

xcavation Method	Dimensions 118mm to 4.00m	Ground Level (mOD) Client 114.50 Channing Junior School, Highgate High Street, N6 5JR Channing Junior School	Job Number	
pen-unve samplei	Location	Dates 24/10/2017 Engineer Heyne Tillett Steel	Sheet 1/1	
Depth (m) Sample /	Water Depth Field Records (m)	Level Depth (mOD) Description I (Thickness)	Legend	
30 D1 50 D2 90 D3 90-1.45 D3 SPT(C) N 40 D4 70 D5 00 D6 40 D7 60 D8 80 D9 00-3.45 SPT(C) N D10 30 D11 50 D12 00 D13 50 D14 00 D15 D16 50 D17		MADE GROUND (green macadam, 40 mm thick, over black macadam, 40 mm thick) MADE GROUND (brown slightly clayey gravelly sand with fragments of brick and ash) Light brown slightly clayey fine to medium SAND with authoriant medium to coarse subrounded to well rounded flint gravel and occasional cobbles (BAGSHOT FORMATION) Light brown fine to medium SAND with authoriant medium to coarse subrounded to well rounded flint gravel (BAGSHOT FORMATION) Light brown fine to medium SAND with very rare medium will rounded flint gravel (BAGSHOT FORMATION) Light brown fine to medium SAND with very rare medium will rounded flint gravel (BAGSHOT FORMATION) Light brown fine to medium to coarse SAND with occasional medium to coarse subrounded to well rounded flint gravel (BAGSHOT FORMATION) Light brown fine to medium to coarse SAND with occasional medium to coarse subrounded to well rounded flint gravel (BAGSHOT FORMATION) Light brown fine to medium to coarse sand with fragments of sandstone between 2.70 m and 2.75 m and 2.80 m Firm orange-brown laminated brown and greenish grey silty sandy CLAY with rare carbonaceous material (CLAYGATE MEMBER) Light brown fine SAND with rare carbonaceous material (CLAYGATE MEMBER) Complete at 6.00m Complete at 6.00m		
emarks and-dug starter pit to a	oth of 0.57 m	Scale (approx)	Logge By	

S	GEA			& Environment oury Hill Ware SG12 7QE		iates	Site Channing Junior School, Highgate High Street, N6 5JR	Borehole Number BH02
Boring Meth Cable Percus			Diamete Omm cas	r ed to 12.00m		Level (mOD) 113.65	Client Channing Junior School	Job Number J17268
		Locatio	n		Dates 19)/10/2017	Engineer Heyne Tillett Steel	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend sta
0.30 0.50-0.95	D1 B2						MADE GROUND (green macadam, 40 mm thick, over bla macadam, 40 mm thick, overlying dark greyish brown sar gravel with half bricks and occasional fragments of red br	ıdy XXXXX
1.20-1.65 1.20-1.65 1.75	SPT(C) N60=12 B3			1,2/2,3,5,2	111.85	1.80	becoming orange-brown clayey sand with rare pockets of orange-brown silty sandy clay, rare medium to coarse subangular flint gravel and rare fragments of brick, burnt coal and concrete	
2.00-2.45 2.00	SPT N60=29 D5			3,6/6,7,9,7		(0.70)	Medium dense orange-brown clayey fine to coarse SAND with rare fine to medium angular to rounded flint gravel (BAGSHOT FORMATION)	
2.75 3.00-3.45 3.00-3.45	D6 SPT(C) N60=11 B7			2,2/3,2,2,4	111.15	2.50	Medium dense orange-brown medium to coarse SAND w abundant fine to coarse subrounded to well rounded flint gravel (BAGSHOT FORMATION) abundant pockets of grey clay at a depth of 2.75 m	ith
3.75 4.00-4.45 4.00-4.45	D8 SPT(C) N60=12 B9			1,3/2,3,3,4	109.65	4.00	Medium dense orange-brown clayey medium to coarse SAND with rare carbonaceous material (CLAYGATE MEMBER)	
4.75 5.00-5.45 5.00	D10 SPT(C) N60=12 B11			1,3/2,3,3,4	108.20	(1.45)	becoming orange-brown silty fine sand	
6.00 6.50-6.95	D12 SPT N60=14			1,1/3,3,4,4	100.20	5.40 	Medium dense light brown silty fine SAND (CLAYGATE MEMBER) soft orange-brown silty sandy clay at 6.00 m	
7.50	D13			1,110,0,7,7				
8.00-8.45 8.00	SPT N60=15 D15			2,3/3,4,4,4		(6.10)		
9.00	D16							
9.50-9.95 9.50	SPT N60=21 D17			2,4/4,5,6,6		=	light brown mottled orange-brown clayey silty fine sand between 9.50 m and 9.95 m	
Remarks Hand-dug sta Overnight sta	arter pit to a depth of	1.20 m 3.30 m		I	1		Sca (appr	le Logged ox) By
Standpipe ins Water added Groundwater	stalled to a depth of to assist drilling in g measured at depths	6.00 m - r ranular so s of 3.89 n	esponse oils n on 23/1	zone from 2.00 m to 0/2017, 4.15 m on 24	6.00 m 4/10/2017.	4.16 m on 25/	10/2017 and 4.21 m on 16/11/2017	
					,		Figu	i re No. 17268.BH02

S	GEA			& Environment oury Hill Ware SG12 7QE		iates	Site Channing Junior School, Highgate High Street, N6 5JR	Borel Numb	oer	
Soring Meth		Casing I		r ed to 12.00m	Ground Level (mOD) 113.65		Client Channing Junior School	Job Numb		
		Location					Engineer Heyne Tillett Steel		Sheet 2/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	d	
0.50 1.00 1.55-12.00 1.55	D18 D19 SPT N60=26 D20			2,5/6,6,7,7	102.10		rare black specks noted at a depth of 10.50 m Soft light brown laminated orange-brown and pale grey silt sandy CLAY (water softened) (CLAYGATE MEMBER)		the state of the s	
					101.65	12.00	Complete at 12.00m		=	
Remarks Hand-dug sta Dvernight sta Standpipe ins	rter pit to a depth of nding water level of stalled to a depth of	f 1.20 m 3.30 m 6.00 m - re	esponse	zone from 2.00 m to	6.00 m		Scale (appro	Logge By	ed	
Vater added Groundwater	to assist drilling in comeasured at depths	granular so s of 3.89 m	ils on 23/1	0/2017, 4.15 m on 24	4/10/2017,	4.16 m on 25/	1:50 10/2017 and 4.21 m on 16/11/2017 Figur	HD		

Boring Meth		Casing 20	Diameter Omm cas	ed to 12.00m	Ground	Level (mOD) 114.00	Channing Junior School, Highgate High Street, N6 5JR Client Channing Junior School	Job Number J17268
		Location		ed to 13.60m		0/10/2017-	Engineer	Sheet
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth	Field Records	Level (mOD)	Depth (m) (Thickness)	Heyne Tillett Steel Description	Legend
0.30 0.50-0.95 1.20-1.65 1.20	D1 B2 SPT(C) N60=11 B3	(m)	(m)	2,3/2,3,3,3		(Inickness)	MADE GROUND (grass over dark brown silty sandy clay with rare medium subangular flint gravel, roots and rare fragments of red brick and clinker)	
1.75 2.00-2.45 2.00-2.45 2.75 3.00-3.45 3.00-3.45	D4 SPT(C) N60=15 B5 D6 SPT(C) N60=33 B7			2,6/4,4,3,4 3,6/7,9,10,7	111.80	2.20	Medium dense becoming dense orange-brown fine to coarse SAND with occasional fine to coarse well rounded to subangular flint gravel with rare pockets of grey clayey silty sand and rootlets (BAGSHOT FORMATION)	
3.75 4.00-4.45 4.00-4.45	D8 SPT(C) N60=50 B9			19,30/50	110.40	3.60	Very dense reddish brown medium to coarse SAND with occasional fine to coarse subangular to subrounded flint gravel and rare sandstone nodules (BAGSHOT FORMATION)	
4.75 5.00-5.45 5.00-5.45	D10 SPT(C) N60=18 B11			4,8/6,4,4,4	109.00	(0.60)	Medium dense light brown medium to coarse SAND with occasional coarse subangular to subrounded flint gravel and rare pockets of firm orange-brown silty sandy clay and soft light greenish grey clay (BAGSHOT FORMATION)	
6.00	D12				.561.16	(0.90)	Soft brown mottled pale grey and orange-brown silty sandy CLAY with rare medium subangular flint gravel and rare carbonaceous material (water softened) (CLAYGATE MEMBER)	
6.50-6.95 6.50	SPT N60=11 D13			2,2/2,3,3,3	107.50		Medium dense light brown silty fine SAND (CLAYGATE MEMBER)	×
7.50 8.00-8.45 8.00	D14 SPT N60=16 D15			2,3/3,4,4,5		(3.90)	light brown mottled orange-brown silty fine sand with rare carbonaceous material	
9.00 9.50-9.95 9.50	D16 SPT N60=21 D17			2,4/4,5,6,6				
Hand-dug st Standpipe in	r measured at a dept arter pit to a depth of stalled to a depth of d to assist drilling with	f 1.20 m 8.00 m - r	esponse		8.00 m	1	Scale (approx) 1:50 Figure	HD

	GEA	Widbury f	Barn Widb	ury Hill Ware SG12 7QE			Channing Junior School, Highgate High Street, N6 5JR	BH0
Boring Meth Cable Percus		_	Diamete	r ed to 12.00m		Level (mOD) 14.00	Client Channing Junior School	Job Numbe
able Felcus	551011			ed to 13.60m	'	114.00	Chairing Junior School	J17268
		Location	n			/10/2017-	Engineer Heyne Tillett Steel	Sheet 2/2
					24/10/2017		Heyrie fillett Steel	2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
					103.60	— (0.20)	Soft brown mottled silty CLAY - water softened (CLAYGATE	××
10.50	D18				103.40	10.60	MEMBER) Medium dense grey mottled brown clayey silty fine SAND	1
1.00-11.45	SPT N60=23 D19			2,4/5,5,6,7			(CLAYGATE MĒMBER)	
1.00	DI9					(1.60)		
						Ē		
2.00	D20				101.80	12.20		×
					101.80	E 12.20	Stiff high strength dark grey silty CLAY with abundant specklings of mica and rare partings of light grey and dark grey fine sand and silt (CLAYGATE MEMBER)	××
2.50-12.95 2.50	SPT N60=16 D21			2,4/3,4,4,5		Ė	grey line salid and slit (CLATGATE MEMBER)	×x
						<u> </u>		x x x x x x x x x x x x x x x x x x x
						E		× ×
3.50	D22					E	soft dark grey very silty CLAY with specklings of mica	× ×
4.00-14.45	U23							××
						Ē		×
						E		××
5.00	D24							××
						Ē		××
5.50	D25			Water strike(1) at 15.50m, rose to		E	slightly fissured	××
5.50-15.95	SPT N60=20			2,3/4,5,5,6		E		××
						E		××
6.50-16.95 6.50	SPT N60=22 D26			3,4/6,5,5,6			firm grey very silty CLAY with occasional mottling of dark greenish grey	× ×
7.00-17.45	SPT N60=26			5,5/5,7,7,7		Ē	very rare shell fragments	x x x x x x x x x x x x x x x x x x x
7.00	D27				96.55	17.45	Ourselve et 47 45 a	×
						Ē	Complete at 17.45m	
						<u>=</u>		
						E		
						E		
						<u> </u>		
						E		
						E		
Remarks Groundwater	measured at a deprarter pit to a depth o	th of 4.28 r	m on 25/	10/2017		<u> </u>	Scale (approx)	Logged
tand-dug sta	arter pit to a depth of	t 1.20 m 8 00 m - re	aenonea	zono from 2 50 m to 9	3 00 m		('
Standpipe ins Vater added	to assist drilling witl	hin granula	ar soils	zone from 2.50 m to 8	5.00 111		1:50	HD

S	150mm cased to 8.00m	Site Channing Junior School, Highgate High Street, N6 5JR	Borehole Number BH04					
Boring Meth Cable Percus						, ,	Client Channing Junior School	Job Number J17268
		Locatio	n)/10/2017	Engineer Heyne Tillett Steel	Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend by S
0.30	D1				113.91	(0.30)	MADE GROUND (grass over light brown mottled orange-brown silty sandy clay with rare medium to coarse subangular to well rounded lfint and fragments of red bric	k)
						(0.90)	MADE GROUND (light brown silty fine sand with rare coarse subrounded flint gravel, rare pockets of grey clay, occasional cemented sand, rare fragments of brick and roots)	
1.20-1.65 1.20-1.65				5,10/12,5,5,5	113.01	1.20	Medium dense orange-brown mottled light brown fine to coarse SAND with occasional fine to coarse subangular t rounded flint gravel and rare pockets of soft grey clay (BAGSHOT FORMATION)	•
1.75 2.00-2.45 2.00-2.45	SPT(C) N60=25			10,12/10,5,5,5		(1.90)	(BAGSHOT FORMATION)	
2.75 3.00-3.45	SPT(C) N60=27			5,17/8,6,6,7	111.11	3.10	dark reddish brown medium to coarse SAND with	
3.00-3.45	B6					(0.90)	abundant fine to coarse subangular to subrounded flint gravel with fragments of sandstone Soft orange-brown silty sandy CLAY with fine to medium subagular flint gravel and rare cobbles - water softened	
3.75 4.00-4.45 4.00	SPT(C) N60=13			1,1/3,3,3,4	110.21	4.00	(BAĞSHOT FÖRMATION) Firm light brown mottled pale grey and orange-brown silty CLAY with occasional orange-brown fine sand and silt - water softened in places (CLAYGATE MEMBER)	· · · · · · · · · · · · · · · · · · ·
4.75 5.00-5.45 5.00	SPT N60=13			1,2/2,3,3,5			very rare medium subangular flint gravel at 4.75 m	
6.00	D11					(3.50)		
6.50-6.95 6.50				4,2/4,4,5,5			between 6.50 m and 6.95 m, medium dense light brown silty fine sand	
7.50	D13				106.71	7.50	Medium dense light brown mottled pale grey silty fine SAI (CLAYGATE MEMBER)	ND
8.00-8.45 8.00				1,4/5,7,6,5		= - - - - - - - - - - - - - - - - - - -		
9.00	D15						slightly clayey from a depth of 9.00 m	
9.50-9.95 9.50				2,4/6,6,7,4		(4.50)		
Remarks Hand-dug sta Water added	arter pit to a depth of to assist drilling with	1.20 m	ar soils	1	1	1	Sca (appr	le Logged ox) By
Standpipe ins Groundwater Water standing	stalled to a depth of measured at a dept ng at a depth of 4.20	6.00 m - r h of 4.77) m on cor	esponse m on 23/ npletion o	zone from 1.50 m to 0 10/2017, 4.78 m on 2 of borehole	6.00 m 4/10/2017,	4.77 m on 25	Figu	0 HD Ire No. 17268.BH04

S	150mm cased to 8.00m		iates	Site Channing Junior School, Highgate High Street, N	6 5JR	Borehole Number BH04			
Boring Meth		1				Level (mOD) 114.21	Client Channing Junior School		Job Number J17268
		Location	1		Dates 20/10/2017		Engineer Heyne Tillett Steel		Sheet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Kate Mage Manage
10.50 11.55-12.00 11.55-12.00	SPT(C) N60=26			1,3/5,6,7,8	102.21	12.00	Complete at 12.00m		
Remarks Hand-dug sta	arter pit to a depth of	1.20 m						Scale (approx)	Logged By
Water added Standpipe in Groundwater	aner pit to a depth of to assist drilling with stalled to a depth of the measured at a depth of the part at a depth of the part and part a	n.∠∪ m nin granula 6.00 m - re h of 4.77 n	r soils esponse n on 23/	zone from 1.50 m to 0 10/2017, 4.78 m on 20	6.00 m 4/10/2017,	4.77 m on 25	/10/2017 and 4.80 m on 16/11/2017	(approx) 1:50	By HD
vvaler standi	marks d-dugs starter pit to a depth of the radded to assist drilling with the radded the radded to assist drilling with t		ipietion (or porenole				Figure N	o. 8.BH04

GEA		nnical & Environme Widbury Hill Ware SG12 7		iates	Site Channing Junior School, Highgate High Street, N6 5JR	Number BH05
Excavation Method Drive-in window sampler	Dimension	s		Level (mOD) 116.90	Client Channing Junior School	Job Number J17268
	Location		Dates 24	/10/2017	Engineer Heyne Tillett Steel	Sheet 1/1
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
1.50 D1 3.00 D2 3.50 D3			114.00 113.40	(2.83)	MADE GROUND (green macdam, 30 mm thick, overlying black macadam, 40 mm thick) MADE GROUND (brown clayey sand with rare flint gravel and fragments of brick and ash) Orange-brown fine to medium SAND with occasional fine to medium subrounded flint gravel (BAGSHOT FORMATION) Complete at 3.50m	
Remarks Hand-dug starter pit to a depth o Groundwater not encountered	f 1.05 m				Scale (approx	HD

	GEA		echnical & Environmen Barn Widbury Hill Ware SG12 70		ates	Channing Junior School, Highgate High Street, N6 5JR	BH0	
cavation I		Dimens	ions 8mm to 3.00m		Level (mOD) 13.65	Client Channing Junior School		
	·	Locatio	n	Dates		Engineer	J1726	
				24	/10/2017	Heyne Tillett Steel	1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
80	D1			113.54 113.35	0.11 (0.19) 0.30	MADE GROUND (green macadam, 30 mm thick overlying black macadam, 80 mm thick) MADE GROUND (type one sub-base) MADE GROUND (greyish brown gravelly sandy clay with fragments of brick and ash)flint gravel at 0.70 m		
50 00-2.45 00 30	D2 SPT(C) N60=24 D3		5,5/6,5,6,7	112.20	1.45	Medium dense orange-brown mottled brown fine to medium SAND with rare medium well rounded flint gravel (BAGSHOT FORMATION)slightly clayey from 1.90 m		
30 60 00 50 72 90 00-4.45	D5 D6 D7 D8 D9 SPT(C) N60=19		Water strike(1) at 4.00m. 4,4/5,5,4,5	110.65 109.92 109.65	(0.73)	Reddish brown fine to medium SAND with occasional medium to coarse well rounded flint gravel (BAGSHOT FORMATION) carbonaceous material at 3.50 m fragments of reddish brown mottled black sandstone from 3.70 m to 3.73 m Medium dense orange-brown clayey fine SAND with rare fine to medium well rounded flint gravel (BAGSHOT FORMATION)		
50	D10 D11			108.65	5.00	Soft orange-brown mottled grey silty sandy CLAY (CLAYGATE MEMBER) Complete at 5.00m	X	
roundwater	measured at a dept	h of 4.50	slotted pipe GL to 5.00 m m on 25/10/2017 and dry to a	a depth of 4.	34 m on 16/11	Scale (approx)	Logged By	
alling head	test carried out on 2	5/10/2017	- see separate sheet for res	ults		1:50	HD	

-	GEA	Geotech	nnical & Environme	ntal Assoc	iates	Site	Numb	er
	GEA				-	Channing Junior School, Highgate High Street, N6 5JR	Sheet 1/1 Legend ck, over black with	
Excavation Drive-in win		Dimension	Number N					
		Dimensions Ground Level (mOD) Client John Number J7288						
		Dimensions Ground Level (mOD) Client Johnshore Jurage Location Dates Location Dates Level						
Depth (m)	Sample / Tests	Water Depth (m)	Field Records		Depth (m) (Thickness)	Description	Legend	1 100
				116.90 116.80	0.09			VXXXXXXX
							7	\$ \$ \$
					(1.31)	fragments of brick)		Z Z Z Z Z
				115.49	1.50	Orange brown fine to google SAND with appealing line to		Ž X
1.70	D1	Dimensions Ground Level (mOD) Client Channing Junior School Johnsmare Jurios School Channing Junior School Channing Junior School Jurior Schoo						
	GE A Geotechnical & Environmental Associates (Chaming Junior School, Highgate High Street, N6 SUR BHM Method Indox sampler) Location Dates (Physical Plant School) Location Dates (Physical Plant School) Sample / Tosts Water Plaid Records (Location Chaming Junior School) Sample / Tosts Water Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical Plaid Records (Location Chaming Junior School) Sample / Tosts (Physical	1						
					<u></u>	Channing Junior School, Highgate High Street, N6 SJR BH07 BI (mOD) Client Channing Junior School Depth Chickness) Description Legend MADE GROUND (green macadam, 20 mm thick, over black macadam, 70 mm thick) MADE GROUND (light brown silty sandy clay with fragments of brick) 1.50 Orange-brown fine to coarse SAND with occasional fine to coarse well rounded first gravel (BAGSHOT FORMATION) Complete at 2.10m Scale (approx) Legend Section Sheet 1/1 Complete at 2.10m		
					<u>-</u>			
					=			
					<u></u>			
				=_				
					E			
					<u></u>			
					<u> </u>			
					<u> </u>			
					=			
			116.90 0.19 116.80					
Remarks Borehole ca Made groun	arks ole carried out through base of Trial Pit No 1A ground is damp Scale (approx) 1:50 Figure No.		∌d					
	D1 Complete at 2.10m							

S	GEA	Widbury Barr	nnical & Environme n Widbury Hill Ware SG12	7QE		Site Channing Junior School, Highgate High Street, N6 5JR	BH(
xcavation rive-in wind	Method low sampler	Dimension	ns		L evel (mOD) 16.93	Client Channing Junior School	Job Numb	
		Location		Dates 24	/10/2017	Engineer Heyne Tillett Steel	Sheet	t
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legen	d
.60	D1			114.93 114.83	(1.90)	MADE GROUND (green macadam, 50 mm thick, overlying black macadam, 50 mm thick) MADE GROUND (brown clayety silty sand with half bricks and fragments of brick)mottled orange-brown Orange-brown fine to coarse SAND with occasional fine to coarse well rounded flint gravel (BAGSHOT FORMATION) Complete at 2.10m		
Remarks lade ground	d is damp arter pit to a depth o	f 1 15 m			<u>-</u>	Scale (approx	Logg By	e
ianu-uug Sli	ωποι μπ το α αθμιπ ο	. 1.13 111				1:50	HD)
							No.	_

S	GEA	Geotech Widbury Barr	nnical & Environme	ntal Assoc	iates	Site Channing Junior School, Highgate High Street, N6 5JR	Numb BH0	
Excavation Drive-in win	Method dow sampler	Dimension	ns		Level (mOD) 114.70	Client Channing Junior School		oer 68
		Location		Dates 24	/10/2017	Engineer Heyne Tillett Steel	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	1 3
				114.20 114.00 113.70	(0.20) 0.70 (0.30)	MADE GROUND (orange-brown mottled brown silty sand with flint gravel and fragments of brick) Orange-brown fine to coarse SAND with occasional fine to coarse well rounded flint gravel (BAGSHOT FORMATION) Complete at 1.00m		I POPULATION I
Remarks Borehole ca Groundwate	arried out through bas er not encountered	e of Trial Pit	No 2A	1	1	Scale (approx	Logge	≱d
						1:50 Figure	No.	_
							268.BH09	

S	GEA	Widbury Barr	nnical & Environme n Widbury Hill Ware SG12	7QE		Channing Junior School, Highgate High Street, N6 5JR	Number BH1
Excavation Method Open-drive sampler		Dimensions 118mm to 3.00m			Level (mOD) 14.14	Client Channing Junior School	Job Number J1726
		Location		Dates 24	/10/2017	Engineer Heyne Tillett Steel	Sheet
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
.60 .00 .80 .60 .95	D1 D2 D3 D4 D5			111.24	0.11 (0.37) 0.48 (0.32) 0.80 (0.75) 1.55 1.60 (0.80) (0.80) 2.40 (0.50)	MADE GROUND (green macadam, 40 mm thick, overlying black macadam, 70 mm thick) MADE GROUND (type one sub-base) MADE GROUND (greyish brown gravelly sandy clay wth fragments of brick and ash. Hessian matting noted at a depth of 0.50 m MADE GROUND (orange-brown mottled brown and greenish grey very clayey sand with rare fragments of brick) MADE GROUND (brown silty sandy clay with fragments of brick and ash) Orange-brown mottled brown fine to medium SAND (BAGSHOT FORMATION) Orange-brown medium to coarse SAND with with occasional medium to coarse well rounded flint gravel (BAGSHOT FORMATION) Reddish brown clayey fine to medium SAND with rare fine to coarse well rounded flint gravel (BAGSHOT FORMATION) Complete at 3.00m	
Remarks Froundwater	not encountered					Scale (approx)	Logge By
. Janawalel	st onoodinered						
						1:50	HD

S	GEA	Geotech Widbury Barr	nnical & Environme	ntal Associ	ates	Site Channing Junior School, Highgate High Street, N6 5JR	Numbe	
Excavation Drive-in wir	n Method ndow sampler	Dimension	s		Level (mOD) 111.90	Client Channing Junior School	Job Numbe	
		Location		Dates 24	/10/2017	Engineer Heyne Tillett Steel	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	. ale
1.80	D1			111.00	(0.80)	MADE GROUND (brown clayey silty sand with rare flint gravel and fragments of brick. Rootlets noted to a depth of 0.25 m) MADE GROUND (orange-brown gravelly sand with rare fragments of red brick) Orange-brown fine to medium SAND (BAGSHOT FORMATION) Complete at 2.00m		
Remarks Groundwate	er not encountered			-		Scale (approx) Logge	d
						1:50 Figure	HD.	_
							268.BH11	

	GEA		nical & Environme		ates	Channing Junior School, Highgate High Street, N6 5JR	Numbe BH12
xcavation I		Dimension	s m to 3.00m		Level (mOD) 13.30	Client Channing Junior School	Job Numbe
pen-unve s	ampiei		11 to 3.00111		13.30		J17268
	Location		Dates 24	/10/2017	Engineer Heyne Tillett Steel	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
50 00 50 00 50	D1 D2 D3 D4 D5			112.45 112.10 111.50 111.45 111.05	(0.85) 	MADE GROUND (orange-brown mottled grey clayey silty sand with fragments of brick and ash) MADE GROUND (orange-brown gravelly sand) MADE GROUND (grey silty sandy clay with fragments of brick and ash) Light brown fine to medium SAND with occasional medium well rounded flint gravel (BAGSHOT FORMATION) Reddish brown fine to coarse SAND with occasional medium to coarse well rounded flint gravel and fragments of sandstone (BAGSHOT FORMATION) Complete at 3.00m	
tandpipe re	corded to be dry to a	3.00 m - slott a depth of 2.8	ed pipe from GL to 3.00 0 m on 25/10/2017 and	m dry to a depth	of 2.74 m on	Scale (approx)	Logged By
roundwater	not encountered test carried out - see			. , .5 a dopu	· · · · · · · · · · · · · · · · ·	1:50	HD

Geotechnical & Environmental Associates Widbury Barn | Widbury Hill | Ware | SG12 7QE

Standard Penetration Test Results

: Channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

Client : Channing Junior School

Sheet

Engineer: Heyne Tillett Steel

1 / 1

Borehole Number	_Base of	End of	End of	<u>T</u> est	Seating	g Blows 75mm	Blows	or each 7	5mm pen	etration	_		
Number	Base of Borehole (m)	End of Seating Drive (m)	Test Drive (m)	Test Type	1	2	1	2	3	4	Result	Comme	ents
3H01	1.00	1.15	1.45	CPT	3	3	6	5	5	5	N60=21		
3H01	3.00	3.15	3.45	CPT	17	18	14	14	9	7	N60=44		
3H02	1.20	1.35	1.65	CPT	1	2	2	3	5	2	N60=12		
3H02	2.00	2.15	2.45	SPT	3	6	6	7	9	7	N60=29		
BH02	3.00	3.15	3.45	CPT	2	2	3	2	2	4	N60=11		
3H02	4.00	4.15	4.45	CPT	1	3	2	3	3	4	N60=12		
BH02	5.00	5.15	5.45	CPT	1	3	2	3	3	4	N60=12		
BH02	6.50	6.65	6.95	SPT	1	1	3	3	4	4	N60=14		
3H02	8.00	8.15	8.45	SPT	2	3	3	4	4	4	N60=15		
BH02	9.50	9.65	9.95	SPT	2	4	4	5	6	6	N60=21		
BH02	11.55	11.70	12.00	SPT	2	5	6	6	7	7	N60=26		
3H03	1.20	1.35	1.65	CPT	2	3	2	3	3	3	N60=11		
BH03	2.00	2.15	2.45	CPT	2	6	4	4	3	4	N60=15		
BH03	3.00	3.15	3.45	CPT	3	6	7	9	10	7	N60=33		
BH03	4.00	4.15	4.45	CPT	19	30	50				N60=50	Refusal	
BH03	5.00	5.15	5.45	CPT	4	8	6	4	4	4	N60=18		
3H03	6.50	6.65	6.95	SPT	2	2	2	3	3	3	N60=11		
BH03	8.00	8.15	8.45	SPT	2	3	3	4	4	5	N60=16		
BH03	9.50	9.65	9.95	SPT	2	4	4	5	6	6	N60=21		
BH03	11.00	11.15	11.45	SPT	2	4	5	5	6	7	N60=23		
BH03	12.50	12.65	12.95	SPT	2	4	3	4	4	5	N60=16		
BH03	15.50	15.65	15.95	SPT	2	3	4	5	5	6	N60=10 N60=20		
				SPT	3	4	6	5	5	6	N60=20		
BH03 BH03	16.50 17.00	16.65 17.15	16.95 17.45	SPT	5	5	5	7	7	7	N60=22 N60=26		
BH04	1.20	1.35	1.65	CPT	5	10	12	5	5	5	N60=27		
BH04	2.00	2.15	2.45	CPT	10	12	10	5	5	5	N60=25		
BH04	3.00	3.15	3.45	CPT	5	17	8	6	6	7	N60=27		
BH04	4.00	4.15	4.45	CPT	1	1	3	3	3	4	N60=13		
BH04	5.00	5.15	5.45	SPT	1	2	2	3	3	5	N60=13		
BH04	6.50	6.65	6.95	SPT	4	2	4	4	5	5	N60=18		
BH04	8.00	8.15	8.45	SPT	1	4	5	7	6	5	N60=23		
BH04	9.50	9.65	9.95	SPT	2	4	6	6	7	4	N60=23		
BH04	11.55	11.70	12.00	CPT	1	3	5	6	7	8	N60=26		
BH06	2.00	2.15	2.45	CPT	5	5	6	5	6	7	N60=24		
BH06	4.00	4.15	4.45	CPT	4	4	5	5	4	5	N60=19		

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

GEGE	٨		www.gea-ltd.co.uk	Trial Pit No
O GE	A	Hert	s 01727 824666 Notts 01509 674888	1
014 - Oh O - h	I I link out I link Ote at NO FID			Job Number
Site Channing Junior School	ol, Highgate High Street, N6 5JR			J17268
Client Chamming Innian Cab	1			Sheet
Client Channing Junior Sch	1001			1/1
F	1			Dates
Engineer Heyne Tillett Stee	el .			24/10/2017
Excavation Method	Dimensions	Ground Level (mOD)	Location	•
Manual	850 x 400 x 900			

Plan: -

Section A - A: -

Remarks:	Scale:
All dimensions in millimetres	1:20
Sides of trial pit remained stable during excavation	Logged by:
Ground water not encountered	HD

Herts | 01727 824666 Notts | 01509 674888

Trial Pit No 1

www.gea-ltd.co.uk

Channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

Client Channing Junior School

Sheet

Engineer Heyne Tillett Steel

Plan: -

Section A - A: -

20 mm green tarmac over 90 mm black tarmac Concrete

MADE GROUND (light brown silty sandy clay with brick fragments)

Remarks:	Scale:
All dimensions in millimetres	1:20
Sides of trial pit remained stable during excavation	Logged by:
Ground water not encountered	HD

G GEA

www.gea-ltd.co.uk

Herts | 01727 824666 Notts | 01509 674888

Trial Pit No 1A

Channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

Client Channing Junior School

Sheet

Engineer Heyne Tillett Steel

Plan: -

TOPSOIL (dark brown silty sand with roots and flint gravel)

Orange-brown gravelly medium to coarse SAND with roots. Gravel is subrounded, medium to coarse and rarely medium and rarely subangular flint

Section B - B: -

TOPSOIL (dark brown silty sand with roots and flint gravel

Orange-brown gravelly medium to coarse SAND with roots. Gravel is subrounded, medium to coarse and rarely medium and rarely subangular flint

R	emarks:	Scale:
Al	Il dimensions in millimetres	1:20
Si	des of trial pit remained stable during excavation	Logged by:
G	round water not encountered	HD

Herts | 01727 824666 Notts | 01509 674888

Trial Pit No 2

www.gea-ltd.co.uk

te Channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

Client Channing Junior School

Sheet

Engineer Heyne Tillett Steel

GEGE	٨		www.gea-ltd.co.uk	Trial Pit No
GE	A	Herts	s 01727 824666 Notts 01509 674888	2A
Cita Channing Junior Cabos	J. Highanto High Street NG FID			Job Number
Site Channing Junior School	l, Highgate High Street, N6 5JR			J17268
Client Channing Junior Coh	aal			Sheet
Client Channing Junior Sch	001			1/1
Engineer House Tillett Stee	1			Dates
Engineer Heyne Tillett Stee	II			23/10/2017
Excavation Method	Dimensions	Ground Level (mOD)	Location	•
Manual	665 x 400 x 650			

Plan: -

Section A - A: -

TOPSOIL (dark brown silty sand with roots and flint gravel

MADE GROUND (orange-brown mottled brown silty sand with red brick fragments and flint gravel)

Remarks:	Scale:
All dimensions in millimetres	1:20
Sides of trial pit remained stable during excavation	Logged by:
Ground water not encountered	HD

Herts | 01727 824666 Notts | 01509 674888

www.gea-ltd.co.uk

Trial Pit No 2A

Channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

Client Channing Junior School

Sheet

Engineer Heyne Tillett Steel

Section A - A: -

Section B - B: -

Remarks:	Scale:			
All dimensions in millimetres	1:20			
Sides of trial pit remained stable during excavation				
Ground water not encountered	HD			

www.gea-ltd.co.uk

Herts | 01727 824666 Notts | 01509 674888

Trial Pit No 3

Channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

Client Channing Junior School

Sheet

Engineer Heyne Tillett Steel

GEA			www.gea-ltc	d.co.uk Trial Pit No
		Herts	01727 824666 Notts 01509 6	4
Olfo Ole anni an Inni an Oale	al High water High Otto at NO 5 ID			Job Number
Site Channing Junior School	ol, Highgate High Street, N6 5JR			J17268
<u> </u>		Sheet		
Client Channing Junior School			2/2	
Emminosan House Tillett Ctor	-1			Dates
Engineer Heyne Tillett Stee	е			23/10/2017
Excavation Method	Dimensions	Ground Level (mOD)	Location	
Manual	600 x 650 x 710			

Proved by hilti drilling

Concrete Polystyrene Made Ground (as opposite) Brick Brick Corbels Lino over concrete, with 5 mm thick rebar and damp proof membrane at base MADE GROUND (brown silty sand with flint gravel and well rounded cobbles)

Concrete

Remarks:	
All dimensions in millimetres	1:20
Sides of trial pit remained stable during excavation	Logged by:
Ground water not encountered	

S	GEA	www.gea-ltd.co.uk Herts 01727 824666 Notts 01509 674888	Trial	Pit No 4
Site	Channing Junior School, Highgate High Street, N6 5JR			Job Number J17268
Client	Channing Junior School			Sheet

G GE	^		www.gea-ltd.co.uk	Trial Pit No	
	A	Herts	01727 824666 Notts 01509 674888	5	
Site Channing Junior School	ol, Highgate High Street, N6 5JR			Job Number J17268	
Client Channing Junior Sch	ool			Sheet	
				1/1 Dates	
Engineer Heyne Tillett Stee			T	23/10/2017	
Excavation Method Manual	Dimensions 600 x 400 x 950	Ground Level (mOD)	Location		
<u>Plan: -</u>					
	600				
	A	→ A'			
	1 3 3 5				
Brick		400			
DIICK	30 40 50 40 80 360	→			
			A		
Section A /	۸.		Ţ		
Section A - A	<u>1</u>			†	
	J		\	1	
				+	
Brick wall	2	$_{200}$ $\mid \Delta$ $_{\star}$ thic	o over concrete, with 5 mm k rebar at base and damp		
	450		of membrane M over polystyrene	↓	
	*	0.			
Deiele	70		ange-brown gravelly SAND		
Brick Corbels	80	700			
	*\ ♦ 80 •. ••. • ↑	0.			
Concrete	· \(\triangle \) \(\triangle				
	0 : 0				

Remarks:	Scale:
All dimensions in millimetres	1:20
Sides of trial pit remained stable during excavation	Logged by:
Ground water not encountered	HD

www.gea-ltd.co.uk Herts | 01727 824666 Notts | 01509 674888

Trial Pit No 5

e Channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

ient Channing Junior School

Engineer Heyne Tillett Steel

GEA			www.gea-ltd.co.uk	Trial Pit No
		Herts	01727 824666 Notts 01509 674888	6
014 01	al High water High Other at NO FID			Job Number
Site Channing Junior School	ol, Highgate High Street, N6 5JR			J17268
Client Channing Junior School			Sheet	
			1/1	
Engineer House Tillett Star				Dates
Engineer Heyne Tillett Stee	31			23/10/2017
Excavation Method	Dimensions	Ground Level (mOD)	Location	_
Manual	920 x 400 x 500			

<u>Plan: -</u>

Section A - A: -

Remarks:	Scale:
All dimensions in millimetres	1:20
Sides of trial pit remained stable during excavation	Logged by:
Ground water not encountered	HD

Engineer Heyne Tillett Steel

Sheet

Channing Junior School

· C	^		www.gea-ltd.co.uk	Trial Pit No
GEA		Herts	01727 824666 Notts 01509 674888	6A
Site Channing Junior School	ol, Highgate High Street, N6 5JR			Job Number J17268
Client Channing Junior Sch	nool			Sheet 1/1
Engineer Heyne Tillett Stee	el			Dates 24/10/2017
Excavation Method	Dimensions	Ground Level (mOD)	Location	
Manual	500 x 600 x 750			

Plan: Brick wall A Brick wall A Brick wall Brick wall

Section A - A: -

Paving slab Concrete

Pea shingle

MADE GROUND (brown silty sand)

Concrete, probed to be between 580 mm and 640 mm thick from probing

Section B - B: -

Remarks:	Scale:
All dimensions in millimetres	1:20
Sides of trial pit remained stable during excavation	Logged by:
Ground water not encountered	HD

www.gea-ltd.co.uk

Herts | 01727 824666 Notts | 01509 674888

Trial Pit No 6A

channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

lient Channing Junior School

Sheet

Engineer Heyne Tillett Steel

Borehole Soakage Test

Channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

Channing Junior School

Sheet

Engineer Heyne Tillett Steel

1/1

Borehole No: 6 Test No:

Date: 25 October 2017

Test Data

0.050

0.104

70

	Start of test:	End of test:
Borehole depth (m):	4.50	4.50
Casing depth (m):	0.00	0.00
Water level (m):	1.89	2.79

	iesi.	iesi.
Borehole depth (m):	4.50	4.50
Casing depth (m):	0.00	0.00
Water level (m):	1.89	2.79

Time (mins)	Depth to Water (m)	Depth of Water (m)
0	1.89	2.61
1	2.22	2.28
2	2.35	2.15
3	2.40	2.10
4	2.40	2.10
5	2.41	2.09
10	2.44	2.06
70	3.98	0.52
140	4.31	0.19

Borehole Area (m²)	0.002	
Borehole Perimeter (m)	0.157	
From Plot:	D1 (m)	1.00
	D2 (m)	0.30
	T1 (min)	35
	T2 (min)	105
Soakage Volume (m ³)		0.001

Borehole Diameter (m)

Soakage Area (m²)

Time (min)

Soakage rate (m/sec)	3.14E-06
Soakage rate (m/day)	0.27

REMARKS

Falling head test carried out at a depth of 2.80 m

Date:

Borehole Diameter (m) Borehole Area (m²)

Borehole Perimeter (m)

Channing Junior School

Engineer Heyne Tillett Steel

Sheet 1/1

12 **Borehole No:** Test No:

11

13

Test Data

Soakage Calculation

0.050

0.002

0.157

D1 (m) 0.36 D2 (m) 0.16 T1 (min) 3 T2 (min) 9

0.000

0.043

2.55E-05

2.20

6

25 October 2017

	Start of	End of
	test:	test:
Borehole depth (m):	2.80	2.80
Casing depth (m):	0.00	0.00
Water level (m):	2.23	DRY

/ater level (m):	2.23	DRY	From Plot:
Time (mins)	Depth to Water (m)	Depth of Water (m)	
0	2.23	0.57	Soakage Volume (m ³
1	2.33	0.47	Soakage Area (m²)
2	2.40	0.40	Time (min)

2.69

2.80

Time (min)	0.40	2.40	2
	0.36	2.44	3
Soakage rate (m/sec	0.32	2.48	4
Soakage rate (m/day	0.28	2.52	5
	0.12	2.68	10

0.11

0.00

REMARKS

Falling head test carried out at a depth of 2.80 m

Borehole Soakage Test

Channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

Channing Junior School

Sheet

Engineer Heyne Tillett Steel

1/1

12 **Borehole No:** 2 Test No:

Soakage Calculation

25 October 2017

	Start of test:	End of test:
ole depth (m):	2.80	2.80
g depth (m):	0.00	0.00
level (m):	1 98	DRY

Test Data

	test:	test:
Borehole depth (m):	2.80	2.80
Casing depth (m):	0.00	0.00
Water level (m):	1.98	DRY

Time (mins)	Depth to Water (m)	Depth of Water (m)
0	1.98	0.82
1	2.06	0.74
2	2.14	0.66
3	2.20	0.60
4	2.23	0.57
5	2.27	0.53
10	2.43	0.37
15	2.54	0.26
25	2.80	0.00

Borehole Diameter (m)	0.050
Borehole Area (m ²)	0.002
Borehole Perimeter (m)	0.157

Date:

From Plot:	D1 (m)	0.48
	D2 (m)	0.21
	T1 (min)	6
	T2 (min)	18
Soakage Volume (m ³)		0.001
Soakage Area (m²)		0.056
Time (min)		12

Soakage rate (m/sec)	1.31E-05
Soakage rate (m/day)	1.13

REMARKS

Falling head test carried out at a depth of 2.80 m

Date:

Channing Junior School

Engineer Heyne Tillett Steel

Sheet 1/1

12 Borehole No: Test No: 3

Test Data

	Start of test:	End of test:	Borehole Diame Borehole Area
Borehole depth (m):	2.80	2.80	Borehole Perim
Casing depth (m):	0.00	0.00	
Water level (m):	2.09	2.79	From Plot:

Time (mins)	Depth to Water (m)	Depth of Water (m)
0	2.09	0.71
1	2.12	0.68
2	2.16	0.64
3	2.19	0.61
4	2.22	0.58
5	2.25	0.55
10	2.38	0.42
16	2.47	0.33
33	2.79	0.01

Soakage Calculation

25 October 2017

Borehole Diameter (m)	0.050	
Borehole Area (m ²)	0.002	
Borehole Perimeter (m)	0.157	
From Plot:	D1(m)	٦

TOTT FIOL.	(ווו) ו ט	0.57
	D2 (m)	0.21
	T1 (min)	8

	` ,	
	T2 (min)	24
Soakage Volume (m ³)		0.000
Soakage Area (m²)		0.048
Time (min)		16

Soakage rate (m/sec)	6.89E-06
Soakage rate (m/day)	0.60

REMARKS

Falling head test carried out at a depth of 2.80 m

	SOILS								_			sults
ob No.	0007		Project						Samples r		ramme 27-10	0-2017
	3607		Channing School Schedule n								03-1	1-2017
roject No.			Client						Project sta		4/11/20.17	
2	3607		GEA			1			Testing St	tarted	10-1	11-17
Hole No.		Sam	ple		Soil Description	NMC	Passing 425µm	LL	PL	PI	Ren	narks
	Ref	Тор	Base	Туре		%	%	%	%	%		
BH01	11	3.30		D	Brown slightly sandy silty CLAY with occasional pockets of orange sand and black carbonaceous deposits	19	99	29	19	10		
BH01	15	5.00		D	Orangish brown mottled greyish brown and grey slightly sandy silty CLAY	25	100	62	26	36		
BH03	12	10.50		D	Brown, orangish brown and grey mottled slightly sandy silty CLAY	37	100	48	21	27		
BH03	13	11.00		D	Brown slightly clayey silty SAND with rare fine sub-angular gravel	31	100	34	27	7		
BH03	1	14.00		U	High strength grey silty CLAY with occasional sandy clay pockets	29	100	55	24	31		
BH06	10	4.50		D	Orangish brown slightly mottled greyish brown and brown slightly sandy silty CLAY	27	100	36	20	16		
(≱ <u>√</u>	Natural	lethods Moisture rg Limits:	Content	clause		Report by Init 8 Olds (Watford		s Appro	ach			ed and roved kp
$\mathcal{L}_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}}}}}$						Tel:	01923 711	288			Date:	16-11

Sulphate Content (Gravimetric Method) for 2:1 Soil: Water Extract and pH Value - Summary of Results

	SOI	5			Tested in accordance with BS1377 : I	Part 3 : 1	990, cla	use 5.3 a	and claus	se 9	
Job No.			Project I	Name						Progra	mme
23607			Channin	g School					Samples re		27-10-2017
Project No			Client						Schedule re Project st		3/11/207 04-11-2017
23607	J.		GEA						Testing S		16-11-2017
		Sa	ample			Dry Mass passing	SO3	SO4			
Hole No.	Ref	Тор	Base	Туре	Soil description	2mm	Content g/I	Content g/I	рН		Remarks
BH01	4	1.40		D	Light brown silty SAND	100	0.16	0.20	7.50		
BH01	13	4.00		D	Orangish brown silty CLAY	100	0.25	0.30	7.53		
BH02	3	2.00		D	Orangish brown clayey gravelly SAND (gravel is fm and angular to rounded)	88	0.13	0.16	7.60		
BH03	1	14.00		U	High strength grey silty CLAY with occasional sandy clay pockets 100 0.46 0.55		7.35				
BH12	5	2.50		D	Brown slightlyclayey very gravelly SAND (gravel is fmc and sub-angular to rounded)	62	0.17	0.21	7.50		
CΪ́	a		1	•	Test Report by K4 SOILS LABORATOR	Υ	•	•			ecked and
- ()	() =				Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU					<i>F</i> Initials	Approved kp
_ (フュ				Tel: 01923 711 288						r
TESTI	NC NC				Email: James@k4soils.com					Date:	16-11-20

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

	DARTIC	LE SIZE DIS	Job Ref	23607		
SOILS	PARTIC	LE SIZE DIS	OTRIBUTION	Borehole/Pit No.	BH01	
Site Name	Channing School		Sample No.	3		
Project No.	23607 Client GEA		Depth Top	0.90	m	
				Depth Base	-	m
Soil Description	Light brown claye	ey SAND with rare	e fm sub-angular gravel	Sample Type	D	
				Samples received	27-10-2017	
				Schedules received	27-10-2017	
Test Method	BS1377:Part 2: 1990, o	clause 9.0		Project started	06-11-2017	
				Date tested	14-09-2017	

1			
Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	99		
5	99		
3.35	99		
2	98		
1.18	98		
0.6	98		
0.425	96	1	
0.3	88		
0.212	55	1	
0.15	26	1	
0.063	19	1	

Sample Proportions	% dry mass			
Very coarse	0.0			
Gravel	1.7			
Sand	79.0			
Fines <0.063mm	19.3			

Grading Analysis		
D100	mm	
D60	mm	0.225
D30	mm	0.157
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved **K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU kp Email: james@k4soils.com 16-11-17 Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

M	DARTIC	PARTICLE SIZE DISTRIBUTION			23607	
SOILS	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	BH01	
Site Name	Channing School	Channing School			7	
Project No.	23607 Client GEA			Depth Top	2.40	m
				Depth Base	-	m
Soil Description	Orangish brown slightly	y clayey gravelly S rounded to roun	SAND (gravel is fmc and sub-	Sample Type	D	
		rounded to roun	ueu)	Samples received	27-10-2017	
				Schedules received	27-10-2017	
Test Method	BS1377:Part 2: 1990, c	clause 9.0		Project started	06-11-2017	
				Date tested	14-11-2017	

	CLAY		SILT			SAND			GRAVEL	,	COBBLES	BOULDERS
	CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOOLDERS
1	100											
	90									/		
	80											
	70											
Percentage Passing %	60											
ge Pa	50											
enta	40											
Perc	30					/	/					
	20											
	10											
	0		0.04		0.4		1		10		100	1000
	0.001		0.01		0.1	Partio	cle Size n	nm	10		100	1000

Sie	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	85		
14	79		
10	76		
6.3	73		
5	71		
3.35	69		
2	65		
1.18	57		
0.6	33		
0.425	18		
0.3	11		
0.212	7		
0.15	4		
0.063	3		
	Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212 0.15	mm	Particle Size mm % Passing Particle Size mm 125 100 90 100 75 100 63 100 50 100 37.5 100 28 100 20 85 14 79 10 76 6.3 73 5 71 3.35 69 2 65 1.18 57 0.6 33 0.425 18 0.3 11 0.212 7 0.15 4

Dry Mass of sample, g	577

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	35.5
Sand	61.4
Fines <0.063mm	3.1

Grading Analysis		
D100	mm	
D60	mm	1.44
D30	mm	0.559
D10	mm	0.271
Uniformity Coefficient		5.3
Curvature Coefficient		0.8

Checked and Approved

MSF-5-R3

kp

16-11-17

Remarks

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

	PARTICLE SIZE DISTRIBUTION			Job Ref	23607	
SOILS	PARTIC	LE SIZE DIS	RIBUTION	Borehole/Pit No.	BH02	
Site Name	Channing School	Channing School			3	
Project No.	23607 Client GEA			Depth Top	2.00	m
				Depth Base	-	m
Soil Description	Orangish brown claye	, ,	(gravel is fm and angular to	Sample Type	D	
		rounded)			27-10-2017	
			Schedules received	27-10-2017		
Test Method	BS1377:Part 2: 1990, o	3S1377:Part 2: 1990, clause 9.0			06-11-2017	
				Date tested	14-11-2017	

Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	93		
10	91		
6.3	89		
5	88		
3.35	88		
2	88		
1.18	87		
0.6	83		
0.425	62	1	
0.3	42		
0.212	29	1	
0.15	14	1	
0.063	10	1	

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	12.5
Sand	77.7
Fines < 0.063mm	9.8

Grading Analysis		
D100	mm	
D60	mm	0.411
D30	mm	0.219
D10	mm	0.0661
Uniformity Coefficient		6.2
Curvature Coefficient		1.8

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved **K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU kp Email: james@k4soils.com 16-11-17 Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

14	DARTIC	PARTICLE SIZE DISTRIBUTION			23607	
SOILS	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	BH02	
Site Name	Channing School	Channing School			3	
Project No.	23607	23607 Client GEA			3.00	m
		·			-	m
Soil Description	Orangish brown slightl		SAND (gravel is fm and sub-	Sample Type	В	
-		angular to rounded)			27-10-2017	
			Schedules received	27-10-2017		
Test Method	BS1377:Part 2: 1990, c	clause 9.0		Project started	06-11-2017	
				Date tested	14-11-2017	

	CLAY SILT			SAND			GRAVEL			BOULDERS		
		Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOOLDENO
	100										Titi	
	90											
	80											
\o	70											
Percentage Passing %	60											
- Pass	50											
entage	40											
Perce	30											
	20											
	10											
	0											
	0.001		0.01		0.1		1		10		100	1000
	Particle Size mm											

n
Passing

683 Dry Mass of sample, g

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	6.3
Sand	68.4
Fines <0.063mm	25.3

Grading Analysis		
D100	mm	
D60	mm	0.254
D30	mm	0.0784
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Tel: 01923 711288

kp 16-11-17 Date: MSF-5-R3

Checked and Approved

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

14	DARTIC	Job Ref	23607			
SOILS	PARTIC	LE SIZE DIS	Borehole/Pit No.	BH02		
Site Name	Channing School		Sample No.	8		
Project No.	23607	Client	Depth Top	6.50	m	
				Depth Base	-	m
Soil Description	0	rangish brown silt	y SAND	Sample Type	D 27-10-2017	
				Samples received		
				Schedules received	27-10-2017	
Test Method	BS1377:Part 2: 1990, o	clause 9.0		Project started	06-11-2017	
	<u> </u>	Date tested	14-11-2017			

Siev	ving	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				
90	100				
75	100				
63	100				
50	100				
37.5	100				
28	100				
20	100				
14	100				
10	100				
6.3	100				
5	100				
3.35	100				
2	100				
1.18	100				
0.6	99				
0.425	97	1			
0.3	96				
0.212	95	1			
0.15	92				
0.063	25				

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.1
Sand	74.9
Fines < 0.063mm	25.0

Grading Analysis		
D100	mm	
D60	mm	0.0989
D30	mm	0.0672
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved **K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU kp Email: james@k4soils.com 16-11-17 Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

	DARTIC	I E 817E DI8	TRIBUTION	Job Rei		23007		
SOILS	PARTIC	LE SIZE DIS	Borehole/Pit No.	BH03				
Site Name	Channing School		Sample No.	4				
Project No.	23607	23607 Client GEA					3.00	m
			Depth Base		-	m		
Soil Description	Brown clayey gravelly	SAND with sandst	Sample Type		В			
	an	a sub-rounded to	rourided)	Samples received	27-10-2017			
				Schedules received	27-10-2017			
Test Method BS1377:Part 2: 1990, clause 9.0 Project started 06-11-201						06-11-2017		
					Date tested		13-11-2017	
SILT SAND					GRAVEL			
CLAY	Market Carac	4	F	Maritime Comme	COBBLES	BOULDERS		

Job Ref

23607

	CL AN	,	SILT			SAND			GRAVEL			BOULDERS
	CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOOLDERS
	100	1			<u> </u>	1		1111			1 ⁹	
	90											
	90								4			
	80											
\ 0	70					/						
ng %	60											
Percentage Passing %												
age F	50											
centa	40											
Per	30											
	20											
Ī	10											
	0 —											
	0.001		0.01		0.1		1		10		100	1000
İ	Particle Size mm											

Siev	/ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100					
90	100					
75	100					
63	100					
50	100					
37.5	99					
28	99					
20	95					
14	91					
10	89					
6.3	86					
5	85					
3.35	84					
2	83					
1.18	81					
0.6	74					
0.425	60	1				
0.3	48					
0.212	41					
0.15	32					

Dry Mass of sample, g 3459

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	17.3
Sand	55.5
Fines <0.063mm	27.2

Grading Analysis		
D100	mm	
D60	mm	0.429
D30	mm	0.103
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

0.063

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Tel: 01923 711288

kp 16-11-17 Date:

Checked and Approved

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

27

MSF-5-R3

	DARTIC	I E CIZE DIS	PTDIDLITION	Job Ref	23607	
SOILS	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	BH03	
Site Name	Channing School			Sample No.	5	
Project No.	23607	Client	GEA	Depth Top	4.00	m
				Depth Base	-	m
Soil Description		ery sandy GRAVI	EL with sandstone fragments	Sample Type	В	
	(graver is	inic and sub-ang	ulai to rounded)	Samples received	27-10-2017	
				Schedules received	27-10-2017	
Test Method	BS1377:Part 2: 1990, o	BS1377:Part 2: 1990, clause 9.0			06-11-2017	
				Date tested	13-11-2017	

0:		0 11	
Sie	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	93		
37.5	84		
28	82		
20	80		
14	73		
10	68		
6.3	64		
5	61		
3.35	59		
2	58		
1.18	56		
0.6	48		
0.425	32		
0.3	20		
0.212	14		
0.15	7		
0.063	2		

Sample Proportions	% dry mass		
Very coarse	0.0		
Gravel	42.2		
Sand	55.5		
Fines <0.063mm	2.3		

Grading Analysis		
D100	mm	
D60	mm	3.85
D30	mm	0.397
D10	mm	0.178
Uniformity Coefficient		22
Curvature Coefficient		0.23

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved **K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU kp Email: james@k4soils.com 16-11-17 Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

14	DARTIC	LE SIZE DIS	TDIDLITION	Job Ref	23607	
SOILS	PARTIC	LE SIZE DIS	TRIBUTION	Borehole/Pit No.	BH03	
Site Name	Channing School			Sample No.	7	
Project No.	23607	Client	GEA	Depth Top	6.50	m
				Depth Base	-	m
Soil Description		Light brown silty	SAND	Sample Type	D	
				Samples received	27-10-2017	
				Schedules received	27-10-2017	
Test Method	BS1377:Part 2: 1990, o	BS1377:Part 2: 1990, clause 9.0			06-11-2017	
				Date tested	14-11-2017	

	CLAY		SILT			SAND			GRAVEL		COBBLES	BOULDERS
	CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOOLDERS
10	0											
9	0											
8	0											
70 %	0											
Percentage Passing %	o											
ge Pas	0 -											
centa ₍	0											
⊕ 30	0											
20	0				/							
10	0 -											
	0.001		0.01		0.1		1		10		100	1000
	0.001		0.01		0.1	Partio	cle Size n	nm	10		100	1000

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	100		
0.15	99		
0.063	16		
	Particle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212 0.15	mm	Particle Size mm % Passing Particle Size mm 125 100 90 100 75 100 63 100 50 100 37.5 100 28 100 20 100 14 100 100 6.3 100 5 100 3.35 100 2 100 1.18 100 0.6 100 0.425 100 0.3 100 0.212 100 0.15 99

Dry Mass of sample, g 116

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.0
Sand	83.7
Fines <0.063mm	16.3

Grading Analysis		
D100	mm	
D60	mm	0.0998
D30	mm	0.0728
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Tel: 01923 711288

kp 16-11-17 Date:

Checked and Approved

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

MSF-5-R3

14	DARTIC	I E GIZE DIG	STRIBUTION	Job Ref	23607	
SOILS	PARTIC	LE SIZE DIS	RIBUTION	Borehole/Pit No.	BH03	
Site Name	Channing School			Sample No.	11	
Project No.	23607	Client	GEA	Depth Top	9.50	m
				Depth Base	-	m
Soil Description		Light brown silty	SAND	Sample Type	D	
		· ·			27-10-2017	
				Schedules received	27-10-2017	
Test Method	BS1377:Part 2: 1990, c	BS1377:Part 2: 1990, clause 9.0			06-11-2017	
				Date tested	14-11-2017	

125 100 90 100 75 100 63 100 50 100 37.5 100 28 100 20 100 14 100						
mm % Passing mm %	Siev	dimentation				
90 100 75 100 63 100 50 100 37.5 100 28 100 20 100 14 100 10 100		ize % Passing				
75 100 63 100 50 100 37.5 100 28 100 20 100 14 100	125					
63 100 50 100 37.5 100 28 100 20 100 14 100 10 100	90					
50 100 37.5 100 28 100 20 100 14 100 10 100	75					
37.5 100 28 100 20 100 14 100 10 100	63					
28 100 20 100 14 100 10 100	50					
20 100 14 100 10 100	37.5					
14 100 10 100	28					
10 100	20					
	14					
6.3 100	10					
0.5 100 	6.3					
5 100	5					
3.35 100	3.35					
2 100	2					
1.18 100	1.18					
0.6 100	0.6					
0.425 100	0.425					
0.3 100	0.3					
0.212 99	0.212					
0.15 98	0.15					
0.063 15	0.063					

Sample Proportions	% dry mass				
Very coarse	0.0				
Gravel	0.0				
Sand	84.9				
Fines <0.063mm	15.1				

Grading Analysis		
D100	mm	
D60	mm	0.101
D30	mm	0.0736
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved **K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU Initials: kp Email: james@k4soils.com 16-11-17 Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

	PARTIC	I E SIZE DIS	STRIBUTION	Job Ref	23607		
SOILS	PARTIC	LE SIZE DIS	TRIBUTION	Borehole/Pit No.	BH03		
Site Name	Channing School			Sample No. 13			
Project No.	23607	Client	GEA	Depth Top	11.00	m	
			•	Depth Base		m	
Soil Description	Brown slightly clayey	silty SAND with r	rare fine sub-angular gravel	Sample Type	D		
		Samples recei			27-10-2017		
			Schedules received	27-10-2017			
Test Method	BS1377:Part 2: 1990, o	clause 9.0		Project started	06-11-2017		
				Date tested	14-11-2017		

	CLAY	,	SILT			SAND			GRAVEL	,	COBBLES	BOULDERS
	CLAT	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOOLDERO
	100											
	90											
	80											
%	70											
ssing	60											
Percentage Passing %	50											
ercenta	40											
Ğ	30											
	20				/							
	10											
	0.001		0.01		0.1		1		10		100	1000
	Particle Size mm											

Sie	ving	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	15
90	100	0.0503	13
75	100	0.0355	13
63	100	0.0251	12
50	100	0.0183	12
37.5	100	0.0130	11
28	100	0.0091	10
20	100	0.0065	10
14	100	0.0046	7
10	100	0.0032	4
6.3	100	0.0019	3
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100	Particle density	(assumed)
0.425	100	2.70	Mg/m3
0.3	100		
0.212	99	1	
0.15	94	1	

15

Dry Mass of sample, g 118

Sample Proportions % dry mass 0.0 Very coarse 0.0 Gravel Sand 85.0 11.9 3.1

Grading Analysis		
D100	mm	
D60	mm	0.104
D30	mm	0.0743
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Date:

Remarks

Preparation and testing in accordance with BS1377 unless noted below

0.063

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Tel: 01923 711288

Checked and Approved

16-11-17

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

14	DARTIC	I E GIZE DIG	STRIBUTION	Job Ref	23607		
SOILS	PARTIC	LE SIZE DIS	TRIBUTION	Borehole/Pit No.	BH04		
Site Name	Channing School			Sample No. 2			
Project No.	23607	Client	GEA	Depth Top	2.00	m	
			-	Depth Base	-	m	
Soil Description			ey gravelly SAND with rare is fmc and rounded)	Sample Type	В		
	brown sandy c	lay lumps (graver	is inic and rounded)	Samples received	27-10-2017		
				Schedules received	ved 27-10-2017		
Test Method	BS1377:Part 2: 1990, o	clause 9.0		Project started	06-11-2017		
	•	Date tested	14-11-2017				

Siev	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	95		
14	93		
10	91		
6.3	90		
5	89		
3.35	88		
2	86		
1.18	82		
0.6	56		
0.425	25	1	
0.3	15		
0.212	12	1	
0.15	9	1	
0.063	7	1	

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	14.5
Sand	78.9
Fines < 0.063mm	6.6

Grading Analysis		
D100	mm	
D60	mm	0.671
D30	mm	0.449
D10	mm	0.175
Uniformity Coefficient		3.8
Curvature Coefficient		1.7

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved **K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU kp Email: james@k4soils.com 16-11-17 Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

	DARTIC	1 E 817E DI8	STRIBUTION	Job Ref	23607		
SOILS	PARTIC	LE SIZE DIS	OTRIBUTION	Borehole/Pit No.	BH04		
Site Name	Channing School			Sample No. 3			
Project No.	23607	Client	GEA	GEA Depth Top			
				Depth Base	-	m	
Soil Description		very gravelly SANs fm and sub-angu	D with sandstone fragments	Sample Type	В		
	(graver is	s iiii aiiu sub-aiigu	nar to rounded)	Samples received 27-10-2017			
				Schedules received	27-10-2017		
Test Method	BS1377:Part 2: 1990, o	clause 9.0		Project started 06-11-2017			
				Date tested	13-11-2017		

	-CL A	,	SILT			SAND		GRAVEL			COBBLES BOULDER	POLIL DEDS
	CLA	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDLLO	DOOLDERO
	100										ПП	
	90											
	80											
vo.	70											
% bu	60						/					
assi												
Percentage Passing %	50											
centa	40											
Per	30					f						
	20											
	10											
	0 📙											
	0.001		0.01		0.1		1		10		100	1000
						Parti	cle Size n	nm				

Sie	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	99		
20	98		
14	97		
10	94		
6.3	91		
5	90		
3.35	87		
2	81		
1.18	70		
0.6	34		
0.425	19	1	
0.3	12		
0.212	9	1	
0.15	6	1	
0.063	4	1	

Dry Mass of sample, g 3520

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	19.5
Sand	76.8
Fines <0.063mm	3.7

Grading Analysis		
D100	mm	
D60	mm	0.982
D30	mm	0.545
D10	mm	0.231
Uniformity Coefficient		4.3
Curvature Coefficient		1.3

kp

16-11-17

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Date: Tel: 01923 711288 MSF-5-R3

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

	DARTIC	1 E 617E DI6	Job Ref	23607		
SOILS	PARTICLE SIZE DISTRIBUTION			Borehole/Pit No.	BH04	
Site Name	Channing School	Channing School			7	
Project No.	23607	23607 Client GEA			5.00	m
			-	Depth Base	-	m
Soil Description	Orangish bi	own mottled grey	sandy silty CLAY	Sample Type	В	
				Samples received	27-10-2017	
					27-10-2017	
Test Method	BS1377:Part 2: 1990, c	BS1377:Part 2: 1990, clause 9.0			06-11-2017	
	-			Date tested	14-11-2017	

Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	99		
3.35	99		
2	97		
1.18	96		
0.6	95		
0.425	95		
0.3	94		
0.212	94	1	
0.15	93		
0.063	52		

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	2.8
Sand	45.3
Fines <0.063mm	51.8

Grading Analysis		
D100	mm	
D60	mm	0.0749
D30	mm	
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved **K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU kp Email: james@k4soils.com 16-11-17 Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

	DARTIC	1 E 817E DI8	STRIBUTION	Job Ref	23607	
Soils	PARTIC	LE SIZE DIS	OTRIBUTION	Borehole/Pit No.	BH05	
Site Name	Channing School	Channing School			2	
Project No.	23607	23607 Client GEA			3.00	m
				Depth Base	-	m
Soil Description	Brown clayey grave	elly SAND (gravel rounded)	is fm and sub-angular to	Sample Type	D	
		rounded)		Samples received	27-10-2017	
				Schedules received	27-10-2017	
Test Method	BS1377:Part 2: 1990, c	BS1377:Part 2: 1990, clause 9.0			06-11-2017	
					14-11-2017	

	CLAY		SILT			SAND			GRAVEL		COBBLES BOUL	
		Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDLEG	BOOLDERO
	100											
	90											
	80											
	70											
% Bu	60											
assir												
Percentage Passing %	50											
rcent	40											
Pe	30					1						
	20											
	10											
	0											
	0.001		0.01		0.1		1		10		100	1000
	Particle Size mm											

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	96		
10	93		
6.3	90		
5	86		
3.35	80		
2	70		
1.18	59		
0.6	41		
0.425	32	1	
0.3	20		
0.212	15	1	
0.15	11	1	
0.063	6	1	

165 Dry Mass of sample, g

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	29.6
Sand	64.0
Fines <0.063mm	6.4

Grading Analysis		
D100	mm	
D60	mm	1.25
D30	mm	0.404
D10	mm	0.135
Uniformity Coefficient		9.2
Curvature Coefficient		0.97

kp

16-11-17

MSF-5-R3

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

	DARTIC	I E GIZE DIG	STRIBUTION	Job Ref	23607	
SOILS	PARTIC	LE SIZE DIS	RIBUTION	Borehole/Pit No.	BH06	
Site Name	Channing School		Sample No.	3		
Project No.	23607	Client	Depth Top	2.00	m	
				Depth Base	-	m
Soil Description	Ora	angish brown clay	ey SAND	Sample Type	D	
·				Samples received	27-10-2017	
				Schedules received	27-10-2017	
Test Method	BS1377:Part 2: 1990, o	BS1377:Part 2: 1990, clause 9.0			06-11-2017	
				Date tested	14-11-2017	

Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	97		
0.425	82	1	
0.3	57		·
0.212	39]	
0.15	18]	
0.063	13	1	

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.0
Sand	87.2
Fines <0.063mm	12.8

Grading Analysis		
D100	mm	
D60	mm	0.314
D30	mm	0.183
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved **K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU kp Email: james@k4soils.com 16-11-17 Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

	PARTICLE SIZE DISTRIBUTION					23607	
SOILS	'	PARTIC	LE SIZE DIS	RIBUTION	Borehole/Pit No.	BH07	
Site Name	(Channing School			Sample No.	1	
Project No.		23607	Client	GEA	Depth Top	1.70	m
					Depth Base	-	m
Soil Description	'n	Brown clayey very gra	velly SAND (grave rounded)	el is fmc and sub-rounded to	Sample Type	D	
			Tourided)		Samples received	27-10-2017	
					Schedules received	27-10-2017	
Test Method		BS1377:Part 2: 1990, clause 9.0			Project started	06-11-2017	
					Date tested	14-11-2017	

	CLAY SILT			SAND		GRAVEL		COBBLES	BOULDERS				
		LAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOOLDERS
	100										! ! !		
	90												
	80										/		
,	70												
Percentage Passing %	60												
Pass	50												
entage	40												
Perce	30												
	20												
Ī	10												
	0.00	1		0.01		0.1		1		10		100	1000
	Particle Size mm												

			1 ditiole
Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	93		
20	81		
14	77		
10	74		
6.3	72		
5	70		
3.35	67		
2	63		
1.18	58		
0.6	44		
0.425	32		
0.3	18		
0.212	12		
0.15	9		

1259 Dry Mass of sample, g

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	37.0
Sand	56.5
Fines <0.063mm	6.5

Grading Analysis		
D100	mm	
D60	mm	1.5
D30	mm	0.407
D10	mm	0.171
Uniformity Coefficient		8.8
Curvature Coefficient		0.64

Checked and Approved

kp

Remarks

Preparation and testing in accordance with BS1377 unless noted below

0.063

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Date: Tel: 01923 711288

16-11-17 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

	BARTIC	1 E 617E DI6	STRIBUTION	Job Ref	23607	
SOILS	PARTIC	LE SIZE DIS	TRIBUTION	Borehole/Pit No.	BH08	
Site Name	Channing School			Sample No.	2	
Project No.	23607	Client	GEA	Depth Top	2.00	m
				Depth Base	-	m
Soil Description	Soil Description Greyish brown clayey very sandy GRAVEL (gravel is fmc and anguto to rounded)			Sample Type	D	
		to rounded)		Samples received	27-10-2017	
			Schedules received	27-10-2017		
Test Method	BS1377:Part 2: 1990, c	lause 9.0		Project started	06-11-2017	
		Date tested	14-11-2017			

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	91		
14	69		
10	61		
6.3	51		
5	47		
3.35	42		
2	36		
1.18	32		
0.6	25		
0.425	20		
0.3	16		
0.212	12		
0.15	10		
0.063	6		

Sample Proportions	% dry mass		
Very coarse	0.0		
Gravel	63.7		
Sand	30.7		
Fines < 0.063mm	5.6		

mm	
mm	9.43
mm	0.985
mm	0.149
	63
	0.69
	mm mm

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved **K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU Initials: kp Email: james@k4soils.com 16-11-17 Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

	DARTIC	'I E SIZE DIS	STRIBUTION	Job Ref	23607		
SOILS	PARTICLE SIZE DISTRIBUTION				BH10		
Site Name	Channing School			Sample No.	3		
Project No.	23607	Client	GEA	Depth Top	1.80	m	
				Depth Base	-	m	
Soil Description	Orr	angish brown claye	rey SAND	Sample Type	D		
			,	Samples received 27-10-20			
				Schedules received	27-10-2017		
Test Method	BS1377:Part 2: 1990, c	clause 9.0		Project started	06-11-2017		
				Date tested	14-11-2017		

		A > /	SILT			SAND			GRAVEL			BOULDERS
	CL	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOULDERS
	100				(i	1		-	! ! 		PT!T!T	
	90					j						
	80					1						
% 6	70											
Percentage Passing %	60											
age P	50											
rcenta	40											
Pe	30											
	20											
	10											
	0											
	0.001		0.01		0.1		1		10		100	1000
	Particle Size mm											

	Sie	ving	Sedime	entation
Pa	article Size mm	% Passing	Particle Size mm	% Passing
	125	100		
	90	100		
	75	100		
	63	100		
	50	100		
	37.5	100		
	28	100		
	20	100		
	14	100		
	10	100		
	6.3	100		
	5	100		
	3.35	100		
	2	100		
	1.18	100		
	0.6	96		
	0.425	75		
	0.3	46		
	0.212	31		
	0.15	17		
	0.063	11		

Dry Mass of sample, g 383

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	0.2
Sand	88.6
Fines < 0.063mm	11.2

Grading Analysis		
D100	mm	
D60	mm	0.354
D30	mm	0.206
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Tel: 01923 711288

kp 16-11-17 Date:

Checked and Approved

MSF-5-R3

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

	DARTIC	L CIZE DIS	TRIBUTION	Job Ref	23607	
SOILS	PARTIC	PARTICLE SIZE DISTRIBUTION			BH11	
Site Name	Channing School			Sample No.	1	
Project No.	23607	Client	GEA	Depth Top	1.80	m
				Depth Base	-	m
Soil Description	Brown clayey S	SAND with rare me	edium rounded gravel	Sample Type D		
				Samples received	27-10-2017	
				Schedules received	27-10-2017	
Test Method	BS1377:Part 2: 1990, o	clause 9.0		Project started	06-11-2017	
				Date tested	14-11-2017	

	Siev	/ing	Sedime	entation
ſ	Particle Size mm	% Passing	Particle Size mm	% Passing
ľ	125	100		
ľ	90	100		
ľ	75	100		
ľ	63	100		
ľ	50	100		
ľ	37.5	100		
ľ	28	100		
	20	100		
	14	100		
ľ	10	98		
ľ	6.3	98		
ľ	5	98		
ľ	3.35	98		
ľ	2	97		
ľ	1.18	96		
ľ	0.6	92		
ľ	0.425	80		
ľ	0.3	63		
ľ	0.212	38		
ľ	0.15	17		
ſ	0.063	10		

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	3.1
Sand	86.8
Fines <0.063mm	10.0

Grading Analysis		
D100	mm	
D60	mm	0.288
D30	mm	0.186
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with BS1377 unless noted below

Checked and Approved **K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU Initials: kp Email: james@k4soils.com 16-11-17 Date: Tel: 01923 711288 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

14	DARTIC	LE SIZE DIS	TDIBLITION	Job Ref	23607		
SOILS	PARTIC	LE SIZE DIS	TRIBUTION	Borehole/Pit No.	BH12		
Site Name	Channing School			Sample No.	5		
Project No.	o. 23607 Client GEA		GEA	Depth Top	2.50		
				Depth Base	-	m	
Soil Description	Brown slightlyclayey	very gravelly SAI	ND (gravel is fmc and sub-	Sample Type	D		
		angular to roun	ueu)	Samples received			
				Schedules received	00-01-1900		
Test Method	BS1377:Part 2: 1990, o	clause 9.0		Project started	06-11-2017		
				Date tested	14-11-2017		

		. , , , [SILT			SAND			GRAVEL		COBBLES	BOULDERS
		LAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOOLDERS
l	100						1 1 1 1		1111	: : : :		PTPT T	
	90										/		
	80												
%	70												
Percentage Passing %	60												
ge Pas	50												
centa	40												
Per	30	\dashv											
	20												
	10	\dashv											
	0 ┞			Ш									
	0.00	1		0.01		0.1		1		10		100	1000
	Particle Size mm												

Sie	/ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	89		
14	78		
10	72		
6.3	68		
5	66		
3.35	65		
2	62		
1.18	59		
0.6	45		
0.425	25		
0.3	14		
0.212	11		
0.15	8		

4

Dry Mass of sample, g 1633

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	38.1
Sand	57.8
Fines < 0.063mm	4.1

Grading Analysis		
D100	mm	
D60	mm	1.46
D30	mm	0.463
D10	mm	0.182
Uniformity Coefficient		8
Curvature Coefficient		0.81

Remarks

Preparation and testing in accordance with BS1377 unless noted below

0.063

K4 Soils Laboratory Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com Tel: 01923 711288

kp 16-11-17 Date:

Checked and Approved

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) MSF-5-R3

K	SOILS				olidated Undrained T arried out in accorda		Su	ımma	ry of	Resu	ılts						
ob No.	_				Pro	ject Na								nples	Pr	ograr	nme 27-10-2017
3607			Chann		chool 								Sch	edule	receiv	received 03-01-2	
roject N	0.		Client										Pi	roject	started	t	04-11-2017
3607			GEA										Τe	esting	Started		12-11-2017
		Sar	mple			Test	De	nsity	w	Length	Diamete	σ3		At fail	lure		
Hole No.	Ref	Тор	Base	Туре	Soil Description	Type	bulk Mg	dry g/m3	%	mm	mm	kPa	Axial strain %	51 - σ kPa	Cu kPa	M o d e	Remarks
BH03	1	14.00		U	High strength grey silty CLAY with occasional sandy clay pockets	UU	2.02	1.56	29	198	102	280	20.2	166	83	Р	
egend	UUM	- Multist	-	on a s	e and multiple specimens) single specimen mpacted	σ3 σ1 - σ3 cu	Maxi		rrected	deviato ength, ½			of failu	re;	P - F	Brittle Plasti Comp	
(Test Report by K Unit 8 Olds Cl Watford F	ose Ol	ds App	oroach							Che Initial		ed and Approve
UKAS TESTING					Email: jam		soils.c								Date:	:	16-11-17
2519	l		Approv	red S	ignatories: K.Phaure (Tech.l	Mgr) J.F	haure	(Lab.N	1gr)								MSF-5-R7b

		ted Undrained n Test without			of	Job	Ref			236	607	
SOILS		e - single spe		emem	. 01	Bor	ehole/F	Pit No.		ВН	03	
Site Name	Channing School					Sar	nple No).		1		
Project No.	23607	Client		GEA		Dep	oth Top	ı		14.00 m - m U 27-10-2017 03-11-2017 15-11-2017 mm mm Mg/m3 % Mg/m3 %/min		
			_			Depth Base Sample Type Samples received Schedules received			_		m	
									27-10-2017			
Soil Description	High strength	grey silty CLAY wi pockets		nal sand	y clay							
Test Method	BS1377 : Part 7 :	1990, clause 8, si	ngle specir	nen			e of tes		-			
Remarks		Test Number	0 1			<u>'</u>	1		1			
temarks		Length					198.0	0	mm			
		Diameter					102.0		-			
		Bulk Density					2.02		_ ~	n3		
		Moisture Cont Dry Density	ent				29 1.56	<u> </u>	-	n3		
ple		Dry Density					1.00		- Iwig/ii	110		
amb		Rate of Strain					2.0		%/mi	in		
Position within sample		Cell Pressure					280		kPa			
with		Axial Strain	- (-4 -	0 /4			20.2		_			
tion		Deviator Stres Undrained Sh				-	166 83		-	1// 01	σ3 \f	
osit		Mode of Failu		iii, cu			Plasti	io	NF a	/2(0 1 -	03)1	
ш		Wode of Fallu	-				i iasti		J			
50	,0000000000000000000000000000000000000	, 00000										
0 2 4	6 8	10 12 1	4 16 Axial Stra	18 in %	20	22	24	26	28	30	32	
									Devi	ator stres	ss corrected	
250									for a	rea chan brane ef	ge and	
					-			\dashv				
200								_	interp		is not	
										interpretation is not covered by BS1377. This is provided for		
150									This	is provid	ed for	
150						-		-	This		ed for	
150						-			This	is provid	ed for	
150					\	-			This	is provid	ed for	
100	100 150 20		350		450	500	550	600	This	is provid	ed for	
0	100 150 20	Normal Stre	sses kPa				550	600	This	is provid	ed for nly.	
100	100 150 20		sses kPa y K4 SOIL	S LABO	RATOR		550	600	This	is provid	ed for	

Email: James@k4soils.com

2519 Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

16-11-17

MSF-5 R7

Date

	GE						01727 82	4666 No	tts 0150	9 674888		Depti	h Graph
te	Channing Ju	ınior Scho	ool, Highgate	High Stre	et, N6 5JF	₹							Job Numb
ient	Channing Ju	ınior Sch	ool										Sheet
gineer	Heyne Tillett	Steel											1 /
							Cohesion	n kN/m²					•
0 L17	20	40	60	80	100	120	140	160	180	200	220	240	260
-													-
-													_
-													-
-					+								_
		-	+			+							
-			+ +			+							-
							+			+			
			1		+	+	+						
_			+								+		-
(QO			+	+									
Levels (m OD)			+	+									
Leve		_	+	+									_
-			+	•									
_			+	-	+								
			+										
					+ +								
-					+								
					+								
					·	+							
						+							-
			+	-									
-				0									
				+									
-													-
					+								
97 L 0	-	10		20)	+	30		40	1	50		60

Hannah Dashfield

e: Hannah@gea-ltd.co.uk

Geotechnical & Environmental Associates Widbury Barn Widbury Hill Ware Hertfordshire SG127QE i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 17-65415

Project / Site name: Channing Junior School, Highgate High Samples received on: 26/10/2017

Street, N6 5JR

Your job number: J17268 **Samples instructed on:** 26/10/2017

Your order number: J17268 Analysis completed by: 03/11/2017

Report Issue Number: 1 **Report issued on:** 03/11/2017

Samples Analysed: 12 soil samples

Signed:

Vineetha Meethale Vettil Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Iss No 17-65415-1 Channing Junior School, Highgate High Street, N6 5JR J17268

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Page 1 of 9

Analytical Report Number: 17-65415

Project / Site name: Channing Junior School, Highgate High Street, N6 5JR

Your Order No: J17268

Lab Sample Number				845027	845028	845029	845030	845031
Sample Reference				TP2	BH1	BH5	BH6	BH8
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.30	1.50	0.80	0.60
Date Sampled				23/10/2017	24/10/2017	24/10/2017	24/10/2017	24/10/2017
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	9.9	9.1	9.6	9.9	9.6
Total mass of sample received	kg	0.001	NONE	1.1	1.2	1.3	1.4	1.7
		N1/A			I			I
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.8	7.8	8.5	8.0	8.4
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	580	430	230	290	140
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.076	0.020	0.026	0.0075	0.011
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	15	4.6	7.5	4.8	3.2
Total Organic Carbon (TOC)	%	0.1	MCERTS	3.3	1.8	0.4	1.2	0.4
Total Phenois								
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Friends (monoriyanc)	IIIg/kg		MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.20	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.54	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene Benzo(a)anthracene	mg/kg	0.05	MCERTS MCERTS	0.46 0.25	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Chrysene	mg/kg mg/kg	0.05	MCERTS	0.25	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.31	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.20	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.26	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	2.47	< 0.80	< 0.80	< 0.80	< 0.80
Speciated Total ETA 10 TAILS	mg/kg	0.0	HEERIS	2.17	V 0.00	V 0.00	V 0.00	(0.00
Heavy Metals / Metalloids	1							I
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	10	8.6	14	28
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (paus rogis outre-t-t-1-)	mg/kg mg/kg	1	MCERTS	20	22	16	15	19
Chromium (aqua regia extractable)		1	MCERTS MCERTS	39 310	44 260	15 120	94 260	20
Copper (aqua regia extractable)		1 1		210	200			230
Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg	0.3			1 4	~ U 3	1 4	
Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS	0.8	1.4 9.1	< 0.3 6.2	1.4 11	0.5 11
Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg mg/kg	0.3 1	MCERTS MCERTS	0.8 12	9.1	6.2	11	11
Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS	0.8				

Petroleum Hydrocarbons

TPH C10 - C40	mg/kg	10	MCERTS	14	500	< 10	< 10	< 10
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	1.2	12	< 1.0	< 1.0	< 1.0

Iss No 17-65415-1 Channing Junior School, Highgate High Street, N6 5JR J17268

Page 2 of 9

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 17-65415

Project / Site name: Channing Junior School, Highgate High Street, N6 5JR Your Order No: J17268

Lab Sample Number				845027	845028	845029	845030	845031
Sample Reference				TP2	BH1	BH5	BH6	BH8
Sample Number				None Supplied				
Depth (m)				0.30	0.30	1.50	0.80	0.60
Date Sampled				23/10/2017	24/10/2017	24/10/2017	24/10/2017	24/10/2017
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
TPH (C21 - C35)	mg/kg	1	MCERTS	13	250	< 1.0	< 1.0	< 1.0

Iss No 17-65415-1 Channing Junior School, Highgate High Street, N6 5JR J17268

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 17-65415

Project / Site name: Channing Junior School, Highgate High Street, N6 5

Your Order No: J17268

Lab Sample Number				845032	845033	845034	845035	845036
Sample Reference				BH10	BH11	TP1A	BH12	TP1
Sample Number				None Supplied				
Depth (m)				0.60	0.50	0.40	0.50	0.40
Date Sampled				24/10/2017	24/10/2017	24/10/2017	24/10/2017	24/10/2017
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	12	7.5	15	10	12
Total mass of sample received	kg	0.001	NONE	1.4	1.3	1.5	1.5	1.3
A-bb in C-il	T -	NI/A	100 17025	Not detected	Not detected	N	NI-4 -4-44	N-4 d-4-4-d
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics				•				
pH - Automated	pH Units	N/A	MCERTS	7.9	7.9	8.4	7.8	9.2
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	2	< 1
Total Sulphate as SO ₄ Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	50	MCERTS	270	220	320	490	640
Equivalent)	g/l	0.00125	MCERTS	0.023	0.0088	0.065	0.021	0.062
Sulphide	mg/kg	1	MCERTS	1.6	< 1.0	< 1.0	< 1.0	< 1.0
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	8.3	2.8	8.4	4.4	4.6
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.9	1.1	0.3	2.3	0.7
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.17	0.35
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.45	0.75
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.42	0.71
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.26	0.39
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.20	0.34
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.28	0.39
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.21	0.29
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	0.25	0.41
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.20
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	0.23
Total PAH				1				
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	< 0.80	2.24	4.06
Heavy Metals / Metalloids				•				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	9.2	18	23	48
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	19	16	25	18	19
Copper (aqua regia extractable)	mg/kg	1	MCERTS	31	26	18	38	38
Lead (aqua regia extractable)	mg/kg	1	MCERTS	150	110	42	360	1200
Mercury (agua regia extractable)	mg/kg	0.3	MCERTS	0.7	0.5	0.7	0.8	0.5
		1	MCERTS	11	8.4	7.1	11	11
Nickel (aqua regia extractable)	mg/kg		MOFFEE		. 4 0	. 4 ^	. 4 ^	. 4 0
	mg/kg mg/kg	1 1	MCERTS MCERTS	< 1.0 54	< 1.0 38	< 1.0 31	< 1.0 68	< 1.0 110

TPH C10 - C40	mg/kg	10	MCERTS	< 10	< 10	< 10	89	45
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	5.3	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	27	5.7

Iss No 17-65415-1 Channing Junior School, Highgate High Street, N6 5JR J17268

Page 4 of 9

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 17-65415

Project / Site name: Channing Junior School, Highgate High Street, N6 5 Your Order No: J17268

Lab Sample Number				845032	845033	845034	845035	845036
Sample Reference				BH10	BH11	TP1A	BH12	TP1
Sample Number				None Supplied				
Depth (m)				0.60	0.50	0.40	0.50	0.40
Date Sampled				24/10/2017	24/10/2017	24/10/2017	24/10/2017	24/10/2017
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
TPH (C21 - C35)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	55	23

Iss No 17-65415-1 Channing Junior School, Highgate High Street, N6 5JR J17268

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 17-65415

Project / Site name: Channing Junior School, Highgate High Street, N6 5

Your Order No: J17268

Lab Sample Number				045027	045040	1	1	1
'		845037	845048		+			
Sample Reference				TP6	TP4			
Sample Number				None Supplied	None Supplied			
Depth (m)				0.30	0.50			
Date Sampled			23/10/2017	23/10/2017		1		
Time Taken	1		ı	None Supplied	None Supplied			
		۰.	Accreditation Status					
Analytical Parameter	Units	Limit of detection	creditat Status					
(Soil Analysis)	<u>r</u>	ti o	tus					
		5 T	Ö					
Stone Content	%	0.1	NONE	< 0.1	28		 	
Moisture Content	%	N/A	NONE	10	5.3		1	
Total mass of sample received	kg	0.001	NONE	1.3	1.3			
					=	=	•	•
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected			
General Inorganics						1	_	
pH - Automated	pH Units	N/A	MCERTS	9.9	9.2		 	
Total Cyanide Total Sulphate as SO ₄	mg/kg mg/kg	1 50	MCERTS MCERTS	< 1 1400	< 1 1100		+	
Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	30	PICENTS	1700	1100		+	
Equivalent)	g/I	0.00125	MCERTS	0.16	0.39			
Sulphide	mg/kg	1	MCERTS	< 1.0	3.7			
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	7.3	24			
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.7	0.6			
Total Phenols	_		1					
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0		1	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.31	ı	1	
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		1	
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		1	
Phenanthrene	mg/kg	0.05	MCERTS	0.23	0.67			
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.12			
Fluoranthene	mg/kg	0.05	MCERTS	0.53	0.50		ļ	
Pyrene	mg/kg	0.05	MCERTS	0.50	0.39			
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.31	0.20		1	
Chrysene Benzo(b)fluoranthene	mg/kg	0.05 0.05	MCERTS MCERTS	0.23 0.24	0.15 < 0.05		+	
Benzo(k)fluoranthene	mg/kg mg/kg	0.05	MCERTS	0.24	< 0.05		+	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.32	< 0.05		 	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		1	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		1	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05			
Total PAH	_					1		
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	2.62	2.34	l	<u> </u>	<u> </u>
Heavy Metals / Metalloids	p fl	-1	MCERTC	11	0.7	1	1	1
Arsenic (aqua regia extractable) Cadmium (aqua regia extractable)	mg/kg mg/kg	0.2	MCERTS MCERTS	< 0.2	8.2 < 0.2		+	
Chromium (aqua regia extractable) Chromium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	20	14		 	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	27	20	i	1	i
Lead (aqua regia extractable)	mg/kg	1	MCERTS	480	180			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3			
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	10	8.0			
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0		<u> </u>	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	64	27		<u> </u>	
Petroleum Hydrocarbons								
TDH C10 C40			MCEDIC	120	z 10			1

TPH C10 - C40	mg/kg	10	MCERTS	120	< 10		
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0		
TPH (C16 - C21)	mg/kg	1	MCERTS	3.5	< 1.0		

Iss No 17-65415-1 Channing Junior School, Highgate High Street, N6 5JR J17268

Page 6 of 9

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 17-65415

Project / Site name: Channing Junior School, Highgate High Street, N6 5 Your Order No: J17268

Lab Sample Number				845037	845048		
Sample Reference	TP6	TP4					
Sample Number	None Supplied	None Supplied					
Depth (m)				0.30	0.50		
Date Sampled	23/10/2017	23/10/2017					
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
TPH (C21 - C35)	mg/kg	1	MCERTS	56	< 1.0		

Iss No 17-65415-1 Channing Junior School, Highgate High Street, N6 5JR J17268

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Analytical Report Number: 17-65415

Project / Site name: Channing Junior School, Highgate High Street, N6 5JR

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
845027	TP2	None Supplied	0.30	Brown loam and sand with gravel and vegetation.
845028	BH1	None Supplied	0.30	Brown loam and sand with gravel.
845029	BH5	None Supplied	1.50	Brown clay and sand with gravel.
845030	BH6	None Supplied	0.80	Brown loam and clay with gravel.
845031	BH8	None Supplied	0.60	Brown sandy clay with gravel.
845032	BH10	None Supplied	0.60	Brown sandy clay with gravel.
845033	BH11	None Supplied	0.50	Brown loam and clay with gravel and vegetation.
845034	TP1A	None Supplied	0.40	Brown clay and sand with gravel and brick.
845035	BH12	None Supplied	0.50	Brown loam and clay with gravel.
845036	TP1	None Supplied	0.40	Brown sandy clay with gravel.
845037	TP6	None Supplied	0.30	Brown loam and clay with gravel.
845048	TP4	None Supplied	0.50	Brown sand with stones and brick.

Iss No 17-65415-1 Channing Junior School, Highgate High Street, N6 5JR J17268

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Page 8 of 9

Analytical Report Number: 17-65415

Project / Site name: Channing Junior School, Highgate High Street, N6 5JR

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests. 2:1 extraction.	L082-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding.	L076-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L076-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Iss No 17-65415-1 Channing Junior School, Highgate High Street, N6 5JR J17268

This certificate should not be reproduced, except in full, without the express permission of the laboratory.

The results included within the report are representative of the samples submitted for analysis.

Page 9 of 9

Widbury Barn Widbury Hill Ware Herts SG12 7QE

Generic Risk-Based Soil Screening Values

te Channing Junior School, Highgate High Street, N6 5JR

Job Number J17268

Client Channing Junior School

Sheet 1 / 1

Engineer Heyne Tillett Steel

Proposed End Use Residential without plant uptake

Soil pH 8

Soil Organic Matter content % 6.0

Contaminant	Screening Value mg/kg	Data Source	Contaminan
	Metals		
Arsenic	40	C4SL	Soluble Sulphate
Cadmium	149	C4SL	Sulphide
Chromium (III)	3000	LQM/CIEH	Chloride
Chromium (VI)	21	C4SL	
Copper	2,330	LQM/CIEH	Organic Carbon (%)
Lead	310	C4SL	Total Cyanide
Elemental Mercury	1.02	SGV	Total Mono Phenols
Inorganic Mercury	235	SGV	
Nickel	99	LQM/CIEH	Naphthalene
Selenium	595	SGV	Acenaphthylene
Zinc	3,750	LQM/CIEH	Acenaphthene
H	Hydrocarbons		Fluorene
Benzene	3.3	C4SL	Phenanthrene
Toluene	610	SGV	Anthracene
Ethyl Benzene	350	SGV	Fluoranthene
Xylene	230	SGV	Pyrene
Aliphatic C5-C6	110	LQM/CIEH	Benzo(a) Anthracene
Aliphatic C6-C8	370	LQM/CIEH	Chrysene
Aliphatic C8-C10	110	LQM/CIEH	Benzo(b) Fluoranthene
Aliphatic C10-C12	540	LQM/CIEH	Benzo(k) Fluoranthene
Aliphatic C12-C16	3000	LQM/CIEH	Benzo(a) pyrene
Aliphatic C16-C35	76,000	LQM/CIEH	Indeno(1 2 3 cd) Pyren
Aromatic C6-C7	See Benzene	LQM/CIEH	Dibenzo(a h) Anthrace
Aromatic C7-C8	See Toluene	LQM/CIEH	Benzo (g h i) Perylene
Aromatic C8-C10	151	LQM/CIEH	Screening value for P
Aromatic C10-C12	346	LQM/CIEH	
Aromatic C12-C16	593	LQM/CIEH	1,1,1 trichloroethane (7
Aromatic C16-C21	770	LQM/CIEH	tetrachloroethane (PCA
Aromatic C21-C35	1230	LQM/CIEH	tetrachloroethene (PCE
PRO (C ₅ –C ₁₀)	1354	Calc	trichloroethene (TCE)
DRO (C ₁₂ -C ₂₈)	80,363	Calc	1,2-dichloroethane (DC
Lube Oil (C ₂₈ –C ₄₄)	77,230	Calc	vinyl chloride (Chloroet
ТРН	1000	Trigger for speciated testing	tetrachloromethane (Catrichloromethane (Chlo
		<u> </u>	1

Contaminant	Screening Value mg/kg	Data Source					
A	nions						
Soluble Sulphate	500 mg/l	Structures					
Sulphide	50	Structures					
Chloride	400	Structures					
Others							
Organic Carbon (%)	6	Methanogenic potential					
Total Cyanide	140	WRAS					
Total Mono Phenols	520 PAH	SGV					
Nambibalana	13.10	CACL ave 8 LOM/CITIL					
Naphthalene		C4SL exp & LQM/CIEH					
Acenaphthylene	3,870	LQM/CIEH					
Acenaphthene	3,910	LQM/CIEH					
Fluorene	2,870	LQM/CIEH					
Phenanthrene	970	LQM/CIEH					
Anthracene	23,300	LQM/CIEH					
Fluoranthene	1,000	LQM/CIEH					
Pyrene	2,400	LQM/CIEH					
Benzo(a) Anthracene	9.4	C4SL exp & LQM/CIEH					
Chrysene	15	C4SL exp & LQM/CIEH					
Benzo(b) Fluoranthene	11.2	C4SL exp & LQM/CIEH					
Benzo(k) Fluoranthene	15.8	C4SL exp & LQM/CIEH					
Benzo(a) pyrene	5.30	C4SL					
Indeno(1 2 3 cd) Pyrene	6.7	C4SL exp & LQM/CIEH					
Dibenzo(a h) Anthracene	1.41	C4SL exp & LQM/CIEH					
Benzo (g h i) Perylene	72	C4SL exp & LQM/CIEH					
Screening value for PAH	75.7	B(a)P / 0.15					
Chlorina	ated Solven	ts					
1,1,1 trichloroethane (TCA)	57.9	LQM/CIEH					
tetrachloroethane (PCA)	15.3	LQM/CIEH					
tetrachloroethene (PCE)	6.58	LQM/CIEH					
trichloroethene (TCE)	0.673	LQM/CIEH					
1,2-dichloroethane (DCA)	0.016	LQM/CIEH					
vinyl chloride (Chloroethene)	0.00447	LQM/CIEH					
tetrachloromethane (Carbon tetra	0.18	LQM/CIEH					
trichloromethane (Chloroform)	7.52	LQM/CIEH					

Notes

Concentrations measured below the above values may be considered to represent 'uncontaminated conditions' which pose 'LOW' risk to human health. Concentrations measured in excess of these values indicate a potential risk which require further, site specific risk assessment.

SGV - Soil Guideline Value, derived from the CLEA model and published by Environment Agency 2009

LQM/CIEH - Generic Assessment Criteria for Human Health Risk Assessment 2nd edition (2009)derived using CLEA 1.04 model 2009

C4SL - Defra Category 4 Screening value based on Low Level of Toxicological Risk

C4SL exp & LQM/CIEH calculated using C4SL revisions to exposure assessment but LQM/CIEH health criteria values

Calc - sum of nearest available carbon range specified including BTEX for PRO fraction

B(a)P / 0.15 - GEA experience indicates that Benzo(a) pyrene (one of the most common and most carcinogenic of the PAHs) rarely exceeds 15% of the total PAH concentration, hence this Total PAH threshold is regarded as being conservative

Express Preliminary UXO Risk Assessment

Client GEA Ltd

Project Channing Junior School

Site Address 1 Highgate High St, Highgate, London, N6 5JR

Report Reference EP5503-00

Date 13/10/17

Originator CB

1st Line Defence Limited

Unit 3, Maple Park, Essex Road, Hoddesdon, Herts, EN11 0EX

Tel: +44 (0)1992 245 020 E-mail: info@1stlinedefence.co.uk

Company No: 7717863 VAT No: 128 8833 79

www.1stlinedefence.co.uk

Assessment Objective

This preliminary risk assessment is a qualitative screening exercise to assess the likely potential of encountering unexploded ordnance (UXO) at Channing Junior School. The assessment involves the consideration of the basic factors that affect the potential for UXO to be present at a site as outlined in Stage One of the UXO risk management process.

Background

This assessment uses the sources of information available in-house to 1st Line Defence Ltd to enable the placement of a development site in context with events that may have led to the presence of German air-delivered or Allied military UXO. The report will identify any immediate necessity for risk mitigation or additional research in the form of a Detailed UXO Risk Assessment. It makes use of 1st Line Defence's extensive historical archives, library and unique geo-databases, as well as internet resources, and is researched and compiled by UXO specialists and graduate researchers.

The assessment directly follows CIRIA C681 guidelines "Unexploded Ordnance, a Guide for the Construction Industry". The document will therefore assess the following factors:

- Basic Site Data
- Previous Military Use
- Indicators of potential aerial delivered UXO threat
- Consideration of any Mitigating Factors
- Extent of Proposed Intrusive Works
- Any requirement for Further Work

It should be noted that the vast majority of construction sites in the UK will have a low or negligible risk of encountering UXO and should be able to be screened out at this preliminary stage. The report is meant as a common sense 'first step' in the UXO risk management process. The content of the report and conclusions drawn are based on basic, preliminary research using the information available to 1st Line Defence at the time this report was produced. It should be noted that the only way to entirely negate risk from UXO to a project would be to support the works proposed with appropriate UXO risk mitigation measures. It is rarely possible to state that there is absolutely 'no' risk from UXO to a project.

Document Code: 16-2-2F-Ed04-Jan17 1 © 1st Line Defence Limited

Risk Assessment Considera	ations
Site location and description/current use	The site is located in Highgate in the borough of Haringey, north London. The site is an irregular parcel of land currently occupied by Channing Junior School, associated outbuildings and areas of open greenfield in use as playing fields. The site is bound to the north by Highgate High Street and to the east, south and west by Sir Sydney Waterlow park. The site is approximately centred on the OS grid reference: 22 2222222222.
Are there any indicators of current/historical military activity on/close to the site?	There are no indicators of any current or historical military activity within the site boundary or in the area immediately surrounding it. The closest recorded point of historical military interest is in the form of a HAA battery, now removed, approximately 1.31km south-west of the site boundary in the vicinity of Highgate Ponds.
What was the pre- and post- WWII history of the site ☐	Pre-war historical OS mapping from 1915 indicates the site to have been predominantly open ground. A structure labelled as <i>Fairseat House</i> is situated in the north-west corner of the boundary. Pathways intersect the site at various points 2 this is due to the site being encompassed by Sir Sydney Waterlow park. Later pre-war historical OS mapping from 1935 indicates no significant changes within the site boundary. Post-war historical OS mapping from 1952-1953 indicates no obvious changes within the site boundary or its immediate surrounding area following the culmination of WWI2 <i>Fairseat House</i> remains intact and the pathways remain the same. Later post-war historical OS mapping from 1967-1968 indicate some minor changes within the site boundary, a section of pathway in the south and west of the site have been removed and replaced with a tennis court and an area of open ground.
Was the area subject to bombing during WWII	During WWII the site was situated in the Metropolitan Borough of St Pancras, and was located immediately south of the Municipal Borough of Hornsey. St Pancras, a borough of 2,69½ acres, was subject to 6½1 HE (high explosive) bombs, eight parachute mines, 1½ oil bombs, 11 phosphorous bombs, 20 V-1 flying bombs and two V2 long range rockets. This totalled 696 incidents, an average of 258 items of ordnance recorded per 1,000 acres, which gave St Pancras a high bombing density in comparison to other areas of London. London bomb census mapping indicates that the site was subject to one bombing incident in the form of an incendiary bomb 'shower' in ②ebruary 1②21. A ②-1 flying bomb is also recorded in close proximity to the site, approximately 200m to the southwest. Anecdotal reports refer to Channing School being badly damaged by a parachute mine during WWII②however, this was thought to have been at the school's original site, to the north of Highgate High Street.
Is there any evidence of bomb damage on/close to the site?	Due to the lack of structures within the site boundary it is not possible to account for evidence of bomb damage for the entire site. However, <i>Fairseat House</i> is indicated on LCC (London County Council) bomb damage mapping as not having suffered any level of damage from bombing campaigns during WWII. High resolution aerial photography

	would be required in order to gain a better idea of the damage sustained and the composition of the site immediately post-war.
To what degree would the site have been subject to access?	The area of the site occupied by <i>Fairseat House</i> and its immediate surroundings are anticipated to have been accessed frequently and regularly during WWII should it have been in use. However, despite being encompassed by Sir Sydney Waterlow park, it is unlikely that access levels would have been regular and frequent in the areas of the site predominantly occupied by open ground of a vegetated nature, and that post-raid checks would have been made for UXO in areas of open ground.
To what degree has the site been developed post-WWII?	The site has seen some development post-war. Channing Junior School moved to the site in 1955 the original building remains in place, whilst other school buildings and areas of hard standing ground have been constructed. The risk of encountering UXO is considered partially mitigated down to the depths and in the specific locations of post-war excavations. It is not possible to confirm the location or depths of any previous post-war intrusive works at this stage.
What is the nature and extent of the intrusive works proposed	The nature and extent of works proposed was not available at the time of writing.

Summary and Conclusions

The site was located in the Metropolitan Borough of St Pancras during WWII. St Pancras, a borough of 2,69½ acres, was subject to a high bomb density average of 258 items of ordnance were recorded per 1,000 acres. The high bombing density can be attributed to the site's location in proximity to the centre of London. Historical mapping indicates that the site was predominantly occupied by open ground of a vegetated nature, with a single structure labelled as *Fairseat House* situated in the north-west corner of the boundary. The site was bordered on three sides by Sir Sydney Waterlow park. London bomb census mapping indicates the presence of an incendiary bomb 'shower' over the site as well as a V-1 flying bomb recorded approximately 200m to the south-west of the boundary. LCC (London County Council) bomb damage mapping indicates that *Fairseat House* survived the war intact, with no significant damage recorded in the immediate surrounding area. Whilst high resolution post-war aerial photography would provide a better idea of the composition of the site immediately following the war, it is unlikely to alter the findings of this preliminary report.

Recommendations

Given the findings of this preliminary report, due to the fact that no significant damage is recorded as having occurred within the site boundary and no evidence can be found to suggest that the risk of encountering UXO is elevated above that of the regular level for this area of the country, it is recommended that **no furt**er action be taken.

If the client has any anecdotal or empirical evidence of UXO risk on site, please contact 1st Line Defence.

Document Code: 16-2-2F-Ed04-Jan17 2 1st Line Defence Limited Document Code: 16-2-2F-Ed04-Jan17 3 1st Line Defence Limited

Su Connor Geotechnical & Environmental Associates Widbury Barn Widbury Hill Ware Herts SG12 7QE

National Gas Emergency Number: 0800 111 999*

National Grid Electricity Emergency Number: 0800 40 40 90*

* Available 24 hours, 7 days/week. Calls may be recorded and monitored.

www.cadentgas.com

Date: 09/10/2017

Our Ref: NL_TE_Z5_3WWX_579013

Your Ref: J17268

RE: Scheduled Works, Channing Jnr School

Thank you for your enquiry which was received on 09/10/2017. Please note this response and any attached map(s) are valid for 28 days.

An assessment has been carried out with respect to Cadent Gas Ltd, National Grid Electricity Transmission plc's and National Grid Gas plc's apparatus. Please note it does not cover the items listed in the section "Your Responsibilities and Obligations", including gas service pipes and related apparatus.

For details of Network areas please see the Cadent website (http://cadentgas.com/Digging-safely/Dial-before-vou-dig) or the enclosed documentation.

Are My Works Affected?

Your proposal **is in proximity to the Cadent and/or National Grid apparatus** specified within the "Assessment" section, which may impact, and possibly prevent, your proposed activities for safety and/or legal reasons.

You must not commence any work until you have complied with all of the guidance provided and been contacted by all of the teams (if any) listed in the Contact Requirements section.

As set out in the table in the "Assessment" section of this response; in respect of <u>all</u> the apparatus listed you must read and follow all the guidance provided when planning or undertaking any activities at this location. Additionally, for apparatus assessed as having a high potential to be affected, a member of the respective team will contact you within **7** working days.

The details contained within this enquiry are valid for 28 days. If the scheduled work is not completed within this time, or should the location, date or nature of your activities change, you must submit another enquiry.

Your Responsibilities and Obligations

The "Assessment" Section below outlines the detailed requirements that must be followed when planning or undertaking your scheduled activities at this location.

It is your responsibility to ensure that the information you have submitted is accurate and that all relevant documents including links are provided to all persons (either direct labour or contractors) working for you near Cadent and/or National Grid's apparatus, e.g. as contained within the Construction (Design and Management) Regulations.

This assessment solely relates to Cadent Gas Ltd, National Grid Electricity Transmission plc (NGET) and National Grid Gas plc (NGG) and apparatus. This assessment does **NOT** include:

- Cadent and/or National Grid's legal interest (easements or wayleaves) in the land which restricts
 activity in proximity to Cadent and/or National Grid's assets in private land. You must obtain details of
 any such restrictions from the landowner in the first instance and if in doubt contact Plant Protection.
- Gas service pipes and related apparatus
- Recently installed apparatus
- Apparatus owned by other organisations, e.g. other gas distribution operators, local electricity companies, other utilities, etc.

It is **YOUR** responsibility to take into account whether the items listed above may be present and if they could be affected by your proposed activities. Further "Essential Guidance" in respect of these items can be found on the National Grid Website (https://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=8589934982).

This communication does not constitute any formal agreement or consent for any proposed development work; either generally or with regard to Cadent and/or National Grid's easements or wayleaves nor any planning or building regulations applications.

Cadent Gas Ltd, NGG and NGET or their agents, servants or contractors do not accept any liability for any losses arising under or in connection with this information. This limit on liability applies to all and any claims in contract, tort (including negligence), misrepresentation (excluding fraudulent misrepresentation), breach of statutory duty or otherwise. This limit on liability does not exclude or restrict liability where prohibited by the law nor does it supersede the express terms of any related agreements.

If you require further assistance please contact the Plant Protection team via e-mail (<u>click here</u>) or via the contact details at the top of this response.

Yours faithfully

Plant Protection Team

ASSESSMENT

Affected Apparatus

The apparatus that has been identified as being in the vicinity of your proposed works is:

- Low or Medium pressure (below 2 bar) gas pipes and associated equipment. (As a result it is highly likely that there are gas services and associated apparatus in the vicinity)
- Electricity Transmission underground cables and associated equipment

Requirements

E ORE carrying out any work you must:

(N.B. Works only to be undertaken when contact has been made as per the Contact Requirements section)

- Refer to the attached cable profile drawings (if any) which provide details about the location of National Grid s high voltage underground cables.
- Carefully read these requirements including the attached guidance documents and maps showing the location of apparatus.
- Contact the landowner and ensure any proposed works in private land do not infringe Cadent and/or National Grid's legal rights (i.e. easements or wayleaves). If the works are in the road or footpath the relevant local authority should be contacted.
- Ensure that all persons, including direct labour and contractors, working for you on or near Cadent and/or National Grid's apparatus follow the requirements of the HSE Guidance Notes HSG47 -'Avoiding Danger from nderground Services' and GS6 'Avoidance of danger from overhead electric power lines'. This guidance can be downloaded free of charge at http://www.hse.gov.uk
- In line with the above guidance, verify and establish the actual position of mains, pipes, cables, services and other apparatus on site before any activities are undertaken.
- Ensure that you have been in contact with all of the teams listed in the Contact Requirements section and complied with any additional guidance provided.

DUR NG any work you must:

- Ensure that no mechanical excavation takes place above or within 0.5m of the Cadent buried medium and low pressure gas pipes and associated equipment.
- Comply with all guidance for working within the vicinity of Electricity nderground Cables as detailed within the guidance documents listed below.
- Comply with all guidance relating to general activities and any specific guidance for each asset type as specified in the Guidance Section below.
- Ensure that access to Cadent and/or National Grid apparatus is maintained at all times.
- Prevent the placing of heavy construction plant, equipment, materials or the passage of heavy vehicles over Cadent and/or National Grid apparatus unless specifically agreed with Cadent and/or National Grid in advance.
- Exercise extreme caution if slab (mass) concrete is encountered during excavation works as this may be protecting or supporting Cadent and/or National Grid apparatus.
- Maintain appropriate clearances between gas apparatus and the position of other buried plant.

lease refer to the General Guidance or contact the lant rotection Team for further information regarding the above.

Contact Requirements

Searches based on your enquiry have identified that the following apparatus types may be affected by your enquiry and further consultation may be required. Please use the boxes provided to record the details of the consultation (where applicable).

Apparatus	Team or Guidance	Contact Details and Ref	Date of Contact
Low or Medium pressure gas pipes	Cadent Maintenance Team		
Electricity Transmission underground cables and associated equipment	Local nderground Cable Engineers		

Each team will endeavour to contact you directly within **7** working days from the date of this response to undertake a more detailed assessment. Please contact Plant Protection if you have not had a response within this period. This may also have an impact on any preparatory works.

Page of 8

GU DANCE

Working Near National Grid Electricity Transmission equipment:

If you are carrying out any work in proximity to an overhead line or any excavation that may be near an underground cable then please consult National Grid Technical Guidance Note 287 that can be found at http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=8589935533 Further guidance related to underground cables can also be found at http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx? id=8589936512

Excavating Safely Avoiding in ury when working near gas pipes:

http://www.nationalgrid.com/NR/rdonlyres/2D2EEA97-B213-459C-9A26-18361C6E0B0D/25249/Digsafe_leaflet3e2finalamends061207.pdf

Standard Guidance

Essential Guidance document:

http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=8589934982

General Guidance document:

http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=35103

Excavating Safely in the vicinity of gas pipes guidance (Credit card):

http://www.nationalgrid.com/NR/rdonlyres/A3D37677-6641-476C-9DDA-E89949052829/44257/ExcavatingSafelyCreditCard.pdf

Excavating Safely in the vicinity of electricity cables guidance (Credit card):

http://www.nationalgrid.com/NR/rdonlyres/35DDEC6D-D754-4BA5-AF3C-D607D05A25C2/44858/ExcavatingSafelyCreditCardelectricitycables.pdf

Copies of all the Guidance Documents can also be downloaded from the National Grid Website: http://www.nationalgrid.com/uk/Gas/Safety/work/downloads/

Page of 8

So Nr. 15, 23, 2000, STOCO New solves \$16m, 300m

USSER CORPORATION (CORPORATION CORPORATION CORPORATI

EN URY SUMMARY

Received Date

09/10/2017

Your Reference

J17268

Location

Centre Point: 528653, 187282

X Extent: 95 Y Extent: 104 Postcode: N6 5JR

Location Description: Channing Jnr School

Map Options

Paper Si e: A3

Orientation: LANDSCAPE Requested Scale: 500

Actual Scale: 1:1250 (GAS), 1:2500 (ELECTRIC)

Real World Extents: 515m x 305m (GAS), 1030m x 610m (ELECTRIC)

Start Date 16/10/2017

Recipients

tacita gea-ltd.co.uk

Enquirer Details

Organisation Name: Geotechnical & Environmental Associates

Contact Name: Su Connor Email Address: tacita gea-ltd.co.uk Telephone: 1727824666 (441727824666)

Address: Widbury Barn, Widbury Hill, Ware, Herts, SG12 7QE

Description of Works

Borhole drilling to a maximum depth of 25m

Enquiry Type

Scheduled Works

Activity Type

General Excavation

Work Types

Work Type: Deep Excavation (greater than or equal to 0.3m)

Work Type: Fencing

Work Type: Boring/Moling/Hori ontal Drilling greater than 300mm

eg e e ff e e e g o o e e 2 o a ge oa o P

Po e e o ea

Our Ref: 11378560 Your Ref: J17268 - Channing School

Monday, 09 October 2017

Su Connor Widbury Barn Widbury Hill Ware Hertfordshire SG12 7QE

Dear Su Connor

Thank you for contacting us regarding UK Power Networks equipment at the above site. I have enclosed a copy of our records which show the electrical lines and/or electrical plant. I hope you find the information useful.

I have also enclosed a fact sheet which contains important information regarding the use of our plans and working around our equipment. Safety around our equipment is our number one priority so please ensure you have completed all workplace risk assessments before you begin any works.

Should your excavation affect our Extra High Voltage equipment (6.6 KV, 22 KV, 33 KV or 132 KV), please contact us to obtain a copy of the primary route drawings and associated cross sections.

If you have any further queries do not hesitate to contact us.

Plan Provision 0800 056 5866

1 | 3

Registered Office:

Newington House 237 Southwark Bridge Road London SE1 6NP

Registered in England and Wales No: 3870728

Company:
UK Power Networks (Operations)
Limited

This information is made available to you on the terms set out below. If you do not accept the terms of use set out in this fact sheet please do not use the plans and return them to UK Power Networks.

- 1. UK Power Networks does not warrant that the information provided to you is correct. You rely upon it at your own risk.
- 2. UK Power Networks does not exclude or limit its liability if it causes the death of any person or causes personal injury to a person where such death or personal injury is caused by its negligence.
- 3. Subject to paragraph 2 UK Power Networks has no liability to you in contract, in tort (including negligence), for breach of statutory duty or otherwise how for any loss, damage, costs, claims, demands, or expenses that you or any third party may suffer or incur as a result of using the information provided whether for physical damage to property or for any economic loss (including without limitation loss of profit, loss of opportunity, loss of savings, loss of goodwill, loss of business, loss of use) or any special or consequential loss or damage whatsoever.
- 4. The information about UK Power Networks electrical plant and/or electric lines provided to you belongs to and remains the property of UK Power Networks. You must not alter it in any respect.
- 5. The information provided to you about the electrical plant and/or electric lines depicted on the plans may NOT be a complete record of such apparatus belonging to UK Power Networks. The information provided relates to electric lines and/or electrical plant belonging to UK Power Networks that it believes to be present but the plans are not definitive: other electric lines and/or electrical plant may be present and that may or may not belong to UK Power Networks.
- 6. Other apparatus not belonging to UK Power Networks is not shown on the plan. It is your responsibility to make your own enquiries elsewhere to discover whether apparatus belonging to others is present. It would be prudent to assume that other apparatus is present.
- 7. You are responsible for ensuring that the information made available to you is passed to those acting on your behalf and that all such persons are made aware of the contents of this letter.
- 8. Because the information provided to you may not be accurate, you are recommended to ascertain the presence of UK Power Networks electric lines and/or electrical plant by the digging of trial holes. Trial holes should be dug by hand only.

Excavations must be carried out in line with the Health and Safety Executive guidance document HSG 47. We will not undertake this work. A copy of HSG 47 can be obtained from the Health and Safety Executives website.

All electric lines discovered must be considered LIVE and DANGEROUS at all times and must not be cut, resited, suspended, bent or interfered with unless specially authorised by UK Power Networks.

The electric line and electrical plant belonging to UK Power Networks remains so even when made dead and abandoned and any such electric line and/or electrical plant exposed shall be reported to UK Power Networks.

Where your works are likely to affect our electric lines and/or electrical plant an estimate of the price of any protective /diversionary works can be prepared by UK Power Networks Branch at Metropolitan House, Darkes Lane, Potters Bar, Herts., EN6 1AG, telephone no. 0845 2340040

2 | 3

Registered Office:

Newington House 237 Southwark Bridge Road London SE1 6NP

UK Power Networks (Operations)

Registered in England and Wales No: 3870728

9 Any work near to any overhead electricity lines must be carried out by you in accordance with the Health and Safety Executive guidance document GS6 and the Electricity at Work Regulations.

The GS6 Recommendations may be purchased from HSE Books or downloaded from the Energy Networks Association's website.

If given a reasonable period of prior notice UK Power Networks will attend on site without charge to advise how and where "goal posts" should be erected. If you wish to use this service, in the first instance please telephone: 0845 6014516 between 08:30 and 17:00 Monday to Friday.

- 10. You are responsible for the security of the information provided to you. It must not be given, sold or made available upon payment of a fee to a third party.
- 11. If in carrying out work on land in, on, under or over which is installed an electric line and/or electrical plant that belongs to UK Power Networks you and/or anyone working on your behalf damages (however slightly) that apparatus you must inform immediately UK Power Networks by our emergency 24 hour three digit telephone number 105 providing;
 - your name, address and telephone number;
- the date, time and place at which such damage was caused;
- a description of the electric line and/or electrical plant to which damage was caused;
- the name of the person whom it appears to you is responsible for that damage;
- the nature of the damage.
- 12. The expression "UK Power Networks" includes UK Power Networks (EPN) plc, UK Power Networks (LPN) plc, UK Power Networks (SEPN) plc, UK Power Networks and any of their successors and predecessors in title.

3 | 3

1. The position of the apparatus down on this drawing is believed to be correct but the enighal landmarks may take been altered since the apparatus was installed.
2. The exist position of the apparatus was installed.
2. The exist position of the apparatus should be verified - use approved cable avoidance tools prior to excavation using suitable hand tools.
3. It's essential that this holes are carefully made avoiding the use of mechanical tools or picks until the exact.
4. It must be assumed that there is a service cable into each properly, lamp column and street sign, etc.
5. All cables must be threated as being lies unless proved otherwise by UK Power Networks.
5. All cables must be threated as being lies unless proved otherwise by UK Power Networks.
5. All cables must be threated as being lies unless proved otherwise by UK Power Networks.
7. Shale also more than 3 monthly affer the loop date for excalation purposes.
7. Shale be award to extend cable into a provided the property of the property of the provided of the provided of the property of the property of the provided of the provided of the state of the provided of the prov

1. UR Power Networks does not warrant that the information provided to you is correct. The rely upon it at your own risk.

2. UR Power Networks does not exclude or himit its fluibility if it causes the death of any periods or supersy periods in your periods. This is caused the death of any periods on supersy or case and period or supersy or case in the period of t

If its OCKST - ALRI PHONE 0000 0 to 5644 BADRIGHTCT - If you demage a cable or the Prone FROM TKO BITE (2-44-41) URIGHNTLY

Reproduced to prevention of Conserva Survey on Select of HASO. 4 Cycum copyright and database right; 2017, 20 reprot researed. Obtainers Survey Userian number; 1200 19429, 2000 1953 and 1000 19430, Cala has Seen added to the Orderino Survey Sale map, all properties yields in such additional data are and shall remain the entire actions of the Street Served (a) (a) of the Street Served (a) (b) of the Street Served (a) (b

