S R BRUNSWICK CEng FICE SRB 1720 - 3 138 Woodcock Hill, Kenton, Middlesex HA3 0JN Checked by: Aug '17 Mob: 07803 262 009 E Mail: srb@srbrunswick.com 56 Platts Lane, Hampstead Design of floor joists Case 1 to lounge over Bedroom Span 4100 UDL 2.1 KN/m2 Max BM $2.1 \times 4.1 \text{Sq} / 8 = 4.4 \text{ KNm/m}$ $4.4e6 / 5.3 \times 1.1 = 757 \text{ mm} 3 / \text{ m}$ Z Reqd Try 225 x 50 @ 400 ctrs (Z = 940 e3 mm3)Deflection $5 \times 2.1 \times 0.4 \times (4.1)4 \times e3 / 384 \times 8.8 \times 41.1 = 8.5 \text{mm}$ span x 0.002 OK Worst case so provide 225 x 50 @ 400 ctrs in all areas Beam B1 Span 1800 Loading 225 wall 4.5 KN/m2 x 2.5 x 90% $= 10.1 \, KN/m$ Floor say 2.1 KN/m2 x 1.5m 3.2 KN/m 13.3 KN/m Reaction 12 KN BM 13.3×1.8 Sq / 8 = 5.4 KNM By inspection provide 152 UC 23 in floor depth Beam B2 Span 4400 Loading Udl floor = $2.1 \text{ KN/m} 2 \times 6 / 2 = 6.3 \text{ KN/m}$ Reaction = 13.9 KN Max BM 6.3×4.4 Sq / 8 = 15.3 KNm Try 152 UC 23 L/Ry = 1.2 x 4400 / 36.8 = 144 Pbc = 98 N/mm2 Fbc = 15.3 e6 / 165.7 e3 = 92 N/mm2 OK Provide Deflection 152 UC 30 $5 \times 6.3 \times (4.4)4 \times e5 / 384 \times 210 \times 1263 = 11.5$ mm Deflection = 8.3mm

too high

Sheet:

Prepared by:

Sheet: Prepared by: S R BRUNSWICK CEng FICE SRB 1720 - 4 138 Woodcock Hill, Kenton, Middlesex HA3 0JN Checked by: Aug '17 Mob: 07803 262 009 E Mail: srb@srbrunswick.com 56 Platts Lane, Hampstead Bwam B3 Span 5100 Loading UDL 1 Wall 2.2 KN/m2 x 3.2 $= 7.0 \, \text{KN/m}$ Floor 2.1 KN/m2 x 2 / 2 = 2.1 KN/m9.1 KN/m UDL 2 Wall 4.5 KN/m2 x 3.2 = 14.4 KN/m Floor 2.1 KN/m2 x 2 / 2 = 2.1 KN/m16.5 KN/m Point load B1 = 12 KN B2 = 13.9 KN $Ra = 9.1 \times 3.3 \times 1.65 / 5.1 +$ 12 KN 13.9 KN $16.5 \times 1.8 \times 4.2 / 5.1 +$ 12 x 3.3 / 5.1 + 16.5 KN/m 9.1 KN/m $13.9 \times 1.1 / 5.1 =$ 44.9 KN 1800 2200 1100

ΑГ

Point of zero shear from B = (40.7 - 13.9) / 9.1 = 2.945m

Max BM $40.7 \times 2.945 - 13.9 \times 1.845 - 9.1 \times 2.945 \text{ Sq}/2 =$

Equivalent UDL = $8 \times 54.8 / 5.1$ Sq = 16.9 KN/m

 $5 \times 16.9 \times (5.1)4 \times e5 / 384 \times 210 \times 4564 = 15.5 \text{ mm}$

Rb = 9.1 x 3.3 x 3.45 / 5.1 + 16.5 x 1.8 x 0.9 / 5.1 + 12 x 1.8 / 5.1 +

 $13.9 \times 4.0 / 5.1 = 40.7 \text{ KN}$

Try 201 UC 46

Deflection

54.8 KNm

Fbc = 54.8 e6 / 449.2 e3 = 122 N/mm2

5100

 $L/Ry = 1.2 \times 5100 / 51.1 = 120$

Too high

Pbc = 125 N/mm2

В

Provide 203 UC 60

Span / 435

Deflection = 11.6mm

Sheet: Prepared by: S R BRUNSWICK CEng FICE SRB 1720 - 5 138 Woodcock Hill, Kenton, Middlesex HA3 0JN Checked by: Aug '17 Mob: 07803 262 009 E Mail: srb@srbrunswick.com 56 Platts Lane, Hampstead Beam B4 Span 6300 Loading 1.9 KN/m2 x 8 / 2 Roof 7.6 KN/m 2nd Flr 2.1 Kn/m2 x say 3m $= 6.3 \, \text{KN/m}$ = 8.4 KN/m 1st Flr 2.1 Kn/m2 x 8 / 2 Grd Flr 2.1 KN/m2 x 3.5 / 2 = 3.7 KN/m = 27.0 KN/m Wall say 3Kn/m2 ave x9m 53.0 KN/m Point load B3 = 40.7 KN40.7 KN $Ra = 53 \times 6.3 / 2 +$ 53.0 KN/m $40.7 \times 4.5 / 6.3 =$ 196.0 KN 1800 4500 $Rb = 53 \times 6.3 / 2 +$ $40.7 \times 1.8 / 6.3 =$ В 178.5 KN Point of zero shear from B = 178.5 / 53 = 3.368

 $L/Ry = 1.2 \times 6300 / 78.9 = 96$

OK

Span / 412

Span 2000

OK

Provide

305 UC 158

Reaction 8 KN

Provide

152 UC 23

Max BM $178.5 \times 3.368 / 2 = 300.6 \text{ KNM}$

Pbc = 149 N/mm2

Equivalent UDL 8 x 300.6 / 6.3Sq = 60.6 KN/m

 $5 \times 60.6 \times (6.3)4 \times e5 / 384 \times 210 \times 38740 = 15.2$ mm

 $= 5.9 \, \text{KN/m}$

 $= 2.1 \, \text{KN/m}$

8.0 KN/m

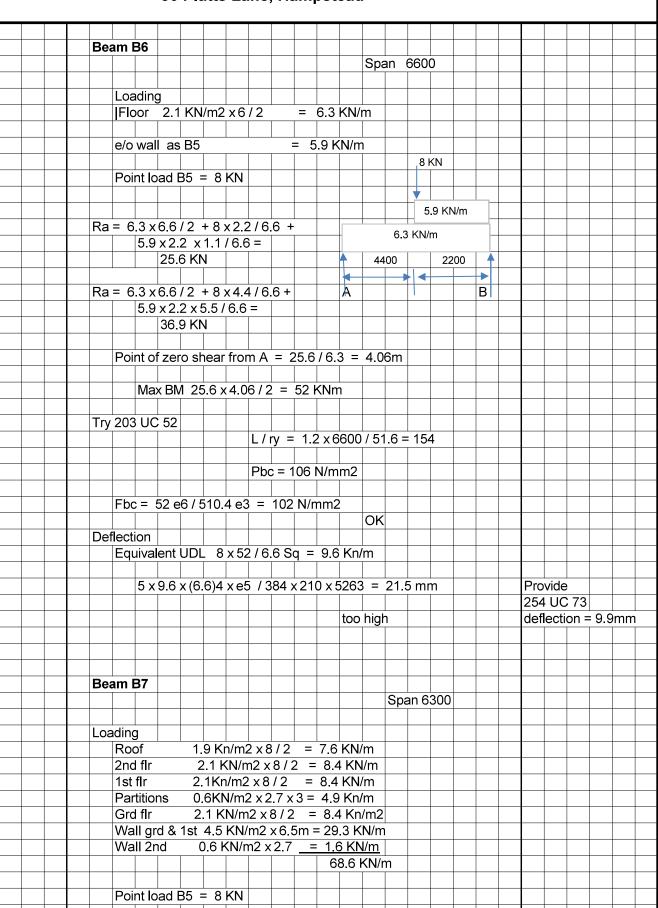
Fbc = 300.6 e6 / 2368 e3 = 127 N/mm2

Try 305 UC 158

Deflection

Beam B5

Loading


wall 2.2 Kn/m2 x 2.7

Max BM $8 \times 2 \text{ Sq} / 8 = 4 \text{ KNm}$

By inspection provide 152 UC 23 as B1

Floor 2.1 Kn/m2 x say 1

SRBRUNSWICK CEng FICE 138 Woodcock Hill, Kenton, Middlesex HA3 0JN Mob: 07803 262 009 E Mail: srb@srbrunswick.com Sheet: 1720 - 6 Checked by: Date: Aug '17 Sheet: 1720 - 6 Checked by: Date: Aug '17 Sheet: 1720 - 6 Span 6600

S R BRUNSWICK CEng FICE SRB 1720 - 7 138 Woodcock Hill, Kenton, Middlesex HA3 0JN Checked by: Aug '17 Mob: 07803 262 009 E Mail: srb@srbrunswick.com 56 Platts Lane, Hampstead $Ra = 68.6 \times 6.3/2 + 8 \times 2/6.3 =$ 8 KN 218.6 KN 68.6 Kn/m $Rb = 68.6 \times 6.3 / 2 + 8 \times 4.3 / 6.3 =$ 221.6 KN 4300 2000 Point of zero shear from A Α В 218.6 / 68.6 = 3.19m Max BM 218.6 x 3.19 / 2 = 348.3 KNm Try 305 UC 158 $L/Ry = 1.2 \times 6300 / 78.9 = 96$ Pbc = 152 N/mm2 Fbc = 348.3 e6 / 2368 e3 = 147 N/mm2Deflection Equivalent UDL = 8 x 348.3 / 6.3Sq = 70.2 KN/m 5 x 70.2 x (6.3)4 x e5 / 384 x 210 x 38740 = 17.7mm Too high Provide 305 UC 198 Deflection = 13.5mm Span / 465 Beam B8 Span 3600 **UDL** floor $2.1 \text{ KN/m} 2 \times 6.5 / 2 = 6.8 \text{ Kn/m}$ Reaction 13 KN Max BM 6.8×3.6 Sq / 8 = 11 KNm Try 152 UC 23 $L/Ry = 1.2 \times 3600 / 36.8 = 117$ Pbc = 119 N/mm2 Fbc = 11 e6 / 165.7 e3 = 66 N/mm2Deflection $5 \times 6.8 \times (3.6)4 \times e5 / 384 \times 210 \times 1263 = 5.6$ mm Provide 152 UC 23 Span / 640

Sheet:

Prepared by:

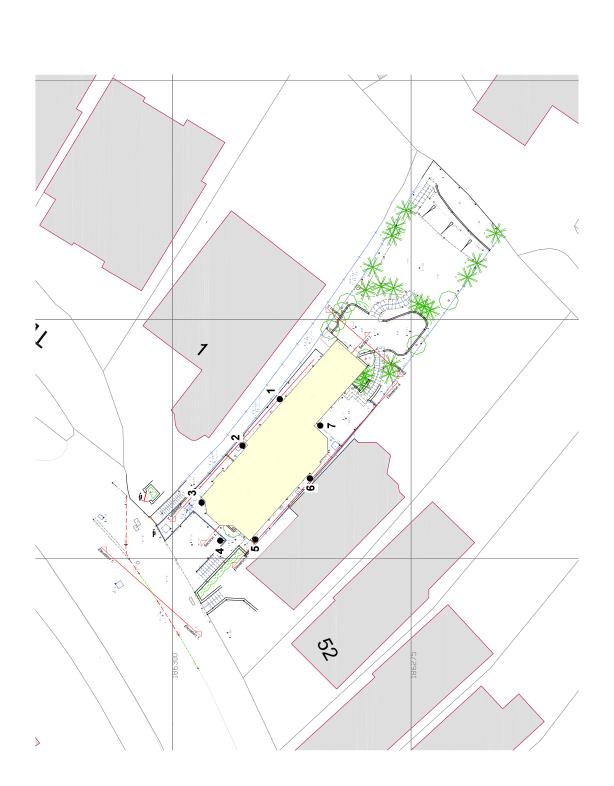
SI	RE	3R	UN	SV	VIC	K	CE	Eng	j F	ICE						Prepa	ared by	r: SRI	В		Shee		20 - 8	8		
138 \	Noo	dcocl	k Hill,	Ken	ton, N	/liddl	esex	НАЗ	0JN							Chec	ked by				Date:					
Mob: E Ma					k.con	n																Aug	j '17			
							Pla	atts	La	ne	, Ha	am	ost	eac							•					
			Bea	am E	39																					
													Spa	an 3	000											
				Loc	ding																					
				LOS		wa	l II		1 5 k	(N/r	⊥ n2 x	5.5		1	24		l (n/m	<u> </u>								
					Roo						12 x			=		8 Kr										
					1st	Flr		2	2.1 k	(N/n	n2 >	M	2	=			N/m									
						l Flr		2	2.1 k	(N/r	n2 x	say	1	=			N/m									
					Ext	slak)	6	.3 K	Wh	1 x 2	.3 /	2	=	7.3		V/m				Rea	actic	n 63	3.3 k	(N	
					Max	/ DN	1 1		/20	· . / 9	<u> </u>	- 47	7 5 1	'NIm		42	/2 K	N/m								
					ivia	X DIV	/ 4	2/2	x 33	4 / c	o -	- 4 <i>1</i>	.or									-				
					Trv.	203	J UC	: 46																		
											L/	Ry <u>z</u>		$\frac{1}{2 \times 3}$	3000	/ 5	1.1 :	= 70								
													Pbo	c = 1	63 I	N/m	m2									
													<u></u>													
				Fbc	; =	47.	.5 e6	5 / 4	49.	2 /e 3	=	106	N/n	nm2 ⊤												
			Dof	lecti	ion												X									
			Dei			x (:	3)4	x e5	/ 38	84 x	210	x 4!	 564	= .	⊥ 4.6≠	ım										
				O A																	Pro	vide				
																Spa	an /	645				3 UC				
			Bea	am 1	10							•		Con	200	200										
														Spa	an 2:	300										
				Loa	ding	r																				
					225				1.5 k	N/r	n2 x	5.5		=	24	.8 K	└ ⟨n/m	 ا								
					Roo	of _					12 x			=	5.	7 Ki	n/m									
					1st						n2 >			=			N/m									
						l Flr					n2 x			/=			N/m				Rea	actic	n 5	5.7	KN	
					Ext	slak)	6	.3 K	n/m	2 x	3/2		=	9.		<u>N/m</u>									
																48	.4 K	N 								
						Ma	│ ∨ RN	1 4	2 <i>1</i>		3 50	/ 8		32 I	(Nr											
						ivia	\ DI\	· ·		~	, 5q	, 0	_	JZ 1	AI WIII											
					Ву і	insp	ection	on p	rovi	de 2	03 l	JC 4	16													
			Bea					ht v																		
				Bea	am t	o be	e in (3 spa	ans							Sap	on 2	2300	ma	X						
				1.00	ding																					
				LUS		y wa	l II	<u> </u>	15 k	 (N/r	 n2 x	65		<u> </u>	29] 3 k	l (n/m	<u> </u>								
					Roo		.41				112 x			=		7 Kr										
						l Flr									4.											
					1st	Flr		2	2.1 k	(N/n	n2 >	<i>(71</i>	2	=	7.	4 KI	N/m									
					Gro	l Flr		2	2.1 k	(N/r	n2 x	say	1	_=	2		<u>N/m</u>									
																49	.7 K	N/m			Rea	actic	n 5	7.2	KN	
				N 4 -		Λ .	10.7	<u> </u>	20	. / 0		20.4) 1/4	ا												
				ivia	x BN	1 4	+⊎./	x 2	აა(4 / ۵ ا	=	ა∠.\	יוא כ		inen	acti	on F	rovi	de.			203	UC	. 16		
														رد ا	nisp	COLIC	J11 F	1001	u c			203	, 50	+0		
										1							1				1					

S	R F	R	UNS	SV	VIC	:K	CF	Enc	ı FI	ICF	=					Prepa	red by					Sheet				
											_					01		SR	<u>B</u>			D-1	172	20 -	9	
			: Hill, k 32 009		ion, l	viiddl	iesex	пАЗ і	NLU							Cnec	ked by	:				Date:	Διισ	g '17	,	
			bruns		c.con	n																	, ruç	/ ا		
							Pla	atts	La	ne	, Ha	am	pst	ead												
											•	'														
			Cala		- 0-			- D																		
			Colu	ımı	า	upp	ort τ	O R	5, 9	& 1	U 					Hai	ght	3.2 % (<u> </u>							
																пеі	gnt.	3/0	J							
_			- 1	oa	ding	a 🗸																				
					B8			13	KI	N																
					В9				.3 K																	
					B10)			.7 K																	
								13	32 k	<n_< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></n_<>																
			-].or	ne	ction	ı to t	on c	of co	lum	0 14/	ill b	2 2 0	an r	L Conr	l Jecti	lon v	with								
-			F	39 ·	sittir	าต ก	n the	e col	umi	ar	iii w id R	มเ 8 ar	nd R	10 h	oltir	iooli 1a tr	it	VIUI								
					J. C. C. C. I	.g 0				. ui	ر د.	<u> </u>	<u>.</u>			.ي رو										
			E	зм	sa	y 1	32K	NX (0.07	5 =	9 9	9 KI	١m													
			1	Γry	13	9/	CHS	3 t =	10r	nm																
					_		L/	Ry =	= 1	.5 x	320	00 /	6 =	= 10)4											
) Dho	1	180	│ N/m	m2				Do	= 7	'Q NI	/mm	12										
			-	DC	, —	00		1112				FC	_ /	O IN	/11111	_										
			F	bc	; =	9.9	e6 /	128	e 3	= 8	81 N	l/mr	n2													
			F	-c	=	132	e 3	/ 40	.7 e	2 =	33	N/r	nm2													
			J		81	/ 18	80 +	- 33	/ 78	3	=	0.	37			01/							vide			
																OK						138 t =		lia C	HS	
																				_		ι –	TOIT			
									7	F																
						1			.	Æ				-						23 w						
					- /			74			b									e. 6m let w						
-	2 112	40	:40		-/												\vdash			ade 8			-			
			ith 10r ım full		/-												<u> </u>									
- pro	ofi İ e fi	llet w	e l d an	d	H																					
4IV	/120 gr	ade	8.8 bo	its																						
																	139	9.7 d	ia C⊦	IS 🗾	= 10r	nm				
																	wit	h 10r	nm 🚅	nd pl file fil	ates.					
											_						and	1 <i>M</i> /2 b	20 gr	ade 8	3.8 b	olts	_			
			_				-	1			₩-						ro	steel ts to	and	4 M1	6 and	chor	<u> </u>			
																	וטט	ແວ ເປ	SIAD				-			
			+																							
			Colu	mr	We	arin	⊥ la or	ı bas	eme	ent	⊥ slah)														
			GBP				1.2 x																			
													OK													

S R BRUNSWICK CEng FICE

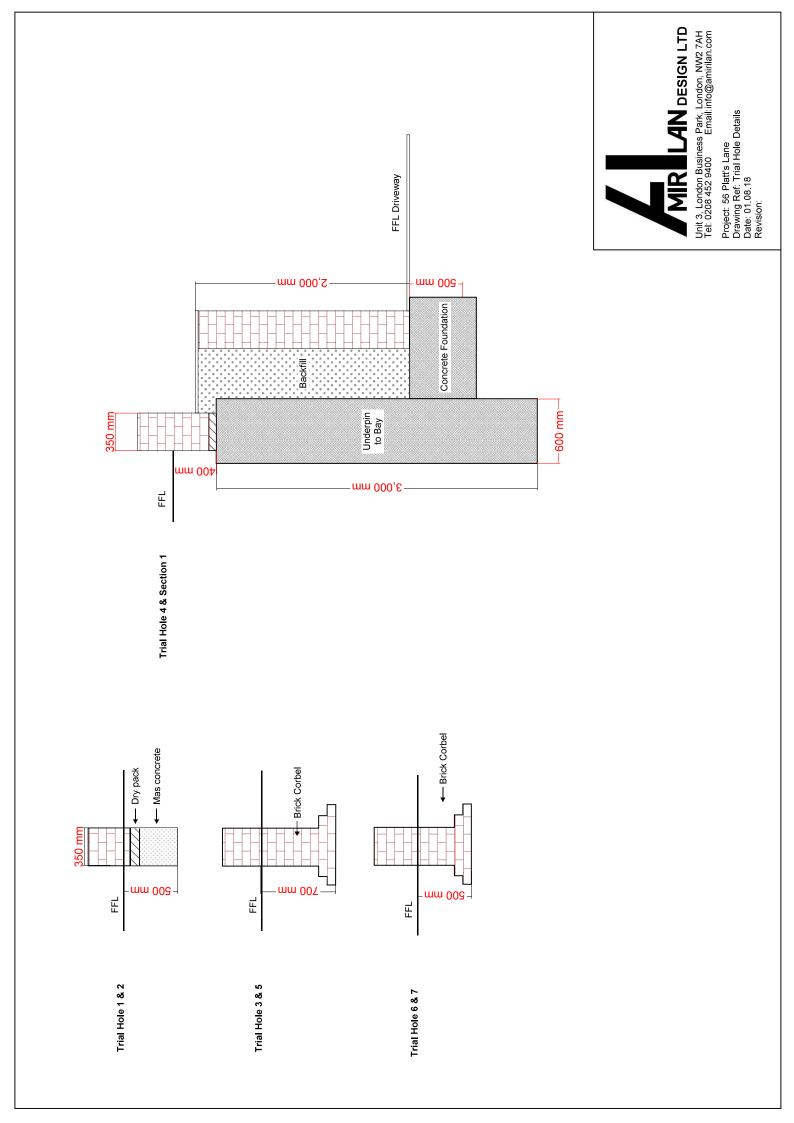
138 Woodcock Hill, Kenton, Middlesex HA3 0JN Mob: 07803 262 009

E Mail: srb@srbrunswick.com

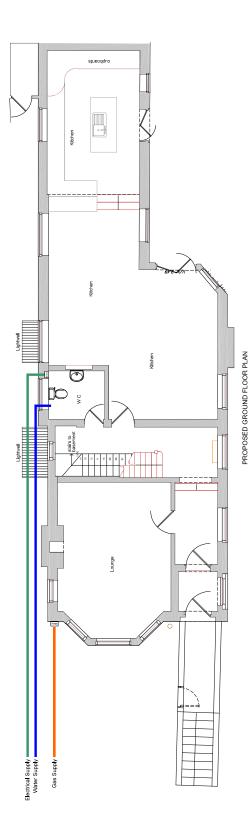

Prepared by:	Sheet:
SRB	1720 - 10
Checked by:	Date:
	Aug '17

56 Platts Lane, Hampstead

	maxin reinfo to pro	asem num r rced o vide s ssum urcha	nent i retairi concestabili den Ka	is formed herete ulity. oil parasity = 0.2	med weight ounderp	of 3. pins ers f	onn	The	wal	lls a	re to e raf Max	be tan kimu	con d bu um h	strud uilt in		S.			
	maxin reinfo to pro	num rrced (vide s	ed so den Ka	ned herete ulity. oil pausity = 0.2	eight d underp ramet 18 KI	of 3. pins ers f	onn	The	wal	lls a	re to e raf Max	be tan kimu	con d bu um h	strud uilt in	strip	S.			
	maxin reinfo to pro	num rrced (vide s	ed so den Ka	ned herete ulity. oil pausity = 0.2	eight d underp ramet 18 KI	of 3. pins ers f	onn	The	wal	lls a	re to e raf Max	be tan kimu	con d bu um h	strud uilt in	strip	S.			
	reinfo to pro	ssum urcha	ed so den Ka	oil pa esity = 0.2	underg	oins ers f	conn for de	ense	ed to	o the	e raf Max	t an	d bu um h	uilt in	strip	S.			
	to pro	ssum urcha	ed so den Ka rge	oil pa sity = 0.2	ramet 18 Ki 26	ers f	or de	ense			Мах	kimu	ım h						
	As Si	ssum urcha	ed so den Ka rge	oil pa esity = 0.2	18 Ki 26				e sa	nd a				neigh	t 3.5r	n			
	Si H1 5	urcha KN/m	den Ka rge	sity = 0.2 say 5	18 Ki 26				e sa	nd a				eigh	t 3.5r	n			
	Si H1 5	urcha KN/m	den Ka rge	sity = 0.2 say 5	18 Ki 26				e sa	nd a									
	Si H1 5	urcha KN/m	den Ka rge	sity = 0.2 say 5	18 Ki 26				sa	nd a									+
	Si H1 5	urcha KN/m	den Ka rge	sity = 0.2 say 5	18 Ki 26					iii u c	as fo	und	in tı	rial h	oles				
	H1 5	KN/m	rge	say 5					Ang						40 d	egre	ees		
	H1 5	KN/m	12 x		5 KN/n				Ī										
	H1 5	KN/m	12 x		KN/n	1													
						ո2													
	H2 so	il = 1					6 KN	l/m			4						[1]		
					x 3.5S	· · · · · · · · · · · · · · · · · · ·]				
			Ш	28.7	KŅ/m				НЗ			$ \angle $				F	12		
												_							
	H3 W	ater :			n2 x 2	.5Sc	/2												
				31.3	KN/m														
	M	ax BN			of wal							- /-							
			4.6	x 3.5/	/2 + 2	28.7	x 3.5	73	+	31.	3×2	2.5/3	3 =	67.6	KNn	า			
				1 114 1			7.016	<u> </u>				0.4							
				UIT IO	ad sa	y 67	.6 K	IN/m	1 X 1	.55	= 1	04.	8 K	NM					
	 	050	\	I. DO	\ . II														
		y 350		k RC						a _	200								
			COV	rei sa	y 40m	1111				u –	300								
	NA	_ /b*ds	a*fcı	-	105	96	1 (🕳	\ \ \ \ 3	200	Sa v	35 \	= () U3'	3					
	IVI	/b us	y ict	u –	103	EO /	(63	, , 3		74 <u>^</u>	33 <i>)</i>	_ `	.03						+
	a	1 = (N 94																
	a		U.9 4																
	Δ.	st = 1	05 6	-6 / (C	0.87 x	500	x 0 9	14 x	300)) :	= 8	56 r	nm2	/ m					+
	/ "	J			J.07 X					, <u>, </u>		001		_ / !!!					
	Pı	rovide	T1	6 @	150 ct	rs (′	1340	mn	12)	in e	ach	face	e ve	rtica	llv				+
		1	_		on ste											h fa	ce)		
		+						ا ر							1				
		mir	ste	el 0.1	13% a	rea	= 45	55 m	m2/	/m									
		1			1			Ï											
	С	heck	slen	derne	ess														
					epth =	7				M/b	dSq	=	1.1	7					
				= 1.7															
		\top	Mf	comp	ressio	n ste	el 1.	.12											
	Al	lowal	ole s	pan :	= 7 x	1.75	x 1.	12 x	300	0 =	41	10							
												OK							


Sheet: Prepared by: S R BRUNSWICK CEng FICE 1720 - 11 **SRB** 138 Woodcock Hill, Kenton, Middlesex HA3 0JN Checked by: Aug '17 Mob: 07803 262 009 E Mail: srb@srbrunswick.com 56 Platts Lane, Hampstead 350 RC wall and base reinforced with T16 high yield bar reinforcement at 150 centres each face with T12 @ 150 centres distribution Concrete to achieve 40N at 28 days Reinforcement lap to be 800mm for T16 and 500 for T12 Concrete cover to be 40mm Wall and slab to be constructed in strip in accordance with the underpinning sequence 350 T16 bars min lap 800mm Typical RC detail, Applicable for whole basement **Basement Plan**

APPENDIX C – Trial Hole Details &	Geotechnical Ground Inv	vestigation	


Unit 3. London Business Park, London, NW2 7AH Tel: 0208 452 9400 Email:info@amirilan.com Project: 56 Platt's Lane Drawing Ref: Trial Holes Layout Date: 01.08.18 Revision:

56 Platt's Lane, London NW3 7NT Date: 01th February 2019

<u>APPENDIX E</u>:

SERVICES LAYOUT

Unit 3, London Business Park, London, NW2 7AH
Tel: 0208 452 9400 Emall:info@amirilan.com
Project: 56 Platt's Lane
Drawing Ref: Services Layout
Date: 17.01.19
Revision:

56 Platt's Lane, London NW3 7NT Date: 01th February 2019

<u>APPENDIX F</u>:

THAMES WATER ASSET MAP

Amir Rei 715 North Circular Road LONDON NW2 7AH

Search address supplied 56

Platts Lane London NW3 7NT

Your reference 56 Platts Lane

Our reference ALS/ALS Standard/2019_3943797

Search date 29 January 2019

Keeping you up-to-date

Notification of Price Changes

From 1 September 2018 Thames Water Property Searches will be increasing the price of its Asset Location Search in line with RPI at 3.23%.

For further details on the price increase please visit our website: www.thameswater-propertysearches.co.uk

Please note that any orders received with a higher payment prior to the 1 September 2018 will be non-refundable.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

P searchcade

0845 070 9148

Search address supplied: 56, Platts Lane, London, NW3 7NT

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: searches@thameswater.co.uk

Web: www.thameswater-propertysearches.co.uk

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public
 water mains in the vicinity of the property. It should be possible to estimate the
 likely length and route of any private water supply pipe connecting the property to
 the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

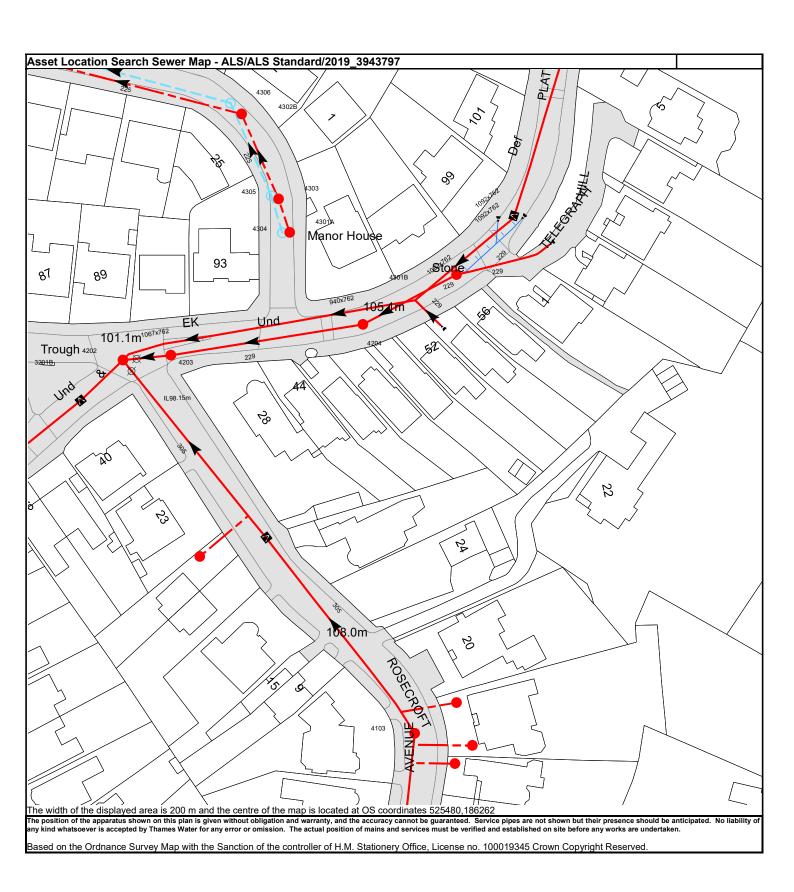
Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk


Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4306	98.26	95.48
4106	n/a	n/a
5101	n/a	n/a
4103	108.24	104.56
4105	n/a	n/a
4208	n/a	n/a
4202	98.2	90.01
4203	101.87	100.29
4204	104.97	103.28
4301B	105.49	103.93
4304	101.81	97.65
4301A	101.79	97.26
4303	101.02	96.73
4305	100.83	97.09
4302B	98.65	95.1

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Public Sewer Types (Operated & Maintained by Thames Water)

- Foul: A sewer designed to convey waste water from domestic and industrial sources to a treatment works.
- Surface Water: A sewer designed to convey surface water (e.g. rain water from roofs, yards and car parks) to rivers or watercourses. þ
- Combined: A sewer designed to convey both waste water and surface water from domestic and industrial sources to a treatment works. Trunk Fou ļ Trunk Surface Water
 - Bio-solids (Sludge) Trunk Combined 1 Storm Relief
 - Proposed Thames Surface Water Sewer Vent Pipe 4
- Proposed Thames Water Foul Sewer
 - Foul Rising Main

Gallery

ł

End Items

- Combined Rising Main Surface Water Rising Main
 - 4 Sludge Rising Main
- Proposed Thames Water Rising Main

シ

Į<u>†</u> 6

Vacuum

Undefined End

net

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Other Symbols

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Sewer Fittings

Symbols used on maps which do not fall under other general categories

- Public/Private Pumping Station
- Change of characteristic indicator (C.O.C.I.)
- nvert Leve Ø
- Summit ∇

Areas

Lines denoting areas of underground surveys, etc.

Agreement

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Control Valve

Drop Pipe

Ancillary

(m)

Weir

Operational Controls

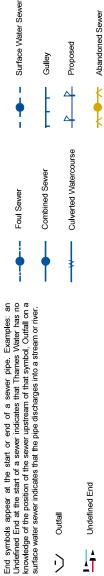
Vent Column

Dam Chase

Fitting

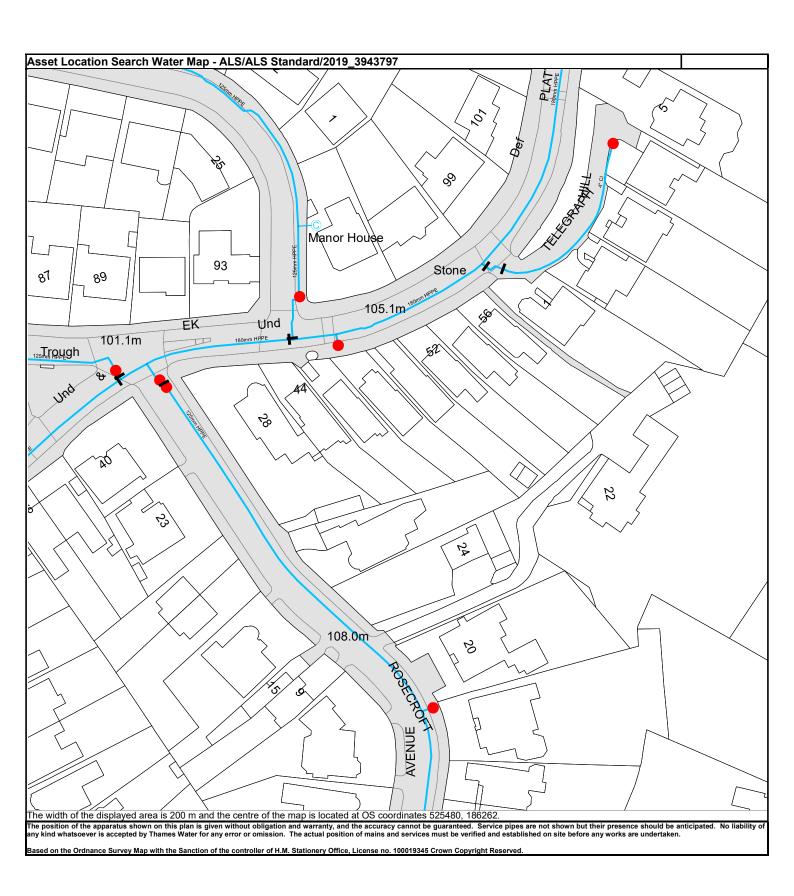
Meter

M 0


Air Valve

- Operational Site
- Tunne

Chamber


Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Abandoned Sewer

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
 - 2) All measurements on the plans are metric
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

<u>Thames Water Utilities Ltd.</u> Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 <u>E searches@thameswater.co.uk</u> I <u>www.thameswater.propertysearches.co.uk</u>

Nater Pipes (Operated & Maintained by Thames Water)

- **Distribution Main:** The most common pipe shown on water maps. With few exceptions, domestic connections are only made to ij
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservor, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water 16
 - Supply Main: A supply main indicates that the water main is used mains used for supplying individual customers. 3" SUPPLY
 - as a supply for a single property or group of properties.
- Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe. 3° FIRE
- supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown. Metered Pipe: A metered main indicates that the pipe in question 3" METERED
 - **Transmission Tunnel:** A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the
- process of being laid. More details of the proposed main and its Proposed Main: A main that is still in the planning stages or in the reference number are generally included near the main.

Operational Sites

General PurposeValve

Valves

Pressure ControlValve

Air Valve

CustomerValve

Single Hydrant

Hydrants

Booster Station	Other	Other (Proposed)	Pumping Station	Service Reservoir	Shaft Inspection	Treatment Works	Unknown	Water Tower	
\oplus			4	•	\bigoplus		•		

Other Symbols

Data Logger 1

End Items

Meter

Meters

Symbol indicating what happens at the end of $^{\rm L}$ a water main.

- Blank Flange **Emptying Pit** Capped End
- Undefined End
- Customer Supply Manifold
 - Fire Supply ⓓ

Other Water Pipes (Not Operated or Maintained by Thames Water)

- Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.
- **Private Main:** Indiates that the water main in question is not owned by Thames Water These mains normally have text associated with them indicating the diameter and owner of the pipe.

Up to 300mm (12")	900mm (3')
300mm - 600mm (12" - 24")	1100mm (3' 8")
600mm and bigger (24" plus)	1200mm (4')

DEPTH BELOW GROUND

PIPE DIAMETER

Thames Water Utilities Ltd. Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13

T 0845 070 9148 E searches@thameswater.co.uk | www.thameswater-propertysearches.co.uk

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to 'Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Terms and Conditions

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- · sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- · act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if the Ombudsman finds that you have suffered actual loss and/or aggravation, distress or inconvenience as a result of your search provider failing to keep to the code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP Tel: 01722 333306

Fax: 01722 332296 Web site: www.tpos.co.uk Email: admin@tpos.co.uk

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE