*	Project				Job no.	
MLM.	Gin Distillery				669931	
MLM Consulting Engineers Ltd 190 Eureka Park, Upper Pemberton Ashford, Kent TN25 4AZ	Calcs for Kithen Pod Slab				Start page no./Revision 1	
	Calcs by JOT	Calcs date 06/11/18	Checked by	Checked date	Approved by	Approved date

RAFT FOUNDATION DESIGN (BS8110 : PART 1 : 1997)

Tedds calculation version 1.0.12

Soil and raft definition

Soil definition	
Allowable bearing pressure	q _{allow} = 25.0 kN/m ²
Number of types of soil forming sub-soil	One type only
Soil density	Firm to loose
Depth of hardcore beneath slab	h _{hcoreslab} = 200 mm (Dispersal allowed for bearing pressure check)
Density of hardcore	$\gamma_{\text{hcore}} = 20.0 \text{ kN/m}^3$
Basic assumed diameter of local depression	φ _{depbasic} = 2000 mm
Diameter under slab modified for hardcore	$\phi_{depslab} = \phi_{depbasic} - h_{hcoreslab} = 1800 \text{ mm}$
Raft slab definition	
Max dimension/max dimension between joints	I _{max} = 10.500 m
Slab thickness	h _{slab} = 250 mm
Concrete strength	f _{cu} = 40 N/mm ²
Poissons ratio of concrete	v = 0.2
Slab mesh reinforcement strength	f _{yslab} = 500 N/mm ²
Partial safety factor for steel reinforcement	$\gamma_s = 1.15$
From C&CA document 'Concrete ground floors' Tal	ble 5
Minimum mesh required in top for shrinkage	A142
Actual mesh provided in top	A393 (A _{sslabtop} = 393 mm ² /m)
Mesh provided in bottom	A393 (A _{sslabbtm} = 393 mm²/m)
Top mesh bar diameter	$\phi_{\text{slabtop}} = 10 \text{ mm}$
Bottom mesh bar diameter	$\phi_{slabbtm} = 10 \text{ mm}$
Cover to top reinforcement	c _{top} = 30 mm
Cover to bottom reinforcement	c _{btm} = 40 mm
Average effective depth of top reinforcement	$d_{tslabav} = h_{slab} - c_{top} - \phi_{slabtop} = 210 \text{ mm}$
Average effective depth of bottom reinforcement	$d_{bslabav} = h_{slab} - c_{btm} - \phi_{slabbtm} = 200 \text{ mm}$
Overall average effective depth	$d_{slabav} = (d_{tslabav} + d_{bslabav})/2 = 205 \text{ mm}$
Minimum effective depth of top reinforcement	$d_{tslabmin} = d_{tslabav} - \phi_{slabtop}/2 = 205 \text{ mm}$
Minimum effective depth of bottom reinforcement	$d_{bslabmin} = d_{bslabav} - \phi_{slabbtm}/2 = 195 \text{ mm}$
Slab edge reinforcement	
Mesh provided in top	A393 (A _{sedgetop} = 393 mm ² /m)
Mesh provided in bottom	A393 (A _{sedgebtm} = 393 mm ² /m)

₩ MLM.	Project	Gin [Job no. 669931						
Group	Calcs for		Start page no /Revision						
MLM Consulting Engineers Ltd	Kithen Pod Slab			2					
Ashford, Kent	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date			
TN25 4AZ	JOT	06/11/18							
	•	•	•	•					
Internal slab design checks									
Basic loading									
Slab self weight		w _{slab} = 24	$kN/m^3 \times h_{slab} =$	6.0 kN/m ²					
Hardcore		W _{hcoreslab} =	$\gamma_{hcore} imes h_{hcoreslab}$	a = 4.0 kN/m ²					
Applied loading									
Uniformly distributed dead load	1	w _{Dudl} = 0.0	kN/m ²						
Uniformly distributed live load		w _{Ludl} = 1.5	kN/m ²						
Internal slab bearing pressur	e check								
Total uniform load at formation	level	$W_{udl} = W_{slab}$	+ Whcoreslab + W	/Dudl + WLudl = 11.5	kN/m²				
		PASS - Wudi	<= q _{allow} - Appl	lied bearing pres	ssure is less t	han allowable			
Internal slab bending and sh	ear check								
Applied bending moments									
Span of slab		I _{slab} = _{\$\$depsi}	_{ab} + d _{tslabav} = 20)10 mm					
Ultimate self weight udl		w _{swult} = 1.4	× w _{slab} = 8.4 k	N/m²					
Self weight moment at centre		M _{csw} = w _{sw}	$_{\rm ult} imes {\sf I}_{\rm slab}^2 imes (1 +$	v) / 64 = 0.6 kNm	ı/m				
Self weight moment at edge	$M_{esw} = w_{swult} \times I_{slab}^2 / 32 = 1.1 \text{ kNm/m}$								
Self weight shear force at edge	;	V_{sw} = $w_{swult} \times I_{slab}$ / 4 = 4.2 kN/m							
Moments due to applied unif	ormly distribu	ited loads							
Ultimate applied udl	-	$W_{udlult} = 1.4$	× W _{Dudl} + 1.6 >	< w _{Ludi} = 2.4 kN/m	2				
Moment at centre	Moment at centre			v) / 64 = 0.2 kNn	n/m				
Moment at edge		$M_{eudl} = W_{ud}$	M_{eudl} = $w_{udlult} \times I_{slab}^2 / 32$ = 0.3 kNm/m						
Shear force at edge		$V_{udl} = W_{udlult} \times I_{slab} / 4 = 1.2 \text{ kN/m}$							
Resultant moments and shea	ars								
Total moment at edge		M _{Σe} = 1.4	<nm m<="" td=""><td></td><td></td><td></td></nm>						
Total moment at centre		M _{Σc} = 0.8 kNm/m							
Total shear force		V _Σ = 5.4 kN/m							
Reinforcement required in to	р								
K factor		K _{slabtop} = N	$I_{\Sigma e}/(f_{cu} imes d_{tslabav}^2)$	²) = 0.001					
Lever arm		$z_{slabtop} = d_{ts}$	slabav × min(0.95	5, 0.5 + √(0.25 - k	K _{slabtop} /0.9)) = 1	99.5 mm			
Area of steel required for bendi	ing	Asslabtopbend	= $M_{\Sigma e}/((1.0/\gamma_s)$	\times f _{yslab} \times z _{slabtop}) =	16 mm²/m				
Minimum area of steel required	l	A _{sslabmin} = ($0.0013 imes h_{slab} =$	325 mm²/m					
Area of steel required		A _{sslabtopreq} = max(A _{sslabtopbend} , A _{sslabmin}) = 325 mm ² /m							
PASS - Asslabtopreq <=	Asslabtop - Area	a of reinforceme	nt provided ir	n top to span loc	al depressior	ns is adequate			
Reinforcement required in bo	ottom								
K factor		K _{slabbtm} = N	$I_{\Sigma c}/(f_{cu} imes d_{bslabav})$	²) = 0.001					
Lever arm	$z_{slabbtm}$ = d _{bslabav} × min(0.95, 0.5 + $\sqrt{(0.25 - K_{slabbtm}/0.9))}$ = 190.0					190.0 mm			
Area of steel required for bendi	ding $A_{sslabbtmbend} = M_{\Sigma c}/((1.0/\gamma_s) \times f_{yslab} \times z_{slabbtm}) = 10 m$				= 10 mm²/m				
Area of steel required		Asslabbtmreq :	= max(A _{sslabbtmb}	pend, A _{sslabmin}) = 32	5 mm²/m				
PASS - Asslabbtmreq <= Assl	abbtm - Area of	reinforcement p	rovided in bo	ttom to span loc	al depressior	ns is adequate			
Shear check									
Applied shear stress		$v = V_{\Sigma}/d_{tslabmin} = 0.026 \text{ N/mm}^2$							
Tension steel ratio		ρ = 100 × A _{sslabtop} /d _{tslabmin} = 0.192							

*	Project	Job no.								
MLM.		669931								
MI M Consulting Engineers I to	Calcs for	Start page no./Revision								
190 Eureka Park, Upper Pemberton		Kithen	Kithen Pod Slab			3				
Ashford, Kent	Calcs by C	Calcs date	Checked by	Checked date	Approved by	Approved date				
TN25 4AZ	JOT	06/11/18								
Erom BS8110-1:1997 - Table 3	 8									
Design concrete shear strength	0	v. = 0 504	N/mm ²							
		VC 0.004	$PASS - v \leq v$	- Shear capac	itv of the slat	o is adequate				
Resis allowable apon to donth r	atio	Potio -	26.0							
Momont factor	3110	MaliObasic -	rallObasic = 20.0							
		IVItactor - IVIS		N/IIIII-	N/mm ²					
Steel Service Stress			wslab × Asslabbtmbend/	Asslabbtm $-$ 0.400	N/IIIII ⁻	-2				
Modification factor		IVIF _{slab} = m	in(2.0, 0.55 + [(4)	(/IN/MM ² - Is)/(12	20 × (0.9N/mm	1 ² + IVIfactor))])				
Medified elloweble energies to doub	h votio	$NF_{slab} = 2.$		- 52 000						
Actual analytic dept	n rauo	Ralio _{allow} =		b = 52.000						
Actual span to depth ratio			= Islab/ Obslabav = 10 tioaatuu <= Ratioa	.000 Slah snan	to donth ratio	n is adoquato				
		FA33 - Na		10w - Siab Spair		is adequate				
Slab edge design checks										
Basic loading										
Hardcore		Whcoreslab =	$\gamma_{hcore} \times h_{hcoreslab} =$	4.0 kN/m ²						
Slab self weight		w _{slab} = 24 I	$\kappa N/m^3 \times h_{slab} = 6.0$) kN/m²						
Edge load number 1										
Load type	Longitudi	Longitudinal line load								
Dead load		w _{Dedge1} = 0	w _{Dedge1} = 0.0 kN/m							
Live load		W _{Ledge1} = 1	6.3 kN/m							
Ultimate load		Wultedge1 = 2	$1.4 \times W_{\text{Dedge1}} + 1.6$	6 × W _{Ledge1} = 26.1	kN/m					
Longitudinal line load width		b _{edge1} = 14	0 mm							
Centroid of load from outside fa	ce of raft	x _{edge1} = 0 r	nm							
Slab edge bearing pressure c	heck									
Total uniform load at formation	evel	W _{udledge} = W	/Dudl + WLudl + Wslab	+ Whcoreslab = 11 .	. 5 kN/m²					
Centroid of longitudinal and e	quivalent line loa	ads from out	side face of raft							
Load x distance for edge load 1	-	Moment₁ =	- Wultedge1 × Xedge1 -	= 0.0 kN						
Sum of ultimate longitud'l and e	quivalent line load	ls ΣUDL = 26	s ΣUDL = 26.1 kN/m							
Sum of load x distances		ΣMoment = 0.0 kN								
Centroid of loads		$x_{bar} = \Sigma Moment/\Sigma UDL = 0 mm$								
Initially assume no moment to	anoforrad into al	ab due to load/reaction eccentricity								
Sum of unfactored longitud'i and	d off'tive line leads			intricity						
		$b_{\rm m} = 2 $		$v_{1} \tan(20) = 224$	mm					
Rearing processing with	int loodo	$D_{\text{allow}} = 2 \times x_{\text{bar}} + 2 \times n_{\text{hcoreslab}} \times (an(30) = 231 \text{ mm}$								
Total applied bearing pressure	Intitudus	$q_{\text{linepoint}} = \Sigma UDLSIS / b_{allow} = 70.6 \text{ KN/m}^2$								
Total applied bearing pressure	Clark	Yedge – Yline ma > Mayaw - Th	point + Wudledge - 04	ed to resist a m	oment due to	eccentricity				
N	Yea					cocontricity				
Now assume moment due to	oad/reaction ecc		esisted by slab	1007						
		Dreq = 200	LSIS/(Qallow - Wudled	(ge) = 1207 mm						
Effective bearing width at u/s of	SIAD	$b_{reqeff} = b_{req} - 2 \times h_{hcoreslab} \times tan(30) = 976 \text{ mm}$								
		e = D _{reqeff} /2	2 - X _{bar} = 488 mm	,						
Unimate moment to be resisted	by slad	$W_{ecc} = \Sigma UL$	JL × e = 12.7 kNr	n/m						
From siab bending check	ar clob (bagging)	M. – 4 4 1	Nm/m							
Total moment to be resisted by	slab top staal	$\frac{1.4}{1.4}$	\\\\\/\\\ Λ ⊥ NA – 44 4 '	(Nm/m						
K factor	siab top steel	$\frac{1}{10000000000000000000000000000000000$								
N IACIUI	r\siab - IVIslabtop/(Icu × Utslabmin [~]) - U.UUO									

\$	Project					Job no.		
MLM.		Gin D		669931				
MLM Consulting Engineers Ltd	Calcs for Kithen Pod Slab				Start page no./Revision 4			
Ashford. Kent	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
TN25 4AZ	JOT	06/11/18						
Lever arm		$z_{slab} = d_{tslab}$	_{min} × min(0.95, 0.	5 + √(0.25 - K _{slat}	./0.9)) = 195 m	ım		
Area of steel required		A _{sslabreq} = N	$I_{slabtop}/((1.0/\gamma_s) imes 1)$	$f_y \times z_{slab}$) = 166 m	nm²/m			
PASS - Assiabreg	<= Asslabtop - A	rea of reinforce	ement provided	to transfer mor	nent into slat	o is adequate		
	The	allowable bea	ring pressure u	nder the edge b Library iter	eam will not n - B pressure with	be exceeded		
Slab edge bending check								
Considering a 1.0m width of sla	b							
Divider for moments due to udl's	6	β _{udl} = 10.0						
Applied bending moments								
Span of slab		l _{edge} = φ _{deps}	lab + d _{tslabmin} = 20	05 mm				
Ultimate self weight udl		w _{edgeult} = 1.	4 × w _{slab} = 8.4 kN	N/m ²				
Self weight bending moment		M _{edgesw} = w	/edgeult × ledge ² /10 =	= 3.4 kNm/m				
Self weight shear force		V _{edgesw} = w	_{edgeult} × I _{edge} /2 = 8	. 4 kN/m				
Moments due to applied unifo	rmly distribute	sheal be						
Ultimate udl		Wedgeudl = W	$u_{\rm dut} = 2.4 \rm kN/m^2$					
Bending moment		$M_{\text{adjaced}} = W_{\text{adjaced}} + \sum_{k=1}^{k} \frac{1}{k} \frac{1}{k$						
Shear force		$V_{edgeudl} = w$	$e_{daeudl} \times e_{dae}/2 = 2$	$\frac{1}{100} = 2.4 \text{ kN/m}$				
Moment and shear due to load	d number 1	i dagodali i i						
Effective slab width		b _{eff1} = min(x _{edae1} , b _{edae1} /2 + (0.3×l _{edae}) + b _{edae1}	$/2 + 0.3 \times I_{edge}$	= 672 mm		
Bending moment		$M_{edge1} = W_{u}$	$ _{\text{ledge1}} \times _{\text{edge}^2} / (\beta_{\text{ud}})$	∣ × b _{eff1}) = 15.6 kl	Nm/m			
Shear force		$V_{edge1} = W_{ultedge1} \times I_{edge}/(2 \times b_{eff1}) = 38.9 \text{ kN/m}$						
Posultant moments and shear		5	5 5 (,				
Total moment (bogging and sag	laina)	Myodao = 20	0 kNm/m					
Maximum shear force	99)	$V_{\Sigma edge} = 49.8 \text{ kN/m}$						
Reinforcement required in tor		3						
K factor	•	Kadaatan = M	lsadaa/(fau x dtalahmi	²) = 0 012				
l ever arm		$Z_{adgatan} = d_t$	$x = \frac{1}{2} \exp(12\pi x + \frac{1}{2$, 0.5 + √(0.25 - k	(adapter / 0.9)) =	195 mm		
Area of steel required for bendir	nd	$A_{\text{reductorband}} = M_{\text{reduct}} ((1, 0/v_{\text{red}}) \times T_{\text{reductor}}) = 236 \text{ mm}^2/\text{m}$						
Area of steel required	'9	Asedgetoppen = $max(Asedgetophend, Aselahmin) = 325 mm2/m$						
PA	ASS - Asedgetopre	$_q$ <= $A_{sedgetop}$ - Area of reinforcement provided in top of slab is adequate						
Reinforcement required in bo	ttom			-		•		
K factor		K _{edgebtm} = N	//Sedge/(fcu × dhslabn	$(10^{2}) = 0.013$				
l ever arm		$Z_{\text{adgebter}} = d_{\text{belowing}} \times \min(0.95, 0.5 \pm \sqrt{(0.25 - K_{\text{adgebter}}/0.9)}) = 185 \text{ mm}$						
Area of steel required for bendir	na	Asedgebtmben	$A_{\text{redepturberd}} = M_{\text{redepturberd}} + \frac{1}{10} \left[\frac{1}{2} - \frac{1}{10} + \frac{1}{10} $					
Area of steel required	.9	Asedgebtmreg	= max(A _{sedgebtmbe}	nd. $A_{sslabmin}$ = 32	5 mm²/m			
PASS -	Asedgebtmreg <=	Asedgebtm - Area	of reinforceme	nt provided in b	ottom of slat	is adequate		
Applied shear stress		$v_{edge} = V_{\Sigma ed}$	_{lge} × 1.0m/(1000r	nm × d _{tslabmin}) = ().243 N/mm ²	-		
Tension steel ratio		ρ _{edge} = 100	\times A _{sedgetop} \times 1.0r	m/(1000mm \times d _{ts}	_{labmin}) = 0.192			
From BS8110-1:1997 - Table 3.	8							
Design concrete shear strength		v _{cedge} = 0.5	04 N/mm ²					
		PASS - v	_{edge} <= v _{cedge} - S	hear capacity o	f the slab is r	not exceeded		
Slab edge deflection check								
Basic allowable span to depth ra	atio	Ratio _{basicedge} = 26.0						
Moment factor	$M_{factoredge} = M_{\Sigma edge}/d_{bslabmin}^2 = 0.525 \text{ N/mm}^2$							
Steel service stress		$f_{sedge} = 2/3$	$\times f_{yslab} \times A_{sedgebtm}$	_{bend} /A _{sedgebtm} = 21	1 0.137 N/mm ²			

*	Project					Job no.		
MLM.		669931						
MLM Consulting Engineers Ltd	Calcs for				Start page no./Revision			
190 Eureka Park, Upper Pemberton	Kithen Pod Slab			1		5		
Ashford, Kent	Calcs by C	alcs date	Checked by	Checked date	Approved by	Approved date		
TN25 4AZ	JOI	06/11/18						
Modification factor		MF _{edge} =mi	n(2.0,0.55+[(477	N/mm ² -f _{sedae})/(12	20×(0.9N/mm ²	+M _{factoredge}))])		
		MF _{edge} = 2	.000	oougo) (1001010030//1/		
Modified allowable span to dept	h ratio	Ratioallowedd	e = Ratio _{basicedge}	× MF _{edge} = 52.00	0			
Actual span to depth ratio		Ratio _{actualed}	_{ge} = I _{edge} / d _{tslabmin}	= 9.780				
	PAS	S - Ratio _{actual}	edge <= Ratioallow	_{redge} - Slab span	to depth ratio	o is adequate		
Corner design checks								
Basic loading								
Corner bearing pressure chec	:k				_			
Total uniform load at formation	evel	Wudlcorner = V	WDudl + WLudl + Ws	lab + Whcoreslab = 1	1.5 kN/m ²			
	PAS	S - Wudicorner <	= q _{allow} - Applie	d bearing press	sure is less th	an allowable		
Slab corner bending check								
Cantilever span of slab at corne	r	$I_{corner} = \phi_{dep}$	$_{slab}/\sqrt{(2)} + d_{tslabav}$	/2 = 1378 mm				
Moment and shear due to self	weight							
Considering triangular loading								
Maximum ultimate self weight u	dl	w _{swult} = 1.4	w _{swult} = 1.4 × w _{slab} × $\phi_{depslab}/\sqrt{(2)}$ = 10.7 kN/m					
Self weight bending moment		$M_{cornersw} = W_{swult} \times I_{corner}^2 / (6 \times \phi_{depslab} / \sqrt{2}) = 2.7 \text{ kNm/m}$						
Self weight shear force		$V_{cornersw} = w_{swult} \times I_{corner} / (2 \times \phi_{depslab} / \sqrt{2})) = 5.8 \text{ kN/m}$						
Moment and shear due to udl	S							
Maximum ultimate udl	W _{cornerudl} =	(1.4×w _{Dudl})+(1.6	$\times W_{Ludl})) \times \phi_{depslab}/$	√(2) = 3.1 kN/	m			
Bending moment	M _{cornerudl} =	$W_{cornerudl} \times I_{corner}^2/$	$(6 \times \phi_{depslab}/\sqrt{(2)})$	= 0.8 kNm/m				
Shear force		V _{cornerudl} = v	$V_{\text{cornerudi}} = W_{\text{cornerudi}} \times I_{\text{corner}} / (2 \times \phi_{\text{depslab}} / \sqrt{2}) = 1.7 \text{ kN/m}$					
Posultant moments and shea	re		,					
Total design moment	15	Macorpor = N	Icorporew+ Mcorporud	= 3 4 kNm/m				
Total design shear force		$V_{\Sigma corner} = V$		= 7.4 kN/m				
Reinforcement required in for	of slab at corne	re						
K factor		Koorpor = Ms		$(n^2) = 0.002$				
l ever arm		$Z_{corpor} = d_{tel}$	$x \min(0.95)$,) = ===============================	(0.9) = 19	5 mm		
Area of steel required for bendi	na	$A_{\text{connectord}} = M_{\text{vormer}} / ((10/v_c) \times f_{\text{volab}} \times Z_{\text{connect}}) = 40 \text{ mm}^2/\text{m}$						
Area of steel required for benan	19	Accorner = $max(Accorrectioned, Acclebraic) = 325 mm2/m$						
PASS - A	corner <= A _{sedgetop} -	Area of reinforcement provided in top of slab at corners is adequate						
Applied shear stress		$v_{corner} = V_{\Sigma c}$	corner/d _{tslabmin} = 0.0)36 N/mm²		•		
Tension steel ratio		$\rho_{\text{corner}} = 100 \times A_{\text{sedgetop}}/d_{\text{tslabmin}} = 0.192$						
From BS8110-1:1997 - Table 3.	8							
Design concrete shear strength		v _{ccorner} = 0.	504 N/mm²					
	Pass - v _{corner} <= v _{ccorner} - Shear capacity of the slab is not exceeded							
Slab corner deflection check								
Basic allowable span to depth r	atio	Ratiobasiccor	_{ner} = 7.0					
Moment factor		M _{factorcorner} :	= $M_{\Sigma \text{corner}}/d_{\text{tslabmin}}^2$	² = 0.081 N/mm ²				
Steel service stress		f _{scorner} = 2/3	$B imes f_{yslab} imes A_{scorner}$	bend/A _{sedgetop} = 34	.228 N/mm ²			
Modification factor		MFcorner=min(2.0,0.55+[(477N/mm²-fscorner)/(120×(0.9N/mm²+Mfactorcorner))])						
		MF _{corner} = 2	2.000					
Modified allowable span to dept	h ratio	Ratioallowcor	ner = Ratio _{basiccorn}	er × MF _{corner} = 14	.000			
Actual span to depth ratio	epth ratio Ratio _{actualcorner} = I _{corner} / d _{tslabmin} = 6.721							
	PASS -	Ratio _{actualcor}	ner <= Ratio _{allowco}	_{orner} - Slab span	to depth ratio	o is adequate		

*	Project				Job no.	
MLM.	Gin Distillery				669931	
MLM Consulting Engineers Ltd 190 Eureka Park, Upper Pemberton Ashford, Kent TN25 4AZ	Calcs for	Start page no./Revision 6				
	Calcs by JOT	Calcs date 06/11/18	Checked by	Checked date	Approved by	Approved date