

Tel: +44(0)208 222 8778 Fax: +44(0)208 222 8575 Email: info@kpacoustics.com www.kpacoustics.com

THE COCK TAVERN, PHOENIX ROAD, LONDON

PLANNING COMPLIANCE REPORT

Report 11674.PCR.01

For:

Flamestrike Limited,

1st Floor, 9 Hampstead West,

224 Iverson Road,

London

Site Address	Report Date	Revision History
The Cock Tavern, Phoenix Road, London	07/08/17	

 KP Acoustics
 11674.PCR.01
 7 August 2017

CONTENTS

1.0	INTRODUCTION	2
2.0	ENVIRONMENTAL NOISE SURVEY AND EQUIPMENT	2
2.1	Procedure	2
2.2	Equipment	2
3.0	RESULTS	3
4.0	NOISE CRITERIA	3
5.0	DISCUSSION	3
5.1	Objective overview	4
6.0	CONCLUSION	5

List of Attachments

11674.SP1	Indicative Site Plan
11674.TH1	Environmental Noise Time History

Appendix A Glossary of Acoustic Terminology

Appendix B Acoustic Calculations

1.0 INTRODUCTION

KP Acoustics Ltd, Britannia House, 11 Glenthorne Road, London, W6 0LH, has been commissioned by Flamestrike Ltd, 1st Floor 9 Hampstead West, 244 Iverson Road, London, to undertake an environmental noise survey at The Cock Tavern, Phoenix Lane, London. The background noise levels measured will be used to determine daytime and night-time noise emission criteria for a plant unit installation in agreement with the planning requirements of the London Borough of Camden.

This report presents the overall methodology and results from the environmental survey followed by calculations to demonstrate the feasibility of the plant unit installation to satisfy the emissions criterion at the closest noise-sensitive receiver and outline mitigation measures as appropriate.

2.0 ENVIRONMENTAL NOISE SURVEY AND EQUIPMENT

2.1 Procedure

Automated noise monitoring was undertaken at the position shown in Site Plan 11674.SP1. The choice of this position was based both on accessibility and on collecting representative noise data in relation to the nearest noise sensitive receiver relative to the operations on site. The duration of the survey was between 09/06/2017 and 12/06/2017.

Due to the construction taking place at the time of monitoring only the data recorded from the Sunday, when work was not taking place, is to be used as this will give a more accurate representation of the background noise in the area.

Initial inspection of the site revealed that the background noise profile at the monitoring location was largely dominated by road traffic noise from the surrounding roads.

The weather during the course of the survey was generally dry with wind speeds within acceptable tolerances and therefore suitable for the measurement of environmental noise. The measurement procedure complied with ISO 1996-2:2007 "Description, measurement and assessment of environmental noise - Part 2: Determination of environmental noise levels"

2.2 Equipment

The equipment calibration was verified before and after the survey and no calibration irregularities were observed.

The equipment used was as follows.

- Svantek Type 977 Class 1 Sound Level Meter
- B&K Type 4231 Class 1 Calibrator

3.0 RESULTS

The results from the continuous noise monitoring are shown as a time history of L_{Aeq} , L_{Amax} , L_{A10} and L_{A90} averaged over 5 minute sample periods in Figure 11674.TH1.

Minimum background noise levels are shown in Table 3.1.

	Minimum background noise level L _{A90: 5min} dB(A)
Daytime (07:00-23:00)	39
Night-time (23:00-07:00)	38

Table 3.1: Minimum measured background noise levels

4.0 NOISE CRITERIA

The criterion of the London Borough of Camden for noise emissions of new plant in this instance states that noise received as a result of the newly installed plant unit should not exceed a level 5dB below the measured minimum background LA90.

We therefore propose to set the noise criteria as shown in Table 4.1 in order to comply with the above requirement.

	Daytime (07:00 to 23:00)	Night-time (23:00 to 07:00)
Noise criterion at nearest residential receiver (10dB below minimum L _{A90})	34 dB(A)	33 dB(A)

Table 4.1: Proposed Noise Emissions Criteria

As the proposed unit will be used during restaurant opening times, we would utilise the daytime noise emissions criteria.

5.0 DISCUSSION

The location of the proposed plant unit is as shown in indicative site plan 11674.SP1.

The unit is proposed to be installed in a plant room at the rear of the building. The closest noise sensitive receivers to this location are the windows above the plant room into unit 2's living room, at a minimum distance of 3m.

It is understood that the installation comprises the following units:

- 1 no. Mitsubishi PUHZ-ZRP140
- 2 no. Mitsubishi PUMY-P200YKM

The sound pressure levels as provided by the manufacturer for the units are shown in Table 5.1.

		Sound Pressure Level (dB(A)) (at 1m)								
Unit	63Hz 125Hz 250Hz 500Hz 1kHz 2kHz 4kHz 8									
Mitsubishi PUHZ-ZRP140	62	55	52	20	46	42	38	30		
Mitsubishi PUMY-P200YKM	63	62	61	57	56	52	49	41		

Table 5.1 Manufacturers Sound Pressure Level at 1m

5.1 Objective overview

Taking all acoustic corrections into consideration, including distance and screening corrections, the noise levels expected at the closest residential window would be as shown in Table 5.2. Detailed calculations are shown in Appendix B.

Receiver - Nearest Noise Sensitive Window	Criterion	Noise Level at Front Receiver
Operating hours	34 dB(A)	30

Table 5.2: Predicted noise levels and criterion at nearest noise sensitive location

As shown in Appendix B and Table 5.2, transmission of noise to the nearest sensitive windows due to the effects of the plant installation fully satisfies the emissions criteria set by the London Borough of Camden.

It is the professional opinion of KP Acoustics that this level is not going to pose any negative impact on the amenity of nearby residential receivers. Furthermore, the value of 42dB(A) is to be considered outside of the building. Windows may be closed or partially closed leading to further attenuation, as follows. Further calculations have been undertaken to assess whether the noise emissions from the proposed unit installation would be expected to meet the recognised British Standard recommendations, in order to further ensure the amenity of nearby noise sensitive receivers.

British Standard 8233:2014 'Sound insulation and noise reduction for buildings – Code of Practise' gives recommendations for acceptable internal noise levels in residential properties. Assuming worst case conditions, of the closest window being for a bedroom, BS8233:2014 recommends 30-35dB(A) as being suitable internal resting/sleeping conditions.

With calculated external levels of 30dB(A), the residential window would not need to provide any additional attenuation, in order for resting/sleeping conditions to be achieved. According to BS8233:2014, even a partially open window offers 10-15dB attenuation, thus leading to an acceptable interior noise level that meets the criterion.

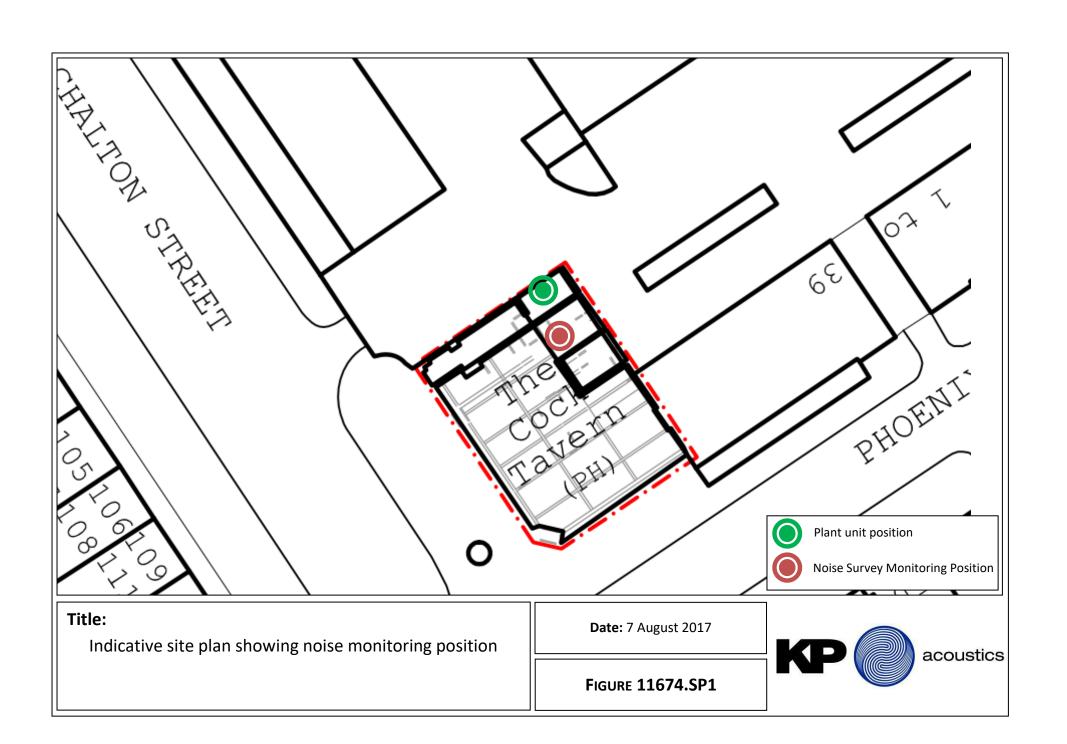
Receiver	Acceptable noise levels For resting/sleeping conditions in a bedroom, in BS8233:2014	Noise Level at Front Receiver (due to plant installation)
Inside Nearest Residential Space	30-35 dB(A)	20 dB(A)

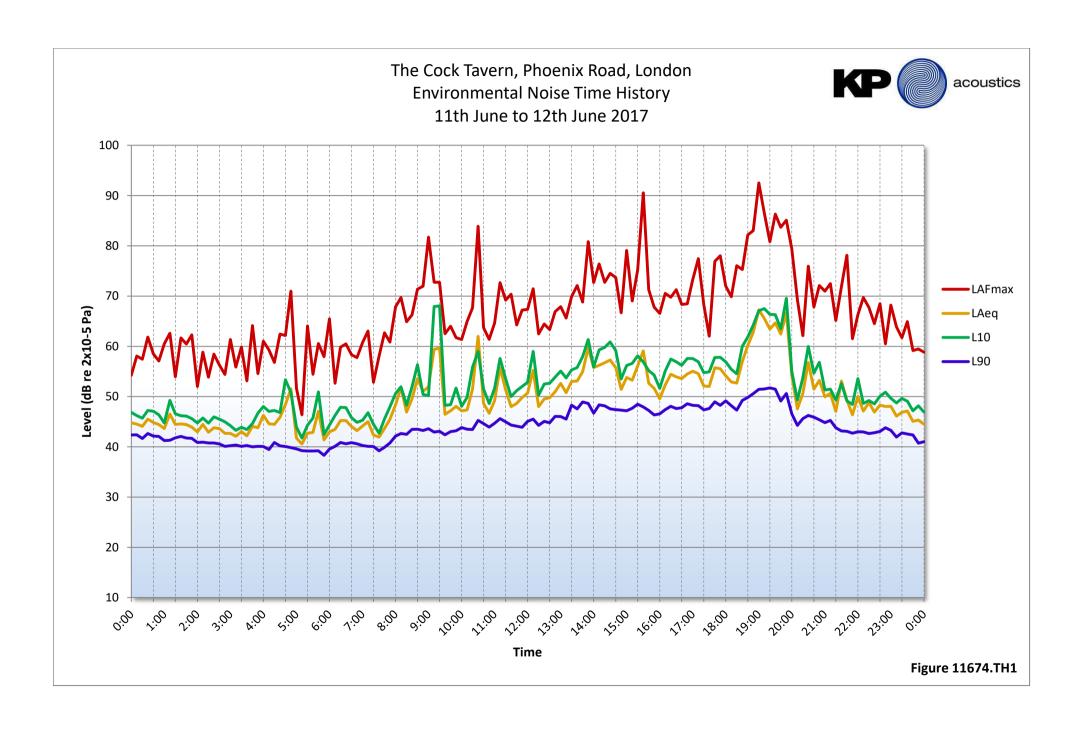
Table 5.3: Noise levels and criteria inside nearest residential space

Predicted levels are shown in Table 5.3, with detailed calculations shown in Appendix B. It can therefore be stated that, as well as complying with the requirements of the London Borough of Camden, the emissions from the plant unit installation would be expected to comfortably meet the most stringent recommendations of the relevant British Standard, even with neighbouring windows partially open.

6.0 CONCLUSION

An environmental noise impact survey has been undertaken at The Cock Tavern, Phoenix Road, London, by KP Acoustics Ltd between 09/06/2017 and 12/06/2017. The results of the survey have enabled criteria to be set for noise emissions. Using manufacturer noise data, noise levels are predicted at the nearby noise sensitive receivers for compliance with current requirements.


Calculations show that noise emissions from the proposed unit installations would meet the requirements of the London Borough of Camden


Further calculations have been undertaken with regards to the relevant British Standard and it has been ensured that the amenity of nearby residential receivers will be protected.

Report by: Checked by:

Ben Ford AMIOA Victor Lindstrom AMIOA

KP Acoustics Ltd. KP Acoustics Ltd.

APPENDIX A

GENERAL ACOUSTIC TERMINOLOGY

Decibel scale - dB

In practice, when sound intensity or sound pressure is measured, a logarithmic scale is used in which the unit is the 'decibel', dB. This is derived from the human auditory system, where the dynamic range of human hearing is so large, in the order of 10¹³ units, that only a logarithmic scale is the sensible solution for displaying such a range.

Decibel scale, 'A' weighted - dB(A)

The human ear is less sensitive at frequency extremes, below 125Hz and above 16Khz. A sound level meter models the ears variable sensitivity to sound at different frequencies. This is achieved by building a filter into the Sound Level Meter with a similar frequency response to that of the ear, an A-weighted filter where the unit is dB(A).

L_{eq}

The sound from noise sources often fluctuates widely during a given period of time. An average value can be measured, the equivalent sound pressure level $L_{\rm eq}$. The $L_{\rm eq}$ is the equivalent sound level which would deliver the same sound energy as the actual fluctuating sound measured in the same time period.

L_{10}

This is the level exceeded for no more than 10% of the time. This parameter is often used as a "not to exceed" criterion for noise.

L_{90}

This is the level exceeded for no more than 90% of the time. This parameter is often used as a descriptor of "background noise" for environmental impact studies.

L_{max}

This is the maximum sound pressure level that has been measured over a period.

Octave Bands

In order to completely determine the composition of a sound it is necessary to determine the sound level at each frequency individually. Usually, values are stated in octave bands. The audible frequency region is divided into 11 such octave bands whose centre frequencies are defined in accordance with international standards. These centre frequencies are: 16, 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000 and 16000 Hertz.

Environmental noise terms are defined in BS7445, *Description and Measurement of Environmental Noise*.

APPENDIX A

APPLIED ACOUSTIC TERMINOLOGY

Addition of noise from several sources

Noise from different sound sources combines to produce a sound level higher than that from any individual source. Two equally intense sound sources operating together produce a sound level which is 3dB higher than a single source and 4 sources produce a 6dB higher sound level.

Attenuation by distance

Sound which propagates from a point source in free air attenuates by 6dB for each doubling of distance from the noise source. Sound energy from line sources (e.g. stream of cars) drops off by 3dB for each doubling of distance.

Subjective impression of noise

Hearing perception is highly individualised. Sensitivity to noise also depends on frequency content, time of occurrence, duration of sound and psychological factors such as emotion and expectations. The following table is a guide to explain increases or decreases in sound levels for many scenarios.

Change in sound level (dB)	Change in perceived loudness
1	Imperceptible
3	Just barely perceptible
6	Clearly noticeable
10	About twice as loud

Transmission path(s)

The transmission path is the path the sound takes from the source to the receiver. Where multiple paths exist in parallel, the reduction in each path should be calculated and summed at the receiving point. Outdoor barriers can block transmission paths, for example traffic noise. The effectiveness of barriers is dependent on factors such as its distance from the noise source and the receiver, its height and construction.

Ground-borne vibration

In addition to airborne noise levels caused by transportation, construction, and industrial sources there is also the generation of ground-borne vibration to consider. This can lead to structure-borne noise, perceptible vibration, or in rare cases, building damage.

Sound insulation - Absorption within porous materials

Upon encountering a porous material, sound energy is absorbed. Porous materials which are intended to absorb sound are known as absorbents, and usually absorb 50 to 90% of the energy and are frequency dependent. Some are designed to absorb low frequencies, some for high frequencies and more exotic designs being able to absorb very wide ranges of frequencies. The energy is converted into both mechanical movement and heat within the material; both the stiffness and mass of panels affect the sound insulation performance.

APPENDIX B

The Cock Tavern, Phoenix Road, London

Extract Unit Emissions Calculations

Source: Extraction Unit				Freque	ncy, Hz				
Receiver: Closest Residential Receiver	63	125	250	500	1k	2k	4k	8k	dB(A)
Manufacturers Sound Power Level									
Mitsubishi PUHZ-ZRP140	62	55	52	50	46	42	38	30	
Mitsubishi PUMY-P200YKM	63	62	61	57	56	52	49	41	
Mitsubishi PUMY-P200YKM	63	62	61	57	56	52	49	41	
Room correction	4	4	4	4	4	4	4	4	
Sound pressure in plant room with all plant units operating	72	69	68	64	63	59	56	48	68
Sound power of Louvred area	75	73	72	68	67	63	60	52	
Correction for conversion from SWL to SPL	-8	-8	-8	-8	-8	-8	-8	-8	
Attenuation provided by distance to receiver (min. 14m)	-24	-24	-24	-24	-24	-24	-24	-24	
Attenuation provided by louvre	-4	-5	-8	-9	-12	-10	-8	-6	
Sound pressure level 1m from nearest residential receiver	39	36	32	27	23	21	20	14	30

Design Criterion	34
------------------	----

Receiver: Inside Nearest Residential Window

		Frequency, Hz							
Source: Extraction Unit	63	125	250	500	1k	2k	4k	8k	dB(A)
Sound pressure level outside window									30
Minimum attenuation from partially open window, dB									-10
Sound pressure level inside nearest noise sensitive window									20