

Walsh Associates

Camden Lock Village, London – Proposed Building E

Geotechnical and Geoenvironmental Interpretative Report – Revision 2

March, 2015

Card Geotechnics Limited 4 Godalming Business Centre, Woolsack Way, Godalming, Surrey, GU7 1XW Telephone: 01483 310 600 www.cgl-uk.com

Copyright: Card Geotechnics Limited

Card Geotechnics Limited ("CGL") has prepared this report in accordance with the instructions of Walsh Associates ("the Client") under the terms of its appointment for consulting engineering services by the Client dated 5 January 2015. The report is for the sole and specific use of the Client, and CGL shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared and provided. Should the Client require to pass copies of the report to other parties for information, the whole of the report should be so copied, but no professional liability or warranty shall be extended to other parties by CGL in this connection without the explicit written agreement thereto by CGL.

Author	-	mes Morrice, Engineer Sc BEng (Hons) MCSM			me
Checked	Keisha Smith, Pr MSc BSc (Hons) CEn		neer	K	ASmith
Approved	Nick Langdon, D MSc BEng DIC CEnv FCMI MIOD		CE FGS	NY	hange
Reference	CG/18067C	Revision	0	Issue Date	February 2015
			1		March 2015
			2		March 2015

Contents

EX	ECUTIV	E SUMMARY	4
IN	rodu	CTION	6
1.	SIT	TE LOCATION AND DESCRIPTION	7
	1.1	Site location	7
	1.2	Site description	7
	1.3	Proposed development	7
	1.4	Historical development	8
	1.5	Bomb damage and unexploded ordnance	8
	1.6	Anticipated ground conditions	8
	1.6	5.1 Published and unpublished geology	8
	1.6	5.2 Hydrogeology and hydrology	9
	1.7	Hydrogeology	9
	1.8	Hydrology	10
	1.9	Environmental setting	11
	1.10	Preliminary risk assessment	11
2.	CL	IRRENT GROUND INVESTIGATION	12
	2.1	Fieldwork	12
	2.2	Monitoring	12
	2.3	Laboratory testing	13
	2.3	3.1 Chemical	13
	2.3	3.2 Geotechnical	13
3.	GF	ROUND AND GROUNDWATER CONDITIONS	14
	3.1	Summary	14
	3.2	Made Ground	14
	3.3	Weathered London Clay Formation	15
	3.4	Groundwater	16
	3.5	Sulfate and pH conditions	17
4.	СС	ONTAMINATION ASSESSMENT	18
	4.1	Risks to human health (long-term chronic risks)	18
	4.2	Ground gas assessment	25
5.	RI	SK ASSESSMENT	26
	5.1	Introduction	26
	5.1	1.1 Risks to human health	27
	5.1	L.2 Risks to controlled waters	28
	5.1	1.3 Risks to buildings and structures	28
	5.1	1.4 Risks to vegetation and plants	28
6.	GE	OTECHNICAL RECOMMENDATIONS	29

	6.1	General	29
	6.2	Geotechnical design parameters	29
	6.3	Foundations	29
	6.4	Excavations and retaining structures	30
	6.5	Floor slabs and pavement design	31
	6.6	Drainage	31
	6.7	Buried concrete	31
7.	GE	OENVIRONMENTAL RECOMMENDATIONS	33
	7.1	Contamination and remediation	33
	7.2	Material management	33
	7.3	Buried services	34
	7.4	Discovery Strategy	35
	7.5	Health and safety	36

FIGURES

Figure 1 - Site location plan

Figure 2 - Exploratory hole location plan

Figure 3 - Plot of SPT 'N' values against level

Figure 4 - Plot of c_u against level

Figure 5 - Conceptual site model

Figure 6 - Plot of Cu against level (wider development site)

Figure 7 - Plot of safe working load against level (5m deep basement)

APPENDICES

Appendix A - Proposed development plans

Appendix B - Historical BGS borehole logs

Appendix C - CGL borehole logs

Appendix D - Ground gas and groundwater monitoring records

Appendix E - Chemical test results

Appendix F - Geotechnical test results

EXECUTIVE SUMMARY

Card Geotechnics Limited (CGL) has been commissioned by Walsh Associates on behalf of Stanley Sidings Limited to complete a Geotechnical and Geoenvironmental Interpretative Report for a site at Camden Lock, London. The proposed development of the subject site (39 – 45 Kentish Town Road), known as Area E, is proposed to form part of the approved 2013 masterplan across the Hawley Warf area of Camden Lock. The subject site currently comprises open land covered with grass and weeds. The proposal is a multi-storey building with a basement comprising flexible class B1/D2 use in the basement and ground floors with residential above and communal landscaped areas.

Historical mapping indicates that the site consisted of open fields until the *Regent's Canal* was constructed along the southern and western boundaries in the early 1800s, with associated residential properties constructed across the site. These properties were later converted to retail units and are noted on the available maps. These buildings were demolished sometime between 1973 and the present day.

Historical mapping indicates that the area did not suffer bomb damage during the Second World War. A detailed unexploded ordnance (UXO) risk assessment undertaken by 6 Alpha Associates Limited for the area immediately to the north of the site (Building D) indicated that the risk posed by UXO in this area is 'low to medium' and it is considered that the same rating applies to the study site.

Local geological mapping and records indicates that the site is directly underlain by the London Clay Formation. An intrusive investigation, comprising ten window sampler boreholes to a maximum depth of 5.45mbgl was undertaken in January 2015 on Area E. A number of refusals were noted in the eastern part of the site due to concrete obstructions from approximately 1.0mbgl to 1.4mbgl, thought to be associated with the former buildings in this area. Ground gas and groundwater monitoring wells were installed in three of the boreholes, with subsequent monitoring visits undertaken.

The investigation encountered limited Made Ground (0.7m to 1.4m thick) underlain by the Weathered London Clay Formation, which extended to the base of the boreholes. No groundwater strikes were encountered during the investigation. However, perched groundwater was encountered in all three boreholes during the subsequent monitoring visits at 3.28mbgl to 4.78mbgl (21.01mOD to 22.66mOD).

Negligible concentrations and flow of ground gas were recorded during the monitoring visits and a gas screening value of 0.0198I/hr has been calculated for the site. The site therefore conforms to Characteristic Situation 1 and no ground gas protection measures are therefore required.

With the exception of asbestos, arsenic, lead and benzo(a)pyrene in the Made Ground, concentrations of contaminant analysed were found to be below the assessment criteria for the *Residential (without plant uptake)* land use. It is anticipated that the Made Ground at the site will be removed during construction of the proposed basement. However, where Made Ground remains, it is recommended that a capping layer, comprising a minimum 150mm topsoil over 300mm subsoil and a geotextile membrane, is installed in areas of permanent communal landscaping.

A preliminary assessment of the Topsoil/Made Ground for waste classification purposes indicates that the majority of this material may be classified as 'not hazardous' with respect to waste disposal. However, waste acceptance criteria (WAC) testing demonstrates that the 'not hazardous' samples should be disposed of in a non-hazardous landfill due to an exceedance of sulphate. The Made Ground in the area of WS11 where asbestos fibres have been identified would need to be disposed at a non-hazardous landfill that accepts asbestos waste, or a hazardous landfill depending on the quantity of asbestos present. Further asbestos quantification testing in this area would be required by the landfill prior to disposal.

Piled foundations are considered suitable for the proposed development of the site. A preliminary assessment of pile working loads demonstrates that a range of capacities from 530kN to 5,810kN is achievable using piles 0.45m to 1.2m in diameter and 10m to 25m in length, respectively, with the piles being bored from basement level. The final pile design should be undertaken by the specialist piling contractor engaged to undertake the works. The London Clay Formation has a medium to high volume change potential and floor slabs should therefore be designed as suspended in order to mitigate potential damage due to heave. It is anticipated that shallow excavations will remain stable in the short term.

Buried concrete within the London Clay Formation should be designed to DS-4 and AC-3s if disturbed during construction (i.e. during basement excavation), or DS-3 and AC-2s if undisturbed during construction, for example where piled foundations are employed. Buried concrete within the Made Ground should be designed to DS-1 and AC-1.

INTRODUCTION

Card Geotechnics Limited (CGL) has been commissioned by Walsh Associates on behalf of Stanley Sidings Limited to undertake a geotechnical and geoenvironmental intrusive investigation to assess the ground conditions at a site proposed for development at Camden Lock Village, London.

The proposed development of the site is part of a wider scheme across the Hawley Warf area of Camden Lock. Two previous reports have been issued by CGL and approved under the relevant planning authorities by Camden Council for the Proposed School Site¹ on Hawley Road and the remainder of the wider masterplan site². In addition, the wider masterplan site has been the subject of a number of previous reports, by RPS, including;

- Phase 1 Environmental Risk Assessment (RPS 2009)³
- Archaeological Desk Based Assessment (RPS 2009)⁴

Pertinent information within the RPS reports is summarised in Sections 1 and 3 of this report and has been used to inform the ground model for the purpose of providing geotechnical recommendations. However, the full reports should be referred to for further details.

The objectives of this report are to:

- provide a summary of the site history and environmental setting;
- provide information on the ground conditions;
- provide an assessment and recommendations relating to the potential for soil and groundwater contamination and ground gas; and
- provide geotechnical recommendations to assist with foundation, floor slab and pavement design.

¹ CGL (2014) Camden Lock, London – Proposed School Site. *Geotechnical and Geoenvironmental Interpretative Report*. Ref: CG/18067. December 2014

² CGL (2015) Camden Lock Village, London. Geotechnical and Geoenvironmental Interpretative Report.Rev1 Ref: CG/18067A February 2015

³ RPS (2009) Camden Lock Village London Borough of Camden. *Phase 1 – Environmental Risk Assessment*. Ref: HLEI4880/001R. October 2009

RPS (2009) Camden Lock Village London Borough of Camden. *An Archaeological Desk Based Assessment*. Ref: JLK0617 RO1. November 2009

1. SITE LOCATION AND DESCRIPTION

1.1 Site location

The site is situated off Kentish Town Road in Camden, northwest London. The Ordnance Survey grid reference for the approximate centre of the site is 528916N, 184174E.

A site location plan is presented as Figure 1.

1.2 Site description

The site is triangular in shape and is bordered by offices to the north, Kentish Town Road to the east and the *Regent's Canal* and *Grand Union Towpath* to the south and west. The London Underground Limited (LUL) Northern Line is known to run to the east of the site beneath Kentish Town Road.

At the time of the site works, the site comprised open land covered with grass and weeds. Some rubbish (cans, bottles and plastic bags) and stored materials (barriers and road signs) were noted across the site.

The site forms part of the wider proposed development of the Hawley Warf area of Camden Lock, with the proposed Building D situated immediately to the north of the site.

A site layout plan is presented as Figure 2.

1.3 Proposed development

It is proposed to construct a multi-storey building with a single storey basement and communal landscaped areas. The upper floors of the building will comprise residential properties, with flexible office and gym spaces on the ground and basement level. The proposal has been designed as an annex so that Area E will be joined with Area D to create one larger building.

Proposed development plans are included as Appendix A.

1.4 Historical development

Maps detailing the historical development of the site were included by RPS in their October 2009³ and November 2009⁴ reports. The information from these maps indicates that the site consisted of open fields until the *Regent's Canal* was constructed in the early 1800s, with associated residential properties constructed across the site. These properties are noted on the maps included within the RPS reports (1746 to 1973), indicating that they were demolished sometime between 1973 and the present day.

Anecdotal information from the Camden Council Planning website⁵ indicates that the buildings on site were converted to retail units sometime prior to 1967. These buildings subsequently fell into disrepair and were demolished between 2006 to 2008, after which the site remained in its current state.

1.5 Bomb damage and unexploded ordnance

Historical mapping included within the November 2009 RPS report⁴ indicates that the area did not suffer bomb damage during the Second World War.

A detailed unexploded ordnance (UXO) risk assessment⁶ was undertaken by 6 Alpha Associates Limited in September 2014 for the area immediately to the north of the site (Building D). The report notes that the risk posed by UXO in this area is 'low to medium' and it is considered that the same rating applies to the study site.

1.6 Anticipated ground conditions

1.6.1 Published and unpublished geology

The British Geological Survey (BGS) map sheet 256⁷ indicates that the site is directly underlain by the London Clay Formation, which consists of stiff blue grey silty clay, weathering to brown silty clay.

The BGS holds records of a number of historical ground investigations within 300m of the site. Selected logs are summarised in Table 1 and are included in Appendix B.

⁵ www.camden.gov.uk/ccm/navigation/environment/planning-and-built-environment/ Accessed 20/02/15

 ⁶ 6 Alpha Associates Limited (2014) *Detailed Unexploded Ordnance (UXO) Risk Assessment*. Ref: P4063. September 2014
 ⁷ British Geological Survey. (1994) North London. Sheet 256. Solid and Drift Geology 1:50,000.

				<u></u> [])	Depth to top of stratum (mbgl)					
BH record reference	Distance (m)	Direction	Depth to base of BH (mbgl)	Ground water level (mbgl)	Made Ground	London Clay Formation	Lambeth Group	Thanet Sand	Chalk	
TQ28SE5	80	SW	91.4	NR^{1}	_2	0.0	42	-	64	
TQ28SE1203	170	SE	18.7	1.1	0.0	1.5	-	-	-	
TQ28SE1204	210	SE	18.4	NR	0.0	0.9	-	-	-	
TQ28SE1206	180	SE	9.6	1.1	0.0	2.1	-	-	-	
TQ28SE1208	210	SE	9.4	NR	0.0	1.37	-	-	-	
TQ28SE1239	270	NW	3.0	-	0.0	0.63	-	-	-	
TQ28SE1240	270	NW	3.0	-	0.0	0.5	-	-	-	
TQ28SE1241	270	NW	3.0	-	0.0	0.8	-	-	-	
TQ28SE1242	270	NW	3.0	-	0.0	0.6	-	-	-	
TQ28SE1491	100	SE	198.7	91.7	0.0	6.7	44.8	53.9	125.0	
TQ28SE2272	260	SW	1.1	-	0.0	1.08	-	-	-	

Notes

1. NR = not recorded

2. - = Information not included on historical log

1.6.2 Hydrogeology and hydrology

1.7 Hydrogeology

The Environment Agency (EA)⁸ has produced an aquifer designation system consistent with the requirements of the Water Framework Directive. The designations have been set for superficial and bedrock geology and are based on the importance of aquifers for potable water supply and their role in supporting surface water bodies and wetland ecosystems.

The underlying London Clay Formation is classified as an 'Unproductive Strata' and the site is not within a Groundwater Source Protection Zone (SPZ).

⁸ www.environment-agency.gov.uk (September 2014)

1.8 Hydrology

Figure 11 of the Hampstead Heath Surface Water Catchments and Drainage of the Camden Geological, Hydrogeological and Hydrological report produced by Arup⁹ presents a copy of the 'Lost Rivers of London' map produced by Barton. A number of springs outcrop at the base of the Bagshot Formation to the north, flowing through various drainage channels and in various directions into the watercourses of the district (most of which are now diverted underground), including the River Westbourne, River Tyburn and River Fleet. The map indicates that two tributaries of the River Fleet join some 34m to the northeast of the site, where the river then trends south east along Camden Street.

Historical mapping for the site (Survey of the Borough of St Marylebone 1834) provided by the client, indicates that before the River Fleet was culverted it passed through the northeastern part of the site. Little evidence of this historical river course was noted during the site investigation and it is expected that it may have been removed during the construction of the historical developments onsite and immediately to the north (Building D), and during construction of the *Regent's Canal*.

With reference to the Arup report⁹, the site is approximately 2.2km southeast of the catchment for the pond chains on Hampstead Heath. Additionally, with reference to the EA website, the site is not within a Flood Risk Zone.

Current flood mapping (Figure 15 CPG4¹⁰) indicates that Kentish Town Road, on the eastern site boundary was impacted by flooding in 1975. However, this road was not impacted by the 2002 flooding in the region or by the serious national floods in 2007 and 2012. It is noted in the London Borough of Camden flood risk management strategy¹¹ and Report of the Floods Scrutiny Panel¹² that the 1975 flood event was caused by the heaviest and most concentrated rainfall event recorded in this part of Camden. This 1 in 100 year event was preceded by a very dry summer and is therefore not considered to be representative of typical conditions in the area. In addition, the site is not within an area identified by the EA to be at risk of surface water flooding. Following the 2002 flood event, new infrastructure, including larger diameter sewers and a holding tank, was installed in the Borough to mitigate the potential for future flooding.

⁹ Ove Arup and Partners Limited (2010). *London Borough of Camden. Camden geological, hydrogeological and hydrological study. Guidance for subterranean development.* Issue 01, November 2010.

¹⁰ Camden Planning Guidance, CPG4, Basements and Lightwells, September 2013.

¹¹ London Borough of Camden (2014) Managing Flood Risk in Camden: The London Borough of Camden flood risk management strategy

¹² London Borough of Camden (2003) Floods in Camden: Report of the Floods Scrutiny Panel

1.9 Environmental setting

The previous report by RPS³ provides information on the environmental setting of the wider development site, including Building E, and possible sources of soil and groundwater contamination. The key points are summarised below:

- There are no recorded landfill sites within 500m of the wider site. However, there are two waste transfer sites, located 120m southwest and 130m south of the site.
- No 'major' or 'significant' pollution incidents are noted within 500m of the site.
- There is the potential for arsenic and lead contamination to be present within the soils at the site, resulting from the spreading of ash in private gardens during the pre-Victorian period to the 1950s.
- There are eleven industrial activities within 500m of the site, including vehicle respraying, petrol stations and dry cleaners.
- The site is not in a radon affected area.

1.10 Preliminary risk assessment

The October 2009 RPS report³ included a preliminary risk assessment for the masterplan site. The maps and information obtained as part of the RPS report include the Building E area and it is considered that the findings of the report are applicable to the Building E area. The key points of the report are summarised below:

- It is likely that contamination is present within the soils due to historical land use on site and in the surrounding area.
- The potential pathways to human health receptors include dermal contact, inhalation and ingestion of contaminants. Due to the underlying London Clay Formation, there is not considered to be a pathway for contaminants to reach the underlying Chalk aquifer.

In addition to the potential risks identified by RPS, due to the age of the previously demolished buildings at the site, it is considered that there is the potential for asbestos or asbestos-containing material to be present within the Made Ground..

2. CURRENT GROUND INVESTIGATION

2.1 Fieldwork

Following the previous phases of investigation across the masterplan site (Phases 1 to 3), an intrusive investigation (Phase 4) was undertaken at the site on 14 January 2015. The investigation comprised ten window sampler boreholes (WS10 to WS15, WS11A, WS11B, WS14A, WS14B), which extended to a maximum depth of 20.33 metres above Ordinance Datum (mOD), or 5.45 metres below ground level (mbgl). The investigation was broadly undertaken in accordance with the requirements of BS 5930:1999¹³ and BS 10175:2011¹⁴.

The borehole arisings were recorded and representatively sampled by a suitably qualified geotechnical and geoenvironmental engineer from CGL in order to obtain samples for laboratory testing, and to characterise the near surface ground conditions across the site. Insitu testing, including SPTs (Standard Penetration Tests), undertaken in the boreholes, and hand shear vanes undertaken on the arisings. Soil samples were obtained for chemical and geotechnical laboratory analysis. Standpipes were installed in three boreholes (WS10, WS11B and WS12) to enable subsequent gas and groundwater monitoring to be undertaken.

The locations attempted on the eastern boundary of the site (WS11 and WS14) refused at approximately 1.0mbgl. This is anticipated to be due to historical foundations associated with the previous buildings in this area of the site. Window sampler holes WS14/WS14A/WS14B were abandoned due to the refusals and WS11 was moved approximately 5m to the west where WS11B progressed to 5.45mbgl.

A plan showing the location of the exploratory boreholes is presented as Figure 2 and the borehole logs are included as Appendix C.

2.2 Monitoring

Six ground gas and groundwater monitoring visits have been undertaken to date, on 20th and 26th January and 6th, 10th, 16th and 24th February 2015. Copies of the monitoring records are included as Appendix D.

 ¹³ BS 5930:1999; Code of practice for site investigations, Incorporating Amendment 2, British Standards Institute. 1999.
 ¹⁴ BS 10175:2011; Code of practice for the Investigation of Potentially Contaminated Sites. British Standards Institute. 2011.

2.3 Laboratory testing

2.3.1 Chemical

Ten representative soil samples (five Made Ground and five Weathered London Clay Formation) were submitted to i2 Analytical Limited (a UKAS and MCERTS accredited laboratory) for chemical testing. The analysis included the following determinants.

- Soil Organic Matter (SOM);
- Heavy metals including; arsenic, barium, beryllium, boron, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium and zinc;
- Total Petroleum Hydrocarbons (TPH) and Polycyclic Aromatic Hydrocarbons (PAH);
- Total Monohydric Phenols;
- Total Cyanide;
- Asbestos screen and identification; and
- pH and sulfate determination.

The laboratory analysis results are presented in Appendix E.

2.3.2 Geotechnical

Four samples of Weathered London Clay Formation were sent for geotechnical laboratory analysis at Albury SI Limited. The analysis included:

- Moisture Content, and;
- Atterberg Limits.

The results of the analysis are presented in Appendix F.

3. GROUND AND GROUNDWATER CONDITIONS

3.1 Summary

The ground conditions encountered are summarised in Table 2. The window sample borehole logs are included in Appendix C.

Table 2. Summary of ground conditions

Stratum	Level to top of stratum (mOD) [mbgl]	Typical thickness (m)
Dark brown slightly clayey gravelly fine to coarse sand with frequent rootlets. Gravel is fine to coarse subrounded to subangular of flint. [MADE GROUND – TOPSOIL]	25.78 to 26.07 [0.0]	0.15 to 0.25
Firm brown grey to black slightly sandy gravelly clay. Sand is fine to coarse. Gravel is fine to coarse subrounded to angular of red and yellow brick, concrete and slate with occasional wood fragments and rare clinker. Obstructions were identified at 1.0 to 1.4mbgl within WS11, WS11A, WS14, WS14A and WS14B. [MADE GROUND]	25.59 to 25.92 [0.15 to 0.25]	0.50 to 1.25
Firm to very stiff, medium to high strength, very occasionally low strength, light brown occasionally mottled grey slightly silty occasionally slightly sandy CLAY. [WEATHERED LONDON CLAY FORMATION]	24.74 to 25.30 [0.7 to 1.4]	>4.75 Base not proved in borehole

The ground conditions encountered during the ground investigation generally correlated with the BGS mapping of the area, with varying Made Ground directly overlying the Weathered London Clay Formation. The upper surface of the Weathered London Clay Formation was found to be relatively consistent across the site. The ground conditions encountered are consistent with the boreholes undertaken across the wider development site (Phases 1 to 3 of the ground investigation), which have been used to inform the recommendations for the subject site.

3.2 Made Ground

The Made Ground was found to be relatively consistent across the site and comprised slightly sandy gravelly clay. The gravel consisted of flint, brick, concrete and slate with occasional fragments of wood and clinker. Although occasional black staining was noted, no visual or olfactory evidence of contamination was encountered in the boreholes or SPTs.

3.3 Weathered London Clay Formation

The Weathered London Clay Formation was proved to a maximum depth of 20.33mOD (5.45mbgl). No unweathered London Clay Formation was encountered during the investigation on the subject site. However, based on the nearby deep borehole (BH7) in the Building D area, some 1.0m north of the site, it is assumed that the clay becomes unweathered at around 16.9mbgl (8.9mOD).

SPT 'N' values within the Weathered London Clay Formation ranged from 6 to 23. Undrained shear strength values can be derived from SPT 'N' values using established correlations¹⁵ (assuming f=4.5) and range from 27kPa to 104kPa, indicating that the clay is low to high strength. Plots of SPT 'N' values and correlated undrained shear strength against level (mOD) are presented as Figure 3 and Figure 4, respectively. These show the strength of the Weathered London Clay Formation to increase linearly with depth below ground level.

The moisture content and Atterberg Limits of the clay are summarised in Table 3.

 Table 3. Summary of moisture content and Atterberg Limits

Strata	Moisture content (%)	Liquid limit (%)	Plastic limit (%)	Modified Plasticity Index, I' (%)
Weathered London Clay Formation	27.2 to 33.8	61 to 80	24 to 28	37 to 52

These results indicate that the London Clay Formation at this site is a high to very high plasticity clay of medium to high volume change potential.

¹⁵ Tomlinson, M.J. (2001) *Foundations Design and Construction (7th Ed.)*. Pearson Prentice Hall

3.4 Groundwater

No groundwater was encountered in the window sample boreholes during drilling. However, groundwater was noted during the subsequent monitoring visits. The groundwater levels noted during the visits are summarised in Table 4.

Borehole	Level to groundwater (mOD) [Level to base of well (mOD)]									
	20/01/15 26/01/15 06/01/15 10/02/15 16/02/15 24/									
WS10	21.52	21.70	21.58	22.50	22.22	22.25				
	[21.0]	[21.0]	[21.0]	[21.0]	[21.0]	[21.0]				
WS11B	21.01	21.34	21.05	21.62	21.26	21.29				
	[20.8]	[20.8]	[20.8]	[20.8]	[20.8]	[20.9]				
WS12	21.38	21.64	21.40	22.66	21.82	21.85				
	[21.0]	[21.0]	[21.0]	[20.9]	[21.0]	[21.0]				

The monitoring records indicate that standing groundwater recorded in monitoring wells across the site range from between 3.28mbgl to 4.78mbgl (21.01mOD to 22.66mOD). This is considered unlikely to represent a continuous water body across the site and is anticipated to be due to water seepage at the interface between the Made Ground and London Clay Formation and also potentially due to very slow seepage within the silty sandy layers/pockets within the Weathered London Clay Formation.

3.5 Sulfate and pH conditions

A total of five soil samples from across the site have been tested for pH and sulfate

conditions. The results of the testing are summarised in Table 5.

Borehole	Depth (mbgl)	Strata	Water soluble sulfate (g/l)	Acid soluble sulfate (%)	Total sulfur (%)	Total potential sulfate (%)	рН
BH11B	0.5	Made Ground	0.57	1.1	550	1650	7.3
BH13	0.5	Made Ground	0.27	0.54	-	-	9.5
BH10	2.0	Weathered London Clay Formation	0.25	0.51	290	870	7.9
BH12	3.0	Weathered London Clay Formation	0.028	0.057	-	-	7.9
BH13	2.2	Weathered London Clay Formation	0.45	0.89	530	1590	7.8

The assessment of these results is discussed in further detail in Section 6.7.

4. CONTAMINATION ASSESSMENT

4.1 Risks to human health (long-term chronic risks)

Soil Guideline Values (SGVs) have not been issued by the Environment Agency for the *"Residential (without plant uptake)"* land-use category. The soil results have therefore been compared to *Generic Assessment Criteria* (GACs) that have been derived in-house by CGL using the *Contaminated Land Exposure Assessment (CLEA)* model¹⁶ and version 1.06 of the CLEA software to assess the risk to human health from chemical contamination in the soils.

The GACs represent conservative screening criteria and have been calculated using the default parameters for the standard land use scenario set out in the CLEA technical report and toxicological inputs in line with the requirements of *Science Report SC050021/SR2*¹⁷ and, in the case of petroleum hydrocarbons, Science *Report P5-080/TR3*¹⁸. In the case of selenium, mercury, arsenic, nickel and the BTEX compounds, SGVs have been issued by the Environment Agency for other land-use categories and the physical-chemical and toxicological inputs have been taken from the published SGV reports.

The GACs have been generated assuming a sandy loam soil type and a Soil Organic Matter of 2.5% for the Made Ground and 1.0% for the natural soils, which are suitable assumptions for the site in question. More detailed information on the derivation of the CGL GACs can be provided upon request. The results of the assessment are set out below in Table 6 to Table 9. The Made Ground and the natural soils have been assessed separately.

¹⁶ Environment Agency. (January 2009). Updated technical background to the CLEA model. Science Report SC050021/SR3.

¹⁷ Environment Agency. (January 2009). *Human health toxicological assessment of contaminants in soil*. Science Report SC050021/SR2.

¹⁸ Environment Agency. (February 2005). The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils. Science Report P5-080/TR3.

In March 2014, the Department for Environment, Food and Regional Affairs (DEFRA) issued SP1010 Development of Category 4 Screening Levels (C4SLs) for assessment of land affected by contamination - Policy companion document¹⁹, along with the results of the work by the C4SLs development team²⁰. This includes a set of C4SL values for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead for sandy loam soil with SOM =6%.

These values are primarily to support site assessment with respect to Part 2A of the Environmental Protection Act 1990, being indicative of low health risk and therefore of a site not determinable under Part2A. This is in comparison with the SGVs and GACs which represent minimal risk. The C4SLs are based on revised slightly less conservative exposure models and toxicology based on Low Level of Toxicological Concern (LLTC) rather than the Heath Criteria Values (HCV) on which the SGVs/GACs are based. The difference in risk level between HCV (minimal risk) and LLTC (low risk) is slight, and it is noted that both are still within the Category 4 level and below the Category 3/4 level boundary considered by DEFRA to be the likely de facto minimum standard chosen by developers. The C4SLs are still strongly conservative in accordance with the Contaminated Land Regulations and meet the objectives of the NPPF that:

- the site is suitable for its new use taking account of ground conditions and land instability, including from natural hazards or former activities such as mining, pollution arising from previous uses and any proposals for mitigation including land remediation or impacts on the natural environment arising from that remediation; and
- after remediation, as a minimum, land should not be capable of being determined as contaminated land under Part IIA of the Environmental Protection Act 1990.

On this basis CGL considers it is appropriate to use C4SLs for the published contaminants. In the event impacts are identified on a site above the GAC/SGV level for these contaminants, CGL will utilise the C4SLs to assess whether these pose a low risk to developments and Public Open Space applications.

It should be noted that due to the limited number of samples retrieved from the site, statistical analysis has not been undertaken. Additionally, the soils saturation limit (SSL) values have not been used, as no free product was noted during the intrusive investigation.

¹⁹ DEFRA (March 2014) SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document

²⁰ CL:AIRE (March 2014) SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination

Contaminant	SGV or GAC @ 2.5% SOM for Residential (without plant uptake) land-use	Notes on soil saturation limits (SSL) ¹	Measured range	Measured range > Assessment Criteria? (Y/N)
	(mg/kg)		(mg/kg)	
SOM (%)	*2		2.0 to 4.7	*
Arsenic	35 ³	-	16 to 44.0	Y
Cadmium	85 ³	-	<0.2	Ν
Chromium (total)	38	-	20.0 to 32.0	N
Lead	310 ⁷	-	290.0 to 1,300.0	Y
Mercury (inorganic)	240 ³	-	0.8 to 2.4	N
Selenium	600 ³	-	<1.0	N
Boron	*		0.4 to 2.8	*
Copper	6,700	-	47.0 to 220.0	N
Nickel	130 ³	-	16.0 to 44.0	N
Zinc	20,000	-	170.0 to 470.0	N
Antimony	*		2.5 to 44.0	*
Barium	*		160.0 to 350.0	*
Beryllium	26	-	0.6 to 2.7	N
Vanadium	210	-	41.0 to 89.0	N
Phenols ^₄	420 ³	-	<1.0	N
Cyanide	*		<1.0	*
BTEX compounds				
Benzene	0.50 ⁵	-	<0.001	N
Toluene	1,300 ⁵	-	<0.001	N
Ethyl benzene	380 ⁵	-	<0.001	N
m-xylene ⁶	130 ⁵	-	<0.001	N
o-xylene ⁶	140 ⁵	-	<0.001	N
p-xylene [^]	130 ⁵	-	<0.001	N

Table 6. Summary of soil contamination (risks to human health) - Made Ground

Notes:

-= green; (a) = amber i.e. GAC set to model output, [SSL provided in square brackets]; (b) = red i.e. SSL exceeded & considered to affect interpretation. GAC calculated in accordance with the CLEA Software Handbook; (c) = based on direct contact; (d) GAC limited to SSL.

2. * = no value currently defined

3. Based on the published Soil Guideline Value (Environment Agency, 2009), adjusted for no plant uptake and 2.5% SOM

4. GAC relates to Phenol (C_6H_5OH) only.

5. Based on the published SGVs for BTEX at 6% SOM (Environment Agency, 2009), adjusted for 2.5% SOM and no plant uptake

6. Concentrations for total xylenes should be compared to the value for m-xylene for fresh spills and to o-xylene for all other cases.

7. Published C4SL for lead (DEFRA, 2014)

Contaminant	SGV or GAC @ 2.5% SOM for Residential (without plant uptake) land-use	Notes on soil saturation limits (SSL) ¹	Measured range	Measured range > Assessment Criteria? (Y/N)
	(mg/kg)		(mg/kg)	
Total Petroleum Hydrocarb	ons (TPH)			
TPH aliphatic EC5-6	41	-	<0.1	Ν
TPH aliphatic EC>6-8	100	-	<0.1	Ν
TPH aliphatic EC>8-10	25	-	<0.1	Ν
TPH aliphatic EC>10-12	540	(b)	<1.0	Ν
TPH aliphatic EC>12-16	4,300	(b)	<2.0	Ν
TPH aliphatic EC>16-35	89,000	(b)	<16.0 to 229.0	Ν
TPH aromatic EC5-7	0.50	-	<0.1	Ν
TPH aromatic EC>7-8	1,300	-	<0.1	Ν
TPH aromatic EC>8-10	41	-	<0.1	Ν
TPH aromatic EC>10-12	210	-	<1.0 to 1.5	Ν
TPH aromatic EC>12-16	1,500	(b)	<2.0 to 12.0	Ν
TPH aromatic EC>16-21	1,100 [150]	(a)	<10.0 to 81.0	N
TPH aromatic EC>21-35	1,300 [12]	(a)	<10.0 to 550.0	N
Polycyclic Aromatic Hydroc	arbons (PAH)			
Acenaphthene	4,500	(b)	<0.1 to 2.2	N
Anthracene	23,000 [19]	(a)	<0.1 to 4.5	Ν
Benzo(a)anthracene	13 [4.3]	(a)	0.26 to 7.5	Ν
Benzo(a)pyrene	2.4 [2.3]	(a)	<0.1 to 7.7	Y
Benzo(b)fluoranthene	24 [3.0]	(a)	0.35 to 9.3	Ν
Benzo(g,h,i)perylene	250 [0.05]	(a)	<0.05 to 2.8	Ν
Benzo(k)fluoranthene	24 [1.7]	(a)	0.18 to 2.4	Ν
Chrysene	210 [1.1]	(a)	0.29 to 7.3	N
Dibenzo(a,h)anthracene	2.3 [0.01]	(a)	<0.1 to 0.69	N
Fluoranthene	3,200 [47]	(a)	0.46 to 18.0	N
Fluorene	3,100	(b)	<0.1 to 2.9	N
Indeno(1,2,3-cd)pyrene	23 [0.15]	(a)	<0.1 to 2.5	Ν
Naphthalene	3.9	-	<0.05 to 1.1	N
Pyrene	2,400 [5.5]	(a)	0.38 to 14.0	N

Table 7. Summary of soil contamination	(risks to human health) - Made Ground cont.

Notes:

1. -= green; (a) = amber i.e. GAC set to model output, [SSL provided in square brackets]; (b) = red i.e. SSL exceeded & considered to affect interpretation. GAC calculated in accordance with the CLEA Software Handbook; (c) = based on direct contact; (d) GAC limited to SSL.

Contaminant	SGV or GAC @ 1% SOM for Residential (without plant uptake) land-use	Notes on soil saturation limits (SSL) ¹		Measured range > Assessment Criteria? (Y/N)
	(mg/kg)		(mg/kg)	
SOM (%)	*2		1.4 to 1.6	*
Arsenic	35 ³	-	9.7 to 14.0	N
Cadmium	85 ³	-	<0.2	N
Chromium (total)	38	-	32.0 to 52.0	Y
Chromium (III)	1,100	-	32.0 to 52.0	N
Chromium (VI)	4.2	-	<1.2	N
Lead	310 ⁷	-	22.0 to 150.0	N
Mercury (inorganic)	240 ³	-	<0.3 to 0.7	N
Selenium	600 ³	-	<1.0	N
Boron	*		<0.2 to 1.4	*
Copper	6,700	-	24.0 to 51.0	N
Nickel	130 ³	-	26.0	N
Zinc	20,000	-	76.0 to 79.0	N
Antimony	*		<0.1 to 2.1	*
Barium	*		82.0 to 150.0	*
Beryllium	26	-	1.2 to 1.7	N
Vanadium	210	-	64.0 to 89.0	N
Phenols ⁴	310 ³	-	<1.0	N
Cyanide	*		<1.0	*
BTEX compounds				
Benzene	0.27 ⁵	-	<0.001	N
Toluene	610 ⁵	-	<0.001	N
Ethyl benzene	170 ⁵	-	<0.001	N
m-xylene ⁶	55 ⁵	-	<0.001	N
o-xylene ⁶	60 ⁵	-	<0.001	N
p-xylene [^]	53 ⁵	-	<0.001	N

Table 8. Summary of soil contamination (risks to human health) - natural soil

Notes:

- = green; (a) = amber i.e. GAC set to model output, [SSL provided in square brackets]; (b) = red i.e. SSL exceeded & considered to affect interpretation. GAC calculated in accordance with the CLEA Software Handbook; (c) = based on direct contact; (d) GAC limited to SSL.

2. * = no value currently defined

3. Based on the published Soil Guideline Value (Environment Agency, 2009), adjusted for no plant uptake and 2.5% SOM

4. GAC relates to Phenol (C_6H_5OH) only.

5. Based on the published SGVs for BTEX at 6% SOM (Environment Agency, 2009), adjusted for 2.5% SOM and no plant uptake

6. Concentrations for total xylenes should be compared to the value for m-xylene for fresh spills and to o-xylene for all other cases.

7. Published C4SL for lead (DEFRA, 2014)

8. Exceedance is for total chromium. Further analysis indicates that the major component is chromium III (with concentrations below the assessment criteria for chromium III) and the concentration of the more toxic chromium VI is below the assessment criteria.

Table 9. Summary of soil contamination	(risks to human healt	h) - natural soil cont.
--	-----------------------	-------------------------

Contaminant	SGV or GAC @ 1% SOM for Residential (without plant	Notes on soil saturation limits (SSL) ¹	Measured range	Measured range > Assessment Criteria? (Y/N)
	uptake) land-use			
	(mg/kg)		(mg/kg)	
Total Petroleum Hydrocarbons (TPH)				
TPH aliphatic EC5-6	24	-	<0.1	Ν
TPH aliphatic EC>6-8	49	-	<0.1	Ν
TPH aliphatic EC>8-10	10	-	<0.1	Ν
TPH aliphatic EC>10-12	540	(b)	<1.0	Ν
TPH aliphatic EC>12-16	1,500	(b)	<2.0	Ν
TPH aliphatic EC>16-35	89,000	(b)	<16.0 to 16.8	Ν
TPH aromatic EC5-7	0.27	-	<0.1	Ν
TPH aromatic EC>7-8	610	-	<0.1	Ν
TPH aromatic EC>8-10	17	-	<0.1	Ν
TPH aromatic EC>10-12	88	-	<1.0	Ν
TPH aromatic EC>12-16	1,500	(b)	<2.0	Ν
TPH aromatic EC>16-21	1,300	(a)	<10.0	Ν
TPH aromatic EC>21-35	1,300 [4.8]	(a)	<10.0 to 17.0	N
Polycyclic Aromatic Hydroca	arbons (PAH)			
Acenaphthene	4,500	(b)	<0.1	Ν
Anthracene	24,000	(a)	<0.1	Ν
Benzo(a)anthracene	7.7 [1.7]	(a)	<0.1	Ν
Benzo(a)pyrene	2.3 [0.9]	(a)	<0.1	Ν
Benzo(b)fluoranthene	22 [1.2]	(a)	<0.1	Ν
Benzo(g,h,i)perylene	240 [0.02]	(a)	<0.05	Ν
Benzo(k)fluoranthene	23 [0.7]	(a)	<0.1	Ν
Chrysene	170 [0.4]	(a)	<0.05	Ν
Dibenzo(a,h)anthracene	2.1 [0.004]	(a)	<0.1	Ν
Fluoranthene	3,100 [19]	(a)	<0.1	Ν
Fluorene	3,100	(b)	<0.1	Ν
Indeno(1,2,3-cd)pyrene	21 [0.06]	(a)	<0.1	N
Naphthalene	1.6	-	<0.05	Ν
Pyrene	2,300 [2.2]	(a)	<0.1	Ν

Notes:

1. -= green; (a) = amber i.e. GAC set to model output, [SSL provided in square brackets]; (b) = red i.e. SSL exceeded & considered to affect interpretation. GAC calculated in accordance with the CLEA Software Handbook; (c) = based on direct contact; (d) GAC limited to SSL.

The assessment has indicated that the concentrations of arsenic, lead and benzo(a)pyrene within the Made Ground exceed the applicable human health assessment criteria. Further details of the locations where the elevated concentrations of these contaminants were found to be above the assessment criteria are presented in .

In addition, an asbestos screen was undertaken on 4 samples of Made Ground. Loose fibres of amosite asbestos were detected in one sample (WS11 at 0.5mbgl), which is also included in .

Borehole	Depth (mbgl)	Contaminants which exceed assessment criteria	Contaminant concentration (mg/kg)	Assessment criteria for the Residential (without plant uptake) land use (mg/kg)
WS10	0.5	Arsenic Lead Benzo(a)pyrene	44.0 1,200.0 7.7	35.0 310.0 2.4
WS11	0.5	Asbestos (amosite fibres) Lead	Present 560.0	No fibres detected 310.0
WS13	0.5	Arsenic Lead	43.0 1,300.0	35.0 310.0

 Table 10. Summary of contaminant exceedances

The contaminant concentrations in the natural soils were generally below the assessment criteria for the contaminants tested. Although the testing indicated that concentrations of total chromium recorded in the London Clay were above the assessment criteria, further testing of these samples indicates that the concentrations of total chromium mostly comprised of chromium III (with concentrations below the chromium III criteria), with the recorded concentrations of the more toxic chromium VI being below the laboratory limit of detection and the assessment criterion. Therefore, the concentrations of chromium recorded to present an unacceptable risk to human health.

4.2 Ground gas assessment

Six rounds of ground gas monitoring have been undertaken in the standpipes installed across the site. The dates of the monitoring visits and the atmospheric pressure and local pressure system are summarised in Table 11.

Table 11. Summary og	f atmospheric pressu	res durina around	aas monitorina visits
Tubic II. Summary of	, aunospiicne pressa	ics during ground	gus monitoring visits

Borehole	Date of monitoring visit						
	20/01/15	26/01/15	06/01/15	10/02/15	16/02/15	24/02/15	
Atmospheric Pressure (mb)	1005 to 1007	1022	1025 to 1026	1029	1017	1004 to 1005	
Local pressure system	Falling	Rising	Rising	Rising	Falling	Rising	

The monitoring records are presented in Appendix D and the results of the monitoring are summarised below:

- Maximum carbon dioxide concentration: 2.2% v/v;
- Maximum methane concentration: <0.1% v/v;
- Maximum flow rate: 0.9l/hr;
- Minimum oxygen concentration: 18.2% v/v.

Based on these findings, and with reference to CIRIA guidance²¹, a gas screening value (GSV) of 0.0198l/hr has been calculated for the site, corresponding to Characteristic Situation 1.

²¹ CIRIA (2007) Assessing the risks posed by hazardous ground gases to buildings

5. RISK ASSESSMENT

5.1 Introduction

In accordance with Contaminated Land Report (CLR) 11²², a conceptual site model has been developed based on the information gathered during the intrusive investigation and the potential pollutant linkages have been evaluated through a semi-quantitative risk assessment. The risks ratings identified have been assigned in accordance with the DEFRA and Contaminated Land Report (CLR) 6²³, site prioritisation and categorisation rating system which is summarised in Table 12.

Risk Rating	Description		
	Contaminants very likely to represent an unacceptable risk to identified targets		
High Risk	Site probably not suitable for proposed use		
	Enforcement action possible,		
	Urgent action required		
	Contaminants likely to represent an unacceptable risk to identified targets		
Medium Risk	Site probably not suitable for proposed use		
	Action required in the medium term		
Low Disk	Contaminants may be present but unlikely to create unacceptable risk to identified targets		
Low Risk Site probably suitable for proposed use			
	Action unlikely to be needed whilst site remains in current use		
Negligible Risk	If contamination sources are present they are considered to be minor in nature and extent		
INCERTIFIC LISK	Site suitable for proposed use		
	No further action required		

Table 12. Risk Rating Terminology

Based on the terminology within this table, a refined assessment of the risks posed by the potential pollutant linkages at the site is outlined in

Table 13. A diagrammatic representation of the conceptual site model is provided in Figure5.

²² The Environment Agency. (2004). *Model Procedures for the Management of Land* Contamination. CLR 11.

 ²³ M.J. Carter Associates. (1995). Prioritisation and Categorisation Procedure for Sites which may be Contaminated. Department of the Environment. CLR 6

Source/Medium	Receptor	Potential Exposure Route	Risk Rating
Organic/inorganic contaminants and asbestos within Made Ground	Construction workers	Direct ingestion of soil & dust, inhalation of particulates & vapours and dermal contact	Medium (due to contaminant concentrations recorded in Made Ground and likely close contact during construction)
	Future site Direct ingestion of soil & dust, occupiers inhalation of particulates & vapours and dermal contact		Low to medium (where soil is exposed due to contaminant concentrations recorded in Made Ground)
	Vegetation and plants	Root uptake	Low
	Buildings & structures	Direct contact and migration & accumulation within building spaces. Damage to water supply pipes.	Medium
	Groundwater	Leaching and vertical migration of contaminants	Negligible
	Surface water	Lateral migration of contaminants	Negligible
Explosive / asphyxiating gases from Made Ground on site.	Internal building spaces & future occupiers	Migration of gases through the surface and via permeable soils	Negligible to low (based on the results of the six rounds of monitoring undertaken)

Table 13. Semi-quantitative risk assessment

5.1.1 Risks to human health

The risk to future site occupiers is considered to be low to medium where soils are exposed in soft landscaped areas, given the elevated concentrations of arsenic, lead and benzo(a)pyrene encountered in the Made Ground on site. Risks to site users will be mitigated by the presence of buildings and the basement, which is to extend beneath the whole site and will necessitate the removal of the majority of the Made Ground. In addition, where areas of soft landscaping are present in locations outside the basement footprint, a clean topsoil/subsoil capping cover can be used to act as a barrier to the underlying contamination.

The risk to construction workers from the Made Ground is considered to be medium. It is considered that the potential risks can be controlled through appropriate health and safety procedures and site working practices, including the use of personal protective equipment (PPE).

5.1.2 Risks to controlled waters

The site is not situated above an aquifer and the groundwater encountered during monitoring is considered to be perched water, and not representative of a groundwater body. The risk to groundwater is therefore considered to be negligible. The nearest surface water receptor (the *Regent's Canal*) is some 3m south of the site and consists of a clay-lined man-made canal. Given the generally low concentrations of contaminants, the cohesive nature of the underlying London Clay Formation and the lined nature of the canal, the risk to controlled waters is considered to be low.

5.1.3 Risks to buildings and structures

Due to the generally limited nature of the Made Ground and low concentrations of contaminants recorded, the risk to buildings and structures is considered to be low. The design of buried concrete should take into consideration the pyritic nature of the London Clay Formation and the resultant risk of sulfate attack on the concrete.

5.1.4 Risks to vegetation and plants

No exceedances of phytotoxic chemicals were noted at the site and the basement is to extend across the whole of the site. Therefore, the risk to vegetation and plants is considered to be low.

6. GEOTECHNICAL RECOMMENDATIONS

6.1 General

The following sections provide recommendations for the proposed development with regard to geotechnical aspects, based on the information obtained during the intrusive investigations at the site and across the wider development site and the laboratory results.

6.2 Geotechnical design parameters

Geotechnical design parameters are recommended based on the available information from the intrusive investigations at Building E and across the wider site (see Figure 6) and from published information. These are summarised in Table 14. The values are unfactored (Serviceability Limit State) parameters and are considered to be characteristic values for the local soils.

Table 14. Geotechnical parameters

Stratum	γ (kN/m³)	φ' (°)	Cu (kPa) [c']	Eu (MPa) [E']
Made Ground	18	30 ^ª	30 [0]	18 ^b [13.5 ^c]
London Clay Formation	20	24 ^d	50+6.9z ^{e,f} [5]	30+4.14z ^{e,f} [22.5+3.11z]

a. Burland et. al (Eds) (2001) Building response to tunnelling, CIRIA Special Publication 200, CIRIA

b. Based on 600c_u

c. Based on 0.75Eu

d. BS 8002:1994 Code of practice for Earth retaining structures, British Standards institution.

e. z = depth below surface of London Clay

f. based on information from the site investigations across the whole of the wider development site

6.3 Foundations

It is understood that a piled foundation solution is the preferred option for the proposed development of the site.

Indicative pile working loads (kN) are shown below in Table 15 and Figure 7, based on pile diameters of 0.45m to 1.2m and pile lengths of 10m to 25m. An overall design factor of safety of 2.6 and adhesion factor of 0.5 have been assumed. These factors may be modified based on the design approach adopted, the piling methodology and on the results of pre-construction pile testing. It is assumed that the piles will be driven from basement level.

These calculations are based on the geotechnical design parameters presented in Table 14.

Pile Length (m)	Pile diameter (m)					
	0.45	0.6	0.75	0.9	1.2	
10	530	750	990	1,250	1,850	
15	800	1,110	1,450	1,820	2,620	
20	1,100	1,520	1,970	2,440	3,470	
25	1,430	1,960	2,530	3,130	4,410	

Table 15. Indicative pile working loads (kN) – piled from basement level at Building E

Early consultation with an appropriate piling contractor is recommended to confirm pile working capacities. Specialist piling contractors may potentially show greater load capacity than those shown in the above table based on specific knowledge of their piling equipment and supported by testing evidence that may be acceptable to the local authority.

Given the proximity of the site to the LUL Northern Line tunnels beneath Kentish Town Road, the effect of piling on these structures should be considered prior to construction. The exact location of the tunnels should be confirmed and the piles should be situated outside the exclusion zone surrounding the tunnels. Additionally, the effect of load spread from the piles should be considered.

6.4 Excavations and retaining structures

The proposed development at Building E includes a single storey basement which is assumed to extend to a maximum depth of 5mbgl. A 'bottom-up' construction methodology is recommended, utilising temporary berms and/or propping during installation of the contiguous piled wall.

It is recommended that a Basement Impact Assessment (BIA) is undertaken to assess the impact of the proposed basement on adjacent roads, buildings, the canal wall and infrastructure, including the nearby LUL Northern Line which runs beneath Kentish Town Road. This assessment may also incorporate the effect of piling on the nearby infrastructure.

It is anticipated that shallow excavations within the Made Ground and London Clay Formation will remain stable over the short term if dry. Where water is encountered in excavations, such as perched water within Made Ground or surface run-off, temporary sidewall support and dewatering (sump pumping) may be required to maintain excavation stability.

No operatives should enter unshored or otherwise protected excavations identified as unstable by a competent person, however shallow they are, in accordance with the guidelines presented in CIRIA Report 97²⁴.

6.5 Floor slabs and pavement design

The underlying London Clay Formation has been found to have a medium to high volume change potential. Floor and basement slabs should therefore be designed as suspended in order to prevent damage due to heave movements.

Recommendations for the design of the basement slabs in relation to the design groundwater level and calculation of the potential heave movements should be included within the Basement Impact Assessment for Building E. This assessment should also include recommendations for heave protection for the basement slabs.

Based on the geotechnical testing undertaken at the wider development site, a design CBR of 2.5% is recommended for pavement design.

6.6 Drainage

Soakaway drainage is not considered suitable for the site, given the cohesive nature of the underlying ground. Permeability of the London Clay Formation can be assumed to be in the order of 10⁻⁹ m/s, which is typical for such a plastic clay.

6.7 Buried concrete

The availability of total potential sulfate (TPS) in pyritic soils is dependent on the extent to which the soils are disturbed, and the level to which the soils may oxidise, resulting in sulfate ions that may reach the concrete. In this regard, BRE SD1 guidance states that *"Concrete in pyritic ground which is initially low in soluble sulfate does not have to be designed to withstand a high potential sulfate class unless it is exposed to ground which has been disturbed to the extent that contained pyrite might oxidise and the resultant*

²⁴ CIRIA (1992). *Trenching Practice (Second Edition)*. Construction Industry Research and Information Association Report 97.

sulfate ions reach the concrete. This may prompt redesign of the structure or change to the construction process to avoid ground disturbance; for example, by using precast or cast-in-situ piles instead of constructing a spread footing within an excavation".

On this basis, the appropriate DS and ACEC class for the pyritic soils, i.e. based on water soluble sulfate (WSS) or total potential sulfate (TPS), should be adopted dependant on the extent to which the soils will be disturbed during construction.

Where open excavations will be required into the London Clay (i.e. during basement excavations), the soils may be disturbed to the extent that contained pyrite might oxidise and allow the resultant sulfate ions to reach the concrete, and as such the TPS DS and ACEC classes should be adopted. However, where the soils are undisturbed (i.e. where cast-in-situ piles are utilised), the lower WSS DS and ACEC classes may be adopted.

In addition to the five samples from the Building E site, a further thirty-one samples have been tested from across the wider development site, including samples from deep boreholes. Twelve of the thirty-six samples analysed for pH and sulfate were found to be pyritic. Of these twelve samples, two were noted to be high in total potential sulfate with a resultant DS and ACEC class of DS-5 and AC-4s (if disturbed).

As the proposed basement at the site is to extend to some 5mbgl and is to be constructed with contiguous piled walls with the building supported by piled foundations, it is considered that the proposed development works will not result in the soils with high total potential sulfate being disturbed by these works.

It is therefore recommended that buried concrete within the London Clay Formation should be designed to Design Class DS-3 and ACEC Class 2s if undisturbed (based on WSS). Design classes of DS-4 and AC-3s should be adopted for the basement slabs if they are exposed to disturbed soils for any length of time.

The Made Ground at the site is not pyritic and buried concrete in this stratum should be designed to Design Class DS-1 and ACEC Class AC-1.

7. GEOENVIRONMENTAL RECOMMENDATIONS

7.1 Contamination and remediation

The concentrations of arsenic, lead and benzo(a)pyrene recorded within the Made Ground present a potential unacceptable risk to human health where soil is exposed. The proposed basement is to extend across the entire site and it is anticipated that the Made Ground will therefore be removed from site. If areas of soft landscaping are present outside of the basement footprint, it is recommended that a capping layer is installed in order to mitigate the potential risk to human health. Risks to site users will be mitigated by the presence of buildings and hardstanding, where present.

The capping layer should generally comprise hardstanding or a minimum of 150mm topsoil over 300mm subsoil and a geotextile membrane in areas of communal landscaping.

Based on the results of the six ground gas monitoring visits undertaken, a gas screening value (GSV) of 0.0198l/hr has been calculated for the site, corresponding to Characteristic Situation 1. No ground gas protection measures are therefore required in the development.

7.2 Material management

A preliminary waste classification assessment of Made Ground samples indicates that this material may be classified as 'not hazardous' with respect to waste disposal. However, waste acceptance criteria (WAC) testing demonstrates that the 'not hazardous' samples should be disposed of in a non-hazardous landfill due to an exceedance of sulfate.

The Made Ground in the area of WS11 where asbestos fibres have been identified would need to be disposed at a non-hazardous landfill that accepts asbestos waste, or a hazardous landfill depending on the quantity of asbestos present (i.e. >0.1% of asbestos by weight would classify the soils as hazardous). Further asbestos quantification testing in this area would be required by the landfill prior to disposal. If asbestos or asbestos-containing material is visibly noted within the soil matrix, the material will be classified as *hazardous*. Hand picking of the visible asbestos containing material should be undertaken to reduce the volume of hazardous waste and potentially allow the residual soils to be disposed of to a non-hazardous facility, subject to the volume of fibres present. If visual asbestoscontaining material is noted, or the quantity is >0.1%, the site would need to be registered with the Environment Agency as a producer of hazardous waste. Removal of impacted

material should only be undertaken by trained operatives with appropriate PPE, including respirators and dust suppression, as appropriate, and the material removed from site should be double bagged / lorries covered.

Uncontaminated natural soils, as encountered at the site, can be disposed of at an inert landfill as listed inert waste.

It should be noted that in May/June 2012 HMR&C issued Briefs 15/12 and 18/12 clarifying how construction spoil and excess soils will be assessed for landfill tax purposes. Detailed accurate descriptions of waste are required for all wastes to support the landfill tax assessment. Uncontaminated naturally occurring soils will remain inert by default and eligible for the lower rate of landfill tax. Similarly 'reworked soils' and demolition 'stone' comprising ONLY materials listed in the Schedule of the Landfill Tax (Qualifying Material) Order 2011 (SI 2011/1017) will also be eligible for the lower rate of landfill tax. However, Made Ground containing soil and foreign objects such as timber, plastic, rubber, metal, paper, plasterboard, asbestos, etc., regardless of the results of chemical analysis for waste classification purposes, will be eligible for the standard (higher) rate of landfill tax. Therefore, to maximise eligibility for lower rate landfill tax on waste construction spoil/ reworked ground, careful waste segregation and controls are necessary.

All material intended for offsite disposal should be transported and disposed in accordance with the Environmental Protection (Duty of Care) Regulations, 1991 and the Landfill (England and Wales) Regulations, 2002 (as amended). Waste legislation stipulates that hazardous and not hazardous waste should be pre-treated prior to disposal. Pre-treatment can be undertaken either at the site of origin or may be carried out at a licensed off-site facility and can include selective segregation of soils conducted on site.

7.3 Buried services

Based on the measured concentrations of contaminants within the Made Ground, it is anticipated that barrier pipe will be required for use at the site. However, it is recommended that the water supply company is contacted to confirm this recommendation is acceptable to them.

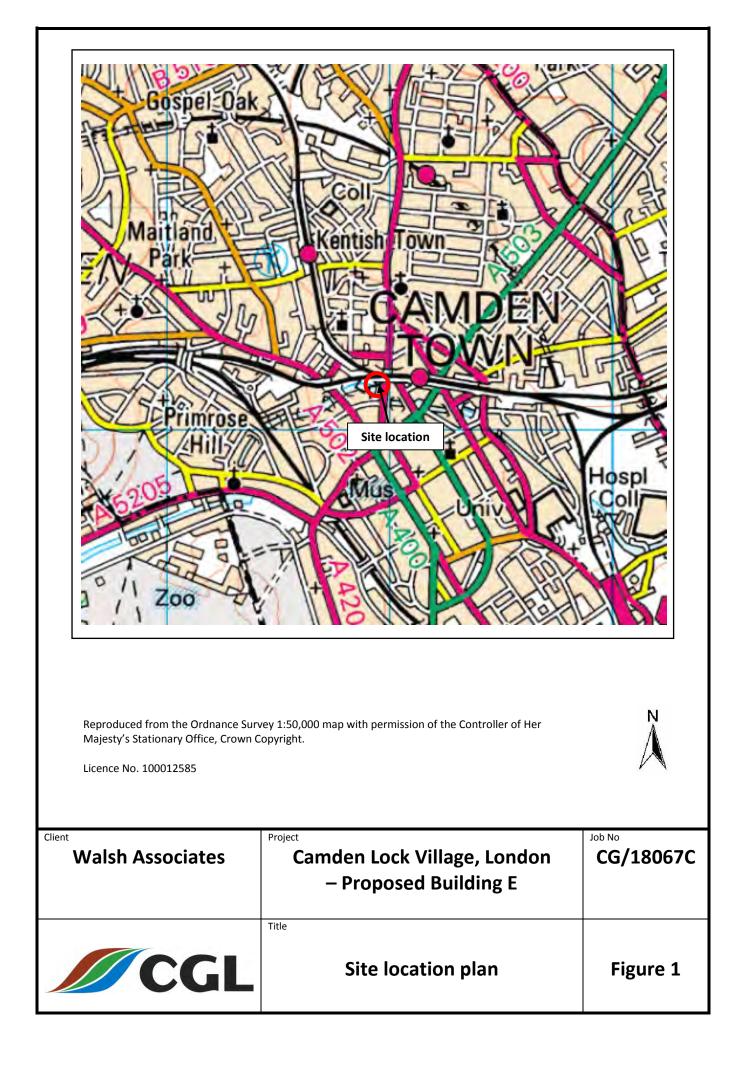
7.4 Discovery Strategy

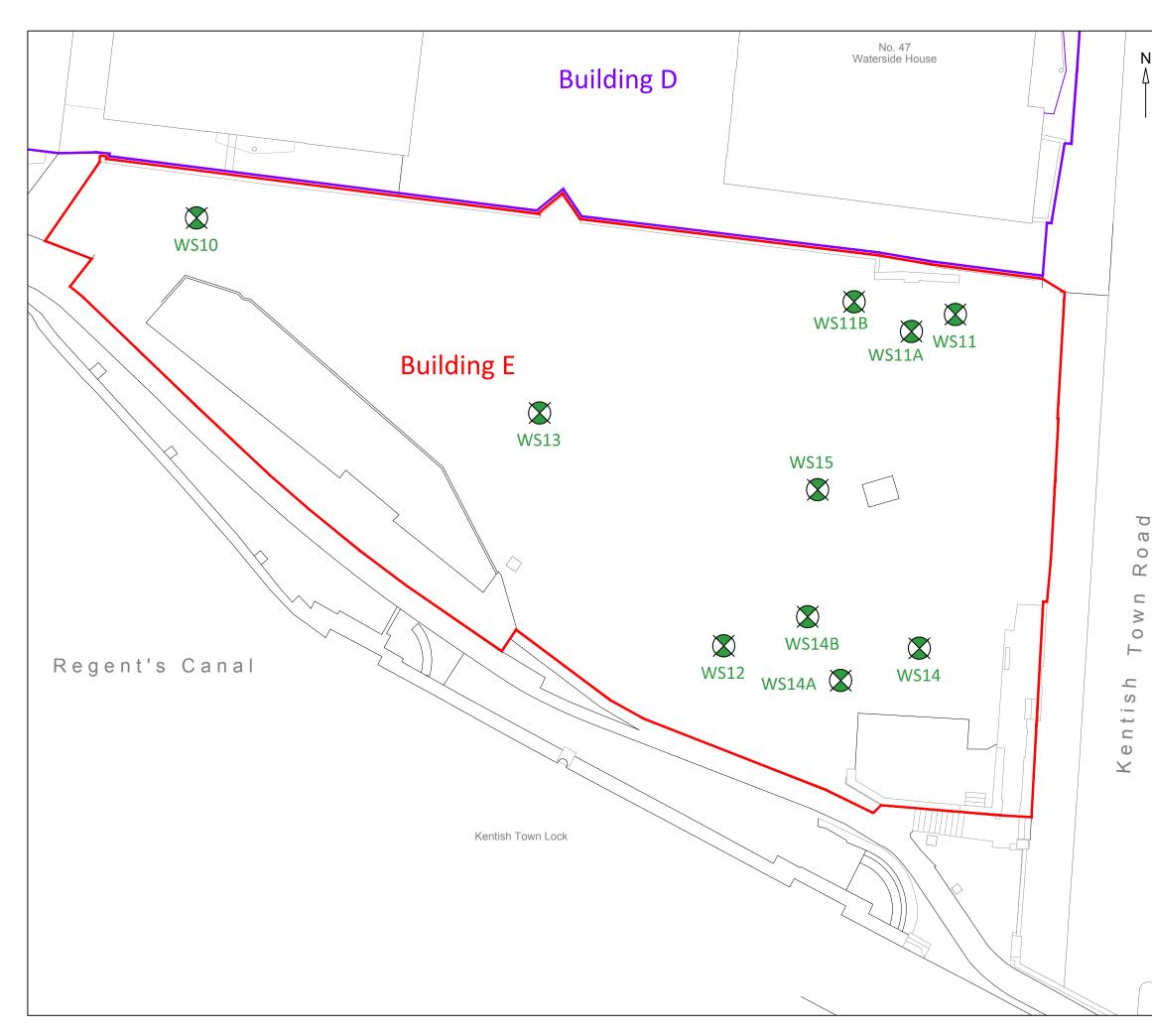
The investigation was limited by the presence of obstructions, assumed to be due to historical foundations, in the eastern part of the site. A watching brief should therefore be undertaken by the Contractor during earthworks and construction works. Should areas of unexpected contamination be encountered or suspected, such as oily material or material of an unusual colour or odour, a qualified geoenvironmental engineer should be informed and the risk associated with the contamination assessed. Where necessary, an appropriate remediation strategy should be devised and implemented. The regulators should be informed of additional areas of contamination identified and should be provided with the risk assessment and proposed remediation methodology for agreement before undertaking such works. Appropriate verification works to be completed if remedial measures are required should also be identified and agreed.

The following nominal discovery strategy is recommended:

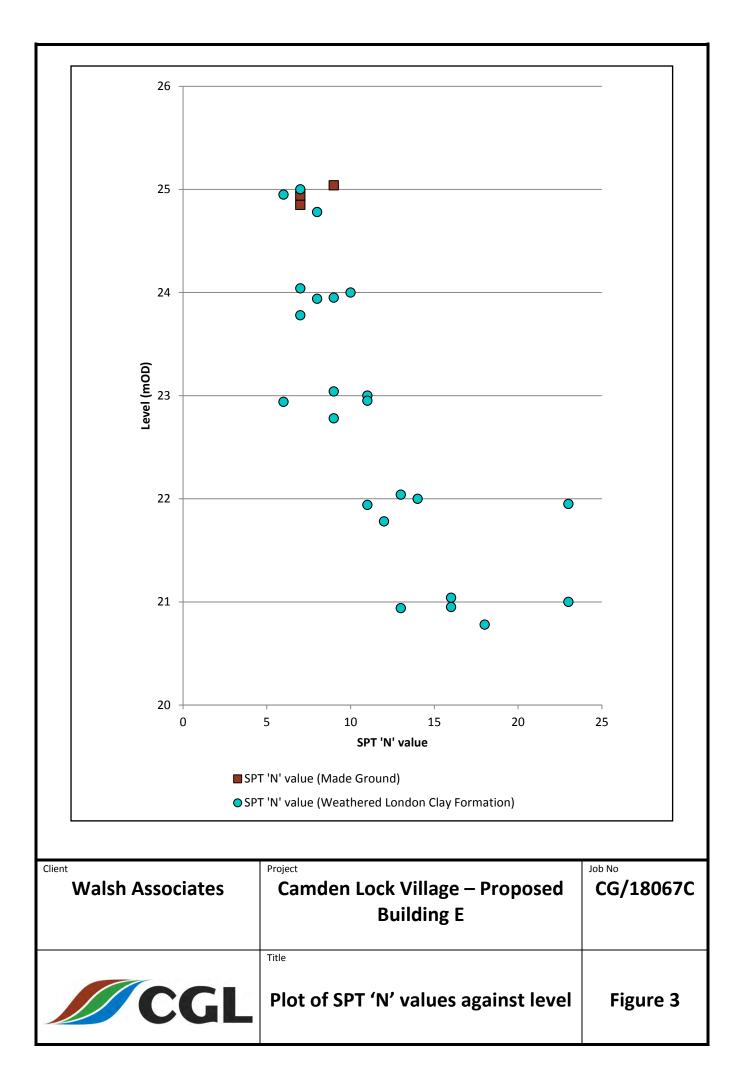
- 1. Work to cease in that area.
- 2. Notify geoenvironmental engineer, to attend site and sample material. Notify Environmental Health Officer at Camden Council.
- 3. Geoenvironmental engineer to supervise the excavation of contaminated material, which should be placed in a bunded area and covered to prevent rainwater infiltration.
- 4. Soil samples should be obtained by the geoenvironmental engineer from both the excavated material and the soils in the sides and base of the excavation to demonstrate that the full area of contamination has been excavated. If appropriate, in-situ testing should be undertaken on the sides and base of the excavation to assess the presence of residual contamination in the soils.
- 5. On receipt of chemical test results, the soils may be appropriately classified for treatment or disposal, and dealt with accordingly.
- 6. Detailed records, including photographs and duty of care records, of the excavations, stockpile sizes, source and location should be kept and regularly updated to allow materials to be easily tracked from excavation until disposal off site.
- 7. Backfilling to be undertaken with material certificated by a geoenvironmental engineer as acceptable for the proposed end land use.

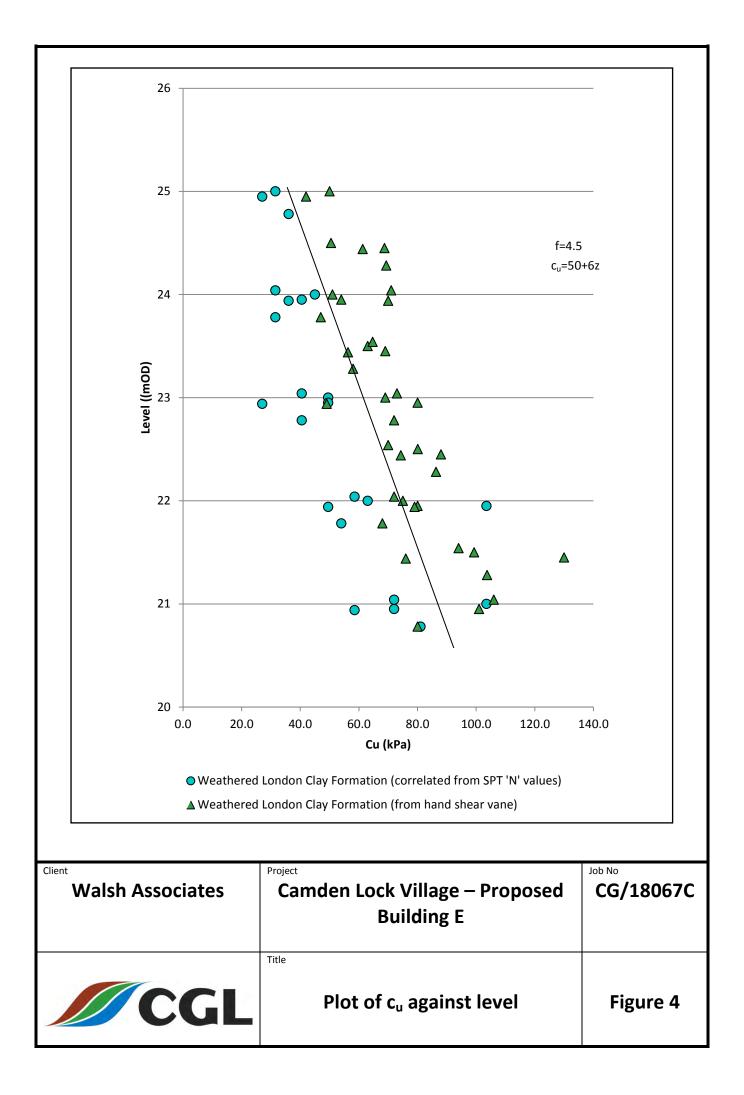
7.5 Health and safety

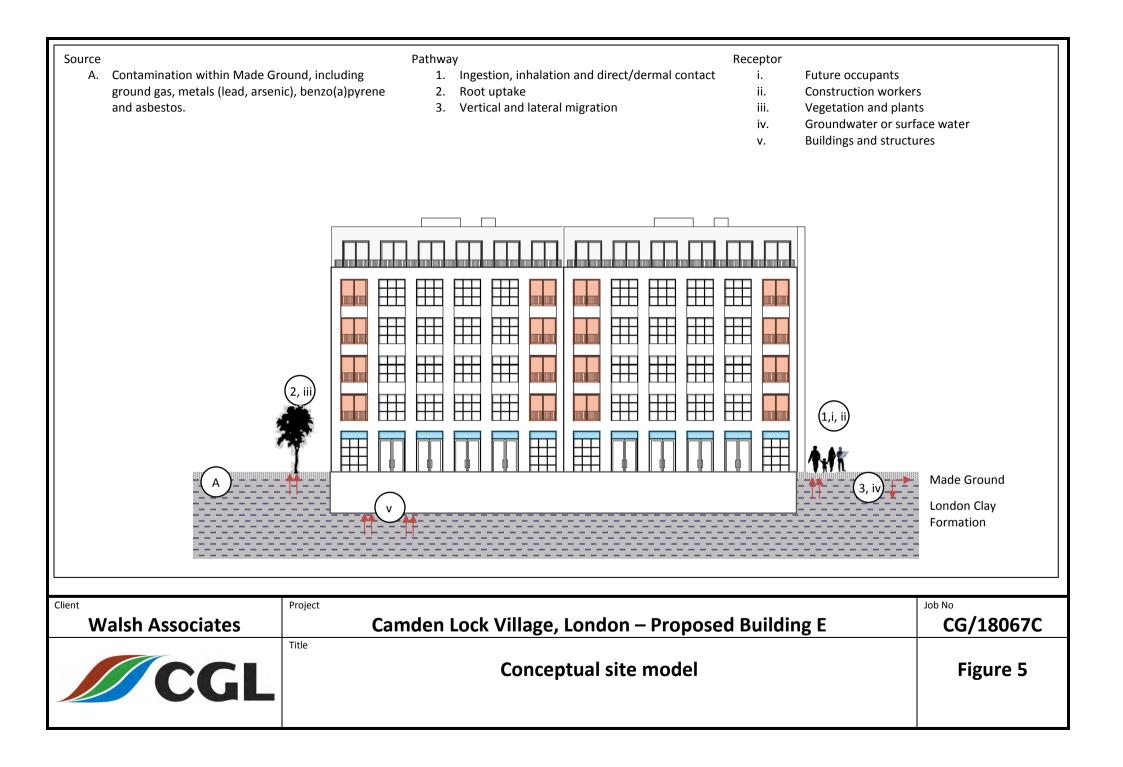

All site works will be undertaken in accordance with the guidelines provided by Health and Safety Executive (HSE, 1991)²⁵. In this context, the risks will be low and nominal safety precautions should be acceptable (i.e. the adoption of good hygiene practices and the use of overalls, gloves and dust masks if necessary).

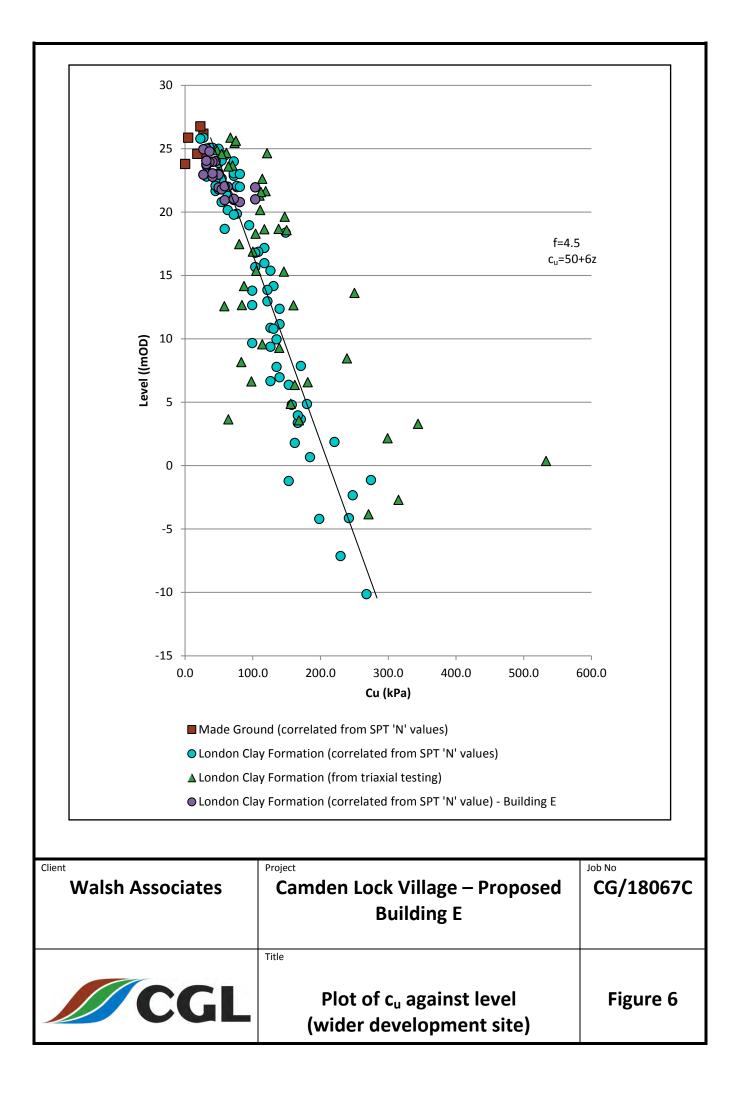

During redevelopment precautions should be taken to minimise exposure to construction workers and the general public to potentially harmful substances. Attention should be paid to limit off site nuisance such as dust and odour emissions. Such precautions should include but not be limited to:

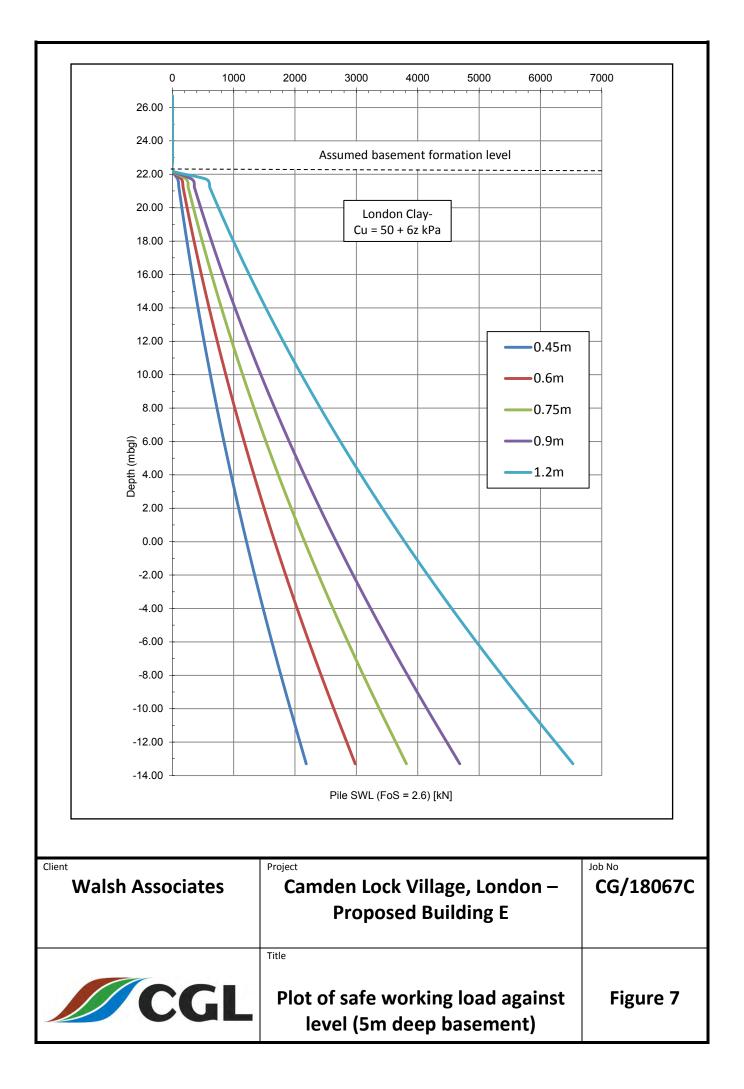
- Personal hygiene, washing and changing procedures.
- Adequate PPE.
- Dust and vapour suppression methods, including damping down, minimising the working face exposed and covering stockpiles, where required.
- Regular cleaning of all site roads, access roads and the public highway.
- Safe storage of fuel and other potentially polluting liquids and the provision of spill control and clean up facilities.
- Positive collection and disposal of on-site run-off.
- Vehicles used in moving the soils should be covered and washed before leaving site to avoid carrying potential fugitive dust into the surrounding environment. The washings should be returned to stockpiled material and not allowed to enter the public drains where drying out could release dusts.

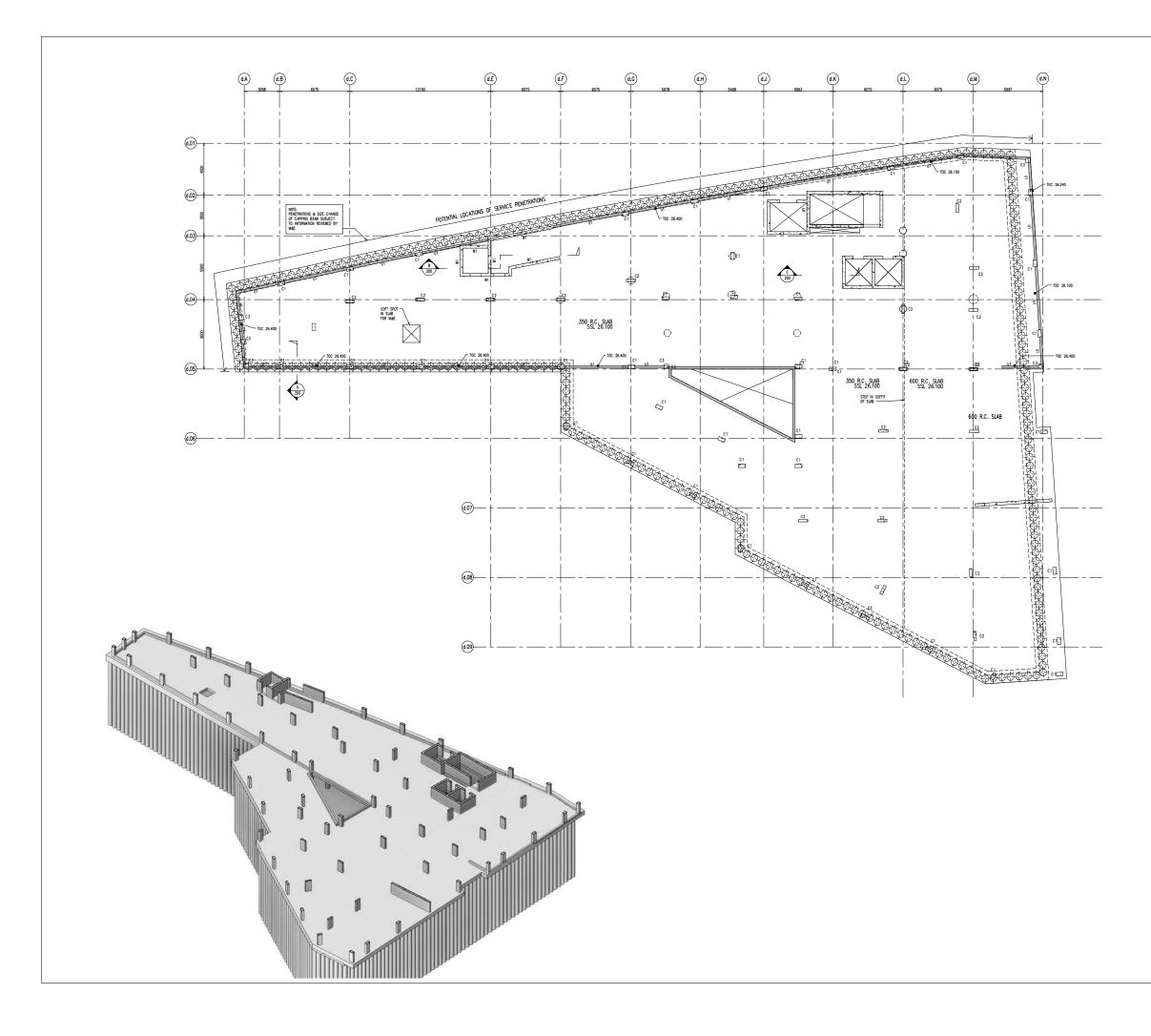

²⁵ HSE (1991). Protection of Workers and the General Public During the Development of Contamination Land. Guidance Note HS(G)66, Health and Safety Executive, HMSO, 1991.


FIGURES






<u>KEY</u>				
X V	VS01	Window Sam	nple	
		Site Boundar	y (Building E)	
		Site Boundar	y (Building D)	
* * Rev Date	*	iments		
		CGL	Card Geotech 4 Godalming Centre Woolsack Wa Godalming Surrey GU7 1XW T: 01483 310	Business Y
Project	Camden	Lock Village -	Building E	
Client	Walsh A	ssociates		
	Figure 2	- Exploratory H	lole Location	Plan
	loh I	No		
Scale(s) NTS	Job I ./02/15 Dwg	No. CG/18067 3 No. CG/18067		Rev.



APPENDIX A

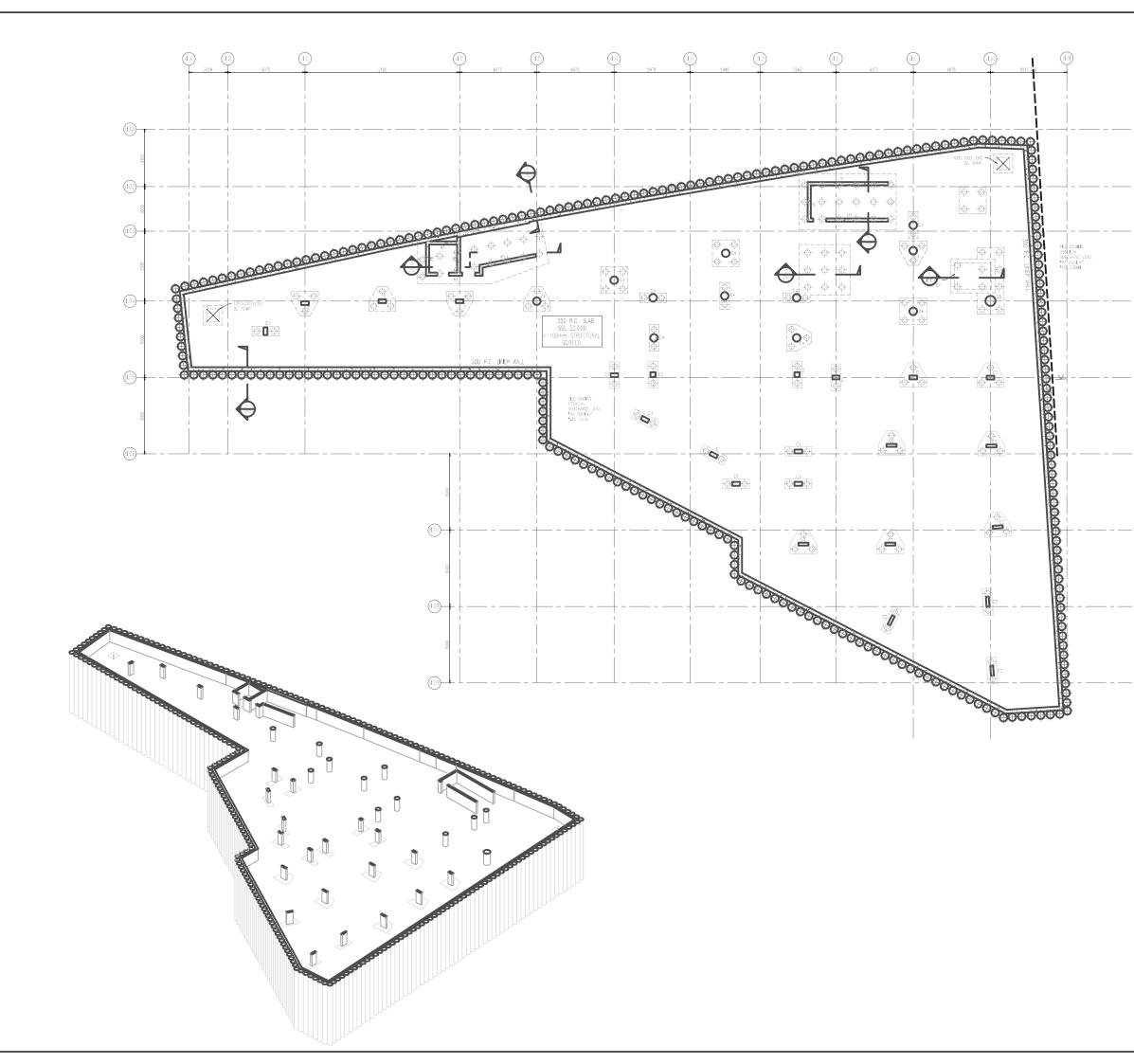
Proposed development plans

STRUCTURA	. WALL SCHEDULE			
WALL REF.	SIZE			
W1	250 R.C. WALL			
W2	300 R.C. LINER WALL			
STRUCTURAL	COLUMN SCHEDULE			
COLUMN				
REF.	SIZE			
C1	300 x 600			
C2	225 x 800			
C3	375 x 400			
C4	600ø			
C5	800ø			
STRUCTURAL UPSTAND				
WALL REF.	SIZE			
U1	200 R.C. UPSTAND			

Notes 1. ALL DMENSIONS ARE IN MILLIMETRES AND LEVELS IN METRES. 2. THIS DRAWING TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S AND SPECIFICATIONS.

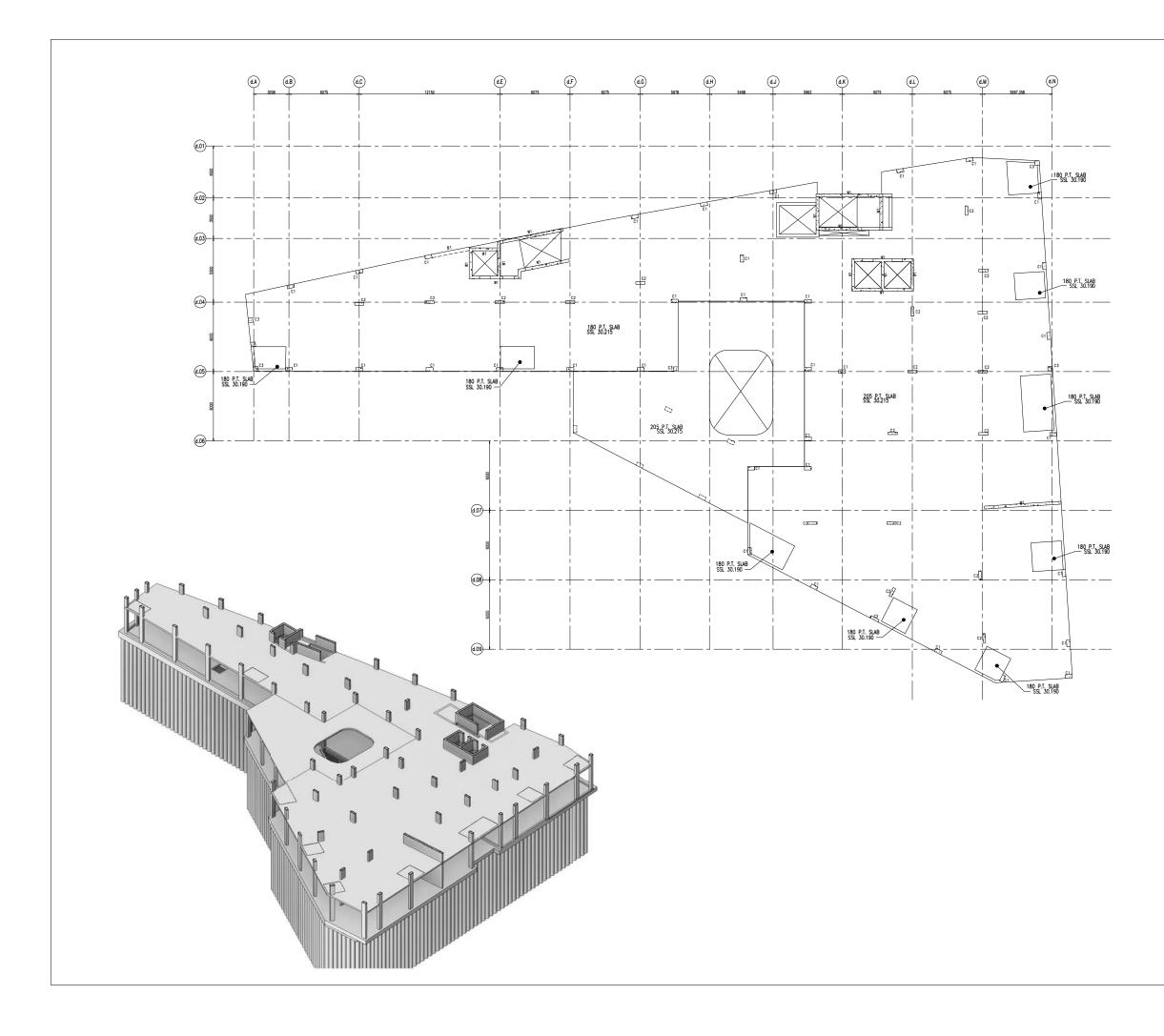
3. THIS DRAWING HAS BEEN PRODUCED ELECTRONICALLY AND MAY HAVE BEEN PHOTO REDUCED OR EDULARED WHEN COPED HENCE, DO HOT RELY ON ANY SCALES QUIDTE. WORK ONKY TO FIGURED DIMENSIONS (DO NOT SCALES) ALL DUENSIONS TO BE CHECKED ON STE. ANY REMONS OR OMISSIONS TO BE REPORTED TO THE ENGINEER INMEDIATELY.

4. EXISTING PILES IN LOCAL AREA. 5. ALL CONCRETE TO BE MINIMUM C40 U.N.O


6. TEMPORARY PROPPING OF CAPPING BEAM WILL BE REQUIRED TO REDUCE LATERAL MOVEMENT.

NOTE: SLAB LEVELS, CAPPING BEAM T.O.C. & STEPS TO BE CONFIRMED BY ARCHITECT.

C.D.M. SIGNIFICANT RISKS AND HAZARDS: BASEMENT EXCANATION CLOSE TO VIADUCT, UKPN TRENC JANAL


KEY DESIGN DECISIONS TO REDUCE OR ELMINATE HA MOVEMENT MONITORING OF VARIOUS CONTIG WALLS.

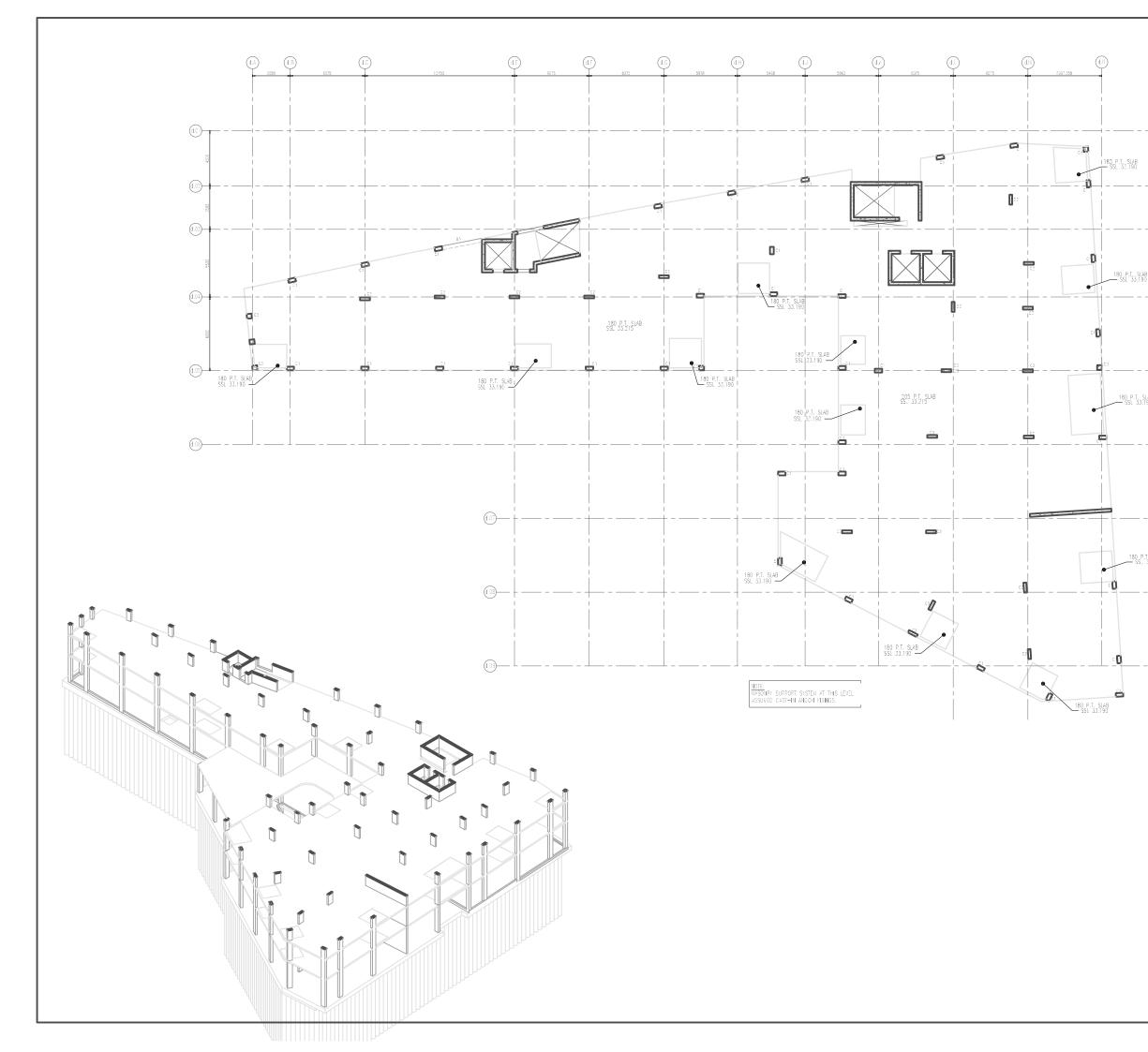
		Notes
STRUCTURAL WALL REF.	. WALL SCHEDULE SIZE	 AL. DN ENERGIE ARE IN MULMETRES AND LEVELS IN NETRES. THIS DRAWING TO BE READ IN CONJUNCTION WITH RELEAND ARCHITECT'S AND ENGINEER'S DRAWDASS AND SPECIFICATIONS.
W1 W2	250 R.C. WALL 300 R.C. LINER WALL	3. THIS DRAWING HAS BEEN PRODUCED ELECTRONICALLY AND NAY HAVE BEEN PHOTO REDUCED OF DILAFED WHEN COFED HENCE, ON LIGT REY ON HIT SCALES GUOTED WORK ONLY TO FIGHRED DIVENSIONS (CO NOT SCALE), ALL DIVENSIONS TO BE CHECKED ON SITE, ANY ERRORS OF DIASONS TO BE RECRETED THE ELECTRE MARCHIES.
STRUCTURAL	COLUMN SCHEDULE	4. EXISTING FILES IN LOCAL AREA.
C OLUMN REF.	SIZE	5. ALL CONCRETE TO BE MINIMUM C40 LUNO
C 1	300 × 600	 TEMPORARY PROPERTIES OF CAPPING BEAM WILL BE REQUIRED TO REDUCE LATERAL MOVEMENT.
C 2 C 3	225 × 800 375 × 400	7. ALLOW FOR 160mm THICK HEAVE LAYER BELOW SLAB.
C 4	600¢	
C 5	800p	8. REFER TO DRAWING 2765/200 FOR CANITY DRAIN DETAILS.
STRUC TU	RAL UPSTAND	•
WALL REF.	SIZE	
	200 R.C. UPSTAND	

1	C.E.M.
- F	SIGNIFICATE REPORT AND FREERING
1	BASENEM EXCAVATION CLOSE TO VIADUOT, WARN TAENOA & CANAL
1	
1	
- b	KEY DESIGN DECISIONS TO REDUCE ON ELIMINATE HAZARDS:
1	NOVENEIT MONTORING OF VARIOUS CONING MALES.
1	
1	1 11
1	
1	
1	
1	
- L	
- L	P1 23.03.15 TH 11P ISSUE Rev. Date By Details Of Revision
	Glent
	STANLEY SIDINGS LTD
- [CAMDEN LOCK VILLAGE
1	BUILDING D/E
- H	
	TEM LEVEL -1 G.A.
1	
1	
1	
	<u>~</u>
Son	
trono	Wala
2012	Walsh Associates
3	Consulting Civil & Structural Engineers
100	32 Lafone Street, London, SE1 2LX Tel: +44 (0020 7088 6800
	Tel: +44 (0)20 7089 6800 Fax: +44 (0)20 7089 6801
3	E-mail: london@walshgroup.eu.com
-113-5-8	E-mail: london@walshgroup.eu.com
0-22-00-5-8	E-mait kindon@walshgroup.eu.com Status
8-5-50-22-00-0.	E-mail: london@walshgroup.eu.com
65-W6-00-22-M3-5-8	Ernak kotongweiktgroup.eu.com Status PRELIMINARY
0/3165-W6-00-12-M3-8-8	E-mile before@weltingroup.eu.com Status PRELIMINARY Orawa 317 A0 Scales 1 - 100
ments/2765-W0-00-22-N5-S-8	Envails bond general grand and an uncont Status PRELIMINARY Other and the state of
Documents/2765-W6-00-22-M5-9-8	Ennik Brodsmägning instantion Batter PRELIMINARY Drawn gir, R. All Scales 1 : 1CD Date Oct 1 : Eng. Date Oct 1 : Eng. PRov.
son\Decuments\2765=W6=00=22=N3=5=8	Envails bond general grand and an uncont Status PRELIMINARY Other and the state of
(indison\Documents\2755-W6-DB-22-M5-6-8	Evenil booksdagewide/geoude/compared/geoude/geoude/compared/geoude/compared/com
onts/2765-W6-00-21	Ernik Brodsmiddelingsmidtingsmidtingsmiddelingsmidtingsmiddelingsmi References middelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmiddelingsmidelingsmiddelingsmiddelingsmiddelingsmiddelingsmidde

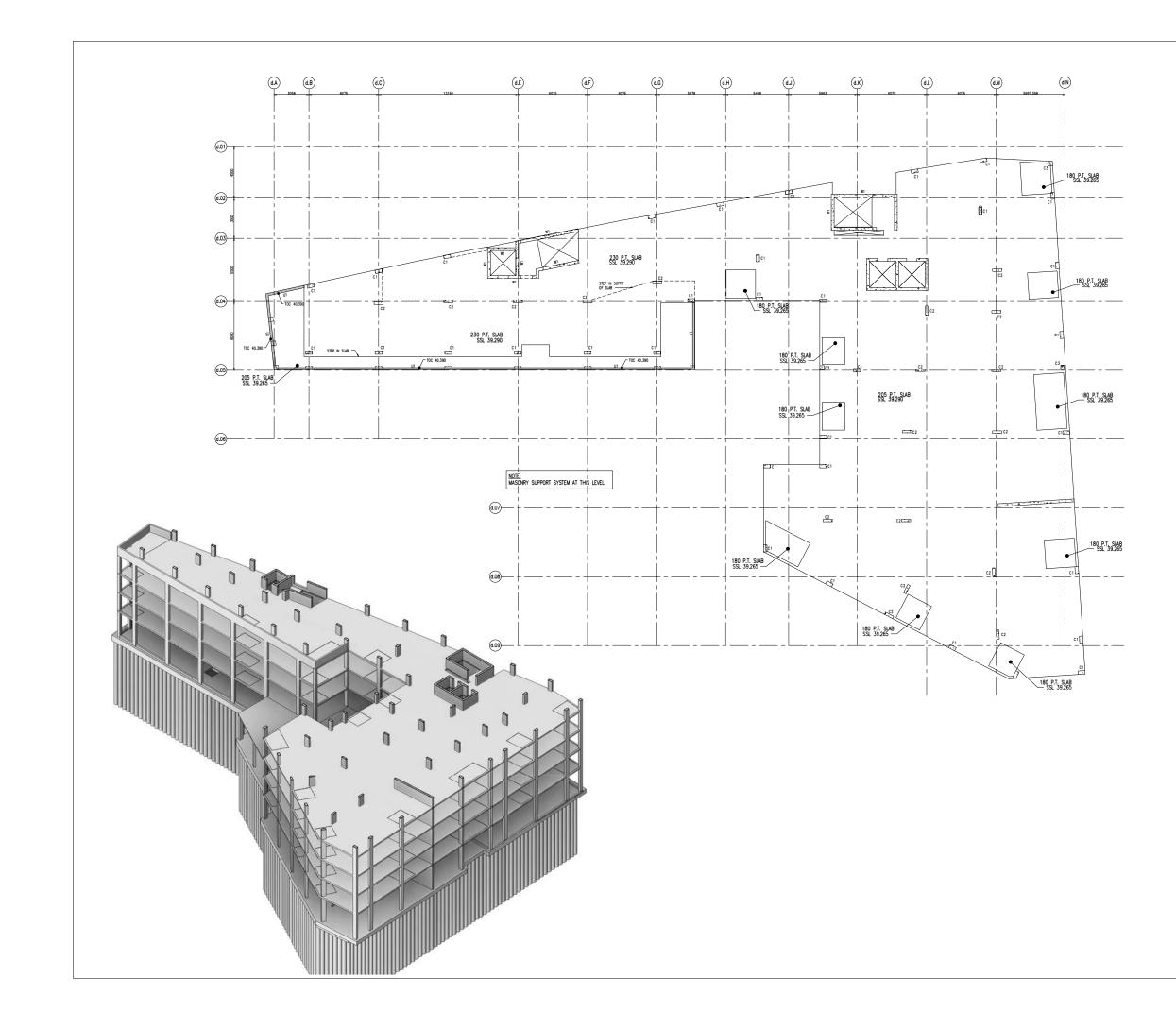
STRUCTURAL WALL SCHEDULE					
WALL REF.	SIZE				
W1	250 R.C. WALL				
W2	300 R.C. LINER WALL				
STRUCTURAL	COLUMN SCHEDULE				
COLUMN					
REF.	SIZE				
C1	300 × 600				
C2	225 × 800				
C3	375 x 400				
C4	600¢				
C5	800ø				
STRUCTURAL UPSTAND					
	SIZE				
WALL REF.	SIZE				

1. AL METRI	l dimensions	ARE IN	MILUMETRES	AND	LEVELS	N	

2. THIS DRAWING TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S AND ENGINEER'S DRAWINGS AND SPECIFICATIONS.


3. THIS DRAWING HAS BEEN PRODUCED ELECTRONCALLY AND MAY HAVE BEEN PHOTO REDUCED OR DUARED WHEN COMED. HENC, DO NOT RELY ON MY SCALES QUOTED. WORK ONLY TO FRANED DURINGIONS (OD NOT SCALE) AL DURINGIONS TO BE CHECKED OD THE ANY FRANES AN OMISSIONS TO BE MEROTED TO THE RAVIERER IMMEDIATELY.

4. ALL CONCRETE TO BE MINIMUM C40 U.N.O 5. ALL STARS ASSUMED TO BE STAIR MASTER WITH INSTIU LANDINGS.

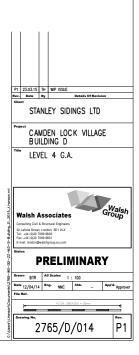

C.D.M. GGNIFICANT RISKS AND HAZARDS: IASEMENT EXCANATION CLOSE TO VIADUCT, UKPN TREND

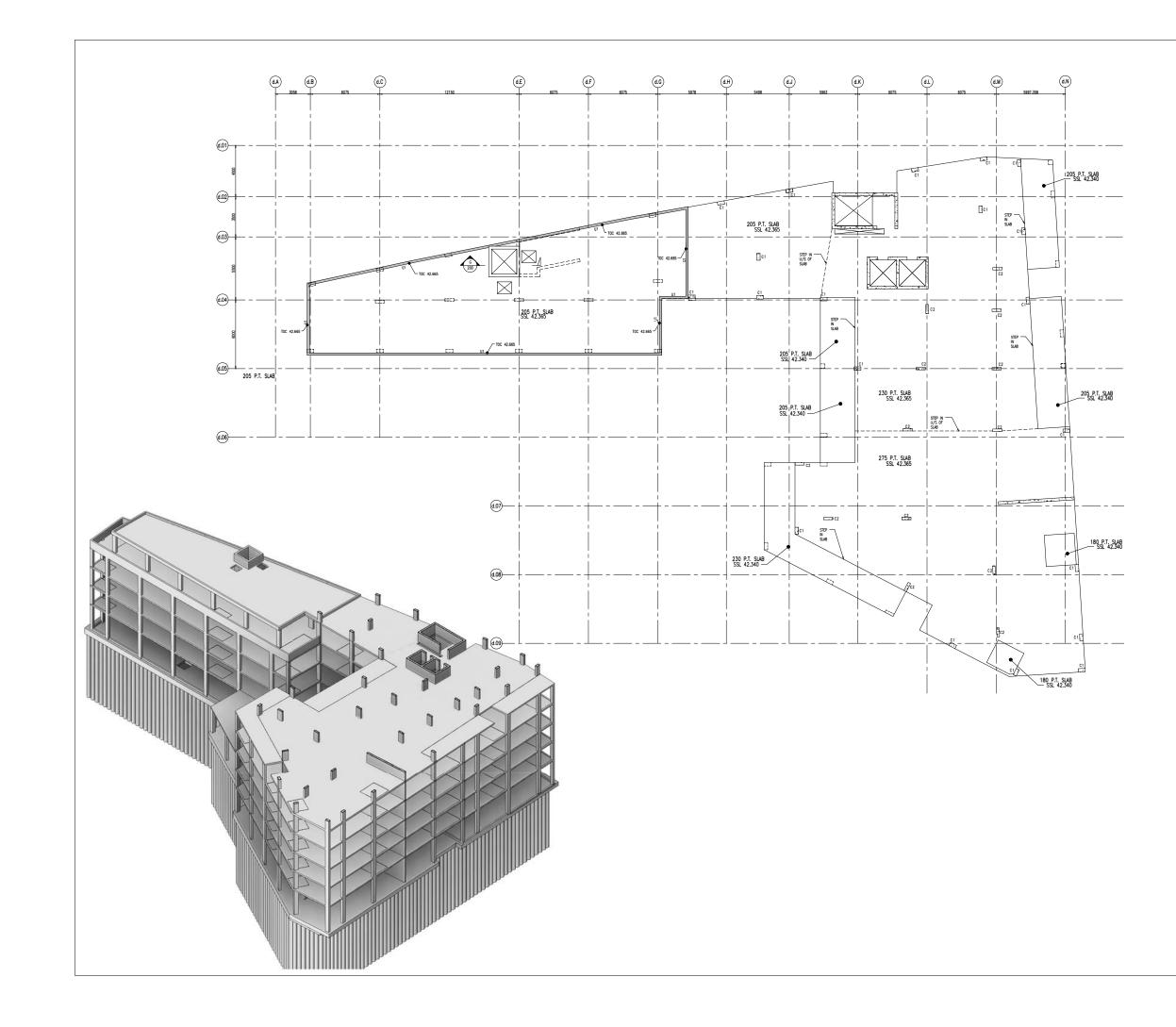
KEY DESIGN DECISIONS TO REDUCE OR ELIMINATE HAZ MOVEMENT MONITORING OF VARIOUS CONTIG WALLS.

		Notes
	STRUCTURAL WALL SCHEDULE WALL REF. SIZE 11 250 R.C. WALL 112 300 R.C. UHER WALL	 A., CHIOCEDE ACE IN VILNETRES AND LEDES IN METRES. THE DRAINED TO BE PROFILE ACQUILIETED INF- REDUNTING ACCENTS AND DETRIED SHARINGE ALC SECTOREDUNIES. THE DRAIN & ANS ACEL FROM CONCED DECEMBER AND MIN HAR ACEL FROM STOCKED ON DURINGE AND MIN HAR ACEL FROM STOCKED MIN HAR
	STRUCTURAL COLUMII SCHEDULE COLUMII SIZE C1 500 < 600	3. This paper a -42 been proportion between outward with the line and there percent or university with complete -there, but not first on any scales outward with complete -there is the state of the scale of the scale of states and the scale of the scale of the scale of the scales outward of the scale of the scale of the scale of scales outward of the scale of the scale of the scales outward of the scale of the scale of the scales outward of the scale of the scale of the scales outward of the scale of the scale of the scales outward of the scale of the scale of the scales outward of the scale of the scale of the scales outward of the scale of the scale of the scales outward of the scale of the scale of the scale outward of the scale of the scale of the scale outward of the scale of the scale of the scale outward of the scale of the scale of the scale outward of the scale outward of the scale outward outward of the scale outward out
8		
51-58 190		
.T., SIAB 33.19C 		C. C. H. Chattean and an field by exception of an and construction of a care. The define defines to react of an and access
		inna ait naiteat o s- vados conte valas.
		21 23.03.15 Br HP ESG. Reg, Data By DataBio/RoyAdam Class STANLEY SIDINGS LTD
		Propert CAMDEN LOCK VILLAGE BUILDING D THE LEVEL 2 G.A.
		And the second s
		Contracting the second

STRUCTURA	L WALL SCHEDULE			
WALL REF.	SIZE			
W1	250 R.C. WALL			
W2	300 R.C. LINER WALL			
OTOLIOTUDA				
STRUCTURAL	COLUMN SCHEDULE			
COLUMN				
RFF	SIZE			
C1				
C2				
C3	375 x 400			
C4	600ø			
C5	800¢			
STRUCTURAL UPSTAND				
SIROCIO	RAL UPSTAND			
WALL REF.	SIZE			
U1	200 R.C. UPSTAND			

1. A METR		ARE	IN	MILUMETRES	AND	LEVELS	IN	


2. THIS DRAWING TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S AND ENGINEER'S DRAWINGS AND SPECIFICATIONS.


3. THIS DRAWING HAS BEEN PRODUCED ELECTRONCALLY AND MAY HAVE BEEN PHOTO REDUCED OR DUARED WHEN COMED. HENC, DO NOT RELY ON MY SCALES QUOTED. WORK ONLY TO FRANED DURINGIONS (OD NOT SCALE) AL DURINGIONS TO BE CHECKED OD THE ANY FRANES AN OMISSIONS TO BE MEROTED TO THE RAVIERER IMMEDIATELY.

4. ALL CONCRETE TO BE MINIMUM C40 U.N.O 5. ALL STARS ASSUMED TO BE STAIR MASTER WITH INSTIU LANDINGS.

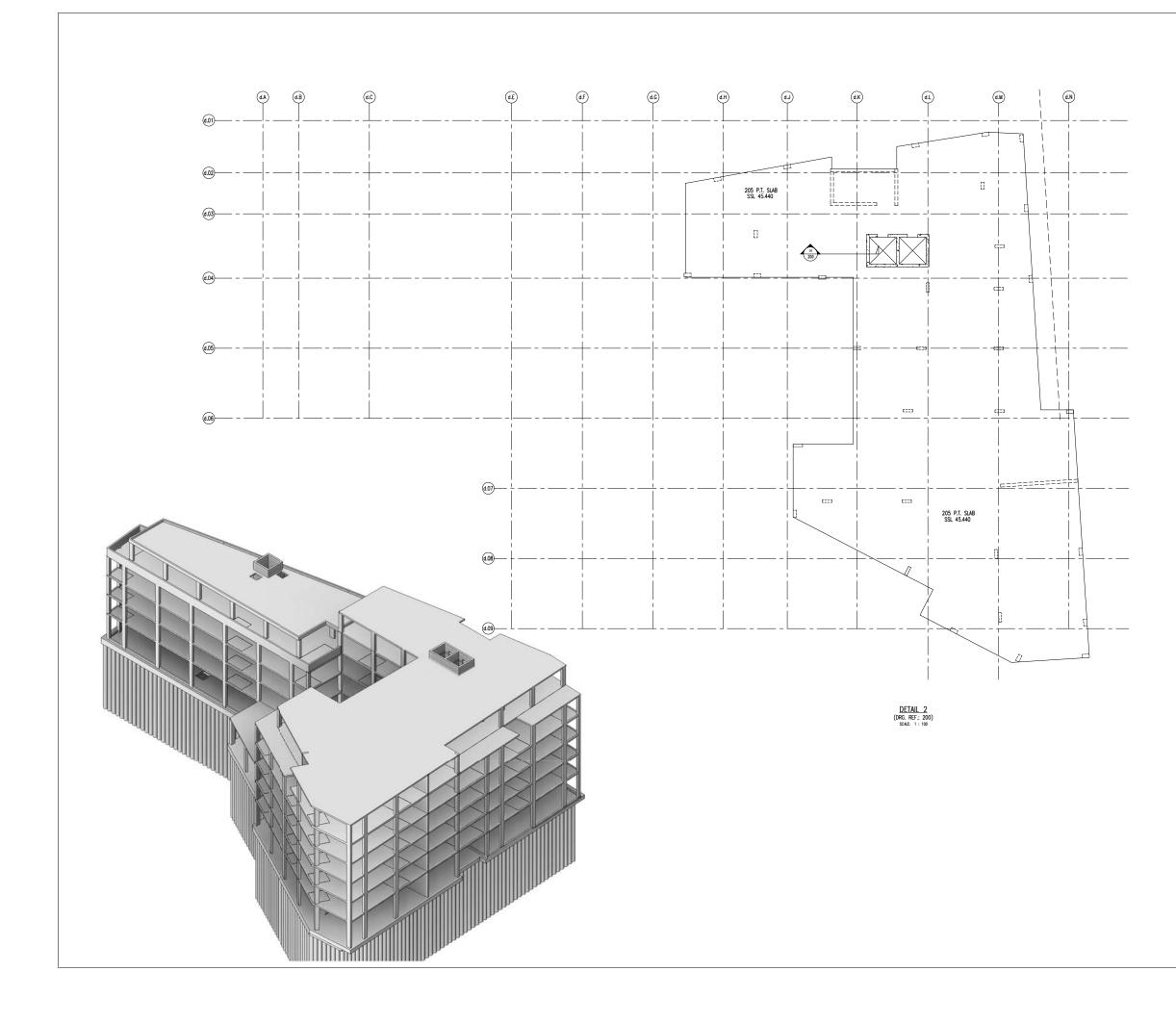
C.D.M. SIGNIFICANT RISKS AND HAZARDS: BASEMENT EXCANATION CLOSE TO VIADUCT, UKPN TRENCH # CANNI

KEY DESIGN DECISIONS TO REDUCE OR ELIMINATE HAZ MOVEMENT MONITORING OF VARIOUS CONTIG WALLS.

STRUCTURAL WALL SCHEDULE					
WALL REF.	SIZE				
W1	250 R.C. WALL				
W2	300 R.C. LINER WALL				
STRUCTURAL	COLUMN SCHEDULE				
COLUMN					
REF.	SIZE				
C1	300 x 600				
C2	225 × 800				
C3	375 x 400				
C4	600¢				
C5	800ø				
STRUCTURAL UPSTAND					
	SIZE				
WALL REF.	SIZE				

1. ALL METRE	DIMENSIONS 5.	ARE	IN	MILUMETRES	AND	LEVELS	IN	

2. THIS DRAWING TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S AND ENGINEER'S DRAWINGS AND SPECIFICATIONS.

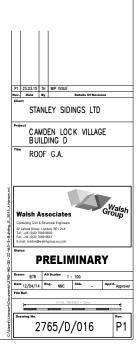

3. THIS DRAWING HAS BEEN PRODUCED ELECTRONCALLY AND MAY HAVE BEEN PHOTO REDUCED OR PUNATED WHEN COMED. HENC, ON ONT RELY ON MY SCALES QUOTED. WORK ONLY TO FOUND HUNDRISONS (DO NOT SCALE) ALL BARNSONS TO BE CHECKED DO THE ANY ERRORS AL OMISSIONS TO BE MEROTED TO THE RAVIERER MARDATELY. ALL CONCEPTED DE MINIMUM COL MID.

4. ALL CONCRETE TO BE MINIMUM C40 U.N.O 5. ALL STARS ASSUMED TO BE STAR MASTER WITH INSITU LANDINGS.

C.D.M. SIGNIFICANT RISKS AND HAZARDS: BASEMENT EXCANATION CLOSE TO VADUCT, UKPN TRENCH -

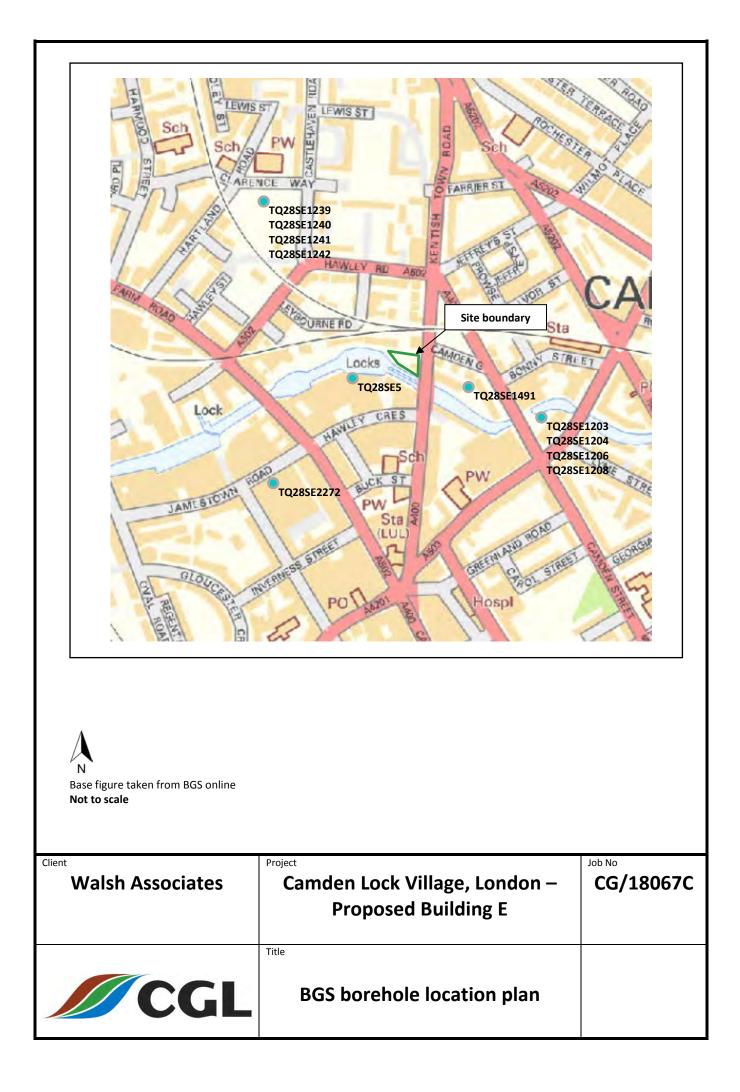
KEY DESIGN DECISIONS TO REDUCE OR ELIMINATE HA MOVEMENT MONITORING OF VARIOUS CONTIG WALLS.

STRUCTURA	STRUCTURAL WALL SCHEDULE					
WALL REF.	SIZE					
W1	250 R.C. WALL					
W2	300 R.C. LINER WALL					
STRUCTURAL	COLUMN SCHEDULE					
COLUMN						
REF.	SIZE					
C1	300 × 600					
C2	225 × 800					
C3	375 x 400					
C4	600¢					
C5	800¢					
STRUCTURAL UPSTAND						
	SIZE					
WALL REF.	SIZE					


Notes
1. ALL DMENSIONS ARE IN MILIMETRES AND LEVELS IN METRES.
2. THIS DRAWING TO BE READ IN CONJUNCTION WITH RELEVANT
ARCHITECT'S AND ENGINEER'S DRAWINGS AND SPECIFICATIONS.

3. THIS DRAWING HAS BEEN PRODUCED ELECTRONCALLY AND WAY HAVE BEEN PHOTO RESULCED OF ENAMEROW WHIL COPED. HENCE, DO NOT RELY ON ANY SCALES QUIETE WORK OWN TO PROJECT DWINSTONS (DO NOT SCALE). ALL DWINSTONS TO BE CHCRUED ON STEL ANY REMOIS ON OWNSTONS TO BE REPORTED TO THE ENGINEER IMMEDIATELY.

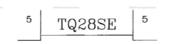
4. ALL CONCRETE TO BE MINIMUM C40 U.N.O


SIGNIFICANT RISKS AND HAZARDS: BASEMENT EXCAVATION CLOSE TO VIADUCT, UKPN TRENCH & CANAL

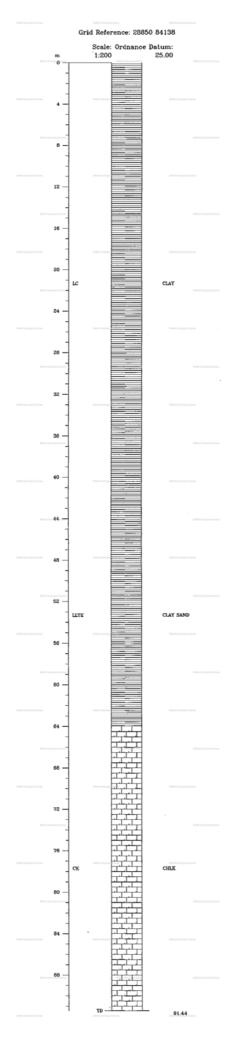
KEY DESIGN DECISIONS TO REDUCE OR ELMINATE HAZA MOVEMENT MONITORING OF VARIOUS CONTIG WALLS.

APPENDIX B

Historical BGS boreholes logs



1.5


2

ū,

CAN	IDEN, LOND		Client		1	7 *'¥		Tria Exca Met	Pit B avation hods	RADFOR	D WAT	TS HA	ND PIT	Hole No. TH8A Sheet 1 of 1
British	Geologic	al Survey	Engineer		ritish Geo		Survey	Pit	Dimensi	ons: L	engt	h - 1	.80 m Width - 1.40	rouncal Survey
round Level		25.33 m.A.O.D.	Coordinates		* * m.E			N. Orie	entation:	L	engt	h -		Job No 10482
WATER			STRATA				SAMPLING					STIN		
Date/Time at Depth	Depth to Water m	Description		Legend	m.A.O.D.	Depth	Depth	Type & No.	Test Result	% <425	W %	Wp	WL OTHER	R TESTS AND NOTES
	-	Made Ground (Brickwork wall)					0.20	01					TH8A logged from nort	h west face of Trial hole ' iated polyaromatic hydrocarbons
	T		· · · · · · · · · · · · · · · · · · ·			-	0.50	02		100 3	4 2	27 7	5 _No groundwater record	led during fieldwork
0/10/06	DRY C	Made Ground (Concrete)			24.60	0.73							Water in hole from D above pit	amond Drilling corehole in wall
		British Geological Survey			24.25	1.00	British (eologic	al Surve				above pro	British Geological Surve
	1	Difficient occological outvoy					Dimon		ar ourre			3	Trial pit complete at	
British (Geologic -	al Survey		В	itish Ger	logical : -	Survey	-					_ British Geo	logical Survey
													Pit S	tability, Shoring, etc.
	Ť				1							24	No collapse of side	
	1	British Geological Survey				_	British (*ologic	al Surve	V				British Geological Surve
			WATER		CAMPLE AND	TEOT		1	10000		TEET	ESULT		Fieldwork 0
Vater Level observ	and the second se	g digging, depths below GL.	WATER		SAMPLE AND			Depatron	tor Torr					By cip a
Strike	Depth Obs. 5r	Depth after min 10 min 15 min 20 min	▼ 1 First Strik ▼ 2 Subseque N - Overnight C- Completion	nt Strike Depth	D Small distu B Bulk disturt W Water sam U Undisturbe	oed sample sple			test nt density t	est BD	= A	-Situ B	e Hand Shear Vane Strength - kN/m ulk Density - Mg/m ³ a Bearing Ratio - %	² Dates 30/10/03

N-WHITAKERS BREWERY HAMPSTEAD

•

BOREHOLE NO	
Contract Name Canden Town	C. 1 T φ28 SE i203 Report No. S. 808/15
Client	Site Address Corner of Canden Street
Engineers: teopard: & Partpars, British Geological Survey 344 - 360 South Lambeth Rd,	and Canden Road
London S.W.8.	2708, 8460
Standing Water Level 55'0" 17.6.65. 30'0" 21.6.65. eologiWatez Struck 3'6"	Diameter 8" Method of Boring Shall/Auger
Ground Level 78.49 Remarks:	Start

British Geological Survey Description of Strata	British Geolog Thickness	cal Survey Depth	Disturbed Samples	"U" Cores and "N" P. Test
Made ground (sand, bricks stones etc.)	1'0"	1'0"	J2101 0'6"	
Soft brown mottled clay	216"	3'6"	J2102 2'6"	
Geological Survey Brown sandy clay with gravel	urvey 5'0"	816"	B2103 5'0" J2104 7'6"	ogical Survey 5°0" N=14
Stiff brown mottled clay with layers of silt and sylphate crystals	8'0"	16'6"	J2106 12'6"	U2105 10'0" U2107 14'0"
Stiff fissured brown clay with sulphate crystals	British Geolog 516	cal Survey 22 ° 0*	J2108 17'6"	British Geological Surv U2109 19'0
Hard fissured grey silty clay with traces of organic material	6'0"	28'0"	J2110 22'6" J2112 27'6"	U2111 34 '0"
Hard fissured silty grey clay	10' 0 "	38'0"	J2114 32'6" J2116 37'6"	U2113 29'0" U2115 34'0"
Hard fissured grey clay with layers of silt and occasional sulphate crystals	23 '6"	6116=	J2118 42'6" J2120 47'6" J2122 52'6" J2124 57'6"	U2117 39'0" J2119 45'0" U2121 49'0" U2123 54'0" U2125 60'0"
British Geological Survey	British Geolog	Ical Survey	W2126	British Geological Surv :
TOTALS	61*6*	61*6*		

NOTES: 1. Descriptions are given in accordance with the B.S. Civil Engineering Code of Practice C.P.2001 "Site Investigations"

Depths shown are top

4 in. diam. and 18 in. long.

2. J indicates Jar Samples.

Britis

Britis

- **Bulk Samples** B .
- W Water Samples . **39**
 - Undi .

υ

- bed Core i Т of term
- ar of blo N stration with Standard Penetration Tests. Ni s per ft. p ...

BOREHOLE	NO. 2
----------	-------

Contract Name Canden Terra

Client Jan Dals in ident.

Report No. 8. 808/15 1204

TQ285E

British Ge

Site Address Corner of Conden Street.

Engineers : Laesard & Bariness.

British Geological Survey 360 South Lembeth Rd.,

Nene

None

78.23

Londen N.W.l.

2410, 5400

Lenden S.W.8.

Diameter 8" Method of Boring Shell/Auger British Geological Survey Start 19.6.65. Finish 21.6.65.

Remarks:

Water Struck.

Ground Level

Standing Water Level

British Geologic Description of Strata	Thickness British Geologi	Depth cal Survey	Disturbed Samples	"U" Cores and "N" E. T. Seological Sur
Made ground (concrete, grey silty clay with bricks)	3'0"	3'0"	J3724 2'6"	
Brown sandy clay with gravel	2'6"	5'6"	B3725 5'0"	
Stiff fissured mottled brown clay hogic with desasional sulphate crystalsgicals and layers of silt	17'6" Sirvey	2310*	J3727 8'6" J3729 12'6" J3731 17'6" J3733 22'6"	U3726 6'0" U3728 10'0" U3730 14'0" U2732 19'0"
Hard silty mottled grey clay with sulphate orystals	5'0"	28'0"	J3735 27'6"	U3734 24'0"
Stiff to hard fismured gray silty clay with layers of light gray silt. Small crystalline aggregates of pyrites towards the base	32'6" British Geologi	cal Survey	J3737 32'6" J3739 57'6" J3741 42'6" J3743 47'6" J3745 52'6" J3747 57'6"	U3736 29'0" U3738 34'0" U3740 "39 *0" gical Sur U3742 44'0" U3744 49'0" U3746 54'0" U3748 59'0"
logical Survey British Geological S	Survey		British Ge	logical Survey
		5	2	
British Geological Survey	British Geologi	al Survey		British Geological Sur -

Norat: 1. Descriptions are given in accordance with the B.S. Civil Engineering Code of Practice C.P.2001 "Site Investigations"

2. J indicates Jer Samples.

U

. Sylk Sumpon.

Water Semalat. British Geologi

. Undisturbed Case Rangies. These are mominal 4 in. diam. and 18 in. long. Depths shown are lap

" Humber of blows per A. prestration with Standard Penetration Tests.

British

British Geolo

British Ge

jical Survey	British Geolog BOREHOL		4		TP 285 ϵ
Cliend Col	anden Tevn is Atd.s smagi & Perisers.	Re	port No	S. 808/15 Corner of Camd Camden Read	1206
	With Lambeth Rd.			2910,8410	
Water Struck 3'	vel 25'0" 17.6.65 25'9" 21.6.65 5" British Geolog 79.60	Me	thod of Bo	8" ring Shell/Au British Finish	
British Geor	on of Strata	Thickons	ogi Depth ey	Disturbed Samples	'U' Corret and eological Sur 'N' P. Test
NADE	Sand brick's and Stones etc.	0'9"	0'9"		N F. 166
GROUND Scolic	Brown sendy, clay with bricks and stongs British Geolog	ical Survey 9*	3'6"	J2127 2 *6 ^m	Geological Survey
Grey silty cla	yliş eley	7'0"	10'6"	B2128 5'0" J2129 7'6"	U2130 9'0"
Broke Battled	5	12 °6° British Ge	010 33°0 #	J2131 12'6" J2133 17'6" J2135 22'6"	U2132 14 '0" U2134 19 '0" British Geological Sur
Grey clay.co	iay	8'6"	31 '6"	13127 27 16"	10136 2/ 108

						U2138 30'0"
				W2139		
sh Geological Survey	British Geolo	gical Survey		-	Britis	n Geological Survey
· · ·						
			e l			
British Geological Survey		British C	eological Survey.	2		British Geological Surv
	TOTALS	31 '6"	51 '6"	·····		

Contract N	me Canden Town	Der	No.	S. 808/15	1208
			οπ Νο	Cornerof Cande	n Street.
	attis liddiners			den Road	
British Geologia	al Suniev	British Goologic	al Survey		British Geologi
	60 South Lonketh Rd.			2917 8411	
Londa	n. 1.X.2,			- 11 <u>5</u> , 0 TIL	
Standing Wa	ater Level	Dian	neter	8*	
cal Water Struck	NoneOritisk Geologics + 6	mvey Meth	nod of Bor	ing Shell/A	logical survey
Ground Lev	76.27	Start	17.6.6	5 Finish	17.6.65
Remarks:	and pitting to 1 ^{*6} ".		from gro	und level to	6"
Dillon ocologi	Description of Strats	Thickness	Depth	Disturbed Samples	'N' P. Test
MADE	Concrete	0"6"	0'6"		. *
GROUND	Cobble: stones	1'0"	1'6"		
cal Survey	British Geological S a. mettled (militys icley ·] · y	uvey 4 16"	6'0"	British Geo J3712 246* J3713 5*0*	igical Survey
Hett	led brow clay stuy	1410"			
British Geologia	al Survey	British Geologic	I Survey 20'0"	J3714 7'6" J3716 12'6" J3718 17'6"	U3715 9'0" U3717 15'0' U3719 19'6'
Gney	a ciay ottay	4'0"	24 '0"	J2720 22'6"	
-	Chay mith Layer's of silt	7'0"	31 '0"	J3722 27 '6" British Geo	U3721 25'0' U3723 29*6'
ĸ		2			
	al Survey	British Geologic	a Survey		British Geologi
British Geologia					1

"Undisturbed Core Samples. These are nominal 4 in. diam. and 18 in. long. Depths shown are top of sample.

υ

iken (Thick) (8:89 0.15 (0.48) 12 13 0.63 ogical Survey 14 15	Reduced Desci Level MADE MADE Firm scat	Job Number Location Dates ription GROUND (tarmac) GROUND (concret greyish brown s tered gravel tra to stiff brown with occasiona) ction zones and nite crystals	: 20/11/9 : 20/11/9 Britis :e) silty CLAY with aces	
2 2 7 mples Deoth (Thick) 0.15 0.481 12 13 0.63 ogical Survey 14 15 15 16 17 16	Reduced Desci Level MADE MADE Firm Scat Firm CLAY redu sele	Dates ription GROUND (tarmac) GROUND (concret greyish brown s tered gravel tra	I23 : 20/11/9 Britis Sees Slightly Silty Lablue-grey University Traces of	
Imples Death of the second	Reduced Desci Level MADE MADE Firm Scat Firm CLAY redu sele	GROUND (tarmac) GROUND (concret greyish brown s tered gravel tra	: 20/11/9 Britis Ee) Silty CLAY with Sces Slightly Silty Ablue-grey traces of	
Imples Death of the second	Reduced Desci Level MADE MADE Firm Scat Firm CLAY redu sele	GROUND (tarmac) GROUND (concret greyish brown s tered gravel tra	te) Silty CLAY with sces Slightly silty blue-grey _{survey} traces of	
12 13 0.15 (0.48) 12 13 0.63 ogical Sulvey 14 15 15 15 16 17	MADE Firm scat Firm CLAY redu sele	GROUND (concret greyish brown s tered gravel tra	e) Silty CLAY with sces Slightly Silty h blue-grey traces of	
12 13 0.63 ogical Sukrey 14 15 15 16 17	Firm scat Firm CLAY redu sele	greyish brown s tered gravel tra	silty CLAY with aces slightly silty h blue-grey _{survey} traces of	
12 13 0.63 ogical Survey 14 15 15 16 17	Firm CLAY redu sele		slightly silty blue-grey _{survey} traces of	
13 0.63		to stiff brown with occasiona) ction zones and nite crystals		h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ogical Sukvey		to stiff brown with occasional ction zones and nite crystals		uno 000000000000000000000000000000000000
15 (2:37) 16 17		nite crystals		h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 (2:37) 16 17	logical Survey		Britis	<mark>x </mark>
16 17	logical Survey		Britis	- <mark> </mark>
16 17	logical Survey		Britis	ih Geoleg
	logical Survey		Britis	:h Geoleg
	logical Survey		Britis	sh Geoleg X
18				1-
18				×
18				=
Ë]				×
ogical Sulvey		Brit	tish Geological Survey	=
3.00				_ =
		End of Bor	rehole	
British Geal	logical Survey		Britis	sh Geolog
Ę				
ogical Sulvey		Brit	tish Geological Survey	
			ADD	endix 1
	gical Suvey	British Geological Survey	British Geological Survey	British Geo ogical Survey Britis

,										Terre	eseal	rch
	ontr lient:	act	: Hawl aterials	ey Roa Science	Cons	Camd Sultan	en ts Lt	d		Borehole Sheet No. 1 C Depth 0 t	BogicNOrvey 2	
Eau	ipment a	and Me				d Leve:).D.		: 591/191	
	IU AUGUI	100111	U I GIAL COT		Coord	inates	:			Location	70285	e
										Dates	: 20/11/91	
Ori Dai	ientation		ertical Remarks		In Situ	Samples	287, Depth	Reduced	Descript	tion		Legend
Pro	jĝ. Lev	els	ntarsulvey		Tests	Taken	(Thick) - 8:88-	Leve Jurve	ay .		British G	eological Su
							0.05		1	DUND (tarmac) DUND (concrete)		
							(0.35)		Firm gre	eyish brown silty	CLAY	
						J 20	0.50		Firm bro	own silty CLAY wi	th frequent	 xx
									blue-gre pockets	own silty CLAY wi ey reduction zone of orange-brown ces of selenite c g more abundant w	s, occasional sandy clay	
British Geologic	al Survey				British Geo	logical Surv	ey		becoming	g more abundant w	ith depth	
						J_21 Ŭ¥						
						n ⁺ 55						
						J 23						
												×
	Britis	sh Geolog	jical Survey				2 (2.50) British Geor	ogical Surve	ev		British G	01 <u>0001</u> 50
						U 7 24 J 7 25						
												×
												351
						J 26						××
					D-W-h O-					D.Wh.O		125-
British Geologic				8	British Geo	blgic 27 urv	t i			British Geo	logical Survey	××
	20/11					Ļ	_ 3.00_ Е			End of Borehol	e	
					3		-	-				
							-					
	Eritis	sh Geolog	jical Survey				British Geol	gical Surve	Эý		British G	aological Su
							Ē.	-				
						8	Ē					
							Ę	1				1
							Ę.,	-				
British Geologic	al Survar				British Gar	ological Surv	Ē			British Goo	logical Survey	
bhash Geologic	al ourvay				onuan oet	i ogical ourv	Ē			Billian Oec	logical ourvey	
							F ·	-				
0	perato F	r	General Remar	'KS:							Apper	dix
S	icale ^{Britis} im/shee	sh Geolog	ical Survey				British Geol	ogical Surve	ЭУ		Sheet	Nocal Su
5	m/shee	t										2

· · · · ·

		Terresearch
Client: Materials Science	y Road, Camden cience Consultants Ltd	BoreholeogiaNovey 3 Sheet No. 1 Of 1. Depth 0 to 5 metres.
Equipment and Methods Hand Auger 100mm diameter	Ground Level : m.O.D.	Job Number · S01/101
	Coordinates :	Location : Location
		Dates : 19/11/91
Orientation : Vertical	287, 843	
Daily Nater Remarks Prog. Levelson bgical Survey	In Situ Samples Depth Reduced Descr Tests Taken (Thick) Level	ription Legend British Geological S
		GROUND (tarmac)
		GROUND (concrete) GROUND (dark grey clayey sand bricks and stones)
	(0.45) With	bricks and stones)
	0 60 1	GROUND (ash with bricks and
sh Gedlogical Survey 19/11	W 11 - 0.80 - stone	es)
		brown silty CLAY with occasional XX- -grey reduction zones
		1533
		××
	J [±] 6 []	1253
		×
British Geological Survey	British Gempgical Survey	British George
	IJ _T ã ⊨ =	<u> </u>
		E.
	J 9 E	
sh Geological Survey	British Ger U gic 10 Sunay	British Geological Survey
		British Geological Survey
_ 19/11		End of Borehole
British Geological Survey	British GeoDgical Survey	British Geological S
sh Geological Survey	British Geological Survey	British Geological Survey
General Remarks: Operator		Appendix
Operator NF		1
Scale ^{British Geological Survey}	British Geological Survey	Sheete Noical S
5m/sheet		3

•

								Terre	seal	rch
	Con Clie	trac nt: I	t: Hawley Materials Scie	Roadsh Ge nce Cons	Camd sultan	en ts Lt	d	Boreholes Sheet No. 1 Of Depth 0 to	1. 5 metres.	
E. H	quipme and Au	nt and M ger 100m	ethods m diameter		d Leve: inates		m.C	D.D. Job Number :	591/191 TP285 1242 20/11/91	5 6
			Vertical		2	8718	43			Leand
D P	aily rog	HateGeor Levels	Bemarks _y	In Situ Tests	Samples Taken		Heduced Level	Description	British G	Legend sological Surve
British Gedio	igical Sur		gical Survey	British Ge	$ \begin{array}{c} J & 28\\ J & 29\\ logical Surv U & 30\\ J & 31\\ J & 32\\ J & 32\\ J & 32\\ J & 33\\ J & 35 \end{array} $	8:88 0.15 (0.45) 0.60 1.15	þgical Surve	MADE GROUND (tarmac) MADE GROUND (concrete) MADE GROUND (soft silty sat clay with occasional grave traces) Soft to firm dark brownish CLAY with organic traces British Geolog Firm to stiff brown silty i some blue-grey reduction z occasional organic traces	grey silty ical Survey	
British Geolo	gical Sur . 20/1			British Ge	digic 36 ⁵ urv	3.00		British Geolog	ical Survey	××
		Eritish Geol	ogical Survey			British Geol	gical Survi	e;	British G	eological Suive
	Opera NF	ator	General Remarks:	British Ge	ological Surv			British Geolog	ical Survey	dix 1
	Scal 5m/s	British Geol e heet	oeical Survey			British Geo	ogical Surve	ey	Sheet	eological Surre

•

RECORD of WELL or B Survey. No 1" N S Canden Road printe den on County inch map # 5 NW ta sheet 16 Vol a tracing from a map is and dire ection from parish wn on maps). a little 5 the SW from Com In low one-inch map. Surface level of ground 62 ft. above Ordnance Datum. Well or Bore commenced at ft. below surface level of ground. Sunk 4 ft., diameter 4 2. of 16 m. lop. 34 6/0 Bored. Details of lining tubes (internal diameters preferred) 333 Water struck at depths of (feet) 301, 313 NGR TO 2902 8412 Rest-level of water below top of well or bore 278 ft. Pumping level 278 ft. Time of recovery. ...hours. alls. perhoer, (ii) normal O: Temp 4? 7 Suction at 75 ft. depth. Yield: (i) on test 1000/8000 talls. Quality (attach copy of analysis if available) galls. per. lotat 4 Made by E GRAND, SUTCLIFF & GELL, LD. for Gented Great Co. 100 Date of boring any lot Information from LE GRAND, SUTCLIFF & GELL, LD. \$1346.673. (For Survey use only). THICKNESS. DEPTH. GEOLOGICAL CLASSIFICATION NATURE OF STRATA. (and any additional remarks) Inches. Fect. Inches. Feet. made, hed a nou rown class 20 28 L.C 196 to done W.R.S. net T.S. lint CK. 474 SYS. 26:10:35. 300 uly British Gellogics British Ged unovited controll dena Top i Jasen 10' he and leve Vater very poft. havy も P.W.L. 300 Yield 10, 328 Nag-1937 British Geological Surve British Geological Survey British Geological Survey For Survey use only. GEOLOGICAL SURVEY AND MUSEUM, Date SOUTH KENSINGTON, M. of H. Site marked G.S.M. received notified. on 1" map. LONDON, S.W.7. (11969B) Wt 10256/0175 2,500 9/32 H, J, R & L, Ld 600,143

APPENDIX C

CGL borehole logs

	Pro	oject												HOLE No	
Date Description Description Description Description Description Description Status Status <thstatus< th=""> Status Stat</thstatus<>		Ca	mden Lo	ock Villa	age,	Londor	n - Prop	osed Bui	ilding E					WC10	
Client Sheet Walsh Associates Sheet SAMPLES & TESTS Depth Type Test Result, Result, Result, Result, Result, Level Depth Level Depth	Job) No		Da	te			Ground Le	evel (m)	Co-Ordinates (m)				VV 210	
Walsh Associates 1 of 1 SAMPLES & TEST Depth Type No Type Result Result Level Level Depth Depth Type No Type Result Result Depth Depth Type Result Depth Description 0.50 E5450 0.20 Dark Errorm slightly clavey gravely fine to coarse sand. Gravel is fine to Coarse, subroanded to actional costional cobbies of fin. IMADE 660UND - TQSOIL Dark Errorm to Dark Slightly davey gravely fine to coarse sand. Gravel is fragments of plastic and wood. 0.50 E5452 0.20 Dark Errorm slightly clavey gravely fine to coarse sand. Gravel is fragments of plastic and wood. 0.80 E5453 0.20 Dark Errorm to Dark Slightly davey gravely fine to coarse sand. Gravel is fragments of plastic and wood. 1.80 E5452 0.00 Dark Errorm to Dark Slightly davey gravely fine to coarse sand. Gravel is fragments of plastic and wood. 1.80 E5452 0.00 Dark Errorm to Dark Slightly davey gravely firm to self light Brown CLAY. 2.00 HSV 68 0.00 Dark Errorm to Dark Slightly davey gravely firm to self light Brown to Dark Slightly sandy CLAY FORMATION] 3.00 HSV 68 0.00 Dark Errorm Slightly target firm to self light Brown mottled grey slightly sandy CLAY Sand Light and Grave Nist Dark Errorm Slightly target firm to self light Brown mottled grey sli		CG/1	L8067C		14	4-01-15	5	20	6.00	E 528,894.1	N 184,	187.2			
SAMPLES & TESTS Depth Type Test Reduced (Level Depth (mick) (0.50 STRATA 0.50 Essts 0.20 Dark from sublighty clayer gravely fine to coarse sand. Gravel is fine to 0.20 Dark from sublighty clayer gravely fine to coarse sand. Gravel is fine to 0.20 0.50 Essts 0.20 Dark from sublighty clayer gravely fine to coarse sand. Gravel is fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare fine to coarse, subrounded to angular of brick and film with rare finate film wood. NAME film woo	Cli	ent								•			Shee	t	
Depth Type Reduced Reduced Reduced Level Depth Level Depth Level DESCRIPTION 0.50 E5450 23.80 0.20 Cores, subrounded to angular of flint with occases sand. Gravel is flint to cores, subrounded to angular of flint with occases sand. Gravel is flint to cores, subrounded to angular of flint with occases sand. Gravel is flint. 0.50 E5450 25.30 0.20 Dark brown slightly claver gravelly fine to coases sand. Gravel is flint. 0.60 E5451 0.20 0.20 Dark brown slightly claver gravelly fine to coases sand. Gravel is flint. 1.80 E5453 0.20 0.20 Dark brown slightly claver gravelly fine to coases sand. Gravel is flint. 1.80 E5451 0.20 0.20 Dark brown clavel. Dark brown clavel. 1.80 E5453 0.20 0.20 Dark brown clavel. Dark brown clavel. 1.80 E5453 1.80 1.80 2.70 Frequent orange motiling ceases, frequent grey motiling noted. 2.80 HSV 69 1.80 2.70 3.60 3.80 HSV 75 1.80 2.70 3.60 3.80 HSV<		Wa	alsh Asso	ociates										1 of 1	
Instruction Dark brown slightly claves gravely fine to coarse sand. Gravel is fine to coarse such coarse suc		SAMP	LES & TI	ESTS	L					STRATA					ent
25.00 25.00 <td< td=""><td>1</td><td>Depth</td><td></td><td></td><td>Wate</td><td></td><td>Legend</td><td>(Thick-</td><td></td><td>DESC</td><td>RIPTION</td><td></td><td></td><td></td><td>Instrument /Backfill</td></td<>	1	Depth			Wate		Legend	(Thick-		DESC	RIPTION				Instrument /Backfill
0.50 ES450 0.30 ES451 0.30 ES451 1.00 HSV 50 0.70 MADE GROUND 0.70 MADE GROUND 1.00 HSV 50 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 2.70 Frequent orange mottling noted. 1.80 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.80 2.70 3.60 1.10 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	-					25.80		0.20	coarse, subro	ounded to angular of	/ fine to c flint with	oarse sand. C occasional co	Gravel i obbles	is fine to of flint.	
0.00 LSAX Image: Constraint of the second s	0.5	50	ES450			25.30		₹`´´	fine to coarse fragments of	e, subrounded to ang plastic and wood.	y gravelly ular of bri	fine to coars ck and flint v	e sand. vith rai	. Gravel is re	
100 HSV 50 150 HSV 50 150 HSV 51 150 HSV 51 200 HSV 51 200 HSV 68 300 D454 69 300 HSV 86 400 HSV 75 400 HSV 75 400 HSV 75 400 HSV 75 450 HSV 100 450 HSV 97 5.00 D456 N23 5.00 N23 21.10 4.50 4.50 HSV 97 5.00 N23 21.1	0.8	30	ES451				<u> </u>	- -	Medium stre	ngth firm to stiff light	t brown C MATION1	LAY.			
1.50 HSV 50 1.50 HSV 51 2.00 ES453 51 2.00 HSV 68 2.50 HSV 68 2.50 HSV 69 3.00 D454 69 3.00 HSV 76 3.00 HSV 76 3.00 HSV 77 3.50 HSV 77 4.00 HSV 75 4.00 HSV 75 4.50 HSV 75 4.50 HSV 97 21.10 4.90 HSV 97 21.10 4.90 High strength stiff light brown silty CLAY. 4.50 HSV 5.00 D456 N23 X X X X			HSV						[, , , , , , , , , , , , , , , , , , ,				
2.00 HSV 51	1.5	50	HSV						1.80 - 2.70 Fr	requent orange mottl	ing noted				
2.50 HSV 68	2.0	00						 [(2.90)							
3.00 HSV 69 N11 3.50 HSV 79 3.60 3.50 HSV 77 Medium to hight strength firm light brown mottled grey slightly sandy CLAY. Sand is fine and orange. [WEATHERED LONDON CLAY FORMATION] 4.00 D455 75	2.5	50	HSV	68					2.70 - 3.60 O	range mottling cease	s, frequer	nt grey mottl	ing not	ed.	
3.50 HSV 77 3.50 HSV 86 4.00 P455 4.00 HSV 75 4.00 HSV 100 4.50 HSV 100 4.50 HSV 97 21.10	3.0	00						1- 1- 1- 1- 1-							
4.00 4.00 4.00 D455 N14 75 N14 (1.30) (1.30) (1.30) 4.50 4.50 HSV HSV 100 97 4.50 - 4.60 Claystone noted. 4.50 HSV HSV 97 21.10 (0.55) 4.50 - 4.60 Claystone noted. 5.00 D456 N23 21.10 (0.55) High strength stiff light brown silty CLAY. (WEATHERED LONDON CLAY FORMATION) 8 Date Strike depth Casing depth Comment Time measured Standing Depth 0 1.05 X 5.45 (Window sample terminated at 5.45m) 8 Strike Casing depth Comment Time measured Standing Depth 0 No groundwater encountered in borehole. 3. No groundwater encountered in borehole. 3. No groundwater encountered in borehole.	3.5	50	HSV	77		22.40		3.60 - -	CLAY. Sand is [WEATHERED	s fine and orange. D LONDON CLAY FOR	MATION]	mottled grey	slightl	y sandy	∴ • ⊟ ∴ •
4.50 HSV 101 4.50 HSV 97 5.00 D456 N23 Image: Comparison of the strength stiff light brown silty CLAY. WEATHERED LONDON CLAY FORMATION] Boring Progress and Water Observations Date Strike Casing depth General Remarks 1. ES = environmental sample, D= disturbed sample, HSV= hand shear vane to N = Standard Penetration Test 'N' value. 2. Installation details: 0.0m to 1.0m plain pipe with bentonite backfill, 1.0m Som sotted pipe with gravel backfill, 5.0m to 5.45m bentonite backfill. Gas bung and flush cover installed. 3. No groundwater encountered in borehole.	4.0	00						(1.30)	5.00 - 4.10 36						
5.00 D456 N23 Image: Construction of the second seco	4.5	50	HSV	101		21.10		- - - 4.90							
Boring Progress and Water Observations General Remarks Date Strike depth Casing depth Comment Time measured Standing Depth I ES = environmental sample, D= disturbed sample, HSV= hand shear vane t N = Standard Penetration Test 'N' value. I ISS = environmental sample, D= disturbed sample, HSV= hand shear vane t N = Standard Penetration Test 'N' value. I ISS = environmental sample, D= disturbed sample, HSV= hand shear vane t N = Standard Penetration Test 'N' value. I ISS = environmental sample, D= disturbed sample, HSV= hand shear vane t N = Standard Penetration Test 'N' value. I ISS = environmental sample, D= disturbed sample, HSV= hand shear vane t N = Standard Penetration Test 'N' value. I ISS = environmental sample, D= disturbed sample, HSV= hand shear vane t N = Standard Penetration Test 'N' value. I ISS = environmental sample, D= disturbed sample, HSV= hand shear vane t N = Standard Penetration Test 'N' value. I ISS = environmental sample, D= disturbed sample, HSV= hand shear vane t N = Standard Penetration Test 'N' value. I ISS = environmental sample, D= disturbed sample, HSV= hand shear vane t N = Standard Penetration Test 'N' value. I ISS = environmental sample, D= disturbed sample, HSV= hand shear vane t N = Standard Penetration Test 'N' value. I ISS = environmental sample, HSV= hand shear vane t N = Standard Penetration Te			D456	N23		20.55		*	High strength [WEATHEREI	n stiff light brown silt D LONDON CLAY FOR	y CLAY. MATION]				
Date Strike depth Casing depth Comment Time measured Standing Depth 1. ES= environmental sample, D= disturbed sample, HSV= hand shear vane to N = Standard Penetration Test 'N' value. 2. Installation details: 0.0m to 1.0m plain pipe with bentonite backfill, 1.0m 5.0m slotted pipe with gravel backfill, 5.0m to 5.45m bentonite backfill. Gas bung and flush cover installed. 3. No groundwater encountered in borehole.						20.55		5.45	(Window sai	mple terminated at 5	.45m)				
Date Strike depth Casing depth Comment Time measured Standing Depth 1. ES= environmental sample, D= disturbed sample, HSV= hand shear vane to N = Standard Penetration Test 'N' value. 2. Installation details: 0.0m to 1.0m plain pipe with bentonite backfill, 1.0m 5.0m slotted pipe with gravel backfill, 5.0m to 5.45m bentonite backfill. Gas bung and flush cover installed. 3. No groundwater encountered in borehole.	Bo	ring P	rogress	and W	/ater	[·] Obser	vation	s	General R	emarks					
			Strike	Casing		mment	Time		1. ES= enviro N = Standard 2. Installation 5.0m slotted bung and flus	nmental sample, D= Penetration Test 'N' n details: 0.0m to 1.0 pipe with gravel back sh cover installed.	value. m plain pi ‹fill, 5.0m	pe with bent to 5.45m be	onite b	oackfill, 1.0m	to
Method/ Plant Used Tracked window sampler rig Field Crew Checked By Checked By Checked By KAS			d Track	ed wind	dow s	sampler	rig	<u> </u>	Field Crew	RP Drilling		Logged By DMH		Checked By KAS	·

Project										HOLE No)
Cai	mden Lo	ock Villa	ge,	Londor	n - Prop	osed Bui	lding E			VA/C11	
Job No		Dat	e			Ground Le	evel (m)	Co-Ordinates (m)		WS11	
CG/1	.8067C		14	4-01-15	5	2	5.85	E 528,932.7 N 184	,182.3		
Client										Sheet	
Wa	alsh Asso	ociates								1 of 1	
SAMP	LES & T	ESTS	5		_			STRATA			lent
Depth	Type No	Test Result (N/kPa/ppm)	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION			Instrument /Backfill
-				25.70		0.15	throughout	ntly clayey gravelly fine to coars t. Gravel is fine to medium, ang OUND - TOPSOIL]	ular to subrour	nded of flint.	
- 0.50 -	ES457					(0.85)	sand. Grav	some orange bands, slightly clavel is fine to coarse, subrounded late and wood fragments with o OUND]	to angular of r	ed brick,	
1.00		N7		24.85		- 1.00					_ <u>1998</u>
-						-	(Window s	cample terminated at 1.45m)			
-						-					
- - -						-					
- - -						-					
- - 						-					
-						-					
- - -						-					
-						-					
- - -						-					
- - -						-					
-						-					
- - 						-					
Boring P	_		ater	Obser			General	Remarks			
Date	Strike depth	Casing depth	Cor	mment r	Time neasured	Standing Depth	2. Borehole with arising	ronmental sample, N = Standar e terminated due to concrete ob gs. ndwater encountered in boreho	ostruction at 1.	Test 'N' value. 45mbgl and back	filled
Boring P Date											
Method/ Plant Used	Track	ed windo	ow s	ampler	rig	<u> </u>	Field Crew	RP Drilling	Logged By DMH	Checked B KAS	

Project												HOL	E No	
	den Lo			Londor	n - Prop	osed Bui	-				,	// C	114	
Job No		Dat	-			Ground Le	. ,	Co-Ordinates (m)				vv J	тт /	
CG/180)67C		14	4-01-15	5	2	5.95	E 528,930.4	N 184	,181.4				
Client		• .									Sheet			
		ociates		1								1 (of 1	
SAMPLE	S & TE		er		1			STRATA						neni
Depth	Type No	Test Result (N/kPa/ppm)	Water	Reduced Level	Legend	Depth (Thick- ness)			RIPTION					Instrument
Boring Pro	ES457	and Wa		25.80	vation:	(1.25) (1.25) (1.25)	Medium, su [MADE GRC Dark brown coarse, sub occasional o [MADE GRC	tly clayey gravelly fine brounded to angular of slightly clayey gravelly rounded to angular of cobbles of angular red DUND]	to coarse f flint. / fine to c red brick, brick and	e sand. Grave	aravel is	s fine	/ to	
	trike epth	Casing depth	Co	mment n	Time neasured	Standing Depth	2. Borehole with arising	onmental sample. terminated due to cor s. dwater encountered ir			.4mbgl	and I	backfill	ed
Method/ Plant Used	Track	ed winde	ow s	sampler	rig	<u> </u>	Field Crew	RP Drilling		Logged By DMH		Chec	ked By KAS	/

Project										HOLE No)
Cam	nden Lo	ock Villa	age,	Londor	n - Prop	osed Bui	lding E			VA/C11	ר
Job No		Da	ite			Ground Le	evel (m)	Co-Ordinates (m)		WS11	5
CG/18	8067C		1	4-01-15	;	25	5.79	E 528,927.5 N 184	l,182.9		
Client										Sheet	
Wal	sh Asso	ociates								1 of 1	
SAMPL	FS & TI	STS						STRATA			IJ
0,		Test	Water	Deduces		Depth					Instrument /Backfill
Depth	Type No	Result (N/kPa/ppm) Š	Reduced Level	Legend	(Thick- ness)		DESCRIPTION	1		Instrume /Backfill
							Brown slight	ly clayey, slightly gravelly fine	to coarse sand	d with frequent	
-				25.59		0.20	rootlets thro flint.	ughout. Gravel is fine to medi	um, rounded t	o subangular of	
						-		UND - TOPSOIL]		/	
0.50	ES458					(0.65)	subrounded	ey very gravelly fine to coarse to very angular of flint, red br	ick and concre	te with	
-				24.94		- 0.85	occasional co	obbles of angular concrete.			
-				21.51	<u></u>	- 0.05	Medium stre	ength firm light brown slightly		and is fine.	
1.00 1.00	HSV	42 N6			<u></u>		[WEATHERE	D LONDON CLAY FORMATION]		
1.20	ES459					(0.75)					
-						-					
1.50 1.50	HSV HSV	58 78		24.19	×	1.60	Medium to h	high strength firm to stiff light	brown slightly	silty CLAY.	-::=::
_ 1.50	HSV	70			×		[WEATHERE	D LONDON CLAY FORMATION]		
	56460					+ +					
2.00	ES460 HSV	54									
2.00		N9			× —; ××						
2.50	HSV	67			×		2.40 - 4.20 F	requent grey mottling noted.			
2.50	HSV	71			×	- 					
2.50	HSV	69				(2.60)					
3.00	D461				× × · · · · ·		3.00 - 3.65 F	requent selenite crystals note	d.		
3.00 3.00	HSV	80 N11									
- 5.00					× ×	1					
3.50	HSV	83					3.45 - 3.55 B	and of claystone noted.			
_ 3.50 _ 3.50	HSV HSV	87 94			× · · ·						
-					× _ × _ ;						
4.00 4.00	D462 HSV	80		21.59		4.20					
4.00		N23		21.55	Ê	4.25		h firm light brown sandy CLAY		o medium.	7: E:
							1-	D LONDON CLAY FORMATION high strength very stiff light bro	•	ndy CLAY Sand	
_ 4.50	HSV	130					is fine.	D LONDON CLAY FORMATION	υ,		
-					<u> </u>	(1.20)	-		-		
					 		4.00 DEIOW 4	1.80mbgl: Frequent grey mottl	g.		
5.00 5.00	D463 HSV	101			<u> </u>						
5.00		N16		20.24		- 5.45					
				20.34		- 5.45	(Window sa	mple terminated at 5.45m)			
	ogress	and W	/atei	r Ohser	vation	s	General R	emarks			
Doring Tr	Strike	Casing		mment	Time	Standing		onmental sample, D= disturbe	d sample. HSV:	= hand shear vane	test.
	depth	depth	+	n	neasured	Depth	N = Standard	Penetration Test 'N' value. n details: 0.0m to 1.0m plain p			
							5.0m slotted	pipe with gravel backfill, 5.0n			
5								sh cover installed. Iwater encountered in borehc	le.		
Boring Pro											
Method/	I			I		<u> </u>	Field Crew		Logged By	Checked B	у
Method/ Plant Used	Track	ed wind	dow	sampler	rig			RP Drilling	DMH	KAS	

Project Can	nden Lo	ck Villa	σÞ	London	- Dron	osed Bui	lding F			HOLE No
Job No		Dat	-	LOHUUII		Ground Le	-	Co-Ordinates (m)		WS12
CG/18067C 14-01-15					25.94 E 528,920.9 N 184			N 184 165 5		
Client	00070		т,	- 01-13		2.	J.J .		1 107,103.3	Sheet
	lsh Asso	ociates								1 of 1
SAMPL	.ES & TE	STS						STRATA		+
Depth	Type No	Test Result (N/kPa/ppm)	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCR	IPTION	
				25.69		- 0.25	rootlets thr	slightly clayey gravelly f oughout. Sand is fine to I to subangular of flint. DUND - TOPSOIL]		with frequent
0.60	ES464			25.44 25.24		0.50	Black very g subrounded	ravelly fine to medium s to angular of red brick a DUND1	and. Gravel is fine t and concrete with r	o coarse, are chalk deposits.
1 00	56465					_ _ (0.50)	Grey slightly	y gravelly fine to coarse s ar of flint and concrete.	sand. Gravel is fine	to coarse, rounded
1.00 1.00	ES465	N7		24.74		1.20	fine. Gravel	rown to brown slightly sa is fine to coarse, subrou id occasional cobbles of	inded to very angula	ly clay. Sand is ar of flint with rare
1.50 1.50 1.50	HSV HSV HSV	48 57 79		24.14		- (0.60) - 1.80	Medium str [WEATHERE	ength firm light brown s ED LONDON CLAY FORM	ATION]	
2.00 2.00 2.20	HSV ES466	70 N8				(0.70)	No odour.	ength firm light brown v ED LONDON CLAY FORM	-	ghtly silty CLAY.
2.50 2.50	HSV HSV	59 58		23.44		2.50		ength stiff light brown n comes more frequent w		silty CLAY.
2.50 3.00 3.00	D467 HSV	52 49						ED LONDON CLAY FORM		
3.00		N6				- (2.00)				
3.50 3.50 3.50	HSV HSV HSV	68 77 78								
4.00 4.00 4.00	D468 HSV	79 N11								
4.50 4.50 4.50	HSV HSV HSV	63 64 101		21.44		4.50 (0.30) 4.80	CLAY. Sand	ED LONDON CLAY FORM	ATION]	
5.00 5.00	D469	N13				- - - (0.65)	friable.	high strength stiff light b ED LONDON CLAY FORM		CLAY. Clay is
				20.49		- 5.45	(Window s	ample terminated at 5.4.	5m)	
Boring Pr	ngress	and W/	ater	· Ohcan	vation	۱ا د ا	General	•		
Date	Strike depth	Casing depth		mment	Time	Standing Depth	1. ES= envir N = Standar	onmental sample, D= dis d Penetration Test 'N' va	alue.	
							5.0m slotte bung and fl	on details: 0.0m to 0.5m d pipe with gravel backfi ush cover installed. dwater encountered in l	ll, 5.0m to 5.45m b	tonite backfill, 0.5m to entonite backfill. Gas t
Method/							Field Crew		Logged By	Checked By

Project										F	HOLE No	
Can	nden Lo	ock Villa	ige,	Londor	n - Prop	osed Bui	ilding E				WS13	
Job No		Dat	e			Ground Le	evel (m)	Co-Ordinates (m)			VV 3T 2	
CG/18	3067C		1	4-01-15	5	2	5.78	E 528,911.5 N 184	,177.3			
Client										Sheet		
Wal	sh Asso	ociates									1 of 1	
SAMPL	ES & TI	ESTS						STRATA				ent
Depth	Type No	Test Result (N/kPa/ppm)	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION				Instrument /Rackfill
2.50 2.50 2.50 2.50 2.50 2.50 2.50 3.00 3.00 3.00 3.00 3.00 3.00 4.00 4.0	ES470 ES471 HSV HSV ES472 HSV HSV HSV HSV HSV HSV HSV HSV HSV HSV	N8 61 80 67 47 N7 59 57 72 N9 88 78 93 68 N12 130 79 102 80 N18		25.63 24.88 23.48 20.33		(0.75) (0.75) (0.75) (1.40) (1.40) (3.15) (3.15) (3.15)	rootlets thro flint. [MADE GRO Firm dark br coarse. Gravand concret [MADE GRO Low to med [WEATHERE 2.20 - 2.30 E Medium strusilty CLAY. [WEATHERE (WEATHERE	ample terminated at 5.45m)	e, subrounde avelly clay. Sar d to angular o CLAY.] nd is fine. casional grey r	d to angund is fine	quent ular of e to ed brick	
Boring Pr	Ogress Strike depth	Casing depth		mment	Time Time neasured	Standing	N = Standar 2. Backfilled	onmental sample, D= disturbed d Penetration Test 'N' value. with arisings.	•	/= hand s	shear vane te	est,
							3. No groun	dwater encountered in boreho	le.			
Method/							Field Crew		Logged By	C	Checked By	
Plant Used	Track	ed wind	ow :	sampler	rig			RP Drilling	DMH		KAS	

0.50 ES476 ES476 25.92 0.15 Dark brown sightly clavey gravely fae to carse subrounded to angular of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick and concrete with rare site and occasional cobbles of red and velow brick. Boring Progress and Water Observations General Remarks Date Strike Cising Output Immediate and remember	Project										HOLE	No
Control Level (m)		nden Lo			Londor	ו - Prop					w/s	14
Client Sheet 1 of 1 SAMPLES & TESTS Depth Type Test to f 1 STRATA Import Type Test to f 1 STRATA Depth Type Test to f 1 STRATA Depth Type Test to f 1 STRATA Depth Type Test to f 1 STRATA OSO OSO STRATA OSO OSO OSO Colspan="2">STRATA Tool to throughout, Gravel is fine to coarse, subrounded to angular of red and with frequent media and cocasional cobbes of red and with rare state and occasional cobbes of red and with rare state and occasional cobbes of red and with rare state and occasional cobbes of red and with rare state and occasional cobbes of red and to the with rare state and occasional cobbes of red and to the with rare state and occasional cobbes of red and with rare state and occasional cobbes of red and to the with rare state and occasional cobbes of red and to the with rare state and occasional cobbes of red and to the with rare state and occasional cobbes of red and to the with rare state and occasional cobbes of red and to the with rare state and occasional cobbes of red and to the with rare state and occasional cobbes of red and to the with rare state and occasional cobbes of re			Dat									T .4
Ut of 1 STRATA Depth Type Test. Reduced Depth (Colspan="2">Depth Type Test. Reduced Depth Type Test. Reduced Test. Reduced <thtest. Reduced Test. Reduced<!--</td--><td></td><td>8067C</td><td></td><td>14</td><td>4-01-15</td><td>></td><td>20</td><td>5.07</td><td>E 528,930.9 N 184</td><td>,165.3</td><td>Chaot</td><td></td></thtest. 		8067C		14	4-01-15	>	20	5.07	E 528,930.9 N 184	,165.3	Chaot	
SAMPLES & TESTS Depth Type No Test Result 0.50 F5476 <		lch Acc	ociatos									F 1
0.50 ES476 25.92 0.15 Dark brown slightly clayer gravelly fine to coarse sand with frequent of fint. Investigation of fint. 0.50 ES476 (0.85) (0.85) (0.85) 25.07 1.00 (0.85) 1.00 (MADE GROUND - TOPSOL) First Brown slightly sand gravelly clay, Sand if fire to any lar of red and wellow brick and concrete with rare state and occasional cobbles of red and wellow brick. 25.07 1.00 (Window sample terminated at 1m)					1						1 0	
0.50 ES476 25.92 0.15 Dark brown slightly clayer gravelly fine to coarse sand with frequent of fint. Investigation of fint. 0.50 ES476 (0.85) (0.85) (0.85) 25.07 1.00 (0.85) 1.00 (MADE GROUND - TOPSOL) First Brown slightly sand gravelly clay, Sand if fire to any lar of red and wellow brick and concrete with rare state and occasional cobbles of red and wellow brick. 25.07 1.00 (Window sample terminated at 1m)	SAMPL			ter			Denth		SIRAIA			men
0.50 ES476 ES476 Image: Control of the c	Depth	Type No		Wa	Reduced Level	Legend	(Thick-					Instrume
0.50 ESA76 Image: Single Comment Time Standing General Remarks 25.07 1.00 (Window sample terminated up to any standing General Single N= Standard Penetration Test N value. 25.07 30ring Progress and Water Observations Date Strike Gening Comment Time Standing General Sample N= Standard Penetration Test N value. 2.00 ESE environmental sample, N = Standard Penetration at 1.0mbgl and backfilled with an insign. 3.01 Strike Gening Comment Time Standing General Remarks 3.02 Strike Gening Comment Time Standing General Remarks 3.03 Strike Gening Comment Time Standing General Remarks 3.04 General Remarks 3.05 Strike Gening Comment Time Standing General Remarks 3.06 Field Crew					25.92		- 0.15 - -	rootlets th flint. [MADE GR	roughout. Gravel is fine to coars OUND - TOPSOIL]	se, subroundec	l to angular o	f
3oring Progress and Water Observations General Remarks Bote Strike Casing Strike Casing Comment Image of the strike in the strike	0.50	ES476					- (0.85) -	medium. G yellow bric and vellow	Bravel is fine to coarse, subround k and concrete with rare slate a brick.	ded to angular	of red and	
Boring Progress and Water Observations Eneral Remarks Bate Strike Casing Comment Times Standard Penetration Test: Nº value. Bate Strike Casing Comment Destrike Strike Comment Method/ Isolarity Comment Times Standard Penetration Test: Nº value. No groundwater encountered in borehole. No groundwater encountered in borehole. No groundwater encountered in borehole.	-				25.07	' XXXX	1.00	-	-			
depuil	-	Strike	Casing		mment	Time	Standing			d Penetration	Test 'N' value	
Method/ Field Crew Logged By Checked By Vlant Used Tracked window sampler rig RP Drilling DMH KAS			<u>depth</u>		r		Depth	2. Borehol with arisin	e terminated due to concrete ob gs.	ostruction at 1.	Ombgl and ba	ackfilled
	Method/ Plant Used	Track	od wind		amplor	ria		Field Crew	PP Drilling			

Project										HOLE N	0
Cam	den Lo	ock Villa	ge,	Londor	ı - Prop	osed Bui	-			WS14	٨
Job No		Dat				Ground Le		Co-Ordinates (m)		VVJI4	~
CG/18	067C		14	4-01-15		25	5.92	E 528,926.9 N 184	,163.7		
Client										Sheet	
		ociates		1						1 of 1	
SAMPL	ES & TI	1	er					STRATA			nent
Depth	Type No	Test Result (N/kPa/ppm)	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION			Instrument
				25.77		0.15	rootlets thr	n slightly clayey gravelly fine to oughout. Sand is fine to coarse d to angular of flint. DUND - TOPSOIL]	coarse sand wi . Gravel is fine	th frequent to coarse,	
0.50	ES476					(0.85)	of red and	a slightly clayey sandy fine to co yellow brick and concrete with K. Sand is fine to coarse. Rare bl	freguent cobbl	es of red and	
•				24.92		1.00	[MADE GRO	DUND]			8
	Ogress Strike depth	and Wa Casing depth		mment	vation	Standing	2. Borehole with arising	onmental sample, N = Standard terminated due to concrete ob	ostruction at 1.	Fest 'N' value. Ombgl and backf	illed
Method/ Plant Used	Track	ed wind	ows	sampler	rig		Field Crew	RP Drilling	Logged By DMH	Checked E KA	

Project												HOLE No	
Cam	den Lo	ock Villa	ge,	Londo	n - Prop	osed Bui	-					WS14B	2
Job No		Dat				Ground Le		Co-Ordinates (m)				VV J I 4 L	,
CG/18	067C		14	4-01-15	5	2	5.96	E 528,925.2	N 184	,166.9			
Client											Sheet		
		ociates										1 of 1	-
SAMPLE	S & TI		er		1			STRATA					neni
Depth	Type No	Test Result (N/kPa/ppm)	Water	Reduce Level	Legend	Depth (Thick- ness)			RIPTION				Instrument Abackfill
0.50	ES476			25.81		(0.85) (0.85)	rootlets thro subrounded [MADE GRC Dark brown fine to coars slate and cli concrete. [MADE GRC	slightly clayey gravell oughout. Sand is fine t it o angular of flint. DUND - TOPSOIL] to black slightly claye se, rounded to angular nker with occasional c DUND] ample terminated at 1	o coarse y gravelly r of flint, cobbles o	Gravel is fine	e to coa	rse, Gravel is concrete.	
Boring Pro	ogress trike lepth	and Wa Casing depth	1	mment	vation: Time neasured	- - - - S Standing Depth	2. Borehole with arising 3. No groun	onmental sample, N = terminated due to co	ncrete ob	istruction at 1	.0mbgl	and backfill	
Method/ Plant Used	Track	ed wind	ow s	sampler	rig		Field Crew	RP Drilling		Logged By DMH		Checked By KAS	/

Project										HOLE No)
Cam	iden Lo	ock Vi	llage,	Londor	n - Prop	osed Bui	ilding E				
Job No		C	Date			Ground Le	evel (m)	Co-Ordinates (m)		WS15	
CG/18	8067C		1	4-01-15	;	20	6.04	E 528,925.7 N 184	4,173.4		
Client										Sheet	
Wal	sh Asso	ociate	es							1 of 1	
SAMPL	ES & TI	ESTS						STRATA			ent
Depth	Type No	Test Resu (N/kPa/pp		Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION	N		Instrument /Backfill
-				25.89		0.15	throughout. to subanguli [MADE GRO Soft to firm gravelly clay to angular o	slightly clayey gravelly fine to Sand is fine to coarse. Gravel ar of flint. UND - TOPSOIL] dark brown with frequent blac . Sand is fine to coarse. Gravel f red and yellow brick, concret bble content of angular red and	is fine to medi ck staining slig l is fine to coar ce and burnt m	ium, subrounded htly sandy rse, subrounded naterial with a	
- - 1.00 -		N9		24.64		(0.70) 	\[MADE GRO Firm to stiff to angular o brick. Grave [MADE GRO	UND] dark brown gravelly clay. Grav f flint and red brick with occas I content decreases at the bas	vel is fine to co ional cobbles e of the layer.	/ arse, subrounded of subangular red	
1.50	D477							D LONDON CLAY FORMATION			
2.00	HSV D478	71 N7									
2.50 2.50 2.50 2.50 3.00	HSV HSV HSV HSV	38 72 84 73				- - - - - -	2.70 - 2.75 E	Band of orange sandy CLAY. Sa	nd is fine.		
3.50	HSV	N9				(4.05)	3 50 Below	3.50mbgl: Frequent grey mott	ling noted		
3.50 3.50 4.00	HSV HSV	61 90 72				> - > - - - - - - -			ing noted.		
4.00	HSV	N13	3			- - - - - -					
4.50 5.00	HSV D479	100)			- - - -					
F 00	HSV	106 N16		20.59		- 5.45	(Window sc	imple terminated at 5.45m)			
Poring Dr		and	A/a+a:								
Boring Pro	Strike	Casin	ng Co	mment	Time	Standing	General F		d sample HSV	= hand shear yang	tect
	depth	deptl		imment n	neasured	Depth	N = Standar 2. Backfilled	onmental sample, D= disturbe d Penetration Test 'N' value. with arisings. dwater encountered in boreho		= nano snear vane	test,
Method/				i			Field Crew		Logged By	Checked B	
Plant Used	Track	ed wir	ndow	sampler	rig			RP Drilling	DMH	KAS	

APPENDIX D

Ground gas and groundwater monitoring records

JOB DET	IOB DETAILS											
Site:	Camden Lock Market - Proposed Building E	Job No:	CG/18067C									
Date:	20/01/2015	Engineer:	TOP									
Time:	08:00am	Client	Walsh Associates									
METEOR	METEOROLOGICAL & SITE INFORMATION											

State of ground:	Dry	Х	Moist		Wet				
Wind:	Calm		Light	Х	Moderate		Strong]
Cloud cover:	None		Slight	Х	Cloudy		Overcast]
Precipitation:	None	Х	Slight		Moderate		Heavy]
Barometric pressure (mb):	1005 - 1007		Local press	sure system*:	Falling	Air temp	perature (°C):	-2	-

Well No.	Time (s)	Flow (l/hr)	dA (PA)	O ₂ (% vol. in air)	CO ₂ (% vol. in air)	CH ₄ (% vol. in air)	PID (ppm)	Depth to GW (mbgl)	Comments
	0	0.7	2.0	18.7	2.2	<0.1	NR	4.48	Base of well at
	15	0.8	3.0	18.5	2.1	<0.1			4.98mbgl
	30	0.9	3.0	18.4	2.1	<0.1			
	45	0.9	3.0	18.4	2.1	<0.1			
	60	0.9	3.0	18.4	2.1	<0.1			
WS10	90	0.8	3.0	18.4	2.1	<0.1			
	120	0.8	3.0	18.4	2.1	<0.1			
	150	0.8	3.0	18.3	2.1	<0.1			
	180			18.3	2.1	<0.1			
	240			18.3	2.1	<0.1			
	300			18.2	2.1	<0.1			
	0	0.7	2.0	19.3	0.8	<0.1	NR	4.78	Base of well at
	15	0.8	3.0	19.2	0.8	<0.1			4.98mbgl
	30	0.9	3.0	19.2	0.8	<0.1			
	45	0.9	3.0	19.1	0.8	<0.1			
	60	0.9	3.0	19.1	0.8	<0.1			
WS11B	90	0.8	3.0	19.1	0.8	<0.1			
	120	0.8	3.0	19.1	0.8	<0.1			
	150	0.8	3.0	19.1	0.8	<0.1			
	180			19.1	0.8	<0.1			
	240								
	300								
	0	0.9	3.0	18.9	1.7	<0.1	NR	4.56	Base of well at
	15	0.8	3.0	18.5	1.7	<0.1			4.94mbgl
	30	0.9	3.0	18.5	1.7	<0.1			
	45	0.9	3.0	18.4	1.7	<0.1			
	60	0.9	3.0	18.4	1.7	<0.1			
WS12	90	0.9	3.0	18.4	1.7	<0.1			
	120	0.7	3.0	18.4	1.7	<0.1			
	150	0.8	3.0	18.4	1.7	<0.1			
	180	0.9	3.0	18.4	1.7	<0.1			
	240	0.8	3.0						
	300	0.9	3.0						

Notes:

JOB DET	AILS			
Site:	Camden Lock Market - Proposed Building E	Job No:	CG/18067C	
Date:	26/01/2015	Engineer:	MIL	
Time:	12:30pm	Client	Walsh Associates	
METEOR	OLOGICAL & SITE INFORMATION			

State of ground:	Dry		Moist	Х	Wet				
Wind:	Calm		Light	Х	Moderate		Strong]
Cloud cover:	None		Slight		Cloudy		Overcast	х]
Precipitation:	None	Х	Slight		Moderate		Heavy]
Barometric pressure (mb):	1022		Local press	ure system*:	Rising	Air temp	perature (°C):	9.2	_

Well No.	Time (s)	Flow (l/hr)	dA (PA)	O ₂ (% vol. in air)	CO ₂ (% vol. in air)	CH₄ (% vol. in air)	PID (ppm)	Depth to GW (mbgl)	Comments
	0	0.1	2.0	18.9	0.9	<0.1	NR	4.30	Base of well at
	15	0.2	5.0	18.9	2.1	<0.1			4.99mbgl
	30	0.1	2.0	18.3	2.2	<0.1			
	45	0.1	2.0	18.3	2.2	<0.1			
	60	0.1	3.0	18.3	2.2	<0.1			
WS10	90	0.2	5.0	18.3	2.2	<0.1			
	120	0.1	2.0						
	150	0.1	2.0						
	180	0.1	2.0						
	240								
	300								
	0	<0.1	0.0	18.6	0.8	<0.1	NR	4.45	Base of well at
	15	<0.1	0.0	19.4	0.8	<0.1		4.45	4.99mbgl
	30	<0.1	0.0	19.4	0.8	<0.1			4.5511081
	45	<0.1	0.0	19.3	0.8	<0.1			
	60	<0.1	0.0	19.2	0.9	<0.1			
WS11B	90	<0.1	0.0	19.2	0.9	<0.1			
W5110	120	<0.1	0.0	19.2	0.9	<0.1			
	150	\0.1	0.0	15.2	0.5	<0.1			
	180								
	240								
	300								
									_
	0	<0.1	0.0	18.9	0.8	<0.1	NR	4.30	Base of well at
	15	<0.1	0.0	19.4	0.9	<0.1			4.94mbgl
	30	<0.1	0.0	19.1	1.1	<0.1			
	45	<0.1	0.0	18.8	1.4	<0.1			
	60	<0.1	0.0	18.6	1.6	<0.1			
WS12	90	<0.1	0.0	18.4	1.8	<0.1			
	120	<0.1	0.0	18.4	1.8	<0.1			
	150			18.4	1.8	<0.1			
	180					<0.1			
	240								
	300								

Notes:

JOB DETA	IOB DETAILS											
Site:	Camden Lock Market - Proposed Building E	Job No:	CG/18067C									
Date:	06/02/2015	Engineer:	TOP									
Time:	09.40am	Client	Walsh Associates									
METEOR	METEOROLOGICAL & SITE INFORMATION											

WETEOROLOGICAL & SITE	INFORMATION								
State of ground:	Dry	Х	Moist		Wet				
Wind:	Calm	Х	Light		Moderate		Strong]
Cloud cover:	None		Slight	х	Cloudy		Overcast]
Precipitation:	None	Х	Slight		Moderate		Heavy]
Barometric pressure (mb):	1025 - 1026		Local press	sure system*:	Rising	Air tem	perature (°C):	2	-

Well No.	Time (s)	Flow (l/hr)	dA (PA)	O ₂ (% vol. in air)	CO ₂ (% vol. in air)	CH ₄ (% vol. in air)	PID (ppm)	Depth to GW (mbgl)	Comments
	0	0.7	2.0	19.1	2.2	<0.1	<0.1	4.42	
	15	0.9	3.0	19.0	2.1	<0.1	< 0.1		Base of well at 5.0mbg
	30	0.9	3.0	18.8	2.0	<0.1	< 0.1		
	45	0.8	3.0	18.7	2.0	<0.1	< 0.1		
	60	0.7	2.0	18.6	2.0	<0.1			
WS10	90	0.9	3.0	18.6	1.9	<0.1			
	120	0.7	2.0	18.6	2.0	<0.1			
	150	0.8	3.0	18.6	2.0	<0.1			
	180	0.9	3.0	18.5	2.0	<0.1			
	240			18.5	2.0	<0.1			
	300			18.5	1.9	<0.1			
			2.0	10.0	0.7	.0.4	-0.1	474	Base of well at
	0	0.8	3.0	19.6	0.7	<0.1	<0.1	4.74	
	15	0.7	2.0	19.5	0.7	<0.1	<0.1		4.99mbgl
	30	0.7	2.0	19.5	0.7	<0.1	<0.1		-
	45	0.8	3.0	19.4	0.7	<0.1	<0.1		-
	60	0.8	3.0	19.4	0.6	<0.1			-
WS11B	90	0.7	2.0	19.3	0.7	<0.1			-
	120			19.3	0.7	<0.1			-
	150			19.3	0.7	<0.1			-
	180			19.3	0.7	<0.1			-
	240			19.3	0.7	<0.1			
	300			19.2	0.7	<0.1			
	0	0.8	3.0	19.5	1.5	<0.1	<0.1	4.54	Base of well at
	15	0.9	3.0	19.4	1.5	< 0.1	< 0.1		4.95mbgl
	30	0.7	2.0	19.4	1.5	< 0.1	< 0.1		
	45	0.7	2.0	19.3	1.5	<0.1	<0.1	1	
	60	0.8	3.0	19.3	1.5	<0.1		1	
WS12	90	0.7	2.0	19.2	1.5	<0.1			
	120	0.9	3.0	19.2	1.5	<0.1		1	
	150			19.1	1.5	<0.1		1	
	180			19.1	1.5	<0.1		1	
	240			18.9	1.6	<0.1			
	300			18.7	1.7	<0.1			

Notes:

JOB DETAIL	S		
Site:	Camden Lock Market - Proposed Building E	Job No:	CG/18067C
Date:	10/02/2015	Engineer:	ТОР
Time:	13:00pm	Client	Walsh Associates

METEOROLOGICAL & SITE	INFORMATION								
State of ground:	Dry	Х	Moist		Wet				
Wind:	Calm		Light	Х	Moderate		Strong		
Cloud cover:	None		Slight		Cloudy		Overcast	х	
Precipitation:	None	Х	Slight		Moderate		Heavy		
Barometric pressure (mb):	1029		Local press	sure system*:	Rising	Air temp	perature (°C):	5	

Well No.	Time (s)	Flow (l/hr)	dA (PA)	O ₂ (% vol. in air)	CO ₂ (% vol. in air)	CH₄ (% vol. in air)	PID (ppm)	Depth to GW (mbgl)	Comments
	0	0.3	1.0	19.2	2.1	<0.1	NR	3.50	Base of well at
	15	0.3	1.0	19.1	2.2	<0.1			4.98mbgl
	30	0.4	1.0	19.0	2.2	<0.1			
	45	0.4	1.0	19.0	2.2	<0.1			
	60	0.3	1.0	19.0	2.2	<0.1			
WS10	90	0.3	1.0	19.0	2.2	<0.1			
	120	0.3	1.0	19.0	2.1	<0.1			
	150			19.0	2.1	<0.1			
	180			19.0	2.1	<0.1			
	240								
	300								
				-				_	
	0	0.3	1.0	20.0	<0.1	<0.1	NR	4.17	
	15	0.3	1.0	20.1	<0.1	<0.1			Base of well at 5.0mbg
	30	0.4	1.0	20.3	<0.1	<0.1			
	45	0.4	1.0	20.2	<0.1	<0.1			
	60	0.3	1.0	20.1	<0.1	<0.1			
WS11B	90	0.3	1.0	20.1	<0.1	<0.1			
	120	0.3	1.0	20.1	0.1	<0.1			
	150			20.1	0.2	<0.1			
	180			20.1	0.3	<0.1			
	240			20.0	0.4	<0.1			
	300			20.0	0.4	<0.1			
				10.5					David from that
	0	0.3	1.0	19.5	1.4	<0.1	NR	3.28	Base of well at
	15	0.3	1.0	19.3	1.5	<0.1			4.99mbgl
	30	0.4	1.0	19.3	1.5	<0.1			
	45	0.4	1.0	19.3	1.5	<0.1			
	60	0.3	1.0	19.2	1.5	<0.1			
WS12	90	0.3	1.0	19.2	1.4	<0.1			
	120	0.3	1.0	19.2	1.4	<0.1			
	150			19.2	1.4	<0.1			
	180			19.2	1.4	<0.1		-	
	240								
	300								

Notes:

JOB DET/	AILS			
Site:	Camden Lock Market - Proposed Building E	Job No:	CG/18067C	
Date:	16/02/2015	Engineer:	TOP	
Time:	13:00pm	Client	Walsh Associates	
METEOR	OLOGICAL & SITE INFORMATION			

State of ground:	Dry	Х	Moist		Wet			
Wind:	Calm		Light	Х	Moderate		Strong	
Cloud cover:	None		Slight		Cloudy	Х	Overcast	
Precipitation:	None	Х	Slight		Moderate		Heavy	
Barometric pressure (mb):	1017		Local press	ure system*:	Falling	Air tem	perature (°C):	8

Well No.	Time (s)	Flow (I/hr)	dA (PA)	O ₂ (% vol. in air)	CO ₂ (% vol. in air)	CH₄ (% vol. in air)	PID (ppm)	Depth to GW (mbgl)	Comments
	0	0.5	2.0	18.8	2.1	<0.1	NR	3.78	Base of well at
	15	0.4	1.0	18.8	2.1	<0.1			4.99mbgl
	30	0.4	1.0	18.7	2.1	<0.1			
	45	0.3	1.0	18.7	2.1	<0.1			
	60	0.5	2.0	18.6	2.1	<0.1			
WS10	90	0.4	1.0	18.6	2.1	<0.1			
	120	0.5	2.0	18.6	2.1	<0.1			
	150			18.5	2.1	<0.1			
	180			18.5	2.1	<0.1			
	240			18.4	2.1	<0.1			
	300			18.4	2.1	<0.1			
									1
	0	0.4	1.0	19.8	0.1	<0.1	NR	4.53	
	15	0.3	1.0	19.9	0.1	<0.1			Base of well at 5.0mbg
	30	0.3	1.0	19.9	0.1	<0.1			
	45	0.4	1.0	20.0	0.1	<0.1			
	60	0.5	2.0	20.1	<0.1	<0.1			
WS11B	90	0.3	1.0	20.1	<0.1	<0.1			
	120	0.4	1.0	20.1	<0.1	<0.1			
	150			20.1	<0.1	<0.1			
	180			20.1	<0.1	<0.1			
	240			20.1	<0.1	<0.1			
	300			20.0	<0.1	<0.1			
	0	0.5	2.0	19.3	1.3	<0.1	NR	4.12	Base of well at
	15	0.5	2.0	19.2	1.3	<0.1		4.12	4.96mbgl
	30	0.4	1.0	19.2	1.2	<0.1			4.5011061
	45	0.4	1.0	19.1	1.3	<0.1			
	60	0.4	1.0	19.1	1.3	<0.1			
WS12	90	0.5	2.0	19.1	1.3	<0.1			
	120	0.3	1.0	19.0	1.3	<0.1		1	1
	150	0.5	1.0	18.9	1.3	<0.1		1	1
	130			18.9	1.3	<0.1		1	1
	240			18.8	1.3	<0.1		1	1
	300			18.7	1.3	<0.1			

Notes:

JOB DETAIL	5		
Site:	Camden Lock Market - Proposed Building E	Job No:	CG/18067C
Date:	24/02/2015	Engineer:	TOP
Time:	9am	Client	Walsh Associates

NETEOROLOGICAL & SITE INFORMATION									
State of ground:	Dry	Х	Moist		Wet				
Wind:	Calm		Light	х	Moderate		Strong		
Cloud cover:	None		Slight		Cloudy	х	Overcast		
Precipitation:	None	Х	Slight		Moderate		Heavy		
Barometric pressure (mb):	1004 - 1005		Local press	sure system*:	Rising	Air tem	perature (°C):	6	

Well No.	Time (s)	Flow (l/hr)	dA (PA)	O ₂ (% vol. in air)	CO ₂ (% vol. in air)	CH₄ (% vol. in air)	PID (ppm)	Depth to GW (mbgl)	Comments
	0	0.3	1.0	19.2	2.0	<0.1	NR	3.75	Base of well at
	15	0.3	1.0	19.1	2.0	<0.1			4.98mbgl
	30	0.2	1.0	19.1	2.0	<0.1			
	45	0.3	1.0	19.0	2.0	<0.1			
	60	0.3	1.0	19.0	2.0	<0.1			
WS10	90	0.3	1.0	18.9	2.0	<0.1			
	120	0.2	1.0	18.9	2.0	<0.1			
	150			18.9	2.0	<0.1			
	180			18.9	2.0	<0.1			
	240			18.9	2.0	<0.1			
	300			18.8	2.0	<0.1			
	0	0.2	1.0	20.3	<0.1	<0.1	NR	4.50	1
	15	0.2	1.0	20.3	<0.1	<0.1	INK	4.50	Base of well at 4.9mbg
	30	0.2	1.0	20.2	<0.1	<0.1			base of well at 4.911bg
	45	0.3	1.0	20.1	<0.1	<0.1			
	60	0.1	1.0	20.1	<0.1	<0.1			
WS11B	90	<0.1	1.0	20.1	<0.1	<0.1			
WJIID	120	0.1	1.0	20.1	<0.1	<0.1			
	150	0.1	1.0	20.0	<0.1	<0.1			
	130			20.0	<0.1	<0.1			
	240			20.0	<0.1	<0.1			
	300			20.0	<0.1	<0.1			
	0	0.2	1.0	19.6	1.1	<0.1	NR	4.09	Base of well at
	15	0.1	1.0	19.6	1.1	<0.1			4.97mbgl
	30	0.1	1.0	19.5	1.1	<0.1			
	45	<0.1	1.0	19.5	1.1	<0.1			
	60	0.1	1.0	19.5	1.2	<0.1			
WS12	90	0.2	1.0	19.4	1.2	<0.1			
	120	0.3	1.0	19.4	1.1	<0.1			
	150			19.4	1.1	<0.1			
	180			19.3	1.1	<0.1			
	240			19.3	1.1	<0.1			
	300			19.4	1.1	<0.1			

Notes:

APPENDIX E

Chemical test results

James Morrice Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW

t: 01483 310600 f: 01483 527285 e:

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 15-65677

Replaces Analytical Report Number : 15-65677, issue no. 1

Project / Site name:	CLV P4 - Development E	Samples received on:	16/01/2015
Your job number:	CG-18067C	Samples instructed on:	19/01/2015
Your order number:	1431	Analysis completed by:	29/01/2015
Report Issue Number:	2	Report issued on:	29/01/2015
Samples Analysed:	10 soil samples		

Signed: (Golate

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Signed:

Emma Winter Assistant Reporting Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Lab Sample Number				408549	408550	408551	408552	408553
Sample Reference				WS10	WS10	WS11	WS11B	WS11B
Sample Number				450 0.50	453 2.00	457 0.50	458	459 1.50
Depth (m) Date Sampled				14/01/2015	14/01/2015	14/01/2015	14/01/2015	1.50
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
		3 7	tion					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	10	20	11	7.0	16
Total mass of sample received	kg	0.001	NONE	0.94	0.99	1.0	1.0	1.1
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Amosite - Loose fibres	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Detected	-	-
General Inorganics								
pH	pH Units	N/A	MCERTS	7.5	7.3	10.0	9.5	8.6
Total Cyanide	mg/kg	1	MCERTS	< 1	-	< 1	-	< 1
Total Sulphate as SO₄	mg/kg	50	ISO 17025	1500	1400	3900	-	1300
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	-	1.1	-	0.54	-
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	-	1100	-	540	-
Water Soluble SO4 (BRE SD 2:1 Leach Equivalent)	g/l	0.00125	MCERTS	-	0.57	-	0.27	-
Total Sulphur Organic Matter	mg/kg %	50 0.1	NONE MCERTS	- 4.7	- 550	- 3.0	-	- 1.6
	%	0.1	MUCERTS	4./	-	3.0	-	1.0
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Consident and PALLS								
Speciated PAHs		0.05	MCERTS	1.1	-	< 0.05	-	. 0.05
Naphthalene Acenaphthylene	mg/kg mg/kg	0.05	MCERTS	< 0.10	-	< 0.10	-	< 0.05 < 0.10
Acenaphthene	mg/kg	0.1	MCERTS	2.2	-	< 0.10	-	< 0.10
Fluorene	mg/kg	0.1	MCERTS	2.9	-	< 0.10	-	< 0.10
Phenanthrene	mg/kg	0.1	MCERTS	21	-	0.54	-	< 0.10
Anthracene	mg/kg	0.1	MCERTS	4.5	-	0.16	-	< 0.10
Fluoranthene	mg/kg	0.1	MCERTS	18	-	0.95	-	< 0.10
Pyrene	mg/kg	0.1	MCERTS	14	-	0.85	-	< 0.10
Benzo(a)anthracene	mg/kg	0.1	MCERTS	7.5 7.3	-	0.50	-	< 0.10
Chrysene Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS MCERTS	9.3	-	0.50	-	< 0.05 < 0.10
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	2.4	-	0.37	-	< 0.10
Benzo(a)pyrene	mg/kg	0.1	MCERTS	7.7	-	0.66	-	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	2.5	-	0.28	-	< 0.10
Dibenz(a,h)anthracene	mg/kg	0.1	MCERTS	0.69	-	< 0.10	-	< 0.10
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.8	-	0.39	-	< 0.05
Coronene	mg/kg	0.05	NONE	1.1	-	< 0.05	-	< 0.05
Total PAH	1				1	_		1
Total WAC-17 PAHs	mg/kg	1.6	NONE	100	-	5.8	-	< 1.6
Heavy Metals / Metalloids		. .				<u> </u>		
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	44	-	3.7	-	< 1.0
Arsenic (aqua regia extractable) Barium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	44 270	-	16 250	-	14 150
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	2.1	-	0.6	-	1.2
Boron (water soluble)	mg/kg	0.2	MCERTS	2.8	-	2.5	-	1.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	-	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	-	-	-	-	-
Chromium (III)	mg/kg	1	NONE	-	-	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	-	20	-	32
Copper (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	220	-	47	-	51
Lead (aqua regia extractable)	mg/kg	1 0.3		1200	-	560 0.8		150 0.7
Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS MCERTS	2.4	-	0.8 16	-	26
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	67	-	41	-	64
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	470	-	210	-	76

Lab Sample Number				408549	408550	408551	408552	408553
Sample Reference				WS10	WS10	WS11	WS11B	WS11B
Sample Number				450	453	457	458	459
Depth (m)				0.50	2.00	0.50	0.50	1.50
Date Sampled				14/01/2015	14/01/2015	14/01/2015	14/01/2015	14/01/2015
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics	-				-			-
Benzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
Petroleum Hydrocarbons					1			
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	< 0.1
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	< 0.1
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	< 0.1
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0 29	-	19 210	-	< 8.0 8.8
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg mg/kg	8 10	MCERTS MCERTS	29	-	210	-	8.8 < 10
TPH-CWG - Alipliauc (EC5 - EC55)	Шу/ку	10	MULERIS	29	-	230	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	ma/ka	0.1	MCERTS	< 0.1	-	< 0.1	-	< 0.1
TPH-CWG - Aromatic > EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	< 0.1
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-	< 0.1
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	1.5	-	< 1.0	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	12	-	< 2.0	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	81	-	37	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	130	-	550	-	17
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	230	-	590	-	17

Lab Canada Namban				400554	400555	400556	400557	400550
Lab Sample Number Sample Reference				408554 WS12	408555 WS12	408556 WS12	408557 WS13	408558 WS13
Sample Number				464	466	467	470	472
Depth (m)				0.60	2.20	3.00	0.50	2.20
Date Sampled				14/01/2015	14/01/2015	14/01/2015	14/01/2015	14/01/2015
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	8.3	20	23	16	20
Total mass of sample received	kg	0.001	NONE	1.0	1.1	0.57	1.2	0.58
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	-	-	Not-detected	-
General Inorganics	-							
pH Total Oranida	pH Units	N/A 1	MCERTS	8.5	7.7	7.9	7.9	7.8
Total Cyanide Total Sulphate as SO₄	mg/kg mg/kg	1 50	MCERTS ISO 17025	< 1 2000	< 1 1300	- 800	< 1 950	- 1400
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	-	-	0.51	0.057	0.89
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	-	-	510	57	890
Water Soluble SO4 (BRE SD 2:1 Leach Equivalent)	g/l	0.00125	MCERTS	-	-	0.25	0.028	0.45
Total Sulphur	mg/kg	50	NONE	-	-	290	-	530
Organic Matter	%	0.1	MCERTS	2.0	1.4	-	4.4	-
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	0.11	< 0.05	-	< 0.05	-
Acenaphthylene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-	< 0.10	-
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-	< 0.10	-
Fluorene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	-	< 0.10	-
Phenanthrene	mg/kg	0.1	MCERTS	0.61	< 0.10	-	0.25	-
Anthracene Fluoranthene	mg/kg mg/kg	0.1	MCERTS MCERTS	0.17	< 0.10 < 0.10	-	< 0.10 0.46	-
Pyrene	mg/kg	0.1	MCERTS	1.1	< 0.10	-	0.38	-
Benzo(a)anthracene	mg/kg	0.1	MCERTS	0.79	< 0.10	-	0.26	-
Chrysene	mg/kg	0.05	MCERTS	0.85	< 0.05	-	0.29	-
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	1.3	< 0.10	-	0.35	-
Benzo(k)fluoranthene	mg/kg	0.1	MCERTS	0.38	< 0.10	-	0.18	-
Benzo(a)pyrene	mg/kg	0.1	MCERTS	1.0	< 0.10	-	0.33	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	MCERTS	0.35	< 0.10	-	< 0.10	-
Dibenz(a,h)anthracene	mg/kg	0.1 0.05	MCERTS	< 0.10 0.48	< 0.10	-	< 0.10 < 0.05	-
Benzo(ghi)perylene Coronene	mg/kg mg/kg	0.05	MCERTS NONE	0.48 < 0.05	< 0.05	-	< 0.05	-
	 mg/ kg 	0.03	NONE	- 0.05	- 0.05		. 0.05	
Total PAH	- /l	1.0	NONE	0 -	.10		2 5	-
Total WAC-17 PAHs	mg/kg	1.6	NONE	8.5	< 1.6	-	2.5	-
Heavy Metals / Metalloids					-			
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	2.5	2.1	-	6.0	-
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	9.7	-	43	-
Barium (aqua regia extractable) Beryllium (aqua regia extractable)	mg/kg	1	MCERTS	160 1.1	82	-	350	-
Beryllium (aqua regia extractable) Boron (water soluble)	mg/kg mg/kg	0.06	MCERTS MCERTS	0.4	< 0.2		2.7 1.5	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	< 0.2	-
Chromium (hexavalent)	mg/kg	1.2	MCERTS	-	< 1.2	-	-	-
Chromium (III)	mg/kg	1	NONE	-	52	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23	52	-	32	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	78	24	-	200	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	290	22	-	1300	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.1	< 0.3	-	1.8	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	26	-	44	-
								-
Selenium (aqua regia extractable) Vanadium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	< 1.0 56	< 1.0 89	-	< 1.0 89	-

Lab Sample Number				408554	408555	408556	408557	408558
Sample Reference				WS12	WS12	WS12	WS13	WS13
Sample Number				464	466	467	470	472
Depth (m)				0.60	2.20	3.00	0.50	2.20
Date Sampled				14/01/2015	14/01/2015	14/01/2015	14/01/2015	14/01/2015
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6	ma/ka	0.1	MCERTS	< 0.1	< 0.1	-	< 0.1	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	< 0.1	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	< 0.1	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	_	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	-	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	-	< 10	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	< 0.1	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	< 0.1	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	< 0.1	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	-	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	-	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	-	< 10	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	31	< 10	-	< 10	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	31	< 10	-	< 10	-

Project / Site name: CLV P4 - Development E

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *	
408549	WS10	450	0.50	Black topsoil and sand with gravel and vegetation.	
408550	WS10	453	2.00	Light brown clay.	
408551	WS11	457	0.50	Brown topsoil and clay with rubble.	
408552	WS11B	458	0.50	Light brown topsoil and clay with rubble and brick.	
408553	WS11B	459	1.50	Light brown clay and sand with rubble and vegetation.	
408554	WS12	464	0.60	Brown topsoil and clay with rubble.	
408555	WS12	466	2.20	Grey clay and sand.	
408556	WS12	467	3.00	Light brown clay.	
408557	WS13	470	0.50	Brown topsoil and clay with gravel and vegetation.	
408558	WS13	472	2.20	Light brown clay.	

Project / Site name: CLV P4 - Development E

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
chromium III in soil	In-house method by calculation from total Cr and Cr VI.	In-house method	L068-PL	D	NONE
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter in soil Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.		BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	w	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample results are not corrected for the stone content of the sample.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by extraction with water followed by ICP-OES. Results reported corrected for extraction ratio (soil equivalent) as g/l and mg/kg; and upon the 2:1 leachate (<i>a</i> /l).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	NONE

Project / Site name: CLV P4 - Development E

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

James Morrice Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW

t: 01483 310600 f: 01483 527285 e:

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 15-65680

Replaces Analytical Report Number : 15-65680, issue no. 1

Project / Site name:	CLV P4 - Development E	Samples received on:	16/01/2015
Your job number:	CG-18067C	Samples instructed on:	19/01/2015
Your order number:	1431	Analysis completed by:	29/01/2015
Report Issue Number:	2	Report issued on:	29/01/2015
Samples Analysed:	1 wac multi sample		

Signed: (Golate

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Signed:

Emma Winter Assistant Reporting Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Depth (m) used of an additional standows hardwards of a standows hardwards hardward hardward hardwards hardwards hardward hardwards hardwards hard	Report No:		15-6568	30					
Ideal or and the second part of the second par									
Location LLV PA - Development E Landfill Wate Acceptance Otheria Sample ID 14/01/2015 Sample ID Sample ID Sample ID Depth (m) 0.50 Sample ID					Client	CARDOLO			
Lab Reference (Sample IDUNULY 15UNULY 15 <th colspan="2" td="" un<=""><td></td><td></td><td></td><td></td><td>client:</td><td>CARDGEU</td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td>client:</td> <td>CARDGEU</td> <td></td>						client:	CARDGEU	
Lab Reference (Sample IDUNULY 15UNULY 15 <th colspan="2" td="" un<=""><td>Location</td><td></td><td>CLV P4 - Devel</td><td>opment E</td><td></td><td></td><td></td></th>	<td>Location</td> <td></td> <td>CLV P4 - Devel</td> <td>opment E</td> <td></td> <td></td> <td></td>		Location		CLV P4 - Devel	opment E			
Sampling Date 14/01/2015 Sample D					Landfill	Waste Acceptanc	e Criteria		
Sample ID WS14 476 Inert Wast 476 Wast 476 <t< td=""><td>Lab Reference (Sample Number)</td><td></td><td></td><td></td><td></td><td>1</td><td></td></t<>	Lab Reference (Sample Number)					1			
Depth (m) Depth (m) Desk Inst Wase Wase in non-harmonic Sold Waste Analysis 0.5 3% 5% 6%<									
CDC (%)** OD Image Notes SPS				6		HAZARDOUS waste in non- hazardous	Hazardous Waste Landf		
size on putplich (%) ** 6.1 Image 100 10% TEX (ug/kg) ** 0.89 1 1 innear 100 (rig/kg) <.10									
STEX (gr/g) ** < 6000 sim of PCBs (mg/kg) ** 0.89 1 formed D((mg/kg) 7.5 100 formed DA((mg/kg) 7.5 100 formed DA((mg/kg) 7.5 100 formed DA((mg/kg) 7.5 100					3%	5%			
num of DSS (mg/kg) 1 formed D4 (mg/kg) < 10							10%		
Interal Orign(hg) <10 500 Att (units)** 9.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Instal PAR (MAC-17) (mg/kg) 7.5 m m 100 56 bit (units)** 9.0 22 To be evaluated To to to to					_				
H (units)** 9.0 5.6 Kick Neutralization Capacity (mol / kg) 22 To be evalued To be pratued To be pratued <t< td=""><td></td><td></td><td> </td><td></td><td></td><td></td><td></td></t<>									
hdd Neutralisation Capacity (mol / kg) 22 To be evaluate To bev			<u>├</u>						
Lint Analysis 2:1 8:1 Cumulative 10:1 Lint Aulos for compliance leaching test. IS EN 12457 - 3 preparation utilising end over end leaching trocedure) mg/l mg/l mg/l using BS EN 12457-3 at L/S 10 l/kg (mg/kg mg/kg			<u>├</u>						
L.1 O.1 Cumulate LA using BS EN 12457-3 at L/S 10 l/kg (mg/kg mg/l mg/l mg/kg	Acid Neutralisation Capacity (mol / kg)	22				To be evaluated	To be evaluated		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit valu	es for compliance le	eaching test		
mg/l mg/l mg/l mg/lq Avsenic* 0.010 < 0.010	PC EN 134E7 2 proparation utilizing and over and loaching				using BS EN	12457-3 at L/S 10	l/kg (mg/kg)		
Sarium * 0.087 0.019 0.30 20 100 300 Zadmium * 0.0005 < 0.0020		mg/l	mg/l	mg/kg	-				
Sartum * 0.087 0.019 0.30 20 100 300 admium * 0.0005 < 0.0020	Arsenic *	0.010	< 0.010	< 0.050	0.5	2	25		
Sadmium * < 0.0005									
Chronium * 0.013 0.0028 0.045 0.5 10 70 Cappe * 0.11 0.029 0.42 2 50 100 Werkury * < 0.015 < 0.015 < 0.010 0.010 0.2 2 Molybdenum * 0.014 < 0.0030 0.039 0.5 10 30 Wickel * 0.004 < 0.0050 0.0021 0.028 0.4 10 40 wickel * 0.0050 < 0.0050 < 0.020 0.056 0.7 5 Selenium * < 0.017 0.017 0.17 0.5 10 50 Selenium * < 0.010 < 0.010 < 0.020 0.066 0.7 5 Selenium * < 0.010 < 0.010 < 0.020 4 50 200 Cinc * 16 < 4.0 45 800 4000 2500 Sup o 15 120 1900 4000 2000 5000 Sup o 120 1900 4000									
Copper * 0.11 0.029 0.42 2 50 100 Mercury * < 0.0015									
Mercury * < 0.0015 < 0.0015 < 0.010 0.01 0.2 2 Molyderum * 0.014 < 0.0030									
Nickel * 0.0065 0.0021 0.0228 0.4 10 40 e.ed * 0.017 0.017 0.17 0.5 10 50 Antimony * < 0.0050		< 0.0015	< 0.0015	< 0.010	0.01	0.2	2		
Nickel * 0.0065 0.0021 0.028 0.4 10 40 e.ead * 0.017 0.017 0.17 0.5 10 50 hatimony * < 0.0050							30		
Antimony * < 0.0050 < 0.0050 < 0.020 0.06 0.7 5 Selenium * < 0.010	Vickel *	0.0065	0.0021		0.4	10	40		
Selenium * < 0.010	Lead *	0.017	0.017	0.17	0.5	10	50		
Zinc * 0.0019 < 0.0010 < 0.020 4 50 200 Chorde * 16 < 4.0	Antimony *	< 0.0050	< 0.0050	< 0.020	0.06	0.7	5		
Chloride * 16 < 4.0									
Fluoride 0.34 0.28 2.9 10 150 500 Sulphate * 600 54 1400 1000 20000 50000 DS 550 120 1900 4000 60000 10000 Phenol Index (Monhydric Phenols) * < 0.13	Zinc *	0.0019	< 0.0010				200		
Sulphate * 600 54 1400 1000 20000 50000 TDS 550 120 1900 4000 60000 10000 Phenol Index (Monhydric Phenols) * < 0.13							25000		
TDS 550 120 1900 4000 60000 10000 Phenol Index (Monhydric Phenols)* < 0.13									
Phenol Index (Monhydric Phenols) * < 0.13 < 0.13 < 0.50 1 - - DOC 12 5.9 69 500 800 1000 Leach Test Information									
DOC 12 5.9 69 500 800 1000 Image: Ima									
Image: state of the state	Phenol Index (Monhydric Phenols) *	< 0.13	< 0.13	< 0.50	1	-	-		
Stone Content (%) < 0.1 <th< th=""> </th<> <td>200</td> <td>12</td> <td>5.9</td> <td>69</td> <td>500</td> <td>800</td> <td>1000</td>	200	12	5.9	69	500	800	1000		
Stone Content (%) < 0.1 <th< th=""> </th<> <td>each Test Information</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	each Test Information								
Sample Mass (kg) 1.1 Image: Constraint of the system	LCOLI I I I I I I I I I I I I I I I I I I								
Ony Matter (%) 91 Image: Constraint of the symbol of the	Stone Content (%)	< 0.1							
Moisture (%) 9.1 Image: Constraint of the second of the s	Sample Mass (kg)	1.1							
Stage 1 Image: Constraint of the state of t									
Journe Eluate L2 (litres) 0.33 Image: Constraint of the second s		9.1							
Biltered Eluate VE1 (litres) 0.28 Image: Constraint of the second secon	-	-							
	iltered Eluate VE1 (litres)	0.28	├ ───			ļ			
							Ļ		
tesuits are expressed on a dry weight basis, after correction for moisture content where applicable	taculte are exprared on a dry weight basis offer expression for mainting the second	whore applicable	1			1	L		

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Project / Site name: CLV P4 - Development E

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
408570	WS14	476	0.50	Light brown sandy topsoil with rubble and brick.

Project / Site name: CLV P4 - Development E

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

				-	
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
id neutralisation capacity of soil Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.		In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046-PL	W	NONE
BTEX (Sum of BTEX compounds) in soil	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073S-PL	w	MCERTS
Chloride in WAC leachate (BS EN 12457-3 Prep)	Determination of chloride in leachate by Gallery discrete analyser.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L082-PL	W	ISO 17025
DOC in WAC leachate (BS EN 12457-3 Prep)	Determination of dissolved organic carbon in leachate by the measurement on a non-dispersive infrared analyser of carbon dioxide released by acidification.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037-PL	W	NONE
Fluoride in WAC leachate (BS EN 12457-3 Prep)	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS
Metals in WAC leachate (BS EN 12457- 3 Prep)	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	w	MCERTS
Phenol Index in WAC leachate (BS EN 12457-3 Prep)	Determination of monohydric phenols in leachate by continuous flow analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample results are not corrected for the stone content of the sample.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate in WAC leachate (BS EN 12457-3 Prep)	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039-PL	W	ISO 17025
TDS in WAC leachate (BS EN 12457-3 Prep)	Determination of total dissolved solids in leachate by electrometric measurement.	Waste Water, 21st Ed. In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004-PL	W	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	Naste Water, 215 Ed. In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
	l analysis have been samiad ant in any laborate	win the United Kingdom			1

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX F

Geotechnical test results

RESULTS OF INDEX PROPERTY AND WATER CONTENT TESTS

Contract: Camden Lock Village, Site E

Report No: T14/1442

WS No	Sample No Depth m Depth m Description		Water Content W,%	Liquid Limit W _L ,%	Plastic Limit W _P ,%	Plasticity Index IP%	% Passing 425micron sieve	Corrected Plasticity Index IPc %	Clay Fraction %	Colloidal Activity A	Soil Classification	Remarks
10	3.00	Brown clay	33.8	WL,70	28	52	100	52	70	A	CV	
11B	5.00	Brown clay with occasional blue-grey veining and selenite crystals	29.7	76	27	49	100	49			CV	
13	3.00	Brown clay with occasional blue-grey veining	33.0	78	28	50	100	50			CV	
15	1.50	Grey-brown mottled brown clay	27.2	61	24	37	100	37			СН	

*Key: Soils: C - Clay M - Silt S - Sand O - Organic

Plasticities L - Low I - Intermediate H - High V - Very high E - Extremely high

