I/s)		NaN					
Qbar / Qmed Conversion Factor		1.14					

Hydrological characteristics	Default	Edited
SAAR (mm)	659	676
Hydrological region	6	6
Growth curve factor: 1 year	0.85	0.85

2.3

3.19

2.3

3.19

Growth curve factor: 30 year

Growth curve factor: 100 year

L

1

1

Notes:

(1) Is Q_{BAR} < 2.0 l/s/ha?

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consents are usually set at 5.0l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set in which case blockage work must be addressed by using appropriate drainage elements (3) Is SPR/SPRHOST \leq 0.3?

Greenfield runoff ratesDefaultEditedQbar (l/s)NaN0.381 in 1 year (l/s)NaN0.321 in 30 years (l/s)NaN0.871 in 100 years (l/s)NaN1.21

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

MicroDrainage Calculations.

Catchment 1 and Catchment 2 cascade model

Catchment 1 – Permeable car park (modelled as flow-controlled porous paving). Catchment 2 – Bioretention (modelled as Dry Swale).

1-in-30 year (+40% Climate Change) results are presented first, followed by 1-in-100year (+40% Climate Change) results.

Pringuer-James Consulting Engineers	Limited	Page 1
Overseas House		
Elm Grove		
London SW19 4HE		Micro
Date 10/04/2019 17:32	Designed by vlad	Drainago
File cascade.CASX	Checked by	Diginarie
Innovyze	Source Control 2018.1.1	

Cascade Summary of Results for Permeable car park.SRCX

Upstream Outflow To Overflow To Structures

(None) bioretention.SRCX (None)

Half Drain Time : 177 minutes.

	Stor	orm Max Max Max Max		Storm		Max	Max	Status	
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	83.042	0.142	0.0	0.3	0.3	4.3	ОК
30	min	Summer	83.081	0.181	0.0	0.4	0.4	5.4	O K
60	min	Summer	83.110	0.210	0.0	0.4	0.4	6.3	O K
120	min	Summer	83.148	0.248	0.0	0.4	0.4	7.4	O K
180	min	Summer	83.155	0.255	0.0	0.4	0.4	7.6	O K
240	min	Summer	83.154	0.254	0.0	0.4	0.4	7.6	ΟK
360	min	Summer	83.140	0.240	0.0	0.4	0.4	7.2	O K
480	min	Summer	83.124	0.224	0.0	0.4	0.4	6.7	O K
600	min	Summer	83.109	0.209	0.0	0.4	0.4	6.3	O K
720	min	Summer	83.095	0.195	0.0	0.4	0.4	5.8	O K
960	min	Summer	83.068	0.168	0.0	0.4	0.4	5.0	O K
1440	min	Summer	83.023	0.123	0.0	0.3	0.3	3.7	ΟK
2160	min	Summer	82.974	0.074	0.0	0.3	0.3	2.2	ΟK
2880	min	Summer	82.941	0.041	0.0	0.3	0.3	1.2	O K
4320	min	Summer	82.906	0.006	0.0	0.3	0.3	0.2	O K
5760	min	Summer	82.900	0.000	0.0	0.2	0.2	0.0	O K
7200	min	Summer	82.900	0.000	0.0	0.0	0.0	0.0	O K
8640	min	Summer	82.900	0.000	0.0	0.0	0.0	0.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	136 640	0 0	4 6	25
30	min	Summer	86.744	0.0	6.0	38
60	min	Summer	52.822	0.0	7.4	66
120	min	Summer	33.733	0.0	9.6	122
180	min	Summer	25.405	0.0	10.9	164
240	min	Summer	20.549	0.0	11.7	196
360	min	Summer	14.971	0.0	12.9	260
480	min	Summer	11.839	0.0	13.6	328
600	min	Summer	9.827	0.0	14.1	396
720	min	Summer	8.420	0.0	14.5	464
960	min	Summer	6.577	0.0	15.1	598
1440	min	Summer	4.629	0.0	15.8	856
2160	min	Summer	3.267	0.0	16.7	1220
2880	min	Summer	2.563	0.0	17.4	1568
4320	min	Summer	1.842	0.0	18.5	2248
5760	min	Summer	1.470	0.0	19.5	0
7200	min	Summer	-0.012	0.0	0.0	0
8640	min	Summer	-0.010	0.0	0.0	0

Pringuer-James Consulting Engineers	Limited	Page 2
Overseas House		
Elm Grove		
London SW19 4HE		Micro
Date 10/04/2019 17:32	Designed by vlad	Dcainago
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	

Cascade Summary of Results for Permeable car park.SRCX $% \left({{{\rm{SRCX}}}} \right)$

	Stori Event	m t	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control 2 (1/s)	Max E Outflow (1/s)	Max Volume (m³)	Status
15	min N	Winter	83.042	0.142	0.0	0.3	0.3	4.3	ОК
30	min N	Winter	83.080	0.180	0.0	0.4	0.4	5.4	ΟK
60	min N	Winter	83.111	0.211	0.0	0.4	0.4	6.3	ΟK
120	min N	Winter	83.149	0.249	0.0	0.4	0.4	7.5	O K
180	min N	Winter	83.157	0.257	0.0	0.4	0.4	7.7	O K
240	min N	Winter	83.154	0.254	0.0	0.4	0.4	7.6	ΟK
360	min N	Winter	83.138	0.238	0.0	0.4	0.4	7.1	ΟK
480	min N	Winter	83.118	0.218	0.0	0.4	0.4	6.5	O K
600	min N	Winter	83.098	0.198	0.0	0.4	0.4	5.9	ΟK
720	min N	Winter	83.078	0.178	0.0	0.4	0.4	5.3	ΟK
960	min N	Winter	83.042	0.142	0.0	0.3	0.3	4.3	O K
1440	min N	Winter	82.984	0.084	0.0	0.3	0.3	2.5	ΟK
2160	min N	Winter	82.928	0.028	0.0	0.3	0.3	0.8	ΟK
2880	min N	Winter	82.900	0.000	0.0	0.3	0.3	0.0	O K
4320	min N	Winter	82.900	0.000	0.0	0.2	0.2	0.0	ΟK
5760	min N	Winter	82.900	0.000	0.0	0.2	0.2	0.0	O K
7200	min N	Winter	82.900	0.000	0.0	0.0	0.0	0.0	ΟK
8640	min N	Winter	82.900	0.000	0.0	0.0	0.0	0.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Eve	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			106 640			0.5
15	mın	Winter	136.640	0.0	4.6	25
30	min	Winter	86.744	0.0	6.0	38
60	min	Winter	52.822	0.0	7.4	66
120	min	Winter	33.733	0.0	9.6	120
180	min	Winter	25.405	0.0	10.9	174
240	min	Winter	20.549	0.0	11.8	200
360	min	Winter	14.971	0.0	12.9	276
480	min	Winter	11.839	0.0	13.6	352
600	min	Winter	9.827	0.0	14.1	426
720	min	Winter	8.420	0.0	14.5	498
960	min	Winter	6.577	0.0	15.1	636
1440	min	Winter	4.629	0.0	15.8	896
2160	min	Winter	3.267	0.0	16.7	1240
2880	min	Winter	2.563	0.0	17.4	1476
4320	min	Winter	1.842	0.0	18.5	0
5760	min	Winter	1.470	0.0	19.5	0
7200	min	Winter	-0.012	0.0	0.0	0
8640	min	Winter	-0.010	0.0	0.0	0

Pringuer-James Consulting Engi	neers Limited		Page 3
Overseas House			
Elm Grove			
London SW19 4HE			Mirro
Date 10/04/2019 17:32	Designed by vlad		Dcainago
File cascade.CASX	Checked by		Diamage
Innovyze	Source Control 20	18.1.1	
Cascade Rainf	all Details for Permeabl	e car park.SRCX	
Rainfal	ll Model	FEH	

Return Period (years)						30
FEH Rainfall Version						2013
Site Location	GB	527791	186978	ΤQ	27791	86978
Data Type						Point
Summer Storms						Yes
Winter Storms						Yes
Cv (Summer)						1.000
Cv (Winter)						1.000
Shortest Storm (mins)						15
Longest Storm (mins)						8640
Climate Change %						+40

Time Area Diagram

Total Area (ha) 0.015

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.005	4	8	0.005	8	12	0.005

Pringuer-James Consulting Enginee	rs Limited	Page 4
Overseas House		
Elm Grove		
London SW19 4HE		Micro
Date 10/04/2019 17:32	Designed by vlad	
File cascade.CASX	Checked by	Diamaye
Innovyze	Source Control 2018.1.1	
Cascade Model I	Details for Permeable car par	ck.SRCX
Storage is	Online Cover Level (m) 83.3	00
<u>Po1</u>	cous Car Park Structure	
Infiltration	Coefficient Base (m/hr) 0.0	0000
Memb	rane Percolation (mm/hr)	1000
	Max Percolation (l/s)	27.8
	Safety Factor	2.0
	Porosity	0.30
	Invert Level (m) 82	.900
	Width (m)	10.0
	Length (m)	10.0
	Slope (1:X)	0.0
	Depression Storage (mm)	5
	Evaporation (mm/day)	3
	Membrane Depth (m)	0
01	rifice Outflow Control	

Diameter (m) 0.017 Discharge Coefficient 0.600 Invert Level (m) 82.700

Pringuer-James Consulting Engineers	Limited	Page 1
Overseas House		
Elm Grove		
London SW19 4HE		Mirro
Date 10/04/2019 17:32	Designed by vlad	Drainago
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	

Cascade Summary of Results for bioretention.SRCX

Upstream	Outflow To Overflow T	0
Structures		

Permeable car park.SRCX (None) (None)

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Volume	Status
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	79.903	0.143	0.5	7.0	ОК
30	min	Summer	79.949	0.189	0.5	9.2	ОК
60	min	Summer	79.996	0.236	0.5	11.5	ОК
120	min	Summer	80.066	0.306	0.5	14.9	ОК
180	min	Summer	80.104	0.344	0.5	16.8	ОК
240	min	Summer	80.126	0.366	0.5	17.9	ОК
360	min	Summer	80.147	0.387	0.5	18.9	ОК
480	min	Summer	80.149	0.389	0.5	19.0	ОК
600	min	Summer	80.143	0.383	0.5	18.8	ОК
720	min	Summer	80.133	0.373	0.5	18.2	ОК
960	min	Summer	80.112	0.352	0.5	17.2	ОК
1440	min	Summer	80.075	0.315	0.5	15.4	ОК
2160	min	Summer	80.030	0.270	0.5	13.2	ОК
2880	min	Summer	79.991	0.231	0.5	11.3	ОК
4320	min	Summer	79.916	0.156	0.5	7.6	ОК
5760	min	Summer	79.862	0.102	0.5	5.0	ΟK
7200	min	Summer	79.760	0.000	0.0	0.0	ΟK
8640	min	Summer	79.760	0.000	0.0	0.0	ОК

Half Drain Time : 316 minutes.

	Storm		Rain	Flooded	Time-Peak
	Ever	nt	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Cummor	126 640	0 0	75
10		Summer	130.040	0.0	73
30	min	Summer	86./44	0.0	89
60	min	Summer	52.822	0.0	110
120	min	Summer	33.733	0.0	156
180	min	Summer	25.405	0.0	204
240	min	Summer	20.549	0.0	258
360	min	Summer	14.971	0.0	372
480	min	Summer	11.839	0.0	488
600	min	Summer	9.827	0.0	602
720	min	Summer	8.420	0.0	684
960	min	Summer	6.577	0.0	786
1440	min	Summer	4.629	0.0	1024
2160	min	Summer	3.267	0.0	1408
2880	min	Summer	2.563	0.0	1796
4320	min	Summer	1.842	0.0	2428
5760	min	Summer	1.470	0.0	3120
7200	min	Summer	-0.012	0.0	0
8640	min	Summer	-0.010	0.0	0

Pringuer-James Consulting Engineers	Limited	Page 2
Overseas House		
Elm Grove		
London SW19 4HE		Mirro
Date 10/04/2019 17:32	Designed by vlad	Drainago
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	

Cascade Summary of Results for bioretention.SRCX

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
15	min	Winter	79.903	0.143	0.5	7.0	ОК
30	min	Winter	79.949	0.189	0.5	9.2	ОК
60	min	Winter	79.995	0.235	0.5	11.5	ОК
120	min	Winter	80.065	0.305	0.5	14.9	ОК
180	min	Winter	80.103	0.343	0.5	16.8	ΟK
240	min	Winter	80.126	0.366	0.5	17.9	ОК
360	min	Winter	80.147	0.387	0.5	18.9	ОК
480	min	Winter	80.151	0.391	0.5	19.1	ΟK
600	min	Winter	80.146	0.386	0.5	18.9	ΟK
720	min	Winter	80.135	0.375	0.5	18.4	ΟK
960	min	Winter	80.110	0.350	0.5	17.1	O K
1440	min	Winter	80.064	0.304	0.5	14.9	ΟK
2160	min	Winter	79.998	0.238	0.5	11.6	ΟK
2880	min	Winter	79.925	0.165	0.5	8.1	ОК
4320	min	Winter	79.829	0.069	0.4	3.4	ΟK
5760	min	Winter	79.805	0.045	0.4	2.2	ΟK
7200	min	Winter	79.760	0.000	0.0	0.0	ОК
8640	min	Winter	79.760	0.000	0.0	0.0	ОК

	Storm		Rain	Flooded	Time-Peak
	Ever	nt	(mm/hr)	Volume	(mins)
				(m³)	
1 5		W. i. a to a second	126 640	0 0	7 5
15	min	winter	136.640	0.0	75
30	min	Winter	86.744	0.0	89
60	min	Winter	52.822	0.0	112
120	min	Winter	33.733	0.0	156
180	min	Winter	25.405	0.0	204
240	min	Winter	20.549	0.0	256
360	min	Winter	14.971	0.0	366
480	min	Winter	11.839	0.0	478
600	min	Winter	9.827	0.0	590
720	min	Winter	8.420	0.0	692
960	min	Winter	6.577	0.0	798
1440	min	Winter	4.629	0.0	1072
2160	min	Winter	3.267	0.0	1460
2880	min	Winter	2.563	0.0	1768
4320	min	Winter	1.842	0.0	2400
5760	min	Winter	1.470	0.0	2968
7200	min	Winter	-0.012	0.0	0
8640	min	Winter	-0.010	0.0	0

Pringuer-James Consulting Engineers	Limited	Page 3
Overseas House		
Elm Grove		
London SW19 4HE		Micro
Date 10/04/2019 17:32	Designed by vlad	Drainago
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	

Cascade Rainfall Details for bioretention.SRCX

		FEH
		30
		2013
GB 527791	186978 TQ	27791 86978
		Point
		Yes
		Yes
		1.000
		1.000
		15
		8640
		+40
G	B 527791	в 527791 186978 т <u>о</u>

Time Area Diagram

Total Area (ha) 0.010

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	То:	(ha)	From:	To:	(ha)	From:	То:	(ha)
0	4	0.002	8	12	0.002	16	20	0.002
4	8	0.002	12	16	0.002			

Green Roof

Area (m³) 142 Evaporation (mm/day)3Depression Storage (mm)5Decay Coefficient 0.050

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.002580	40	44	0.000349	80	84	0.000047
4	8	0.002113	44	48	0.000286	84	88	0.000039
8	12	0.001730	48	52	0.000234	88	92	0.000032
12	16	0.001416	52	56	0.000192	92	96	0.000026
16	20	0.001159	56	60	0.000157	96	100	0.000021
20	24	0.000949	60	64	0.000128	100	104	0.000017
24	28	0.000777	64	68	0.000105	104	108	0.000014
28	32	0.000636	68	72	0.000086	108	112	0.000012
32	36	0.000521	72	76	0.000071	112	116	0.000010
36	40	0.000427	76	80	0.000058	116	120	0.00008

Pringuer-James Consulting Engineer	s Limited	Page 4
Overseas House		
Elm Grove		
London SW19 4HE		Micro
Date 10/04/2019 17:32	Designed by vlad	Desinado
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	
Cascade Model	Details for bioretention.SRCX	
Storage is a	Online Cover Level (m) 80.200	
Ē	ry Swale Structure	
Infiltration	Coefficient Base (m/hr) 0.02956	
Infiltration	Coefficient Side (m/hr) 0.02956	
	Safety Factor 1.0	
	Porosity 1.00	
	Invert Level (m) 79.760	
	Trench Height (m) 0.400	
	Trench Width (m) 3.6	
The second	Trench Length (m) 14.3	
Irench I	Turnet Development 0.02956	
	Side Slope (1.X) 1.0	
	Side Sidpe $(1:X)$ 1.0	
	Cap Volume Depth (m) 0.00	
Сар	Infiltration Depth (m) 0.000	

1-in-100 year + 40% Climate Change Cascade Model Results
Permeable Car Park
Bioretention

Pringuer-James Consulting Engineers	Limited	Page 1
Overseas House		
Elm Grove		
London SW19 4HE		Mirro
Date 10/04/2019 17:06	Designed by vlad	Dcainago
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	

Cascade Summary of Results for Permeable car park.SRCX

Upstream Outflow To Overflow To Structures

(None) bioretention.SRCX (None)

Half Drain Time : 242 minutes.

Stor	m	Max	Max	Max	Max	Max	Max	Status
Even	it	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(l/s)	(1/s)	(m³)	
min	Summer	83.097	0.197	0.0	0.4	0.4	5.9	O K
min	Summer	83.151	0.251	0.0	0.4	0.4	7.5	O K
min	Summer	83.196	0.296	0.0	0.4	0.4	8.9	O K
min	Summer	83.255	0.355	0.0	0.4	0.4	10.7	O K
min	Summer	83.277	0.377	0.0	0.5	0.5	11.3	O K
min	Summer	83.283	0.383	0.0	0.5	0.5	11.5	O K
min	Summer	83.276	0.376	0.0	0.5	0.5	11.3	O K
min	Summer	83.260	0.360	0.0	0.4	0.4	10.8	O K
min	Summer	83.241	0.341	0.0	0.4	0.4	10.2	O K
min	Summer	83.224	0.324	0.0	0.4	0.4	9.7	O K
min	Summer	83.190	0.290	0.0	0.4	0.4	8.7	O K
min	Summer	83.131	0.231	0.0	0.4	0.4	6.9	O K
min	Summer	83.062	0.162	0.0	0.4	0.4	4.8	O K
min	Summer	83.010	0.110	0.0	0.3	0.3	3.3	O K
min	Summer	82.945	0.045	0.0	0.3	0.3	1.3	O K
min	Summer	82.911	0.011	0.0	0.3	0.3	0.3	O K
min	Summer	82.900	0.000	0.0	0.0	0.0	0.0	O K
min	Summer	82.900	0.000	0.0	0.0	0.0	0.0	O K
	Stor Even min min min min min min min min min mi	Storm Event anin Summer min Summer	StormMaxEventLevelkevelkevelkevelkevelkevel83.097kevel83.151kevel83.196kevel83.297kevel83.283kevel83.283kevel83.283kevel83.283kevel83.284kevel83.284kevel83.284kevel83.284kevel83.284kevel83.284kevel83.284kevel83.190kevel83.191kevel83.012kevel83.012kevel83.012kevel83.012kevel83.012kevel83.012kevel82.945kevel82.901kevel82.901	StormMaxMaxLevelLevelDepthKevelLevelDepthminSummerSunov0.197minSummer83.0970.296minSummer83.1950.296minSummer83.2950.355minSummer83.2770.377minSummer83.2830.383minSummer83.2640.361minSummer83.2410.3241minSummer83.1910.231minSummer83.1010.231minSummer83.1010.211minSummer83.0100.110minSummer82.9110.011minSummer82.9010.001	StormMaxMaxMaxLevelDeptInfiltrationLevelLevelOrgetInfiltrationMaxSanor0.109(1/s)minSumme83.0070.1070.000minSumme83.1050.2060.000minSumme83.2050.3550.000minSumme83.2770.3770.000minSumme83.2070.3760.000minSumme83.2060.3600.000minSumme83.2010.31410.000minSumme83.2010.32410.000minSumme83.1210.32410.000minSumme83.0100.2310.000minSumme83.0100.1100.000minSumme83.0100.1100.000minSumme82.9110.0110.000minSumme82.9000.0000.000minSumme82.9000.0000.000minSumme82.9000.0000.000	StormMaxMaxMaxMaxLayerDaysOnfiltrationControlMinSummer83.0070.1070.00.00.4MinSummer83.0150.2510.00.00.4MinSummer83.1050.2060.00.00.4MinSummer83.1050.2060.00.00.4MinSummer83.2050.3550.00.00.04MinSummer83.2070.3770.00.00.5MinSummer83.2070.3760.00.00.5MinSummer83.2060.3630.00.00.04MinSummer83.2040.3240.00.00.4MinSummer83.2040.3240.00.00.4MinSummer83.2040.3240.00.00.4MinSummer83.1010.2340.00.00.4MinSummer83.1010.2340.00.00.4MinSummer83.0120.1100.0100.04MinSummer83.0100.1100.00.00.3MinSummer82.9450.0450.00.00.3MinSummer82.9100.0110.000.3MinSummer82.9000.0000.00.3MinSummer82.9000.0000.0.00.0MinSummer82.9000.0000.0.00.0	Storm EventMax hay hevenMax perpheMax perpheMax perpheMax perpheMax perpheMax perpheMay hevenLeven perpheDepth perpheInfiltration perpheDepth perphe	Storm EventMax LevelMax PeterMax PeterMax InfiltrationMax ControlMax SMax PeterMax PeterninSummer83.0070.1970.00.00.0.400.45.9ninSummer83.0150.2510.00.00.0.400.45.9ninSummer83.1050.2960.00.00.0.400.47.5ninSummer83.2050.3550.00.00.0.400.410.7ninSummer83.2070.3770.00.00.0.5011.3ninSummer83.2080.3080.00.00.0.5011.5ninSummer83.2080.3060.0.00.0.400.10.410.2ninSummer83.2080.3010.00.00.0.400.11.3ninSummer83.2080.3240.00.00.0.400.11.3ninSummer83.2040.3240.00.00.0.400.10.40.0.1ninSummer83.1310.2310.00.00.0.400.40.40.7ninSummer83.0100.1010.00.00.0.400.40.40.7ninSummer83.0100.2310.0100.0.400.40.40.4ninSummer83.0100.1010.0010.0.300.0.30.30.3nin

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	181.216	0.0	6.3	25
30	min	Summer	116.116	0.0	8.2	39
60	min	Summer	70.742	0.0	10.1	66
120	min	Summer	45.409	0.0	13.1	124
180	min	Summer	34.547	0.0	15.0	180
240	min	Summer	28.189	0.0	16.3	214
360	min	Summer	20.799	0.0	18.1	276
480	min	Summer	16.553	0.0	19.2	342
600	min	Summer	13.782	0.0	20.0	412
720	min	Summer	11.825	0.0	20.6	480
960	min	Summer	9.233	0.0	21.4	616
1440	min	Summer	6.460	0.0	22.5	882
2160	min	Summer	4.492	0.0	23.3	1260
2880	min	Summer	3.471	0.0	23.9	1624
4320	min	Summer	2.424	0.0	24.7	2336
5760	min	Summer	1.887	0.0	25.5	3000
7200	min	Summer	-0.012	0.0	0.0	0
8640	min	Summer	-0.010	0.0	0.0	0

Pringuer-James Consulting Engineers	Limited	Page 2
Overseas House		
Elm Grove		
London SW19 4HE		Micro
Date 10/04/2019 17:06	Designed by vlad	Dcainago
File cascade.CASX	Checked by	Diginarie
Innovyze	Source Control 2018.1.1	

Cascade Summary of Results for Permeable car park.SRCX $% \left({{{\rm{SRCX}}}} \right)$

	Storn Even	m t	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min N	Winter	83.097	0.197	0.0	0.4	0.4	5.9	ОК
30	min I	Winter	83.152	0.252	0.0	0.4	0.4	7.6	O K
60	min N	Winter	83.196	0.296	0.0	0.4	0.4	8.9	O K
120	min N	Winter	83.257	0.357	0.0	0.4	0.4	10.7	O K
180	min N	Winter	83.281	0.381	0.0	0.5	0.5	11.4	ΟK
240	min N	Winter	83.286	0.386	0.0	0.5	0.5	11.6	O K
360	min N	Winter	83.277	0.377	0.0	0.5	0.5	11.3	ΟK
480	min N	Winter	83.258	0.358	0.0	0.4	0.4	10.7	ΟK
600	min N	Winter	83.233	0.333	0.0	0.4	0.4	10.0	ΟK
720	min N	Winter	83.211	0.311	0.0	0.4	0.4	9.3	ΟK
960	min N	Winter	83.167	0.267	0.0	0.4	0.4	8.0	O K
1440	min N	Winter	83.091	0.191	0.0	0.4	0.4	5.7	O K
2160	min N	Winter	83.006	0.106	0.0	0.3	0.3	3.2	ΟK
2880	min N	Winter	82.949	0.049	0.0	0.3	0.3	1.5	ΟK
4320	min M	Winter	82.900	0.000	0.0	0.3	0.3	0.0	O K
5760	min N	Winter	82.900	0.000	0.0	0.2	0.2	0.0	ΟK
7200	min N	Winter	82.900	0.000	0.0	0.0	0.0	0.0	O K
8640	min N	Winter	82.900	0.000	0.0	0.0	0.0	0.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Winter	181 216	0 0	63	25
30	min	Winter	116 116	0.0	8.2	29
60	min	Winter	70 742	0.0	10 1	55
120	min	Winter	15 109	0.0	13 1	122
100		Winter	43.409	0.0	15.1	170
100	m±n	winter	54.547	0.0	15.0	1/8
240	min	Winter	28.189	0.0	16.3	230
360	min	Winter	20.799	0.0	18.1	286
480	min	Winter	16.553	0.0	19.2	364
600	min	Winter	13.782	0.0	20.0	440
720	min	Winter	11.825	0.0	20.6	514
960	min	Winter	9.233	0.0	21.4	660
1440	min	Winter	6.460	0.0	22.4	932
2160	min	Winter	4.492	0.0	23.3	1316
2880	min	Winter	3.471	0.0	23.9	1668
4320	min	Winter	2.424	0.0	24.8	0
5760	min	Winter	1.887	0.0	25.5	0
7200	min	Winter	-0.012	0.0	0.0	0
8640	min	Winter	-0.010	0.0	0.0	0

Pringuer-James Consulting Engineers	Limited	Page 3
Overseas House Elm Grove		
London SW19 4HE		Micro
Date 10/04/2019 17:06	Designed by vlad	Drainago
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	
Cascade Rainfall De	tails for Permeable car park.SRCX	
Rainfall Mode	el FEH	
Return Period (years	5) 100	
FEH Rainfall Versio	on 2013	
Site Locatio	on GB 527791 186978 TQ 27791 86978	
Data Typ	Point	
Summer Storm	ns Yes	
Winter Storm	ns Yes	

Time Area Diagram

Total Area (ha) 0.015

Time (mins) Area Time (mins) Area Time (mins) Area

To: (ha) From: To: (ha) From: To: (ha)

4 0.005 4 8 0.005 8 12 0.005

1.000

1.000

8640

+40

15

Cv (Summer)

Cv (Winter)

Shortest Storm (mins)

Longest Storm (mins)

From:

0

Climate Change %

©1982-2018 Innovyze

Pringuer-James Consulting Eng	ineers Limited	Page 4
Overseas House		
Elm Grove		
London SW19 4HE		Mirro
Date 10/04/2019 17:06	Designed by vlad	Drainago
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	
Cascade Moo	del Details for Permeable car park.SR	<u>.cx</u>
Storag	e is Online Cover Level (m) 83.300	
	Porous Car Park Structure	
Infiltra	tion Coefficient Base (m/hr) 0.00000	
	Membrane Percolation (mm/hr) 1000	
	Max Percolation (1/s) 27.8	
	Safety Factor 2.0	
	Porosity 0.30	
	Invert Level (m) 82.900	
	Width (m) 10.0	
	Length (m) 10.0	
	Depression Storage (mm) 5	
	Evaporation (mm/day) 3	
	Membrane Depth (m) 0	
	Orifice Outflow Control	

Diameter (m) 0.017 Discharge Coefficient 0.600 Invert Level (m) 82.700

Pringuer-James Consulting Engineers	Limited	Page 1
Overseas House		
Elm Grove		
London SW19 4HE		Micro
Date 10/04/2019 17:05	Designed by vlad	Drainago
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	

Cascade Summary of Results for bioretention.SRCX

Upstream	Outflow	То	Overflow	То
Structures				

Permeable car park.SRCX (None) (None)

	Storm		Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	79.958	0.198	0.5	9.7	ОК
30	min	Summer	80.022	0.262	0.5	12.8	ОК
60	min	Summer	80.085	0.325	0.5	15.9	ОК
120	min	Summer	80.180	0.420	0.5	20.6	ОК
180	min	Summer	80.202	0.442	0.6	23.4	FLOOD
240	min	Summer	80.204	0.444	0.6	25.3	FLOOD
360	min	Summer	80.206	0.446	0.6	27.5	FLOOD
480	min	Summer	80.207	0.447	0.6	28.4	FLOOD
600	min	Summer	80.207	0.447	0.6	28.6	FLOOD
720	min	Summer	80.207	0.447	0.6	28.4	FLOOD
960	min	Summer	80.205	0.445	0.6	27.1	FLOOD
1440	min	Summer	80.203	0.443	0.6	24.2	FLOOD
2160	min	Summer	80.187	0.427	0.6	20.9	ОК
2880	min	Summer	80.135	0.375	0.5	18.4	ОК
4320	min	Summer	80.046	0.286	0.5	14.0	ОК
5760	min	Summer	79.963	0.203	0.5	9.9	ОК
7200	min	Summer	79.760	0.000	0.0	0.0	ОК
8640	min	Summer	79.760	0.000	0.0	0.0	ОК

Half Drain Time : 453 minutes.

	Storm		Rain	Flooded	Time-Peak
	Ever	nt	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	181 216	0 0	82
30	min	Summor	116 116	0.0	96
50		German	70 740	0.0	110
60	min	Summer	/0./42	0.0	118
120	min	Summer	45.409	0.0	164
180	min	Summer	34.547	1.8	212
240	min	Summer	28.189	3.7	266
360	min	Summer	20.799	5.8	380
480	min	Summer	16.553	6.8	496
600	min	Summer	13.782	7.0	612
720	min	Summer	11.825	6.7	728
960	min	Summer	9.233	5.4	954
1440	min	Summer	6.460	2.5	1138
2160	min	Summer	4.492	0.0	1484
2880	min	Summer	3.471	0.0	1872
4320	min	Summer	2.424	0.0	2636
5760	min	Summer	1.887	0.0	3232
7200	min	Summer	-0.012	0.0	0
8640	min	Summer	-0.010	0.0	0

Pringuer-James Consulting Engineers	Limited	Page 2
Overseas House		
Elm Grove		
London SW19 4HE		Micro
Date 10/04/2019 17:05	Designed by vlad	Drainago
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	

Cascade Summary of Results for bioretention.SRCX Storm Max Max Max Max Status Level Depth Infiltration Volume Event (m) (m) (1/s)(m³) 15 min Winter 79.958 0.198 0.5 9.7 ОК 30 min Winter 80.022 0.262 0.5 12.8 O K 60 min Winter 80.084 0.324 0.5 15.9 ΟK 120 min Winter 80.179 0.419 0.5 20.6 ОК 180 min Winter 80.202 0.442 0.6 23.4 FLOOD 240 min Winter 80.204 0.444 25.3 FLOOD 0.6 360 min Winter 80.206 0.446 27.5 FLOOD 0.6 480 min Winter 80.207 0.447 0.6 28.5 FLOOD 600 min Winter 80.207 0.447 0.6 28.7 FLOOD 0.6 720 min Winter 80.207 0.447 28.5 FLOOD 960 min Winter 80.206 0.446 0.6 27.3 FLOOD 1440 min Winter 80.202 0.442 0.6 24.0 FLOOD 2160 min Winter 80.166 0.406 0.5 19.9 ОК 2880 min Winter 80.090 0.330 0.5 16.1 ОК

4320 min Winter 79.943 0.183

5760 min Winter 79.845 0.085

7200 min Winter 79.760 0.000

8640 min Winter 79.760 0.000

		Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)			
	15	min	Winter	181.216	0.0	82			
	30	min	Winter	116.116	0.0	96			
	60	min	Winter	70.742	0.0	118			
	120	min	Winter	45.409	0.0	164			
	180	min	Winter	34.547	1.8	212			
	240	min	Winter	28.189	3.7	264			
	360	min	Winter	20.799	5.9	374			
	480	min	Winter	16.553	6.8	488			
	600	min	Winter	13.782	7.1	602	√ −−−−¬		
	720	min	Winter	11.825	6.9	714			
	960	min	Winter	9.233	5.7	930			
1	440	min	Winter	6.460	2.3	1152	Flooding occu	irs within	
2	160	min	Winter	4.492	0.0	1560	detention bas	in which is	
2	880	min	Winter	3.471	0.0	1968	117m° in size,	, and	
4	320	min	Winter	2.424	0.0	2600	equates to 60	min of	
5	760	min	Winter	1.887	0.0	3232	ponding.		
72	200	min	Winter	-0.012	0.0	0			
8	640	min	Winter	-0.010	0.0	0			

0.5

0.4

0.0

0.0

ОК

ОК

ОК

ОК

8.9

4.1

0.0

0.0

Pringuer-James Consulting Engineers	Limited	Page 3
Overseas House		
Elm Grove		
London SW19 4HE		Mirro
Date 10/04/2019 17:05	Designed by vlad	Dcainago
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	

Cascade Rainfall Details for bioretention.SRCX

					FEH
					100
					2013
GB	527791	186978	ΤQ	27791	86978
					Point
					Yes
					Yes
					1.000
					1.000
					15
					8640
					+40
	GB	GB 527791	GB 527791 186978	GB 527791 186978 TQ	GB 527791 186978 TQ 27791

Time Area Diagram

Total Area (ha) 0.010

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	То:	(ha)	From:	To:	(ha)	From:	То:	(ha)
0	4	0.002	8	12	0.002	16	20	0.002
4	8	0.002	12	16	0.002			

Green Roof

Area (m³) 142 Evaporation (mm/day)3Depression Storage (mm)5Decay Coefficient 0.050

Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ba)	Time From:	(mins) To:	Area (ha)
110	10.	(114)	1 1 0	10.	(114)		10.	(114)
0	4	0.002580	40	44	0.000349	80	84	0.000047
4	8	0.002113	44	48	0.000286	84	88	0.000039
8	12	0.001730	48	52	0.000234	88	92	0.000032
12	16	0.001416	52	56	0.000192	92	96	0.000026
16	20	0.001159	56	60	0.000157	96	100	0.000021
20	24	0.000949	60	64	0.000128	100	104	0.000017
24	28	0.000777	64	68	0.000105	104	108	0.000014
28	32	0.000636	68	72	0.000086	108	112	0.000012
32	36	0.000521	72	76	0.000071	112	116	0.000010
36	40	0.000427	76	80	0.000058	116	120	0.00008

Pringuer-James Consulting Engineers	Limited	Page 4
Overseas House		
Elm Grove		
London SW19 4HE		Micro
Date 10/04/2019 17:05	Designed by vlad	Desinado
File cascade.CASX	Checked by	Diamage
Innovyze	Source Control 2018.1.1	
Cascade Model D	Details for bioretention.SRCX	
Storage is On	line Cover Level (m) 80.200	
Dry	Swale Structure	
Infiltration Co	efficient Base (m/hr) 0.02956	
Infiltration Co	efficient Side (m/hr) 0.02956	
	Safety Factor 1.0	
	Porosity 1.00	
	Invert Level (m) 79.760	
	Trench Height (m) 0.400	
	Trench Width (m) 3.6	
	Trench Length (m) 14.3	
Irench Inf.	Iltration Side (m/nr) 0.02956	
	Side Slope (1:X) 1.0	
	Side Stope $(1:X)$ 1.0	
	Cap Volume Depth $(m) = 0.000$	
Cap I	nfiltration Depth (m) 0.000	

Catchment 3: 1-in-100 year + 40% Climate Change Model Results

Pringuer-James	Consulting	Enginee	ers Limi	ted			Page 1			
Overseas House										
Elm Grove										
London SW19 4H	E						Micro			
Date 11/04/2019	14:09		Designe	d by vlad			Desinado			
File CATCHMENT	3.SRCX		Checked	by			Diamaye			
Innovyze			Source	 Control 2018	.1.1					
Sum	Summary of Results for 100 year Return Period (+40%)									
	Hal	f Drain	Time :	417 minutes	•					
	Storm	Max	Max	Max	Max	Status	•			
	Event	Level	Depth 1	Infiltration	Volume					
		(m)	(m)	(1/s)	(m³)					
15	min Summer	79.914	0.181	0.3	6.2	ΟK				
30	min Summer	79.962	0.229	0.3	7.8	ΟK				
60	min Summer	80.004	0.271	0.3	9.3	ΟK				
120	min Summer	80.064	0.331	0.3	11.3	O K	[
180	min Summer	80.094	0.361	0.3	12.3	O K				
240	min Summer	80.107	0.374	0.3	12.8	O K				
360	min Summer	80.110	0.377	0.3	12.9	O K				
480	min Summer	80.104	0.371	0.3	12.7	O K				
600	min Summer	80.094	0.361	0.3	12.3	ΟK				
720	min Summer	80.082	0.349	0.3	11.9	OK	-			
960	min Summer	80.058	0.325	0.3	11.1	OK	· ·			
1440	min Summer	80.013	0.280	0.3	9.6	OK				
2160	min Summer	79.956	0.223	0.3	/.6	OK				
2880	min Summer	79.911	0.1/8	0.3	6.L 2 0	OK				
4320	min Summer	79.040	0.115	0.2	2.9	OK				
5700	MIII SUMMEI	19.000	0.075	0.2	2.0	0 1				
	Stor	rm	Rain	Flooded Tir	ne-Peak					
	Ever	nt	(mm/hr)	Volume (mins)					
				(m³)						
	15 min	Summer	181.210	5 0.0	26					
	30 min	Summer	116.110	5 0 . 0	40					
	60 min	Summer	70.742	2 0.0	68					
	120 min	Summer	45.40	9 0.0	126					
	180 min	Summer	34.54	7 0.0	184					
	240 min	Summer	28.189	9 0.0	242					
	360 min	Summer	20.79	9 0.0	324					
	480 min	Summer	16.553	3 0.0	384					
	600 min	Summer	13.782	2 0.0	446					
	720 min	Summer	11.82	5 0.0	512					
	960 min	Summer	9.23	3 0.0	650					
	1440 min	Summer	6.460	0.0	920					
	2160 min	Summer	4.492	2 0.0	1320					
	2880 min	Summer	3.47	L U.U	1/00					
	4320 min 5760 min	Summer	2.424 1 997	± 0.0	2420 3072					
	5700 1111	Summer	T.00	, 0.0	5072					
©1982-2018 Innovvze										

Pringuer-James Consulting H	Engine	ers Limit	ed		Page 2				
Overseas House									
Elm Grove									
London SW19 4HE					Micco				
Date 11/04/2019 14:09		Designed	by vlad						
File CATCHMENT 3.SRCX		Checked b	- V		Diginga				
Innovyze		Source Co	ontrol 2018.	1.1					
		504100 00							
Summary of Results for 100 year Return Period (+40%)									
Storm	Max	Max	Max	Max	Status				
Event	Level	Depth In	nfiltration	Volume					
	(m)	(m)	(1/s)	(m³)					
7200 min Summer	79 73	3 0 000	0 0	0 0	O K				
8640 min Summer	79 73	3 0 000	0.0	0.0	O K				
10080 min Summer	79.73	3 0.000	0.0	0.0	0 K				
15 min Winter	79.93	6 0.203	0.3	7.0	O K				
30 min Winter	79.99	1 0.258	0.3	8.8	O K				
60 min Winter	80.03	9 0.306	0.3	10.5	ОК				
120 min Winter	80.109	9 0.376	0.3	12.9	ОК				
180 min Winter	80.143	3 0.410	0.3	14.1	O K				
240 min Winter	80.15	9 0.426	0.3	14.6	O K				
360 min Winter	80.16	6 0.433	0.3	14.9	O K				
480 min Winter	80.15	7 0.424	0.3	14.5	O K				
600 min Winter	80.14	6 0.413	0.3	14.1	O K				
720 min Winter	80.132	2 0.399	0.3	13.7	O K				
960 min Winter	80.100	0 0.367	0.3	12.6	O K				
1440 min Winter	80.038	8 0.305	0.3	10.4	OK				
2160 min Winter	79.95	9 0.226	0.3	/./	O K				
2880 min winter	/9.898	8 0.165	0.3	5.6	ΟK				
Stor	m	Rain	Flooded Tir	ne-Peak					
Even	t	(mm/hr)	Volume (mins)					
			(m³)						
7200 min	Summer	r = 0.012	0 0	Ο					
8640 min	Summer	r = 0.012	0.0	0					
10080 min	Summer	r = 0.0010	0.0	0					
15 min	Winter	r 181.216	0.0	2.6					
30 min	Winter	r 116.116	0.0	40					
60 min	Winter	r 70.742	0.0	68					
120 min	Winter	r 45.409	0.0	124					
180 min	Winter	r 34.547	0.0	182					
240 min	Winter	r 28.189	0.0	238					
360 min	Winter	r 20.799	0.0	346					
480 min	Winter	r 16.553	0.0	412					
600 min	Winter	r 13.782	0.0	472					
720 min	Winter	r 11.825	0.0	550					
960 min	Winter	r 9.233	0.0	702					
1440 min	Winter	r 6.460	0.0	996					
2160 min	Winter	r 4.492	0.0	1408 1700					
2000 min	WINCE	L 3.4/1	0.0	1/9Z					
©1982-2018 Innovvze									

Pringuer-James Consulting Engine	eers Limit	ed		Page 3					
Overseas House									
Elm Grove									
London SW19 4HE				Mirro					
Date 11/04/2019 14:09	Designed	by vlad		Drainag	D				
File CATCHMENT 3.SRCX	Checked b	ру		Diamay	C				
Innovyze	Source Co	ontrol 2018.	1.1						
Summary of Results f	for 100 ye	ar Return Pe	eriod (+	40%)					
Storm May	Maw	May	May	Statue					
Event Leve	l Depth I	nfiltration	Volume	blatus					
(m)	(m)	(1/s)	(m ³)						
		v v = v	. ,						
4320 min Winter 79.81	15 0.082	0.2	2.8	O K					
5760 min Winter 79.78	31 0.048	0.2	1.6	O K					
/200 min Winter 79.73	33 U.UUU 33 A AAA	0.0	0.0	OK					
10080 min Winter 79 73	33 0.000	0.0	0.0	O K					
	0.000	0.0	0.0	0 1					
Storm	Rain	Flooded Tim	ne-Peak						
Event	(mm/hr)	Volume (mins)						
		(m³)							
4320 min Winte	er 2.424	0.0	2468						
5760 min Winte	er 1.887	0.0	3000						
7200 min Winte	er -0.012	0.0	0						
8640 min Winte	er -0.010	0.0	0						
10080 min Winte	er -0.008	0.0	0						

©1982-2018 Innovyze

Pringuer-James Consulting Engine	ers Limited	Page 4					
Overseas House							
Elm Grove							
London SW19 4HE		Micco					
Date 11/04/2019 14:09	Designed by vlad						
File CATCHMENT 3.SRCX	Checked by	Digiliga					
Innovyze	Source Control 2018.1.1						
Ra	infall Details						
Rainfall Model	FEH						
Return Period (years)	100						
FEH Rainfall Versior	2013						
Site Location	n GB 527791 186978 TQ 27791 86978						
Data Type	e Point						
Summer Storms	S Yes						
Winter Storms	S Yes						
Cv (Summer)	0.750						
Cv (Winter)	0.840						
Shortest Storm (mins)	10000						
Longest Storm (mins)							
	5 740						
Tin	ne Area Diagram						
Total	Area (ha) 0.019						
Time (mins) Area Tim	me (mins) Area Time (mins) Are	a					
		.)					
0 4 0.006	4 8 0.006 8 12 0.00	7					
<u></u>	ne Area Diagram						
Total	Area (ha) 0.000						
Tin Fro	me (mins) Area m: To: (ha)						
	0 4 0.000						
©1982-2018 Innovyze							

Pringuer-James Consulting Engine	Page 5					
Overseas House						
Elm Grove						
London SW19 4HE			Mirro			
Date 11/04/2019 14:09	Designed by vlad		Drainago			
File CATCHMENT 3.SRCX	Checked by		Dialitage			
Innovyze	Source Control 2018.	1.1				
<u> </u>	Model Details					
Storage is Onl	ine Cover Level (m) 8	80.200				
Dry	Swale Structure					
Infiltration Coefficient Base (m/hr) 0.02027						
Infiltration Coefficient Side (m/hr) 0.02027						
	Safety Factor	1.0				
	Porosity	1.00				
	Invert Level (m)	79.733				
	Trench Height (m)	0.400				
	Trench Width (m)	1.5				
Tranch Infi	lrench Length (m)	24.0				
	Trench Porosity	0.02027				
	Side Slope (1·X)	1 0				
	Slope (1:X)	0.0				
	Cap Volume Depth (m)	0.000				
Cap In	filtration Depth (m)	0.000				