

11-12 INGESTRE ROAD, LONDON, NW5 1UX SuDS ProForma

www.createconsultingengineers.co.uk

Surface Water Drainage Pro-forma for new developments

This pro-forma accompanies our advice note on surface water drainage. Developers should complete this form and submit it to the Local Planning Authority, referencing from where in their submission documents this information is taken. The pro-forma is supported by the <u>Defra/EA guidance on Rainfall Runoff Management</u> and uses the storage calculator on <u>www.UKsuds.com</u>. This pro-forma is based on current industry best practice and focuses on ensuring surface water drainage proposals meet national and local policy requirements. The pro-forma should be considered alongside other supporting SuDS Guidance.

1. Site Details

Site	
Address & post code or LPA reference	
Grid reference	
Is the existing site developed or Greenfield?	
Is the development in a LFRZ or in an area known to be at risk of surface or ground water flooding? If yes, please demonstrate how this is managed, in line with DP23?	
Total Site Area served by drainage system (excluding open space) (Ha)*	

* The Greenfield runoff off rate from the development which is to be used for assessing the requirements for limiting discharge flow rates and attenuation storage from a site should be calculated for the area that forms the drainage network for the site whatever size of site and type of drainage technique. Please refer to the Rainfall Runoff Management document or CIRIA manual for detail on this.

2. Impermeable Area

	Existing	Proposed	Difference	Notes for developers
	_		(Proposed-Existing)	
Impermeable area (ha)				If the proposed amount of impermeable surface is greater, then runoff rates and volumes
				will increase. Section 6 must be filled in. If proposed impermeability is equal or less than
				existing, then section 6 can be skipped and section 7 filled in.
Drainage Method			N/A	If different from the existing, please fill in section 3. If existing drainage is by infiltration and
(infiltration/sewer/watercourse)				the proposed is not, discharge volumes may increase. Fill in section 6.

3. Proposing to Discharge Surface Water via

	Yes	No	Evidence that this is possible	Notes for developers
Existing and proposed				Please provide MicroDrainage calculations of existing and proposed run-off rates and
MicroDrainage calculations				volumes in accordance with a recognised methodology or the results of a full infiltration test
				(see line below) if infiltration is proposed.
Infiltration				e.g. soakage tests. Section 6 (infiltration) must be filled in if infiltration is proposed.
To watercourse				e.g. Is there a watercourse nearby?
To surface water sewer				Confirmation from sewer provider that sufficient capacity exists for this connection.
Combination of above				e.g. part infiltration part discharge to sewer or watercourse. Provide evidence above.
Has the drainage proposal				Evidence must be provided to demonstrate that the proposed Sustainable Drainage
had regard to the SuDS				strategy has had regard to the SuDS hierarchy as outlined in Section 2.5 above.
hierarchy?				
Layout plan showing where				Please provide plan reference numbers showing the details of the site layout showing
the sustainable drainage				where the sustainable drainage infrastructure will be located on the site. If the development
infrastructure will be				is to be constructed in phases this should be shown on a separate plan and confirmation
located on site.				should be provided that the sustainable drainage proposal for each phase can be
				constructed and can operate independently and is not reliant on any later phase of
				development.

4. Peak Discharge Rates – This is the maximum flow rate at which storm water runoff leaves the site during a particular storm event.

	Existing Rates (I/s)	Proposed Rates (I/s)	Difference (I/s) (Proposed- Existing)	% Difference (difference /existing x 100)	Notes for developers
Greenfield QBAR		N/A	N/A	N/A	QBAR is approx. 1 in 2 storm event. Provide this if Section 6 (QBAR) is proposed.
1 in 1					Proposed discharge rates (with mitigation) should aim to be equivalent to greenfield rates
1 in 30					for all corresponding storm events. As a minimum, peak discharge rates must be reduced
1in 100					by 50% from the existing sites for all corresponding rainial events.
1 in 100 plus	N/A				The proposed 1 in 100 +CC peak discharge rate (with mitigation) should aim to be
climate change					equivalent to greenfield rates. As a minimum, proposed 1 in 100 +CC peak discharge rate must be reduced by 50% from the existing 1 in 100 runoff rate sites.

5. Calculate additional volumes for storage –The total volume of water leaving the development site. New hard surfaces potentially restrict the amount of stormwater that can go to the ground, so this needs to be controlled so not to make flood risk worse to properties downstream.

	Greenfield runoff volume	Existing Volume (m ³)	Proposed Volume (m ³)	Difference (m ³) (Proposed-Existing)	Notes for developers
	(m ³)				
1 in 1					Proposed discharge volumes (with mitigation) should be constrained to a value as close as is
1 in 30					reasonably practicable to the greenfield runoff volume wherever practicable and as a
1in 100 6 hour					minimum should be no greater than existing volumes for all corresponding storm events. Any
					increase in volume increases flood risk elsewhere. Where volumes are increased section 6
					must be filled in.
1 in 100 6 hour plus					The proposed 1 in 100 +CC discharge volume should be constrained to a value as close as
climate change					is reasonably practicable to the greenfield runoff volume wherever practicable. As a
					minimum, to mitigate for climate change the proposed 1 in 100 +CC volume discharge from
					site must be no greater than the existing 1 in 100 storm event. If not, flood risk increases
1					under climate change.

6. Calculate attenuation storage – Attenuation storage is provided to enable the rate of runoff from the site into the receiving watercourse to be limited to an acceptable rate to protect against erosion and flooding downstream. The attenuation storage volume is a function of the degree of development relative to the greenfield discharge rate.

	Notes for developers
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a greenfield run off rate.
meet greenfield run off rates (m ³)	Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a 50% reduction from
reduce rates by 50% (m ³)	existing rates. Can't be used where discharge volumes are increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at a rate different from the
meet [OTHER RUN OFF RATE (as close to greenfield rate as	above – please state in 1 st column what rate this volume corresponds to. On
possible] (m ³)	previously developed sites, runoff rates should not be more than three times the
	calculated greenfield rate. Can't be used where discharge volumes are
	increasing
Storage Attenuation volume (Flow rate control) required to	Volume of water to attenuate on site if discharging at existing rates. Can't be
retain rates as existing (m ³)	used where discharge volumes are increasing
Percentage of attenuation volume stored above ground,	Percentage of attenuation volume which will be held above ground in
	swales/ponds/basins/green roofs etc. If 0, please demonstrate why.

7. How is Storm Water stored on site?

Storage is required for the additional volume from site but also for holding back water to slow down the rate from the site. This is known as attenuation storage and long term storage. The idea is that the additional volume does not get into the watercourses, or if it does it is at an exceptionally low rate. You can either infiltrate the stored water back to ground, or if this isn't possible hold it back with on site storage. Firstly, can infiltration work on site?

		Notes for developers
	State the Site's Geology and known Source	Avoid infiltrating in made ground. Infiltration rates are highly variable
Infiltration	Protection Zones (SPZ)	and refer to Environment Agency website to identify and source
		protection zones (SPZ)
	Are infiltration rates suitable?	Infiltration rates should be no lower than 1×10^{-6} m/s.
	State the distance between a proposed infiltration	Need 1m (min) between the base of the infiltration device & the water
	device base and the ground water (GW) level	table to protect Groundwater quality & ensure GW doesn't enter
		infiltration devices. Avoid infiltration where this isn't possible.

	Were infiltration rates obtained by desk study or infiltration test?	Infiltration rates can be estimated from desk studies at most stages of the planning system if a back up attenuation scheme is provided
	Is the site contaminated? If yes, consider advice from others on whether infiltration can happen.	Advice on contaminated Land in Camden can be found on our supporting documents <u>webpage</u> Water should not be infiltrated through land that is contaminated. The Environment Agency may provide bespoke advice in planning consultations for contaminated sites that should be considered.
In light of the above, is infiltration feasible?	Yes/No? If the answer is No, please identify how the storm water will be stored prior to release	If infiltration is not feasible how will the additional volume be stored?. The applicant should then consider the following options in the next section.

Storage requirements

The developer must confirm that either of the two methods for dealing with the amount of water that needs to be stored on site.

Option 1 Simple – Store both the additional volume and attenuation volume in order to make a final discharge from site at the greenfield run off rate. This is preferred if no infiltration can be made on site. This very simply satisfies the runoff rates and volume criteria.

Option 2 Complex – If some of the additional volume of water can be infiltrated back into the ground, the remainder can be discharged at a very low rate of 2 l/sec/hectare. A combined storage calculation using the partial permissible rate of 2 l/sec/hectare and the attenuation rate used to slow the runoff from site.

	Notes for developers
Please confirm what option has been chosen and how much	The developer at this stage should have an idea of the site
storage is required on site.	characteristics and be able to explain what the storage requirements
	are on site and now it will be achieved.

8. Please confirm

	Notes for developers
Which Drainage Systems measures have been used,	SUDS can be adapted for most situations even where infiltration
including green roofs?	isn't feasible e.g. impermeable liners beneath some SUDS devices
	allows treatment but not infiltration. See CIRIA SUDS Manual C697.
Drainage system can contain in the 1 in 30 storm event	This a requirement for sewers for adoption & is good practice even
without flooding	where drainage system is not adopted.
Will the drainage system contain the 1 in 100 +CC storm	National standards require that the drainage system is designed so
event? If no please demonstrate how buildings and utility	that flooding does not occur during a 1 in 100 year rainfall event in
plants will be protected.	any part of: a building (including a basement); or in any utility plant
	susceptible to water (e.g. pumping station or electricity substation)
	within the development.
Any flooding between the 1 in 30 & 1 in 100 plus climate	Safely: not causing property flooding or posing a hazard to site
change storm events will be safely contained on site.	users i.e. no deeper than sourism on roads/lootpaths. Flood waters
	must drain away at section 6 rates. Existing rates can be used
How will avcordance events be extered on site without	Safalu: not caucing property fleeding or pacing a bazard to site
increasing flood risks (both on site and outside the	users i.e. no deeper than 300mm on roads/footpaths. Flood waters
development)?	must drain away at section 6 rates. Existing rates can be used
	where runoff volumes are not increased.
	Exceedance events are defined as those larger than the 1 in 100
	+CC event.
How are rates being restricted (vortex control, orifice etc)	Detail of how the flow control systems have been designed to avoid
	pipe blockages and ease of maintenance should be provided.
Please confirm the owners/adopters of the entire drainage	If these are multiple owners then a drawing illustrating exactly what
systems throughout the development. Please list all the	features will be within each owner's remit must be submitted with
owners.	this Proforma.
How is the entire drainage system to be maintained?	If the features are to be maintained directly by the owners as stated
	in answer to the above question please answer yes to this question
	and submit the relevant maintenance schedule for each feature. If it
	is to be maintained by others than above please give details of each
	leature and the maintenance schedule.
	Clear details of the maintenance proposals of all elements of the
	demonstrate that maintenance and operation requirements are
	economically proportionate. Poorly maintained drainage can load to
	increased flooding problems in the future
	Clear details of the maintenance proposals of all elements of the proposed drainage system must be provided. Details must demonstrate that maintenance and operation requirements are economically proportionate. Poorly maintained drainage can lead to increased flooding problems in the future.

9. Evidence Please identify where the details quoted in the sections above were taken from. i.e. Plans, reports etc. Please also provide relevant drawings that need to accompany your proforma, in particular exceedance routes and ownership and location of SuDS (maintenance access strips etc

Pro-forma Section	Document reference where details quoted above are taken from	Page Number		
Section 2				
Section 3				
Section 4				
Section 5				
Section 6				
Section 7				
Section 8				
The above form should be completed using evidence from the Flood Risk Assessment and site plans. It should serve as a summary sheet of the drainage proposals and should clearly show that the proposed rate and volume as a result of development will not be increasing. If there is an increase in rate or volume, the rate or volume section should be completed to set out how the additional rate/volume is being dealt with. This form is completed using factual information from the Flood Risk Assessment and Site Plans and can be used as a summary of the surface water drainage strategy on this site.				
Form Completed By Qualification of person responsible for signing off this pro-forma				
Company On behalf of (Client's details) Date:				

APPENDICES

APPENDIX A

Create Consulting Engineers Ltd

Princes Street

Search address supplied	Ingestre Road
	London
	NW5 1UX

Your reference	P17-1282
Our reference	SFH/SFH Standard/2017_3612613
Received date	17 July 2017
Search date	17 July 2017

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Search address supplied: Ingestre Road,London,NW5 1UX

This search is recommended to check for any sewer flooding in a specific address or area

- TWUL, trading as Property Searches, are responsible in respect of the following:-
- (i) any negligent or incorrect entry in the records searched;
- (ii) any negligent or incorrect interpretation of the records searched;
- (iii) and any negligent or incorrect recording of that interpretation in the search report
- (iv) compensation payments

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

History of Sewer Flooding

Is the requested address or area at risk of flooding due to overloaded public sewers?

The flooding records held by Thames Water indicate that there have been no incidents of flooding in the requested area as a result of surcharging public sewers.

For your guidance:

- A sewer is "overloaded" when the flow from a storm is unable to pass through it due to a permanent problem (e.g. flat gradient, small diameter). Flooding as a result of temporary problems such as blockages, siltation, collapses and equipment or operational failures are excluded.
- "Internal flooding" from public sewers is defined as flooding, which enters a building or passes below a suspended floor. For reporting purposes, buildings are restricted to those normally occupied and used for residential, public, commercial, business or industrial purposes.
- "At Risk" properties are those that the water company is required to include in the Regulatory Register that is presented annually to the Director General of Water Services. These are defined as properties that have suffered, or are likely to suffer, internal flooding from public foul, combined or surface water sewers due to overloading of the sewerage system more frequently than the relevant reference period (either once or twice in ten years) as determined by the Company's reporting procedure.
- Flooding as a result of storm events proven to be exceptional and beyond the reference period of one in ten years are not included on the At Risk Register.
- Properties may be at risk of flooding but not included on the Register where flooding incidents have not been reported to the Company.
- Public Sewers are defined as those for which the Company holds statutory responsibility under the Water Industry Act 1991.
- It should be noted that flooding can occur from private sewers and drains which are not the responsibility of the Company. This report excludes flooding from private sewers and drains and the Company makes no comment upon this matter.
- For further information please contact Thames Water on Tel: 0800 316 9800 or website www.thameswater.co.uk

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

APPENDIX B

2m <u>0m</u>

bartonwillmore.co.uk Offices at Bristol Cambridge Cardiff Ebbsfleet Edinburgh Leeds London Manchester Newcastle Reading Solihull Southampton

VISUAL SCALE 1:100 @ A1

4m

6m

8m

10m

The scaling of this drawing cannot be assured Revision A Drawings for final review pre-planning issue B Red Line updated

- Date Drn Ckd 23/07/18 DC PN 06/09/18 DC PN

PLANNING

Project 11-12 Ingestre Road, Camden Assisted Living Development Drawing Title Site Plan - Ground Floor

Date 05/06/18 Project No 27463

Scale 1:200 @ A1 Drawing No A-P11-10

DC PN

Drawn by Check by Revision В

Planning • Master Planning & Urban Design • Architecture • Landscape Planning & Design • Environmental Planning • Graphics Communication • Public Engagement • Research

bsi. 9001 Quality Manag bartonwillmore.co.uk

Offices at Bristol Cambridge Cardiff Ebbsfleet Edinburgh Leeds London Manchester Newcastle Reading Solihull Southampton

APPENDIX C

Create Consulting									
15 Princes Street									
Norwich									
NR3 1AF		R	ear Geoce	llular St	orage				
D_{2} = 08/06/2018 13.3	7		eaigned b	., TT	orage		- MICLO		
	Date 00/00/2010 15:57 Designed by JJ								
FILE INGESTRE_ROAD_M	D_CALCS	_··· [C	пескеа ру	GS					
Causeway									
	C D		1.0.0						
Summary	of Resu	<u>lts for</u>	<u>100 year</u>	Return	Period	(+40%)			
	Пc	all Drain	n 11me : 82	minutes.					
Storm	Max	Max	Max	Max	Max	Max	Status		
Event	Level 1	Depth In	filtration	Control S	Outflow	Volume			
	(m)	(m)	(1/s)	(l/s)	(l/s)	(m³)			
15 min Summor	17 018	0 249	0 0	3 5	3 5	20.0	0 K		
30 min Summer	47.040	0.240 0.311	0.0	3.5	3.5	20.0	0 K		
60 min Summer	47.149	0.349	0.0	3.5	3.5	28.2	0 K		
120 min Summer	47.148	0.348	0.0	3.5	3.5	28.1	ΟK		
180 min Summer	47.131	0.331	0.0	3.5	3.5	26.8	O K		
240 min Summer	47.109	0.309	0.0	3.5	3.5	25.0	O K		
360 min Summer	47.062	0.262	0.0	3.5	3.5	21.2	O K		
480 min Summer	47.021	0.221	0.0	3.5	3.5	17.8	0 K		
600 min Summer	46.986	0.186	0.0	3.5	3.5	15.0	0 K		
720 min Summer	46.958	0.158	0.0	3.5	3.5	12.7	ОК		
960 min Summer	46.920	0.120	0.0	3.5	3.5	9.7	OK		
2160 min Summer	40.091	0.091	0.0	2.9	2.9	7.4 5.9	OK		
2880 min Summer	46.863	0.063	0.0	1.7	1.7	5.1	0 K		
4320 min Summer	46.852	0.052	0.0	1.3	1.3	4.2	0 K		
5760 min Summer	46.846	0.046	0.0	1.0	1.0	3.7	O K		
7200 min Summer	46.841	0.041	0.0	0.8	0.8	3.3	O K		
8640 min Summer	46.838	0.038	0.0	0.7	0.7	3.0	ОК		
10080 min Summer	46.835	0.035	0.0	0.6	0.6	2.8	0 K		
15 min Winter	47.081	0.281	0.0	3.5	3.5	22.7	ОК		
	Storm	Rai	in Flooded	Discharge	a Time-Pe	ak			
	Event	(mm/	hr) Volume	Volume	(mins)			
			(m³)	(m³)	•	•			
	. ~		F 0 F 0 0		、 、	0.0			
15	min Sumr	mer 150.	535 0.0	23.0)	23			
30	min Sumr	mer 97.	15/ 0.0	29.		36			
120	min Sum	mer 35	314 0.0	43 4	1	96			
180	min Sum	mer 25.	660 0.0	47.3	± } 1	30			
240	min Sum	mer 20.	345 0.0	50.0) 1	.64			
360	min Sumr	mer 14.	664 0.0	54.0) 2	228			
480	min Sumr	mer 11.	616 0.0	57.1	. 2	292			
600	min Sumr	mer 9.	689 0.0	59.5	5 3	350			
720	min Sumr	mer 8.	351 0.0	61.5	5 4	106			
960	min Sumr	mer 6.	601 0.0	64.9	9 5	518			
1440	min Sumr	mer 4.	/32 0.0	69.7		00			
2160	min Sum	mer 2.	500 U.U	/J.(ν 1. 2 1.	172			
4320	min Sum	mer 1.	907 0.0	84.3	3 22	204			

5760 min Summer

7200 min Summer 1.246

8640 min Summer 1.070

15 min Winter 150.535

10080 min Summer 0.940

1.501

0.0

0.0

0.0

0.0

0.0

©1982-2018 Innovyze

88.6

91.9

94.7

97.0

25.8

2936

3672

4400

5144

24

Create Consulting		Page 2
15 Princes Street	P17-1282 - Ingestre Road	
Norwich	100 year + 40% CC Event	
NR3 1AF	Rear Geocellular Storage	Mirro
Date 08/06/2018 13:37	Designed by JJ	
File INGESTRE_ROAD_MD_CALCS	Checked by GS	Diamage
Causeway	Source Control 2018.1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min W	Vinter	47.153	0.353	0.0	3.5	3.5	28.5	ОК
60	min W	Vinter	47.197	0.397	0.0	3.5	3.5	32.0	ОК
120	min W	Vinter	47.194	0.394	0.0	3.5	3.5	31.8	ОК
180	min W	Vinter	47.170	0.370	0.0	3.5	3.5	29.9	ОК
240	min W	Vinter	47.139	0.339	0.0	3.5	3.5	27.4	ОК
360	min W	Vinter	47.069	0.269	0.0	3.5	3.5	21.7	ΟK
480	min W	Vinter	47.006	0.206	0.0	3.5	3.5	16.6	ОК
600	min W	Vinter	46.957	0.157	0.0	3.5	3.5	12.6	ОК
720	min W	Vinter	46.923	0.123	0.0	3.5	3.5	9.9	ΟK
960	min W	Vinter	46.896	0.096	0.0	3.0	3.0	7.8	ΟK
1440	min W	Vinter	46.875	0.075	0.0	2.2	2.2	6.0	ΟK
2160	min W	Vinter	46.861	0.061	0.0	1.6	1.6	4.9	ОК
2880	min W	Vinter	46.853	0.053	0.0	1.3	1.3	4.2	ОК
4320	min W	Vinter	46.844	0.044	0.0	0.9	0.9	3.5	ОК
5760	min W	Vinter	46.838	0.038	0.0	0.7	0.7	3.1	ΟK
7200	min W	Vinter	46.835	0.035	0.0	0.6	0.6	2.8	ΟK
8640	min W	Vinter	46.832	0.032	0.0	0.5	0.5	2.5	ОК
10080	min W	Vinter	46.830	0.030	0.0	0.5	0.5	2.4	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
						2.6
30	mın	Winter	97.157	0.0	33.3	36
60	min	Winter	59.609	0.0	41.0	62
120	min	Winter	35.314	0.0	48.6	102
180	min	Winter	25.660	0.0	53.0	140
240	min	Winter	20.345	0.0	56.0	178
360	min	Winter	14.664	0.0	60.5	246
480	min	Winter	11.616	0.0	63.9	308
600	min	Winter	9.689	0.0	66.7	362
720	min	Winter	8.351	0.0	68.9	412
960	min	Winter	6.601	0.0	72.6	516
1440	min	Winter	4.732	0.0	78.1	752
2160	min	Winter	3.388	0.0	84.0	1116
2880	min	Winter	2.670	0.0	88.2	1500
4320	min	Winter	1.907	0.0	94.5	2196
5760	min	Winter	1.501	0.0	99.2	2888
7200	min	Winter	1.246	0.0	103.0	3648
8640	min	Winter	1.070	0.0	106.1	4320
10080	min	Winter	0.940	0.0	108.7	5008

Create Consulting		Page 3
15 Princes Street	P17-1282 - Ingestre Road	
Norwich	100 year + 40% CC Event	
NR3 1AF	Rear Geocellular Storage	Micro
Date 08/06/2018 13:37	Designed by JJ	
File INGESTRE_ROAD_MD_CALCS	Checked by GS	Diamage
Causeway	Source Control 2018.1	

<u>Rainfall Details</u>

Rainfall	Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
	Region Engla	nd and Wales	Cv (Winter)	0.840
M5-6	0 (mm)	21.000	Shortest Storm (mins)	15
R	atio R	0.439	Longest Storm (mins)	10080
Summer	Storms	Yes	Climate Change 🖇	+40

<u>Time Area Diagram</u>

Total Area (ha) 0.082

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.027	4	8	0.027	8	12	0.027

Create Consulting					Page 4								
15 Princes Street	P17-1282	- Inges	tre Road										
Norwich	100 year	+ 40% C	C Event										
NR3 1AF	Rear Geo	cellular	Storage		Micco								
Date 08/06/2018 13:37	Designed	by JJ											
File INGESTRE ROAD MD CALCS	Checked 1	ov GS			vrainage								
Causeway	Source C	ontrol 2	018.1										
-													
Model Details													
Storage is Online Cover Level (m) 48.000													
<u>Cell</u> ular Storage Structure													
Inver Infiltration Coefficient Infiltration Coefficient	rt Level (m Base (m/hr Side (m/hr	46.800 0.00000 0.00000	Safety Fac Poros	tor 2.0 ity 0.95									
Depth (m) Area (m²) Inf. Are	ea (m²) Dep	th (m) Are	ea (m²) Inf	. Area (r	n²)								
0.000 85.0	0.0	0.401	0.0	(0.0								
0.400 85.0	0.0	1.200	0.0	(0.0								
<u>Hydro-Brake®</u>	Optimum	Outflow	Control										
Unit	Reference	MD-SHE-00	97-3500-040	0 400									
Design	Flow (1/s)			3.5									
	Flush-Flo™		Calc	ulated									
	Objective	Minimise	upstream s	storage									
A	pplication		S	Surface									
Sump	Available			Yes									
Dia	meter (mm)			97									
Invert Minimum Outlot Ding Dig	Level (m)			46.800									
Suggested Manhole Dia	meter (mm)			1200									
Control Po	ints	Head (m) 1	[low (1/s)										
Design Point (Ca	alculated)	0 400	35										
E E E E E E E E E E E E E E E E E E E	flush-Flo™	0.149	3.5										
	Kick-Flo®	0.302	3.1										
Mean Flow over H	lead Range	-	2.9										
The hydrological calculations have b	een based o	on the Hea	d/Discharge	e relation	ship for the								
Hydro-Brake® Optimum as specified.	Should anot	her type	of control	device of	ther than a								
Hydro-Brake Optimum® be utilised the	n these sto	rage rout	ing calcula	tions wil	ll be								
invalidated													
Depth (m) Flow (1/s) Depth (m) Flow	v (l/s) Dep	th (m) Flo	ow (l/s) De	epth (m)	Flow (l/s)								
0.100 3.2 1.200	5.8	3.000	9.0	7.000	13.5								
0.200 3.4 1.400	6.3	3.500	9.6	7.500	14.0								
0.300 3.1 1.600	6.7	4.000	10.3	8.000	14.5								
0.400 3.5 1.800	7.0	4.500	10.8	8.500	14.9								
	7.4	5.000	11.4	9.000	15.4								
	/ · / 8 1	5.300	12.0	9.000	12.8								
1.000 5.3 2.600	8.4	6.500	13.1										
	ľ		ľ										
<u></u>	22_2010	20010120											
0198	JZ-ZUIO II	шоууге											

Create Consulting	Page 1										
15 Princes Street	P17-	1282 -	Ingestr	e Road							
Norwich	100	vear +	40% CC	Event							
NR3 1AF	Fror	t Geoc									
Data 08/06/2018 12:40	Deal	anod h	., TT	bcoruge		- MICCO					
Date 00/00/2010 13:40	Desi	.gnea b	y uu			Drainage					
File INGESTRE_ROAD_MD_CALCS	. Chec	cked by	GS								
Causeway Source Control 2018.1											
Summary of Results for 100 year Poturn Poried (+40%)											
Summary of Results	-										
Hali	Drain Ti	.me : /6	minutes.								
Storm Max Ma	x M	lax	Max	Max	Max	Status					
Event Level Dep	th Infil	tration	Control S	Outflow	Volume						
(m) (m) (1	/s)	(1/s)	(1/s)	(m³)						
15 min Ourman 45 040 0 0	4.0	0.0	2 5	0 5	10.0	0. 17					
15 min Summer 45.849 0.2 30 min Summer 45.912 0.3	49 12	0.0	2.5	2.5	13.3	OK					
50 min Summer 45.912 0.3	12 46	0.0	2.5	2.5	18 4	OK					
120 min Summer 45 941 0 3	41	0.0	2.5	2.5	18 2	0 K					
180 min Summer 45 921 0 3	21	0.0	2.5	2.5	17 1	0 K					
240 min Summer 45 897 0 2	97	0.0	2.5	2.5	15.8	0 K					
360 min Summer 45 845 0 2	45	0.0	2.5	2.5	13.0	0 K					
480 min Summer 45 802 0 2	02	0.0	2.5	2.5	10 7	0 K					
600 min Summer 45 766 0 1	66 66	0.0	2.5	2.5	8.8	0 K					
720 min Summer 45 738 0 1	38	0.0	2.5	2.5	73	0 K					
960 min Summer 45 703 0 1	03	0.0	2.5	2.5	55	0 K					
1440 min Summer 45 678 0 0	78	0.0	2.0	2.0	4 2	0 K					
2160 min Summer 45 662 0 0	62	0.0	1 5	1 5	33	0 K					
2880 min Summer 45 654 0 0	54	0.0	1 2	1 2	29	0 K					
4320 min Summer 45 644 0 0	ΔΔ	0.0	0.8	0.8	2.5	0 K					
5760 min Summer 45 639 0 0	39	0.0	0.0	0.0	2.1	0 K					
7200 min Summer 45 635 0 0	35	0.0	0.6	0.6	1 9	0 K					
8640 min Summer 45,632 0.0	32	0.0	0.5	0.5	1.7	0 K					
10080 min Summer 45.630 0.0	30	0.0	0.4	0.4	1.6	0 K					
15 min Winter 45.884 0.2	84	0.0	2.5	2.5	15.1	0 K					
					_						
Storm	Rain	Flooded	l Discharg	e Time-Pe	ak						
Event	(mm/hr)	Volume	Volume	(mins)							
		(m³)	(m³)								
15 min Summer	150.535	0.0) 15.	5	23						
30 min Summer	97.157	0.0	20.	0	36						
60 min Summer	59.609	0.0	24.	6	60						
120 min Summer	35.314	0.0) 29.	1	94						
180 min Summer	25.660	0.0) 31.	7 1	28						
240 min Summer	20.345	0.0) 33.	5 1	62						
360 min Summer	14.664	0.0	36.	3 2	26						
480 min Summer	11.616	0.0	38.	3 2	88						
600 min Summer	9.689	0.0) 39.	9 3	46						
720 min Summer	8.351	0.0	41.	3 4	02						
960 min Summer	6.601	0.0	43.	5 5	10						
1440 min Summer	4.732	0.0	46.	8 7	44						
2160 min Summer	3.388	0.0	50.	3 11	08						
2880 min Summer	2.670	0.0	52.	8 14	72						
4320 min Summer	1.907	0.0	56.	6 22	04						
5760 min Summer	1.501	0.0) 59.	4 29	36						
7200 min Summer	1.246	0.0) 61.	7 36	48						
8640 min Summor	1 070	0 0	63	5 13	36						

0.0

0.0

0.0

©1982-2018 Innovyze

63.5

65.1

17.3

4336

5056

24

8640 min Summer 1.070

15 min Winter 150.535

10080 min Summer 0.940

Create Consulting		Page 2
15 Princes Street	P17-1282 - Ingestre Road	
Norwich	100 year + 40% CC Event	
NR3 1AF	Front Geocellular Storage	Micro
Date 08/06/2018 13:40	Designed by JJ	
File INGESTRE_ROAD_MD_CALCS	Checked by GS	Dialitada
Causeway	Source Control 2018.1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m ³)	Status
				. ,					
30	min Wi	inter	45.954	0.354	0.0	2.5	2.5	18.8	ОК
60	min Wi	inter	45.995	0.395	0.0	2.5	2.5	21.0	ОК
120	min Wi	inter	45.987	0.387	0.0	2.5	2.5	20.6	ОК
180	min Wi	inter	45.959	0.359	0.0	2.5	2.5	19.1	ОК
240	min Wi	inter	45.924	0.324	0.0	2.5	2.5	17.2	ΟK
360	min Wi	inter	45.846	0.246	0.0	2.5	2.5	13.1	ΟK
480	min Wi	inter	45.781	0.181	0.0	2.5	2.5	9.6	ОК
600	min Wi	inter	45.732	0.132	0.0	2.5	2.5	7.0	ОК
720	min Wi	inter	45.702	0.102	0.0	2.5	2.5	5.4	ΟK
960	min Wi	inter	45.682	0.082	0.0	2.1	2.1	4.4	ΟK
1440	min Wi	inter	45.664	0.064	0.0	1.5	1.5	3.4	ΟK
2160	min Wi	inter	45.652	0.052	0.0	1.1	1.1	2.7	ОК
2880	min Wi	inter	45.645	0.045	0.0	0.9	0.9	2.4	ΟK
4320	min Wi	inter	45.637	0.037	0.0	0.6	0.6	2.0	ΟK
5760	min Wi	inter	45.633	0.033	0.0	0.5	0.5	1.7	ΟK
7200	min Wi	inter	45.629	0.029	0.0	0.4	0.4	1.6	ΟK
8640	min Wi	inter	45.627	0.027	0.0	0.4	0.4	1.4	ΟK
10080	min Wi	inter	45.625	0.025	0.0	0.3	0.3	1.3	ΟK

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	97.157	0.0	22.4	36
60	min	Winter	59.609	0.0	27.5	62
120	min	Winter	35.314	0.0	32.6	100
180	min	Winter	25.660	0.0	35.5	138
240	min	Winter	20.345	0.0	37.6	176
360	min	Winter	14.664	0.0	40.6	244
480	min	Winter	11.616	0.0	42.9	302
600	min	Winter	9.689	0.0	44.7	356
720	min	Winter	8.351	0.0	46.3	400
960	min	Winter	6.601	0.0	48.7	512
1440	min	Winter	4.732	0.0	52.4	744
2160	min	Winter	3.388	0.0	56.3	1108
2880	min	Winter	2.670	0.0	59.2	1472
4320	min	Winter	1.907	0.0	63.4	2196
5760	min	Winter	1.501	0.0	66.6	2920
7200	min	Winter	1.246	0.0	69.1	3672
8640	min	Winter	1.070	0.0	71.1	4440
10080	min	Winter	0.940	0.0	72.9	4984

©1982-2018 Innovyze

Create Consulting		Page 3
15 Princes Street	P17-1282 - Ingestre Road	
Norwich	100 year + 40% CC Event	
NR3 1AF	Front Geocellular Storage	Mirro
Date 08/06/2018 13:40	Designed by JJ	
File INGESTRE_ROAD_MD_CALCS	Checked by GS	Diamage
Causeway	Source Control 2018.1	·

<u>Rainfall Details</u>

	Rainfall Model		FSR	Winter Storms Yes
Return	Period (years)		100	Cv (Summer) 0.750
	Region	England	and Wales	Cv (Winter) 0.840
	M5-60 (mm)		21.000	Shortest Storm (mins) 15
	Ratio R		0.439	Longest Storm (mins) 10080
	Summer Storms		Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.055

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.018	4	8	0.018	8	12	0.018

©1982-2018 Innovyze

Create Consulting				I	Page 4				
15 Princes Street	P17-1282	2 - Inge	stre Road	[
Norwich	100 yea:	c + 40% (CC Event						
NR3 1AF	Front Ge	eocellula	ar Storage		Micco				
Date 08/06/2018 13:40	Designe	d by JJ							
File INGESTRE ROAD MD CALCS	Checked	by GS			ngingda				
	Source (Control 2	2018.1	•					
<u>1</u>	Model Det	ails							
Storage is On	line Cover	Level (m) 46.800						
Collula	r Storag	o Struct	1170						
	I SLUIAY	<u>e struct</u>	ure						
Inver	t Level (1	n) 45.600) Safety Fact	or 2.0					
Infiltration Coefficient	Base (m/h	r) 0.00000) Porosi	ty 0.95					
Infiltration Coefficient	Side (m/h	r) 0.00000)						
Depth (m) Area (m ²) Inf. Are	a (m²) De	pth (m) A	rea (m²) Inf	. Area (m	²)				
-		-							
	0.0	0.401	0.0	0	.0				
0.400 50.0	0.01	1.200	0.0	0					
Hydro-Brake®	Optimum	Outflow	Control						
Unit	Reference	MD-SHE-0	084-2500-0400	0-2500					
Design	n Head (m) Flow (l(s)			0.400					
Design	Flush-Flor	4	Calc	2.J					
	Objective	Minimis	e upstream si	torage					
А	pplicatior	1	S1	urface					
Sump	Available	2		Yes					
Dia	meter (mm)			84					
Invert	Level (m)			45.600					
Minimum Outlet Pipe Dia	meter (mm)			100					
Suggested Mannore Dia	meter (mm)			1200					
Control Po	ints	Head (m)	Flow (l/s)						
Design Point (Ca	alculated)	0 400	2 5						
Besign forme (et	flush-Flo™	0.133	2.5						
	Kick-Flo®	0.293	2.2						
Mean Flow over H	lead Range	-	2.1						
The hydrological calculations have h	een based	on the He	ad/Discharge	relation	shin for the				
Hydro-Brake® Optimum as specified.	Should and	on the ne	of control of	device ot	her than a				
Hydro-Brake Optimum® be utilised the	n these st	corage rou	ting calculat	tions wil	l be				
invalidated									
Donth (m) Elor (1/a) Donth (m) Elor		~+h (m) E		ath (m) E	$1 \circ (1/2)$				
	. (1/5/ De	PCII (III) F.		, (m) F	10W (1/3)				
0.100 2.5 1.200	4.1	3.000	6.4	7.000	9.6				
0.200 2.4 1.400	4.4	3.500	6.8	7.500	9.9				
	4./	4.000	1.3	8.000	10.3				
	5.0	4.300	/./	8.5UU 9 000	10.0				
	5.5	5 500	0.1 8 5	9.000 9.500	11 2				
0.800 3.4 2.400	5.7	6.000	8.9	2.000	±±•6				
1.000 3.8 2.600	5.9	6.500	9.3						
©198	32-2018 1	innovyze							

APPENDIX D

Miss Jessica Jordan Create Consulting Engineers 15 Princes Street Norwich NR3 1AF

 Your account number DS6043232
 Developer.services@thameswater .co.uk
 0800 009 3921
 Mon – Fri 9am-5pm,
 05/01/2018

Pre Development Enquiry

Site Address: Ingestre Road, London, NW5 1UX, OS grid ref. 528689, 185814.

Proposed Development: Redevelopment of the existing care home to increase max capacity to 70 beds. Foul Water to be discharged by gravity to combined sewer in Ingestre Rd. Surface Water to be attenuated and discharged by gravity into combined sewer in Ingestre Road at 211/s. Exist run-off for 1:1 21.191/s, 1:30 51.951/s, 1:100 66.991/s.

Dear Miss Jordan,

I write in relation to the Pre-Development application submitted, we have completed the assessment of the foul water flows and surface water run-off based on the information submitted in your application with the purpose of assessing sewer capacity within the existing Thames Water sewer network.

Foul Water

From the information you have provided, we can confirm that the existing combined sewer network does have sufficient capacity to accommodate the proposed foul water discharge from the proposed development.

Surface Water

Please note that discharging surface water to the public sewer network should only be considered after all other methods of disposal have been investigated and proven to not be viable. In accordance with the Building Act 2000 Clause H3.3, positive connection to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. The disposal hierarchy being: 1st Soakaways; 2nd Watercourses; 3rd Sewers.

Only when it can be proven that soakage into the ground or a connection into the adjacent watercourse is not possible would we consider a restricted discharge into the public surface water sewer network.

We would encourage techniques such as green roofs and/or permeable paving that restricts surface water discharge from your site.

When redeveloping an existing site, policy 5.13 of the London Plan and Policy 3.4 of the Supplementary Planning Guidance (Sustainable Design And Construction) states that every attempt should be made to use flow attenuation and SUDS/storage to reduce the surface water discharge from the site as much as possible.

If they are consulted as part of any planning application, Thames Water Planning team would ask to see why it is not practicable to attenuate the flows to Greenfield run-off rates i.e. 5l/s/hectare of the total site area or if the site is less than hectare in size then the flows should be reduced by 95% of existing flows. Should the policy above be followed, we would envisage no capacity concerns with regards to surface water for this site.

Please note that the Local Planning authority may comment on surface water discharge under the planning process.

Please Note

All connection requests are subject to a full Section 106 (Water Industry Act 1991) application before the Company can confirm approval to the connection itself. Please also note that capacity in the public sewerage system cannot be reserved.

Note on trunk sewers: Connecting directly to Trunk sewers can be complex and dangerous, which means we often refuse permission. In this case, you will need to find an alternative sewer or method of discharge. Please contact the Sewer Connections team through our Helpdesk on 0800 009 39 21 for further information.

If Thames Water permits a connection to the trunk sewer, we will insist on carrying out the connection ourselves under Section 107 of the Water Industry Act. We would advise for you to apply as soon as possible.

The discharge of non-domestic effluent is not permitted until a valid trade effluent consent has been issued by Thames Water. If anything other than domestic sewage is discharged into the public sewers without the above agreement an offence is committed and the applicant will be liable to the penalties contained in Section 109(1) (WIA 1991).

Applicants should contact Trade Effluent prior to seeking a connection approval, to discuss trade effluent consent and conditions of discharge. A Trade Effluent reference number should be obtained and included in the relevant box of the attached application form. The address for Trade Effluent is - Thames Water Utilities Limited, Waste Water Quality, Crossness Sewage Treatment Works, Belvedere Road, Abbeywood, London. SE2 9AQ. Alternatively you can telephone them on 020 8507 4321.

The views expressed by Thames Water in this letter are in response to this pre development enquiry at this time and do not represent our final views on any future planning applications made in relation to this site.

Yours sincerely,

Artur Jaroma Developer Services

Charlotte Catchpole

From:	Duwu#Murp d#? duwuindurp dC wkdp hvz dwhuifr ixnA
Sent:	3:#kqh指34;#3-53
Го:	Hohq#Z dww
Subject:	UH#JH#JIhi4348<<;555#JH#ajhwah#Jrdg#Suh#Shyharsp hav#Iqtxlu #SV9376565

Dear Elen

Apologies for a late response.

Unfortunately, Thames Water would not support revised sw discharge rate.

Planning Team are happy to accept the risk with the previously quoted total surface water discharge rate of 9l/s. You will have to liaise with your Local Planning Authority to discuss your drainage strategy and receive their acceptance.

Please note, Thame Water will be prepared to accept the agreed concept for surface water discharges, and if necessary undertake any preventing measures against hydraulic incapacity in the existing sewer network.

Kind Regards

Artur Jaroma Developer Services – Sewer Adoptions Engineer Office: 0203 577 8082 artur.jaroma@thameswater.co.uk

Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>

From: Elen Wyatt [mailto:Elen.Wyatt@createconsultingengineers.co.uk]
Sent: 05 June 2018 10:29
To: Artur Jaroma
Subject: RE: RE: IRef:1015998222 RE: Ingestre Road Pre Development Enquiry DS6043232

Hi Artur,

In regard to below emails re. Ingestre Road I was wondering when we can please expect to receive a reply?

Many thanks,

Elen Wyatt Flood Risk Consultant Create Consulting Engineers Ltd

From: DEVELOPER.SERVICES@THAMESWATER.CO.U [mailto:DEVELOPER.SERVICES@THAMESWATER.CO.UK] Sent: 31 May 2018 17:03 Elen

I'm yet to receive a feedback from our planning team. I have just informed them of the new proposed rate. They potentially may want to contact local authority, to understand whether they would support this based on the flooding history in the vicinity.

I'll forward you the response shorty after receiving the comments.

Many thanks

Artur Jaroma Developer Services – Sewer Adoptions Engineer Office: 0203 577 8082 artur.jaroma@thameswater.co.uk

Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>

Original Text

From:	Elen Wyatt < <u>Elen.Wyatt@createconsultingengineers.co.uk</u> >
T	'DEVELOPER.SERVICES@THAMESWATER.CO.
10:	< <u>DEVELOPER.SERVICES@THAMESWATER.CO.UK</u> >
CC:	
Sent:	29.05.18 11:56:06
Subject:	RE: IRef:1015998222 RE: Ingestre Road Pre Development Enquiry DS6043232

Dear Arthur,

Since my previous email dated 23rd May we have received updated plans for the site at Ingestre Road and have thus had to update our drainage strategy.

A blue roof is still included in the scheme, releasing at a rate of 2.5 l/s. Changes to the basement plan, and previously discussed constraints of the site means the minimum we are able to have the attenuation tank release at is now 11.0 l/s. Given this, the total release rate from the site into the Thames sewer network will be 13.5 l/s.

Although this does not quite provide the 50% betterment requested, it is a significant improvement on the existing scenario. Would you be willing to accept a release rate of 13.5 l/s given this significant improvement and consideration of the drainage hierarchy as requested?

Many thanks,

From: Elen Wyatt Sent: 23 May 2018 15:26 To: 'DEVELOPER.SERVICES@THAMESWATER.CO.U' <<u>DEVELOPER.SERVICES@THAMESWATER.CO.UK</u>> Subject: RE: IRef:1015998222 RE: Ingestre Road Pre Development Enquiry DS6043232

Dear Artur,

Thank you for raising your concerns. We have revaluated the drainage strategy following these comments.

A blue roof is now included in the scheme, which will release at a rate of 2.5 l/s. Due to the constraints of the site the minimum we are able to have the attenuation tank release at is 6.5 l/s. Given this, the total release rate from the site into the Thames sewer network will be 9.0 l/s.

This provides a 58% betterment on the existing runoff rate of 21.19 l/s. Given this significant improvement, and over a 50% betterment on the existing, would you be willing to accept a release rate of 9.0 l/s?

These calculations are all based on the latest plans. Should these change, and thus the surface water drainage strategy change, we will revaluate and be in touch with our revised proposal.

Many thanks,

Elen Wyatt Flood Risk Consultant Create Consulting Engineers Ltd

From: DEVELOPER.SERVICES@THAMESWATER.CO.U [mailto:DEVELOPER.SERVICES@THAMESWATER.CO.UK] Sent: 16 May 2018 11:59 To: Elen Wyatt <<u>Elen.Wyatt@createconsultingengineers.co.uk</u>> Subject: IRef:1015998222 RE: Ingestre Road Pre Development Enquiry DS6043232

Elen

Thank you for providing additional information.

Can you explore other sustainable techniques e.g. blue/green roof, rainwater harvesting please?

Due to the existence of the combined sewer only and history of hydraulic flooding in this area, I would like the developer to exhaust all options of the drainage hierarchy.

Kind Regards

Artur Jaroma

Developer Services - Sewer Adoptions Engineer

Office: 0203 577 8082

artur.jaroma@thameswater.co.uk

Clearwater Court, Vastern Road, Reading, RG1 8DB

Find us online at developers.thameswater.co.uk

Original Text

 From:
 Elen Wyatt < Elen.Wyatt@createconsultingengineers.co.uk</td>

 To:
 'DEVELOPER.SERVICES@THAMESWATER.CO.

 OEVELOPER.SERVICES@THAMESWATER.CO.UK
 CC:

 Sent:
 14.05.18 16:02:48

 Subject:
 Ingestre Road Pre Development Enquiry

Hi Artur,

With regards to the predevelopment enquiry for Ingestre Road (attached) you have stated that the "Thames Water Planning team would ask to see why it is not practicable to attenuate the flows to Greenfield run-off rates".

Due to the nature of the local area the council have requested that trees are placed along the site. As a result we are very restricted in terms of places we can provide attenuation on the site (see image below). Unfortunately due to the location of existing services along the pavement the only feasible locations for attenuation (without providing a pumped solution below the basement) are shown in the figure below.

Given the constraints on the site would you accept a release rate of 21 l/s?

Many thanks,

Elen Wyatt Flood Risk Consultant

Create Consulting Engineers Ltd

109-112 Temple Chambers | 3-7 Temple Avenue | London | EC4Y 0HP T 020 7822 2300

Create Consulting Engineers Ltd is a registered company in England and Wales No. 6830694 Registered Office: 25 Church Close, South Walsham, Norwich, NR13 6DW This email and any files transmitted with it are intended solely for the use of the individual to whom they are addressed. If you have received this email in error then please notify the sender. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Create Consulting Engineers Ltd.

Although the company has taken all reasonable precautions to ensure no viruses are present in this email, Create Consulting Engineers Ltd cannot accept responsibility for any loss of damage arising from the use of this email or attachments.

Create Consulting Engineers is a registered company in England and Wales Number 6830694 Registered Office: 25 Church Close, South Walsham, Norwich, NR13 6DW

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit <u>http://www.symanteccloud.com</u>

This email and any files transmitted with it are intended solely for the use of the individual to whom they are addressed. If you have received this email in error then please notify the sender. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Create Consulting Engineers Ltd.

Although the company has taken all reasonable precautions to ensure no viruses are present in this email, Create Consulting Engineers Ltd cannot accept responsibility for any loss of damage arising from the use of this email or attachments.

Create Consulting Engineers is a registered company in England and Wales Number 6830694 Registered Office: 25 Church Close, South Walsham, Norwich, NR13 6DW

This email and any files transmitted with it are intended solely for the use of the individual to whom they are addressed. If you have received this email in error then please notify the sender. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Create Consulting Engineers Ltd.

Although the company has taken all reasonable precautions to ensure no viruses are present in this email, Create Consulting Engineers Ltd cannot accept responsibility for any loss of damage arising from the use of this email or attachments.

Create Consulting Engineers is a registered company in England and Wales Number 6830694 Registered Office: 25 Church Close, South Walsham, Norwich, NR13 6DW

This email has been scanned by the Symantec Email Security.cloud service.

This email and any files transmitted with it are intended solely for the use of the individual to whom they are addressed. If you have received this email in error then please notify the sender. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Create Consulting Engineers Ltd.

Although the company has taken all reasonable precautions to ensure no viruses are present in this email, Create Consulting Engineers Ltd cannot accept responsibility for any loss of damage arising from the use of this email or attachments.

Create Consulting Engineers is a registered company in England and Wales Number 6830694 Registered Office: 25 Church Close, South Walsham, Norwich, NR13 6DW

This email and any files transmitted with it are intended solely for the use of the individual to whom they are addressed. If you have received this email in error then please notify the sender. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Create Consulting Engineers Ltd.

Although the company has taken all reasonable precautions to ensure no viruses are present in this email, Create Consulting Engineers Ltd cannot accept responsibility for any loss of damage arising from the use of this email or attachments.

Create Consulting Engineers is a registered company in England and Wales Number 6830694 Registered Office: 25 Church Close, South Walsham, Norwich, NR13 6DW

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

Visit us online www.thameswater.co.uk , follow us on twitter www.twitter.com/thameswater or find us on www.facebook.com/thameswater. We're happy to help you 24/7.

Thames Water Limited (company number 2366623) and Thames Water Utilities Limited (company number 2366661) are companies registered in England and Wales, both are registered at Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB. This email is confidential and is intended only for the use of the person it was sent to. Any views or opinions in this email are those of the author and don't necessarily represent those of Thames Water Limited or its subsidiaries. If you aren't the intended recipient of this email, please don't copy, use, forward or disclose its contents to any other person – please destroy and delete the message and any attachments from your system.

This email and any files transmitted with it are intended solely for the use of the individual to whom they are addressed. If you have received this email in error then please notify the sender. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of Create Consulting Engineers Ltd.

Although the company has taken all reasonable precautions to ensure no viruses are present in this email, Create Consulting Engineers Ltd cannot accept responsibility for any loss of damage arising from the use of this email or attachments.

Create Consulting Engineers is a registered company in England and Wales Number 6830694 Registered Office: 25 Church Close, South Walsham, Norwich, NR13 6DW

APPENDIX E

APPENDIX E: INGESTRE ROAD SUSTAINABLE DRAINAGE INFRASTRUCTURE LOCATION PLAN

APPENDIX F

Location : Ingestre Road

M5-60 : 21 mm r : 0.425 Wallingford Method - maps

\\cre001-net01\company data\Reference\Technical Library\wallingford

For different durations,		From Table 1	From Table 1				
Duration, D	Z1						
15 min	0.65	M5-15:	Z1 x M5-60	13.65 mm	Min		
30 min	0.82	M5-30:	Z1 x M5-60	17.22 mm	r		
60 min	1	M5-60:	Z1 x M5-60	21.00 mm			
6hr	1.51	M5-360:	Z1 x M5-60	31.71 mm	0.12		

For different return intervals,

From Table 2*

		Z2	
Duration, D	M1	M30	M100
15 min	0.62	1.52	1.96
30 min	0.62	1.53	2.00
60 min	0.64	1.54	2.03
6 hr	0.68	1.51	1.97

Average point intensity, API = I/(D/60)

Γ		D	Calculation	I	API
		min		mm	mm/hr
	M 1-15	15	M5-15*Z2(M1)	8.46	33.85
	M 1-30	30	M5-30*Z2(M1)	10.68	21.35
	M 1-60	30	M5-360*Z2(M1)	13.44	26.88
	M1-360	360	M5-360*Z2(M1)	21.56	3.59
	M 30-15	15	M5-15*Z2(M30)	20.75	82.99
	M 30-30	30	M5-30*Z2(M30)	26.35	52.69
	M 30-60	60	M5-60*Z2(M30)	32.34	32.34
	M30-360	360	M5-360*Z2(M30)	47.88	7.98
	M 100-15	15	M5-15*Z2(M100)	26.75	107.02
	M 100-30	30	M5-30*Z2(M100)	34.44	68.88
	M100-60	60	M5-60*Z2(M100)	42.63	42.63
	M100-360	360	M5-360*Z2(M100)	62.47	10.41

Peak Runoff

Q=2.78CiA Rational Method, SUDS Manual Section 4.3.3

where:

(1) C = Cv Cr

therefore ,

Cv = 1

Cr = 1.3

C = 1.3

(2) i = API, defined above(3) A = areas measured for subcatchments

Q=2.78CiA

**

Contributing Impermeable Area На Site Per hectare i 0.213 mm/hr 1 M 1-15 33.85 122.34 26.06 M 1-30 21.35 16.44 77.17 M 1-60 26.88 20.69 77.17 M1-360 3.59 2.77 12.99 M 30-15 82.99 63.89 299.93 M 30-30 52.69 40.56 190.43

		Rainfall Duration D							
Minutes					Hours				
r	5	10	15	30	1	2			
0.12	0.22	0.24	0.45	0.67	1.00	1 /0			
0.12	0.22	0.34	0.45	0.07	1.00	1.40			
0.15	0.23	0.58	0.40	0.09	1.00	1.42			
0.18	0.27	0.41	0.51	0.71	1.00	1.36			
0.21	0.29	0.43	0.54	0.73	1.00	1.33			
0.24	0.31	0.46	0.56	0.75	1.00	1.30			
0.27	0.33	0.48	0.58	0.76	1.00	1.27			
0.30	0.34	0.49	0.59	0.77	1.00	1.25			
0.33	0.35	0.50	0.61	0.78	1.00	1.23			
0.36	0.36	0.51	0.62	0.79	1.00	1.22			
0.39	0.37	0.52	0.63	0.80	1.00	1.21			
0.42	0.38	0.53	0.64	0.81	1.00	1.20			
0.45	0.39	0.54	0.65	0.82	1.00	1.19			

Table 2 - Engla	nd and Wales									
		Growth Factor Z2								
M5 rainfall	M1	M2	M3	M4	M5	M10	M20	M50	M100	M30 interpolated
5.00	0.62	0.79	0.89	0.97	1.02	1.19	1.36	1.56	1.79	1.25
10.00	0.61	0.79	0.90	0.97	1.03	1.22	1.41	1.65	1.91	1.49
15.00	0.62	0.80	0.90	0.97	1.03	1.24	1.44	1.70	1.99	1.53
20.00	0.64	0.81	0.90	0.97	1.03	1.24	1.45	1.73	2.03	1.54
25.00	0.66	0.82	0.91	0.97	1.03	1.24	1.44	1.72	2.01	1.53
30.00	0.68	0.83	0.91	0.97	1.03	1.22	1.42	1.70	1.97	1.51
40.00	0.70	0.84	0.92	0.97	1.02	1.19	1.38	1.64	1.89	1.47
50.00	0.72	0.85	0.93	0.98	1.02	1.17	1.34	1.58	1.81	1.42
75.00	0.76	0.87	0.93	0.98	1.02	1.14	1.28	1.47	1.64	1.34
100.00	0.78	0.88	0.94	0.98	1.02	1.13	1.25	1.40	1.54	1.30
150.00	0.78	0.88	0.94	0.98	1.01	1.12	1.21	1.33	1.45	1.25
200.00	0.78	0.88	0.94	0.98	1.01	1.11	1.19	1.30	1.40	1.23
	Table 2 - Engla M5 rainfall 5.00 10.00 15.00 20.00 25.00 30.00 40.00 50.00 75.00 100.00 150.00 200.00	Table 2 - England and WalesM5 rainfallM15.000.6210.000.6115.000.6220.000.6425.000.6630.000.6840.000.7050.000.7275.000.76100.000.78150.000.78200.000.78	Table 2 - England and WalesGrowth Factor Z2M5 rainfallM1M25.000.620.7910.000.610.7915.000.620.8020.000.640.8125.000.660.8230.000.680.8340.000.700.8450.000.720.8575.000.760.87100.000.780.88150.000.780.88200.000.780.88	Growth Factor Z2 M5 rainfall M1 M2 M3 5.00 0.62 0.79 0.89 10.00 0.61 0.79 0.90 15.00 0.62 0.80 0.90 20.00 0.64 0.81 0.90 25.00 0.66 0.82 0.91 30.00 0.68 0.83 0.91 40.00 0.70 0.84 0.92 50.00 0.72 0.85 0.93 75.00 0.76 0.87 0.93 100.00 0.78 0.88 0.94 150.00 0.78 0.88 0.94 200.00 0.78 0.88 0.94	Growth Factor Z2 M5 rainfall M1 M2 M3 M4 5.00 0.62 0.79 0.89 0.97 10.00 0.61 0.79 0.90 0.97 15.00 0.62 0.80 0.90 0.97 20.00 0.64 0.81 0.90 0.97 25.00 0.666 0.82 0.91 0.97 30.00 0.68 0.83 0.91 0.97 40.00 0.70 0.84 0.92 0.97 50.00 0.72 0.85 0.93 0.98 75.00 0.76 0.87 0.93 0.98 100.00 0.78 0.88 0.94 0.98 200.00 0.78 0.88 0.94 0.98	Table 2 - England and WalesGrowth Factor Z2M5 rainfallM1M2M3M4M55.000.620.790.890.971.0210.000.610.790.900.971.0315.000.620.800.900.971.0320.000.640.810.900.971.0325.000.660.820.910.971.0330.000.680.830.910.971.0340.000.700.840.920.971.0250.000.720.850.930.981.0275.000.760.870.930.981.02100.000.780.880.940.981.01200.000.780.880.940.981.01	Growth Factor Z2M5 rainfallM1M2M3M4M5M105.000.620.790.890.971.021.1910.000.610.790.900.971.031.2215.000.620.800.900.971.031.2420.000.640.810.900.971.031.2425.000.660.820.910.971.031.2430.000.680.830.910.971.031.2430.000.680.830.910.971.031.2430.000.680.830.910.971.031.2430.000.780.840.920.971.021.1950.000.720.850.930.981.021.14100.000.780.880.940.981.011.12200.000.780.880.940.981.011.11	Table 2 - England and WalesGrowth Factor Z2M5 rainfallM1M2M3M4M5M10M205.000.620.790.890.971.021.191.3610.000.610.790.900.971.031.221.4115.000.620.800.900.971.031.241.4420.000.640.810.900.971.031.241.4525.000.660.820.910.971.031.241.4430.000.680.830.910.971.031.221.4240.000.700.840.920.971.031.221.4240.000.700.840.920.971.031.221.4240.000.760.870.930.981.021.171.3475.000.760.870.930.981.021.141.28100.000.780.880.940.981.011.121.21200.000.780.880.940.981.011.111.19	Growth Factor Z2M5 rainfallM1M2M3M4M5M10M20M505.000.620.790.890.971.021.191.361.5610.000.610.790.900.971.031.221.411.6515.000.620.800.900.971.031.241.441.7020.000.640.810.900.971.031.241.441.7230.000.660.820.910.971.031.241.441.7230.000.680.830.910.971.031.221.421.7040.000.700.840.920.971.021.191.381.6450.000.720.850.930.981.021.171.341.5875.000.760.870.930.981.021.141.281.47100.000.780.880.940.981.011.121.211.33200.000.780.880.940.981.011.111.191.30	Table 2 - England and Wales Growth Factor Z2M5 rainfallM1M2M3M4M5M10M20M50M1005.000.620.790.890.971.021.191.361.561.7910.000.610.790.900.971.031.221.411.651.9115.000.620.800.900.971.031.241.441.701.9920.000.640.810.900.971.031.241.441.722.0130.000.660.820.910.971.031.241.441.722.0130.000.680.830.910.971.031.221.421.701.9740.000.700.840.920.971.021.191.381.641.8950.000.720.850.930.981.021.171.341.581.8175.000.760.870.930.981.021.141.281.471.64100.000.780.880.940.981.011.121.211.331.45200.000.780.880.940.981.011.111.191.301.40

* The rainfall depths from cells E8-E11 are compared with the depths given in cells J29-J40 and Z2 interpolated accordingly for each return period

3.614

constant value for design purposes

2.78*C=

			Contributing Impermeable Area	
			На	
		i	Site	Per hectare
		mm/hr	0.213	1
	M 30-60	32.34	24.89	190.43
	M30-360	7.98	6.14	28.84
	M 100-15	107.02	82.38	386.76
	M 100-30	68.88	53.02	248.93
	M 100-60	42.63	32.82	248.93
	M100-360	10.41	8.01	37.63

4	6	10	24
2.17	2.75	3.70	6.00
2.02	2.46	3.32	4.90
1.86	2.25	2.86	4.30
1.77	2.12	2.62	3.60
1.71	2.00	2.40	3.35
1.64	1.88	2.24	3.10
1.57	1.78	2.12	2.84
1.53	1.73	2.04	2.60
1.48	1.67	1.90	2.42
1.46	1.62	1.82	2.28
1.42	1.57	1.74	2.16
1.38	1.51	1.68	2.03

** Cv varies between 0.6 (rapidly draining soils) and 0.9 (heavy clay) with an average of 0.75 taken if ground conditions not known.

APPENDIX G

SURFACE WATER DRAINAGE FEATURES MAINTENANCE SCHEDULE

DRAINAGE FEATURE	MAINTENANCE	MAINTENANCE PERIOD
Manholes	Check free from silt and debris and water discharging freely through.	Every 6 months
	Jet/clear out as necessary.	
Drainage Pipework	CCTV inspection/condition survey	Every 5 years
	Sewer jetting	Every 2 years
Geo-cellular Storage	Inspection of silt traps, manholes, pipework, pre-treatment devices, and inlets	Monthly
	Removal of unwanted sediment /debris (if required)	As required. Inspect monthly
Blue Roof	Check free from silt and debris and water discharging freely through.	Every 6 months
	Remove any debris from roof ensuring it is not simply flushed down rainwater pipes.	As required
	Inspect the waterproofing system visible at all upstands, to ensure it is firmly adhered to the detail this it is waterproofing.	Every 6 months
	Cut back tree limbs that overhand the roof to give a 1 meter clearance outside the roof edge in order to significantly reduce the blockage of fallen leaves.	Every 6 months
	Ensure that all rainwater pipes are free from blockages and that water flows freely through them.	Every 6 months