

APPENDIX 2

STRUCTURAL CALCULATIONS

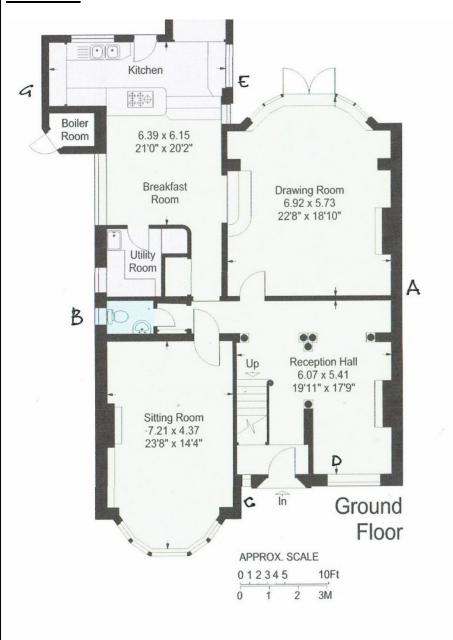
V & R	Project				Job Ref.	
VINCENT & RYMILL	16 ROSECROFT AVE., LONDON. NW3 7QB				18E03	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	Section PRELIMINARY STRUCTURAL CALCULATIONS				Sheet no./rev.	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	29/06/2018				

PITCHED ROOF	KN/m ²	CEILING	KN/m ²
Tiles	0.70	Ceiling Joists	0.10
Felt & battens	0.05	Plasterboard	<u>0.15</u>
Rafters	<u>0.10</u>	D. L.	0.25 KN/m ²
	<u>0.85</u>	I. L. where applicable	0.25 KN/m^2
45° on plan load D. L.	1.20 KN/m ²		0.50 KN/m ²
45º Imposed Load	0.38 KN/m ²		
	1.58 KN/m ²		
FLAT ROOF	KN/m ²	TIMBER FLOORS	KN/m ²
Felt	0.25	Boards	0.20
Boards	0.25	Joists	0.10
Joists & firrings	0.15	Ceiling	0.20
Ceiling	<u>0.15</u>	D. L.	0.50 KN/m ²
D. L.	0.80 KN/m ²	I. L.	1.50 KN/m ²
I .L.	0.75 KN/m ²		2.00 KN/m ²
	1.55 KN/m ²		
<u>MASONRY</u>	KN/m ²		
102 Brick	2.20 KN/m ²		
100 lt. wt blk $+$ (1 x plaster)	1.10 KN/m ²		
100 lt. wt blk + (2 x plaster)	1.35 KN/m ²		
100 dense blk + (1 x plaster)	1.85 KN/m ²		
215 BRICK + PLASTER	4.60KN/m ²		
330 BRICK + PLASTER	6.80KN/m ²		

DESIGN PHILOSOPHY

Walls to be Underpinned

New concrete walls below the property are designed as propped cantilevers in reinforced concrete, the lower ground floor slab acting as a lateral at the base prop at base level. The walls will be designed using the soil parameters relative to the site. The walls will be designed for a water table at 1.0m below ground level.


The surcharge load allowed on the external walls of the property will be 10KN/m². The party wall bounding will have a surcharge load of 10.00KN/m² for adjoining floor and partition wall construction and will also take into account any loads from adjoining foundations.

V&R	Project				Job Ref.	
VINCENT & RYMILL	16 RC	SECROFT AVE	E., LONDON. NV	W3 7QB	181	E03
VINCENT & RYMILL	Section	**************************************	TUDAL 041 011		Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIM	IINARY STRUC	TURAL CALCU	LATIONS		2
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	29/06/2018				

The basement slab will be formed in reinforced concrete. It will be designed for uplift due to water pressure below, and as a clear span under finish and imposed load, it will be protected by any uplift due to heave from Cordek. The basement slab will act as a lateral prop to the base of the basement walls.

<u>Final super structure design is subject to soft strip of the existing building to expose existing floor spans etc. Calculations for the proposed revised super structure elements as well as the new ground floor concrete slab and steel beams will not form part of this preliminary set of calculations.</u>

KEY PLAN

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY GU16 6PT

Project				Job Ref.	
16 ROSECROFT AVE., LONDON. NW3 7QB				181	E03
Section				Sheet no./rev.	
PRELIM	IINARY STRUC	TURAL CALCUI	LATIONS		3
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	29/06/2018				

WALL NALL	WALL A				
ROOF DL ROOF IL 1.2 X 2 ROOF IL 0.4 X 2 ROOF DL ROOF DL ROOF DL ROOF DL ROOF IL 1.2 X 3 ROOF DL ROOF IL 1.2 X 3 ROOF DL ROOF IL	WALL A WALL	11 5 X 6 8	=	78 20	
ROOF IL 0.4 X 2 =					
WALL B ROOF DL 1.2 X 3 = 3.60 ROOF IL 0.4 X 3 = 1.20 FLR DL 2 X 0.6 X 2 = 2.40 FLR IL 2 X 1.5 X 2 = 6.00 WALL 7 X 6.8 X 85% = 40.50 47.5KN/m 7.2KN WALL C WALL 8.5 X 6.8 = 57.80KN/m WALL D WALL 7 X 6.8 X 60% = 29.00KN/m WALL S E & G ROOF DL 2.5 X 1.2 = 3.00 ROOF IL 2.50 X 0.5 = 1.25 WALL 7.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2 X 1.5 = 6.00 39.40KN/m 7.25K			=		0.80
ROOF DL ROOF IL ROOF I		•		80.60KN/m	
ROOF IL	WALL B				
FLR DL	ROOF DL	1.2 X 3	=	3.60	
FLR IL 2 X 1.5 X 2 = 6.00 WALL 7 X 6.8 X 85% = 40.50 47.5KN/m 7.2KN WALL D WALL D WALL 7 X 6.8 X 60% = 29.00KN/m WALLS E & G ROOF DL 2.5 X 1.2 = 3.00 ROOF IL 2.50 X 0.5 = 1.25 WALL 7.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 = 6.00 39.40KN/m 7.25K	ROOF IL	0.4 X 3	=		1.20
WALL C WALL C WALL D WALL D WALL D WALL S E & G ROOF DL	FLR DL	2 X 0.6 X 2	=	2.40	
WALL C WALL D WALL S E & G ROOF DL 2.5 X 1.2 = 3.00 ROOF IL 2.50 X 0.5 = 1.25 WALL 7.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 = 6.00 WALL F	FLR IL	2 X 1.5 X 2	=		6.00
WALL C WALL D WALL S E & G ROOF DL 2.5 X 1.2 = 3.00 ROOF IL 2.50 X 0.5 = 1.25 WALL T.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 = 6.00 WALL F	WALL	7 X 6.8 X 85%	=	<u>40.50</u>	
WALL D WALL S E & G ROOF DL 2.5 X 1.2 = 3.00 ROOF IL 2.50 X 0.5 = 1.25 WALL 7.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 = 6.00 WALL F				47.5KN/m	7.2KN
WALL D WALLS E & G ROOF DL 2.5 X 1.2 = 3.00 ROOF IL 2.50 X 0.5 = 1.25 WALL 7.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 = 6.00 WALL F	WALL C				
WALLS E & G ROOF DL 2.5 X 1.2 = 3.00 ROOF IL 2.50 X 0.5 = 1.25 WALL 7.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 = 6.00 WALL F	WALL	8.5 X 6.8	=	57.80KN/m	
WALLS E & G ROOF DL 2.5 X 1.2 = 3.00 ROOF IL 2.50 X 0.5 = 1.25 WALL 7.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 = 6.00 39.40KN/m 7.25K	WALL D				
ROOF DL 2.5 X 1.2 = 3.00 ROOF IL 2.50 X 0.5 = 1.25 WALL 7.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 =	WALL	7 X 6.8 X 60%	=	29.00KN/m	
ROOF IL 2.50 X 0.5 = 1.25 WALL 7.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 = 6.00 39.40KN/m 7.25K	WALLS E & G				
WALL 7.5 X 4.6 = 34.50 FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 =	ROOF DL	2.5 X 1.2	=	3.00	
FLRS DL 2 X 2 X 0.6 = 2.40 FLRS IL 2 X 2X 1.5 =	ROOF IL	2.50 X 0.5	=		1.25
FLRS IL 2 X 2X 1.5 = <u>6.00</u> 39.40KN/m 7.25K	WALL	7.5 X 4.6	=	34.50	
39.40KN/m 7.25K	FLRS DL	2 X 2 X 0.6	=	2.40	
WALL F	FLRS IL	2 X 2X 1.5	=		6.00
				39.40KN/m	7.25K
	WALL F				
	WALL	7.5 X 4.6 X 0.5	=	17.25KN/m	

WALLS AND BASES TO LOWER GROUND FLOOR

WAL	ΙΔ	_ 6	ΔR	TV	W	AI I
WML	_ ~	. — г	'ΑΠ		V V P	٩LL

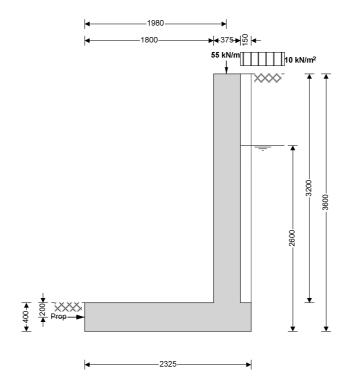
DL = 80.6KN/m, IL = 0.8KN/m

ALREADY UNDERPINNED BY PREVIOUIS WORKS TO NO 16 ROSECROFT

V & R	Project				Job Ref.	
VINCENT & RYMILL	16 RO	18E03				
VINCENT & RYMILL	Section PRELIM	INARY STRUC	TURAL CALCUI	LATIONS	Sheet no./rev.	5
LAKESIDE COUNTRY CLUB FRIMLEY GREEN	Calc. by		Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	29/06/2018				

WALL B

SIDE WALL

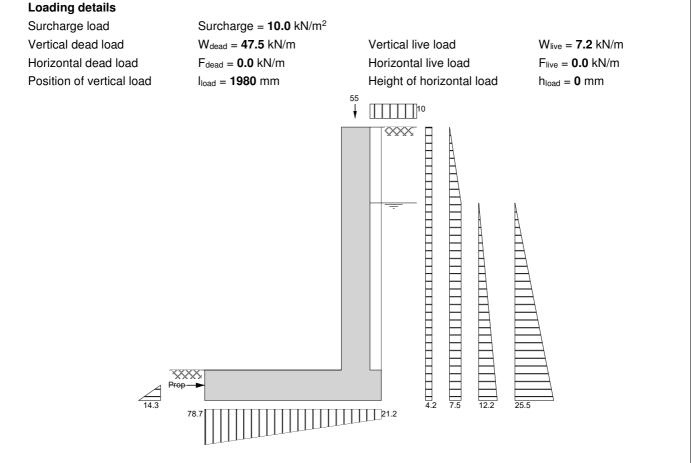

At-rest pressure

DL = 47.5KN/m, IL = 7.2KN/m

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06



Wall details			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3200 mm	Wall stem thickness	$t_{\text{wall}} = 375 \text{ mm}$
Length of toe	$I_{toe} = 1800 \text{ mm}$	Length of heel	I _{heel} = 150 mm
Overall length of base	l _{base} = 2325 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	$h_{wall} = 3600 \text{ mm}$		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 400 \text{ mm}$
Position of downstand	$I_{ds} = 1900 \text{ mm}$		
Depth of cover in front of wall	$d_{cover} = 0 \text{ mm}$	Unplanned excavation depth	$d_{exc} = 200 \text{ mm}$
Height of ground water	$h_{water} = 2600 \text{ mm}$	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$	Density of base construction	γ_{base} = 23.6 kN/m ³
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	heff = 3600 mm
Mobilisation factor	M=1.5		
Moist density	$\gamma_{m} = 18.0 \text{ kN/m}^{3}$	Saturated density	$\gamma_{\text{S}} = \textbf{21.0} \text{ kN/m}^3$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 0.0 deg
Design shear strength	φ' _b = 24.2 deg	Design base friction	δ_b = 18.6 deg
Moist density	$\gamma_{mb} = 18.0 \text{ kN/m}^3$	Allowable bearing	$P_{bearing} = 125 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	$K_a = 0.419$	Passive pressure	$K_p = 4.187$

 $K_0 = 0.590$

VINCENT ERYMILL	16 F
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	Section PREL
FRIMLEY GREEN	Calc. by
SURREY GU16 6PT	TV

Project				Job Ref.	
16 ROSECROFT AVE., LONDON. NW3 7QB			18E03		
Section				Sheet no./rev.	
PRELIMINARY STRUCTURAL CALCULATIONS				6	
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	29/06/2018				

Loads shown in kN/m, pressures shown in kN/m²

Calculate propping force

Propping force $F_{prop} = 49.8 \text{ kN/m}$

Check bearing pressure

Total vertical reaction R = 116.1 kN/m Distance to reaction $x_{bar} = 939 \text{ mm}$

Eccentricity of reaction e = 223 mm

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe} = 78.7 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = 21.2 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

V&R Project				Job Ref.		
VINCENT & RYMILL	16 RO	SECROFT AVE	., LONDON. NV	V3 7QB	181	Ξ03
VINCENT & RYMILL	Section	INADY OTDUO	TUDAL CALCUI	ATIONO	Sheet no./rev.	-
LAKESIDE COUNTRY CLUB	PRELIM	INARY STRUC	TURAL CALCUI	LATIONS		/
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	29/06/2018				

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{i_d} = 1.4$ Live load factor $\gamma_{i_l} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 49.8 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{toe} = 140.0 \text{ kN/m}$ Moment at heel $M_{toe} = 201.3 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 125 mm centres

Area required $A_{s_toe_req} = 1424.8 \text{ mm}^2/\text{m}$ Area provided $A_{s_toe_prov} = 1608 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.409 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c toe} = 0.563 \text{ N/mm}^2$

*v*_{toe} < *v*_{c_toe} - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

Design of retaining wall heel

Shear at heel $V_{heel} = 17.9 \text{ kN/m}$ Moment at heel $M_{heel} = 4.9 \text{ kNm/m}$

Compression reinforcement is not required

Check heel in bending

Reinforcement provided B785 mesh

Area required $A_{s_heel_req} = 520.0 \text{ mm}^2/\text{m} \qquad \text{Area provided} \qquad A_{s_heel_prov} = 785 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = 0.052 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c heel} = 0.468 \text{ N/mm}^2$

 $v_{heel} < v_{c_heel}$ - No shear reinforcement required

Job Ref. Project 16 ROSECROFT AVE., LONDON. NW3 7QB 18E03 Section Sheet no./rev. VINCENT & RYMILL PRELIMINARY STRUCTURAL CALCULATIONS 8 LAKESIDE COUNTRY CLUB Chk'd by Date Date Calc. by Date App'd by FRIMLEY GREEN SURREY GU16 6PT TV 29/06/2018

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem C_{stem} = **75** mm Cover in wall c_{wall} = **50** mm

Design of retaining wall stem

Shear at base of stem $V_{stem} = 20.8 \text{ kN/m}$ Moment at base of stem $M_{stem} = 151.5 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

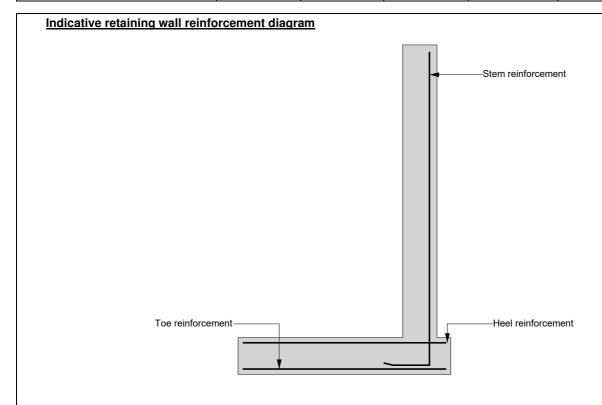
Area required $A_{s_stem_req} = 1258.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_stem_prov} = 2011 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{\text{stem}} = 0.071 \text{ N/mm}^2$ Allowable shear stress $v_{\text{adm}} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress


Concrete shear stress $v_{c_stem} = 0.706 \text{ N/mm}^2$

v_{stem} < v_{c_stem} - No shear reinforcement required

V&R VINCENT & RYMILL
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN

SURREY GU16 6PT

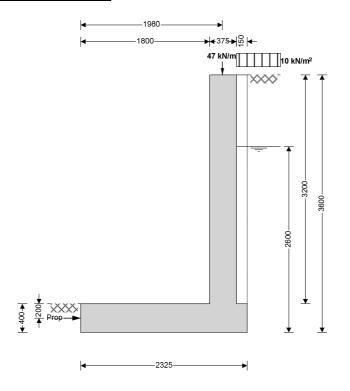
Project				Job Ref.	
16 ROSECROFT AVE., LONDON. NW3 7QB			18	E03	
Section				Sheet no./rev.	
PRELIMINARY STRUCTURAL CALCULATIONS				9	
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	29/06/2018				

Toe bars - 16 mm dia.@ 125 mm centres - (1608 mm^2/m)

Heel mesh - B785 - (785 mm²/m)

Stem bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m)

V & R	Project				Job Ref.	
VINCENT & RYMILL	16 ROSECROFT AVE., LONDON. NW3 7QB				181	E03
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIM	IINARY STRUC	TURAL CALCU	LATIONS		10
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SUBBEV GUIA SPT	TV	29/06/2018				

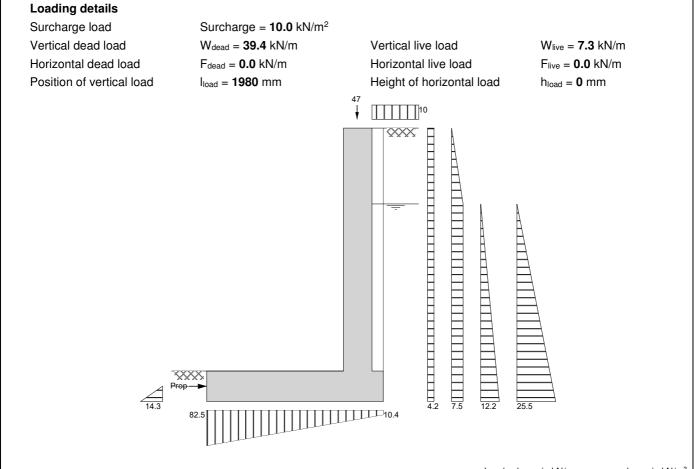

WALLS E AND G

DL = 39.4KN/m, IL = 7.25KN/m

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06



Wall details				
Retaining wall type	Cantilever			
Height of wall stem	$h_{stem} = 3200 \text{ mm}$	Wall stem thickness	$t_{wall} = 375 \text{ mm}$	
Length of toe	$I_{toe} = 1800 \text{ mm}$	Length of heel	$I_{heel} = 150 \text{ mm}$	
Overall length of base	l _{base} = 2325 mm	Base thickness	$t_{base} = 400 \text{ mm}$	
Height of retaining wall	$h_{wall} = 3600 \text{ mm}$			
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 400 \text{ mm}$	
Position of downstand	$I_{ds} = 1850 \text{ mm}$			
Depth of cover in front of wall	$d_{cover} = 0 \text{ mm}$	Unplanned excavation depth	$d_{exc} = 200 \text{ mm}$	
Height of ground water	$h_{water} = 2600 \text{ mm}$	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$	
Density of wall construction	$\gamma_{wall} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$	
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	h _{eff} = 3600 mm	
Mobilisation factor	M=1.5			
Moist density	$\gamma_m = 18.0 \text{ kN/m}^3$	Saturated density	$\gamma_s = \textbf{21.0} \text{ kN/m}^3$	
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 0.0 deg	
Design shear strength	φ'b = 24.2 deg	Design base friction	δ_b = 18.6 deg	
Moist density	γ_{mb} = 18.0 kN/m ³	Allowable bearing	$P_{bearing} = 125 \text{ kN/m}^2$	
Using Coulomb theory				
Active pressure	$K_a = 0.419$	Passive pressure	$K_p = 4.187$	

 $K_0 = 0.590$

At-rest pressure

V & R	Project				Job Ref.
VINCENT & RYMILL	16 RO	18			
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	Section PRELIM	IINARY STRUC	TURAL CALCU	LATIONS	Sheet no./rev.
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by
SURREY GU16 6PT	TV	29/06/2018			

Loads shown in kN/m, pressures shown in kN/m²

18E03

11

Date

Calculate propping force

Propping force $F_{prop} = 52.6 \text{ kN/m}$

Check bearing pressure

R = 108.0 kN/mTotal vertical reaction Distance to reaction $x_{bar} = 862 \text{ mm}$

e = **301** mm Eccentricity of reaction

Reaction acts within middle third of base

 $p_{heel} = 10.4 \text{ kN/m}^2$ Bearing pressure at toe $p_{toe} = 82.5 \text{ kN/m}^2$ Bearing pressure at heel

PASS - Maximum bearing pressure is less than allowable bearing pressure

V & R	Project				Job Ref.	
VINCENT & RYMILL	16 ROSECROFT AVE., LONDON. NW3 7QB				18E03	
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIM	INARY STRUC		12		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	29/06/2018				

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{f,d} = 1.4$ Live load factor $\gamma_{f,l} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 52.6 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{\text{toe}} = 129.2 \text{ kN/m}$ Moment at heel $M_{\text{toe}} = 196.1 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 125 mm centres

Area required $A_{s_toe_req} = 1387.8 \text{ mm}^2/\text{m}$ Area provided $A_{s_toe_prov} = 1608 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.378 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c toe} = 0.598 \text{ N/mm}^2$

v_{toe} < v_{c_toe} - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

Design of retaining wall heel

Shear at heel $V_{heel} = 17.9 \text{ kN/m}$ Moment at heel $M_{heel} = 4.9 \text{ kNm/m}$

Compression reinforcement is not required

Check heel in bending

Reinforcement provided B785 mesh

Area required $A_{s_heel_req} = 520.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_heel_prov} = 785 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = 0.052 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress v_c heel = **0.463** N/mm²

 $v_{heel} < v_{c_heel}$ - No shear reinforcement required

Job Ref. Project 16 ROSECROFT AVE., LONDON. NW3 7QB 18E03 Section Sheet no./rev. VINCENT & RYMILL PRELIMINARY STRUCTURAL CALCULATIONS 13 LAKESIDE COUNTRY CLUB Chk'd by Date Date Calc. by Date App'd by FRIMLEY GREEN SURREY GU16 6PT TV 29/06/2018

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem C_{stem} = **75** mm Cover in wall c_{wall} = **50** mm

Design of retaining wall stem

Shear at base of stem $V_{\text{stem}} = 17.0 \text{ kN/m}$ Moment at base of stem $M_{\text{stem}} = 151.5 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

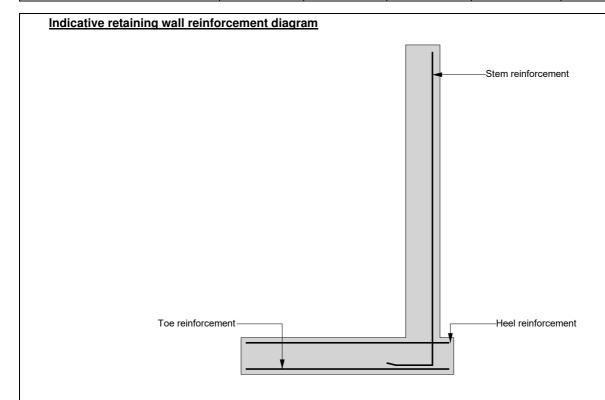
Area required $A_{s_stem_req} = 1258.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_stem_prov} = 2011 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{\text{stem}} = 0.058 \text{ N/mm}^2$ Allowable shear stress $v_{\text{adm}} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress


Concrete shear stress $v_{c_stem} = 0.706 \text{ N/mm}^2$

v_{stem} < v_{c_stem} - No shear reinforcement required

V&R VINCENT & RYMILL
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMI FY GREEN

SURREY GU16 6PT

Project				Job Ref.	
16 ROSECROFT AVE., LONDON. NW3 7QB				E03	
Section				Sheet no./rev.	
PRELIMINARY STRUCTURAL CALCULATIONS				14	
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	29/06/2018				

Toe bars - 16 mm dia.@ 125 mm centres - (1608 mm 2 /m)

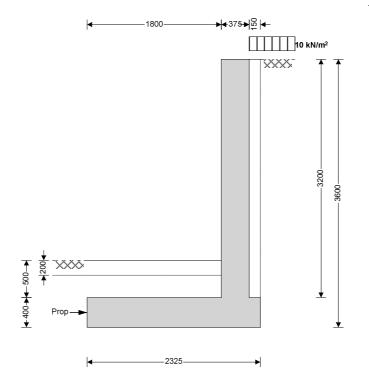
Heel mesh - B785 - (785 mm²/m)

Stem bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m)

V&R VINCENT & RYMILL
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN

SURREY GU16 6PT

Project				Job Ref.	
,	SECROFT AVE	E., LONDON. NV	V3 7QB		E03
Section				Sheet no./rev.	
PRELIMINARY STRUCTURAL CALCULATIONS				15	
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	29/06/2018				


WALL F

DL = 17.25KN/m

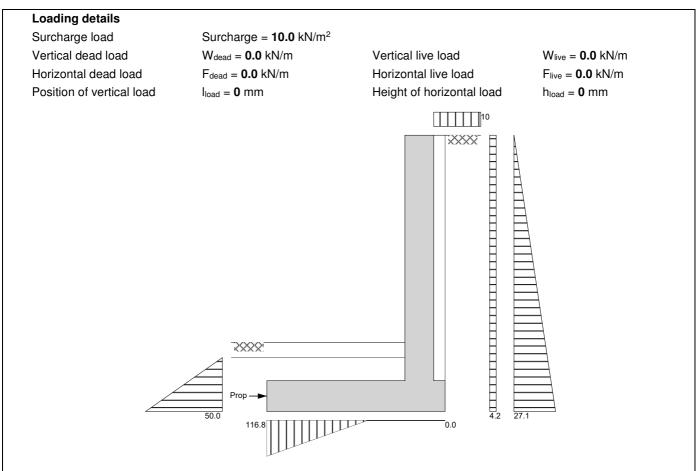
RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Wall details

At-rest pressure


Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3200 mm	Wall stem thickness	$t_{\text{wall}} = 375 \text{ mm}$
Length of toe	$I_{toe} = 1800 \text{ mm}$	Length of heel	$I_{heel} = 150 \text{ mm}$
Overall length of base	l _{base} = 2325 mm	Base thickness	$t_{base} = 400 \text{ mm}$
Height of retaining wall	h _{wall} = 3600 mm		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 400 \text{ mm}$
Position of downstand	l _{ds} = 1050 mm		
Depth of cover in front of wall	$d_{cover} = 500 \text{ mm}$	Unplanned excavation depth	d _{exc} = 200 mm
Height of ground water	h _{water} = 0 mm	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{wall} = 23.6 \text{ kN/m}^3$	Density of base construction	γ_{base} = 23.6 kN/m ³
Angle of soil surface	β = 0.0 deg	Effective height at back of wall	$h_{eff} = 3600 \text{ mm}$
Mobilisation factor	M = 1.5		
Moist density	$\gamma_m = 18.0 \text{ kN/m}^3$	Saturated density	$\gamma_{s} = 21.0 \text{ kN/m}^{3}$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 0.0 deg
Design shear strength	φ' _b = 24.2 deg	Design base friction	δ_b = 18.6 deg
Moist density	$\gamma_{mb} = 18.0 \text{ kN/m}^3$	Allowable bearing	$P_{bearing} = 125 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	Ka = 0.419	Passive pressure	$K_p = 4.187$

 $K_0 = 0.590$

VIXIX VINCENT & RYMILL
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN
SURREY GU16 6PT

V/ Q/D

Project				Job Ref.	
16 RO	18E03				
Section		Sheet no./rev.			
PRELIM		16			
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	29/06/2018				

Loads shown in kN/m, pressures shown in kN/m 2

Calculate propping force

Propping force $F_{prop} = 26.6 \text{ kN/m}$

Check bearing pressure

Total vertical reaction R = 76.6 kN/m Distance to reaction $x_{\text{bar}} = 437 \text{ mm}$

Eccentricity of reaction e = 725 mm

Reaction acts outside middle third of base

Bearing pressure at toe $p_{toe} = 116.8 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = 0.0 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

V & R	Project				Job Ref.	
VINCENT & RYMILL	16 ROSECROFT AVE., LONDON. NW3 7QB				18E03	
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIMINARY STRUCTURAL CALCULATIONS				17	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	29/06/2018				

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{f d} = 1.4$ Live load factor $\gamma_{f l} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 26.6 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{toe} = 10.2 \text{ kN/m}$ Moment at heel $M_{toe} = 11.3 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 150 mm centres

Area required $A_{s_toe_prov} = 520.0 \text{ mm}^2/\text{m}$ Area provided $A_{s_toe_prov} = 1340 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.030 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c toe} = 0.563 \text{ N/mm}^2$

*v*_{toe} < *v*_{c_toe} - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

Design of retaining wall heel

Shear at heel $V_{heel} = 16.5 \text{ kN/m}$ Moment at heel $M_{heel} = 4.6 \text{ kNm/m}$

Compression reinforcement is not required

Check heel in bending

Reinforcement provided B785 mesh

Area required $A_{s_heel_req} = 520.0 \text{ mm}^2/\text{m} \qquad \text{Area provided} \qquad A_{s_heel_prov} = 785 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = 0.048 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress v_c heel = **0.468** N/mm²

 $v_{heel} < v_{c_heel}$ - No shear reinforcement required

Job Ref. Project 16 ROSECROFT AVE., LONDON. NW3 7QB 18E03 Section Sheet no./rev. VINCENT & RYMILL PRELIMINARY STRUCTURAL CALCULATIONS 18 LAKESIDE COUNTRY CLUB Chk'd by Date Calc. by Date App'd by Date FRIMLEY GREEN SURREY GU16 6PT TV 29/06/2018

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem $c_{\text{stem}} = 75 \text{ mm}$ Cover in wall $c_{\text{wall}} = 50 \text{ mm}$

Design of retaining wall stem

Shear at base of stem $V_{\text{stem}} = 28.3 \text{ kN/m}$ Moment at base of stem $M_{\text{stem}} = 150.8 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

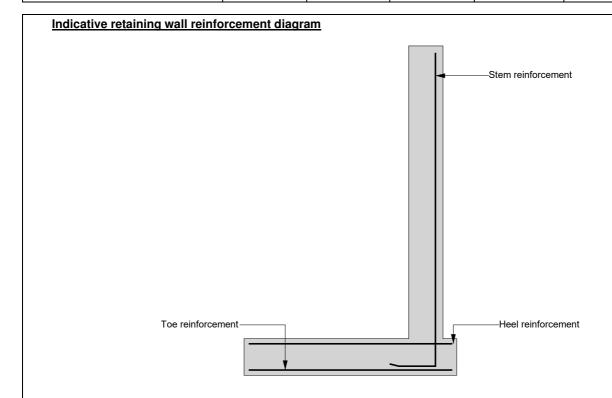
Area required $A_{s_stem_req} = 1252.2 \text{ mm}^2/\text{m}$ Area provided $A_{s_stem_prov} = 2011 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{\text{stem}} = 0.097 \text{ N/mm}^2$ Allowable shear stress $v_{\text{adm}} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress


Concrete shear stress $v_{c_stem} = 0.706 \text{ N/mm}^2$

v_{stem} < v_{c_stem} - No shear reinforcement required

V&R VINCENT
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN

SURREY GU16 6PT

Project		Job Ref.	Job Ref.			
16 ROSECROFT AVE., LONDON. NW3 7QB					18E03	
Section					Sheet no./rev.	
PRELIMINARY STRUCTURAL CALCULATIONS					19	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
TV	29/06/2018					

Toe bars - 16 mm dia.@ 150 mm centres - (1340 mm²/m)

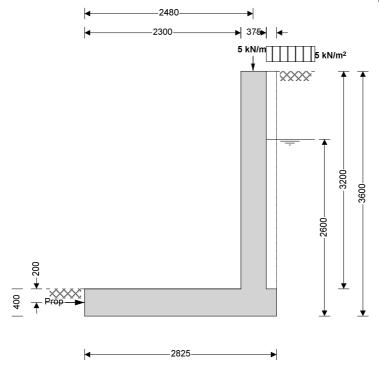
Heel mesh - B785 - (785 mm²/m)

Stem bars - 16 mm dia.@ 100 mm centres - (2011 mm²/m)

V&R

VINCENT & RYMILL LAKESIDE COUNTRY CLUB

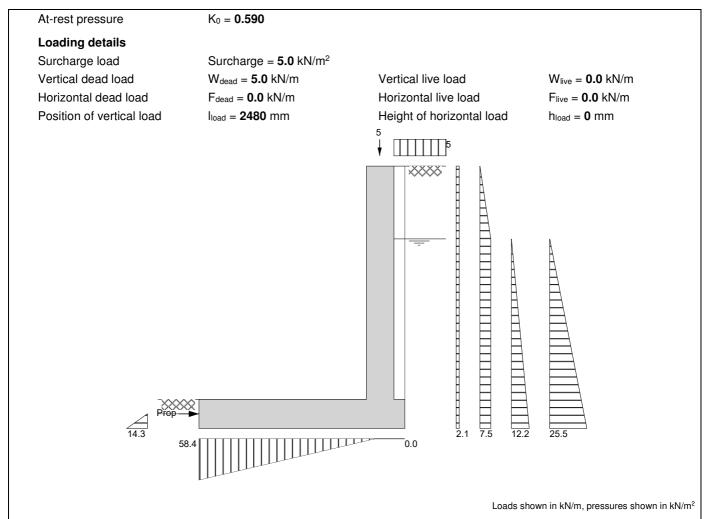
ESIDE COUNTRY CLUE FRIMLEY GREEN SURREY GU16 6PT


Project				Job Ref.	
16 R	OSECROFT AVE	18E03			
Section		Sheet no./rev.			
PRELI	MINARY STRUC	:	20		
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	29/06/2018				

LIGHT WELLS

RETAINING WALL ANALYSIS & DESIGN (BS8002)

RETAINING WALL ANALYSIS (BS 8002:1994)


TEDDS calculation version 1.2.01.06

Wall de	etails
---------	--------

Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3200 mm	Wall stem thickness	$t_{\text{wall}} = 375 \text{ mm}$
Length of toe	I _{toe} = 2300 mm	Length of heel	$I_{\text{heel}} = 150 \text{ mm}$
Overall length of base	l _{base} = 2825 mm	Base thickness	t _{base} = 400 mm
Height of retaining wall	$h_{wall} = 3600 \text{ mm}$		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	$t_{ds} = 400 \text{ mm}$
Position of downstand	$I_{ds} = 1900 \text{ mm}$		
Depth of cover in front of wall	$d_{cover} = 0 \text{ mm}$	Unplanned excavation depth	$d_{exc} = 200 \text{ mm}$
Height of ground water	$h_{water} = 2600 \text{ mm}$	Density of water	$\gamma_{water} = 9.81 \text{ kN/m}^3$
Density of wall construction	$\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{base} = 23.6 \text{ kN/m}^3$
Angle of soil surface	$\beta = 0.0 \text{ deg}$	Effective height at back of wall	h _{eff} = 3600 mm
Mobilisation factor	M = 1.5		
Moist density	$\gamma_m = 18.0 \text{ kN/m}^3$	Saturated density	$\gamma_s = \textbf{21.0} \text{ kN/m}^3$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 0.0 deg
Design shear strength	$\phi'_b = $ 24.2 deg	Design base friction	δ_b = 18.6 deg
Moist density	$\gamma_{mb} = 18.0 \text{ kN/m}^3$	Allowable bearing	$P_{bearing} = 100 \text{ kN/m}^2$
Using Coulomb theory			
Active pressure	$K_a = 0.419$	Passive pressure	$K_p = 4.187$

V&R	Project				Job Ref.	
VINCENT & RYMILL	16 ROSECROFT AVE., LONDON. NW3 7QB				18E03	
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIMINARY STRUCTURAL CALCULATIONS				21	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	29/06/2018				

Calculate propping force

Propping force $F_{prop} = 55.0 \text{ kN/m}$

Check bearing pressure

Total vertical reaction R = 70.4 kN/m Distance to reaction $x_{bar} = 803 \text{ mm}$

Eccentricity of reaction e = **609** mm

Reaction acts outside middle third of base

Bearing pressure at toe $p_{toe} = 58.4 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = 0.0 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

V&R	Project				Job Ref.	
VINCENT & RYMILL	16 ROSECROFT AVE., LONDON. NW3 7QB				18E03	
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIMINARY STRUCTURAL CALCULATIONS				22	
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	29/06/2018				

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor $\gamma_{f d} = 1.4$ Live load factor $\gamma_{f l} = 1.6$

Earth pressure factor $\gamma_{fe} = 1.4$

Calculate propping force

Propping force $F_{prop} = 55.0 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in toe $c_{toe} = 50 \text{ mm}$

Design of retaining wall toe

Shear at heel $V_{\text{toe}} = 68.3 \text{ kN/m}$ Moment at heel $M_{\text{toe}} = 165.4 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 150 mm centres

Area required $A_{s \text{ toe req}} = 1170.4 \text{ mm}^2/\text{m}$ Area provided $A_{s \text{ toe prov}} = 1340 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = 0.200 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c toe} = 0.563 \text{ N/mm}^2$

 $v_{toe} < v_{c_toe}$ - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details

Minimum reinforcement k = 0.13 % Cover in heel $c_{heel} = 50 \text{ mm}$

Design of retaining wall heel

Shear at heel $V_{heel} = 16.7 \text{ kN/m}$ Moment at heel $M_{heel} = 4.6 \text{ kNm/m}$

Compression reinforcement is not required

Check heel in bending

Reinforcement provided B785 mesh

Area required $A_{s_heel_req} = 520.0 \text{ mm}^2/\text{m} \qquad \text{Area provided} \qquad A_{s_heel_prov} = 785 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress $v_{heel} = 0.048 \text{ N/mm}^2$ Allowable shear stress $v_{adm} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress $v_{c heel} = 0.468 \text{ N/mm}^2$

 $v_{heel} < v_{c_heel}$ - No shear reinforcement required

Job Ref. Project 16 ROSECROFT AVE., LONDON. NW3 7QB 18E03 Section Sheet no./rev. VINCENT & RYMILL PRELIMINARY STRUCTURAL CALCULATIONS 23 LAKESIDE COUNTRY CLUB Chk'd by Date Date Calc. by Date App'd by FRIMLEY GREEN SURREY GU16 6PT TV 29/06/2018

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete $f_{cu} = 40 \text{ N/mm}^2$ Strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem C_{stem} = **75** mm Cover in wall c_{wall} = **50** mm

Design of retaining wall stem

Shear at base of stem $V_{\text{stem}} = 4.9 \text{ kN/m}$ Moment at base of stem $M_{\text{stem}} = 124.3 \text{ kNm/m}$

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 125 mm centres

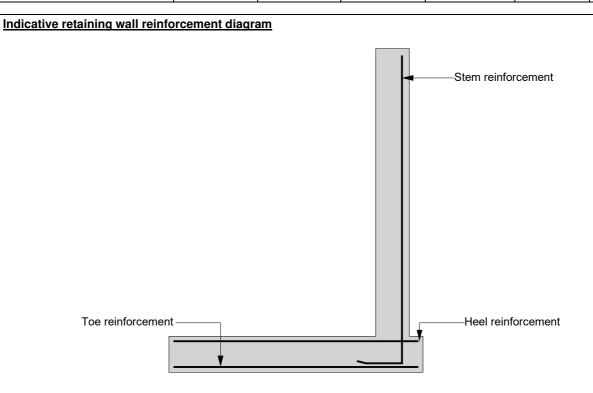
Area required $A_{s_stem_req} = 1029.9 \text{ mm}^2/\text{m} \qquad \text{Area provided} \qquad \qquad A_{s_stem_prov} = 1608 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{\text{stem}} = 0.017 \text{ N/mm}^2$ Allowable shear stress $v_{\text{adm}} = 5.000 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress


Concrete shear stress $v_{c_stem} = 0.656 \text{ N/mm}^2$

v_{stem} < v_{c_stem} - No shear reinforcement required

VILLE VINCENT
VINCENT & RYMII
AKESIDE COLINTRY CI

Pr	oject				Job Ref.	
	16 ROSECROFT AVE., LONDON. NW3 7QB					Ξ03
Se	ection				Sheet no./rev.	
	PRELIMINARY STRUCTURAL CALCULATIONS				2	24
Ca	alc. by	Date	Chk'd by	Date	App'd by	Date
	TV	29/06/2018				

VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN
CLIDDEV CLI16 CDT

Toe bars - 16 mm dia.@ 150 mm centres - (1340 mm²/m)

Heel mesh - B785 - (785 mm²/m)

Stem bars - 16 mm dia.@ 125 mm centres - (1608 mm²/m)

BASEMENT SLAB

1. DUE TO WATER UPLIFT

UPLIFT LOADING = $2.4 \times 10 = 24 \text{KN/m}^2$ NETT UPLIFT = 24 - (2 + 4.8) = 17.2 KN.m

BM MAX = $17.2 \times 1.4 \times 3^{2/8} = 27.1 \text{KN.m}$

RC SLAB DESIGN (BS8110)

RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

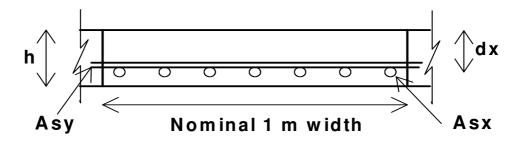
CONCRETE SLAB DESIGN (CL 3.5.3 & 4)

SIMPLE ONE WAY SPANNING SLAB DEFINITION

Overall depth of slab h = 200 mm

Cover to tension reinforcement resisting sagging $c_b = 50 \text{ mm}$

Trial bar diameter $D_{tryx} = 10 \text{ mm}$


Depth to tension steel (resisting sagging)

$$d_x = h - c_b - D_{tryx}/2 = 145 \ mm$$

V&R	Project				Job Ref.	
VINCENT & RYMILL	16 ROSECROFT AVE., LONDON. NW3 7QB				18E03	
VINCENT & RYMILL	Section	Sheet no./rev.				
LAKESIDE COUNTRY CLUB	PRELIM	25				
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	29/06/2018				

Characteristic strength of reinforcement fy = 500 N/mm²

Characteristic strength of concrete fcu = 35 N/mm²

One-way spanning slab (simple)

ONE WAY SPANNING SLAB (CL 3.5.4)

MAXIMUM DESIGN MOMENTS IN SPAN

Design sagging moment (per m width of slab) $m_{sx} = 27.1 \text{ kNm/m}$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab) $m_{sx} = 27.1 \text{ kNm/m}$

Moment Redistribution Factor $\beta_{bx} = 1.0$

Area of reinforcement required

$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.037$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist sagging

One-way Spanning Slab requiring tension steel only (sagging) - mesh

$$z_x = min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{(0.25 - K_x/0.9))})) = 138 \text{ mm}$$

Neutral axis depth $x_x = (d_x - z_x) / 0.45 = 16 \text{ mm}$

Area of tension steel required

$$A_{sx reg} = abs(m_{sx}) / (1/\gamma_{ms} \times f_v \times z_x) = 452 \text{ mm}^2/\text{m}$$

Tension steel

Use C785 Mesh

$$A_{sx_prov} = A_{sl} = 785 \text{ mm}^2/\text{m } A_{sy_prov} = A_{st} = 71 \text{ mm}^2/\text{m}$$

$$D_x = d_{sl} = \textbf{10} \ mm \ D_y = d_{st} = \textbf{6} \ mm$$

Area of tension steel provided sufficient to resist sagging

Check min and max areas of steel resisting sagging

Total area of concrete $A_c = h = 200000 \text{ mm}^2/\text{m}$

Minimum % reinforcement k = 0.13 %

$$A_{st_min} = k \times A_c = 260 \text{ mm}^2/\text{m}$$

$$A_{st_max} = 4 \% \times A_c = 8000 \text{ mm}^2/\text{m}$$

Steel defined:

Project				Job Ref.	
16 RC	SECROFT AVE	18E03			
Section		Sheet no./rev.			
PRELIN	MINARY STRUC	:	26		
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	29/06/2018				

Outer steel resisting sagging A_{sx_prov} = **785** mm²/m

Area of outer steel provided (sagging) OK

Inner steel resisting sagging A_{sy_prov} = **71** mm²/m

Less than min area of inner steel (sagging) FAIL

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

Slab span length $I_x = 3.000 \text{ m}$

Design ultimate moment in shorter span per m width $m_{sx} = 27 \text{ kNm/m}$

Depth to outer tension steel $d_x = 145 \text{ mm}$

Tension steel

Area of outer tension reinforcement provided A_{sx prov} = **785** mm²/m

Area of tension reinforcement required Asx req = 452 mm²/m

Moment Redistribution Factor $\beta_{bx} = 1.00$

Modification Factors

Basic span / effective depth ratio (Table 3.9) ratio_{span_depth} = **20**

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

$$f_s = 2 \times f_y \times A_{sx_req} / (3 \times A_{sx_prov} \times \beta_{bx}) = 192.1 \text{ N/mm}^2$$

factor_{tens} = min (2, 0.55 + (477 N/mm² -
$$f_s$$
) / (120 × (0.9 N/mm² + m_{sx} / d_x ²))) = **1.634**

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span $I_{max} = ratio_{span_depth} \times factor_{tens} \times d_x = 4.74 \text{ m}$

Check the actual beam span

Actual span/depth ratio $I_x / d_x = 20.69$

Span depth limit ratio_{span_depth} × factor_{tens} = **32.69**

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

Slab thickness h = 200 mm

Effective depth to bottom outer tension reinforcement $d_x = 145.0$ mm

Diameter of tension reinforcement $D_x = 10 \text{ mm}$

Diameter of links L_{diax} = 0 mm

Cover to outer tension reinforcement

$$c_{tenx} = h - d_x - D_x / 2 = 50.0 \text{ mm}$$

Nominal cover to links steel

$$c_{nomx} = c_{tenx} - L_{diax} =$$
50.0 mm

Permissable minimum nominal cover to all reinforcement (Table 3.4)

$$C_{min} = 50 \text{ mm}$$

Cover over steel resisting sagging OK

V&R	Project				Job Ref.	
VINCENT & RYMILL	16 RO	SECROFT AVE	E., LONDON. NV	V3 7QB	181	E03
VINCENT & RYMILL	Section				Sheet no./rev.	
LAKESIDE COUNTRY CLUB	PRELIM	IINARY STRUC	2	27		
FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date
SURREY GU16 6PT	TV	29/06/2018				

2 LAYERS A393 FABRIC TOP 50 COVER

2. FOR VERTICAL LOAD

DESIGN LOAD = $(6.8 \times 1.4) + (1.5 \times 1.6) = 11.90 \text{KN/m}^2$

 $BM = 11.9 \times 3^2 / 8 = 13.4 \text{KN.m}$

RC SLAB DESIGN (BS8110)

RC SLAB DESIGN (BS8110:PART1:1997)

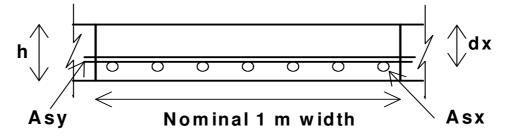
TEDDS calculation version 1.0.04

CONCRETE SLAB DESIGN (CL 3.5.3 & 4)

SIMPLE ONE WAY SPANNING SLAB DEFINITION

Overall depth of slab h = 200 mm

Cover to tension reinforcement resisting sagging cb = 50 mm


Trial bar diameter $D_{tryx} = 10 \text{ mm}$

Depth to tension steel (resisting sagging)

$$d_x = h - c_b - D_{tryx}/2 = 145 \text{ mm}$$

Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Characteristic strength of concrete fcu = 35 N/mm²

One-way spanning slab (simple)

ONE WAY SPANNING SLAB (CL 3.5.4)

MAXIMUM DESIGN MOMENTS IN SPAN

Design sagging moment (per m width of slab) $m_{sx} = 13.4 \text{ kNm/m}$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab) $m_{sx} = 13.4 \text{ kNm/m}$

Moment Redistribution Factor $\beta_{bx} = 1.0$

Area of reinforcement required

$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.018$$

Ī	V & R	Project				Job Ref.		
V (X X) VINCENT & RYMILL		16 ROSECROFT AVE., LONDON. NW3 7QB					18E03	
VINCENT & RYMILL LAKESIDE COUNTRY CLUB	Section					Sheet no./rev.		
	PRELIMINARY STRUCTURAL CALCULATIONS					28		
	FRIMLEY GREEN	Calc. by	Date	Chk'd by	Date	App'd by	Date	
١	SURREY GU16 6PT	TV	29/06/2018					

 $K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$

Outer compression steel not required to resist sagging

One-way Spanning Slab requiring tension steel only (sagging) - mesh

 $z_x = min ((0.95 \times d_x),(d_x \times (0.5 + \sqrt{0.25 - K_x/0.9})))) = 138 \text{ mm}$

Neutral axis depth $x_x = (d_x - z_x) / 0.45 = 16 \text{ mm}$

Area of tension steel required

$$A_{sx_req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_y \times z_x) = 224 \text{ mm}^2/\text{m}$$

Tension steel

Use A393 Mesh

$$A_{sx_prov} = A_{sl} = 393 \text{ mm}^2/\text{m } A_{sy_prov} = A_{st} = 393 \text{ mm}^2/\text{m}$$

$$D_x = d_{sl} = \textbf{10} \ mm \ D_y = d_{st} = \textbf{10} \ mm$$

Area of tension steel provided sufficient to resist sagging

Check min and max areas of steel resisting sagging

Total area of concrete $A_c = h = 200000 \text{ mm}^2/\text{m}$

Minimum % reinforcement k = 0.13 %

$$A_{st min} = k \times A_c = 260 \text{ mm}^2/\text{m}$$

$$A_{st_max} = 4 \% \times A_c = 8000 \text{ mm}^2/\text{m}$$

Steel defined:

Outer steel resisting sagging A_{sx_prov} = **393** mm²/m

Area of outer steel provided (sagging) OK

Inner steel resisting sagging A_{sy_prov} = **393** mm²/m

Area of inner steel provided (sagging) OK

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

Slab span length $I_x = 3.000 \text{ m}$

Design ultimate moment in shorter span per m width $m_{sx} = 13 \text{ kNm/m}$

Depth to outer tension steel $d_x = 145 \text{ mm}$

Tension steel

Area of outer tension reinforcement provided A_{sx_prov} = **393** mm²/m

Area of tension reinforcement required Asx_req = 224 mm²/m

Moment Redistribution Factor $\beta_{bx} = 1.00$

Modification Factors

Basic span / effective depth ratio (Table 3.9) ratio_{span depth} = 20

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

$$f_s = 2 \times f_y \times A_{sx req} / (3 \times A_{sx prov} \times \beta_{bx}) = 189.8 \text{ N/mm}^2$$

factor_{tens} = min (2, 0.55 + (477 N/mm² -
$$f_s$$
) / (120 × (0.9 N/mm² + m_{sx} / d_x ²))) = **2.000**

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span $I_{max} = ratio_{span_depth} \times factor_{tens} \times d_x = 5.80 \text{ m}$

Check the actual beam span

VINCENT VINCENT RYMILL
VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN

77 0 70

SURREY GU16 6PT

Project				Job Ref.	
16 RC	181	E03			
Section		Sheet no./rev.			
PRELIM	IINARY STRUC	:	29		
Calc. by	Date	Chk'd by	Date	App'd by	Date
TV	29/06/2018				

Actual span/depth ratio $I_x / d_x = 20.69$

Span depth limit ratio_{span_depth} × factor_{tens} = **40.00**

Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

Slab thickness h = 200 mm

Effective depth to bottom outer tension reinforcement $d_x = 145.0 \text{ mm}$

Diameter of tension reinforcement $D_x = 10 \text{ mm}$

Diameter of links $L_{diax} = 0$ mm

Cover to outer tension reinforcement

 $C_{tenx} = h - d_x - D_x / 2 = 50.0 \text{ mm}$

Nominal cover to links steel

 $c_{nomx} = c_{tenx} - L_{diax} =$ **50.0** mm

Permissable minimum nominal cover to all reinforcement (Table 3.4)

 $C_{min} = 50 \text{ mm}$

Cover over steel resisting sagging OK

A 393 FABRIC BOTTOM 50 COVER.

HEAVE OF OVER CONSOLIDATED CLAYS.

DUE TO THE EXCAVTION WHICH RESULTS IN OVER BURDEN RELIEF TO THE OVER CONSOLIDATED LODON CLAYS BELOW <u>PEAK</u> HEAVE PRESSURES OF APPROXIMATELY 3.6 X 20 = 72KN/m² ARE LIKELY TO OCCUR. THESE PEAK PRESSURE WILL DISSIPATE LOCALLY AT UNDER PIN POSITIONS THEN WHOLLY AS BULK EXCAVTION PROCEEDS, A LIKELY RESULTING HEAVE PRESSURE AT SLAB CONSTRUCTION WILL BE APPROXIMATELY 50% OF THE ABOVE, i.e. 36KN/m². THIS DISSIPATING FURTHER AS THE CLAY CAN HEAVE AGAINST AND INTO THE CORDEK BELOW THE 200 SLABS. BEARING PRESSURES BELOW THE BASES ARE GENERALLY HIGHER THAN THE 36KN/m² THUS RESISTING THE HEAVE FORCES.