

Toureen Contractors Ltd 25 Cecil Road Harrow Middlesex HA3 5QY

Tel 0208 424 7999 **Fax** 0208 424 7998

info@toureengroup.co.uk www.toureengroup.co.uk

03 May 2017

To whom it may concern,

RE: 254 Kilburn Site Environmental Summary Report

Toureen Contractors Ltd. have been commissioned to undertake waste classification sampling at the development of 254 Kilburn High Road, London, NW6 2BS. Sampling was undertaken from stockpiled material and from trial hole excavations on site on 26 April 2017. The samples were taken by a suitably qualified Geo-Environmental Engineer and analysed at I2 Analytical Laboratories employing UKAS/MCERTS accredited analytical procedures.

Site Location

The site is located at 254 Kilburn High Street, London and is comprised of ex-warehousing units which have since been demolished.

Site History

A review of historical maps indicates that the site was originally (1866) occupied by gardens to the rear of a row of properties on Edgware Road, with a building noted as Stanmore terrace encroaching on the south-eastern edge of the site. A further building is present in the north-eastern part of the site in 1866. Further buildings are constructed on site by 1893. The structures on site are subsequently modified over the years, with the site appearing similar to the present day by 1995. The site is labelled as a Timber yard in 1935, a Motor Units Factory in 1953, and a Warehouse from 1976.

Historically, the surrounding area has been utilised for a variety of uses, with several industrial uses noted from 1871. Notable industrial uses within the surrounding area include railway lines, garage (60m SE and 220m NW), engineering works (150m N, 175m E), gas works (125m NW).

Information provided by the British Geological Survey indicates that the site is directly underlain by solid deposits of the London Clay Formation. No artificial or superficial deposits are reported within the site.

The deposits directly underlying the site are identified as Unproductive. There is no groundwater abstraction license within 500m. The nearest borehole is reported 1794m east of the site for spray irrigation sourced from Thames Groundwater. There are no surface water abstractions reported within 2km of the site.

The site is not reported to lie within a Zone 2 or 3 floodplain.

Demolition . Ground works . R.C Frame . Retail . Basements

Toureen Contractors Ltd Registered Office 25 Cecil Road . Harrow . Middlesex . HA3 5QY . Registration No. 02728742 . Registered in England and Wales

Toureen Contractors Ltd 25 Cecil Road Harrow Middlesex HA3 5QY

Tel 0208 424 7999 **Fax** 0208 424 7998

info@toureengroup.co.uk www.toureengroup.co.uk

Ground Conditions

The results of the ground investigation indicated a ground profile comprising a variable thickness of Made Ground (1.3m to 4.3m bgl depth), overlying an orange brown patched blue grey silty clay (considered to represent the London Clay), encountered to the base of the boreholes at up to 25m bgl.

No evidence of contamination was observed during the investigation.

Sampling and Analysis

Sampling was conducted on the 26th of April 2017 from 2 stockpiles of excavated material and from 6 no. trial holes excavated on site. The results of the analysis performed are appended to this document.

There was no visual or olfactory evidence of contamination and, subsequent to analysis, it was found that the excavated soils and made ground arisings from the development of the site are representative of;

17 05 04: Inert soil and stone

Please do not hesitate to contact me at the details below for anything further.

Yours sincerely,

Rick Willemse | Geo-Environmental Manager | Toureen Contractors Ltd.

E rick.willemse@toureen.co.uk | M 07501 555 457

Demolition . Ground works . R.C Frame . Retail . Basements Toureen Contractors Ltd Registered Office 25 Cecil Road . Harrow . Middlesex . HA3 5QY . Registration No. 02728742 . Registered in England and Wales

	Specia	alists	in the) inve	stigat	ion &	reclar	matio	5 n of brownfiel	ld sit	es	Exploratory Ho	ole No	BH1
Site A	ddress								Kilburn Hi	gh R	oad	Project No		P8591J338
Clien	t								Aitch Grou	ıр		Ground Level		
Client Site Personnel									SK BD			Commenced		15/10/2014
Type and diameter of equipment:												Completed		16/10/2014
Type an Water I	evels rec	ord	pe to ed du	uipn Iring	bori	ing, r	n				DANDO I	.75		
Date				9										
Hole De	pth													
Casing [Depth													
Water L	evel on s	strike	e .											
Water L	evel afte	er 20	mins											
1.	150m	ı diar	mete	r bor	rehol	e to	25m	bgl						
2.							-	0						
3.														
4														
	9	sam	ples	or Te	sts					S	rata			
Туре	Depth			R	lesul	ts							Strata Descriptio	on
	(m)	75	75	75	75	75	75	Ν	Depth (m)		Legend			
								<u> </u>	0.20		XHATA			
											V/////	IVIADE GROUND - Bri	UK .	
									0.70		<u> ////////////////////////////////////</u>	1		
												Firm to stiff brown g	rey CLAY	
U	1.5-1.95	35												
C	2 5 2 05			_	2	2	2	12						
5	2.5-2.95	2	3	3	3	3	3	12						
D	3.2													
U	3.5-3.95	40												
										-				
S	4.5-4.95	2	3	3	3	3	3	12						
D	5.2													
		EO												
	5.5-5.95	50												
c	7.7 45	2	2	л	л	л	F	17						
5	/-/.45	5		4	4	4		L_1		⊩				
D	8.0													
U	8.5-8 95	60												
Ī	2.5 0.55													
s	10-10 /5	Δ	5	6	6	7	7	26						
	10.10.43					´	Ľ			⊢	: · : · : · : · : · : · : · : · :			
	Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample													
					Jom	as As	sociat	es Ltd	- Lakeside Ho	ouse,	1 Furzeground Way,	Stockley Park, UB11	1BD	
						T: 018	95 77	2187	E: info@joma	Isass	ociates.com W: www	.jomasassociates.cor	n	

Bit Addition Project Ro Proje		Speed		C .						5 S	dei		Exploratory Ho	ole No	BH2						
Clinic Interval Production Consolid and and the set of coup of the coup	Site A	ddress		the		Jugat	511 64	. Joran	. atio	Kilburn Hid	oh P	oad	Project No		P85911338						
Site Personnel Site BD Conversed Completed 15/10/2014 Completed Type and diameter of equipment: DAND0 175 DAND0 175 Data	Client									Aitch Grou	ip	loau	Ground Level		103313330						
Unit of the constraint of the c	Site P	ersonne	I							SK BD			Commenced		15/10/2014						
Type and dameter of equipment: DANDO 175 Water levels corrected during bonn, in . Other And and the original set of the orig	Site Personnel												Completed		16/10/2014						
While Depth Strate recorded output during, if Image of the strike	Type an	d diame	ter o	of eq	uipm	nent:						DANDO 1	75								
Number best h construction with construction of the con	Date	eveis rec	corae	εα αι	iring	DOL	ng, n	n		1			[[
Calling Lepth User Level on strike User Level and recommendation User Level and recommendati	Hole De	pth																			
Water Level on strike User Level above the Montoring well installed to 20mbgl. Plan with bentonite surround to 1mbgl, slotted to 20m with gravel surround Strata Strata Description Concentre Strata Description S	Casing [Depth																			
Water Level after 20mins Level Level Strata Str	Water L	evel on s	strike	ē																	
Nonitoring well installed to 20mbgl. Plain with bentonite surround to Imbgl, slotted to 20m with gravel surround 2. Strata Strata Type Optimizer Surround to Imbgl, slotted to 20m with gravel surround 10 Type Optimizer Surround to Imbgl, slotted to 20m with gravel surround 10 Type Optimizer Surround 10 Strata Type Optimizer Surround 10 Strata Strata Strata Concreter Strata Description Concreter Concreter Concreter Concreter Strata Description Concreter Strata Description <th colspan<="" td=""><td>Water L</td><td>evel afte</td><td>er 20</td><td>mins</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>Water L</td> <td>evel afte</td> <td>er 20</td> <td>mins</td> <td></td>	Water L	evel afte	er 20	mins																
Image: constrained by a co	Remark	S	in a i	نالمير	noto	lladt	- 20	na h a	Dla	in with han	ton	to our ound to 1	mbal clottod to 2	Ore with grouple	u ma un d						
Sector Strate Strate <th <="" colspan="6" td=""><td>1. 2</td><td>womtor</td><td>ing v</td><td>wenn</td><td>nsta</td><td>neu t</td><td>.0 20</td><td>mbgi</td><td>I. PId</td><td>in with ben</td><td>ton</td><td>ite surround to 1</td><td>mbgi, slotted to 2</td><td>om with gravers</td><td>Surrouna</td></th>	<td>1. 2</td> <td>womtor</td> <td>ing v</td> <td>wenn</td> <td>nsta</td> <td>neu t</td> <td>.0 20</td> <td>mbgi</td> <td>I. PId</td> <td>in with ben</td> <td>ton</td> <td>ite surround to 1</td> <td>mbgi, slotted to 2</td> <td>om with gravers</td> <td>Surrouna</td>						1. 2	womtor	ing v	wenn	nsta	neu t	.0 20	mbgi	I. PId	in with ben	ton	ite surround to 1	mbgi, slotted to 2	om with gravers	Surrouna
Simples of the second	3.																				
Image: Second Se	4																				
Prop Description Strate Description Strate Description Image: Proposition of the strate description Final Property and the strate description Concerter Image: Proposition of the strate description Image: Property and the strate description Concerter Image: Proposition of the strate description Image: Property and the strate description Concerter Image: Property and the strate description Image: Property and the strate description Concerter Image: Property and the strate description Image: Property and the strate description Concerter Image: Property and the strate description Image: Property and the strate description Concerter Image: Property and the strate description Image: Property and the strate description Strate description Image: Property and the strate description Image: Property and the strate description Image: Property and the strate description Image: Property and the strate description Image: Property and the strate description Image: Property and the strate description Image: Property and the strate description Image: Property and the strate description Image: Property and the strate description Image: Property and the strate description Image: Property and the strate description		9	Samp	oles d	or Te	sts					S	trata									
Image: Description of the state of the	Turco	Denth			R	lesul	ts						:	Strata Descriptio	on						
Image: Second	Type	(m)	75	75	75	75	75	75	N	Depth (m)	H	Legend									
S 15.195 2 3 2 2 3 2 2 3 2 9 200 5 5 5 5 3 2 2 3 2 2 3 2 9 200 1 <th1< th=""> <th1<< td=""><td></td><td>()</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>111111</td><td>CONCRETE</td><td></td><td></td></th1<<></th1<>		()										111111	CONCRETE								
S 1.5.1.95 2 3 2 2 3 2 9							<u> </u>	<u> </u>		0.30		XIIIII	Canal Canal Children								
S 15.1.95 2 3 2 2 3 2 2 3 2 9 1 D 2.222 3 2 2 3 2 9 2.00 1	I											X/////X	sand, Gravel of brick	(MADE GROUND)							
S 15.105 2 3 2 2 3 2 9 200 Print outflow on grey CLAY U 25.235 30 1 </td <td></td> <td>V/////</td> <td>1</td> <td></td> <td></td>												V/////	1								
S 15.136 Z 3 Z Z 3 Z <td></td> <td>X/////X</td> <td>4</td> <td></td> <td></td>												X/////X	4								
D 2.22 I <thi< th=""></thi<>	S	1.5-1.95	2	3	2	2	3	2	9												
0 2-22 1 1 1 2.00 2.00 0 2.52.95 30 1 1 2.00 2.00 Firm to stiff brown grey CLAY 0 2.52.95 30 1 1 1 1 1 1 0 4.2 1 1 1 1 1 1 1 1 0 4.2 1 1 1 1 1 1 1 1 1 0 4.2 1 <td></td> <td>X/////</td> <td></td> <td></td> <td></td>												X/////									
U 2.52.95 30 L<	D	2-2.2								2.00		//////	Firm to stiff brown as								
25:295 30 2 2 3 3 4 </td <td></td> <td>Firm to still brown gi</td> <td>ey clay</td> <td></td>													Firm to still brown gi	ey clay							
S 3.5-33 2 2 2 3 3 3 1 D 4.2 4.5-45 35 -	U	2.5-2.95	30																		
S 35.305 2 2 2 3 3 3 1 Image: Simple state s																					
S 3.5.3.9 2 2 2 3 3 3 1 Image: Single state																					
S 3.5-395 2 2 2 3 3 11 D 4.2 4.2 5 6 7 14 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
0 4.2 4.4 35 1 <td>S</td> <td>3.5-3.95</td> <td>2</td> <td>2</td> <td>2</td> <td>3</td> <td>3</td> <td>3</td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	S	3.5-3.95	2	2	2	3	3	3	11												
0 4.2																					
U 4.5-4.95 35 I	D	4.2																			
S 5.5-5.95 3 3 3 3 4 4 14	U	4.5-4.95	35																		
S 5.5.5.95 3 3 3 3 4 4 14 Image: Constraint of the second se																					
S 5.5-5.95 3 3 3 3 4 4 14 D 6.5 4.5																					
S 5.5-5.95 3 3 3 3 4 4 14 D 6.5 - <																					
D 6.5 U 7.7.45 45	S	5.5-5.95	3	3	3	3	4	4	14												
D 6.5 45 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																					
D 6.5 45 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																					
0 0.3 0	D	6 F																			
U 77.45 45 I <td></td> <td>6.5</td> <td></td>		6.5																			
S 8.5-8.95 4 6 6 7 25 D 9.5 4 6 6 7 25 U 10-10.45 45 45 4 6 6 7 25 Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com	U	7-7.45	45																		
S 8.5-8.95 4 6 6 6 7 25 D 9.5 J J J J J J J JU 10-10.45 45 J </td <td></td>																					
S 8.5-8.95 4 6 6 7 25 D 9.5 4 6 6 7 25 U 10-10.45 45 45 4<																					
S 8.5-8.95 4 6 6 7 25 D 9.5 4 6 6 7 25 U 10-10.45 45 4 6 6 7 25 Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com																					
S 8.5-8.95 4 6 6 7 25 D 9.5 4 5 4 5 4 5 U 10-10.45 45 45 4 </td <td></td>																					
S 8.5-8.95 4 6 6 7 25 D 9.5 4 6 6 7 25 U 10-10.45 45 45 45 4 6 6 7 25 Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com																					
D 9.5 U 10-10.45 45 Image: Code: U- Undisturbed B - Large Disturbed D D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com	S	8.5-8.95	4	6	6	6	6	7	25												
D 9.5 U 10-10.45 45 Image: Construction of the second																					
D 9.5 45 Image: Control of the second																					
U 10-10.45 45 45 D - Small Disturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com	_	0 5																			
U 10-10.45 45 Image: Construction of the second seco		9.5																			
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com	U	10-10.45	45																		
Sampling Code: U- Undisturbed B - Large Disturbed D - Small Disturbed W - Water (U*) Non recovery of Sample Jomas Associates Ltd - Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com									D 1 1			D. C. HELL	4 344 344 1	(11*) NI	of Council						
T: 01895 77 2187 E: info@jomasassociates.com W: www.jomasassociates.com	I	sampli	ng Co	de: U-	Undi	lsturb Jom	ea B - as Ass	Large	Distu es Ltd	roea - Lakeside Ho)USP	D - Small Disturbe	a W - Water Stocklev Park LIB11	(U [*]) Non recovery 1BD	or sample						
				_			T: 018	95 77	2187	E: info@joma	sass	ociates.com W: www	.jomasassociates.com	 n							

	Speci	alists	in the) e inve	stigati	ion &	reclar	matio	5 n of brownfiel	d sit		Exploratory Ho	ole No	WS1
Site A	ddress								254 Kilbur	n Ro	, London	Project No		P8592J338
Client	t								Aitch Grou	р	,	Ground Level		
Site P	ersonne	l							TC, LP			Commenced		13.10.14
												Completed		13.10.14
Type and diameter of equipment: Water levels recorded during boring, m										Premier 110	0			
Water I	evels rec	corde	ed du	iring	bori	ng, n	n							
Date Hole De	nth													
Casing [)enth													
Water L	evel on s	strike	è											
Water L	evel afte	er 20	mins											
Remark	S													
1.														
2.														
3. 1														
4		Samr	oles d	or Te	sts						ata			
				P	euk	ts							Strata Descrip	tion
Туре	Depth	_			-cour								Strata Descrip	
	(m)	75	75	75	75	75	75	N	Depth (m)		Legend	CONCRETE		
									0.15	\vdash	+++++++	Black fine to medium	ashy SAND (MADF	GROUND)
											//////		, ,,	
D	0.5											1		
ſ	0.5									\vdash	//////	1		
												1		
Р SPT	1.0 1.0	1	1	1	2	1	1	5	1.00			1		
51.1	1.0	-	-	-	-	-	-	5	1.00		++++++	Cafe dank karwa (bla		
												flints and brick fragm	ents (MADE GROUN	requent fine to medium
									1.40					,
D	1.5								1.40		<u></u>	Firm to stiff orange b	rown patched blue	grey silty CLAY
D	2.0													
SPT	2.0	1	2	2	2	1	2	7						
D SPT	3.0 3.0	2	1	2	3	2	2	9						
0	510	-	-	-		-	-	5						
D	4.0													
SPT	4.0	1	3	3	2	4	4	13	4.00					
										\vdash				
	Sampli	ing Co	de: U	- Undi	sturbe	ed B -	Large	Distu	irbed	u) - Small Disturbed	W - Water	(U*) Non recoverv	of Sample
	1.1	5.1				Joma	s Asso	ociate	s Ltd - Lakesid	e Ho	, 1 Furzeground Way,	, Stockley Park, UB11	1BD	
						T	: 0189	5 77 2	2187 E: info@j	oma	sociates.com W: www	v.jomasassociates.cor	n	

Andy Robinson Toureen Mangan 25 Cecil Road Harrow Middlesex HA3 5QY

t: 0208 424 7999

f: 0208 424 7998

e: andy.robinson@toureenmangan.co.uk

Analytical Report Number : 17-46608

Project / Site name:	254 Kilburn Lane	Samples received on:	26/04/2017
Your job number:		Samples instructed on:	26/04/2017
Your order number:		Analysis completed by:	02/05/2017
Report Issue Number:	1	Report issued on:	02/05/2017
Samples Analysed:	2 soil samples		

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Page 1 of 7

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Lah Sampla Number				720607	720600		
Sample Reference				739007 TC/1A	739000		
Sample Reference				Nono Supplied	Nono Supplied		
Sample Number							
Depth (III)				26/04/2017	26/04/2017		
Time Taken				None Supplied	None Supplied		
				None Supplied	None Supplied		
		9 –	Acc				
Analytical Parameter	S	ete .im	red				
(Soil Analysis)	its	ctio it o	itat				
		ă f	" tion				
			-				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	19	19		
I otal mass of sample received	kg	0.001	NONE	0.48	0.52		
Ashestes in Call	-	N1/A	100 17005	Not data data d	Not detected		
Asdestos in Soli	Туре	N/A	150 17025	Not-detected	Not-detected		
Conversity in the second secon							
	مرا ا ا	NI/A	MCEDTC	77	7.0		
pH - Automateu	pH Units	N/A 1	MCEDTC	7.7	7.0		
Total Sulphate as SO.	mg/kg	50	MCERTS	1600	1700		
	ing/kg	50	TICEICIO	1000	1700		
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kq	2.5	MCERTS	730	960		
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	364	478		
Sulphide	mg/kg	1	MCERTS	2.6	4.4		
Total Chloride	mg/kg	5	NONE	71	110		
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	61	61		
Water Soluble Fluoride (2:1)	mg/kg	1	NONE	3.3	3.2		
Organic Matter	%	0.1	MCERTS	3.0	0.6		
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.7	0.3		
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Huorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Phenanthrene	mg/kg	0.05	MCERTS	0.37	0.34		
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluoranthene	mg/kg	0.05	MCERTS	0.80	0.70		
Pyrene Denne (a) anthronoma	mg/kg	0.05	MCERTS	0.73	0.61		
Chrysona	mg/kg	0.05	MCEDTC	0.63	0.44		
Cill yselle Bonzo(b)fluoranthono	mg/kg	0.05	MCEDIC	0.33	0.45		
Benzo(b)fluoranthene	mg/kg	0.05	MCEDTC	0.47	0.33		
Benzo(x)nuoranunene	mg/kg	0.05	MCEDTC	0.41	0.50		
Indepo(1,2,3-cd)pyrene	mg/kg	0.05	MCEDTS	0.18	0.45		
Dibenz(a h)anthracene	ma/ka	0.05	MCERTS	< 0.05	< 0.05		
Benzo(abi)pervlene	ma/ka	0.05	MCERTS	0.27	0.29		
	iiig/kg	0.05	TICENTS	0.27	0.25		
Total PAH							
Speciated Total EPA-16 PAHs	ma/ka	0.8	MCERTS	4.95	4.08		
	119/19	010	HOLITO				
Heavy Metals / Metalloids							
Arsenic (agua regia extractable)	ma/ka	1	MCERTS	22	21		
Boron (water soluble)	ma/ka	0.2	MCERTS	4.0	2.8		
Cadmium (aqua regia extractable)	ma/ka	0.2	MCERTS	< 0.2	0.2		
Chromium (aqua regia extractable)	mq/ka	1	MCERTS	33	35		
Copper (aqua regia extractable)	mg/kq	1	MCERTS	74	61		
Lead (aqua regia extractable)	mg/kq	1	MCERTS	290	320		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.0	0.9		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	<u>2</u> 4	26		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	 	
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	140	160		
	-	-					

Project / Site name: 254 Kilburn Lane

Lab Sample Number				739687	739688		
Sample Reference				TG/1A	TG/2		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.75	0.75		
Date Sampled				26/04/2017	26/04/2017		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	27	18		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	34	19		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	22	17		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	28	21		

Project / Site name: 254 Kilburn Lane

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
739687	TG/1A	None Supplied	0.75	Brown clay and loam with gravel and brick.
739688	TG/2	None Supplied	0.75	Brown clay and loam with gravel and brick.

Project / Site name: 254 Kilburn Lane

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Chloride in soil	Determination of acid soluble chloride in soil by extraction with nitric acid, addition of silver nitrate followed by titration against thiocyanate.	In-house method	L075-PL	D	NONE
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests. 2:1 extraction.	L082-PL	D	MCERTS
Fluoride, water soluble, in soil	Determination of fluoride in soil by water extraction followed by 1:1 ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033-PL	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests'''	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil by Gallery 1hr ex	Determination of water soluble Sulphate by discrete analyser (precipitation method).	In house method based on BS1377-3: 1990.	L082B	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS

Iss No 17-46608-1 254 Kilburn Lane

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: 254 Kilburn Lane

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Andy Robinson Toureen Mangan 25 Cecil Road Harrow Middlesex HA3 5QY

t: 0208 424 7999

f: 0208 424 7998 e: andy.robinson@toureenmangan.co.uk

Analytical Report Number : 17-46609

Project / Site name:	254 Kilburn Lane	Samples received on:	26/04/2017
Your job number:		Samples instructed on:	26/04/2017
Your order number:		Analysis completed by:	28/04/2017
Report Issue Number:	1	Report issued on:	02/05/2017
Samples Analysed:	3 soil samples		

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Lab Sample Number				739689	739690	739691	
Sample Reference		TG/1A	TG/2	WAC/TG3			
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				0.75	0.75	0.50	
Date Sampled				26/04/2017	26/04/2017	26/04/2017	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	

Project / Site name: 254 Kilburn Lane

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Andy Robinson Toureen Mangan 25 Cecil Road Harrow Middlesex HA3 5QY

t: 0208 424 7999

f: 0208 424 7998

e: andy.robinson@toureenmangan.co.uk

Analytical Report Number : 17-46647

Project / Site name:	254 Kilburn Lane	Samples received on:	26/04/2017
Your job number:		Samples instructed on:	26/04/2017
Your order number:		Analysis completed by:	02/05/2017
Report Issue Number:	1	Report issued on:	02/05/2017
Samples Analysed:	6 soil samples		

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Croxley Green Business Park, Watford, Herts, WD18 8YS **t:** 01923 225404

7 Woodshots Meadow,

i2 Analytical Ltd.

t: 01923 225404 **f:** 01923 237404 **e:** reception@i2analytical.com

Lab Sample Number		739825	739826	739827	739828	739829		
Sample Reference				SW01	SW02	SW03	SW04	SW05
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	17	16	17	17	17
Total mass of sample received	kg	0.001	NONE	0.49	0.47	0.44	0.48	0.44
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	8.3	8.3	7.9	7.8	8.0
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
I otal Sulphate as SO ₄ Water Soluble SO4 16br extraction (2:1 Leachate	mg/kg	50	MCERTS	1400	1500	980	570	950
Equivalent)	a/l	0.00125	MCERTS	0.32	0.43	0.44	0.24	0.34
Sulphide	ma/ka	1	MCERTS	2.2	1.0	< 1.0	< 1.0	< 1.0
Total Chloride	mg/kq	5	NONE	140	180	140	180	110
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	66	58	110	57	110
Water Soluble Fluoride (2:1)	mg/kg	1	NONE	5.6	5.5	17	22	5.7
Organic Matter	%	0.1	MCERTS	1.8	0.9	0.6	1.1	0.6
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.1	0.5	0.3	0.6	0.3
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated BAHs								
Nanhthalono	malka	0.05	MCEDTC	0.99	< 0.05	< 0.05	< 0.05	< 0.05
	mg/kg	0.05	MCEDTS	0.88	< 0.05	< 0.05	< 0.05	< 0.05
	mg/kg	0.05	MCEPTS	0.24	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.15	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	ma/ka	0.05	MCERTS	2.0	0.39	< 0.05	< 0.05	< 0.05
Anthracene	ma/ka	0.05	MCERTS	0.85	0.12	< 0.05	< 0.05	< 0.05
Fluoranthene	ma/ka	0.05	MCERTS	4.6	0.92	< 0.05	< 0.05	0.11
Pyrene	mg/kg	0.05	MCERTS	4.0	0.79	< 0.05	< 0.05	0.11
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.3	0.51	< 0.05	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	2.2	0.49	< 0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.5	0.55	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.3	0.28	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.4	0.53	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.2	0.25	< 0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.21	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.3	0.29	< 0.05	< 0.05	< 0.05
Total BAH								
Speciated Total EPA-16 PAHs	ma/ka	0.8	MCEPTS	24.3	5 12	< 0.80	< 0.80	< 0.80
Heavy Metals / Metalloids	ilig/kg	0.0	HELKIS	21.5	5.12	< 0.00	0.00	0.00
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	14	13	11	12
Boron (water soluble)	mg/kg	0.2	MCERTS	4.6	2.9	1.4	2.7	1.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32	48	51	32	48
Copper (aqua regia extractable)	mg/kg	1	MCERTS	52	37	24	20	23
Lead (aqua regia extractable)	mg/kg	1	MCERTS	240	130	18	44	30
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.6	0.6	< 0.3	< 0.3	< 0.3
Nickei (aqua regia extractable)	mg/kg	1	MCERTS	25	35	38	14	25
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
zinc (aqua regia extractable)	mg/kg	1	MUERIS	120	33	04	40	دە

Project / Site name: 254 Kilburn Lane

Lab Sample Number				739825	739826	739827	739828	739829
Sample Reference		SW01	SW02	SW03	SW04	SW05		
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Date Sampled				26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	2.3	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	3.9	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	24	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	60	23	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	91	29	< 10	< 10	< 10

Lab Sample Number		739830				
Sample Reference				SW06		
Sample Number				None Supplied		
Depth (m)				None Supplied		
Date Sampled				26/04/2017		
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1		
Moisture Content	%	N/A	NONE	16		
Total mass of sample received	kg	0.001	NONE	0.45		
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	8.2		
Total Cyanide	mg/kg	1	MCERTS	< 1		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	720		
Water Soluble SO4 16hr extraction (2:1 Leachate						
Equivalent)	g/l	0.00125	MCERTS	0.28		
Sulphide	mg/kg	1	MCERTS	< 1.0		
Total Chloride	mg/kg	5	NONE	210		
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	170		
Water Soluble Fluoride (2:1)	mg/kg	1	NONE	3.9		
Organic Matter	%	0.1	MCERTS	0.9		
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.5		
Total Phenols	ma/ka	1	MCEPTS	< 1.0		
	шу/ку	1	MCER13	< 1.0		
Speciated PAHs						
Nanhthalene	ma/ka	0.05	MCEDTS	< 0.05		
Aconanthylono	mg/kg	0.05	MCEDTS	< 0.05	 	
Acenaphthene	mg/kg	0.05	MCEDTS	< 0.05		
Eluorono	mg/kg	0.05	MCEDTS	< 0.05	 	
Dhenanthrene	mg/kg	0.05	MCEDTS	< 0.05		
Anthracene	mg/kg	0.05	MCERTS	< 0.05		
Fluoranthene	mg/kg	0.05	MCEDTS	0.17		
Pyrene	mg/kg	0.05	MCERTS	0.17		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.10		
Chrysene	mg/kg	0.05	MCERTS	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05		
Benzo(k)fluoranthene	ma/ka	0.05	MCERTS	< 0.05		
Benzo(a)pyrepe	ma/ka	0.05	MCERTS	< 0.05		
Indeno(1,2,3-cd)pyrene	ma/ka	0.05	MCERTS	< 0.05		
Dibenz(a b)anthracene	ma/ka	0.05	MCERTS	< 0.05		
Benzo(ahi)nervlene	ma/ka	0.05	MCERTS	< 0.05		
	mg/kg	0.05	TICEITI	\$ 0.05		
Total PAH						
Speciated Total EPA-16 PAHs	ma/ka	0.8	MCERTS	< 0.80		
Heavy Metals / Metalloids	ing/kg	0.0	TICERTO	0.00		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16		
Boron (water soluble)	mg/kg	0.2	MCERTS	2.3	ļ	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	48		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	24		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	61		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	70		

Project / Site name: 254 Kilburn Lane

					1	
Lab Sample Number				739830		
Sample Reference		SW06				
Sample Number				None Supplied		
Depth (m)	None Supplied					
Date Sampled	26/04/2017					
Time Taken				None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Monoaromatics						
Benzene	ug/kg	1	MCERTS	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0		
p & m-xylene	µg/kg	1	MCERTS	< 1.0		
o-xylene	µg/kg	1	MCERTS	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10		

Project / Site name: 254 Kilburn Lane

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
739825	SW01	None Supplied	None Supplied	Brown clay and loam.
739826	SW02	None Supplied	None Supplied	Brown clay and loam.
739827	SW03	None Supplied	None Supplied	Brown clay.
739828	SW04	None Supplied	None Supplied	Brown clay.
739829	SW05	None Supplied	None Supplied	Brown clay.
739830	SW06	None Supplied	None Supplied	Brown clay.

Project / Site name: 254 Kilburn Lane

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS	
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS	
Chloride in soil	Determination of acid soluble chloride in soil by extraction with nitric acid, addition of silver nitrate followed by titration against thiocyanate.	In-house method	L075-PL	D	NONE	
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests. 2:1 extraction.	L082-PL	D	MCERTS	
Fluoride, water soluble, in soil	Determination of fluoride in soil by water extraction followed by 1:1 ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033-PL	D	NONE	
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS	
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE	
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS	
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS	
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS	
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS	
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS	
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS	
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS	
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS	

Iss No 17-46647-1 254 Kilburn Lane

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: 254 Kilburn Lane

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Andy Robinson Toureen Mangan 25 Cecil Road Harrow Middlesex HA3 5QY

t: 0208 424 7999

f: 0208 424 7998 e: andy.robinson@toureenmangan.co.uk

Analytical Report Number : 17-46650

Project / Site name:	254 Kilburn Lane	Samples received on:	26/04/2017
Your job number:		Samples instructed on:	26/04/2017
Your order number:		Analysis completed by:	28/04/2017
Report Issue Number:	1	Report issued on:	02/05/2017
Samples Analysed:	6 soil samples		

M Signed:

Emma Winter Assistant Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Iss No 17-46650-1 254 Kilburn Lane

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Lab Sample Number				739838	739839	739840	739841	739842
Sample Reference				SW01	SW02	SW03	SW04	SW05
Sample Number				None Supplied				
Depth (m)			0.50	0.75	0.50	0.75	0.50	
Date Sampled				26/04/2017	26/04/2017	26/04/2017	26/04/2017	26/04/2017
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected

Lab Sample Number				739843		
Sample Reference				SW06		
Sample Number				None Supplied		
Depth (m)				0.75		
Date Sampled			26/04/2017			
Time Taken			None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected		

Project / Site name: 254 Kilburn Lane

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.