

Structural Calculations (Rev B)

20/07/18

(Project Ref: CCEL/386)

Internal Alterations of 5 Storey Victorian Town House

at

87 Gower Street London WC1E 6AB

Capital	Project 87 Gower Street, London	WC1E 6AB		Job Ref. CCEL/386	
Consulting Engineers Limited Nicon House, 45 Silver Street Enfield EN1 3EF Tel: 020 3653 0950	Part of Structure Internal Alterations			Sheet No. 1/B	
	Drawing Ref.	Made by Ian R	Date 20/07/18	Checked by	Date

-				
Ref	Date	Details	Prepared by	Checked by
	22/02/18	Calculations for BC submission and	lan Robinson	Steve Davis
			Ja Poli	Stip
А	26/02/18 Revised calculations for BC submission		lan Robinson	Steve Davis
			Ja Poli	Stip
В	20/07/18	Revised calculations for BC submission	lan Robinson	Steve Davis
		revised)	Ja Poli	Ottips

Document Reference: SF304 (v1.0) 31/01/16

	Project				Job Ref.	
	87 Gower Street, Lor	ndon V	VC1E 6AB		CCE	L/386
Consulting Engineers Limited	Part of Structure				Sheet No.	
Nicon House 45 Silver Street	Internal Alterations				8/	/B
Enfield EN1 3EF Tel: 020 3653 0950	Drawing Ref.		Made by Ian R	Date 20/07/18	Checked by	Date
Loading						
Floors						
Existing Timber floors T & G Boards Timber Joists Lathe & Plaster Ceili Services	ng Dead Load nposed Load (Office)	$= 0.1 \\= 0.2 \\= 0.2 \\= 0.0 \\= 0.6 \\= 2.5$	2 kN/m ² 0 kN/m ² 5 kN/m ² <u>3 kN/m²</u> 0 kN/m ² 0 kN/m ²			
<u>Roofs</u>						
Flat Roof Felt covering Joists and Insulation Plasterboard Ceiling Services	Dead Load Imposed Load	= 0.1 = 0.2 = 0.1 = 0.0 = 0.4 = 0.7	0 kN/m ² 0 kN/m ² 0 kN/m ² 5 kN/m ² 5 kN/m ² 5 kN/m ²			
Timber Mansard Roof						
Slates, Timber Batter	ns and Felt	= 0.5	0 kN/m^2			
Railers	Dead Load Imposed Load	= <u>0.1</u> = 0.6 = 0.6	5 kN/m ² 0 kN/m ²			
Roof Space Joists and Insulation Lathe & Plaster Ceili Services	ng Dead Load Imposed Load	= 0.1 = 0.2 = <u>0.0</u> = 0.4 = 0.2	5 kN/m ² 5 kN/m ² <u>5 kN/m²</u> 5 kN/m ² 5 kN/m ²			
Water Tank (within roof s	pace)	= 0.5	m x 1.0m x 10 = 5	i kN/m		
<u>Walls</u>						
215mm Solid Brick Wall 215mm Brickwork Plaster & skim (x2)	Dead Load	= 4.3 = <u>0.5</u> = 4.8	0 kN/m² <u>0 kN/m²</u> 0 kN/m²			
103mm Timber Stud wit 103mm Brickwork Lathe and plaster (bo	h Brick Infill oth sides) Dead Load	= 2.0 = <u>0.5</u> = 2.5	0 kN/m² <u>0 kN/m²</u> 0 kN/m²			
Timber Stud Partition Lathe and plaster		= 0.7	5 kN/m²			

	Project				Job Ref.	
	87 Gower Street, Lon	idon V	VC1E 6AB		CCE	L/386
Consulting Engineers Limited	Part of Structure				Sheet No.	
Nicon House 45 Silver Street	Internal Alterations			-	9/	/B
Enfield EN1 3EF	Drawing Ref.		Made by	Date	Checked by	Date
Tel: 020 3653 0950			lan R	20/07/18		
<u>Member Loads</u>						
Existing Ground Floor E Dead Load	Beam (2No. beams, to	tal spa	an = 10m)			
Ground Floor = 0 Beam S/W	.60 x 6.5/2	= 1.9 = 0.5	5 kN/m 0 kN/m			
Imposed Load						
Ground Floor = 2	.50 x 6.5/2	= 8.1	3 kN/m			
Beam B/1 (span = 2.0m)						
Dead Load						
Roof Space = 0	.45 x 5.0/2	= 1.13	3 kN/m			
Water tank	00 40/0	= 5.0	0 kN/m			
I hird Floor = 0 Second Floor = 0	.60 x 10/2	= 3.0	0 kN/m 0 kN/m			
First Floor $= 0$.60 x 10/2	= 3.0	0 kN/m			
215mm Brick = 4	.80 x 3.0	= 14.	4 kN/m			
103mm Stud/Brick = 2	.5 x 2.5 x 2.0	= 12.	5 kN/m			
Beam S/W	45 x 10/2	= 0.7	0 kN/m 25 kN (@ 0.2m)			
Imposed Load	.45 X 10/2	= 12.	25 KN (@ 0.511)			
Poof Space - 0	25 x 5 0/2	- 0.6	3 kN/m			
Third Floor $= 2$.50 x 10/2	= 0.0 = 12.	5 kN/m			
Second Floor = 2	.50 x 10/2	= 12.	5 kN/m			
First Floor = 2	.50 x 10/2	= 12.	5 kN/m			
Grnd Flr Beam = 8	.13 x 10/2	= 40.	7 kN (@ 0.3m)			
Beam G/1 (span = 3.2m)						
Dead Load						
Pitch Roof $= 0$.65 x 1.0/2 x 6.0/2	= 0.9	8 kN (@ 1.0m)			
Flat Roof = 0	.45 x 2.5/2 x 6.0/2	= 1.6	9 kN (@ 1.0m)			
215 mm brick = 4	.80 x 0.75	= 3.6	U KN/M O KN			
Imposed Load		- 0.4				
Pitch Poof – 0	60 x 1 0/2 x 6 0/2	- 0 0	0 kN (@ 1 0m)			
Flat Roof = 0	.75 x 2.5/2 x 6.0/2	= 0.9	1 kN (@ 1.0m)			
Beam 3/1 (span = 3.5m) <u>Dead Load</u>						
Roof Space = 0	.45 x 5.0/2	= 1.1	3 kN/m			
Water tank		= 5.0	0 kN/m			
103mm Stud/Brick = 2	.5 x 0.50	= 1.2	5 kN/m 0 kN/m			
		= 0.3				
Imposed Load		0.0	2 1/1/20			
Roof Space = 0	.25 X 5.U/2	= 0.6	3 KIN/M			

Capital	Project 87 Gower Street, London V	VC1E 6AB		Job Ref. CCEL/386	
Consulting Engineers Limited	Part of Structure Internal Alterations			Sheet No. 10/B	
Enfield EN1 3EF Tel: 020 3653 0950	Drawing Ref.	Made by Ian R	Date 20/07/18	Checked by	Date

BEAM B/1

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Support conditions

Support A

Support B

Applied loading

Beam loads

Vertically restrained Rotationally free Vertically restrained Rotationally free

Roof space - Dead full UDL 1.13 kN/m Roof space - Imposed full UDL 0.63 kN/m Water tank - Dead full UDL 5 kN/m Third Floor - Dead full UDL 3 kN/m Second Floor - Dead full UDL 12.5 kN/m Second Floor - Imposed full UDL 3 kN/m First Floor - Dead full UDL 3 kN/m First Floor - Dead full UDL 3 kN/m 215mm Bwk - Dead full UDL 14.4 kN/m 103mm Bwk - Dead full UDL 12.5 kN/m

	87 Gower Street, Lo	ndon W	C1E 6AB		Job Ref. CCE	L/386
	Part of Structure				Sheet No.	
icon House. 45 Silver Street	Internal Alterations			T	11	I/B
Enfield EN1 3EF Tel: 020 3653 0950	Drawing Ref.		Vade by Ian R	Date 20/07/18	Checked by	Date
		Beam	S/W - Dead self	weight of bear	n × 1	
		Grnd	Flr Beam - Dead	point load 12.2	25 kN at 300 n	nm
		Grnd	Flr Beam - Impos	ed point load 4	0.7 kN at 300	mm
Load combinations						
Load combination 1		Suppo	ort A	Dead	× 1.40	
				Impo	sed imes 1.60	
		Span	1	Dead	× 1.40	
				Impo	sed × 1.60	
		Suppo	ort B	Dead	× 1.40	
				Impo	sed × 1.60	
Analysis results						
Maximum moment		M _{max} =	= 73.2 kNm	Mmin :	= 0 kNm	
Maximum shear		V _{max} =	190.4 kN	V _{min} =	= -132.8 kN	
Deflection		δ _{max} =	2.2 mm	δ _{min} =	0 mm	
Maximum reaction at sur	port A	R _A max	∝= 190.4 kN	R _A mi	n = 190.4 kN	
Unfactored dead load rea	action at support A	R _{A_Dea}	_{id} = 52.9 kN			
Unfactored imposed load	I reaction at support A	A R _{A_Imp}	_{osed} = 72.7 kN			
Maximum reaction at sup	port B	R _{B_max}	a = 132.8 kN	R _{B_min}	n = 132.8 kN	
Unfactored dead load rea	action at support B	R _{B_Dea}	_{id} = 44.3 kN			
Unfactored imposed load	I reaction at support E	3 R _{B_Imp}	_{osed} = 44.2 kN			
Section details						
Section type	UC 203x203x46 (E	8S4-1)	Steel grade		S275	
	_ ↓					
	33.2 —		→ ←7.2			
	Ť					
	◀		203.6			
Classification of cross	sactions - Section 3	5				
Tensile strain coefficient		.5	Section class	sification	Compact	
	c = 1.00			Sinoation	Compact	
Shear capacity - Sectio	n 4.2.3		Desire shee	!		N 1
Design snear force	rv = 190.4 KN	DACC	Design shear		$P_V = 241.4 \text{ K}$	IN Choor force
•• · · · ·		FA33 -	Design snear fo	SISIGIICE EXC	eeus aesign :	Sriedr IOFCe
Moment capacity - Sec	tion 4.2.5			10 - 1 - 1		
Design bending moment	M = 73.2 kNm		Moment cap	acity high shea	ar Mc = 130 kN	Im

Capital	Project 87 Gower Street, Lond	Job Ref. CCEL/386			
Consulting Engineers Limited	Part of Structure Internal Alterations			Sheet No.	2/B
Nicon House, 45 Silver Street Enfield EN1 3EF Tel: 020 3653 0950	Drawing Ref.	Made by Ian R	Date 20/07/18	Checked by	Date
Buckling resistance m Buckling resistance mor	oment - Section 4.3.6. ment M_b = 127.9 kNm	4 M₀ / m∟⊤ = PASS - Moment cap	137.4 kNm bacity exceeds	design bendi	ng momen
Check vertical deflecti	on - Section 2.5.2			Ū	0
Limiting deflection	to dead and imposed io $\delta_{\text{lim}} = \textbf{5.556} \text{ mm}$	ads Maximum	deflection	δ = 2.207 m	m
	PA	ASS - Maximum defl	lection does no	ot exceed defi	ection lim
	21/01/16				Page 12 of

Capital	Project 87 Gower Street, Londo	on WC1E 6AB		Job Ref. CCE	L/386
Consulting Engineers Limited	Part of Structure Internal Alterations		Sheet No. 13	3/B	
Nicon House, 45 Silver Street Enfield EN1 3EF Tel: 020 3653 0950	Drawing Ref.	Made by Ian R	Date 20/07/18	Checked by	Date
BEAM B/1 BEARING					
MASONRY BEARING I	DESIGN TO BS5628-1:20	<u>005</u>		TEDDS calculatio	on version 1.0.05
Masonry details					
Masonry type	Clay or calcium silica	ate bricks			
Compressive strength	p _{unit} = 20.0 N/mm ²	Mortar desi	gnation	iii	
Masonry units	Category II	Constructio	n control	Normal	
Partial safety factor	$\gamma_m = 3.5$	Characteris	tic strength	f _k = 5.0 N/m	m²
Leaf thickness	t = 215 mm	Effective wa	all thickness	t _{ef} = 215 mm	I
Wall height	h = 2400 mm	Effective he	eight of wall	h _{ef} = 2400 m	im
Bearing details Beam spanning in plane	e of wall				
Width of bearing	B = 215 mm	Length of b	earing	l _b = 500 mm	
Loading details					
Concentrated dead load	G _k = 53 kN	Concentrat	ed imposed load	Q _k = 73 kN	
Design concentrated loa	ad F = 191.0 kN				
Distributed dead load	g _k = 0.0 kN/m	Distributed	imposed load	q _k = 0.0 kN/r	m
Design distributed load	f = 0.0 kN/m				
Masonry bearing type					
Bearing type	Type 1	Bearing saf	ety factor	γ _{bear} = 1.25	
Check design bearing	without a coroadar			,	
Design bearing stress	$f_{ca} = 1.777 \text{ N/mm}^2$	Allowable b PASS - Allowable bea	earing stress aring stress exce	f _{cp} = 1.786 N eds design be	l/mm² earing stress

	Project 87 Gower Street, Londo	Job Ref. CCEL/386 Sheet No. 14/B			
Consulting Engineers Limited	Part of Structure Internal Alterations				
Nicon House, 45 Silver Street Enfield EN1 3EF Tel: 020 3653 0950	Drawing Ref.	Made by Ian R	Date 20/07/18	Checked by	Date
Check design bearing	at $0.4 \times h$ below the bea	ring level	•	1	
Design bearing stress	f _{ca} = 0.608 N/mm ²	Allowable I	bearing stress	f _{cp} = 1.414 N	l/mm²
PAS	SS - Allowable bearing stre	ss at 0.4 × h below b	pearing level exce	eeds design be	earing str

Capital	Project 87 Gower Street, London	WC1E 6AB		Job Ref. CCEL/386	
Consulting Engineers Limited Nicon House, 45 Silver Street Enfield EN1 3EF Tel: 020 3653 0950	Part of Structure Internal Alterations			Sheet No. 15/B	
	Drawing Ref.	Made by lan R	Date 20/07/18	Checked by	Date
		·			

BEAM G/1

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.05

Capital	Project 87 Gower Street, Londo	n WC1E 6AB		Job Ref. CCEL/386
Consulting Engineers Limited	Part of Structure			Sheet No.
Nicon House, 45 Silver Street Enfield EN1 3EF Tel: 020 3653 0950	Drawing Ref.	Made by	Date 20/07/18	Checked by Date
Maximum shear	Vrr S	hax = 15.7 kN	V _{min} =	-12.1 kN
Maximum reaction at suppor	t A RA	_{max} = 1 mm	Omin = RA_mir	o mm = 15.7 kN
Unfactored dead load re Unfactored imposed load	action at support A R _A d reaction at support A R _A	= 8.3 kN Imposed = 2.6 kN		
Maximum reaction at suppor Unfactored dead load re Unfactored imposed load	t B R_B action at support B R_B d reaction at support B R_B	= 12.1 kN = 7.3 kN kN	R _{B_mir}	a = 12.1 kN
Section details				
Section type	UC 203x203x46 (BS	4-1) Steel grade		S275
Classification of cross	sections - Section 3.5			
Tensile strain coefficient	ε = 1.00	Section clas	ssification	Compact
Shear capacity - Section	on 4.2.3			
Design shear force	F _v = 15.7 kN PAS	Design shea SS - Design shear I	ar resistance resistance exce	$P_v =$ 241.4 kN eeds design shear force
Moment capacity - Sec	tion 4.2.5	-		-
Design bending moment	M = 12.9 kNm	Moment ca	pacity low shear	[.] M _c = 136.8 kNm
Buckling resistance me	oment - Section 4.3.6.4			
Buckling resistance moment	M₀ = 108.3 kNm PASS - Buckli	M₀ / m∟⊤ = 1 M₀ resistance mor	I 22.3 kNm ment exceeds o	lesign bending moment
Check vertical deflection -	Section 2.5.2	0		0 0
Consider deflection due to de	ead and imposed loads			
Limiting deflection	δlim = 8.889 mm ΡΔ. S	Maximum d Maximum defle	leflection ection does not	$\delta = 0.973 \text{ mm}$

Capital	Project	Project 97 Cower Street London WC1E 6AP				
	Part of Structure	WOTE OAD		Shoot No.	L/300	
Consulting Engineers Limited	Internal Alterations			18	3/B	
Nicon House, 45 Silver Street Enfield EN1 3EF Tel: 020 3653 0950	Drawing Ref.	Made by Ian R	Date 20/07/18	Checked by	Date	
	 		¢			
Timber section details Breadth of section Number of sections Timber strength class	b = 50 mm N = 2 C16	Depth of sec	tion	h = 225 mm	I	
Steel section details Breadth of steel plate Number of steel plates in bea Bolt diameter	$b_s = 10 \text{ mm}$ am $N_s = 1$ $\phi_b = 12 \text{ mm}$	Depth of stee Steel stress Maximum bo	el plate It spacing	h _s = 220 mn p _y = 165 N/r S _{max} = 500 r	n mm² mm	
Member details	1	Lood duration	~	Modium tor		
Length of bearing	L _b = 50 mm					
Lateral support - cl.2.10	0.8					
Permiss.depth-to-breadth rat	io 3.00	Actual depth-	to-breadth rat PASS - Late	io 2.05 eral support i	is adequate	
Check bearing stress Permissible bearing stress PASS - App	$\sigma_{c_{adm}}$ = 3.025 N/mm ² plied compressive stress	Applied bear is less than permi	ng stress ssible compre	σ _{c_a} = 2.891 essive stress	N/mm ² S at bearing	
Bending parallel to gra	in					
Permiss. timber bending stre N/mm ²	SS $\sigma_{m_{adm}} = 7.522 \text{ N/mm}^2$	Applied timbe	er bending stre	$\sigma_{m_a} =$	4.718	
Permiss. steel bending stress N/mm ²	PASS - Timber bendin s py = 165.000 N/mm ²	g stress is less tha Applied steel	an permissibl bending stres	e timber ben s σ _{m_a_s} = 144	ding stress 1.586	
	PASS - Steel bend	ing stress is less t	han permissil	ble steel ben	ding stress	
Shear parallel to grain						
Permissible shear stress	τ _{adm} = 0.921 N/mm ² PASS - Ap	Applied shea plied shear stress	r stress <i>is less than p</i>	τ _a = 0.303 Ν ermissible s	l/mm² hear stress	
Deflection Permissible deflection	δ _{adm} = 10.500 mm	Total deflecti SS - Total deflection	on on is less that	$\delta_a = 7.308$ n	nm edeflection	
Flitch plate bolting reg	uirements			, permeenere		
Bolts required at beam end - Provide a minimum of 4 No - Provide a minimum of 7 No	N _{be} = 3.163 b.12 mm diameter bolts at b.12 mm diameter bolts alo	Bolts require each support ng the length of the	d to beam leng beam	gth $N_{bl} = 6$	5.327	
Minimum bolt spacings Minimum end spacing Minimum bolt spacing	S _{end} = 48 mm S _{bolt} = 48 mm	Minimum edg	ge spacing	S _{edge} = 48 m	ım	
Minimum washer diameter	$\phi_w = 36 \text{ mm}$	Minimum was	sher thickness	t _w = 3.0 mm		