Appendix 4: Ground Movement and Damage Impact Assessment

54 Sumatra Road London NW6 1PR

Bini Struct-e	Project 54 Sumatra road, London, NW6 1PR		Job Ref 11654		
Ltd. Consulting Structural	Drawing Ref	Calculations by BD	Checked by DB	Sheet of	
Engineers	Part of Structure		Date 09.2018		

MOVERNELT DUE TO REMOVAL OF SOIL : i.e. UPLIFT & MEANE

:. DUE TO WALLS & PLOORS ADDUCE: 73.6 × $(8 \times 2 + 5.2 \times 2) = 1928 \text{ MALLS}$ DUE TO WALLS AT GASEAGENT = 0.3 × 3×24 × $(8 \times 2 + 5.2 \times 2) = 510 \text{ MALLS}$ DUE TO RAFT SLABESCREED= 0.475×24×8×5.2 = 474 TO TAL LOAD = 1928 + 570 + 2474 = 2472 \text{ MALLS}

SOIL REMOJAL !. TUTAL UPLIPE FORCE = 18x8×BA × 2.8 + 1.2x8×1.5×18= 1751 KA ... F.O.S = 2972/1701 = 17 ... NO UPLIFE. SLAB & HEAVE DESLUP REFER TO FOLLOWING PAOES

Tedds Bini Struct-e	Project 54 Sumatra road, London, NW6 1PR					Job no. 11654	
	Calcs for Basement Slab - HEAVE					Start page no./Revision 1	
	Calcs by DB	Calcs date 21/10/2018	Checked by	Checked date	Approved by	Approved date	

RC SLAB DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.0.10

Slab definition

Type of slab	Two way spanning with restrained edges
Overall slab depth	h = 400 mm
Shorter effective span of panel	l _x = 4500 mm
Longer effective span of panel	l _y = 9600 mm
Support conditions	Four edges continuous (interior panel)
Top outer layer of reinforcement	Short span direction
Bottom outer layer of reinforcement	Short span direction
Loading	
Characteristic permanent action	G _k = 54.0 kN/m ²
Characteristic variable action	Q _k = 0.0 kN/m ²
Partial factor for permanent action	γ _G = 1.35
Partial factor for variable action	γ _Q = 1.50
Quasi-permanent value of variable action	$\psi_2 = 0.30$
Design ultimate load	$q = \gamma_G \times G_k + \gamma_Q \times Q_k = \textbf{72.9} \text{ kN/m}^2$
Quasi-permanent load	$q_{\text{SLS}} = 1.0 \times G_k + \psi_2 \times Q_k = \textbf{54.0} \ kN/m^2$
Concrete properties	
Concrete strength class	C35/45

Characteristic cylinder strength Partial factor (Table 2.1N) Compressive strength factor (cl. 3.1.6) Design compressive strength (cl. 3.1.6) Mean axial tensile strength (Table 3.1) Maximum aggregate size

Reinforcement properties

Characteristic yield strength Partial factor (Table 2.1N) Design yield strength (fig. 3.8)

Concrete cover to reinforcement

Nominal cover to outer top reinforcement

C35/45 $f_{ck} = 35 \text{ N/mm}^2$ $\gamma c = 1.50$ $\alpha_{cc} = 0.85$ $f_{cd} = 19.8 \text{ N/mm}^2$ $f_{ctm} = 0.30 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 3.2 \text{ N/mm}^2$ $d_g = 20 \text{ mm}$

 $f_{yk} = 500 \text{ N/mm}^2$ $\gamma s = 1.15$ $f_{yd} = f_{yk} / \gamma s = 434.8 \text{ N/mm}^2$

c_{nom_t} = **30** mm

Tedds	54 Sumatra road, London, NW6 1PR					1654		
Bini Struct-e	Calcs for		Start page no./Revision					
		Basement S	Slab - HEAVE	HEAVE		2		
	Calcs by DB	Calcs date 21/10/2018	Checked by	Checked date	Approved by	Approved date		
Nominal cover to outer bottom re	einforcement	Cnom_b = 30	mm					
Fire resistance period to top of s	lab	R _{top} = 60 m	nin					
Fire resistance period to bottom	of slab	R _{btm} = 60 n	nin					
Axia distance to top reinft (Table	5.8)	a _{fi_t} = 15 m	m					
Axia distance to bottom reinft (Ta	able 5.8)	a _{fi_b} = 15 m	ım					
Min. top cover requirement with	regard to bond	Cmin,b_t = 16	mm					
Min. btm cover requirement with	regard to bond	Cmin,b_b = 10) mm					
Reinforcement fabrication		Not subjee	ct to QA syste	em				
Cover allowance for deviation		$\Delta c_{dev} = 10$	mm					
Min. required nominal cover to to	p reinft	Cnom_t_min =	26.0 mm					
Min. required nominal cover to b	ottom reinft	Cnom_b_min =	20.0 mm					
		I PAS	PASS - There S - There is s	is sufficient cov ufficient cover f	ver to the top	reinforcement		
Reinforcement design at mids	pan in short sr	pan direction (cl.6.1)					
Bending moment coefficient	·······	β _{sx_p} = 0.0 4	180					
Design bending moment		$M_{x p} = \beta_{sx p}$	$M_{x,p} = \beta_{xx,p} \times \alpha \times l_{x}^{2} = 70.9 \text{ kNm/m}$					
Reinforcement provided		A393 mest	A393 mesh + 10 mm dia, bars at 200 mm centres					
Area provided		A _{sx_p} = 786 mm ² /m						
Effective depth to tension reinfor	cement	d _{x_p} = h - c _{nom_b} - φ _{x_p} / 2 = 365.0 mm						
K factor	$K = M_{x_p} / ($	$b \times d_{x_p^2} \times f_{ck}$	= 0.015					
Redistribution ratio		$\delta = 1.0$						
K' factor		$K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$						
			K < K' -	Compression re	einforcement	is not required		
Lever arm		z = min(0.9	95 × dx_p, dx_p/2	2 × (1 + (1 - 3.53>	≺K) ^{0.5})) = 346.8	s mm		
Area of reinforcement required for	or bending	$A_{sx p} = M_{x p} / (f_{vd} \times z) = 470 \text{ mm}^2/\text{m}$						
Minimum area of reinforcement r	required	As x p min = max(0.26 × (fctm/fvk) × b × dx p, 0.0013×b×dx p) = 609 mm ² /m						
Area of reinforcement required		$A_{sx_p_{req}} = r$	$A_{sx_p_{req}} = max(A_{sx_p_m}, A_{sx_p_min}) = 609 \text{ mm}^2/\text{m}$					
Check reinforcement spacing		PA33	- Alea Ol lell	norcement prov		alea lequileu		
Reinforcement service stress		$\sigma_{sx,p} = (f_{yk})$	$(v_{\rm S}) \times \min((A_{\rm sy}))$	(n m/Asy n) 1 0) x	asıs / a = 192	7 N/mm ²		
Maximum allowable spacing (Tal	ble 7 3N)	$S_{max} \times n = 2$	$S_{x,y} = (10^{-1} / 10^$					
Actual bar spacing		$S_{x,p} = 100$	$s_{x,p} = 100 \text{ mm}$					
rotaal bal opaoling		0x_p = 100 i	PASS	6 - The reinforce	ment spacing	is acceptable		
Reinforcement design at mids	pan in long sp	an direction (c	1.6.1)			_		
Bending moment coefficient	51	$\beta_{\rm SV,p} = 0.02$	240					
Design bending moment		$M_{\rm V,p} = B_{\rm SV,r}$	$\beta_{sy_p} = -3.5240$ M _{w a} = $\beta_{sy_p} \propto \alpha \times h^2 = 35.4 \text{ kNm/m}$					
Reinforcement provided	$y_{y_p} = p_{s_p} \wedge q \wedge x = 33.4$ KNIII/III A393 mesh + 10 mm dia bars at 200 mm centres							
Area provided	$A_{sv,p} = 786 \text{ mm}^2/\text{m}$							
Effective depth to tension reinfor	e depth to tension reinforcement			$d_{v_p} = h - C_{nom b} - \phi_{v_p} / 2 = 355.0 \text{ mm}$				
K factor	$K = M_{V, D} / (b \times d_{V, D}^2 \times f_{ck}) = 0.008$							
Redistribution ratio		$\delta = 1.0$						
K' factor		K' – 0 598	×δ-018×δ ²	- 0 21 - 0 208				
		11 - 0.030	<i>K < K' -</i>	Compression re	inforcement	is not required		
l ever arm		$z = \min(0.0)$	- <u>, , , , , , , , , , , , , , , , , , ,</u>	$2 \times (1 + (1 - 3.53))$	<k)<sup>0.5)) = 337 3</k)<sup>	s not required 8 mm		
Area of reinforcement required fr	or hending	$z = \min(0.35 \times u_{y_p}, u_{y_p}/2 \times (1 + (1 - 3.53 \times K)^{33})) = 331.3 \text{ mm}$						
Minimum area of roinforcement		Λ $M = 101$	$A_{sy_pm} = W_{y_p} / (W_{x_k} \times Z) = 242 \text{ Inim}^{-1} \text{ Inim}^{-1} \text{ Ini}$					
minimum area or remorcement r	$A_{sy_p_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{y_p}, 0.0013 \times b \times d_{y_p}) = 593 \text{ mm}^2/\text{m}$							

	54 Sumatra road,	4 Sumatra road, London, NW6 1PR			1654		
Bini Struct-e	Calcs for		Start page no./Revision				
		Basement S	Slab - HEAVE			3	
C	Calcs by DB	Calcs date 21/10/2018	Checked by	Checked date	Approved by	Approved date	
Area of reinforcement required		A _{sy_p_req} = r	max(A _{sy_p_m} , A _s	_{sy_p_min}) = 593 mm	¹² /m vided exceeds	area required	
Check reinforcement spacing			,	norecinem prot		, al ca i cquil ca	
Reinforcement service stress		$\sigma_{sy_p} = (f_{yk})$	′γs) × min((Asy	m/Asy_p), 1.0) ×	qsls / q = 99.0) N/mm²	
Maximum allowable spacing (Tab	le 7.3N)	Smax_y_p = 3	00 mm				
Actual bar spacing		s _{y_p} = 100	mm				
			PASS	S - The reinforce	ment spacing	y is acceptable	
Reinforcement design at contin	uous supp	ort in short span	direction (cl.	6.1)			
Bending moment coefficient		β _{sx_n} = 0.06	530				
Design bending moment		$M_{x n} = \beta_{sx n}$	$h \times q \times l_x^2 = 93$. 0 kNm/m			
Reinforcement provided		A393 mest	n + 16 mm dia	. bars at 200 mm	centres		
Area provided		A _{sx_n} = 139	8 mm²/m				
Effective depth to tension reinford	ement	d _{x_n} = h - c	nom_t - \$\$_n / 2 =	= 362.0 mm			
K factor		K = M _x n / ($b \times d_{x n^2} \times f_{ck}$	= 0.020			
Redistribution ratio		$\delta = 1.0$					
K' factor		K' = 0.598	$\times \delta = 0.18 \times \delta^2$	- 0 21 = 0 208			
		N = 0.000	K < K' - 1	Compression re	inforcement	is not required	
l ever arm		z = min(0.9)	2, v d v d v d	$2 \times (1 + (1 - 3.53))$	$(K)^{0.5})) - 343 9$) mm	
Area of rainforcement required for handing		2 = mm(0.0	lu = / (fu= × 7) =	$622 \text{ mm}^2/\text{m}$, , , , , , , , , , , , , , , , , , , ,	
Area or reinforcement required for bending		$A_{22} = m_{21} m_{21} m_{22} m_{21} m_{22} m_{21} m_{22} m_{21} m_{22} m_{21} m_{22} m_{22} m_{21} m_{22} m_{22} m_{21} m_{22} m_{22} m_{21} m_{21} m_{22} m_{21} m_{21$					
Area of reinforcement required	equirea	As $x_n = \max(0.20 \times (10^{-10} \text{ yk}) \times 0 \times 0x_n, 0.0013 \times 0 \times 0x_n) = 004 \text{ mm}/\text{m}$					
Area of remorcement required		Asx_n_req = T PASS	- Area of reir	nforcement prov	vided exceeds	s area required	
Check reinforcement spacing							
Reinforcement service stress		$\sigma_{sx_n} = (f_{yk} / \gamma s) \times min((A_{sx_n_m}/A_{sx_n}), 1.0) \times q_{sLs} / q = 143.3 \text{ N/mm}^2$					
Maximum allowable spacing (Tab	le 7.3N)	s _{max_x_n} = 300 mm					
Actual bar spacing		s _{x_n} = 100 mm					
Poinforcoment decign at contin		ort in long open	PASS	S - The reinforce	ment spacing	y is acceptable	
Remorcement design at contin	luous supp	ort in long span \circ -0.03		5.1)			
		psy_n = 0.03	2U	O Ishina (na			
Design bending moment		$M_{y_n} = \beta_{sy_n} \times q \times I_x^2 = 47.2 \text{ kNm/m}$					
Area provided		A393 mesh + 16 mm dia. bars at 200 mm centres $4.200 \text{ mm}^{2/m}$					
Effective depth to topology reinford	oment	$A_{sy_n} = 138$		/ 2 246 0 mm			
Enective depth to tension reinford	ement	$a_{y_n} = n - c$	nom_t - φx_n-φy_ı ′bd. ² . f . `	n / ∠ = 340.0 mm			
		$K = M_{y_n} / (b \times d_{y_n}^2 \times f_{ck}) = 0.011$					
Redistribution ratio		$\delta = 1.0$					
K' tactor		K' = 0.598	$\times \delta$ - 0.18 $\times \delta^2$	- 0.21 = 0.208		_	
			K < K' -	Compression re	inforcement i	is not required	
Lever arm	$z = min(0.95 \times d_{y_n}, d_{y_n}/2 \times (1 + (1 - 3.53 \times K)^{0.5})) = 328.7 mm$				' mm		
Area of reinforcement required fo	$A_{sy_n_m} = M_{y_n} / (f_{yd} \times z) = 331 \text{ mm}^2/\text{m}$						
Minimum area of reinforcement re	equired	$A_{sy_n_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{y_n}, 0.0013 \times b \times d_{y_n}) = 578 \text{ mm}^2/r^2$					
Area of reinforcement required	A _{sy_n_req} = max(A _{sy_n_m} , A _{sy_n_min}) = 578 mm ² /m PASS - Area of reinforcement provided exceeds area require				area requirec		
Check reinforcement spacing							
Reinforcement service stress		$\sigma_{sy_n} = (f_{yk})$	^γ γs) × min((A _{sy}	_n_m/Asy_n), 1.0) ×	q _{SLS} / q = 76.1	I N/mm ²	
Maximum allowable spacing (Tab	Maximum allowable spacing (Table 7.3N)			s _{max_y_n} = 300 mm			

P	roject	54 Sumatra road,	Job no. 11654					
Bini Struct-e	alcs for		Start page no./Revision					
		Basement S	Slab - HEAVE			4		
С	alcs by DB	Calcs date 21/10/2018	Checked by	Checked date	Approved by	Approved date		
Actual bar spacing		s _{y_n} = 100 r	nm					
			PASS	- The reinforcer	nent spacing i	s acceptable		
Shear capacity check at short s	pan continu	ious support						
Shear force		$V_{x_n} = q \times b$	∝ / 2 = 164.0 kN	N/m				
Effective depth factor (cl. 6.2.2)		k = min(2.0	, 1 + (200 mm	/ dx_n) ^{0.5}) = 1.743	3			
Reinforcement ratio		$\rho_l = \min(0.0)$	02, $A_{sx_n} / (b \times b)$	d _{x_n})) = 0.0039				
Minimum shear resistance (Exp. 6	5.3N)	$V_{Rd,c_min} = 0$).035 N/mm ² ×	$k^{1.5}\times (f_{ck} \ / \ 1 \ N/m$	m ²) ^{0.5} × b × d _{x_n}	1		
		$V_{Rd,c_min} = 1$	72.5 kN/m					
Shear resistance (Exp. 6.2a) Vr	Rd,c_x_n = max	((VRd,c_min, (0.18 N	/mm² / γc) × k	\times (100 \times $ ho$ I \times (fck /	1 N/mm²)) ^{0.333} ×	$(\mathbf{b} \times \mathbf{d}_{x_n})$		
		V _{Rd,c_x_n} = 180.2 kN/m						
				PASS -	Shear capacity	/ is adequate		
Shear capacity check at long sp	an continu	ous support						
Shear force		$V_{y n} = q \times b$	$V_{y_n} = q \times l_x / 2 = 164.0 \text{ kN/m}$					
Effective depth factor (cl. 6.2.2)	k = min(2.0)	k = min(2.0, 1 + (200 mm / d _{y_n}) ^{0.5}) = 1.760						
Reinforcement ratio		$\rho_l = \min(0.0)$	$\rho_{l} = min(0.02, A_{sy_n} / (b \times d_{y_n})) = 0.0040$					
Minimum shear resistance (Exp. 6	5.3N)	$V_{Rd,c}$ min = 0).035 N/mm ² ×	$k^{1.5} \times (f_{ck} / 1 \text{ N/m})$	m^2) ^{0.5} × b × d _v n			
	- /	$V_{Rd,c}$ min = 1	67.3 kN/m	(,			
Shear resistance (Exp. 6.2a) VF		(VRd.c min. (0.18 N	$/mm^2/vc) \times k$	\times (100 \times 01 \times (fck/	1 N/mm ²)) ^{0.333} ×	(b × dy n)		
		VRdc v n = 1	76.6 kN/m	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		- r(a,o_y_n		PASS -	Shear capacity	/ is adequate		
Basic span-to-depth deflection	ratio check	(c 7 4 2)				· •		
Reference reinforcement ratio		(01.7.4.2)	$N/mm^{2})^{0.5} / 10$	00 – 0 0059				
Relevence reinforcement ratio	tio	$p_0 = (r_k / 1 + r_k / m_1 / r_1 / m_1 - r_1 / m_2 - r_1 - r_2 / m_2 - r_2 -$						
Required tension reinforcement ra		$\rho = \max(0.0)$	$\rho = \max(0.0035, \operatorname{Asx_p_req}) (b \times dx_p) = 0.0035$					
Required compression reinforcem	$\rho' = A_{scx_p_r}$	$\rho' = A_{scx_p-req} / (b \times d_{x_p}) = 0.0000$						
Stuctural system factor (Table 7.4)	N) 	$K_{\delta} = 1.5$						
Basic limit span-to-depth ratio rat	$\chi_{\delta} \times [11 + 1.5 \times (f_{ck})]$	× $[11 + 1.5 \times (t_{ck}/1 \text{ N/mm}^2)^{0.5} \times \rho_0/\rho + 3.2 \times (t_{ck}/1 \text{ N/mm}^2)^{0.5} \times (\rho_0/\rho - 1)^{1.5}]$						
(Exp. 7.16)	.16) ratiOlim_x_bas = 55.29					CO 00		
iviod span-to-depth ratio limit rat	τιοlim_x = min	$(40 \times K_{\delta}, \min(1.5,$	(500 N/mm²/f)	yk)×(Asx_p/Asx_p_m)	$) \times $ ratiO lim_x_bas $)$	= 60.00		
Actual span-to-eff. depth ratio $ratio_{act_x} = l_x / dx_p = 12.33$								
		F	ASS - Actual	span-to-effectiv	e aeptn ratio i	s acceptable		

Reinforcement sketch

The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.

Todds	Project 54 Sumatra road, London, NW6 1PR					Job no. 11654	
Bini Struct-e	Calcs for				Start page no./F	Revision	
		Basement S	Slab - HEAVE			5	
	Calcs by DB	Calcs date 21/10/2018	Checked by	Checked date	Approved by	Approved date	
	-	I	•			•	
		<u>}</u>	A393+	16mm bars @ 200	0 ctrs T1		
	\	/	A393+	10mm bars @ 200	0 ctrs B1		
		l		4 Garana Ia ang 🛞 0.00			
			A393+	16mm bars @ 200	U CTIS 11		
F	s B2		rs T2				
	00 cti		00 ct				
			8 8				
2	n bar		m bar				
3	-10mi		+16m				
	A393-		A393.				

Bini Struct-e	Project 54 Sumatra NW6 1PR	road, London,	Job Ref 11654		
Ltd. Consulting	Drawing Ref	Calculations by BD	Checked by DB	Sheet of	-
Engineers	Part of Structure WORIZONIZAL MOVEN TO ERCAVATION &	NENT DUE Installation of NI	Date 09.2018		

HORIFONTAL & VERTICAL MOVEMENT ASSESSMENT TO CIRIA LSOO FUN EMBEDDED RETAILING WALLS.

(ABUE 2.4 CIRIA C530

CATE CORY OF DAMAGE	NORMAL DEGREEE	LIMITING ABLE STRAW 90
0	NEGLEGBLE	0.00% - 0.05%
	very sucht	0.05% - 0.075%
2	SLIGHT	0. 075% - 0.15%
3	MODERATE	0.15% -0.3%
4 to 5	SE VERE TO VE	et severe 7 0.3%
5	~	~

THE HORITONTAL MOVEMENT WILL BE DETERMINED BASED ON ACCOMMULATION OF POTONTIAL MOVEMENT DUE TO WALL EXCANATION & INSTALLATION.

