www.clementacoustics.co.uk **London office** 1B(c) Yukon Road London SW12 9PZ Tel: 0203 475 2280 **Manchester office** 105 Manchester Road Bury BL9 0TD Tel: 0161 850 2280 ## LASWAP 6TH FORM CENTRE, PARLIAMENT HILL SCHOOL, HIGHGATE ROAD, CAMDEN **NOISE IMPACT ASSESSMENT** Report 10883-NIA-03 RevA Prepared on 16 October 2018 Issued For: Farrans Construction New Cambridge House Bassingbourn Road Litlington nr Royston SG8 0SS ## **Contents** | 1.0 | INTRODUCTION | 1 | |-----|------------------------------|---| | 2.0 | SITE DESCRIPTION | 1 | | 3.0 | ENVIRONMENTAL NOISE SURVEY | | | 3.1 | Procedure | 2 | | 3.2 | Equipment | | | 4.0 | RESULTS | 3 | | 5.0 | NOISE CRITERIA | | | 5.1 | Local Authority Requirements | 3 | | 5.2 | BREEAM Pol 05 Requirements | 3 | | 6.0 | NOISE IMPACT ASSESSMENT | 4 | | 6.1 | Proposed Plant Installation | | | 6.2 | Noise Impact Assessment | | | 7.0 | CONCLUSION | 5 | ## **List of Attachments** | Indicative Site Plan | |----------------------------------| | Environmental Noise Time History | | Glossary of Acoustic Terminology | | Acoustic Calculations | | | ## 1.0 INTRODUCTION Clement Acoustics Ltd has been commissioned by Farrans Construction to measure existing background noise levels at Parliament Hill School, Highgate Road, Camden. The measured noise levels have been used to determine noise emission criteria for a proposed plant installation at the LaSwap 6th Form Centre in agreement with the planning requirements of the London Borough of Camden. This report presents the results of the environmental survey followed by noise impact calculations and outlines any necessary mitigation measures. ## 2.0 SITE DESCRIPTION Current proposals are to install an air conditioning condenser unit on the main roof of the LaSwap 6th Form Centre at Parliament Hill School, Highgate Road, Camden. It is understood the plant unit will be in operation during typical school hours. The LaSwap building is located towards the east of the school site. The closest window to the proposed plant location is at a minimum distance of 45 m from the plant location. Locations are shown in attached site plans 10883-SP3. #### 3.0 ENVIRONMENTAL NOISE SURVEY #### 3.1 Procedure Measurements representative of receivers close to the LaSwap Building were undertaken at one position as shown on indicative site drawing 10883-SP3. The choice of this position was based both on accessibility and on collecting representative noise data in relation to the site. The microphone was mounted on the boundary of the site on a pole above the perimeter fence to the east of the site. The position was considered to be free-field according to guidance found in BS4142:2014, and a correction for reflections has therefore not been applied. Noise levels at the monitoring position were dominated by surrounding traffic noise and urban sounds, with some contribution from ongoing construction noise during the installation and collection of equipment. The survey duration was therefore chosen to ensure periods outside construction work hours were captured. Continuous automated monitoring was undertaken for the duration of the survey between 15:00 on 2 October 2018 and 01:00 on 3 October 2018. Weather conditions were generally dry with light winds, therefore suitable for the measurement of environmental noise. The measurement procedure generally complied with BS 7445:1991: 'Description and measurement of environmental noise, Part 2- Acquisition of data pertinent to land use'. ## 3.2 Equipment The equipment calibration was verified before and after use and no abnormalities were observed. The equipment used was as follows. - 1 No. Svantek Type 977 Class 1 Sound Level Meter - Norsonic Type 1251 Class 1 Calibrator ### 4.0 RESULTS The $L_{Aeq: 5min}$, $L_{Amax: 5min}$, $L_{A10: 5min}$ and $L_{A90: 5min}$ acoustic parameters were measured at the location shown in site drawing 10883-SP3. The measured noise levels are shown as a time history in Figure 10883-TH2, with ambient and background noise levels summarised in Table 4.1. | | Average ambient noise level
L _{eq: T} | Minimum background noise level L90: 5min | |-------------------------------|---|---| | Daytime
(07:00 - 23:00) | 64 dB(A) | 44 dB(A) | | Night-time
(23:00 - 07:00) | 59 dB(A) | 39 dB(A) | Table 4.1: Average ambient and minimum background noise levels ### 5.0 NOISE CRITERIA ## **5.1** Local Authority Requirements The London Borough of Camden general criteria for noise emissions are as follows: "The 'A' weighted sound pressure level from the plant, when operating at its noisiest, shall not at any time exceed a value of 10 dB below the minimum external background noise, at a point 1 metre outside any window of any residential property." It is understood that the proposed plant units will be operational during typical school hours. We therefore propose to set the noise criteria at 34 dB(A), the value 10 dB below the minimum measured background noise level during daytime hours, in the absence of construction noise. ## **5.2** BREEAM Pol 05 Requirements The requirements of Pol 05 are to comply with the following design criteria: "The noise level from the proposed site/building, as measured in the locality of the nearest or most exposed noise sensitive development, is a difference no greater than +5dB during the day (07:00 to 23:00) and +3dB at night (23:00 to 07:00) compared to the background noise level." It is therefore proposed that using the criterion of 34 dB(A) as stated in Section 5.1 is suitably robust to demonstrate compliance with all requirements. #### 6.0 NOISE IMPACT ASSESSMENT ## **6.1** Proposed Plant Installation The proposed plant installation comprises a single air conditioning condenser unit. The manufacturer's specified noise emissions for the selected unit are as shown in Table 6.1. | | Sound Pressure Level (dB), at 1 m in each Frequency Band | | | | | | | | |--------------------------------------|--|-------|-------|-------|------|------|------|------| | Source | 63Hz | 125Hz | 250Hz | 500Hz | 1kHz | 2kHz | 4kHz | 8kHz | | Daikin Condenser Unit type
RXS50L | 46 | 47 | 43 | 40 | 37 | 33 | 25 | 18 | Table 6.1: Manufacturer's Noise Emission Levels The proposed plant location is on the main roof of the LaSwap Building, in the position shown on the site plan in 10883-SP3. The plant location is approximately 45 m from the residential window, with direct line of sight assumed. ## 6.2 Noise Impact Assessment An assessment has been undertaken for the closest identified residential window, as shown in the site plan. Taking into account all necessary acoustic corrections including corrections for distance, reflections and acoustic corrections, the resulting noise level at the residential window would be as shown in Table 6.2. Detailed calculations are shown in Appendix B. | Receiver | Daytime Hours Criterion | Noise Level at Receiver [due to plant installation] | | | | | |--------------------|-------------------------|---|--|--|--|--| | Residential Window | 34 dB(A) | 12 dB(A) | | | | | Table 6.2: Noise levels and criteria at receiver Ref: 10883-NIA-03 RevA 16 October 2018 clement As shown in Table 6.2 and Appendix B, the proposed plant installation would be expected to meet the set criterion in accordance with the Local Authority and BREEAM Pol 05, without the need for particular mitigation. #### 7.0 CONCLUSION A noise impact assessment of a proposed plant unit has been undertaken for the LaSwap 6th Form Centre at Parliament Hill School, Highgate Road, Camden. The results of an environmental noise survey have enabled criteria to be set for noise emissions from the proposed plant in order to protect the amenity of nearby receivers. A noise impact assessment has then been undertaken using manufacturer noise data to predict the noise levels due to the current proposal at nearby noise sensitive receivers. Calculations show that noise emissions from the proposed plant units would meet the set requirements as proposed, in accordance with the Local Authority and BREEAM Pol 05, without the need for particular mitigation. Report by Duncan Martin MIOA Checked by Florian Clement MIOA # Parliament Hill School, Highgate Road, Camden Environmental Noise Time History 2 October 2018 to 3 October 2018 ## **APPENDIX A** ## **GLOSSARY OF ACOUSTIC TERMINOLOGY** ## dB(A) The human ear is less sensitive to low (below 125Hz) and high (above 16kHz) frequency sounds. A sound level meter duplicates the ear's variable sensitivity to sound of different frequencies. This is achieved by building a filter into the instrument with a similar frequency response to that of the ear. This is called an A-weighting filter. Measurements of sound made with this filter are called A-weighted sound level measurements and the unit is dB(A). ## L_{eq} The sound from noise sources often fluctuates widely during a given period of time. An average value can be measured, the equivalent sound pressure level L_{eq} . The L_{eq} is the equivalent sound level which would deliver the same sound energy as the actual fluctuating sound measured in the same time period. #### L₁₀ This is the level exceeded for not more than 10% of the time. This parameter is often used as a "not to exceed" criterion for noise #### L₉₀ This is the level exceeded for not more than 90% of the time. This parameter is often used as a descriptor of "background noise" for environmental impact studies. #### Lmax This is the maximum sound pressure level that has been measured over a period. ## **Octave Bands** In order to completely determine the composition of a sound it is necessary to determine the sound level at each frequency individually. Usually, values are stated in octave bands. The audible frequency region is divided into 10 such octave bands whose centre frequencies are defined in accordance with international standards. ## Addition of noise from several sources Noise from different sound sources combines to produce a sound level higher than that from any individual source. Two equally intense sound sources operating together produce a sound level which is 3dB higher than one alone and 10 sources produce a 10dB higher sound level. CLEMENT ACOUSTICS APPENDIX A ## Attenuation by distance Sound which propagates from a point source in free air attenuates by 6dB for each doubling of distance from the noise source. Sound energy from line sources (e.g. stream of cars) drops off by 3dB for each doubling of distance. ## Subjective impression of noise Sound intensity is not perceived directly at the ear; rather it is transferred by the complex hearing mechanism to the brain where acoustic sensations can be interpreted as loudness. This makes hearing perception highly individualised. Sensitivity to noise also depends on frequency content, time of occurrence, duration of sound and psychological factors such as emotion and expectations. The following table is a reasonable guide to help explain increases or decreases in sound levels for many acoustic scenarios. | Change in sound level (dB) | Change in perceived loudness | | | | |----------------------------|------------------------------|--|--|--| | 1 | Imperceptible | | | | | 3 | Just barely perceptible | | | | | 6 | Clearly noticeable | | | | | 10 | About twice as loud | | | | | 20 | About 4 times as loud | | | | #### **Barriers** Outdoor barriers can be used to reduce environmental noises, such as traffic noise. The effectiveness of barriers is dependent on factors such as its distance from the noise source and the receiver, its height and its construction. #### **Reverberation control** When sound falls on the surfaces of a room, part of its energy is absorbed and part is reflected back into the room. The amount of reflected sound defines the reverberation of a room, a characteristic that is critical for spaces of different uses as it can affect the quality of audio signals such as speech or music. Excess reverberation in a room can be controlled by the effective use of sound-absorbing treatment on the surfaces, such as fibrous ceiling boards, curtains and carpets. ## **APPENDIX B** ## 10883 LaSwap 6th Form Centre, Parliament Hill School ## **EXTERNAL PLANT NOISE EMISSIONS CALCULATION** **Receiver: Nearest Residential Receiver** | Source: Proposed plant installation | | Frequency, Hz | | | | | | | | |---|-----|---------------|-----|-----|-----|-----|-----|-----|-------| | | 63 | 125 | 250 | 500 | 1k | 2k | 4k | 8k | dB(A) | | Manufacturer provided sound pressure level at 1 metre | | | | | | | | | | | Daikin Condenser Unit type RXS50L | 46 | 47 | 43 | 40 | 37 | 33 | 25 | 18 | 42 | | | | | | | | | | | | | Correction for reflections, dB | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | | | | | | | | | | | | Distance correction to receiver, dB (45 m) | -33 | -33 | -33 | -33 | -33 | -33 | -33 | -33 | | | | | | | | | | | | | | Sound pressure level at receiver | 16 | 17 | 13 | 10 | 7 | 3 | -5 | -12 | 12 | Design Criterion 34