

06/09/18

Page

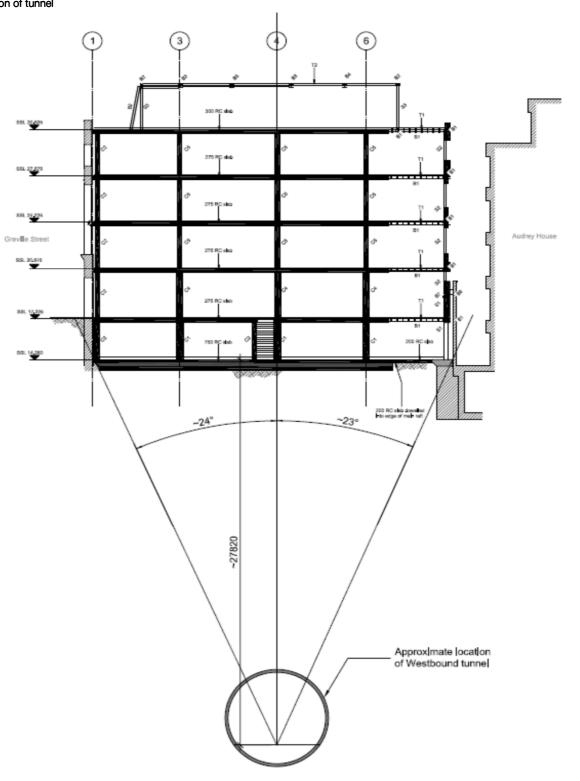
Eng

Ver

Chd

Job

Date


12-14, Greville Street

TM

Introduction

These calculations will provide an assessment of the noise and vibration impact resulting from the Crossrail tunnel below the site. The Crossrail document Information for Developers dated December 2016 provides key information about Crossrail, predicted vibration and a methodology for determining noise and vibration levels in a new development.

Location of tunnel

Date

Job

23327

06/09/18

TM

Ver

12-14, Greville Street

Chd

Consulting Engineers

Calculation

Crossrail requires that the ground borne noise level from the passage of trains in their tunnels in the centre of any noise-sensitive room is predicted in all reasonably foreseeable circumstances to not exceed the levels given in Table 1 in Information for Developers The workshops in the basement will be assumed to be similar to office spaces and therefore the maximum sound pressure level, $L_{ASmax} = 40 \text{ dB}$

The soil radial velocity will be calculated from a distance, r from the tunnel using the equation from section 5 of Information for Developers below:

$$L_r = L_t - 4.34 \frac{\omega \eta r}{c_s} - 10 \log_{10} \left[\frac{r_0 + r}{r_0} \right]$$

Where

 L_t = the tunnel radio velocity for a tunnel radius of r_0

 ω = angular frequency of each 1/3 octave band in radians per second

cs = phase speed of compression waves in soil

r = distance to room

 $r_0 = radius of tunnel$

Below are the numerical values used and where they have been taken from:

- 0.1 from Crossrail Groundborne Noise and Vibration Prediction Validation on DLR Greenwich technical report
- 1611 from Crossrail Groundborne Noise and Vibration Prediction Validation on DLR Greenwich technical report
- 27.82 from page 1 of the calculations
- 3.5 from Crossrail Information for Developers

In reference to page 1 of the calculations the angle of visible levels to receiving vibration from Crossrail is approximately $+/-24^{\circ}$ In reference to drawing C122-OVE-R4-DDA-CR001_Z-11023 the speed limit is 80km/h in the tunnel directly beneath. Therefore the tunnel radio velocity values in table 1 in appendix A of *Information for Developers* will be used as below for \pm 7-28° and the corresponding L, values for each frequency and position. For the appropriate frequencies the value of the 'A-weighting' has been applied in accordance with BS EN ISO 710-1 2013 for spectrum No. 1

Lt							L,							
Hz	332	346	360	0	14	28	w	332	346	360	0	14	28	A-weighting
20	86	89	90	90	89	86	125.7	76	79	80	80	79	76	
25	85	90	91	91	90	85	157.1	74	79	80	80	79	74	
31.5	95	99	100	100	99	95	197.9	84	88	89	89	88	84	
40	96	102	103	103	102	96	251.3	85	91	92	92	91	85	
50	85	92	95	95	92	85	314.2	33	40	43	43	40	33	-40
63	83	90	92	92	90	83	395.8	35	42	44	44	42	35	-36
80	79	85	88	88	85	79	502.6	33	39	42	42	39	33	-33
100	82	86	90	90	86	82	628.3	39	43	47	47	43	39	-29
125	89	89	94	94	89	89	785.4	48	48	53	53	48	48	-26
160	84	83	88	88	83	84	1005.3	44	43	48	48	43	44	-23

23327

06/09/18

Eng

Ver

Chd

Job No

Date

Job

12-14, Greville Street

3

TM

Calculation of L_p , is the 1/3 octave band sound pressure to compare with the allowable maximum sound pressure is:

$$L_p = L_v - 27dB$$

Where L_{ν} is the root mean square vibration velocity in dB re 1 nanometer second:

Calculation of L_{ν} and L_{p} are calculate below for each frequency:

Frequency	L_{ν}	L_p
20	78	51
25	78	51
31.5	87	60
40	89	62
50	39	12
63	40	13
80	38	11
100	43	16
125	49	22
160	45	18

Therefore the average value of the 1/3 octave band sound pressure level is 32 dB < 40dB, therefore within acceptable limits