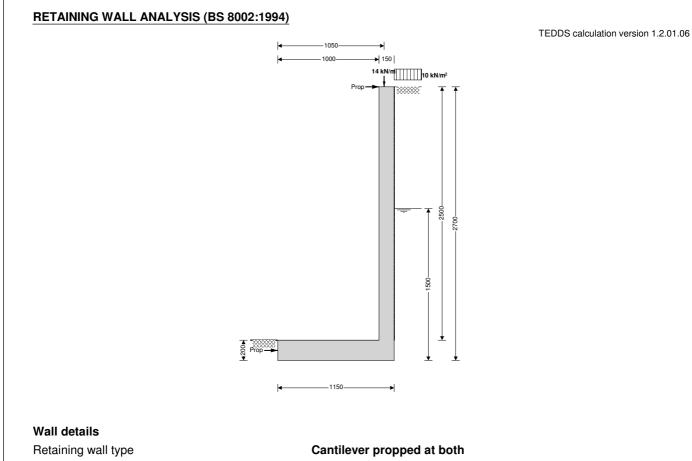
APPENDIX E


STRUCTURAL CALCULATIONS

Project Project No Sheet No PALE 180447 56 AARTNOUTH 11Sbee Consulting Structural Engineers ROAD. Date Revision London • Cambridge • Norwich Title 1-5 Offord St London N1 1DH OCT B. Telephone 020 7700 6666 Acutans www.conisbee.co.uk Engineer Checked Fal PLANNING. HH Rev Date Description 56 DARTMONTH PARK ROMAN. mosucia These colorlations cares the main permanent and tearparany water alemants necessary to fam a basement indu the funt I diving som of this double pointed propety extending the present collar wear & lavering the floar to prince better Least orn The inertigations fand previous indeptining to the front & hand walls to the property ! affectively 'fing the same walls'. If the news cancele calid act as retering hads an checked : more not able to take the perment londing - Jone Surprise as it is likely the present cellare walls are tumer had any. However, a new C.C. setung smahre, propped by the basedless & new ground read in designed. Electrone, the aciting birch walls are to be rade good, (lined if necessary) & underprinted to pourlo The necessary dapter & a setter gread har privers a here are sme signed of maneneart where cones are patiendary high.

Project Project No Sheet No DNISDEE Consulting Structural Engineers Consulting Civil Engineers 180447 56 O. Pk Rel Revision London • Cambridge • Norwich Title 1-5 Offord St London N1 1DH celcs intro Telephone 020 7700 6666 ww.conisbee.co.ul Engineer Checked callme MH Rev Date Description All The celestering will be to The relations British Standards & Reglehons, taking its accent the infanction porceasing the I & incotigation on the existing meeting Preliminary design to the going fear has seen indestaken, havene as the filmed arangement is to eichere interes althrations which have not get seen confirmed, this are necessarily not approached in detail, and will be induded i tender & detailed design dace the upper arrangements are frizen. Unet follows is : (onduring down of typical wall (estrund) check a existing malesprany. New (propped) is retaining wall dustyn. derige of whating beans given the prepping force from above · revise of diagonal poops given locking from above. All phase temperary water will be by the Canobee 4 en Wallor, sabatted Relating 10 felificanten Cannon for dielting. 10-s(He-)MISRAF

	Project				Job no.	
	56 Dartmouth Park Road)447
Conisbee	Calcs for	_			Start page no./Re	evision
1-5 Offord Street		Basement r	etaining wall			1
London N1 1DH	Calcs by HH	Calcs date 13/11/2018	Checked by	Checked date	Approved by	Approved date

Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall

Retained material details

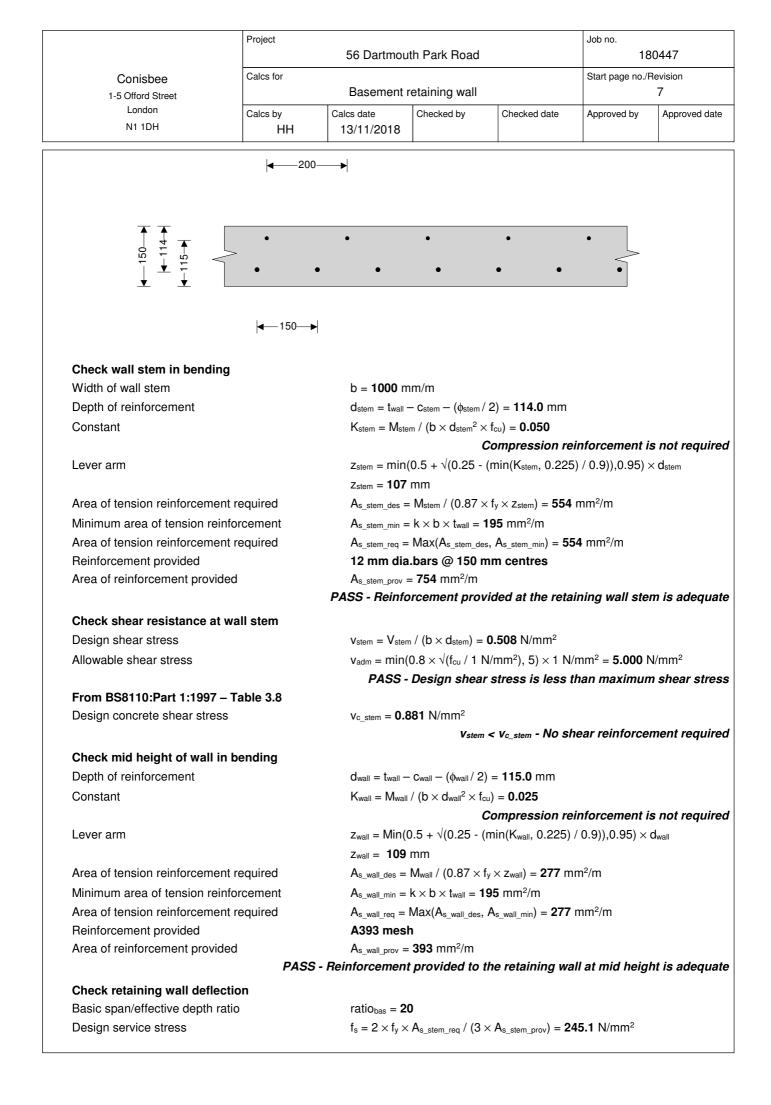
Mobilisation factor Moist density of retained material

h_{stem} = **2500** mm twall = 150 mm I_{toe} = **1000** mm $I_{heel} = 0 \text{ mm}$ $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 1150 \text{ mm}$ t_{base} = **200** mm $d_{ds} = \mathbf{0} mm$ lds = **700** mm t_{ds} = **200** mm $h_{wall} = h_{stem} + t_{base} + d_{ds} = 2700 \text{ mm}$ $d_{cover} = 0 mm$ $d_{exc} = 0 \text{ mm}$ h_{water} = **1500** mm $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 1300 mm$ $\gamma_{wall} = 23.6 \text{ kN/m}^3$ γ_{base} = 23.6 kN/m³ $\alpha = 90.0 \text{ deg}$ $\beta = 0.0 \text{ deg}$ $h_{\text{eff}} = h_{\text{wall}} + I_{\text{heel}} \times tan(\beta) = 2700 \text{ mm}$

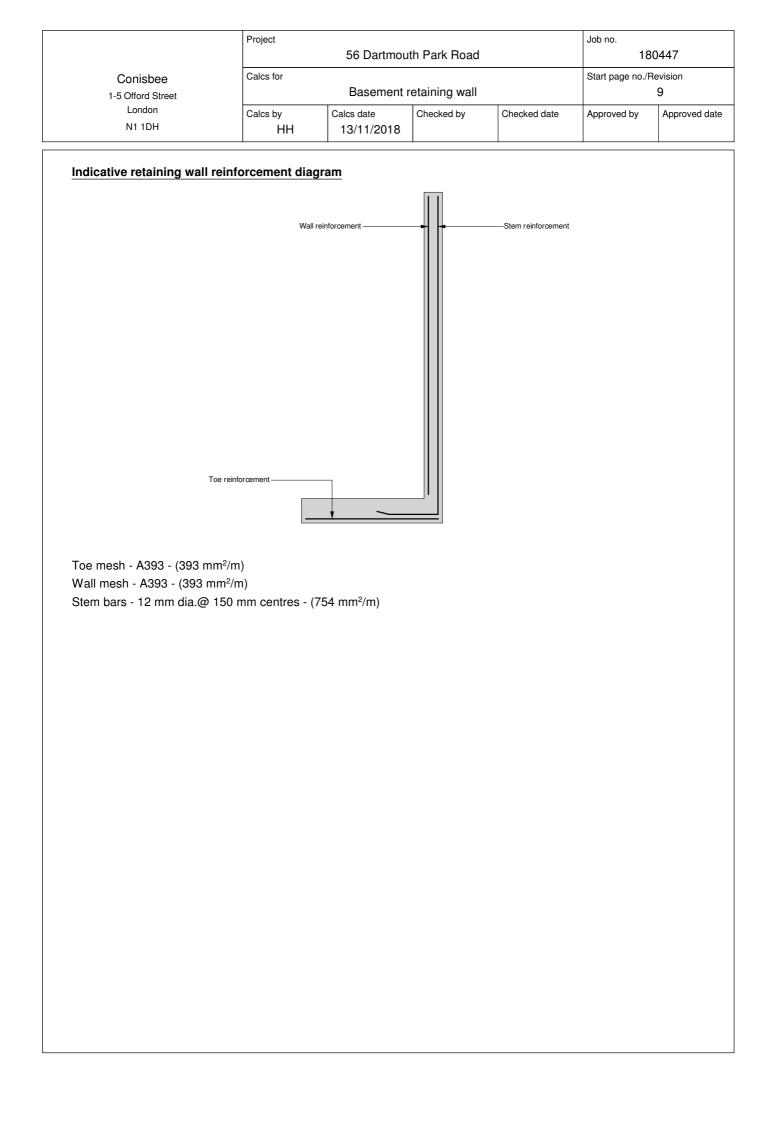
M = **1.5** γ_m = **18.0** kN/m³

	Project				Job no.	
		56 Dartmou	th Park Road			30447
Conisbee	Calcs for				Start page no./F	Revision
1-5 Offord Street		Basement r	etaining wall			2
London N1 1DH	Calcs by HH	Calcs date 13/11/2018	Checked by	Checked date	Approved by	Approved da
Saturated density of retaine	ed material	γ _s = 21.0 ki				
Design shear strength		φ' = 24.2 de	-			
Angle of wall friction		$\delta = 18.6 \text{ de}$	g			
Base material details						
Moist density		γ _{mb} = 18.0	⟨N/m³			
Design shear strength		φ' _b = 24.2 d				
Design base friction		$\delta_b = $ 18.6 d	-			
Allowable bearing pressure		Pbearing = 15	0 kN/m²			
Using Coulomb theory Active pressure coefficient	for retained materi	al				
Ka = s	$in(\alpha + \phi')^2 / (sin(\alpha))$	$^{2} \times sin(\alpha - \delta) \times [1 +]$	$\sqrt{(\sin(\phi' + \delta))}$	< sin(φ' - β) / (sin($(\alpha - \delta) imes \sin(\alpha + \delta)$	$(\beta)))]^{2}) = 0.3$
Passive pressure coefficier	it for base materia	l				
	K _p = sir	(90 - φ' _b)² / (sin(90	$(1 - \delta_b) \times [1 - \sqrt{s}]$	$\sin(\phi_{b} + \delta_{b}) \times \sin(\phi_{b})$	φ' _b) / (sin(90 +	$\delta_{b})))]^{2}) = 4.7$
At-rest pressure						
At-rest pressure for retained	d material	$K_0 = 1 - sir$	n(φ') = 0.590			
Loading details						
Surcharge load on plan		Surcharge	= 10.0 kN/m ²			
Applied vertical dead load of	on wall	$W_{dead} = 11.$	5 kN/m			
Applied vertical live load on		W _{live} = 2.6				
Position of applied vertical		l _{load} = 1050				
Applied horizontal dead loa Applied horizontal live load		F _{dead} = 0.0 F _{live} = 0.0 k				
Height of applied horizontal		$h_{\text{load}} = 0.0 \text{ K}$				
reight of applied holizontal		14				
		Prop				
	14.3 Prop		3.5 7.6	5.9 14.7		
				Loads shov	vn in kN/m, pressu	res shown in kl
Vertical forces on wall						

	Project	56 Dartmou	th Park Road		Job no. 18	80447		
Conisbee	Calcs for				Start page no./	Revision		
1-5 Offord Street		Basement r		3				
London N1 1DH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved da		
	HH	13/11/2018						
Wall base		$w_{\text{base}} = I_{\text{base}}$	$ imes t_{base} imes \gamma_{base}$	= 5.4 kN/m				
Applied vertical load		$W_v = W_{dead}$	+ Wlive = 14.1	kN/m				
Total vertical load		$W_{total} = W_{wa}$	$H + W_{base} + W_v$	= 28.4 kN/m				
Horizontal forces on wall								
Surcharge		$F_{sur} = K_a \times K_a$	$\cos(90 - \alpha + \delta)$	$) imes$ Surcharge \times h _e	eff = 9.4 kN/m			
Moist backfill above water tab	le	$F_{m_a} = 0.5$	\times K _a \times cos(90	- α + δ) $ imes$ γ_{m} $ imes$ (h _{eff}	$(-h_{water})^2 = 4.5$	5 kN/m		
Moist backfill below water tab	le	$F_{m_b} = K_a \times$	cos(90 - α + 6	$\delta) imes \gamma_{m} imes (h_{eff}$ - h_{wat}	$_{er}) \times h_{water} = 1$	1.3 kN/m		
Saturated backfill		$F_s = 0.5 \times k$	$X_a imes \cos(90 - \alpha)$	$(\chi + \delta) \times (\gamma_{s} - \gamma_{water}) >$	$ h_{water}^2 = 4.4$	kN/m		
Water		$F_{water} = 0.5$	$F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 11 \text{ kN/m}$					
Total horizontal load		$F_{total} = F_{sur}$	$F_{\text{total}} = F_{\text{sur}} + F_{\text{m}_a} + F_{\text{m}_b} + F_{\text{s}} + F_{\text{water}} = 40.8 \text{ kN/m}$					
Calculate total propping for	ce							
Passive resistance of soil in fi	ront of wall	$F_p = 0.5 \times H$	$K_{ m p} imes \cos(\delta_{ m b}) imes$	$(d_{cover} + t_{base} + d_{ds})$	- $d_{exc})^2 imes \gamma_{mb}$ =	= 1.4 kN/m		
Propping force	Propping force		(F _{total} - F _p - (W	V_{total} - W _{live}) × tan(δ	ь), 0 kN/m)			
		F _{prop} = 30.7	′ kN/m					
Overturning moments								
Surcharge		M _{sur} = F _{sur} >	$<$ (h _{eff} - 2 \times d _{ds}	s) / 2 = 12.8 kNm/r	n			
Moist backfill above water tab	le	$M_{m_a} = F_{m_a}$	$h_{a} \times (h_{eff} + 2 \times h)$	Nwater - $3 \times d_{ds}$) / $3 =$	= 8.6 kNm/m			
Moist backfill below water tab	le	$M_{m_b} = F_{m_b}$	$_{ m b} imes$ (h _{water} - 2 $ imes$	$d_{ds}) / 2 = 8.5 \text{ kNm}$	ı/m			
Saturated backfill		$M_s = F_s \times (H_s)$	n_{water} - $3 imes d_{ds}$)	/ 3 = 2.2 kNm/m				
Water		$M_{water} = F_{water}$	$_{ter} imes (h_{water} - 3)$	× d _{ds}) / 3 = 5.5 kN	m/m			
Total overturning moment		$M_{ot} = M_{sur} +$	- M _{m_a} + M _{m_b}	+ M _s + M _{water} = 37 .	6 kNm/m			
Restoring moments								
Wall stem		$M_{wall} = W_{wall}$	imes (I _{toe} + t _{wall} / 2	2) = 9.5 kNm/m				
Wall base		$M_{base} = W_{bas}$	$_{se} \times I_{base} / 2 = 3$	3.1 kNm/m				
Design vertical dead load		$M_{dead} = W_{dead}$	$_{ead} \times I_{load} = 12.$	1 kNm/m				
Total restoring moment		$M_{rest} = M_{wall}$	+ Mbase + Mde	_{ad} = 24.7 kNm/m				
Check bearing pressure								
Total vertical reaction		$R = W_{total} =$	28.4 kN/m					
Distance to reaction		$x_{bar} = I_{base} /$	2 = 575 mm					
Eccentricity of reaction		$e = abs((I_{ba}$	$(x_{se} / 2) - x_{bar}) =$					
			=	Reaction acts		e third of ba		
Bearing pressure at toe				e / I _{base} ²) = 24.7 k				
Bearing pressure at heel	_			$\times e / I_{base^2} = 24.7$				
	P	ASS - Maximum b	earing press	ure is less than a	allowable bea	aring pressu		
Calculate propping forces to	o top and base	of wall						
Propping force to top of wall								


Propping force to base of wall

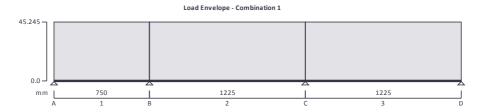
$$\label{eq:Fprop_top} \begin{split} F_{prop_top} &= \left(M_{ot} - M_{rest} + R \times I_{base} \slasse \s$$

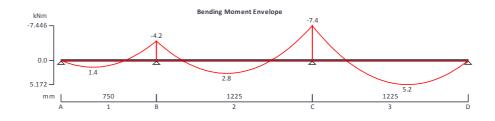

	Project	56 Dartmou	th Park Road		Job no. 18	80447	
Conisbee	Calcs for				Start page no./I	Revision	
1-5 Offord Street		Basement	retaining wall			4	
London N1 1DH	Calcs by HH	Calcs date 13/11/2018	Checked by	Checked date	Approved by	Approved	
RETAINING WALL DESIG	N (BS 8002:1994)	<u> </u>				
Ultimate limit state load f	actors				TEDDS calculatio	n version 1.2.	
Dead load factor		$\gamma_{f_d} = 1.4$					
Live load factor		$\gamma_{f} = 1.6$					
Earth and water pressure fa	actor	γ _{f_e} = 1.4					
Factored vertical forces of	on wall						
Wall stem		Wwall f = Yf d	\times h _{stem} \times t _{wall} \times	γ _{wall} = 12.4 kN/r	n		
Wall base				$\times \gamma_{\text{base}} = 7.6 \text{ kN/r}$			
Applied vertical load				W _{live} = 20.3 kN/r			
Total vertical load			•-	$W_{v_f} = 40.2 \text{ kN/n}$			
Factored horizontal at-res	st forces on wall	_	-				
Surcharge		$F_{sur f} = \gamma_{f}$	< K₀ × Surchar	ge × h _{eff} = 25.5 k	N/m		
Moist backfill above water t	able			$m \times (h_{eff} - h_{water})^2$:			
Moist backfill below water t	$F_{m_b_f} = \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 26.8 \text{ kN/m}$						
Saturated backfill			• •	γ_{water} × h_{water}^2 =			
Water				$^{2} \times \gamma_{\text{water}} = 15.5 \text{ k}$			
Total horizontal load				$m_b_f + F_{s_f} + F_{wate}$			
Calculate total propping f	force						
Passive resistance of soil in		F _{p f} = γ _{fe} ×	$0.5 \times K_p \times cos$	$\mathbf{S}(\delta_{b}) imes (d_{cover} + t_{ball})$	ase + dds - dexc) ²	$\times \gamma_{mb} = 2 \mathbf{k}$	
Propping force		· ·		·(W _{total f} - γ _{f I} × W	-	-	
		F _{prop_f} = 74	· _ ·=	· - ·-	, , ,,,	,	
Factored overturning mo	ments						
Surcharge		M _{sur f} = F _{su}	$_{\rm f} \times ({\rm h}_{\rm eff} - 2 \times$	d _{ds}) / 2 = 34.4 kN	lm/m		
Moist backfill above water t	able	M _{m a f} = F _m	 f × (h _{eff} + 2 >	× h_{water} - 3 × d_{ds}) /	′ 3 = 20.3 kNm/	'n	
Moist backfill below water t	able			2×d _{ds}) / 2 = 20.1			
Saturated backfill		$M_{s_f} = F_{s_f}$	\times (h _{water} - 3 \times d	ds) / 3 = 5.2 kNm/	/m		
Water		$M_{water_f} = F_{v}$	water_f \times (hwater -	3 × d _{ds}) / 3 = 7.7	kNm/m		
Total overturning moment		$M_{ot_f} = M_{sur}$	_f + Mm_a_f + M	m_b_f + Ms_f + Mwa	_{ter_f} = 87.8 kNm	/m	
Restoring moments							
Wall stem		$M_{wall_f} = w_w$	$_{all_f} imes (I_{toe} + t_{wall})$	/ 2) = 13.3 kNm/	m		
Wall base			$_{\rm base_f} imes I_{\rm base} / 2$				
Design vertical load		$M_{v_f} = W_{v_f}$	\times I _{load} = 21.3 k	Nm/m			
Total restoring moment		$M_{rest_f} = M_w$	all_f + Mbase_f +	M _{v_f} = 39 kNm/m			
Factored bearing pressur	e						
Total vertical reaction		$R_{f} = W_{total_{f}}$	= 40.2 kN/m				
Distance to reaction		$x_{bar_f} = I_{base}$	/ 2 = 575 mm				
Eccentricity of reaction		$e_f = abs((I_b$	_{ase} / 2) - x _{bar_f})				
					within middle	e third of l	
Bearing pressure at toe		• •		$\times e_f / l_{base^2} = 35$			
Bearing pressure at heel				$R_f \times e_f / l_{base}^2 = 3$			
Rate of change of base rea	action	$rate = (p_{toe})$	_f - p _{heel_f}) / I _{base}	e = 0.00 kN/m²/m			
Bearing pressure at stem /	taa	~	mov/n /	ate \times I _{toe}), 0 kN/m	2) 9 E L/NI/2		

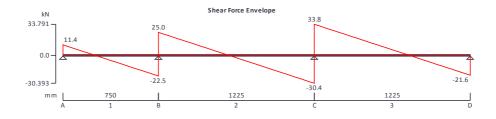
	Project	56 Dartmou	th Park Road		180447				
Conisbee	Calcs for				Start page no./	Revision			
1-5 Offord Street		Basement	retaining wall			5			
London N1 1DH	Calcs by HH	Calcs date 13/11/2018	Checked by	Checked date	Approved by	Approved			
Bearing pressure at stem / heel		p _{stem_heel_f} =	max(p _{toe_f} - (ra	ate × ($I_{toe} + t_{wall}$)),	0 kN/m²) = 35	kN/m²			
Calculate propping forces to t Propping force to top of wall	op and base	e of wall							
	F _{prop_top_f} :	= (M _{ot_f} - M _{rest_f} + R	$_{\rm f} imes {\sf I}_{\rm base}$ / 2 - ${\sf F}_{\rm pr}$	$_{rop_f} imes t_{base}$ / 2) / (h	n _{stem} + t _{base} / 2)	= 24.796			
Propping force to base of wall		F _{prop_base_f} =	= F _{prop_f} - F _{prop_t}	_{top_f} = 49.873 kN/	m				
Design of reinforced concrete	e retaining wa	all toe (BS 8002:1	994)						
Material properties		3	<u> </u>						
Characteristic strength of concre	ete	f _{cu} = 40 N/r	nm²						
Characteristic strength of reinfor		f _y = 500 N/	mm²						
Base details		-							
Minimum area of reinforcement		k = 0.13 %							
Cover to reinforcement in toe		$c_{\text{toe}} = 30 \text{ mm}$							
Calculate shear for toe desigr	ı								
Shear from bearing pressure	-	$V_{\text{toe bear}} = 0$	Otoe f + Dstem toe	_f) × I _{toe} / 2 = 35 k	N/m				
Shear from weight of base				$toe \times tbase = 6.6 \text{ kN}$					
Total shear for toe design			pear - V _{toe_wt_base}						
Calculate moment for toe des	ian								
Moment from bearing pressure	ign	Mtoo boor - ($2 \times n_{too} + n_{oto}$	m_mid_f) $ imes$ (Itoe + twa	u / 2) ² / 6 – 20	2 kNm/m			
Moment from weight of base				$t_{base} \times (I_{toe} + t_{wall})$					
Total moment for toe design				_{se} = 16.4 kNm/m	2) / 2) = 0.0				
- 200					\sim				
	•	•	•	•	•				
		- 1							
	◄ —200)▶							
Check toe in bending			,						
		b = 1000 m	ım/m						
Width of toe					$d_{toe} = t_{base} - c_{toe} - (\phi_{toe} / 2) = 165.0 \text{ mm}$				
Depth of reinforcement			- c _{toe} - (φ _{toe} / 2)						
			$- c_{toe} - (\phi_{toe} / 2)$ / (b × d _{toe} ² × f _{cu}) = 0.015					
Depth of reinforcement Constant		$K_{toe} = M_{toe}$	$-c_{toe} - (\phi_{toe} / 2)$ / (b × d _{toe} ² × f _{cu}) = 0.015 Compression re		-			
Depth of reinforcement		$K_{toe} = M_{toe}$	$-c_{toe} - (\phi_{toe} / 2)$ / (b × d_{toe} ² × f _{cu}) 0.5 + $\sqrt{(0.25 - (0.25))}$) = 0.015		-			
Depth of reinforcement Constant Lever arm	aquired	$K_{toe} = M_{toe}$ $z_{toe} = min(C_{toe} = 157 r_{toe})$	$-c_{toe} - (φ_{toe} / 2)$ / (b × d _{toe} ² × f _{cu}) 0.5 + √(0.25 - (nm	.) = 0.015 <i>Compression re</i> min(K _{toe} , 0.225) /	′ 0.9)),0.95) × 0	-			
Depth of reinforcement Constant Lever arm Area of tension reinforcement re		$K_{toe} = M_{toe}$ $z_{toe} = min(t)$ $z_{toe} = 157 r$ $A_{s_toe_des} = 1000 r$	$-c_{toe} - (\phi_{toe} / 2)$ / (b × d_{toe} ² × f _{cu}) 0.5 + $\sqrt{(0.25 - (0.87 \times f_{toe})^2)}$) = 0.015 <i>Compression re</i> min(K _{toe} , 0.225) / _y × z _{toe}) = 241 mr	′ 0.9)),0.95) × 0	-			
Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor	cement	$K_{toe} = M_{toe} + M_{t$	$\begin{aligned} &-c_{toe} - (\phi_{toe} / 2) \\ &/ (b \times d_{toe}^2 \times f_{cu}) \\ &0.5 + \sqrt{(0.25 - (mmm_{toe} / (0.87 \times f_{base} - 10^{-1})))} \\ &M_{toe} / (0.87 \times f_{base} - 10^{-1}) \\ &k \times b \times t_{base} = 1 \end{aligned}$.) = 0.015 <i>Compression re</i> min(K _{toe} , 0.225) / _y × z _{toe}) = 241 mr 260 mm ² /m	′′ 0.9)),0.95) × c n²/m	-			
Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re	cement	$K_{toe} = M_{toe} ,$ $z_{toe} = min(0)$ $z_{toe} = 157 r$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{(0.25 - (mmmm))}$ $M_{toe} / (0.87 \times f_{base} = 2)$ $Max(A_{s_toe_des}, -1)$) = 0.015 <i>Compression re</i> min(K _{toe} , 0.225) / _y × z _{toe}) = 241 mr	′′ 0.9)),0.95) × c n²/m	-			
Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided	cement	$K_{toe} = M_{toe} A_{toe}$ $z_{toe} = min(0)$ $z_{toe} = 157 m$ $A_{s_toe_des} = A_{s_toe_min} = A_{s_toe_req} = 0$ $A393 mes$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{(0.25 - (mmmm))}$ $M_{toe} / (0.87 \times f_{toe})$ $k \times b \times t_{base} = 2$ $Max(A_{s_toe_des}, h)$.) = 0.015 <i>Compression re</i> min(K _{toe} , 0.225) / _y × z _{toe}) = 241 mr 260 mm ² /m	′′ 0.9)),0.95) × c n²/m	-			
Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re	cement	$K_{toe} = M_{toe} + K_{toe} = M_{toe} + K_{toe} = M_{toe} + M_{toe} + M_{toe} = M_{s_toe_des} = M_{s_toe_min} = M_{s_toe_req} = M_{393} - M_{s_toe_prov} = M_{s_toe_prov} = M_{s_toe_prov} = M_{s_toe_prov} = M_{toe} + M_{toe} $	$\begin{aligned} &-c_{toe} - (\phi_{toe} / 2) \\ &/ (b \times d_{toe}^2 \times f_{cu}) \\ &/ (b \times d_{toe}^2 \times f_{cu}) \\ &/ (0.25 - (mm)) \\ &M_{toe} / (0.87 \times f_{toe}) \\ &M_{toe} / (0.87 \times f_{toe}) \\ &K \times b \times t_{base} = 2 \\ &Max(A_{s_toe_des}, h) \\ &393 \ mm^2/m \end{aligned}$.) = 0.015 <i>Compression re</i> min(K _{toe} , 0.225) / _y × z _{toe}) = 241 mr 260 mm ² /m	′ 0.9)),0.95) × c n²/m nm²/m	ltoe			
Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided Area of reinforcement provided	cement equired	$K_{toe} = M_{toe} + K_{toe} = M_{toe} + K_{toe} = M_{toe} + M_{toe} + M_{toe} = M_{s_toe_des} = M_{s_toe_min} = M_{s_toe_req} = M_{393} - M_{s_toe_prov} = M_{s_toe_prov} = M_{s_toe_prov} = M_{s_toe_prov} = M_{toe} + M_{toe} $	$\begin{aligned} &-c_{toe} - (\phi_{toe} / 2) \\ &/ (b \times d_{toe}^2 \times f_{cu}) \\ &/ (b \times d_{toe}^2 \times f_{cu}) \\ &/ (0.25 - (mm)) \\ &M_{toe} / (0.87 \times f_{toe}) \\ &M_{toe} / (0.87 \times f_{toe}) \\ &K \times b \times t_{base} = 2 \\ &Max(A_{s_toe_des}, h) \\ &393 \ mm^2/m \end{aligned}$) = 0.015 <i>Compression re</i> min(K _{toe} , 0.225) / _y × z _{toe}) = 241 mr 260 mm ² /m A _{s_toe_min}) = 260 r	′ 0.9)),0.95) × c n²/m nm²/m	ltoe			
Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided Area of reinforcement provided Check shear resistance at toe	cement equired	$K_{toe} = M_{toe} \ ,$ $z_{toe} = min(($ $z_{toe} = 157 \text{ r}$ $A_{s_toe_des} =$ $A_{s_toe_min} =$ $A_{s_toe_req} =$ $A393 \text{ mes}$ $A_{s_toe_prov} =$ $PASS - Rein$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{(0.25 - (mm))}$ $M_{toe} / (0.87 \times f_{cu})$ $k \times b \times t_{base} = 2$ $Max(A_{s_toe_des}, h)$ $393 mm^2/m$	$) = 0.015 Compression re min(Ktoe, 0.225) / y × ztoe) = 241 mr260 mm2/m As_toe_min) = 260 r rovided at the re$	′ 0.9)),0.95) × c n²/m nm²/m	ltoe			
Depth of reinforcement Constant Lever arm Area of tension reinforcement re Minimum area of tension reinfor Area of tension reinforcement re Reinforcement provided Area of reinforcement provided	cement equired	$K_{toe} = M_{toe} \ A_{toe} = min(0)$ $z_{toe} = 157 \text{ m}$ $A_{s_toe_min} = A_{s_toe_min} = A_{s_toe_req} = A_{s_toe_prov} = BASS - Rein$ $v_{toe} = V_{toe} \ A_{toe} \ A_{toe} = V_{toe} \ A_{toe} \ A_{toe} = V_{toe} \ A_{toe} \ A_{t$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{(0.25 - (mm))}$ $M_{toe} / (0.87 \times f_{cu})$ $k \times b \times t_{base} = 2$ $Max(A_{s_toe_des}, h)$ $393 mm^2/m$ $n forcement pr$ $(b \times d_{toe}) = 0.1$	$) = 0.015 Compression re min(Ktoe, 0.225) / y × ztoe) = 241 mr260 mm2/m As_toe_min) = 260 r rovided at the re$	′ 0.9)),0.95) × o n²/m nm²/m taining wall to	d _{toe}			

		56 Dartmou	th Park Road		18	80447	
Conisbee 1-5 Offord Street	Calcs for	Basement	retaining wall		Start page no./F	Revision 6	
London N1 1DH	Calcs by HH	Calcs date 13/11/2018	Checked by	Checked date	Approved by	Approved of	
		13/11/2010					
		PASS -	Design shea	r stress is less t	than maximun	n shear str	
From BS8110:Part 1:1997 Design concrete shear stre		Vc toe = 0.5	72 N/mm ²				
				oe < Vc_toe - No sl	hear reinforce	ment requ	
Design of reinforced con	crete retaining wa	all stem (BS 8002	:1994)				
Material properties	.	ς	<u>,</u>				
Characteristic strength of c	concrete	f _{cu} = 40 N/r	nm²				
Characteristic strength of r	einforcement	$f_y = 500 \text{ N/m}$	mm²				
Wall details							
Minimum area of reinforce	ment	k = 0.13 %					
Cover to reinforcement in s	stem	c _{stem} = 30 n					
Cover to reinforcement in v	wall	$c_{wall} = 30 \text{ m}$	m				
Factored horizontal at-re	st forces on stem	l					
Surcharge		$F_{s_sur_f} = \gamma_{f_}$	$\times K_0 \times Surcha$	$arge imes (h_{eff} - t_{base})$	- d _{ds}) = 23.6 kN	l/m	
Moist backfill above water	table	$F_{s_m_a_f} = 0$	$.5 imes \gamma_{f_e} imes K_0 imes$	$\gamma_{m} imes$ (h _{eff} - t _{base} -	$d_{ds} - h_{sat})^2 = 10$.7 kN/m	
Moist backfill below water	table	$F_{s_m_b_f} = \gamma_f$	$_{e} \times K_{0} \times \gamma_{m} \times 0$	(h _{eff} - t _{base} - d _{ds} - h	l _{sat}) × h _{sat} = 23.	2 kN/m	
Saturated backfill		$F_{s_s_f} = 0.5$	$ imes \gamma_{f_e} imes K_0 imes (\gamma$	$\gamma_{s} - \gamma_{water}) \times h_{sat}^2 = 1$	7.8 kN/m		
Water		$F_{s_water_f} = 0$	$0.5 imes\gamma_{f_e} imes\gamma_{wate}$	er × h _{sat} ² = 11.6 kN	N/m		
Calculate shear for stem	design						
Surcharge		$V_{s_sur_f} = 5$	$\times F_{s_sur_f} / 8 = 7$	14.8 kN/m			
Moist backfill above water	table	$V_{s_m_a_f} = F$	$s_m_a_f \times b_I \times (($	$5 imes L^2$) - bi ²) / (5 >	< L ³) = 4.7 kN/n	n	
Moist backfill below water	table	$V_{s_m_b_f} = F$	s_m_b_f × (8 - (r	¹ ² ×(4 - n))) / 8 =	20.3 kN/m		
Saturated backfill		$V_{s_s_f} = F_{s_s}$	$s_f \times (1 - (a_l^2 \times$	((5 × L) - a _l) / (20	× L³))) = 7.3 kľ	N/m	
Water			`	$(al^2 \times ((5 \times L) - al))$			
Total shear for stem design	n	$V_{stem} = V_{s_s}$	ur_f + Vs_m_a_f +	$V_{s_m_b_f} + V_{s_s_f} +$	$V_{s_water_f} = 57.$	9 kN/m	
Calculate moment for ste	em design						
Surcharge			$sur_f \times L / 8 = 7$				
Moist backfill above water				$5 \times L^2$) - (3 × bl ²))		7 kNm/m	
Moist backfill below water	table			- n) ² / 8 = 8.7 kN			
Saturated backfill				15×a×L)+(20×L ²)			
Water		—	$M_{s_water} = F_{s_water_f} \times a_{l} \times ((3 \times a_{l}^{2}) - (15 \times a_{l} \times L) + (20 \times L^{2}))/(60 \times L^{2}) = \textbf{3.5 kNm}/(15 \times a_{l} \times L) + (20 \times L^{2})/(15 \times L^{2})/(15 \times L^{2}) + (20 \times L^{2})/(15 \times L^{2}$				
Total moment for stem des	sign	$M_{stem} = M_s$	sur + Ms_m_a + I	$M_{s_m_b} + M_{s_s} + M_{s_s}$	s_water = 25.9 kN	lm/m	
Calculate moment for wa	III design						
Surcharge		_		28 = 4.3 kNm/m	_		
Moist backfill above water kNm/m	table	$M_{w_m_a} = F_s$	_{_m_a_f} × 0.577>	 bi×[(bi³+5×ai×L²)/	/(5×L³)-0.577²/:	3] = 3.3	
Moist backfill below water	table	$M_{w_m_b} = F_s$	$a_{m_b_f} \times a_l \times [(($	8-n²×(4-n))² /16)-	4+n×(4-n)]/8 =	3.7 kNm/m	
Saturated backfill		$M_{w_s} = F_{s_s_}$	$_{f} \times [a_{l}^{2} \times x \times ((5 \times$	L)-a _i)/(20×L ³)-(x-k	$(3 \times a_1^2) = 0$.7 kNm/m	
Water		$M_{w_water} = F$	$s_{water_f} \times [a_1^2 \times)$	≪((5×L)-a₁)/(20×L	. ³)-(x-b _i) ³ /(3×a _i ²	²)] = 1.1	
kNm/m							
Total moment for wall desi	an	NA NA		Mw_m_b + Mw_s + M	1 1 2.2 kl		

						Job no.	
		56 Dartmou	th Park Road		18	30447	
Conisbee	Calcs for				Start page no./F	Revision	
1-5 Offord Street		Basement retaining wall				8	
London N1 1DH	Calcs by HH	Calcs date 13/11/2018	Checked by	Checked date	Approved by	Approved date	
Modification factor	factor _{tens} = mi	in(0.55 + (477 N/m	10 m² - f _s)/(120 x	< (0.9 N/mm² + (N	// _{stem} /(b × d _{stem} ²))))),2) = 1.22	
Maximum span/effective dep	oth ratio	ratio _{max} = ra	$ratio_{max} = ratio_{bas} \times factor_{tens} = 24.37$				
Actual span/effective depth ratio		ratio _{act} = h _s	ratio _{act} = h _{stem} / d _{stem} = 21.93				
				PASS - Span	to depth ratio	is acceptable	




Tekla Tedds	Project	56 Dartmout	h Park Road		Job no. 180447	
1-5 Offord Street	Calcs for	Whalin	g beam		Start page no./Re	vision 1
London N1 1DH	Calcs by HH	Calcs date 07/11/2018	Checked by	Checked date	Approved by	Approved date


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support conditions		
Support A	Vertically restrained	
	Rotationally free	
Support B	Vertically restrained	
	Rotationally free	
Support C	Vertically restrained	
	Rotationally free	
Support D	Vertically restrained	
	Rotationally free	
Applied loading		
Beam loads	Dead full UDL 15 kN/m	
	Imposed full UDL 15 kN/m	
	Dead self weight of beam \times 1	
Load combinations		
Load combination 1	Support A	$Dead \times 1.40$
		Imposed \times 1.60
		$Dead \times 1.40$
		Imposed × 1.60
		inipocou // noo

	Project	56 Dartmou	th Park Road		Job no. 18	0447
Conisbee	Calcs for				Start page no./F	
1-5 Offord Street London		Whalir	ng beam	2		
N1 1DH	Calcs by HH	Calcs date 07/11/2018	Checked by	Checked date	Approved by	Approved da
		Support B		Dead	× 1.40	
				Impos	ed imes 1.60	
				Dead	× 1.40	
				Impos	ed imes 1.60	
		Support C		Dead	× 1.40	
				Impos	ed imes 1.60	
				Dead	× 1.40	
				Impos	ed × 1.60	
		Support D		Dead		
		11			ed × 1.60	
Analysia reculto						
Analysis results Maximum moment		M _{max} = 5.2	kNm	ΝΛ.	-7.4 kNm	
Maximum moment span 1		$M_{s1} max = 3.2$			= -4.2 kNm	
Maximum moment span 2		$M_{s1}_{max} = 1$ $M_{s2}_{max} = 2$		_	= -7.4 kNm	
Maximum moment span 2 Maximum moment span 3		$M_{s3 max} = 2$		_	= -7.4 kNm	
Maximum shear		V _{max} = 33.8		_	-30.4 kN	
Maximum shear span 1		$V_{s1_max} = 1$			= -22.5 kN	
Maximum shear span 2		V _{s2_max} = 2		_	= -30.4 kN	
Maximum shear span 3		V _{s3_max} = 3 :		_	= -21.6 kN	
Deflection		$\delta_{max} = 0.1 \text{ r}$	nm	$\delta_{min} = 0$	0 mm	
Deflection span 1		$\delta_{s1_max} = 0$	mm	$\delta_{s1_{min}}$	= 0 mm	
Deflection span 2		$\delta_{s2 max} = 0$	mm	δ_{s2} min	= 0 mm	
Deflection span 3		$\delta_{s3} \max = 0.1$	1 mm	δ_{s3} min	= 0 mm	
Maximum reaction at suppor	t A	 RA_max = 11		_	= 11.4 kN	
Unfactored dead load reaction	on at support A	$R_{A_Dead} = 3$				
Unfactored imposed load rea	action at support A	RA_Imposed =	3.8 kN			
Maximum reaction at suppor	t B	R _{B_max} = 47	'.6 kN	$R_{B_{min}}$	= 47.6 kN	
Unfactored dead load reaction	on at support B	$R_{B_{Dead}} = 1$	5.9 kN			
Unfactored imposed load rea	action at support B	$R_{B_{Imposed}} =$	15.8 kN			
Maximum reaction at suppor		$R_{C_{max}} = 64$		$R_{C_{min}}$	= 64.2 kN	
Unfactored dead load reaction	••	$R_{C_{Dead}} = 2$				
Unfactored imposed load rea		Rc_Imposed =		_	04.0111	
Maximum reaction at suppor		R _{D_max} = 21		H_{D} min	= 21.6 kN	
Unfactored dead load reaction Unfactored imposed load reaction	• •	$R_{D_Dead} = 7$ $R_{D_mposed} =$				
		· ·D_imposed —				
Section details Section type			0v75v10 /Tak	a Stool Advance	\	
Steel grade		S275	0X10X10 (180	a Steel Advance)	
From table 9: Design stren	ath py	5215				
Thickness of element	2 Py	max(T, t) =	10.0 mm			
Design strength		p _y = 275 N/				
		., =: =,				

	√11/2018 ↓ 11/2018 ↓ 5.5 </th <th>g beam Checked by</th> <th>aint</th> <th>Start page no./F</th> <th>Revision 3 Approved d</th>	g beam Checked by	aint	Start page no./F	Revision 3 Approved d
	c date /11/2018 ←5.5 Gpan 1 has Span 2 has Span 3 has Span 3 has	Checked by	aint	Approved by	
	√11/2018 ↓ 11/2018 ↓ 5.5 </th <th>full lateral restr</th> <th>aint</th> <th>Approved by</th> <th>Approved d</th>	full lateral restr	aint	Approved by	Approved d
	← 5.5 Span 1 has Span 2 has Span 3 has Sx = 1.00	full lateral restr	aint		
S S S S	Span 1 has Span 2 has Span 3 has Sx = 1.00	full lateral restr	aint		
S S S S	Span 1 has Span 2 has Span 3 has Sx = 1.00	full lateral restr	aint		
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Span 1 has Span 2 has Span 3 has Sx = 1.00	full lateral restr	aint		
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Span 1 has Span 2 has Span 3 has Sx = 1.00	full lateral restr	aint		
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Span 1 has Span 2 has Span 3 has Sx = 1.00	full lateral restr	aint		
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Span 1 has Span 2 has Span 3 has Sx = 1.00	full lateral restr	aint		
← S S	Span 1 has Span 2 has Span 3 has Kx = 1.00	full lateral restr	aint		
← S S	Span 1 has Span 2 has Span 3 has Kx = 1.00	full lateral restr	aint		
← S S	Span 1 has Span 2 has Span 3 has Kx = 1.00	full lateral restr	aint		
← S S	Span 1 has Span 2 has Span 3 has Kx = 1.00	full lateral restr	aint		
S S	Span 1 has Span 2 has Span 3 has Kx = 1.00	full lateral restr	aint		
S S	Span 2 has Span 3 has K _x = 1.00	full lateral restr	aint		
S S	Span 2 has Span 3 has K _x = 1.00	full lateral restr	aint		
S S	Span 2 has Span 3 has K _x = 1.00	full lateral restr	aint		
S	Span 3 has K _x = 1.00				
	K _x = 1.00				
K					
	/				
	<pre><y 1.00<="" =="" pre=""></y></pre>				
-	K _{LT.A} = 1.00 K _{LT.B} = 1.00				
	$X_{LT.B} = 1.00$ $X_{LT.C} = 1.00$				
	$X_{LT.D} = 1.00$				
on 3.5					
ε	e = √[275 N/	/mm ² / p _y] = 1.0	0		
	d = 106 mm				
d	d / t = 19.3 >	$3 \times 08 \Rightarrow 3 \times$	Class	1 plastic	
	_				
	o = B = 75 r				
b	o / T = 7.5 ×	$\varepsilon \varepsilon \le 9 \times \varepsilon$	Class	1 plastic Section is d	class 1 nla
					siuss i pias
F	- v = max(ab	os(V _{max}), abs(V _n	nin)) = 33.8 kN		
	$d/t < 70 \times \epsilon$				
			ot need to be o	checked for s	hear buck
P				voode de de d	nn obacat
	PASS	o - Design sne	ar resistance e	exceeas aesig	yn snear fo
		s(M.) aba	(M.o)) - 7 / 4	Nm	
	may(ab)	S(IVIS2_max), aDS(
	F 4.2.5	P _v = 0.6 × p <i>PAS</i> 4.2.5	$A_v = t \times D = 825 \text{ mm}^2$ $P_v = 0.6 \times p_y \times A_v = 136.1 \text{ k}$ <i>PASS - Design she</i>	$A_{v} = t \times D = 825 \text{ mm}^{2}$ $P_{v} = 0.6 \times p_{y} \times A_{v} = 136.1 \text{ kN}$ $PASS - Design \text{ shear resistance of}$ 4.2.5	$P_v = 0.6 \times p_y \times A_v =$ 136.1 kN PASS - Design shear resistance exceeds desig

Tekla Tedds	Project	56 Dartmout	h Park Road		Job no. 180447	
Conisbee 1-5 Offord Street	Calcs for	Whalin	g beam		Start page no./Re	evision 4
London N1 1DH	Calcs by HH	Calcs date 07/11/2018	Checked by	Checked date	Approved by	Approved date

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

Limiting deflection

Maximum deflection span 3

 $\delta_{\text{lim}} = L_{\text{s3}} \ / \ 360 = \textbf{3.403} \ mm$

 $\boldsymbol{\delta} = max(abs(\delta_{\text{max}}),\,abs(\delta_{\text{min}})) = \textbf{0.121} \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

Tekla Tedds	Project 56 Dartmouth Park Road				Job no. 180447		
Conisbee C	Calcs for				Start page no./	page no./Revision	
1-5 Offord Street London		Pr	ops			1	
N1 1DH	alcs by HH	Calcs date 07/11/2018	Checked by	Checked date	Approved by	Approved of	
STEEL MEMBER DESIGN (BS59 In accordance with BS5950-1:20		rating Corrigend	um No.1				
					TEDDS calcul	ation version 3	
Section details		110 4 50-45	000 (D04.4)				
Section type			52x23 (BS4-1)				
Steel grade		S275					
From table 9: Design strength p	У						
Thickness of element		max(T, t) =					
Design strength		p _y = 275 N/					
Modulus of elasticity		E = 20500) N/mm²				
	-0.8 -0.8						
Ŧ	*						
	T						
4							
.152.4		→ ←	5.8				
	80						
	.6.8 .6.8						
<u>•</u>	· ▼ └──						
	 			→			
Lateral restraint Distance between major axis restr	aints	L _x = 3900 r	nm				
Distance between minor axis restr		$L_y = 0 \text{ mm}$					
		$L_y = \mathbf{U}$ mill					
Effective length factors							
Effective length factor in major axi		K _x = 1.00					
Effective length factor in minor axi		K _y = 1.00					
Effective length factor for lateral-to	orsional buck	kling $K_{LT} = 1.00$					
Classification of cross sections	- Section 3	.5					
		ε = √[275 Ν	$1/mm^2 / p_y] = 1$.00			
Internal compression parts - Tal	ble 11						
Depth of section		d = 123.6 r	nm				
Stress ratios	$r1 = min(F_{c})$	/ (d × t × p _{yw}),	1) = 0.457				
			× p _{yw}) = 0.112				
				- Ͻ×ε/(1 + r1), 40 >		s 1 plastic	
A		u/t = 21.3		5 A C / (T + T I), 40 2	Sej Olds	o i piastic	
Outstand flanges - Table 11			70.4				
Width of section		b = B / 2 =		. .			
		b / T = 11.2	$2 \times \varepsilon <= 15 \times \varepsilon$		semi-compa		
				Sectio	n is class 3	semi-comp	
Compression members - Sectio Design compression force	n 4.7	F _c = 90 kN					

Tekla Tedds	Project	56 Dartmout	Job no. 180447			
Conisbee 1-5 Offord Street London N1 1DH	Calcs for Props				Start page no./Revision 2	
	Calcs by HH	Calcs date 07/11/2018	Checked by	Checked date	Approved by	Approved date

Effective length for major (x-x) axis buckling - Section 4.7.3			
Effective length for buckling	$L_{Ex} = L_x \times K_x = 3900 \text{ mm}$		
Slenderness ratio - cl.4.7.2	$\lambda_{x} = L_{Ex} / r_{xx} = 59.659$		
Compressive strength - Section 4.7.5			
Limiting slenderness	$\lambda_0 = 0.2 \times (\pi^2 \times E / p_y)^{0.5} =$ 17.155		
Strut curve - Table 23	b		
Robertson constant	$\alpha_{x} = 3.5$		
Perry factor	$\eta_x = \alpha_x \times (\lambda_x - \lambda_0) \ / \ 1000 = \textbf{0.149}$		
Euler stress	$p_{Ex} = \pi^2 \times E / \lambda_x^2 = $ 568.5 N/mm ²		
	$\phi_x = (p_y + (\eta_x + 1) \times p_{Ex}) / 2 = 464 \text{ N/mm}^2$		
Compressive strength - Annex C.1	$p_{\text{cx}} = p_{\text{Ex}} \times p_y / (\phi_x + (\phi_x^2 - p_{\text{Ex}} \times p_y)^{0.5}) = \textbf{221.2 N/mm}^2$		
Compression resistance - Section 4.7.4			
Compression resistance - cl.4.7.4	P _{cx} = A × p _{cx} = 646.8 kN		
	PASS - Compression resistance exceeds design compression force		