

# **APPENDIX 2**

STRUCTURAL CALCULATIONS

| V&R                                    | Project  |                |             |      | Job Ref. |      |
|----------------------------------------|----------|----------------|-------------|------|----------|------|
| VINCENT<br>& RYMILL                    | 1 S      | PENCER RISE    | LONDON NW5  | 1AR  | 188      | 306  |
| VINICENT & DVMII I                     | Section  | Sheet no./rev. |             |      |          |      |
| VINCENT & RYMILL LAKESIDE COUNTRY CLUB |          | NEW BASEMEI    | NT STRUCTUR | E    |          | 1    |
| FRIMLEY GREEN                          | Calc. by | Date           | Chk'd by    | Date | App'd by | Date |
| SURREY                                 | TV       | 23/03/2018     |             |      |          |      |

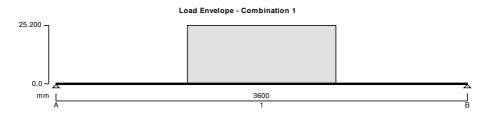
| PITCHED ROOF                 | KN/m <sup>2</sup>      |          | <u>CEILING</u>         | KN/m <sup>2</sup>      |
|------------------------------|------------------------|----------|------------------------|------------------------|
| Tiles                        | 0.70                   |          | Ceiling Joists         | 0.10                   |
| Felt & battens               | 0.05                   |          | Plasterboard           | <u>0.15</u>            |
| Rafters                      | <u>0.10</u>            |          | D. L.                  | 0.25 KN/m <sup>2</sup> |
|                              | <u>0.85</u>            |          | I. L. where applicable | 0.25 KN/m <sup>2</sup> |
| 30° on plan load D. L.       | 1.00 KN/m <sup>2</sup> |          |                        | 0.50 KN/m <sup>2</sup> |
| 30 <sup>0</sup> Imposed Load | $0.75  \text{KN/m}^2$  |          |                        |                        |
|                              | 1.75 KN/m <sup>2</sup> |          |                        |                        |
| FLAT ROOF                    | KN/m <sup>2</sup>      |          | TIMBER FLOORS          | KN/m <sup>2</sup>      |
| Felt                         | 0.25                   |          | Boards                 | 0.20                   |
| Boards                       | 0.25                   |          | Joists                 | 0.10                   |
| Joists & firrings            | 0.15                   |          | Ceiling                | <u>0.20</u>            |
| Ceiling                      | <u>0.15</u>            |          | D. L.                  | 0.50 KN/m <sup>2</sup> |
| D. L.                        | 0.80 KN/m <sup>2</sup> |          | I. L.                  | 1.50 KN/m <sup>2</sup> |
| I.L.                         | $0.75 \text{ KN/m}^2$  |          |                        | 2.00 KN/m <sup>2</sup> |
|                              | 1.55 KN/m <sup>2</sup> |          |                        |                        |
| 200 RIBDECK                  | KN/m <sup>2</sup>      |          |                        |                        |
| Finish                       | 2.00                   |          |                        |                        |
| Self Weight                  | <u>4.10</u>            | 200 SLAB | 4.80KN/m <sup>2</sup>  |                        |
| D. L.                        | 6.10 KN/m <sup>2</sup> |          |                        |                        |
| I. L.                        | 1.50 KN/m <sup>2</sup> |          |                        |                        |
|                              | 5.50 KN/m <sup>2</sup> |          |                        |                        |
| MASONRY                      | KN/m²                  |          |                        |                        |
| 102 Brick + PLASTER          | 2.40 KN/m <sup>2</sup> |          |                        |                        |
| 215 BRICK + PLASTER          | 4.60 KN/m <sup>2</sup> |          |                        |                        |
|                              |                        |          |                        |                        |

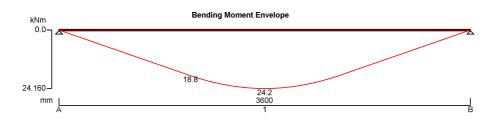
| V&R                                    | Project  |                               |                |      | Job Ref. |       |  |
|----------------------------------------|----------|-------------------------------|----------------|------|----------|-------|--|
| VINCENT<br>& RYMILL                    | 1.5      | 1 SPENCER RISE LONDON NW5 1AR |                |      |          | 18B06 |  |
| VINCENT & DVMIII                       | Section  |                               | Sheet no./rev. |      |          |       |  |
| VINCENT & RYMILL LAKESIDE COUNTRY CLUB |          | NEW BASEME                    | NT STRUCTUR    | E    |          | 2     |  |
| FRIMLEY GREEN                          | Calc. by | Date                          | Chk'd by       | Date | App'd by | Date  |  |
| SURREY                                 | TV       | 23/03/2018                    |                |      |          |       |  |

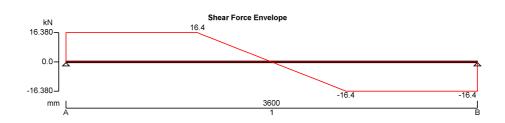
### **GROUND FLOOR**

### **BEAM B1 AND B2**

SPAN = 3.60 m


CHIMNEY BREAST UDL1.15 TO 2.45m DL = 6 X 2.4 X 1.25 = 18KN/m


### STEEL BEAM ANALYSIS & DESIGN (BS5950)


### STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05







### **Support conditions**

Support A Vertically restrained Rotationally free

Support B Vertically restrained

Rotationally free

**Applied loading** 

Beam loads Dead partial UDL 18 kN/m from 1150 mm to 2450 mm

Load combinations

| VINCENT<br>& RYMILL   |
|-----------------------|
| VINCENT & RYMILL      |
| LAKESIDE COUNTRY CLUB |
| FRIMLEY GREEN         |
| SURREY                |

V & R

| Project                       |                        |            |          |      | Job Ref.       |      |
|-------------------------------|------------------------|------------|----------|------|----------------|------|
| 1 SPENCER RISE LONDON NW5 1AR |                        |            |          |      | 181            | 306  |
| Section                       |                        |            |          |      | Sheet no./rev. |      |
|                               | NEW BASEMENT STRUCTURE |            |          |      |                | 3    |
| Calc. by                      |                        | Date       | Chk'd by | Date | App'd by       | Date |
| TV                            |                        | 23/03/2018 |          |      |                |      |

| <b>\</b> |  |  |  |  |  |
|----------|--|--|--|--|--|

Span 1 Dead  $\times$  1.40

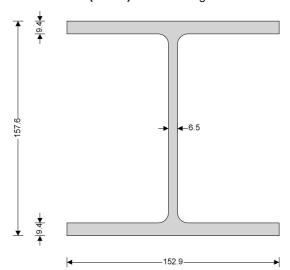
Imposed  $\times$  1.60

Imposed × 1.60

Support B Dead  $\times$  1.40

Imposed  $\times$  1.60

### **Analysis results**


Unfactored dead load reaction at support A  $R_{A\_Dead} = 11.7 \text{ kN}$ 

Maximum reaction at support B  $R_{B_max} = 16.4 \text{ kN}$   $R_{B_min} = 16.4 \text{ kN}$ 

Unfactored dead load reaction at support B  $R_{B\_Dead} = 11.7 \text{ kN}$ 

### Section details

Section type UC 152x152x30 (BS4-1) Steel grade S275



### Classification of cross sections - Section 3.5

Tensile strain coefficient  $\varepsilon = 1.00$  Section classification Plastic

Shear capacity - Section 4.2.3

Design shear force  $F_V = 16.4 \text{ kN}$  Design shear resistance  $P_V = 169 \text{ kN}$ 

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment M = 24.2 kNm Moment capacity low shear  $M_c = 68.1 \text{ kNm}$ 

**Buckling resistance moment - Section 4.3.6.4** 

Buckling resistance moment  $M_b = 51.5 \text{ kNm}$   $M_b / m_{LT} = 58.3 \text{ kNm}$ 

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

 $\text{Limiting deflection} \qquad \qquad \delta_{\text{lim}} = \textbf{10} \text{ mm} \qquad \qquad \text{Maximum deflection} \qquad \qquad \delta = \textbf{0} \text{ mm}$ 

PASS - Maximum deflection does not exceed deflection limit

| V&R                   | Project                       |             |                |      | Job Ref. |      |
|-----------------------|-------------------------------|-------------|----------------|------|----------|------|
| VINCENT<br>& RYMILL   | 1 SPENCER RISE LONDON NW5 1AR |             |                |      | 18B06    |      |
| VINCENT & RYMILL      | Section                       |             | Sheet no./rev. |      |          |      |
| LAKESIDE COUNTRY CLUB |                               | NEW BASEMEI | NT STRUCTUR    | E    |          | 4    |
| FRIMLEY GREEN         | Calc. by                      | Date        | Chk'd by       | Date | App'd by | Date |
| SURREY                | TV                            | 23/03/2018  |                |      |          |      |

### USE 152 X 152 X 30 UC

### **BEAM B3**

SPAN = 3.60m

# BY INSPECTION CARRYS SMALL AREA OF TIMBER STAIR LANDING – USE 203 X 133 X 25 UB TO SUIT DEPTH OF 200 RIBDECK FLOOR

### **BEAM B4**

SPAN = 2.60 m

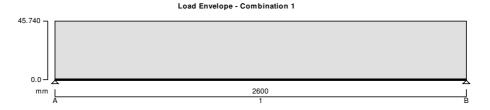
ROOF DL  $2 \times 1$  = 2.00

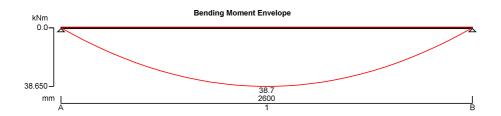
ROOF IL  $2 \times 0.75 = 1.50$ 

 $1^{ST} \& 2^{ND} FLR DL$  2 X 0.5 X 2 = 2.00

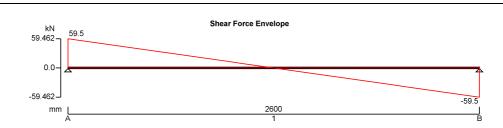
 $1^{ST} \& 2^{ND} FLR IL$  2 X 1.5 X 2 = 6.00

WALL  $5 \times 4.6 \times 0.85 = 19.60$ CEILING  $2 \times 0.25 = 0.50$ 


24.10 KN/m 7.50KN/m


### STEEL BEAM ANALYSIS & DESIGN (BS5950)

### STEEL BEAM ANALYSIS & DESIGN (BS5950)


In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05





| V&R                   | Project  |             |                |      | Job Ref. |      |
|-----------------------|----------|-------------|----------------|------|----------|------|
| VINCENT<br>& RYMILL   | 1 S      | PENCER RISE | LONDON NW5     | 1AR  | 181      | B06  |
| VINCENT & RYMILL      | Section  |             | Sheet no./rev. |      |          |      |
| LAKESIDE COUNTRY CLUB |          | NEW BASEMEI | NT STRUCTUR    | E    |          | 5    |
| FRIMLEY GREEN         | Calc. by | Date        | Chk'd by       | Date | App'd by | Date |
| SURREY                | TV       | 23/03/2018  |                |      |          |      |



### **Support conditions**

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

**Applied loading** 

Beam loads Dead full UDL 24.1 kN/m

Imposed full UDL 7.5 kN/m

Load combinations

Load combination 1 Support A Dead  $\times$  1.40

Imposed  $\times$  1.60

Span 1 Dead  $\times$  1.40

Imposed  $\times$  1.60

Support B Dead  $\times$  1.40

Imposed  $\times$  1.60

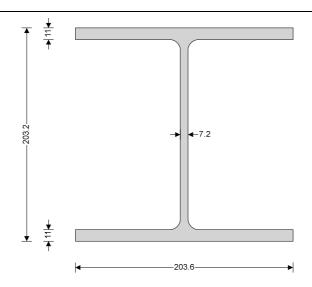
**Analysis results** 

Unfactored dead load reaction at support A  $R_{A\_Dead} = 31.3 \text{ kN}$ 

Unfactored imposed load reaction at support A RA\_Imposed = 9.8 kN

Maximum reaction at support B  $R_{B_max} = 59.5 \text{ kN}$   $R_{B_min} = 59.5 \text{ kN}$ 

Unfactored dead load reaction at support B  $R_{B\_Dead} = 31.3 \text{ kN}$ Unfactored imposed load reaction at support B  $R_{B\_Imposed} = 9.7 \text{ kN}$ 


Section details

Section type UC 203x203x46 (BS4-1) Steel grade S275



VINCENT & RYMILL
LAKESIDE COUNTRY CLUB
FRIMLEY GREEN
SURREY

| Project                       | oject Job Ref. |          |      |                |      |  |
|-------------------------------|----------------|----------|------|----------------|------|--|
| 1 SPENCER RISE LONDON NW5 1AR |                |          |      | 18             | B06  |  |
| Section                       |                |          |      | Sheet no./rev. |      |  |
| NEW BASEMENT STRUCTURE        |                |          |      | 6              |      |  |
| Calc. by                      | Date           | Chk'd by | Date | App'd by       | Date |  |
| TV                            | 23/03/2018     |          |      |                |      |  |



Classification of cross sections - Section 3.5

Tensile strain coefficient  $\varepsilon = 1.00$  Section classification

Shear capacity - Section 4.2.3

Design shear force  $F_V = 59.5 \text{ kN}$  Design shear resistance  $P_V = 241.4 \text{ kN}$ 

PASS - Design shear resistance exceeds design shear force

Compact

Moment capacity - Section 4.2.5

Design bending moment M = 38.7 kNm Moment capacity low shear  $M_c = 136.8 \text{ kNm}$ 

**Buckling resistance moment - Section 4.3.6.4** 

Buckling resistance moment  $M_b = 131 \text{ kNm}$   $M_b / m_{LT} = 141.6 \text{ kNm}$ 

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

 $\mbox{Limiting deflection} \qquad \qquad \delta_{\mbox{\scriptsize lim}} = \mbox{\bf 7.222} \mbox{ mm} \qquad \qquad \mbox{Maximum deflection} \qquad \qquad \delta = \mbox{\bf 0.477} \mbox{ mm}$ 

PASS - Maximum deflection does not exceed deflection limit

### **USE 203 X 203 X 46 UC**

### TAKE BEARING ONTO MASS CONCRETE PAD ONTO TOP OF PINS

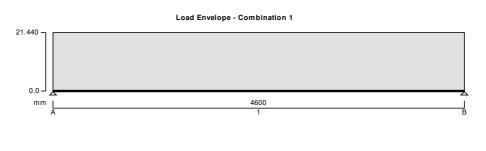
### BEAM B5

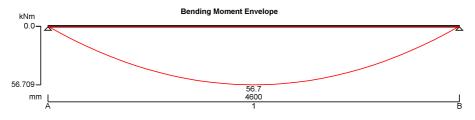
SPAN = 4.60m SLAB DL = 1.9 X 6.1 = 11.6KN/m SLAB IL = 1.9 X 1.5 = 2.9KN/m

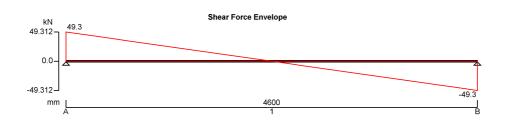
### STEEL BEAM ANALYSIS & DESIGN (BS5950)

### STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1


TEDDS calculation version 3.0.05


| VINCENT<br>& RYMILL  |   |
|----------------------|---|
| VINCENT & RYMILL     |   |
| LAKESIDE COUNTRY CLU | В |
| FRIMLEY GREEN        |   |
|                      |   |


SURREY

V & R

| Project                |                               |          |      | Job Ref.       |      |
|------------------------|-------------------------------|----------|------|----------------|------|
| 1                      | 1 SPENCER RISE LONDON NW5 1AR |          |      | 18B06          |      |
| Section                |                               |          |      | Sheet no./rev. |      |
| NEW BASEMENT STRUCTURE |                               |          |      | 7              |      |
| Calc. by               | Date                          | Chk'd by | Date | App'd by       | Date |
| TV                     | 23/03/2018                    |          |      |                |      |







### **Support conditions**

Support A Vertically restrained Rotationally free
Support B Vertically restrained

Rotationally free

**Applied loading** 

Beam loads Dead full UDL 12 kN/m Imposed full UDL 2.9 kN/m

Load combinations

Imposed × 1.60

Span 1 Dead  $\times$  1.40

 $Imposed \times 1.60$ 

Support B Dead × 1.40

 $\text{Imposed} \times 1.60$ 

**Analysis results** 

Unfactored dead load reaction at support A  $R_{A\_Dead} = 27.6 \text{ kN}$ Unfactored imposed load reaction at support A  $R_{A\_Imposed} = 6.7 \text{ kN}$ 

### Job Ref. Project 1 SPENCER RISE LONDON NW5 1AR 18B06 Section Sheet no./rev. **VINCENT & RYMILL NEW BASEMENT STRUCTURE** 8 LAKESIDE COUNTRY CLUB Calc. by Date Chk'd by Date App'd by Date FRIMLEY GREEN TV 23/03/2018 **SURREY**

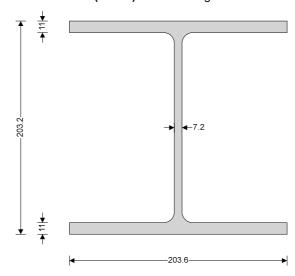
Maximum reaction at support B

 $R_{B_{max}} = 49.3 \text{ kN}$ 

 $R_{B\_min} = 49.3 \text{ kN}$ 

Unfactored dead load reaction at support B Unfactored imposed load reaction at support B

 $R_{B\_Dead} = 27.6 \text{ kN}$   $R_{B\_Imposed} = 6.7 \text{ kN}$ 


Section details

Section type

UC 203x203x46 (BS4-1)

Steel grade

S275



Classification of cross sections - Section 3.5

Tensile strain coefficient  $\epsilon$  = 1.00 Section classification Compact

Shear capacity - Section 4.2.3

Design shear force  $F_V = 49.3 \text{ kN}$  Design shear resistance  $P_V = 241.4 \text{ kN}$ 

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment M = 56.7 kNm Moment capacity low shear  $M_c = 136.8 \text{ kNm}$ 

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment  $M_b = 103.9 \text{ kNm}$   $M_b / m_{LT} = 112.3 \text{ kNm}$ 

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

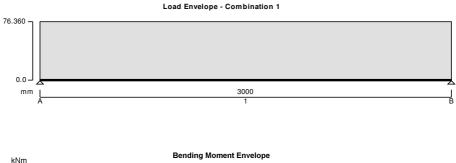
Consider deflection due to imposed loads

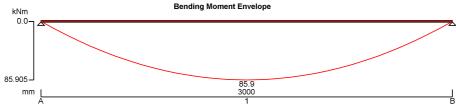
 $\text{Limiting deflection} \qquad \qquad \delta_{\text{lim}} = \text{12.778 mm} \qquad \qquad \text{Maximum deflection} \qquad \qquad \delta = \text{1.806 mm}$ 

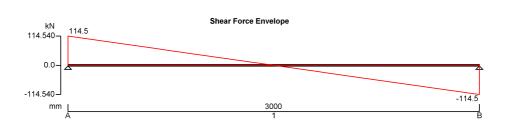
PASS - Maximum deflection does not exceed deflection limit

USE 203 X 203 X 46 UC BEARINGS ONTO CONCRETE WALL

| V&R                   | Project  |             |                |      | Job Ref. |      |
|-----------------------|----------|-------------|----------------|------|----------|------|
| VINCENT<br>& RYMILL   | 1 S      | PENCER RISE | LONDON NW5     | 1AR  | 181      | 306  |
| VINCENT & RYMILL      | Section  |             | Sheet no./rev. |      |          |      |
| LAKESIDE COUNTRY CLUB |          | NEW BASEMEI | NT STRUCTUR    | E    |          | 9    |
| FRIMLEY GREEN         | Calc. by | Date        | Chk'd by       | Date | App'd by | Date |
| SURREY                | TV       | 23/03/2018  |                |      |          |      |


| BEAM B6          |               |   |           |             |  |
|------------------|---------------|---|-----------|-------------|--|
| MAX SPAM = 3.00m |               |   |           |             |  |
|                  |               |   |           |             |  |
| UDL              |               |   |           |             |  |
| STUD             | 2.5 X 0.6     | = | 1.50      |             |  |
| 100 BRICK        | 2.5 X 2.6     | = | 6.50      |             |  |
| FLOORS DL        | 3.8 X 0.5 X 2 | = | 3.80      |             |  |
| FLOORS IL        | 3.8 X 1.5 X 2 | = |           | 11.40       |  |
| RIB DECK DL      | 3.8 X 6.1     | = | 23.20     |             |  |
| GRD FLR IL       | 3.8 X 1.5     | = |           | <u>5.70</u> |  |
|                  |               |   | 35.00KN/m | 17.1KN/m    |  |
|                  |               |   |           |             |  |


# **STEEL BEAM ANALYSIS & DESIGN (BS5950)**


### STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05







### **Support conditions**

Support A Vertically restrained
Rotationally free
Support B Vertically restrained
Rotationally free

| VINCENT<br>& RYMILL   |
|-----------------------|
| VINCENT & RYMILL      |
| LAKESIDE COUNTRY CLUB |
| FRIMLEY GREEN         |
| SURREY                |

V & D

| Project                       |                        |          | Job Ref.       | Job Ref.       |      |
|-------------------------------|------------------------|----------|----------------|----------------|------|
| 1 SPENCER RISE LONDON NW5 1AR |                        |          | 1              | 8B06           |      |
| Section                       |                        |          | Sheet no./rev. | Sheet no./rev. |      |
|                               | NEW BASEMENT STRUCTURE |          |                |                | 10   |
| Calc. by                      | Date                   | Chk'd by | Date           | App'd by       | Date |
| TV                            | 23/03/2018             |          |                |                |      |

| Αp | plied | loading |
|----|-------|---------|
|    |       |         |

Beam loads Dead full UDL 35 kN/m

Imposed full UDL 17.1 kN/m

Load combinations

Load combination 1 Support A Dead × 1.40

Imposed  $\times$  1.60

Span 1  $\text{Dead} \times 1.40$ 

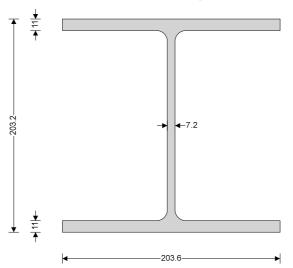
 $Imposed \times 1.60$ 

Support B Dead  $\times$  1.40

Imposed  $\times$  1.60

### **Analysis results**

Unfactored dead load reaction at support A R<sub>A\_Dead</sub> = **52.5** kN


Unfactored imposed load reaction at support A R<sub>A\_Imposed</sub> = **25.7** kN

Maximum reaction at support B  $R_{B_max} = 114.5 \text{ kN}$   $R_{B_min} = 114.5 \text{ kN}$ 

Unfactored dead load reaction at support B  $R_{B\_Dead} = 52.5 \text{ kN}$ Unfactored imposed load reaction at support B  $R_{B\_Imposed} = 25.7 \text{ kN}$ 

### Section details

Section type UC 203x203x46 (BS4-1) Steel grade S275



### Classification of cross sections - Section 3.5

Tensile strain coefficient  $\varepsilon = 1.00$  Section classification **Compact** 

Shear capacity - Section 4.2.3

Design shear force  $F_v = 114.5 \text{ kN}$  Design shear resistance  $P_v = 241.4 \text{ kN}$ 

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment M = 85.9 kNm Moment capacity low shear  $M_c = 136.8 \text{ kNm}$ 

PASS - Moment capacity exceeds design bending moment

| V&R                                     | Project                       |             |                |      | Job Ref. |      |
|-----------------------------------------|-------------------------------|-------------|----------------|------|----------|------|
| VINCENT<br>& RYMILL                     | 1 SPENCER RISE LONDON NW5 1AR |             |                |      | 18B06    |      |
| VINICENT & DVMII I                      | Section                       |             | Sheet no./rev. |      |          |      |
| VINCENT & RYMILL  LAKESIDE COUNTRY CLUB |                               | NEW BASEMEI | NT STRUCTUR    | E    |          | 11   |
| FRIMLEY GREEN                           | Calc. by                      | Date        | Chk'd by       | Date | App'd by | Date |
| SURREY                                  | TV                            | 23/03/2018  |                |      |          |      |

### Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

Limiting deflection  $\delta_{lim} = 8.333 \text{ mm}$  Maximum deflection  $\delta = 1.926 \text{ mm}$ 

PASS - Maximum deflection does not exceed deflection limit

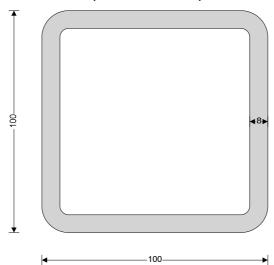
### USE 203 X 203 X 46 UC BEARINGS DOWN ONTO CONCRETE WALLS.

### **POST**

Utl load = 176KN

BM DUE TO ECC = 45.8 X 0.1 = 5KN.m

### STEEL MEMBER DESIGN (BS5950)


### **STEEL MEMBER DESIGN (BS5950)**

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

### Section details

Section type SHS 100x100x8.0 (Tata Steel Celsius) Steel grade S275



Classification of cross sections - Section 3.5

Tensile strain coefficient  $\varepsilon = 1.00$  Section classification Semi-compact

Moment capacity - Section 4.2.5

Design bending moment M = 5 kNm Moment capacity low shear  $M_c = 26.4 \text{ kNm}$ 

**Buckling resistance moment - Section 4.3.6.4** 

Bending strength  $p_b = 275 \text{ N/mm}^2$  Buckling resistance moment  $M_b = 27 \text{ kNm}$ 

PASS - Moment capacity exceeds design bending moment

**Compression members - Section 4.7** 

Design compression force  $F_c = 176 \text{ kN}$  Compression resistance  $P_{cx} = 492.6 \text{ kN}$ 

PASS - Compression resistance exceeds design compression force

Design compression force  $F_c = 176 \text{ kN}$  Compression resistance  $P_{cy} = 492.6 \text{ kN}$ 

| V&R                                    | Project                       |             |             |      | Job Ref.       |      |
|----------------------------------------|-------------------------------|-------------|-------------|------|----------------|------|
| VINCENT<br>& RYMILL                    | 1 SPENCER RISE LONDON NW5 1AR |             |             |      | 18B06          |      |
| VINICENT & DVMII I                     | Section                       |             |             |      | Sheet no./rev. |      |
| VINCENT & RYMILL LAKESIDE COUNTRY CLUB |                               | NEW BASEMEI | NT STRUCTUR | E    |                | 12   |
| FRIMLEY GREEN                          | Calc. by                      | Date        | Chk'd by    | Date | App'd by       | Date |
| SURREY                                 | TV                            | 23/03/2018  |             |      |                |      |

### PASS - Compression resistance exceeds design compression force

### Compression members with moments - Section 4.8.3

Comp.and bending check  $F_c / (A \times p_y) + M / M_c = 0.412$ 

PASS - Combined bending and compression check is satisfied

### Member buckling resistance - cl.4.8.3.3.3

Buckling resistance checks  $F_c / P_{cx} + m_x \times M / M_c \times (1 + 0.5 \times F_c / P_{cx}) = 0.581$ 

 $F_c / P_{cv} + 0.5 \times m_{LT} \times M_{LT} / M_{cx} = 0.452$ 

PASS - Member buckling resistance checks are satisfied

### 100 X 100 X 8.0 SHS POST

### **BEAM B7**

### BY INSPECTION SIMILAR TO BEAM B5 - USE 203 X 203 X 46 UC

### **BEAM B8 / B9**

SPANS = 2.5 AND 1.5 RESPECTIVELY.

### BY INSPECTION USE 203 X 203 X 46 UC TO SUIT RIBDECK FLOOR

### BEAM B10

SPAN = 2.80m

 $DI = 2.25 \times 6.1 = 13.7 \text{KN/m}$ 

IL = 2.25 X 1.5 = 3.40 KN/m

### BY INSPECTION USE 203 X 203 X 46 UC TO SUIT RIBDECK

RN DL = 19.2 KN, IL = 4.8KN

### **BEAM B11**

SPAN = 1.50m

 $DI = 2.25 \times 6.1 = 13.7 \text{KN/m}$ 

IL = 2.25 X 1.5 = 3.40 KN/m

### BY INSPECTION USE 203 X 203 X 46 UC TO SUIT RIBDECK

RN DL = 10.3 KN, IL = 2.60KN

### BEAM B12

SPAN = 2.80m

 $DI = 1.40 \times 6.45 = 9.00 \text{KN/m}$ 

IL = 1.40 X 1.5 = 2.10 KN/m

### BY INSPECTION USE 203 X 203 X 46 UC TO SUIT RIBDECK

RN DL = 12.60 KN, IL = 3.00KN

| V & R                 | Project                       |                |          |      | Job Ref. |      |
|-----------------------|-------------------------------|----------------|----------|------|----------|------|
| VINCENT<br>& RYMILL   | 1 SPENCER RISE LONDON NW5 1AR |                |          |      | 18B06    |      |
| VINCENT & RYMILL      | Section                       | Sheet no./rev. |          |      |          |      |
| LAKESIDE COUNTRY CLUB | NEW BASEMENT STRUCTURE        |                |          | 13   |          |      |
| FRIMLEY GREEN         | Calc. by                      | Date           | Chk'd by | Date | App'd by | Date |
| SURREY                | TV                            | 23/03/2018     |          |      |          |      |

### BEAM B13

SPAN = 1.50m

 $DI = 1.40 \times 6.45 = 9.00 \text{KN/m}$ 

IL = 1.40 X 1.5 = 2.10 KN/m

## BY INSPECTION USE 203 X 203 X 46 UC TO SUIT RIBDECK

RN DL = 6.80 KN, IL = 1.60KN

### **BEAM B14**

SPAN = 4.80m

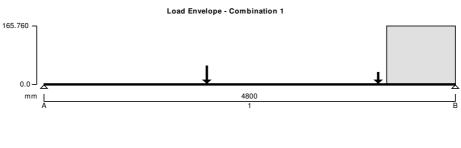
UDL AT 1ST FLOOR ASSUMING EXTENSION ABOVE 1ST FLOOR CEILING

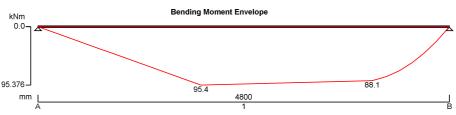
ROOF DL 2.4 X 1 2.40 ROOF IL 2.4 X 0.75 1.80 CEILING 2.4 X 0.25 0.60 FLR DL 2 X 1.4 X 0.5 1.40 FLR IL 2 X 1.4 X 1.5 4.20 WALL 4.2 X 4.6 19.30 23.70KN/m 6.00KN/m

EX PIER ON OUTER WALL 675 LONG

**UDL TO PIER** 

 $DL = 2.6 \times 23.7 / 0.675 = 91.3 KN/m$ 

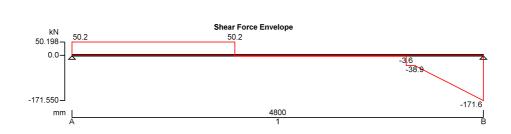

IL = 2.6 X 6 / 0.675 = 23.1 KN/m


# STEEL BEAM ANALYSIS & DESIGN (BS5950)

### STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05






| VIX IX<br>VINCENT<br>& RYMILL |  |
|-------------------------------|--|
| VINCENT & RYMILL              |  |
| LAKESIDE COUNTRY CLUB         |  |
| FRIMLEY GREEN                 |  |
| CLIDDEV                       |  |

V & D

| Project                       |                        |          | Job Ref.       |          |      |
|-------------------------------|------------------------|----------|----------------|----------|------|
| 1 SPENCER RISE LONDON NW5 1AR |                        |          | 18             | B06      |      |
| Section                       |                        |          | Sheet no./rev. |          |      |
|                               | NEW BASEMENT STRUCTURE |          |                |          | 14   |
| Calc. by                      | Date                   | Chk'd by | Date           | App'd by | Date |
| TV                            | 23/03/2018             |          |                |          |      |



### **Support conditions**

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

**Applied loading** 

Beam loads Dead point load 30 kN at 1900 mm

Imposed point load 7.4 kN at 1900 mm Dead point load 19.5 kN at 3900 mm Imposed point load 5 kN at 3900 mm

Dead partial UDL 92 kN/m from 4000 mm to 4800 mm Imposed partial UDL 23.1 kN/m from 4000 mm to 4800 mm

Load combinations

Load combination 1 Support A Dead × 1.40

Imposed  $\times$  1.60

Span 1 Dead  $\times$  1.40

Imposed × 1.60

Support B Dead × 1.40

Imposed × 1.60

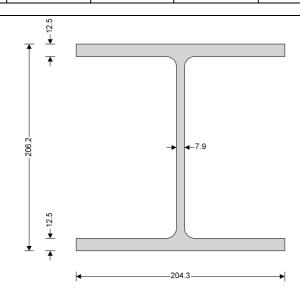
**Analysis results** 

Maximum reaction at support A  $R_{A_max} = 50.2 \text{ kN}$   $R_{A_min} = 50.2 \text{ kN}$ 

Unfactored dead load reaction at support A  $R_{A\_Dead} = 27.9 \text{ kN}$ Unfactored imposed load reaction at support A  $R_{A\_Imposed} = 6.9 \text{ kN}$ 

Maximum reaction at support B  $R_{B_{max}} = 171.6 \text{ kN}$   $R_{B_{min}} = 171.6 \text{ kN}$ 

Unfactored dead load reaction at support B  $R_{B\_Dead} = 95.2 \text{ kN}$ Unfactored imposed load reaction at support B  $R_{B\_Imposed} = 23.9 \text{ kN}$ 


Section details

Section type UC 203x203x52 (BS4-1) Steel grade S275



VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY

| Project                       |            |          |                | Job Ref.       | Job Ref. |  |
|-------------------------------|------------|----------|----------------|----------------|----------|--|
| 1 SPENCER RISE LONDON NW5 1AR |            |          | 18             | 3B06           |          |  |
| Section                       |            |          | Sheet no./rev. | Sheet no./rev. |          |  |
| NEW BASEMENT STRUCTURE        |            |          |                | 15             |          |  |
| Calc. by                      | Date       | Chk'd by | Date           | App'd by       | Date     |  |
| TV                            | 23/03/2018 |          |                |                |          |  |



Classification of cross sections - Section 3.5

Tensile strain coefficient  $\varepsilon = 1.00$  Section classification Plastic

Shear capacity - Section 4.2.3

Design shear force  $F_v = 171.6 \text{ kN}$  Design shear resistance  $P_v = 268.8 \text{ kN}$ 

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment M = 95.4 kNm Moment capacity high shear  $M_c = 154.3 \text{ kNm}$ 

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

 $\text{Limiting deflection} \qquad \qquad \delta_{\text{lim}} = \text{13.333 mm} \qquad \qquad \text{Maximum deflection} \qquad \qquad \delta = \text{3.032 mm}$ 

PASS - Maximum deflection does not exceed deflection limit

### **USE 203 X 203 X 52 UC**

### BEAM B15

SPAN = 3.50m

UDL AT 1ST FLOOR FROM GABLE WALL

DL = 5 X 4.6 = 23 KN/m

POINT LOAD AT 2.10m INC PIER = (23 X 1.2) + (0.675 X 2.5 X 4.6) = 35.4KN

BEAM REACTION AT 2.10m, DL = 95.2 KN, IL = 23.9KN

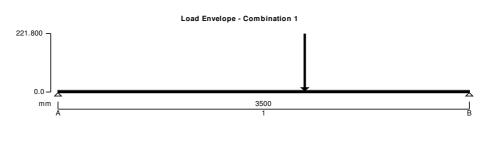
SLAB

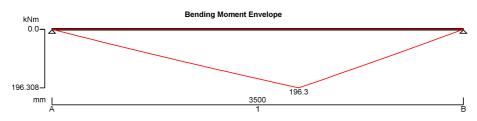
 $DL = 6.8 \times 0.5 = 3.4 \text{KN/m}$ 

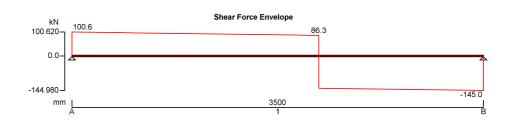
IL = 1.5 X 0.5 = 0.75KN/m

### STEEL BEAM ANALYSIS & DESIGN (BS5950)

### STEEL BEAM ANALYSIS & DESIGN (BS5950)


In accordance with BS5950-1:2000 incorporating Corrigendum No.1


TEDDS calculation version 3.0.05


| VINCENT<br>& RYMILL   |
|-----------------------|
| VINCENT & RYMILL      |
| LAKESIDE COUNTRY CLUB |
| FRIMLEY GREEN         |
| SURREY                |

V & R

| Project                       |                        |          | Job Ref.       |          |      |
|-------------------------------|------------------------|----------|----------------|----------|------|
| 1 SPENCER RISE LONDON NW5 1AR |                        |          | 18             | B06      |      |
| Section                       |                        |          | Sheet no./rev. |          |      |
|                               | NEW BASEMENT STRUCTURE |          |                |          | 16   |
| Calc. by                      | Date                   | Chk'd by | Date           | App'd by | Date |
| TV                            | 23/03/2018             |          |                |          |      |







### **Support conditions**

Support A Vertically restrained
Rotationally free

Support B Vertically restrained
Rotationally free

### **Applied loading**

Deflection

Maximum reaction at support A

Beam loads

Dead full UDL 4 kN/m

Imposed full UDL 0.75 kN/m

Dead point load 131 kN at 2100 mm

Imposed point load 24 kN at 2100 mm

Load combinations Load combination 1 Support A  $Dead \times 1.40$ Imposed  $\times$  1.60 Span 1  $Dead \times 1.40$ Imposed  $\times$  1.60 Support B  $\text{Dead} \times 1.40$ Imposed  $\times$  1.60 **Analysis results**  $M_{max} = 196.3 \text{ kNm}$  $M_{min} = 0 \text{ kNm}$ Maximum moment  $V_{min} = -145 \text{ kN}$  $V_{max} = 100.6 \text{ kN}$ Maximum shear

 $\delta_{\text{max}}$  = 1.4 mm

 $R_{A_{max}} = 100.6 \text{ kN}$ 

 $\delta_{min} = \textbf{0} \ mm$ 

 $R_{A\_min} = \textbf{100.6} \ kN$ 

# VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN

SURREY

| Project  |                        |                |      | Job Ref. |      |
|----------|------------------------|----------------|------|----------|------|
|          | 1 SPENCER RISE         | 181            | 306  |          |      |
| Section  |                        | Sheet no./rev. |      |          |      |
|          | NEW BASEMENT STRUCTURE |                |      |          | 17   |
| Calc. by | Date                   | Chk'd by       | Date | App'd by | Date |
| TV       | 23/03/2018             |                |      |          |      |

Unfactored dead load reaction at support A

Unfactored imposed load reaction at support A

Maximum reaction at support B

Unfactored imposed load reaction at support B

Unfactored dead load reaction at support B

 $R_{A\_Dead} = 59.4 \text{ kN}$ 

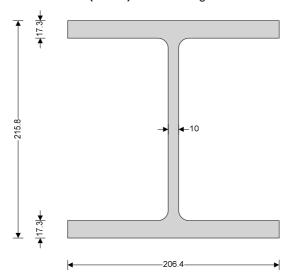
 $R_{A\_Imposed} = 10.9 \text{ kN}$ 

 $R_{B \text{ max}} = 145 \text{ kN}$ 

 $R_{B\_Dead} = 85.6 \text{ kN}$ 

 $R_{B\_Imposed} = \textbf{15.7} \ kN$ 

Section details


Section type

UC 203x203x71 (BS4-1)

Steel grade

S355

 $R_B \min = 145 \text{ kN}$ 



Classification of cross sections - Section 3.5

Tensile strain coefficient  $\varepsilon$  = **0.89** 

Shear capacity - Section 4.2.3

Design shear force  $F_v = \textbf{145} \; kN$  Design shear resistance

Section classification

 $P_v = 446.7 \text{ kN}$ 

**Plastic** 

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment M = 196.3 kNm Moment capacity low shear  $M_c = 275.6 \text{ kNm}$ 

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

Limiting deflection  $\delta_{\text{lim}}$  = **9.722** mm Maximum deflection  $\delta$  = **1.395** mm

PASS - Maximum deflection does not exceed deflection limit

203 x 203 x 71 UC

| V&R                 | Project                       |            |             |      | Job Ref.       |      |
|---------------------|-------------------------------|------------|-------------|------|----------------|------|
| VINCENT<br>& RYMILL | 1 SPENCER RISE LONDON NW5 1AR |            |             |      | 18B06          |      |
| VINCENT & RYMILL    | Section                       |            |             |      | Sheet no./rev. |      |
|                     |                               | NEW BASEME | NT STRUCTUR | E    |                | 18   |
| FRIMLEY GREEN       | Calc. by                      | Date       | Chk'd by    | Date | App'd by       | Date |
| SURREY              | TV                            | 23/03/2018 |             |      |                |      |

### **BASEMENT**

### **WALL UDLS**

( BASED UPON NEW EXTENSION TO UPPER FLOORS)

**PARTY WALLS** 

WALL 10 X 4.6 = 46.00ROOF DL 2.5 X 1 = 2.50

ROOF IL  $2.5 \times 0.75 = 1.90$ 

GROUND FLOOR DL 2.5 X 6.1 = 15.30

GROUND FLOOR IL 2.5 X 1.5 = <u>3.80</u>

63.80KN/m 5.70KN/m

FRONT WALL

ROOF DL  $2 \times 1$  = 2.00

 $1^{ST} \& 2^{ND} FLR DL$  2 X 0.5 X 2 = 2.00

 $1^{ST} \& 2^{ND} FLR IL$  2 X 1.5 X 2 = 6.00

WALL  $5 \times 4.6 \times 0.85 = 19.60$ CEILING  $2 \times 0.25 = 0.50$ 

24.10 KN/m 7.50KN/m

CENTRAL WALL

ROOF DL  $2 \times 1$  = 2.00

ROOF IL  $2 \times 0.75 = 1.50$ 

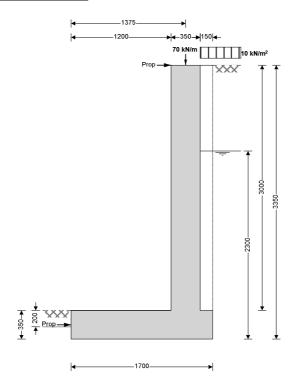
 $1^{ST} \& 2^{ND} FLR DL$  2 X 0.5 X 2 = 2.00

 $1^{ST} \& 2^{ND} FLR IL$  2 X 1.5 X 2 = 6.00

WALL  $5 \times 4.6 \times 0.85 = 19.60$ 

CEILING 2 X 0.25 = <u>0.50</u>

24.10 KN/m 7.50KN/m


| V & R                 | Project                       |            |          |      | Job Ref.       |      |
|-----------------------|-------------------------------|------------|----------|------|----------------|------|
| VINCENT<br>& RYMILL   | 1 SPENCER RISE LONDON NW5 1AR |            |          |      | 18B06          |      |
| VINCENT & RYMILL      | Section                       |            |          |      | Sheet no./rev. |      |
| LAKESIDE COUNTRY CLUB | NEW BASEMENT STRUCTURE        |            |          | 19   |                |      |
| FRIMLEY GREEN         | Calc. by                      | Date       | Chk'd by | Date | App'd by       | Date |
| SURREY                | TV                            | 23/03/2018 |          |      |                |      |

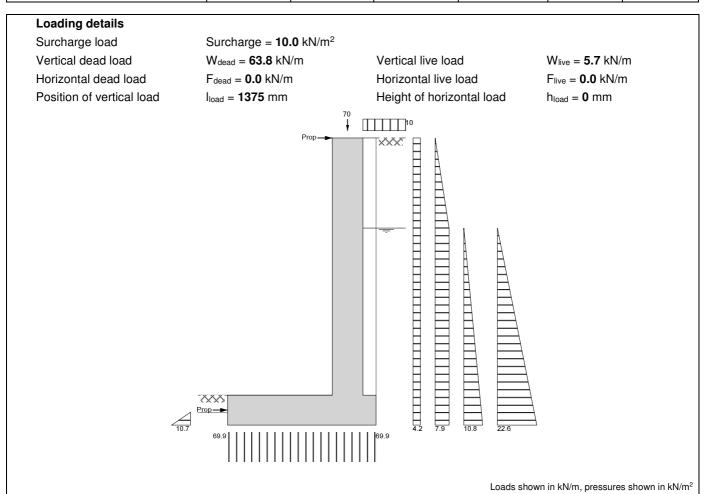
### **PARTY WALL WITH 1C**

# **RETAINING WALL ANALYSIS & DESIGN (BS8002)**

### **RETAINING WALL ANALYSIS (BS 8002:1994)**

TEDDS calculation version 1.2.01.06




| Wall | detai | ls |
|------|-------|----|
| wan  | uciai | 13 |

At-rest pressure

| wan uclans                      |                                              |                                  |                                                    |
|---------------------------------|----------------------------------------------|----------------------------------|----------------------------------------------------|
| Retaining wall type             | Cantilever                                   |                                  |                                                    |
| Height of wall stem             | h <sub>stem</sub> = <b>3000</b> mm           | Wall stem thickness              | $t_{\text{wall}} = \textbf{350} \text{ mm}$        |
| Length of toe                   | I <sub>toe</sub> = <b>1200</b> mm            | Length of heel                   | $I_{heel} = 150 \text{ mm}$                        |
| Overall length of base          | l <sub>base</sub> = <b>1700</b> mm           | Base thickness                   | $t_{\text{base}} = 350 \text{ mm}$                 |
| Height of retaining wall        | $h_{wall} = 3350 \text{ mm}$                 |                                  |                                                    |
| Depth of downstand              | $d_{ds} = 0 \text{ mm}$                      | Thickness of downstand           | $t_{ds} = 350 \text{ mm}$                          |
| Position of downstand           | $I_{ds} = 1250 \text{ mm}$                   |                                  |                                                    |
| Depth of cover in front of wall | $d_{cover} = 0 \text{ mm}$                   | Unplanned excavation depth       | $d_{exc} = 200 \text{ mm}$                         |
| Height of ground water          | $h_{water} = 2300 \text{ mm}$                | Density of water                 | $\gamma_{water} = 9.81 \text{ kN/m}^3$             |
| Density of wall construction    | $\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$ | Density of base construction     | $\gamma_{base}$ = <b>23.6</b> kN/m <sup>3</sup>    |
| Angle of soil surface           | $\beta = 0.0 \text{ deg}$                    | Effective height at back of wall | h <sub>eff</sub> = <b>3350</b> mm                  |
| Mobilisation factor             | M = <b>1.5</b>                               |                                  |                                                    |
| Moist density                   | $\gamma_m = \textbf{18.0} \text{ kN/m}^3$    | Saturated density                | $\gamma_{\text{S}} = \textbf{21.0} \text{ kN/m}^3$ |
| Design shear strength           | φ' = <b>24.2</b> deg                         | Angle of wall friction           | $\delta$ = <b>0.0</b> deg                          |
| Design shear strength           | φ' <sub>b</sub> = <b>24.2</b> deg            | Design base friction             | $\delta_b$ = <b>18.6</b> deg                       |
| Moist density                   | $\gamma_{mb} = \textbf{18.0} \text{ kN/m}^3$ | Allowable bearing                | $P_{bearing} = 100 \text{ kN/m}^2$                 |
| Using Coulomb theory            |                                              |                                  |                                                    |
| Active pressure                 | $K_a = 0.419$                                | Passive pressure                 | $K_p = 4.187$                                      |
|                                 |                                              |                                  |                                                    |

 $K_0 = 0.590$ 

| V&R                                    | Project                       |             |             |      | Job Ref.       |      |
|----------------------------------------|-------------------------------|-------------|-------------|------|----------------|------|
| VINCENT<br>& RYMILL                    | 1 SPENCER RISE LONDON NW5 1AR |             |             |      | 181            | B06  |
| VINCENT & RYMILL LAKESIDE COUNTRY CLUB | Section                       |             |             |      | Sheet no./rev. |      |
|                                        |                               | NEW BASEMEI | NT STRUCTUR | E    | :              | 20   |
| FRIMLEY GREEN                          | Calc. by                      | Date        | Chk'd by    | Date | App'd by       | Date |
| SURREY                                 | TV                            | 23/03/2018  |             |      |                |      |



Calculate propping force

Propping force  $F_{prop} = 36.3 \text{ kN/m}$ 

Check bearing pressure

Total vertical reaction R = 118.8 kN/m Distance to reaction  $x_{bar} = 850 \text{ mm}$ 

Eccentricity of reaction e = 0 mm

Reaction acts within middle third of base

Bearing pressure at toe  $p_{toe} = 69.9 \text{ kN/m}^2$  Bearing pressure at heel  $p_{heel} = 69.9 \text{ kN/m}^2$ 

PASS - Maximum bearing pressure is less than allowable bearing pressure

Calculate propping forces to top and base of wall

Propping force to top of wall  $F_{prop\_top} = 9.795 \text{ kN/m}$  Propping force to base of wall  $F_{prop\_base} = 26.545 \text{ kN/m}$ 

| V & R                                  | Project                       |            |          |      | Job Ref.       |      |
|----------------------------------------|-------------------------------|------------|----------|------|----------------|------|
| VINCENT<br>& RYMILL                    | 1 SPENCER RISE LONDON NW5 1AR |            |          |      | 188            | B06  |
|                                        | Section                       |            |          |      | Sheet no./rev. |      |
| VINCENT & RYMILL LAKESIDE COUNTRY CLUB | NEW BASEMENT STRUCTURE        |            |          |      | 21             |      |
| FRIMLEY GREEN                          | Calc. by                      | Date       | Chk'd by | Date | App'd by       | Date |
| SURREY                                 | TV                            | 23/03/2018 |          |      |                |      |

| <b>RETAINING WA</b> | ALL DESIGN | (BS 8002:1994) |
|---------------------|------------|----------------|
|                     |            |                |

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor  $\gamma_{i\_d} = 1.4$  Live load factor  $\gamma_{i\_l} = 1.6$ 

Earth pressure factor  $\gamma_{fe} = 1.4$ 

Calculate propping force

Propping force  $F_{prop} = 36.3 \text{ kN/m}$ 

Calculate propping forces to top and base of wall

Propping force to top of wall  $F_{prop\_top\_f} = 20.978 \text{ kN/m}$  Propping force to base of wall  $F_{prop\_base\_f} = 61.830 \text{ kN/m}$ 

Design of reinforced concrete retaining wall toe (BS 8002:1994)

**Material properties** 

Strength of concrete  $f_{cu} = 40 \text{ N/mm}^2$  Strength of reinforcement  $f_y = 500 \text{ N/mm}^2$ 

**Base details** 

Minimum reinforcement k = 0.13 % Cover in toe  $c_{toe} = 50 \text{ mm}$ 

Design of retaining wall toe

Shear at heel  $V_{toe} = 104.5 \text{ kN/m}$  Moment at heel  $M_{toe} = 82.4 \text{ kNm/m}$ 

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required  $A_{s\_toe\_req} = 677.8 \text{ mm}^2/\text{m}$  Area provided  $A_{s\_toe\_prov} = 754 \text{ mm}^2/\text{m}$ 

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress  $v_{toe} = 0.356 \text{ N/mm}^2$  Allowable shear stress  $v_{adm} = 5.000 \text{ N/mm}^2$ 

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress  $v_{c_{toe}} = 0.507 \text{ N/mm}^2$ 

 $v_{toe} < v_{c\_toe}$  - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

**Material properties** 

Strength of concrete  $f_{cu} = 40 \text{ N/mm}^2$  Strength of reinforcement  $f_V = 500 \text{ N/mm}^2$ 

**Base details** 

Minimum reinforcement k = 0.13 % Cover in heel  $c_{heel} = 50 \text{ mm}$ 

As the moment is negative the design of the retaining wall heel is beyond the scope of this calculation

Design of reinforced concrete retaining wall stem (BS 8002:1994)

**Material properties** 

Strength of concrete  $f_{cu} = 40 \text{ N/mm}^2$  Strength of reinforcement  $f_y = 500 \text{ N/mm}^2$ 

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem  $c_{\text{stem}} = 75 \text{ mm}$  Cover in wall  $c_{\text{wall}} = 50 \text{ mm}$ 

Design of retaining wall stem

Shear at base of stem  $V_{\text{stem}} = 84.6 \text{ kN/m}$  Moment at base of stem  $M_{\text{stem}} = 45.7 \text{ kNm/m}$ 

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

| V&R                                    | Project  |                               |           |      | Job Ref. |                |  |
|----------------------------------------|----------|-------------------------------|-----------|------|----------|----------------|--|
| VINCENT<br>& RYMILL                    | 1        | 1 SPENCER RISE LONDON NW5 1AR |           |      |          | B06            |  |
| VINCENT & RYMILL LAKESIDE COUNTRY CLUB | Section  | Section                       |           |      |          | Sheet no./rev. |  |
|                                        |          | NEW BASEME                    | NT STRUCT | URE  |          | 22             |  |
| FRIMLEY GREEN                          | Calc. by | Date                          | Chk'd by  | Date | App'd by | Date           |  |
| SURREY                                 | TV       | 23/03/2018                    |           |      |          |                |  |

Area required  $A_{s\_stem\_req} = 455.0 \text{ mm}^2/\text{m}$  Area provided  $A_{s\_stem\_prov} = 754 \text{ mm}^2/\text{m}$ 

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress  $v_{stem} = 0.314 \text{ N/mm}^2$  Allowable shear stress  $v_{adm} = 5.000 \text{ N/mm}^2$ 

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress  $v_c$  stem = **0.534** N/mm<sup>2</sup>

 $v_{stem} < v_{c\_stem}$  - No shear reinforcement required

Design of retaining wall at mid height

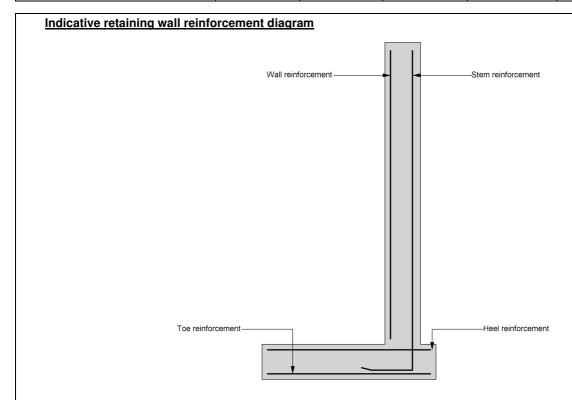
Moment at mid height  $M_{wall} = 22.5 \text{ kNm/m}$ 

Compression reinforcement is not required

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required  $A_{s \text{ wall req}} = 455.0 \text{ mm}^2/\text{m}$  Area provided  $A_{s \text{ wall prov}} = 754 \text{ mm}^2/\text{m}$ 

PASS - Reinforcement provided to the retaining wall at mid height is adequate


Check retaining wall deflection

Max span/depth ratio  $ratio_{max} = 40.00$  Actual span/depth ratio  $ratio_{act} = 11.15$ 

PASS - Span to depth ratio is acceptable

| V&R<br>VINCENT<br>& RYMILL             | Project 1 S |
|----------------------------------------|-------------|
| VINCENT & RYMILL                       | Section     |
| LAKESIDE COUNTRY CLUB<br>FRIMLEY GREEN | Calc. by    |
| SURREY                                 | TV          |

| Project                |                               |                |      | Job Ref. |      |
|------------------------|-------------------------------|----------------|------|----------|------|
|                        | 1 SPENCER RISE LONDON NW5 1AR |                |      |          | B06  |
| Section                |                               | Sheet no./rev. |      |          |      |
| NEW BASEMENT STRUCTURE |                               |                |      | :        | 23   |
| Calc. by               | Date                          | Chk'd by       | Date | App'd by | Date |
| TV                     | 23/03/2018                    |                |      |          |      |

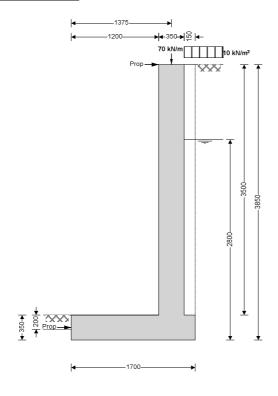


Toe bars - 12 mm dia.@ 150 mm centres - (754 mm<sup>2</sup>/m)

The design of the retaining wall heel is beyond the scope of this calculation!

Wall bars - 12 mm dia.@ 150 mm centres - (754 mm<sup>2</sup>/m)

Stem bars - 12 mm dia.@ 150 mm centres - (754 mm $^2$ /m)


| V & R                                   | Project                       |            |          |      | Job Ref.       |      |
|-----------------------------------------|-------------------------------|------------|----------|------|----------------|------|
| VINCENT<br>& RYMILL                     | 1 SPENCER RISE LONDON NW5 1AR |            |          |      | 18B06          |      |
| VINCENT & RYMILL                        | Section                       |            |          |      | Sheet no./rev. |      |
| VINGENT & RYMILL  LAKESIDE COUNTRY CLUB | NEW BASEMENT STRUCTURE        |            |          | 24   |                |      |
| FRIMLEY GREEN                           | Calc. by                      | Date       | Chk'd by | Date | App'd by       | Date |
| SURREY                                  | TV                            | 23/03/2018 |          |      |                |      |

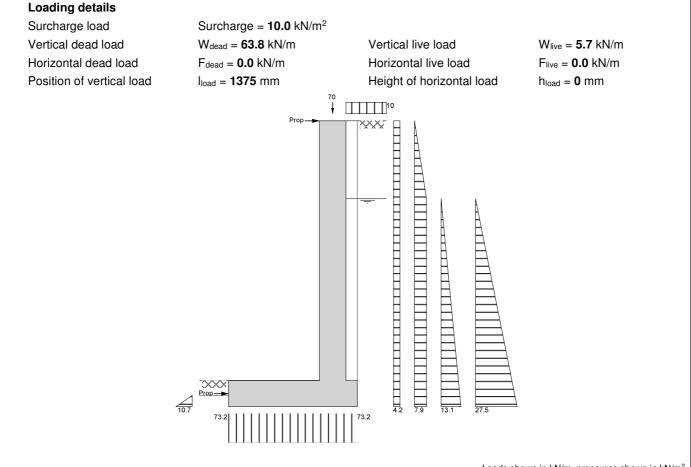
### **PARTY WALL WITH NO 3**

# **RETAINING WALL ANALYSIS & DESIGN (BS8002)**

### **RETAINING WALL ANALYSIS (BS 8002:1994)**

TEDDS calculation version 1.2.01.06




| Wall | details |
|------|---------|
| wan  | uctans  |

At-rest pressure

| wan details                     |                                              |                                  |                                           |
|---------------------------------|----------------------------------------------|----------------------------------|-------------------------------------------|
| Retaining wall type             | Cantilever                                   |                                  |                                           |
| Height of wall stem             | h <sub>stem</sub> = <b>3500</b> mm           | Wall stem thickness              | $t_{wall} = 350 \text{ mm}$               |
| Length of toe                   | I <sub>toe</sub> = <b>1200</b> mm            | Length of heel                   | $I_{heel} = 150 \text{ mm}$               |
| Overall length of base          | l <sub>base</sub> = <b>1700</b> mm           | Base thickness                   | t <sub>base</sub> = <b>350</b> mm         |
| Height of retaining wall        | $h_{wall} = 3850 \text{ mm}$                 |                                  |                                           |
| Depth of downstand              | $d_{ds} = 0 \text{ mm}$                      | Thickness of downstand           | $t_{ds} = 350 \text{ mm}$                 |
| Position of downstand           | $I_{ds} = 1250 \text{ mm}$                   |                                  |                                           |
| Depth of cover in front of wall | $d_{cover} = 0 \text{ mm}$                   | Unplanned excavation depth       | d <sub>exc</sub> = <b>200</b> mm          |
| Height of ground water          | $h_{water} = 2800 \text{ mm}$                | Density of water                 | $\gamma_{water} = 9.81 \text{ kN/m}^3$    |
| Density of wall construction    | $\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$ | Density of base construction     | $\gamma_{base} = 23.6 \text{ kN/m}^3$     |
| Angle of soil surface           | $\beta$ = <b>0.0</b> deg                     | Effective height at back of wall | $h_{\text{eff}} = 3850 \text{ mm}$        |
| Mobilisation factor             | M = <b>1.5</b>                               |                                  |                                           |
| Moist density                   | $\gamma_{m} = 18.0 \text{ kN/m}^{3}$         | Saturated density                | $\gamma_s = \textbf{21.0} \text{ kN/m}^3$ |
| Design shear strength           | φ' = <b>24.2</b> deg                         | Angle of wall friction           | $\delta$ = <b>0.0</b> deg                 |
| Design shear strength           | φ' <sub>b</sub> = <b>24.2</b> deg            | Design base friction             | $\delta_b$ = <b>18.6</b> deg              |
| Moist density                   | $\gamma_{mb} = 18.0 \text{ kN/m}^3$          | Allowable bearing                | $P_{bearing} = 100 \text{ kN/m}^2$        |
| Using Coulomb theory            |                                              |                                  |                                           |
| Active pressure                 | $K_a = 0.419$                                | Passive pressure                 | $K_p = 4.187$                             |
|                                 |                                              |                                  |                                           |

 $K_0 = 0.590$ 

| V & R                 | Project  |             |             |      | Job Ref.       |      |
|-----------------------|----------|-------------|-------------|------|----------------|------|
| VINCENT<br>& RYMILL   | 1 S      | PENCER RISE | LONDON NW5  | 1AR  | 188            | 306  |
| VINCENT & RYMILL      | Section  |             |             |      | Sheet no./rev. |      |
| LAKESIDE COUNTRY CLUB |          | NEW BASEMEI | NT STRUCTUR | E    | 2              | 25   |
| FRIMLEY GREEN         | Calc. by | Date        | Chk'd by    | Date | App'd by       | Date |
| SURREY                | TV       | 23/03/2018  |             |      |                |      |



Loads shown in kN/m, pressures shown in kN/m<sup>2</sup>

Calculate propping force

 $F_{prop} = 58.9 \text{ kN/m}$ Propping force

Check bearing pressure

Total vertical reaction R = 124.5 kN/mDistance to reaction  $x_{bar} = 850 \text{ mm}$ 

e = **0** mm Eccentricity of reaction

Reaction acts within middle third of base

 $p_{toe} = 73.2 \text{ kN/m}^2$ Bearing pressure at heel  $p_{heel} = 73.2 \text{ kN/m}^2$ Bearing pressure at toe

PASS - Maximum bearing pressure is less than allowable bearing pressure

Calculate propping forces to top and base of wall

Propping force to top of wall  $F_{prop\_top} = \textbf{18.254} \text{ kN/m}$ Propping force to base of wall  $F_{prop\_base} = 40.692 \text{ kN/m}$ 

| V & R                 | Project  |             |             |      | Job Ref.       |      |
|-----------------------|----------|-------------|-------------|------|----------------|------|
| VINCENT<br>& RYMILL   | 1 S      | PENCER RISE | LONDON NW5  | 1AR  | 188            | 306  |
| VINCENT & RYMILL      | Section  |             |             |      | Sheet no./rev. |      |
| LAKESIDE COUNTRY CLUB |          | NEW BASEME  | NT STRUCTUR | E    | 2              | 26   |
| FRIMLEY GREEN         | Calc. by | Date        | Chk'd by    | Date | App'd by       | Date |
| SURREY                | TV       | 23/03/2018  |             |      |                |      |

| <b>RETAINING WA</b> | ALL DESIGN | (BS 8002:1994) |
|---------------------|------------|----------------|
|                     |            |                |

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor  $\gamma_{f,d} = 1.4$  Live load factor  $\gamma_{f,l} = 1.6$ 

Earth pressure factor  $\gamma_{f_e} = 1.4$ 

Calculate propping force

Propping force  $F_{prop} = 58.9 \text{ kN/m}$ 

Calculate propping forces to top and base of wall

Propping force to top of wall  $F_{prop\_top\_f} = 36.323 \text{ kN/m}$  Propping force to base of wall  $F_{prop\_base\_f} = 85.622 \text{ kN/m}$ 

Design of reinforced concrete retaining wall toe (BS 8002:1994)

**Material properties** 

Strength of concrete  $f_{cu} = 40 \text{ N/mm}^2$  Strength of reinforcement  $f_y = 500 \text{ N/mm}^2$ 

**Base details** 

Minimum reinforcement k = 0.13 % Cover in toe  $c_{toe} = 50 \text{ mm}$ 

Design of retaining wall toe

Shear at heel  $V_{toe} = 110.2 \text{ kN/m}$  Moment at heel  $M_{toe} = 86.8 \text{ kNm/m}$ 

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required  $A_{s \text{ toe req}} = 714.4 \text{ mm}^2/\text{m}$  Area provided  $A_{s \text{ toe prov}} = 754 \text{ mm}^2/\text{m}$ 

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress  $v_{toe} = 0.375 \text{ N/mm}^2$  Allowable shear stress  $v_{adm} = 5.000 \text{ N/mm}^2$ 

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress  $v_{c_{toe}} = 0.507 \text{ N/mm}^2$ 

 $v_{toe} < v_{c\_toe}$  - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

**Material properties** 

Strength of concrete  $f_{cu} = 40 \text{ N/mm}^2$  Strength of reinforcement  $f_V = 500 \text{ N/mm}^2$ 

**Base details** 

Minimum reinforcement k = 0.13 % Cover in heel  $c_{heel} = 50 \text{ mm}$ 

As the moment is negative the design of the retaining wall heel is beyond the scope of this calculation

Design of reinforced concrete retaining wall stem (BS 8002:1994)

**Material properties** 

Strength of concrete  $f_{cu} = 40 \text{ N/mm}^2$  Strength of reinforcement  $f_y = 500 \text{ N/mm}^2$ 

Wall details

Minimum reinforcement k = **0.13** %

Cover in stem  $c_{\text{stem}} = 75 \text{ mm}$  Cover in wall  $c_{\text{wall}} = 50 \text{ mm}$ 

Design of retaining wall stem

Shear at base of stem  $V_{\text{stem}} = 114.6 \text{ kN/m}$  Moment at base of stem  $M_{\text{stem}} = 71.3 \text{ kNm/m}$ 

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

| V&R                   | Project  |             |             |      | Job Ref.       |      |
|-----------------------|----------|-------------|-------------|------|----------------|------|
| VINCENT<br>& RYMILL   | 1 S      | PENCER RISE | LONDON NW5  | 1AR  | 188            | 306  |
| VINCENT & RYMILL      | Section  |             |             |      | Sheet no./rev. |      |
| LAKESIDE COUNTRY CLUB |          | NEW BASEMEI | NT STRUCTUR | E    | 2              | 27   |
| FRIMLEY GREEN         | Calc. by | Date        | Chk'd by    | Date | App'd by       | Date |
| SURREY                | TV       | 23/03/2018  |             |      |                |      |

Area required  $A_{s\_stem\_req} = 641.3 \text{ mm}^2/\text{m}$  Area provided  $A_{s\_stem\_prov} = 754 \text{ mm}^2/\text{m}$ 

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress  $v_{stem} = 0.426 \text{ N/mm}^2$  Allowable shear stress  $v_{adm} = 5.000 \text{ N/mm}^2$ 

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress  $v_c$  stem = **0.534** N/mm<sup>2</sup>

 $v_{stem} < v_{c\_stem}$  - No shear reinforcement required

Design of retaining wall at mid height

Moment at mid height  $M_{wall} = 34.5 \text{ kNm/m}$ 

Compression reinforcement is not required

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required  $A_{s \text{ wall req}} = 455.0 \text{ mm}^2/\text{m}$  Area provided  $A_{s \text{ wall prov}} = 754 \text{ mm}^2/\text{m}$ 

PASS - Reinforcement provided to the retaining wall at mid height is adequate

Check retaining wall deflection

Max span/depth ratio  $ratio_{max} = 28.10$  Actual span/depth ratio  $ratio_{act} = 13.01$ 

PASS - Span to depth ratio is acceptable

| V&R                                    | Project  |             |             |      | Job Ref.       |      |
|----------------------------------------|----------|-------------|-------------|------|----------------|------|
| VINCENT<br>& RYMILL                    | 1 S      | PENCER RISE | LONDON NW5  | 1AR  | 188            | 306  |
| VINICENT & DVMII I                     | Section  |             |             |      | Sheet no./rev. |      |
| VINCENT & RYMILL LAKESIDE COUNTRY CLUB |          | NEW BASEMEI | NT STRUCTUR | E    | 2              | 28   |
| FRIMLEY GREEN                          | Calc. by | Date        | Chk'd by    | Date | App'd by       | Date |
| SURREY                                 | TV       | 23/03/2018  |             |      |                |      |

# Indicative retaining wall reinforcement diagram Wall reinforcement Stem reinforcement Toe reinforcement Heel reinforcement

Toe bars - 12 mm dia.@ 150 mm centres - (754 mm<sup>2</sup>/m)

The design of the retaining wall heel is beyond the scope of this calculation!

Wall bars - 12 mm dia.@ 150 mm centres -  $(754 \text{ mm}^2/\text{m})$ 

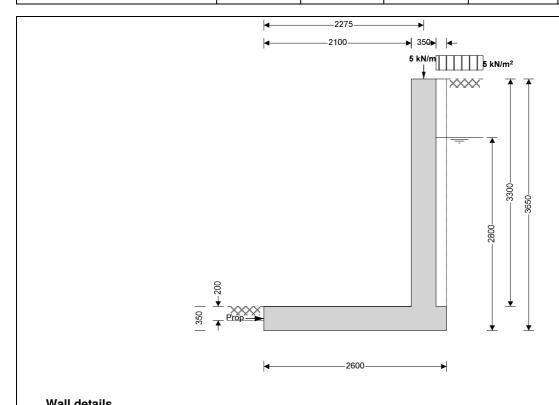
Stem bars - 12 mm dia.@ 150 mm centres - (754 mm<sup>2</sup>/m)

### **FRONT WALL AND REAR WALL RETURNS.**

BY INSPECTION WILL BE NO MORE ONEROUS THAT PARTY WALLS THEREFORE USE SAME CONCRETE SECTIONS AND REINFORCEMENT.

**FRONT AND REAR LIGHTWELL WALLS** 

### **RETAINING WALL ANALYSIS & DESIGN (BS8002)**


**RETAINING WALL ANALYSIS (BS 8002:1994)** 

TEDDS calculation version 1.2.01.06

| V&R<br>VINCENT<br>& BYMILL | Projec  |
|----------------------------|---------|
| ENT O DVAILL               | Section |

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY

| Project                       | Project    |          |      | Job Ref.       |      |  |
|-------------------------------|------------|----------|------|----------------|------|--|
| 1 SPENCER RISE LONDON NW5 1AR |            |          | 1    | 8B06           |      |  |
| Section                       | on         |          |      | Sheet no./rev. |      |  |
| NEW BASEMENT STRUCTURE        |            |          |      |                | 29   |  |
| Calc. by                      | Date       | Chk'd by | Date | App'd by       | Date |  |
| TV                            | 23/03/2018 |          |      |                |      |  |



| wan details |  |  |
|-------------|--|--|
|             |  |  |

Horizontal dead load

Position of vertical load

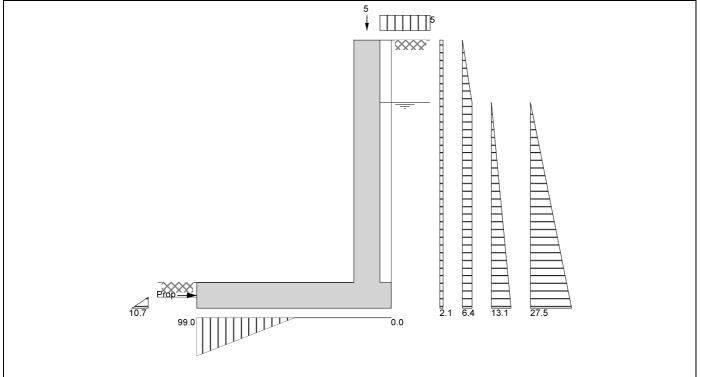
| Retaining wall type             | Cantilever                                      |                                  |                                                    |
|---------------------------------|-------------------------------------------------|----------------------------------|----------------------------------------------------|
| Height of wall stem             | h <sub>stem</sub> = <b>3300</b> mm              | Wall stem thickness              | $t_{wall} = 350 \text{ mm}$                        |
| Length of toe                   | $I_{toe} = 2100 \text{ mm}$                     | Length of heel                   | $I_{heel} = 150 \text{ mm}$                        |
| Overall length of base          | l <sub>base</sub> = <b>2600</b> mm              | Base thickness                   | t <sub>base</sub> = <b>350</b> mm                  |
| Height of retaining wall        | $h_{wall} = 3650 \text{ mm}$                    |                                  |                                                    |
| Depth of downstand              | $d_{ds} = 0 \text{ mm}$                         | Thickness of downstand           | $t_{ds} = 350 \text{ mm}$                          |
| Position of downstand           | $l_{ds} = 1900 \text{ mm}$                      |                                  |                                                    |
| Depth of cover in front of wall | d <sub>cover</sub> = <b>0</b> mm                | Unplanned excavation depth       | $d_{exc} = 200 \text{ mm}$                         |
| Height of ground water          | $h_{water} = 2800 \text{ mm}$                   | Density of water                 | $\gamma_{water} = 9.81 \text{ kN/m}^3$             |
| Density of wall construction    | $\gamma_{wall}$ = <b>23.6</b> kN/m <sup>3</sup> | Density of base construction     | $\gamma_{base}$ = <b>23.6</b> kN/m <sup>3</sup>    |
| Angle of soil surface           | $\beta$ = <b>0.0</b> deg                        | Effective height at back of wall | $h_{eff} = 3650 \text{ mm}$                        |
| Mobilisation factor             | M = <b>1.5</b>                                  |                                  |                                                    |
| Moist density                   | $\gamma_m = 18.0 \text{ kN/m}^3$                | Saturated density                | $\gamma_{\text{S}} = \textbf{21.0} \text{ kN/m}^3$ |
| Design shear strength           | φ' = <b>24.2</b> deg                            | Angle of wall friction           | $\delta$ = <b>0.0</b> deg                          |
| Design shear strength           | φ' <sub>b</sub> = <b>24.2</b> deg               | Design base friction             | $\delta_b$ = <b>18.6</b> deg                       |
| Moist density                   | $\gamma_{mb} = \textbf{18.0} \text{ kN/m}^3$    | Allowable bearing                | $P_{bearing} = 100 \text{ kN/m}^2$                 |
| Using Coulomb theory            |                                                 |                                  |                                                    |
| Active pressure                 | $K_a = 0.419$                                   | Passive pressure                 | $K_p = 4.187$                                      |
| At-rest pressure                | $K_0 = 0.590$                                   |                                  |                                                    |
| Loading details                 |                                                 |                                  |                                                    |
| Surcharge load                  | Surcharge = <b>5.0</b> kN/m <sup>2</sup>        |                                  |                                                    |
| Vertical dead load              | $W_{dead} = 5.0 \text{ kN/m}$                   | Vertical live load               | $W_{live} = 0.0 \text{ kN/m}$                      |

Horizontal live load

Height of horizontal load

 $F_{live} = 0.0 \text{ kN/m}$ 

 $h_{load} = 0 \text{ mm}$ 


 $F_{dead} = 0.0 \text{ kN/m}$ 

I<sub>load</sub> = **2275** mm

| VINCEN<br>& RYMIL | Т   |
|-------------------|-----|
| CENT &            | RYM |

VINCENT & RYMILL LAKESIDE COUNTRY CLUB FRIMLEY GREEN SURREY

| Project                |                                     |          |      | Job Ref.       |                |  |  |
|------------------------|-------------------------------------|----------|------|----------------|----------------|--|--|
|                        | 1 SPENCER RISE LONDON NW5 1AR 18B06 |          |      | 8B06           |                |  |  |
| Section                |                                     |          |      | Sheet no./rev. | Sheet no./rev. |  |  |
| NEW BASEMENT STRUCTURE |                                     |          |      |                | 30             |  |  |
| Calc. by               | Date                                | Chk'd by | Date | App'd by       | Date           |  |  |
| TV                     | 23/03/2018                          |          |      |                |                |  |  |



Loads shown in kN/m, pressures shown in kN/m²

### Calculate propping force

Propping force  $F_{prop} = 62.8 \text{ kN/m}$ 

### **Check bearing pressure**

Total vertical reaction R = 64.5 kN/m Distance to reaction  $x_{bar} = 435 \text{ mm}$ 

Eccentricity of reaction e = **865** mm

Reaction acts outside middle third of base

Bearing pressure at toe  $p_{toe} = 99.0 \text{ kN/m}^2$  Bearing pressure at heel  $p_{heel} = 0.0 \text{ kN/m}^2$ 

PASS - Maximum bearing pressure is less than allowable bearing pressure

| V & R                                   | Project                       |             |             |      | Job Ref.       |      |
|-----------------------------------------|-------------------------------|-------------|-------------|------|----------------|------|
| VINCENT<br>& RYMILL                     | 1 SPENCER RISE LONDON NW5 1AR |             |             |      | 18B06          |      |
|                                         | Section                       |             |             |      | Sheet no./rev. |      |
| VINCENT & RYMILL  LAKESIDE COUNTRY CLUB |                               | NEW BASEMEI | NT STRUCTUR | E    | ;              | 31   |
| FRIMLEY GREEN                           | Calc. by                      | Date        | Chk'd by    | Date | App'd by       | Date |
| SURREY                                  | TV                            | 23/03/2018  |             |      |                |      |

| <u>RETAINING</u> | WALL DESIGN | (BS 8002:1994) |
|------------------|-------------|----------------|
|                  |             |                |

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor  $\gamma_{f d} = 1.4$  Live load factor  $\gamma_{f l} = 1.6$ 

Earth pressure factor  $\gamma_{fe} = 1.4$ 

Calculate propping force

Propping force  $F_{prop} = 62.8 \text{ kN/m}$ 

Design of reinforced concrete retaining wall toe (BS 8002:1994)

**Material properties** 

Strength of concrete  $f_{cu} = 40 \text{ N/mm}^2$  Strength of reinforcement  $f_y = 500 \text{ N/mm}^2$ 

**Base details** 

Minimum reinforcement k = 0.13 % Cover in toe  $c_{toe} = 50 \text{ mm}$ 

Design of retaining wall toe

Shear at heel  $V_{toe} = 24.3 \text{ kN/m}$  Moment at heel  $M_{toe} = 29.9 \text{ kNm/m}$ 

Compression reinforcement is not required

Check toe in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

Area required  $A_{s\_toe\_prov} = 455.0 \text{ mm}^2/\text{m}$  Area provided  $A_{s\_toe\_prov} = 2011 \text{ mm}^2/\text{m}$ 

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress  $v_{toe} = 0.083 \text{ N/mm}^2$  Allowable shear stress  $v_{adm} = 5.000 \text{ N/mm}^2$ 

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress  $v_{c toe} = 0.706 \text{ N/mm}^2$ 

*v*<sub>toe</sub> < *v*<sub>c\_toe</sub> - No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

**Material properties** 

Strength of concrete  $f_{cu} = 40 \text{ N/mm}^2$  Strength of reinforcement  $f_y = 500 \text{ N/mm}^2$ 

**Base details** 

Minimum reinforcement k = 0.13 % Cover in heel  $c_{heel} = 50 \text{ mm}$ 

Design of retaining wall heel

Shear at heel  $V_{heel} = 17.0 \text{ kN/m}$  Moment at heel  $M_{heel} = 4.4 \text{ kNm/m}$ 

Compression reinforcement is not required

Check heel in bending

Reinforcement provided 12 mm dia.bars @ 150 mm centres

Area required  $A_{s\_heel\_req} = 455.0 \text{ mm}^2/\text{m}$  Area provided  $A_{s\_heel\_prov} = 754 \text{ mm}^2/\text{m}$ 

PASS - Reinforcement provided at the retaining wall heel is adequate

Check shear resistance at heel

Design shear stress  $v_{heel} = 0.058 \text{ N/mm}^2$  Allowable shear stress  $v_{adm} = 5.000 \text{ N/mm}^2$ 

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress  $v_{c heel} = 0.507 \text{ N/mm}^2$ 

 $v_{heel} < v_{c\_heel}$  - No shear reinforcement required

### Job Ref. Project 1 SPENCER RISE LONDON NW5 1AR 18B06 Sheet no./rev. Section VINCENT & RYMILL **NEW BASEMENT STRUCTURE** 32 LAKESIDE COUNTRY CLUB Calc. by Date Date Chk'd by Date App'd by FRIMLEY GREEN SURREY TV 23/03/2018

### Design of reinforced concrete retaining wall stem (BS 8002:1994)

**Material properties** 

Strength of concrete  $f_{cu} = 40 \text{ N/mm}^2$  Strength of reinforcement  $f_y = 500 \text{ N/mm}^2$ 

Wall details

Minimum reinforcement k = 0.13 %

Cover in stem Cover in wall Cover in wall Cover in wall cover in wall

Design of retaining wall stem

Shear at base of stem  $V_{\text{stem}} = 4.0 \text{ kN/m}$  Moment at base of stem  $M_{\text{stem}} = 138.3 \text{ kNm/m}$ 

Compression reinforcement is not required

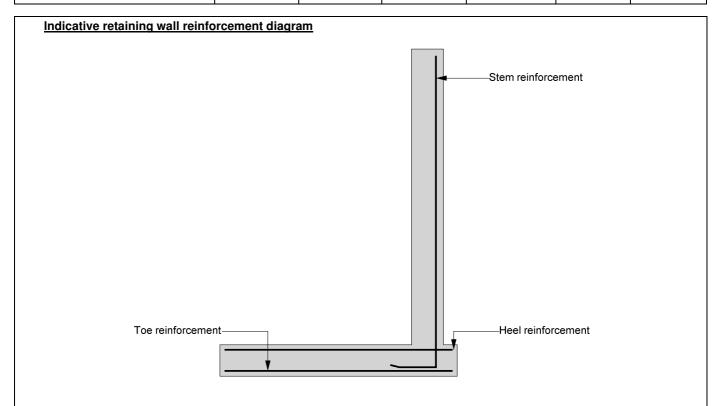
Check wall stem in bending

Reinforcement provided 16 mm dia.bars @ 100 mm centres

 $Area \ required \qquad \qquad A_{s\_stem\_req} = 1263.0 \ mm^2/m \qquad Area \ provided \qquad \qquad A_{s\_stem\_prov} = 2011 \ mm^2/m$ 

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem


Design shear stress  $v_{\text{stem}} = 0.015 \text{ N/mm}^2$  Allowable shear stress  $v_{\text{adm}} = 5.000 \text{ N/mm}^2$ 

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress  $v_{c\_stem} = 0.744 \text{ N/mm}^2$ 

v<sub>stem</sub> < v<sub>c\_stem</sub> - No shear reinforcement required

| V&R                                     | Project  |             |                |      | Job Ref. |      |
|-----------------------------------------|----------|-------------|----------------|------|----------|------|
| VINCENT<br>& RYMILL                     | 1 S      | 18B06       |                |      |          |      |
| VINCENT & DVMILL                        | Section  |             | Sheet no./rev. |      |          |      |
| VINCENT & RYMILL  LAKESIDE COUNTRY CLUB |          | NEW BASEMEI | NT STRUCTUR    | E    | ;        | 33   |
| FRIMLEY GREEN                           | Calc. by | Date        | Chk'd by       | Date | App'd by | Date |
| SURREY                                  | TV       | 23/03/2018  |                |      |          |      |



Toe bars - 16 mm dia.@ 100 mm centres - (2011 mm<sup>2</sup>/m)

Heel bars - 12 mm dia.@ 150 mm centres - (754 mm<sup>2</sup>/m)

Stem bars - 16 mm dia.@ 100 mm centres - (2011 mm<sup>2</sup>/m)

# SPAN TO DEPTH RATIO EXCEEDED SLIGHTLY SO ADD ADDITIONAL REBAR ON ISIDE FACE TO HELP WALL SPAN L TO R BETWEEN RETURN WALLS

SAY MAX P AT BASE = (0.35 X 3.4 X 18 x 1.4) + (0.35 X 5 X 1.6) = 33 KN/m ULT

B.M MAX LATERALLY ( CONSERVATIVE AS TAKEN AT BASE OF WALL AND APPLIED OVER WHOLE HEIGHT)

 $= 33 \times 3.5^{2} / 8 = 50.5 \text{KN.m}$ 

### RC SLAB DESIGN (BS8110)

### RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

### **CONCRETE SLAB DESIGN (CL 3.5.3 & 4)**

### SIMPLE ONE WAY SPANNING SLAB DEFINITION

Overall depth of slab h = 350 mm

Cover to tension reinforcement resisting sagging cb = 50 mm

Trial bar diameter  $D_{tryx} = 16 \text{ mm}$ 

Depth to tension steel (resisting sagging)

$$d_x = h - c_b - D_{tryx}/2 = 292 \text{ mm}$$

### Project Job Ref. 1 SPENCER RISE LONDON NW5 1AR 18B06 Section Sheet no./rev. **VINCENT & RYMILL NEW BASEMENT STRUCTURE** 34 LAKESIDE COUNTRY CLUB Calc. by Date Chk'd by Date FRIMLEY GREEN App'd by TV 23/03/2018 **SURREY**

Characteristic strength of reinforcement fy = 500 N/mm<sup>2</sup>

Characteristic strength of concrete fcu = **35** N/mm<sup>2</sup>

### **ONE WAY SPANNING SLAB (CL 3.5.4)**

### **MAXIMUM DESIGN MOMENTS IN SPAN**

Design sagging moment (per m width of slab)  $m_{sx} = 51.0 \text{ kNm/m}$ 

### CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab)  $m_{sx} = 51.0 \text{ kNm/m}$ 

Moment Redistribution Factor  $\beta_{bx} = 1.0$ 

### Area of reinforcement required

$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.017$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist sagging

### Slab requiring outer tension steel only - bars (sagging)

$$z_x = min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{(0.25 - K_x/0.9))})) = 277 \text{ mm}$$

Neutral axis depth  $x_x = (d_x - z_x) / 0.45 = 32 \text{ mm}$ 

Area of tension steel required

$$A_{sx\_req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_y \times z_x) = 423 \text{ mm}^2/\text{m}$$

**Tension steel** 

### Provide 16 dia bars @ 200 centres outer tension steel resisting sagging

$$A_{sx prov} = A_{sx} = 1010 \text{ mm}^2/\text{m}$$

Area of outer tension steel provided sufficient to resist sagging

### **TRANSVERSE BOTTOM STEEL - INNER**

Inner layer of transverse steel

### Provide 12 dia bars @ 100 centres

$$A_{sy prov} = A_{sy} = 1130 \text{ mm}^2/\text{m}$$

### Check min and max areas of steel resisting sagging

Total area of concrete  $A_c = h = 350000 \text{ mm}^2/\text{m}$ 

Minimum % reinforcement k = 0.13 %

$$A_{st\_min} = k \times A_c = 455 \text{ mm}^2/\text{m}$$

$$A_{st max} = 4 \% \times A_c = 14000 \text{ mm}^2/\text{m}$$

Steel defined:

Outer steel resisting sagging Asx\_prov = 1010 mm<sup>2</sup>/m

Area of outer steel provided (sagging) OK

Inner steel resisting sagging A<sub>sy\_prov</sub> = **1130** mm<sup>2</sup>/m

Area of inner steel provided (sagging) OK

### **CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)**

Slab span length  $l_x = 3.500 \text{ m}$ 

Design ultimate moment in shorter span per m width  $m_{sx} = 51 \text{ kNm/m}$ 

| V&R                                    | Project                       |             |             |      | Job Ref.       |      |
|----------------------------------------|-------------------------------|-------------|-------------|------|----------------|------|
| VINCENT<br>& RYMILL                    | 1 SPENCER RISE LONDON NW5 1AR |             |             |      | 18B06          |      |
| VINICENT & DVMII I                     | Section                       |             |             |      | Sheet no./rev. |      |
| VINCENT & RYMILL LAKESIDE COUNTRY CLUB |                               | NEW BASEMEI | NT STRUCTUR | E    | ;              | 35   |
| FRIMLEY GREEN                          | Calc. by                      | Date        | Chk'd by    | Date | App'd by       | Date |
| SURREY                                 | TV                            | 23/03/2018  |             |      |                |      |

Depth to outer tension steel  $d_x = 292 \text{ mm}$ 

### Tension steel

Area of outer tension reinforcement provided Asx\_prov = 1010 mm<sup>2</sup>/m

Area of tension reinforcement required Asx\_req = 423 mm<sup>2</sup>/m

Moment Redistribution Factor  $\beta_{bx} = 1.00$ 

### **Modification Factors**

Basic span / effective depth ratio (Table 3.9) ratio<sub>span\_depth</sub> = 20

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

$$f_s = 2 \times f_y \times A_{sx req} / (3 \times A_{sx prov} \times \beta_{bx}) = 139.6 \text{ N/mm}^2$$

$$factor_{tens} = min \left( 2, 0.55 + \left( 477 \text{ N/mm}^2 - f_s \right) / \left( 120 \times \left( 0.9 \text{ N/mm}^2 + m_{sx} / d_x^2 \right) \right) \right) = \textbf{2.000}$$

### Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span  $I_{max} = ratio_{span\_depth} \times factor_{tens} \times d_x = 11.68 \text{ m}$ 

### Check the actual beam span

Actual span/depth ratio  $l_x / d_x = 11.99$ 

Span depth limit ratio<sub>span\_depth</sub> × factor<sub>tens</sub> = **40.00** 

Span/Depth ratio check satisfied

### H16 INSIDE FACE AT 200 HORIZONTALLY TIED TO MESH

### **BASEMENT SLAB**

SPAN = 2.20m PROTECTED FROM HEAVE BY CORDEK. DOWN FORCE DL = 6.8KN/m², IL = 1.50 KN/m² ULT BM = 7.2KN.m

UPLIFT

WATER – DL = 28 - 6.8 = 21.2KN/m

ULT BM = 21.2 X 2.2<sup>2</sup> X 1.4 / 8 = 18KN.m

### RC SLAB DESIGN (BS8110)

RC SLAB DESIGN (BS8110:PART1:1997)

TEDDS calculation version 1.0.04

**CONCRETE SLAB DESIGN (CL 3.5.3 & 4)** 

### SIMPLE ONE WAY SPANNING SLAB DEFINITION

Overall depth of slab h = 200 mm

### Project Job Ref. 1 SPENCER RISE LONDON NW5 1AR 18B06 Sheet no./rev. Section **VINCENT & RYMILL NEW BASEMENT STRUCTURE** 36 LAKESIDE COUNTRY CLUB Calc. by Date Chk'd by Date App'd by Date FRIMLEY GREEN TV 23/03/2018 **SURREY**

Cover to tension reinforcement resisting sagging  $c_b = 50 \text{ mm}$ 

Trial bar diameter  $D_{tryx} = 10 \text{ mm}$ 

Depth to tension steel (resisting sagging)

$$d_x = h - c_b - D_{tryx}/2 = 145 \text{ mm}$$

Characteristic strength of reinforcement  $f_y = 500 \text{ N/mm}^2$ 

Characteristic strength of concrete fcu = 35 N/mm<sup>2</sup>

### **ONE WAY SPANNING SLAB (CL 3.5.4)**

### **MAXIMUM DESIGN MOMENTS IN SPAN**

Design sagging moment (per m width of slab)  $m_{sx} = 18.0 \text{ kNm/m}$ 

### CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

Design sagging moment (per m width of slab)  $m_{sx} = 18.0 \text{ kNm/m}$ 

Moment Redistribution Factor  $\beta_{bx} = 1.0$ 

### Area of reinforcement required

$$K_x = abs(m_{sx}) / (d_x^2 \times f_{cu}) = 0.024$$

$$K'_x = min (0.156, (0.402 \times (\beta_{bx} - 0.4)) - (0.18 \times (\beta_{bx} - 0.4)^2)) = 0.156$$

Outer compression steel not required to resist sagging

### One-way Spanning Slab requiring tension steel only (sagging) - mesh

$$z_x = min ((0.95 \times d_x), (d_x \times (0.5 + \sqrt{(0.25 - K_x/0.9))})) = 138 \text{ mm}$$

Neutral axis depth  $x_x = (d_x - z_x) / 0.45 = 16 \text{ mm}$ 

Area of tension steel required

$$A_{sx\_req} = abs(m_{sx}) / (1/\gamma_{ms} \times f_y \times z_x) = 301 \text{ mm}^2/\text{m}$$

### **Tension steel**

### Use A393 Mesh

$$A_{sx prov} = A_{sl} = 393 \text{ mm}^2/\text{m} A_{sy prov} = A_{st} = 393 \text{ mm}^2/\text{m}$$

$$D_x = d_{sl} = 10 \text{ mm } D_y = d_{st} = 10 \text{ mm}$$

Area of tension steel provided sufficient to resist sagging

### Check min and max areas of steel resisting sagging

Total area of concrete  $A_c = h = 200000 \text{ mm}^2/\text{m}$ 

Minimum % reinforcement k = 0.13 %

$$A_{st min} = k \times A_c = 260 mm^2/m$$

$$A_{st max} = 4 \% \times A_c = 8000 \text{ mm}^2/\text{m}$$

Steel defined:

Outer steel resisting sagging A<sub>sx\_prov</sub> = **393** mm<sup>2</sup>/m

Area of outer steel provided (sagging) OK

Inner steel resisting sagging A<sub>sy prov</sub> = 393 mm<sup>2</sup>/m

Area of inner steel provided (sagging) OK

### **CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)**

Slab span length  $l_x = 2.200 \text{ m}$ 

Design ultimate moment in shorter span per m width  $m_{sx} = 18 \text{ kNm/m}$ 

| V&R                                    | Project                       |                |             |      | Job Ref. |      |
|----------------------------------------|-------------------------------|----------------|-------------|------|----------|------|
| VINCENT<br>& RYMILL                    | 1 SPENCER RISE LONDON NW5 1AR |                |             |      | 18B06    |      |
| VINCENT & DVMILL                       | Section                       | Sheet no./rev. |             |      |          |      |
| VINCENT & RYMILL LAKESIDE COUNTRY CLUB |                               | NEW BASEMEI    | NT STRUCTUR | E    | ;        | 37   |
| FRIMLEY GREEN                          | Calc. by                      | Date           | Chk'd by    | Date | App'd by | Date |
| SURREY                                 | TV                            | 23/03/2018     |             |      |          | ļ    |

Depth to outer tension steel  $d_x = 145 \text{ mm}$ 

### **Tension steel**

Area of outer tension reinforcement provided Asx\_prov = 393 mm<sup>2</sup>/m

Area of tension reinforcement required  $A_{sx\_req} = 301 \text{ mm}^2/\text{m}$ 

Moment Redistribution Factor  $\beta_{bx} = 1.00$ 

### **Modification Factors**

Basic span / effective depth ratio (Table 3.9) ratio<sub>span\_depth</sub> = 20

The modification factor for spans in excess of 10m (ref. cl 3.4.6.4) has not been included.

$$f_s = 2 \times f_y \times A_{sx\_req} \ / \ (3 \times A_{sx\_prov} \times \beta_{bx} \ ) = \textbf{254.9} \ N/mm^2$$

$$factor_{tens} = min \left( 2, 0.55 + \left( 477 \text{ N/mm}^2 - f_s \right) / \left( 120 \times \left( 0.9 \text{ N/mm}^2 + m_{sx} / d_x^2 \right) \right) \right) = \textbf{1.604}$$

### Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span  $I_{max} = ratio_{span\_depth} \times factor_{tens} \times d_x = 4.65 \text{ m}$ 

### Check the actual beam span

Actual span/depth ratio  $I_x / d_x = 15.17$ 

Span depth limit ratio<sub>span\_depth</sub> × factor<sub>tens</sub> = **32.08** 

Span/Depth ratio check satisfied

### 1 LAYER A393 FABRIC TOP AND BOTTOM 50 COVER