Consultants in Acoustics, Noise & Vibration

16297-R01-B

31 July 2017

Bedford House

Planning noise report

55 Charterhouse Street, London EC1M 6HA 68 Sackville Street, Manchester M1 3NJ 2 Walker Street, Edinburgh EH3 7LA 35 St Paul's Square, Birmingham B3 1QX

Sandy Brown Associates LLP Registered in England & Wales No. OC 307504 T: +44 (0)20 7549 3500 T: +44 (0)161 771 2020 T: +44 (0)131 235 2020 T: +44 (0)121 227 5020

post@sandybrown.com www.sandybrown.com

Registered Office: 55 Charterhouse Street, London EC1M 6HA

Consultants in Acoustics, Noise & Vibration

Version	Date	Comments	Author	Reviewer
А	03 Aug 16		David Elliott	Daniel Stringer
В	31 Jul 17		David Elliott	Daniel Stringer

Consultants in Acoustics, Noise & Vibration

Summary

Sandy Brown (SB) has been commissioned by 6A architects on behalf of Holborn Community Agency to provide acoustic advice in relation to noise emission from building services plant associated with the proposed development at Bedford House which is located at 35 Emerald Street, London.

An environmental noise survey was performed between 20 July 2016 and 26 July 2016. The representative background sound levels measured during the survey were $L_{A90,15min}$ 44 dB during the daytime and $L_{A90,15min}$ 42 dB at night.

Based on the requirements of the Camden Council and on the results of the noise survey, all plant must be designed such that the cumulative noise level at 1 m from the worst affected windows of the nearby noise sensitive premises does not exceed L_{Aeq} 39 dB during the daytime and L_{Aeq} 37 dB during the night.

An assessment of the building services plant associated with the development has been carried out and noise emissions are expected to comply with Camden Council requirements at all times.

Consultants in Acoustics, Noise & Vibration

Contents

1	Introduction	5
2	Site description	6
3	Method	7
4	Measurement results	8
5	Assessment criteria – building services noise egress limits	10
6	Plant noise assessment	12
7	Conclusion	14
Ap	pendix A - Survey details	15
Ap	pendix B - Results of unattended measurements at Location L	18
Ap	pendix C – Ventilation schematic	20
Ap	pendix C – Plant noise assessment calculations	22

1 Introduction

Sandy Brown (SB) has been commissioned by 6A architects on behalf of Holborn Community Agency to provide acoustic advice in relation to the proposed development at Bedford House which is located at 35 Emerald Street, London.

An environmental noise survey has been carried out, the purpose of which was to establish the existing ambient and background sound levels in the vicinity of the site and nearby noise sensitive premises.

The background sound levels measured during the survey are used as the basis for setting limits for noise emission from proposed building services plant. These limits are set in accordance with the requirements of the Camden Council.

This report presents the noise survey methods, the results of the survey, a discussion of acceptable limits for noise emissions from building services plant. An assessment of noise levels from proposed items of plant has been undertaken and is also summarised in this report.

Consultants in Acoustics, Noise & Vibration

2 Site description

2.1 The site and its surroundings

The site location in relation to its surroundings is shown in Figure 1. It is located on Emerald Street, a small side street which runs off Lamb's Conduit Street located in the Bloomsbury area of Camden.

Figure 1 Site map (courtesy of Google Earth Pro) showing measurement position, L site (red), adjacent commercial buildings (blue) and adjacent mixed use buildings (green) which include residential premises.

2.2 Adjacent premises

The site is surrounded by buildings of both commercial and residential use. It is located between 23-29 Emerald Street and Rapier House, two office buildings which are shown in blue in Figure 1. The site backs onto the rear of the residential buildings located on Lamb's Conduit Street and Emerald Street and also sits opposite the residential townhouses on Rugby Street. These are shown in green in Figure 1.

Consultants in Acoustics, Noise & Vibration

3 Method

Details of the equipment used, the noise indices and the weather conditions during the survey are provided in Appendix A. Further information on the specific survey method is provided in this section.

3.1 Unattended measurements

Unattended noise monitoring was undertaken at the site over 6 days to determine the existing background sound levels in the vicinity of nearby noise sensitive premises.

The unattended measurements were performed over 15 minute periods between 15:00 on 20 July 2016 and 15:00 on 26 July 2016. The equipment was installed and collected by Eric Ballestero.

The measurement position used during the survey is indicated in Figure 1, denoted by the letter 'L'. A photograph showing the measurement location is provided in Figure 2. This location was chosen to be representative of the noise levels experienced by the nearest noise sensitive premises.

The microphone was located in the free-field.

Figure 2 Photograph showing unattended monitor a location L

Consultants in Acoustics, Noise & Vibration

4 Measurement results

4.1 Observations

The dominant noise sources observed at the site during the survey consisted of road traffic from the surrounding area and aircraft passes.

Less significant noise sources included pedestrians and residents of the surrounding buildings.

Between 13:00 and 14:00 on 22 July 2016 noise levels much higher than typical were measured. It is expected that this was due to an alarm or helicopter and this measurement period has been discounted from the analysis.

On 25 July 2016 and 26 July 2016 the measured background noise level is dominated by a constant noise source from 09:00 to 17:00, expected to be construction works. This does not affect the analysis undertaken to assess the typical background noise level.

4.2 Unattended measurement results

The results of the unattended noise measurements are summarised in the following tables. A graph showing the results of the unattended measurements is provided in Appendix B.

The day and night time ambient noise levels measured during the unattended survey are presented in Table 1.

Date	Daytime (07:00 – 23:00)	Night (23:00 – 07:00)
	L _{Aeg,16h} (dB)	L _{Aeg,8h} (dB)
Wednesday 20 July 2016	n/a	47
Thursday 21 July 2016	50	47
Friday 22 July 2016	49*(excluded loud period)	49
Saturday 23 July 2016	48	46
Sunday 24 July 2016	50	44
Monday 25 July 2016	50	47
Average	49	47

Table 1 Ambient noise levels measured during the survey

In line with BS 4142:2014, for the purpose of analysis and establishing representative background sound levels, day and night time typical levels have been quantified using statistical analysis from the continuous logging measurements.

Daytime and night time statistical analysis of representative values for the site are given in Figure 3 and Figure 4.

Consultants in Acoustics, Noise & Vibration

Figure 3 Graph showing statistical analysis of daytime background noise level (07:00 - 23:00)

Figure 4 Graph showing statistical analysis of night time background noise level (23:00 - 07:00)

From this analysis, the representative background sound levels measured during the survey were $L_{A90,15min}$ 44 dB during the daytime and $L_{A90,15min}$ 42 dB at night.

5 Assessment criteria – building services noise egress limits

5.1 Standard guidance

Guidance for noise emission from proposed new items of building services plant is given in BS 4142: 2014 '*Methods for rating and assessing industrial and commercial sound*'.

BS 4142 provides a method for assessing noise from items such as building services plant against the existing background sound levels at the nearest noise sensitive premises.

BS 4142 suggests that if the noise level is 10 dB or more higher than the existing background sound level, it is likely to be an indication of a significant adverse impact. If the level is 5 dB above the existing background sound level, it is likely to be an indication of an adverse impact. If the level does not exceed the background level, it is an indication of having a low impact.

If the noise contains 'attention catching features' such as tones, bangs etc, a penalty, based on the type and impact of those features, is applied.

5.2 Local Authority criteria

The requirements of Camden Borough Council are set out in Table 2 below.

	-		
Noise description and location of measurement	Period	Time	Noise Level
Noise at 1 m external to a sensitive facade	Day, evening and night	0000-2400	5 dB(A) < <i>L</i> _{A90}
Noise that has a distinguishable discrete continuous note (whine, hiss, screech hum) at 1 m external to a sensitive facade.	Day, evening and night	0000-2400	10 dB(A) < <i>L</i> _{A90}
Noise that has distinct impulses (bangs, clicks, clatters, thumps) at 1 m external to a sensitive facade	Day, evening and night	0000-2400	10dB(A)< <i>L</i> _{A90}

Table 2 External plant noise limits for Camden Council Borough

On this basis, all external plant installed at the site must be designed such that the cumulative level at the nearest noise sensitive receiver is not less than 5 dB below the representative measured background noise level ($L_{A90,15min}$), It noise from the proposed plant contains tones or impulsive sound, an additional 5 dB penalty is applied.

5.3 Plant noise limits

Based on the Camden Council requirements and the measurement results, the cumulative noise level resulting from the operation of all new plant at 1 m from the worst affected windows of the nearest noise sensitive premises should not exceed the limits set out in Table 3.

Table 3 Plant noise limits at 1 m from the nearest noise sensitive premises

Time of day	Maximum sound pressure level at 1 m from noise sensitive premises (L _{Aeq,15min} dB)
Daytime (07:00-23:00)	39
Night-time (23:00-07:00)	37

The limits set out in Table 3 do not include penalties for any attention catching features.

Consultants in Acoustics, Noise & Vibration

6 Plant noise assessment

6.1 Proposed installation

There will be a number of units housed on the roof of the development, listed below:

- Flaktwoods eQ Prime air handling unit serving basement gym (AHU1)
- Trane CGA air/water chiller
- Flaktwoods Gleb kitchen extract fan (EF2.1)

There are internal mechanical ventilation units and fans which have atmosphere-side intake and exhausts located on the roof of the development. These are as follows:

- Flaktwoods Eco Premium Elite air handling unit serving basement studio (AHU2)
- 2 no. Zehnder ComfoAir Q MVHR/air handling units (AHU3, AHU4)
- Nuaire Dave kitchen supply fan (SFB.1)
- Nuaire ES-OPUS WC extract fan (EF0.1)

A ventilation schematic showing the location of all units is provided in Appendix C.

All units will run during daytime hours (07:00-23:00).

6.2 Noise sensitive receptors

The nearest noise sensitive receptors to the plant area are the residential windows to the south of the development, as shown in greed in Figure 1. The nearest receptor is located 7 m from the south edge of the development's rooftop.

6.3 Mitigation measures

6.3.1 Acoustic enclosures

The air handling unit and chiller unit will be housed in acoustic enclosures manufacturer by Noico which achieve the octave band insertion losses shown in Table 4.

Noico acoustic	quency (H	z)						
enclosure	63	125	250	500	1000	2000	4000	8000
Insertion loss	5	8	14	27	38	40	33	31

Table 4 Octave band insertions losses for acoustic enclosure (dB)

Consultants in Acoustics, Noise & Vibration

6.3.2 Ductwork attenuators

Ductwork attenuators will be fitted to the following connections:

- AHU1 exhaust air
- AHU2 intake air
- AHU2 exhaust air
- Kitchen Extract (EF2.1) intake air

The specified octave band insertion losses for the various attenuators are shown in Table 5.

Table 5 Octave band insertion losses for ductwork attenuators (dB)

	Octave-band centre frequency (Hz)									
	63	125	250	500	1000	2000	4000	8000		
AHU1 Exhaust	2	8	19	22	23	17	14	13		
AHU2 Intake	6	6	10	19	30	27	16	14		
AHU2 Exhaust	8	8	13	23	34	30	17	14		
Kitchen Extract intake	n/a	10	18	29	21	17	15	13		

6.4 Assessment

The daytime octave band cumulative sound pressure levels at 1 m from the nearest noise sensitive receptor have been calculated and are shown in Table 6.

Full calculation stages are shown in Appendix D.

Table 6 Calculated cumulative octave band sound pressure level at 1 m from nearest noise sensitive receptor (dB)

	A-weighted								
	63	125	250	500	1k	2k	4k	8k	SPL (dB)
Lp(receptor)	52	45	37	23	22	21	24	25	35

It is clear from the results of the assessment that the plant noise limits specified in Table 3 will be satisfied at all times.

Consultants in Acoustics, Noise & Vibration

7 Conclusion

The measured representative background sound levels were $L_{A90,15min}$ 44 dB during the day, and $L_{A90,15min}$ 42 dB during the night. On the basis of the requirements of the Local Authority, the relevant plant noise limits at the worst affected existing noise sensitive premises would be L_{Aeq} 39 dB during the day, and L_{Aeq} 37 dB during the night. These limits are cumulative, and apply with all plant operating under normal conditions. If plant items contain tonal or attention catching features, the limits will be more stringent than those set out above.

An assessment of the building services plant associated with the development has been carried out and noise emissions are expected to comply with Camden Council requirements at all times.

Consultants in Acoustics, Noise & Vibration

Appendix A - Survey details

Consultants in Acoustics, Noise & Vibration

Equipment

A Rion NL-32 sound level meter was used to undertake the unattended measurements. The calibration details for the equipment used during the survey are provided in Table A1.

Table A1 Equipment calibration data

Equipment description	Type/serial number	Manufacturer	Calibration expiry	Calibration certification number
NL-32A				
Sound level meter	NL-32/00623769	Rion	05 Oct 17	1510538
Microphone	UC-53A/319244	Rion	05 Oct 17	1510538
Pre-amp	NH-21/36677	Rion	05 Oct 17	1510538
Calibrator	NC-74/34336009	Rion	02 Oct 17	1510531

Calibration of the sound level meters used for the tests is traceable to national standards. The calibration certificates for the sound level meter used in this survey are available upon request.

The sound level meters and microphones were calibrated at the beginning and end of the measurements using their respective sound level calibrators. No significant deviation in calibration occurred.

Noise indices

The equipment was set to record a continuous series of broadband sound pressure levels. Noise indices recorded included the following:

- $L_{Aeq,T}$ The A-weighted equivalent continuous sound pressure level over a period of time, T.
- *L*_{AFmax,7} The A-weighted maximum sound pressure level that occurred during a given period with a fast time weighting.
- $L_{A90,T}$ The A-weighted sound pressure level exceeded for 90% of the measurement period. Indicative of the background sound level.

The L_{A90} is considered most representative of the background sound level for the purposes of complying with any local authority requirements.

Sound pressure level measurements are normally taken with an A-weighting (denoted by a subscript 'A', eg L_{A90}) to approximate the frequency response of the human ear.

A more detailed explanation of these quantities can be found in BS7445: Part 1: 2003 *Description and measurement of environmental noise, Part 1. Guide to quantities and procedures.*

Consultants in Acoustics, Noise & Vibration

Weather conditions

During the unattended noise measurements between 20 July 2016 and 26 July 2016, weather reports for the area indicated that temperatures varied between 16°C at night and 27°C during the day, and the wind speed was generally less than 4 m/s.

These weather conditions are considered suitable for obtaining representative measurements.

Appendix B - Results of unattended measurements at Location L

Consultants in Acoustics, Noise & Vibration

A-weighted sound pressure level (dB)

Appendix C – Ventilation schematic

Appendix C – Plant noise assessment calculations

Comments		Octa	ve ban	d centr	e frequ	iency (l	Hz)		Ratin	g 1	Rating 2
	63	125	250	500	1k	2k	4k	8k		-	-
DE Bedford House plant noise assess	nent										
31-07-17				Neare	st noise	e sensi	tive rec	eptor ci	riteria:	D39	N37
Unit sound power data (Lw. dB) and at	tenuat	or inser	tion lo	ss (IL. d	B)						
AHU01 - location 1 rooftop					- /						
Lw. Fresh air intake	50	51	51	45	39	44	48	46	L _A =	53	
lw. Exhaust	63	56	52	49	50	57	60	64		66	
I.w. To surroundings	48	57	62	50	43	50	51	40	 =	58	
II Exhaust attenuator	2	8	19	22	23	17	14	13	-A		
AHU2 - location Basement	-	0	15		20			10			
I w Intake	61	53	52	33	33	33	33	33	= م ا	46	
Lw. Exhaust	64	59	58	48	33	33	41	39	 =	52	
II. Intake attenuator	6	6	10	19	30	27	16	14	-A	01	
II. Discharge attenuator	8	8	13	23	34	30	17	14			
AHLIO3 (assumed spectrum)	0	0	15	25	54	50	17	14			
	83	75	74	55	55	55	55	55	1.=	68	
Lw. Extract	67	62	61	51	36	36	44	42		55	
AHLIOA (assumed spectrum)	07	02	01	51	50	50		74	►A ⁻	55	
	74	66	65	46	46	46	46	46	1.=	59	
Lw. Extract	60	55	54	40	20	20	37	35		18	
SEB1 - location basement plant room	00	55	74	44	25	25	57	35	LA-	40	
I w Inlet	75	70	61	61	52	51	49	47	.=	62	
FE2.1 - location roofton	75	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01	01	52	51	15	.,	- A	02	
Outlet SWI	84	77	79	70	63	61	53	45	1.=	73	
Surroundings SWI	59	53	60	51	55	19	48	45		58	
I Attonuator (2.1)	55	10	10	20	21	17	15	12	LA-	50	
EEO 1 Jocation CE stororoom		10	10	25	21	17	15	13			
Outlet		64	56	52	52	40	/12	34	1 -	57	
Trans chiller location 11 reaften		04	50	55	52	49	42	54	L _A -	57	
Sound nowor	82	79	72	60	67	64	58	52	1 -	72	
Noise enclosures	02	78	75	05	07	04	50	55	LA-	72	
Rs50 acoustic papelwork TI	10	10	25	21	40	12	45	/11	1 -	10	
F300 acoustic parletwork TE	19	19	25	21	40 20	42	45	41 21		49	
	5	0	14	27	50	40	55	51	L _A -	44	
Receptor details	7										
Root edge ro receptor	/	m									
AHU to root edge	0	m									
Chiller to root edge	3	m									
Internal unit intakes to root edge	14	m									
Internal unit exhausts to roof edge	16	m									
KE exhaust to root edge	20	m	CE 1		e						
Duct losses (inc silencers) - Calculation	s basec	I ON CIB	SE and	ASHRA	E guida	ance or	n duct r	ioise att	enuatio	on	
AHUUI											
Intake	0	0	4		c						
400mm Rec OL EIDOW W/TV	0	0	-1	-4	-b	-4	-4	-4			
End Ref.Loss 0.3m2 (d=0.62)	-8	-4	-1	0	0	0	0	0			
SUM	-8	-4	-2	-4	-6	-4	-4	-4			
Discharge											
400mm Rec UL Elbow w/TV	0	0	-1	-4	-6	-4	-4	-4			
End Ref.Loss 0.3m2 (d=0.62)	-8	-4	-1	0	0	0	0	0			
IL, Exhaust attenuator	-2	-8	-19	-22	-23	-17	-14	-13			
SUM	-10	-12	-21	-26	-29	-21	-18	-17			

711002								
Intake								
200x300mm Rec UL Duct	-1	-1	0	0	0	0	0	0
10m	-11	-6	-3	-2	-2	-2	-2	-2
300mm Rec UL No TV Elbow	0	0	-1	-5	-8	-4	-3	-3
4 hends	0	0	-4	-20	-32	-16	-12	-12
End Ref Loss $0.06m^2$ (d=0.28)	-13	-8	-4	-7	-1	10	0	0
II Intake attenuator	-6	-6	-10	_10	-30	-27	-16	_1/
	-0	-0 21	-10 22	-19	-30 72	-27	-10 22	-14 21
Discharge	-52	-21	-22	-40	-73	-49	-35	-31
	4	1	0	0	~	0	0	~
200X300mm Rec OL Duct	-1	-1	0	0	0	0	0	0
10m	-11	-6	-3	-2	-2	-2	-2	-2
300mm Rec UL No TV Elbow	0	0	-1	-5	-8	-4	-3	-3
4 bends	0	0	-4	-20	-32	-16	-12	-12
End Ref.Loss 0.06m2 (d=0.28)	-13	-8	-4	-2	-1	0	0	0
IL, Discharge attenuator	-8	-8	-13	-23	-34	-30	-17	-14
SUM	-26	-15	-12	-29	-43	-22	-17	-17
AHU03								
Intake								
180 to 380mm Circ UL Duct	0	0	0	0	0	0	0	0
10m	-1	-1	-1	-2	-2	-2	-2	-2
200mm Circ/Rad. UL Elbow	0	0	-1	-2	-3	-3	-3	-3
4 bends	0	0	-4	-8	-12	-12	-12	-12
End Ref.Loss 0.04m2 (d=0.23)	-15	-10	-5	-2	-1	0	0	0
SUM	-16	-11	-11	-14	-18	-17	-17	-17
Discharge								
180 to 380mm Circ UL Duct	0	0	0	0	0	0	0	0
10m	-1	-1	-1	-2	-2	-2	-2	-2
200mm Circ/Rad. UL Elbow	0	0	-1	-2	-3	-3	-3	-3
4 bends	0	0	-4	-8	-12	-12	-12	-12
End Ref.Loss 0.04m2 (d=0.23)	-15	-10	-5	-2	-1	0	0	0
SUM	-16	-11	-11	-14	-18	-17	-17	-17
AHU04								
Intake			_	_	_	_	_	_
						0	0	•
300x300mm Rec UL Duct	-1	-1	0	0	0	U	U	U
300x300mm Rec UL Duct 5m	-1 -6	-1 -4	0 -2	0 -1	0 -1	-1	-1	-1
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Floow	-1 -6 0	-1 -4	0 -2 -1	0 -1 -5	0 -1 -8	-1 -4	-1 -3	0 -1 -3
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends	-1 -6 0	-1 -4 0	0 -2 -1 -2	0 -1 -5 -10	0 -1 -8 -16	-1 -4 -8	-1 -3 -6	-1 -3 -6
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref Loss 0 1m2 (d=0.36)	-1 -6 0 -11	-1 -4 0 0	0 -2 -1 -2	0 -1 -5 -10 -1	0 -1 -8 -16	-1 -4 -8	-1 -3 -6	-1 -3 -6
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36)	-1 -6 0 -11	-1 -4 0 -7	0 -2 -1 -2 -3	0 -1 -5 -10 -1	0 -1 -8 -16 0	-1 -4 -8 0	-1 -3 -6 0	-1 -3 -6 0
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM Discharge	-1 -6 0 -11 -19	-1 -4 0 -7 -11	0 -2 -1 -2 -3 -8	0 -1 -5 -10 -1 -17	0 -1 -8 -16 0 -26	-1 -4 -8 0 -13	-1 -3 -6 0 -10	-1 -3 -6 0 -10
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM Discharge	-1 -6 0 -11 -19	-1 -4 0 -7 -11	0 -2 -1 -2 -3 -8	0 -1 -5 -10 -1 -17	0 -1 -8 -16 0 -26	-1 -4 -8 0 -13	-1 -3 -6 0 -10	-1 -3 -6 0 -10
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM Discharge <180mm Circ UL Duct	-1 -6 0 -11 -11 -19	-1 -4 0 -7 -11	0 -2 -1 -2 -3 -8	0 -1 -5 -10 -1 -17 0	0 -1 -8 -16 0 -26 0	-1 -4 -8 0 -13	-1 -3 -6 0 -10 0	-1 -3 -6 0 -10
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM Discharge <180mm Circ UL Duct 5m	-1 -6 0 -11 -19 0 -1	-1 -4 0 -7 -11 0 -1	0 -2 -1 -3 -8 0 -1	0 -1 -5 -10 -1 -1 -17 0 -1	0 -1 -8 -16 0 -26	-1 -4 -8 0 -13 0 -2	-1 -3 -6 0 -10	0 -1 -3 -6 0 -10
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM Discharge <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow	-1 -6 0 -11 -19 0 -1 0	-1 -4 0 -7 -11 0 -1 0	0 -2 -1 -3 -3 -8 0 -1 -1	0 -1 -5 -10 -1 -1 -17 0 -1 -2	0 -1 -8 -16 0 -26 0 -2 -3	0 -1 -4 -8 0 -13 0 -2 -3	-1 -3 -6 0 -10 0 -2 -3	0 -1 -3 -6 0 -10 -10 0 -2 -3
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM <i>Discharge</i> <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends	-1 -6 0 -11 -19 0 -1 0 0	-1 -4 0 -7 -7 -11 0 -1 0 0	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2	0 -1 -5 -10 -1 -1 -17 0 -1 -2 -4	0 -1 -8 -16 0 -26 0 -2 -3 -6	-1 -4 -8 0 -13 0 -2 -3 -6	-1 -3 -6 0 -10 -10 -2 -3 -6	-1 -3 -6 0 -10 -2 -3 -6
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM <i>Discharge</i> <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends End Ref.Loss 0.02m2 (d=0.16)	-1 -6 0 -11 -19 0 -1 0 0 -18	-1 -4 0 -7 -11 0 -1 0 0 -12	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2 -7	0 -1 -5 -10 -1 -1 -1 -1 -1 -2 -4 -3	0 -1 -8 -16 0 -26 0 -2 -3 -6 -1	-1 -4 -8 0 -13 0 -2 -3 -6 0	-1 -3 -6 0 -10 -2 -3 -6 0	0 -1 -3 -6 0 - 10 - 10 -2 -3 -6 0
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM <i>Discharge</i> <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends End Ref.Loss 0.02m2 (d=0.16) SUM	-1 -6 0 -11 -19 0 -1 0 0 -18 -18 -18	-1 -4 0 -7 -11 0 -1 0 0 -12 -12 -13	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2 -7 -7 -7 2	0 -1 -5 -10 -1 -1 -17 0 -1 -2 -4 -3 -11	0 -1 -8 -16 0 -26 0 -2 -3 -6 -1 -12	-1 -4 -8 0 -13 0 -2 -3 -6 0 -2 -3 -6 0 -11	-1 -3 -6 0 -10 0 -2 -3 -6 0 -11	0 -1 -3 -6 0 -10 0 -2 -3 -6 0 -11
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM Discharge <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends End Ref.Loss 0.02m2 (d=0.16) SUM SFB1	-1 -6 0 -11 -19 0 -1 0 0 -18 -18 -18	-1 -4 0 -7 -11 0 -1 0 0 -12 -13	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2 -7 -7 -12	0 -1 -5 -10 -1 -1 -17 0 -1 -2 -4 -3 -11	0 -1 -8 -16 0 -26 0 -2 -3 -6 -1 -12	-1 -4 -8 0 -13 0 -2 -3 -6 0 -11	-1 -3 -6 0 -10 0 -2 -3 -6 0 -11	0 -1 -3 -6 0 -10 0 -2 -3 -6 0 -11
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM <i>Discharge</i> <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends End Ref.Loss 0.02m2 (d=0.16) SUM SFB1 <i>Intake</i>	-1 -6 0 -11 -19 0 -1 0 0 -18 -18 -18	-1 -4 0 -7 -11 0 -1 0 0 -12 -13	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2 -7 -7 -12	0 -1 -5 -10 -1 -1 -1 -2 -4 -3 -11	0 -1 -8 -16 0 -26 0 -2 -3 -6 -1 -12	-1 -4 -8 0 -13 0 -2 -3 -6 0 -11	-1 -3 -6 0 -10 0 -2 -3 -6 0 -11	0 -1 -3 -6 0 -10 0 -2 -3 -6 0 -11
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM <i>Discharge</i> <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends End Ref.Loss 0.02m2 (d=0.16) SUM SFB1 <i>Intake</i> 300x300mm Rec UL Duct	-1 -6 0 0 -11 -19 0 -1 0 0 -18 -18 -18	-1 -4 0 0 -7 -11 0 -1 0 0 -12 -13	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2 -7 -7 -12	0 -1 -5 -10 -1 -1 -1 -2 -4 -3 -11 0	0 -1 -8 -16 0 -26 0 -2 -3 -6 -1 -12 0	-1 -4 -8 0 -13 0 -2 -3 -6 0 -11	-1 -3 -6 0 -10 0 -2 -3 -6 0 -11	0 -1 -3 -6 0 -10 0 -2 -3 -6 0 -11
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM <i>Discharge</i> <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends End Ref.Loss 0.02m2 (d=0.16) SUM SFB1 <i>Intake</i> 300x300mm Rec UL Duct 10m	-1 -6 0 0 -11 -19 0 -1 0 0 -18 -18 -18	-1 -4 0 0 -7 -11 0 -1 0 0 -12 -13 -1 -7	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2 -7 -7 -12	0 -1 -5 -10 -1 -1 -1 -1 -2 -4 -3 -11 0 -2	0 -1 -8 -16 0 -26 0 -2 -3 -6 -1 -12 0 -2	-1 -4 -8 0 -13 0 -2 -3 -6 0 -11	-1 -3 -6 0 -10 0 -2 -3 -6 0 -11	0 -1 -3 -6 0 -10 0 -2 -3 -6 0 -11
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM <i>Discharge</i> <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends End Ref.Loss 0.02m2 (d=0.16) SUM SFB1 <i>Intake</i> 300x300mm Rec UL Duct 10m 300mm Rec UL Elbow w/TV	-1 -6 0 0 -11 -19 0 -1 0 0 -18 -18 -18 -12 0	-1 -4 0 0 -7 -11 0 -1 0 0 -12 -13 -1 -7 0	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2 -7 -7 -12 0 -4 -1	0 -1 -5 -10 -1 -1 -1 -1 -1 -1 -2 -4 -3 -11 0 -2 -4	0 -1 -8 -16 0 -26 0 -2 -3 -6 -1 -12 0 -2 -6	0 -1 -4 -8 0 -13 0 -2 -3 -6 0 -11 0 -2 -2 -4	-1 -3 -6 0 -10 0 -2 -3 -6 0 -11 0 -11	0 -1 -3 -6 0 -10 0 -2 -3 -6 0 -11 0 -2 -4
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM <i>Discharge</i> <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends End Ref.Loss 0.02m2 (d=0.16) SUM SFB1 <i>Intake</i> 300x300mm Rec UL Duct 10m 300mm Rec UL Elbow w/TV 2 bends	-1 -6 0 0 -11 -19 0 -1 0 0 -18 -18 -18 -18 -12 0 0 0	-1 -4 0 0 -7 -11 0 -1 0 0 -12 -13 -7 0 0 0	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2 -7 -7 -12 0 -4 -1 -2	0 -1 -5 -10 -1 -1 -1 7 0 -1 -2 -4 -3 -11 0 -2 -4 -3 -2 -4 -8	0 -1 -8 -16 0 -26 0 -2 -3 -6 -1 -12 0 -2 -6 -12	0 -1 -4 -8 0 -13 0 -2 -3 -6 0 -11 0 -2 -4 -8	-1 -3 -6 0 -10 0 -2 -3 -6 0 -11 0 -11 0 -2 -4 -8	0 -1 -3 -6 0 -10 0 -2 -3 -6 0 -11 0 -2 -4 -8
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM <i>Discharge</i> <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends End Ref.Loss 0.02m2 (d=0.16) SUM SFB1 <i>Intake</i> 300x300mm Rec UL Duct 10m 300mm Rec UL Elbow w/TV 2 bends End Ref.Loss 0.1m2 (d=0.36)	-1 -6 0 0 -11 -19 0 -1 0 0 -18 -18 -18 -18 -12 0 0 0 -11	-1 -4 0 0 -7 -11 0 -1 0 -12 -13 -1 -7 0 0 0 -7	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2 -7 -7 -12 0 -4 -1 -2 -3	0 -1 -5 -10 -1 -1 -17 0 -1 -2 -4 -3 -11 0 -2 -4 -8 -1	0 -1 -8 -16 0 -26 0 -2 -3 -6 -1 -12 0 -2 -6 -12 0	-1 -4 -8 0 -13 0 -2 -3 -6 0 -11 0 -2 -4 -8 0	-1 -3 -6 0 -10 0 -2 -3 -6 0 -11 0 -2 -4 -4 -8 0	0 -1 -3 -6 0 -10 0 -2 -3 -6 0 -2 -11 0 -2 -4 -8 0
300x300mm Rec UL Duct 5m 300mm Rec UL No TV Elbow 3 bends End Ref.Loss 0.1m2 (d=0.36) SUM <i>Discharge</i> <180mm Circ UL Duct 5m 200mm Circ/Rad. UL Elbow 3 bends End Ref.Loss 0.02m2 (d=0.16) SUM SFB1 <i>Intake</i> 300x300mm Rec UL Duct 10m 300mm Rec UL Elbow w/TV 2 bends End Ref.Loss 0.1m2 (d=0.36) SUM	-1 -6 0 0 -11 -19 0 -1 0 0 -18 -18 -18 -18 -18 -18 -12 0 0 0 -11 -12_0 5	-1 -4 0 0 -7 -11 0 -1 0 -12 -13 -13 -1 -7 0 0 0 -7 -14	0 -2 -1 -2 -3 -8 0 -1 -1 -1 -2 -7 -12 0 -4 -1 -2 -3 -10	0 -1 -5 -10 -1 -1 -2 -4 -3 -11 0 -2 -4 -8 -1 -15	0 -1 -8 -16 0 -2 6 -1 -12 -12 0 -2 -6 -12 0 -21	-1 -4 -8 0 -13 0 -2 -3 -6 0 -11 0 -2 -4 -8 0 -14	-1 -3 -6 0 -10 0 -2 -3 -6 0 -11 0 -2 -4 -8 0 -14	0 -1 -3 -6 0 -10 0 -2 -3 -6 0 -11 0 -2 -4 -8 0 -14

EF2.1												
Discharge												
300mm Rec U	L No TV Elbow	0	0	-1	-5	-8	-4	-3	-3			
End Ref.Loss 0	.1m2 (d=0.36)	-11	-7	-3	-1	0	0	0	0			
IL. Attenuator	(2.1)	0	-10	-18	-29	-21	-17	-15	-13			
SUM	()	-11	-17	-22	-35	-29	-21	-18	-16			
EF0.1												
Discharae												
180 to 380mm	Circ UL Duct	0	0	0	0	0	0	0	0			
3m		0	0	0	-1	-1	-1	-1	-1			
200mm Circ/R	ad UI Elbow	0	0	-1	-2	-3	-3	-3	-3			
3 bends		0	0	-3	-6	_9	-9	-9	-9			
End Ref.Loss 0	.02m2 (d=0.16)	-18	-12	-7	-3	-1	0	0	0			
SUM		-18	-13	-12	-12	-14	-13	-13	-13			
Calculation												
Usina:												
Lp(receptor) =	Lw(unit) - DL - 20loa(r) +	10loa((2)+ 10l	oa(N) +	- FC - BA	- 11						
Lp(receptor) =	Lp(unit) - 20loq(r) + 10loc	q(Q) + 1	Olog(N	i) + FC -	BA							
Lp(receptor) =	Sound pressure level at 1	.m fron	n neare	st nois	e sensi	tive red	ceptor					
Lw(unit) = Mai	nufacturers sound power	level o	funit									
Lp(unit) = Mar	ufacturers measured sou	nd pre	ssure le	evel of	unit (at	1m)						
DL = Attenuati	on provided by ductwork	includi	ing sile	ncers		,						
20log(r) = Atte	nuation due to distance (m)	U									
$10\log(Q) = Direction$	ectivity correction/reflect	ive sur	faces									
$10\log(N) = cor$	rection for number of uni	ts										
FC = Facade co	prrection											
BA = Attenuat	ion due to screening											
BA = Attenuati 11 = Correctio	ion due to screening n for sound power to sou	nd pres	ssure a	nd sphe	erical sp	oreadir	ıg					
BA = Attenuati 11 = Correctio AHU01 - locati	ion due to screening n for sound power to sou on L1 rooftop	nd pres	ssure a	nd sphe	erical sp	oreadir	Ig					
BA = Attenuati 11 = Correctio AHU01 - locati To surrounding	ion due to screening n for sound power to sou on L1 rooftop gs	nd pres	ssure a	nd sphe	erical sp	oreadir	Ig					
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surroundin	ion due to screening n for sound power to sou on L1 rooftop gs igs)	nd pres 48	ssure a	nd sphe	erical sp 50	oreadir 43	ng 50	51	40	L _A =	58	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surroundin TL of enclosure	ion due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC)	nd pres 48 5	ssure a 57 8	nd spho 62 14	erical sp 50 27	oreadir 43 38	50 40	51 33	40 31	L _A =	58	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding TL of enclosure 2 10log(Q)	ion due to screening n for sound power to sou on L1 rooftop gs gs) e (TBC)	nd pres 48 5 3	ssure a 57 8 3	nd spho 62 14 3	erical sp 50 27 3	oreadir 43 38 3	ng 50 40 3	51 33 3	40 31 3	L _A =	58	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surroundin TL of enclosure 10log(Q) 7 20log(r)	ion due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC)	nd pres 48 5 3 17	57 57 8 3 17	nd sphe 62 14 3 17	erical sp 50 27 3 17	oreadir 43 38 3 17	50 40 3 17	51 33 3 17	40 31 3 17	L _A =	58	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surroundin TL of enclosure 10log(Q) 7 20log(r) FC	ion due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC)	nd pres 48 5 3 17 3	57 8 3 17 3	62 14 3 17 3	50 27 3 17 3	oreadir 43 38 3 17 3	50 40 3 17 3	51 33 3 17 3	40 31 3 17 3	L _A =	58	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surroundin TL of enclosure 10log(Q) 7 20log(r) FC -11	ion due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC)	nd pres 48 5 3 17 3 -11	57 8 3 17 3 -11	nd sphe 62 14 3 17 3 -11	50 27 3 17 3 -11	43 38 3 17 3 -11	50 40 3 17 3 -11	51 33 3 17 3 -11	40 31 3 17 3 -11	L _A =	58	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra	on due to screening n for sound power to sou on L1 rooftop gs gs) e (TBC) adiated Lp(receptor)	nd pres 48 5 3 17 3 -11 21	57 8 3 17 3 -11 27	nd sphe 62 14 3 17 3 -11 26	50 27 3 17 3 -11 1	43 38 3 17 3 -11 -17	50 40 3 17 3 -11 -12	51 33 3 17 3 -11 -4	40 31 3 17 3 -11 -13	L _A =	58	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surroundin TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i>	on due to screening n for sound power to sou on L1 rooftop gs gs) e (TBC) adiated Lp(receptor) e	nd pres 48 5 3 17 3 -11 21	57 8 3 17 3 -11 27	62 14 3 17 3 -11 26	50 27 3 17 3 -11 1	43 38 3 17 3 -11 -17	50 40 3 17 3 -11 -12	51 33 3 17 3 -11 -4	40 31 3 17 3 -11 -13	L _A = L _A =	58	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surroundin TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI)	on due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC) adiated Lp(receptor) e	nd pres 48 5 3 17 3 -11 21 50	57 8 3 17 3 -11 27 51	62 14 3 17 3 -11 26 51	50 27 3 17 3 -11 1 45	43 38 3 17 3 -11 -17 39	ng 50 40 3 17 3 -11 -12 44	51 33 3 17 3 -11 -4 48	40 31 3 17 3 -11 -13 46	L _A = L _A =	58 18 53	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surroundin TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL	on due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC) adiated Lp(receptor) e	nd pres 48 5 3 17 3 -11 21 50 -8	57 8 3 17 3 -11 27 51 -4	62 14 3 17 3 -11 26 51 -2	50 27 3 17 3 -11 1 45 -4	43 38 3 17 3 -11 -17 39 -6	ng 50 40 3 17 3 -11 -12 44 44 -4	51 33 3 17 3 -11 -4 48 -4	40 31 3 17 3 -11 -13 46 -4	L _A = L _A = L _A =	58 18 53	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q)	ion due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC) adiated Lp(receptor) e	48 5 3 17 3 -11 21 50 -8 3	57 8 3 17 3 -11 27 51 -4 3	62 14 3 17 3 -11 26 51 -2 3	50 27 3 17 3 -11 1 45 -4 3	43 38 3 17 3 -11 -17 39 -6 3	ng 50 40 3 17 3 -11 -12 44 44 -4 3	51 33 3 17 3 -11 -4 48 48 -4 3	40 31 3 17 3 -11 -13 46 -4 3	L _A = L _A = L _A =	58 18 53	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r)	ion due to screening n for sound power to sou on L1 rooftop gs gs) e (TBC) adiated Lp(receptor) e	nd pres 48 5 3 17 3 -11 21 50 -8 3 17	57 8 3 17 3 -11 27 51 -4 3 17	62 14 3 17 3 -11 26 51 -2 3 17	50 27 3 17 3 -11 1 45 -4 3 17	43 38 3 17 3 -11 -17 39 -6 3 17	ng 50 40 3 17 3 -11 -12 44 -4 3 17	51 33 3 17 3 -11 -4 48 -4 3 17	40 31 3 17 3 -11 -13 46 -4 3 17	L _A = L _A =	58 18 53	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r) FC	ion due to screening n for sound power to sou on L1 rooftop gs gs) e (TBC) adiated Lp(receptor) e	nd pres 48 5 3 17 3 -11 21 50 -8 3 17 3	57 8 3 17 3 -11 27 51 -4 3 17 3	62 14 3 17 3 -11 26 51 -2 3 17 3	50 27 3 17 3 -11 1 45 -4 3 17 3	43 38 3 17 3 -11 -17 39 -6 3 17 3	ng 50 40 3 17 3 -11 -12 44 -4 3 17 3	51 33 3 17 3 -11 -4 48 -4 3 17 3	40 31 3 -11 -13 46 -4 3 17 3	L _A = L _A =	58 18 53	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surroundin TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r) FC -11	ion due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC) adiated Lp(receptor) e	nd pres 48 5 3 17 3 -11 21 50 -8 3 17 3 -11	57 8 3 17 3 -11 27 51 -4 3 17 3 -11	62 14 3 17 3 -11 26 51 -2 3 17 3 -11	50 27 3 -11 1 45 -4 3 17 3 -11	43 38 3 17 3 -11 -17 39 -6 3 17 3 -11	ng 50 40 3 17 3 -11 -12 44 -4 3 17 3 -11	51 33 3 17 3 -11 -4 48 -4 3 17 3 -11	40 31 3 -11 -13 46 -4 3 17 3 -11	L _A = L _A =	58 18 53	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r) FC -11 AHU01 FAI Lp(receptor)	nd pres 48 5 3 17 3 -11 21 50 -8 3 17 3 -11 21	57 8 3 17 3 -11 27 51 -4 3 17 3 -11 26	62 14 3 17 3 -11 26 51 -2 3 17 3 -11 27	50 27 3 -11 1 45 -4 3 17 3 -11 19	43 38 3 17 3 -11 -17 39 -6 3 17 3 -11 11	ng 50 40 3 17 3 -11 -12 44 -4 3 17 3 -11 18	51 33 3 17 3 -11 -4 48 -4 3 17 3 -11 22	40 31 3 -11 -13 46 -4 3 17 3 -11 20	L _A = L _A = L _A =	58 18 53 27	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r) FC -11 AHU01 FAI Lp(<i>Exhaust</i>	receptor)	nd pres 48 5 3 17 3 -11 21 50 -8 3 17 3 -11 21	57 8 3 17 3 -11 27 51 -4 3 17 3 -11 26	62 14 3 17 3 -11 26 51 -2 3 17 3 -11 27	50 27 3 -11 1 45 -4 3 17 3 -11 19	43 38 3 17 3 -11 -17 39 -6 3 17 3 -11 11	ng 50 40 3 17 3 -11 -12 44 -4 3 17 3 -11 18	51 33 3 17 3 -11 -4 48 -4 3 17 3 -11 22	40 31 3 17 3 -11 -13 46 -4 3 17 3 -11 20	L _A = L _A = L _A =	58 18 53 27	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r) FC -11 AHU01 FAI Lp(<i>Exhaust</i> Lw(exhaust)	ion due to screening n for sound power to sou on L1 rooftop gs iggs) e (TBC) adiated Lp(receptor) e	nd pres 48 5 3 17 3 -11 21 50 -8 3 17 3 -11 21 21 63	57 8 3 17 3 -11 27 51 -4 3 17 3 -11 26 56	62 14 3 17 3 -11 26 51 -2 3 17 3 -11 27 52	erical sp 50 27 3 17 3 -11 1 45 -4 3 17 3 -11 19 49	43 38 3 17 3 -11 -17 39 -6 3 17 3 -11 11	ng 50 40 3 17 3 -11 -12 44 44 -4 3 17 3 -11 18 57	51 33 3 17 3 -11 -4 48 -4 3 17 3 -11 22 60	40 31 3 17 3 -11 -13 46 -4 3 17 3 -11 20	$L_A =$ $L_A =$ $L_A =$ $L_A =$	58 18 53 27 66	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r) FC -11 AHU01 FAI Lp(<i>Exhaust</i> Lw(exhaust) DL	ion due to screening n for sound power to sou on L1 rooftop gs ggs) e (TBC) adiated Lp(receptor) e	nd pres 48 5 3 17 3 -11 21 50 -8 3 17 3 -11 21 63 -10	57 8 3 17 3 -11 27 51 -4 3 17 3 -11 26 56 -12	62 14 3 17 3 -11 26 51 -2 3 17 3 -11 27 52 -21	erical sp 50 27 3 17 3 -11 1 45 -4 3 17 3 -11 19 49 -26	oreadir 43 38 3 17 3 -11 -17 39 -6 3 17 3 -11 11 11 50 -29	ng 50 40 3 17 3 -11 -12 44 -4 3 17 3 -11 18 57 -21	51 33 3 17 3 -11 -4 48 -4 3 17 3 -11 22 60 -18	40 31 3 17 3 -11 -13 46 -4 3 17 3 -11 20 64 -17	L _A = L _A = L _A = L _A =	58 18 53 27 66	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding Lw(surrounding TL of enclosurd 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r) FC -11 AHU01 FAI Lp(<i>Exhaust</i> Lw(exhaust) DL 1 0log(Q)	ion due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC) adiated Lp(receptor) e	nd pres 48 5 3 17 3 -11 21 50 -8 3 17 3 -11 21 63 -10 0	57 8 3 17 3 -11 27 51 -4 3 17 3 -11 26 56 -12 0	62 14 3 17 3 -11 26 51 -2 3 17 3 -11 27 52 -21 0	erical sp 50 27 3 17 3 -11 1 45 -4 3 17 3 -11 19 49 -26 0	oreadir 43 38 3 17 3 -11 -17 39 -6 3 17 3 -11 11 11 50 -29 0	ng 50 40 3 17 3 -11 -12 44 -4 3 17 3 -11 18 57 -21 0	51 33 3 17 3 -11 -4 48 -4 3 17 3 -11 22 60 -18 0	40 31 3 17 3 -11 -13 46 -4 3 17 3 -11 20 64 -17 0	L _A = L _A = L _A = L _A =	58 18 53 27 66	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r) FC -11 AHU01 FAI Lp(<i>Exhaust</i> Lw(exhaust) DL 1 0log(Q) 7 20log(r)	ion due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC) adiated Lp(receptor) e receptor)	nd pres 48 5 3 17 3 -11 21 50 -8 3 17 3 -11 21 63 -10 0 17	57 8 3 17 3 -11 27 51 -4 3 17 3 -11 26 56 -12 0 17	nd sphe 62 14 3 17 3 -11 26 51 -2 3 17 3 -11 27 52 -21 0 17	erical sp 50 27 3 17 3 -11 1 45 -4 3 17 3 -11 19 -26 0 17	oreadir 43 38 3 17 3 -11 -17 39 -6 3 17 3 -11 11 11 50 -29 0 17	ng 50 40 3 17 3 -11 -12 44 -4 3 17 3 -11 18 57 -21 0 17	51 33 3 17 3 -11 -4 48 -4 3 17 3 -11 22 60 -18 0 17	40 31 3 17 3 -11 -13 46 -4 3 17 3 -11 20 64 -17 0 17	L _A = L _A = L _A = L _A =	58 18 53 27 66	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r) FC -11 AHU01 FAI Lp(<i>Exhaust</i> Lw(exhaust) DL 1 0log(Q) 7 20log(r) FC -11 AHU01 FAI Lp(<i>Exhaust</i> Lw(exhaust) DL	ion due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC) adiated Lp(receptor) e	nd pres 48 5 3 17 3 -11 21 50 -8 3 17 3 -11 21 63 -10 0 17 3 3	57 8 3 17 3 -11 27 51 -4 3 17 3 -11 26 56 -12 0 17 3 3	nd sphe 62 14 3 17 3 -11 26 51 -2 3 17 3 -11 27 52 -21 0 17 3 3	50 27 3 17 3 -11 1 45 -4 3 17 3 -11 19 49 -26 0 17 3 3	oreadir 43 38 3 17 3 -11 -17 39 -6 3 17 3 -11 11 11 50 -29 0 17 3 3	ng 50 40 3 17 3 -11 -12 44 -4 3 17 3 -11 18 57 -21 0 17 3 3	51 33 3 17 3 -11 -4 48 -4 3 17 3 -11 22 60 -18 0 17 3	40 31 3 17 3 -11 -13 46 -4 3 17 3 -11 20 64 -17 0 17 3 3	L _A = L _A = L _A = L _A =	58 18 53 27 66	
BA = Attenuati 11 = Correctio AHU01 - locati <i>To surrounding</i> Lw(surrounding Lw(surrounding TL of enclosure 2 10log(Q) 7 20log(r) FC -11 AHU01 Case ra <i>Fresh air intak</i> Lw(FAI) DL 2 10log(Q) 7 20log(r) FC -11 AHU01 FAI Lp(<i>Exhaust</i> Lw(exhaust) DL 1 10log(Q) 7 20log(r) FC -11 AHU01 FAI Lp(<i>Exhaust</i> Lw(exhaust) DL	ion due to screening n for sound power to sou on L1 rooftop gs igs) e (TBC) adiated Lp(receptor) e receptor)	nd pres 48 5 3 17 3 -11 21 50 -8 3 17 3 -11 21 63 -10 0 17 3 -11	ssure a 57 8 3 17 3 -11 27 51 -4 3 17 3 -11 26 56 -12 0 17 3 -11	62 14 3 17 3 -11 26 51 -2 3 17 3 -11 27 52 -21 0 17 3 -11	erical sp 50 27 3 17 3 -11 1 45 -4 3 17 3 -11 19 49 -26 0 17 3 -11	oreadir 43 38 3 17 3 -11 -17 39 -6 3 17 3 -11 11 50 -29 0 17 3 -11	bg 50 40 3 17 3 -11 -12 44 -4 3 17 3 -11 18 57 -21 0 17 3 -11	51 33 3 17 3 -11 -4 48 -4 3 17 3 -11 22 60 -18 0 17 3 -11	40 31 3 17 3 -11 -13 46 -4 3 17 3 -11 20 64 -17 0 17 3 -11	L _A = L _A = L _A = L _A =	58 18 53 27 66	

	AHU2 - location Basement											
	Fresh air intake											
	Lw(FAI)	61	53	52	33	33	33	33	33	L _A =	46	
	DL	-32	-21	-22	-48	-73	-49	-33	-31			
2	10log(Q)	3	3	3	3	3	3	3	3			
21	20log(r)	26	26	26	26	26	26	26	26			
	FC	3	3	3	3	3	3	3	3			
	-11	-11	-11	-11	-11	-11	-11	-11	-11			
	AHU02 FAI Lp(receptor)	-2	1	-2	-46	-71	-48	-32	-30	L_=	-9	
	Exhaust									~		
	Lw(exhaust)	64	59	58	48	33	33	41	39	L _A =	52	
	DL	-26	-15	-12	-29	-43	-22	-17	-17	~		
1	10log(Ω)	_0	-0	0		0		_,	0			
23	$20\log(\alpha)$	27	27	27	27	27	27	27	27			
23	FC	27	2,	27	27	27	27	2,	2,			
	-11	_11	_11	_11	_11	_11	_11	_11	_11			
	AHLIO2 Exhaust Ln(recentor)	-11	-11	10	-16	-45	-11	-11	-11	1.=	З	
	AHU2 - Basement plant room	5	5	10	-10	-40	-25	-11	-15	LA-	5	
	Fresh air intake											
		83	75	74	55	55	55	55	55	1 -	68	
		16	11	11	14	10	17	17	17	LA-	08	
2	10Las(0)	-10	-11	-11	-14	-10	-17	-17	-17			
2		3	3	3	3	3	3	3	3			
21		26	26	26	26	26	26	26	26			
	FL	3	3	3	3	3	3	3	3			
	-11	-11	-11	-11	-11	-11	-11	-11	-11		24	
	AHUU3 FAI Lp(receptor)	35	33	31	9	6	6	6	6	L _A =	24	
	Exhaust	67	62	64	54	26	26		42			
	Lw(exhaust)	67	62	61	51	36	36	44	42	L _A =	55	
	DL	-16	-11	-11	-14	-18	-17	-17	-17			
1	10log(Q)	0	0	0	0	0	0	0	0			
23	20log(r)	27	27	27	27	27	27	27	27			
	FC	3	3	3	3	3	3	3	3			
	-11	-11	-11	-11	-11	-11	-11	-11	-11			
	AHU03 Exhaust Lp(receptor)	16	16	14	1	-17	-17	-9	-10	L _A =	8	
	AHU4 - GF Storeroom											
	Fresh air intake											
	Lw(FAI)	74	66	65	46	46	46	46	46	L _A =	59	
	DL	-19	-11	-8	-17	-26	-13	-10	-10			
2 21	10log(Q)	3	3	3	3	3	3	3	3			
	20log(r)	26	26	26	26	26	26	26	26			
	FC	3	3	3	3	3	3	3	3			
	-11	-11	-11	-11	-11	-11	-11	-11	-11			
	AHU04 FAI Lp(receptor)	24	24	25	-3	-11	1	4	4	L _A =	18	
	Exhaust											
1 23	Lw(exhaust)	60	55	54	44	29	29	37	35	L _A =	48	
	DL	-18	-13	-12	-11	-12	-11	-11	-11			
	10log(Q)	0	0	0	0	0	0	0	0			
	20log(r)	27	27	27	27	27	27	27	27			
	FC	3	3	3	3	3	3	3	3			
	-11	-11	-11	-11	-11	-11	-11	-11	-11			
	AHU04 Exhaust Lp(receptor)	6	7	7	-2	-18	-17	-9	-11	L _A =	2	

	Kitchen Supply fan											
	Fresh air intake											
	Lw(FAI)	60	70	61	61	52	51	49	47	L _A =	62	
	DL	-25	-14	-10	-15	-21	-14	-14	-14			
2	10log(Q)	3	3	3	3	3	3	3	3			
21	$20\log(\alpha)$	26	26	26	26	26	26	26	26			
21	FC	20	20	20	20	20	20	20	20			
	11	11	11	11	11	11	11	11	11			
	SER 1 EALL n/recentor)	-11	-11	-11 10	-11 1/	-11	-11	-11	-11	1 -	16	
	SFB.1 FAI LP(Teceptor)	4	24	19	14	0	5	5	1	LA-	10	
	Exnaust	0.4		70	70	62	C 1	50	45		70	
	Lw(exhaust)	84	//	79	70	63	61	53	45	L _A =	73	
	DL	-11	-17	-22	-35	-29	-21	-18	-16			
2	10log(Q)	3	3	3	3	3	3	3	3			
27	20log(r)	29	29	29	29	29	29	29	29			
	FC	3	3	3	3	3	3	3	3			
	-11	-11	-11	-11	-11	-11	-11	-11	-11			
	EF2.1 Exhaust Lp(receptor)	38	26	23	1	0	6	1	-5	L _A =	18	
	Surroundings											
	Lw(surroundings)	59	53	60	51	55	49	48	45	L _A =	58	
2	10log(Q)	3	3	3	3	3	3	3	3			
27	20log(r)	29	29	29	29	29	29	29	29			
	FC	3	3	3	3	3	3	3	3			
	-11	-11	-11	-11	-11	-11	-11	-11	-11			
	EF2.1 Case Lp(receptor)	25	19	26	17	21	15	14	11	L _A =	25	
	FFO 1									A		
	Discharae											
	Lw(discharge)	0	64	56	53	52	49	42	34	L.=	57	
		_19	_12	_12	-12	_14	-12	-12	_12	LA-	57	
h	10lag(0)	-10	-12	-12	-12	-14	-12	-12	-12			
2		3	3	3	3	3	3	3	3			
21	20log(r)	26	26	26	26	26	26	26	26			
	FC	3	3	3	3	3	3	3	3			
	-11	-11	-11	-11	-11	-11	-11	-11	-11			
	EF0.1 Exhaust Lp(receptor)	-50	20	13	9	7	4	-2	-10	L _A =	13	
	Chiller											
	Lw(unit)	82	78	73	69	67	64	58	53	L _A =	72	
	Enclosure	5	8	14	27	38	40	33	31			
2	10log(Q)	3	3	3	3	3	3	3	3			
10	20log(r)	20	20	20	20	20	20	20	20			
	FC	3	3	3	3	3	3	3	3			
	-11	-11	-11	-11	-11	-11	-11	-11	-11			
	Chiller Lp(receptor)	52	45	34	17	4	-1	0	-3	L _A =	31	
	Summary of levels											
	AHU01 Case radiated Lp(receptor)	21	27	26	1	-17	-12	-4	-13	L _A =	18	
	AHU01 FAI Lp(receptor)	21	26	27	19	11	18	22	20	L _A =	27	
	AHU01 Exhaust Lp(receptor)	29	19	6	-2	-4	11	17	22	L _A =	23	
	AHU03 FAI Lp(receptor)	35	33	31	9	6	6	6	6	$L_{A} =$	24	
	AHU03 Exhaust Lp(receptor)	16	16	14	1	-17	-17	-9	-10	L _A =	8	
	AHU04 FAI Lp(receptor)	24	24	25	-3	-11	1	4	4	L^=	18	
	AHU04 Exhaust I p(receptor)	6	7	-5	-2	-18	-17	_9	-11	- <u>A</u>	2	
	SEB 1 FALL n(recentor)	4	24	10	14	10	5	2	1		16	
	EE2 1 Exhaust I n(recentor)	20	24	22	1	0	5	1	-5		19	
	EF2 1 Case In(recentor)	25	10	25	17	21	15	1/	11		25	
	EEO 1 Exhaust I n(recenter)	23 E0	20	12	1/	7	15	14	10		12	
	Chiller L n(recenter)	-50	20	13	17		4	-2	-10		21	
		52	45	34	1/	4	-1	0	-3		31	
	Total Lp(receptor)	52	45	3/	23	22	21	24	25	L _A =	35	