

EMAIL TRANSMISSION

Email.:	Graham.Jupp@Kentex-Group.com	Page:	1	of	4
Company:	KENTEX	Date:	15/0	08/202	18
Attention of:	GRAHAM JUPP	From:	MA	RK STA	AGG
Project: \	WE WORK SHAFTESBURY AVENUE	Our Ref	: 1853	866 Kit	chen / Servery Extract Technical
	Your Re	f.:			

Dear Graham,

Further to our various emails and conversations I am now able to confirm the details of the proposed atmosphere side attenuators and fan casing enclosures for the kitchen and survey extract fans.

Using the Arup correspondence dated 13th August 2018 my understanding is that it is necessary to incorporate extra attenuation in addition to the attenuators already selected as follows-

i)	Servery Extract fan outlet Actual plant sound power level (page 2) Required plant sound power level (page 4)	101dB 85dB
	Additional attenuation required: 101dB-85dB=	16dB
	Previously selected attenuator loss– 20dB	
	Total attenuation of new attenuator 20dB+16dB=	36dB
ii)	Servery Extract fan casing Actual plant sound power level (page 2) Required plant sound power level	85dB 64dB
	Additional attenuation required: 85dB-64dB	21dB

Our Ref: 185366 Kitchen and Servery Extract technical

15th August 2018

iii)	Kitchen Extract fan outlet Actual plant sound power level (page 2) Required plant sound power level (page 4)	102dB 85dB
	Additional attenuation required: 102dB-85dB=	17dB
	Previously selected attenuator loss– 18dB	
	Total attenuation of new attenuator 18dB+17dB=	35dB
iv)	Kitchen Extract fan casing Actual plant sound power level (page 2) Required plant sound power level	89dB 67dB
	Additional attenuation required: 89dB-67dB	22dB

Casing Radiated Noise – Both Fans

The only means of achieving the casing radiated noise reductions would be to form a full acoustic enclosure around the fans using solid acoustic panels, which we propose to be 100mm thick.

Panels would comprise of a solid galvanised steel sheet outer face with a perforated galvanised steel inner retaining a heavy density mineral fibre infill.

The relevant acoustic performance is as follows -

Frequency	Hz	63	125	250	500	1k	2k	4k	8k
Sound reduction index	dB	24	19	25	38	47	52	58	57
Absorption	α	0.1	0.7	1.0	1.0	1.0	1.0	1.0	1.0

Based on the breakout figures provided and allowing for the additional radiating surface this should comfortably meet with the requirement.

As it is a requirement to provide ambient airflow to and from the fan motor it will be necessary to incorporate air inlet and outlet attenuators into the design.

Our Ref: 185366 Kitchen and Servery Extract technical

15th August 2018

Our selection would be a 20% free area attenuator sized for the specific airflow and with a length of 1500mm providing the following insertion losses –

Frequency	Hz	63	125	250	500	1k	2k	4k	8k
Insertion loss	dB	-9	-17	-30	-38	-45	-41	-32	-24

Based on the breakout figures provided these should comfortably achieve the requirement.

Exhaust Attenuators

To achieve the required attenuator losses will mean replacing the existing selections with much higher performance units, resulting in an increase in cross section and length.

Due to the significant adverse effect of Melinex lining on the acoustic performance it would be preferable to omit this from the specification.

The attenuator performance figures shown below do not include Melinex.

Our proposed selections are as follows-

Servery Extract Exhaust - 3.55m³/s

1250mm wide x 1250mm high x 2400mm long

Exit airflow velocity – 12m/s

Resistance approximately 65Pa

Frequency	Hz	63	125	250	500	1k	2k	4k	8k
Open outlet Lw- 101dB(A)	dB	99	98	103	99	95	91	86	83
Attenuator loss	dB	-15	-28	-46	-50	-50	-50	-45	-35

Overall loss - 41dB

Our Ref: 185366 Kitchen and Servery Extract technical

15th August 2018

Kitchen Extract Exhaust - 7.62m³/s

1750mm wide x 1750mm high x 2400mm long

Exit airflow velocity – 12m/s

Resistance approximately 65Pa

Frequency	Hz	63	125	250	500	1k	2k	4k	8k
Open outlet Lw- 102dB(A)	dB	104	106	105	100	95	90	84	77
Attenuator loss	dB	-15	-28	-46	-50	-50	-50	-45	-35

Overall loss - 36dB

Overall performance is demonstrated against the Arup figures in their latest email.

It will be necessary to allow for suitable duct transformation pieces and adequate space either side of the attenuators to maintain appropriate airflow conditions.

I trust this is in line with your requirements.

Please let me know if you have any queries or require any more information.

Best regards,

Mark. Mark Stagg ACOUSTIC ENGINEERING SERVICES (UK) LIMITED mark.stagg@aesuk.co.uk