British Land plc

1 Triton Square

St Anne's Ground Contamination Risk Assessment and Remediation Strategy

Issue 1 | 1 August 2018

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility

Job number 260371

is undertaken to any third party.

Ove Arup & Partners Ltd

13 Fitzroy Street London W1T 4BQ United Kingdom www.arup.com

Document Verification

Job title		1 Triton Sq	Job number				
				260371			
Document title		St Anne's Ground Con Remediatio	ntamination Risk Asse n Strategy	File reference			
Document ref							
Revision	Date	Filename	St Anne's Ground C	St Anne's Ground Contam RA and RS			
Draft 1	24 July 2018	Description	First draft				
			Prepared by	Checked by	Approved by		
		Name	Rachael Clark	Tim Morgan			
		Signature					
Issue 1 1 Aug		Filename	St Anne's Ground Contam RA and RS Issue.docx				
	2018	Description	First issue				
			Prepared by	Checked by	Approved by		
		Name	Rachael Clark	Tim Morgan	Chris Barrett		
		Signature	BCLK	7.77	Manet		
		Filename					
		Description					
			Prepared by	Checked by	Approved by		
		Name					
		Signature					
		Filename		<u> </u>	1		
		Description					
			Prepared by	Checked by	Approved by		
		Name					
		Signature					
	I	1	Issue Documer	nt Verification with I	Document 🗸		

Contents

			Page
1	Intro	duction	1
	1.1	General	1
	1.2	Planning background	1
	1.3	Objectives and scope	2
	1.4	Report structure	2
	1.5	Information sources	2
	1.6	Limitations	3
2	Prelin	minary conceptual model	4
	2.1	Proposed development	4
	2.2	Initial plausible contaminant linkages	5
3	Scope	e of ground investigation	7
	3.1	Scope	7
	3.2	Objectives	7
	3.3	Monitoring installations	7
	3.4	Monitoring	8
	3.5	Chemical analysis	8
4	Groun	nd investigation findings	10
	4.1	Geology and stratigraphy	10
	4.2	Groundwater	10
	4.3	Ground gas	11
	4.4	Observations of contamination	11
5	Data a	assessment	12
	5.1	Assessment criteria	12
	5.2	Results	13
6	Risk a	assessment	15
	6.1	Risk classification definitions	15
	6.2	Site sensitivity	15
	6.3	Summary of results	16
	6.4	Human health risk assessment	16
	6.5	Controlled waters	17
	6.6	Risk to building materials	17
	6.7	Risk to ecological receptors	18
7	Revise	ed conceptual site model	19
8	Prelin	ninary waste classification assessment	20

	8.1	Background and methodology	20
	8.2	Framework	20
	8.3	Hazardous waste	20
	8.4	Non-hazardous and inert waste	21
	8.5	Summary	21
9	Concl	usions and recommendations	22
	9.1	Conclusions	22
	9.2	Recommendations	22
	9.3	Site safety and control	23
	9.4	Clean cover and marker layer	23
	9.5	Watching brief and unexpected contamination	24
	9.6	Materials management	25
	9.7	Decommissioning standpipes	25
	9.8	Verification report	26

Tables

Table 1	Layout of	ground f	loor of p	roposed dev	velopment at	: St Anne's

- Table 2 Architectural drawing of the proposed development at St Anne's
- Table 3 Plausible contaminant linkages
- Table 4 Exploratory hole depth and installation details
- Table 5 Summary of the depths and composition of encountered strata
- Table 6 Summary of groundwater levels recorded in the RTD
- Table 7 Atmospheric conditions during ground gas monitoring
- Table 8 Risk classification
- Table 9 Revised conceptual model
- Table 10 Summary of risk assessment
- Table 11 Requirements relating to verification

Figures

Figure 1 Site location plan

Figure 2 Site layout plan

Appendices

Appendix A

Concept 2018 factual report

Appendix B

Data assessment methodology

Appendix C

Data assessment

Executive summary

Background

Ove Arup and Partners (Arup) has been commissioned by British Land plc (British Land) to provide geoenvironmental consultancy services for 1 Triton Square. The development has been divided into three areas reflecting the phasing of the works. The scheme includes a commercial element (1 Triton Square), an area of public realm (Longford Place) and a residential element (St Anne's). This report specifically relates to the St Anne's site.

Arup previously prepared a contamination desk study and programme of investigation for the site which presented a preliminary risk assessment based upon a conceptual site model (CSM). The desk study highlighted the potential presence of several sources of contamination onsite including an electrical power station, a works, and the potential for asbestos to be present within former modular buildings. Offsite potential sources include a substation, petrol filling station with tanks and a 'planing and saw' mill. The desk study report was approved by London Borough of Camden (LBC) allowing discharge of part (a) of condition 12. The objective of this report is to discharge part (b).

Ground investigation

An intrusive ground investigation was carried out by Concept Ltd between 24 April 2018 and 4 May 2018 and comprised two cable percussion boreholes, with groundwater and ground gas monitoring wells in the south east and western part of the site, 11 trial pits in the north and east. Two rounds of groundwater sampling and monitoring and six rounds of ground gas monitoring were completed.

Results

The findings of the investigation are summarised below:

- concentrations of metals in soils were generally very low. Concentrations of lead were above the assessment criteria in ten samples;
- concentrations of three polycyclic aromatic hydrocarbons (PAH) compounds were above the residential assessment criteria in one sample;
- total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene and xylene (BTEX) concentrations in soils were well below the residential assessment criteria;
- low concentrations of asbestos (chrysotile and amosite fibres) were identified in six soil samples within the Made Ground and potential asbestos containing material (ACM) was identified in four locations;
- TPH, PAH and BTEX concentrations in groundwater were below the detection limit;

- concentrations selenium in groundwater were slightly higher than initial
 assessment levels but generally the results indicate that the groundwater is
 relatively good quality given the environmental setting; and,
- ground gas concentrations and flow rates were very low and indicate gas protection measures are not required.

Conclusions

The contamination ground investigation and assessment confirmed that the site has not been impacted by significant contamination. The environmental sensitivity has been identified as low due to the low sensitivity of the shallow aquifer and the development sensitivity is high for ground floor residents as the development includes a private garden area.

Various recommendations for mitigation are provided in the report and described below. A summary of the risk assessment is provided below.

Summary of risk assessment

Description	Classification
Risk assessment	
Risk of harm to human health during construction	Very low (with mitigation)
Risk of harm to human health during operation	Very low (with mitigation)
Risk of pollution to groundwater	Very low
Risk of pollution to surface water	Negligible
Risk to construction materials and services	Very low (with mitigation)
Risk to designated ecological receptors	Negligible
Risk to planting in garden area	Very low (with mitigation)

Recommendations

There is no requirement for a specific advance phase of remediation based on the findings of the risk assessment. However, specifically enhanced control and safety measures are presented in this report to be put in place during the construction work to minimise potential exposure (primarily to asbestos) of receptors during the construction and operational phases.

The ground investigation identified elevated lead, PAH and asbestos. A clean cover layer of a minimum 1.0m thickness is recommended in the garden area that should be underlain by a hard no dig layer. A marker layer should be placed beneath hard surfaced areas and used to line service trenches to mitigate potential risks to future maintenance workers.

A verification report should be prepared following completion of the works to demonstrate that the objectives of the remediation strategy have been achieved. This report sets out the information which is required for the verification report and should be submitted to LBC.

1 Introduction

1.1 General

Ove Arup and Partners (Arup) has been commissioned by British Land plc (British Land) to provide geoenvironmental consultancy services for the development at St. Anne's, Laxton Place, London, NW1 3PT (the site). The site is part of the wider development at 1 Triton Square. The site location is shown on Figure 1.

The 1 Triton Square redevelopment has been divided into three areas to reflect the phased nature of the works, as shown on Figure 2. The scheme includes a commercial element (1 Triton Square), an area of public realm (Longford Place) and a residential element (St Anne's).

This report relates to the redevelopment of the St Anne's site. The development will comprise a part six storey, part nine storey residential building, a residential garden in the north east corner of the site and a pavement area at the main entrance of the property.

1.2 Planning background

Planning permission for the 1 Triton Square development was granted by London Borough of Camden (LBC), reference 2016/6069/P. Arup previously prepared a contamination desk study and programme of investigation (2018) [1] for the site which presented a preliminary risk assessment based upon a conceptual site model (CSM). The desk study report was approved by LBC allowing discharge of part 12 (a) of the condition. Condition 12 (b) is as follows:

At least 28 days before development commences on the residential element of the development:

• (b) following the approval detailed in paragraph (a), an investigation shall be carried out on land within the residential element in accordance with the approved programme and the results and a written scheme of remediation measures relevant to that land [if necessary] shall be submitted to and approved by the local planning authority in writing.

The following parts of condition 12 apply to the overall development scheme:

- Any remediation measures [if necessary] shall be implemented strictly in accordance with the approved scheme(s) and where relevant a written report detailing the remediation for either the commercial element or the residential element shall be submitted to and approved by the local planning authority in writing prior to occupation of that element.
- Reporting and management of significant additional contamination.
 additional significant contamination discovered during development shall be
 fully assessed and any necessary modifications made to the remediation
 schemes shall be submitted to the Local Planning Authority for written

approval. Before any part of either the commercial element or the residential element hereby permitted is occupied, where relevant the developer shall provide written confirmation that all works were completed in accordance with the revised remediation scheme(s) for that element.

1.3 Objectives and scope

The objective of this report is to enable the discharge of part (b) of planning condition 12. To meet the requirements of the condition this report:

- presents the scope of intrusive ground investigation and describes the findings;
- assesses the data obtained from the 2018 ground investigation and the risks posed to human health and environmental receptors;
- provides a remediation strategy based upon the results of the quantitative assessment to address any risks identified; and,
- presents a verification plan to ensure appropriate data and information is collected to form a verification report.

1.4 Report structure

This report has the following structure:

- Section 2 introduces the site and summarises the preliminary conceptual model described in the previous report;
- Section 3 provides the scope of ground investigation;
- Section 4 describes the findings of the ground investigation;
- Section 5 presents the methodology and assessment of the laboratory and monitoring data obtained from the ground investigation;
- Section 6 presents the quantitative risk assessment;
- Section 7 presents the revised conceptual site model;
- Section 8 presents the preliminary waste classification assessment;
- Section 9 presents the conclusions and recommendations including the remediation strategy and the verification plan.

1.5 Information sources

The following information sources have informed this report:

- Arup (2018), 1 Triton Square, St Anne's Contamination Desk Study and Programme of Investigation [1].
- Concept (2018) Site Investigation report, St Anne's, 1 Triton Square (included in Appendix A) [2];
- Groundsure (2016) Enviro Insight, St Anne's Church (Appendix A of St Anne's desk study) [3].

• Landmark (2015) Envirocheck Report (Appendix B of St Anne's desk study) [4].

1.6 Limitations

This report has been prepared for use by British Land in relation to the approved development of the St Anne's site. It takes into account our client's particular instructions and requirements and addresses their priorities at the time. It is not intended for, and should not be relied upon by any third party and no responsibility is undertaken to any third party in relation to it, except as provided for in Arup's agreement with British Land.

Arup has based the site appraisal on the sources of information detailed within the report text and believes them to be reliable, but cannot and does not guarantee the authenticity or reliability of this third party information. Notwithstanding the efforts made by the professional team in undertaking this contamination assessment it is possible that ground and contamination conditions other than those potentially indicated by this report may exist at the site.

This report does not present a survey or assessment of the location, condition or liabilities associated with hazardous materials in building fabric such as (but not limited to) asbestos containing material (ACM), radiological or bacterial substances or lead.

This report has been prepared based on current legislation, statutory requirements, planning policy and industry good practice prevalent at the time of writing. Any subsequent changes or new guidance may require the findings, conclusions and recommendations made in this report to be reassessed considering the circumstances. Should the approved layout or use of the site change, the assessments and conclusions presented in this report may need to be revised.

2 Preliminary conceptual model

2.1 Proposed development

The proposed development at the site will involve:

- the demolition of the existing church;
- construction of a part six storey, part nine storey residential building;
- a private garden at the northeast corner of the site; and,
- a pavement area at the main entrance.

The development approved under application ref 2016/6069/P also includes 1 Triton Square and Longford Place (shown on Figure 2). Table 1 shows the proposed layout of the ground floor including the residential garden in the north east corner.

Table 1 Layout of ground floor of proposed development at St Anne's

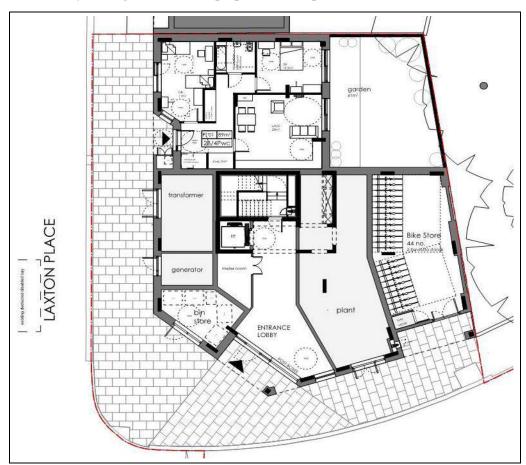


Table 2 shows an architect's drawing of the proposed development at St Anne's.

Table 2 Architectural drawing of the proposed development at St Anne's

2.2 Initial plausible contaminant linkages

The plausible contaminant linkages (PCLs) associated with the construction and operational phases of the development were set out in the desk based assessment [1]. The report was agreed with LBC. The identified linkages have been reproduced in Table 3.

Table 3 Plausible contaminant linkages

Receptors	Pathways	PCL
Human health		
Site workers (during construction)	Ingestion of soils, dust and/or groundwater. Dermal contact with soils, dust and/or groundwater. Inhalation of dust	Yes Workers are likely to come into contact with soil and perched water (if present) when carrying out ground works. Workers may be exposed to gases/vapours if working in confined spaces.
Neighbours (during construction)	fibres and/or gas and vapours	Yes Principally due to dust or fibre emissions
Future site users (after construction)	Ingestion of soils, dust and/or groundwater. Dermal contact with soils and/or groundwater. Inhalation of dust, fibres and/or gas and vapours. Consumption of homegrown produce	Yes Future development will comprise residential apartments with a garden area and hard landscaping. Potential exposure to soils and consumption of home-grown produce. Dust and fibres may be released due to new soft landscaping. Gas and vapour pathways may be active if contamination or ground gas is present.

Receptors	Pathways	PCL					
Controlled wat	Controlled waters						
Shallow groundwater (secondary aquifer)	Vertical migration of contamination from Made Ground to the RTD	Yes If contamination is present in shallow soils it could migrate to the RTD.					
	Migration pathways	Yes					
created by piling		If contamination is present in shallow soils, pathways could be created during piling.					
Building mater	ials and services						
New building, hard landscaping and services	Direct contact with ground and/or groundwater	Yes New services and foundations may be in contact with contaminated soils.					
Ecological							
Designated ecological receptors Planting within garden area	Uptake from contaminated soils or groundwater	There are no designated ecological receptors. Yes, for plant uptake (but limited) Made Ground is expected to be present across the site. All new planting will be within clean imported soils.					

A ground investigation was proposed to obtain further information on ground conditions and contaminant concentrations at the site. The scope of the investigation is outlined in Section 3.

3 Scope of ground investigation

3.1 Scope

The intrusive ground investigation was carried out by Concept Ltd between 24 April 2018 and 4 May 2018. The scope of works comprised:

- two cable percussion boreholes within the north west (outside the building) and south east (within the building) portion of the site (BH01 and BH02B);
- five trial pits located along the northern boundary of the site and to the southeast corner (TP01-TP05);
- four shallow hand dug pits to provide information on shallow soils in the garden area in the northeast corner of the site (HP01-HP04);
- two shallow hand dug pits on the eastern boundary to provide information on tree roots from the adjacent property (HP05-HP06);
- chemical laboratory testing of 19 soil samples (solid and leachable) from 10 locations for a comprehensive suite of determinands;
- chemical laboratory testing of 4 groundwater samples from the two monitoring wells (BH01 and BH02B) for a comprehensive suite of determinands;
- two rounds of groundwater (RTD) monitoring in the two monitoring wells.

The locations of the intrusive investigation positions can be found within the factual report in Appendix AError! Reference source not found.

3.2 Objectives

The site is currently occupied by St Anne's church and hard landscaped areas. The objective of the investigation was to:

- confirm levels and thicknesses of the stratigraphy present at the site;
- investigate the potential presence of contamination at the site;
- confirm ground gas concentrations and vapour;
- confirm groundwater levels within the RTD and obtain groundwater samples for laboratory analysis; and,
- undertake geotechnical soil sampling and testing.

3.3 Monitoring installations

Groundwater monitoring wells were installed in BH01 and BH02B. Table 4 provides a summary of the installation details of the exploratory holes.

Hole	Type	Depth (m)	Installation
BH01	CP	30	Groundwater well within RTD from 5.0m to 7.9m bgl
вно2в	CP	30	Groundwater well within RTD from 6.5m to 8.3m bgl
Key CP; Cabl	e percuss	sion	

Table 4 Exploratory hole depth and installation details

3.4 Monitoring

Two rounds of groundwater sampling were completed in BH01 and BH2B on 29 May 2018 and 13 June 2018. The insitu groundwater monitoring included the assessment of non-aqueous phase liquids (NAPL) if present and groundwater testing in the secondary aquifer (RTD).

Several PCLs were identified within the CSM [1] and subsequently ground gas monitoring was undertaken as part of the investigation. Six rounds of ground gas monitoring were completed in BH01 and BH2B between 18 May 2018 and 2 July 2018.

3.5 Chemical analysis

The soil and groundwater analysis is described below. The testing was conducted by i2 Analytical Environmental Science laboratory to UKAS and MCERTS accredited methods, where appropriate and available. Testing of ground gas samples was subcontracted to Concept Life Sciences.

3.5.1 Soil

19 soil samples were collected from 10 locations and were submitted for laboratory analysis. This included 15 samples from the Made Ground, two samples from the RTD and two samples from the London Clay, which were tested for a range of contaminants. Contaminants included metals, detailed quantified asbestos analysis (two stages by initial stereo-binocular PLM and quantitative phase contrast microscopy assessment), speciated total petroleum hydrocarbons (TPHCWG carbon banding), MTBE, speciated PAH, BTEX, volatile organic compounds (VOC) and semi-volatile organic compounds (SVOC), phenols, cyanide, polychlorinated biphenyls (PCB) and other inorganic compounds. Soil leachability testing was also undertaken.

3.5.2 Groundwater

Four groundwater samples were collected from the two boreholes onsite (BH01 and BH02B) and scheduled for a similar suite of analysis to the soil samples. It was not tested for asbestos but included additional testing for hardness, ammoniacal nitrogen, chloride, dissolved organic carbon, calcium and manganese.

3.5.3 Ground gas

Six samples of ground gas were collected to verify the monitoring results. One sample was collected from the location with the highest gas reading during each round of ground gas monitoring. The samples were tested for methane, carbon dioxide, oxygen, nitrogen, hydrogen, carbon monoxide and hydrogen sulphide.

4 Ground investigation findings

4.1 Geology and stratigraphy

The ground conditions encountered during the 2018 investigation are summarised in Table 5. The exploratory hole logs are included in the factual report presented in Appendix A.

Table 5 Summary of the depths and composition of encountered strata

Formation	Top of stratum (mOD)	Thickness (m)	Description
Made Ground	28.71	3.9 to 6.0	Soft to firm brown to yellowish brown gravelly very sandy clay with flint, brick, concrete and chalk fragments or loose dark brown to dark grey gravelly fine to coarse sand with high brick and concrete cobble content or light grey sandy gravel with low brick and concrete cobble content.
RTD	24.14	2.0 to 3.2	Medium dense yellowish brown slightly sandy angular to rounded fine to medium flint gravels. Sand is fine to coarse.
London Clay	20.94	22 to 22.4	Stiff dark grey slightly sandy clay with rare pockets of silty fine sand.
Lambeth Group	-1.76	Not proven	Very stiff reddish brown mottled bluish grey clay.

Made Ground was encountered in all 13 locations. Unproven thicknesses were recorded in the hand pits in the north and east of the site which ranged from 0.4m to 1.2m. Unproven thicknesses were also recorded in the hand dug trial pits in on the north and east boundaries which ranged from 0.6m to 1.5m. The boreholes in the south and west of the site recorded Made Ground thicknesses of 3.9m and 6.0m. The Made Ground was reported to include various anthropogenic materials such as brick, concrete, glass, slag, metal, clinker and ceramic fragments. A black plastic membrane was recorded at 0.55m depth in TP03.

4.2 Groundwater

Groundwater levels were recorded on six occasions in BH01 and BH2B between 18 May and 2 July 2018. The results of the groundwater level monitoring are summarised in Table 6.

Table 6 Summary of groundwater levels recorded in the RTD

Location	Monitoring rounds	Response zone (m bgl)		•		Water level (m above Ordnance Datum)	
		Тор	Bottom	Max	Min	Max	Min
BH01	6	5	7.9	6.02	6.15	22.02	21.89
ВН2В	7	6.5	8.3	6.52	6.67	22.19	22.04

4.3 Ground gas

Ground gas monitoring results are included in full in Appendix A. A summary of the atmospheric pressures recorded during the four ground gas monitoring visits are given in Table 7 below.

T 11 T	A .		40.0				
Table /	Atmosr	heric	conditions	during	oround	gas	monitoring
I abic /	7 Millosp	niciic	Contantions	during	ground	gas	momtoring

Monitoring round	Date	Barometric pressure (before) (mb)	Barometric pressure (after) (mb)	Rising or falling
1	18/05/18	1024	1022	Falling
2	29/05/18	1014	1013	Falling
3	06/06/18	1012	1012	Stable
4	13/06/18	1016	1015	Falling
5	20/06/18	1018	1017	Falling
6	27/06/18 (BH01 only) 02/07/18 (BH02 only)	1024 1011	1024	Stable

The third and sixth rounds of monitoring were undertaken during a period of stable atmospheric pressure. The first, second, fourth and fifth rounds of monitoring were completed during periods of falling atmospheric pressure.

4.4 Observations of contamination

The results of PID headspace testing were below 1ppm in all samples apart from one sample from HP03 at 0.2m (1.8ppm) which is very low. This indicates that no significant hydrocarbon vapours are present in the materials monitored. A slight hydrocarbon odour was noted at 0.3m in HP02 but the PID results recorded 0.1ppm. Metal paint cans were found at 0.5m in HP04 and 0.5m in TP03.

Potential asbestos containing material (ACM) was encountered in TP02 at 0.6m. A sample was collected and analysed by a specialist contractor (4rail). The results are included in Appendix A and indicate that chrysotile asbestos was present in the sample, although the form was not specified within the test results. The trial pit was aborted and no further soil sampling was undertaken at this location. Potential ACMs were also encountered in HP05 (aborted at 0.4m), HP06 (aborted at 0.65m) and TP03 (within arisings). Samples of these potential ACMs were not collected. The material was assumed to contain asbestos based on the positive identification of ACM in TP02. Due to the presence of potential ACMs soil samples weren't collected from HP05 and HP06.

5 Data assessment

5.1 Assessment criteria

5.1.1 Rationale

The assessment criteria have been selected based on the preliminary conceptual model including a consideration of the proposed development. The evaluation of ground investigation data has been carried out in accordance with the risk assessment methodology outlined in Appendix B and following CIRIA C552 [5] and CLR11 [6]. Appendix B describes the background and context of the assessment and defines the criteria used to assess soils and groundwater, which are further discussed below.

5.1.2 Human health soil criteria

The UK statutory guidance [7] suggests that generic soil quality guideline values may be used for an initial screening of results in regard to human health risk assessment. Generic assessment criteria (GAC) provide an indication of concentrations in soil below which the long-term human health risks for various generic land-use scenarios are minimal. Concentrations above GAC do not necessarily indicate that significant contamination is present, but rather that further assessment or risk management measures may be warranted.

A generic end use based on residential with consumption of homegrown produce has been considered in the assessment to provide an initial appraisal of the results. The residential end use assumes a small two storey terraced house with a garden area, which could be used for growing fruit and vegetables. It is based on assessing risks to a female child from birth to six years old. It assumes the child is at the property 365 days a year and uses the garden for an hour every day apart from in the first six months of life. The child is assumed to spend 23 hours a day indoors until they are five when they are at school for part of the day. Soil organic matter (SOM) content in Made Ground soil samples ranged from 0.52% to 4.31% with an average of 1.40%. Criteria based on the lowest SOM level available (1%) have been used in the first instance.

Arup has derived GAC, using CLEA v1.07, based on data for exposure parameters included in the Category 4 Screening Levels (C4SL), released by Defra, but that maintain the traditional minimal risk toxicological benchmarks (where available). Input data for the toxicological effects, physical characteristics and contaminant fate and transport parameters for the determinands have been taken from sources published by the Environment Agency and other industry sources (including LQM/CIEH S4ULs (Copyright Land Quality Management Limited Publication Number S4UL3227) and the European Food Safety Authority (EFSA)).

5.1.3 Controlled waters quality standards

Groundwater and soil leachability results have been compared to the appropriate water quality standards (WQS). Appendix B sets out a hierarchy of WQS which has been used in the assessment of groundwater and leachability chemical data. Due to the limited controlled waters receptors the higher of Environmental Quality Standards (EQS) set out in the Water Framework Directive (2000) and UK Drinking Water Standards have been used.

Results above the WQS do not necessarily indicate significant contamination but may require further assessment. The values are set relatively low as they are protective of a sensitive water environment, whereas in this case inner London groundwater is being assessed. Concentrations above the WQS have been reviewed for high concentrations which may be indicative of other issues (free product or primary sources such as tanks) and might warrant further intervention.

5.2 Results

Laboratory analytical certificates are presented in the factual report in Appendix A and the results of a comparison of the concentrations against the relevant assessment criteria is presented as Appendix C.

5.2.1 Soil

The measured concentrations of contaminants in soil were generally very low. The concentrations of metals were generally very low and below the GAC except for:

- concentrations of beryllium were marginally above the GAC (1.7mg/kg) in BH01 at 3m bgl (2.5mg/kg), and TP03 at 0.5m bgl (2.1mg/kg); and,
- concentrations of lead were higher than the GAC (200mg/kg) in ten samples at concentrations ranging from 230mg/kg to 1,200mg/kg.

Concentrations of BTEX were all below the detection limit. Concentrations of three PAH compounds (benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(ah)anthracene) were above the GAC in one sample from TP03 at 0.5m.

Concentrations of TPH were generally low and below the GAC. The concentrations of heavier end aliphatic fractions >EC16 to EC35 and/or >EC35 to EC44 were above the theoretical saturation limits for these compounds in nine locations but no evidence of free phase hydrocarbons was recorded during the investigation. The concentrations reported were significantly below the health-based GAC for these TPH fractions.

Asbestos was identified in six Made Ground samples in the form of chrysotile and/or amosite as loose fibres or fibrous debris at concentrations ranging from <0.001% to 0.002%. Additionally, a sample of possible ACM, described as cement, was taken from TP02 and contained chrysotile asbestos. The testing results did not identify the form of asbestos. The results are included in the factual report in Appendix A. Potential ACMs were also encountered in HP05 (aborted at

0.4m), HP06 (0.65m) and TP03 (arisings). The potential ACM were not tested from these locations.

Concentrations of PCBs were below detection in all samples apart from detectable concentrations of PCB-118 in BH01 at 1.1m, TP03 at 0.5m and TP04 at 0.25m. The maximum concentration recorded was 0.011mg/kg in BH01.

5.2.2 Controlled waters

Groundwater

The groundwater data were assessed initially by comparison to WQS and are presented in Appendix C. In general, the concentrations recorded in groundwater were very low and below the respective WQS with most recorded at concentrations below the MDL.

From the four groundwater samples collected, two concentrations above the relevant WQS were recorded as follows:

- manganese was marginally above the WQS (100µg/l) in BH2B (130µg/l);
 and.
- selenium was marginally above the WQS (10μg/l) in BH2B (12μg/l).

These results are very low and only marginally about the highly protective WQS used for the initial assessment., The results of the testing indicate that the groundwater in this area is relatively good quality given the environmental setting (a shallow aquifer in central London).

Soil leachability

The soil leachability data were compared to relevant WQS and are presented in Appendix C. In general, the soil leachability concentrations were low and below their respective WQS. No leachable concentrations were recorded above the WQS and leaching of these contaminants to groundwater is not considered significant. .

5.2.3 Ground gas

The results of the six monitoring rounds are summarised below:

- carbon dioxide ranged from 0.2% to 4.3% v/v;
- methane was not detected above the detection limit (<0.1% v/v); and,
- no flow rates were measured above the reporting limit of <0.1 litres/hr (l/hr).

A maximum GSV of 0.0043 has been calculated based on a maximum carbon dioxide concentration of 4.3% v/v and a maximum flow rate of 0.11/hr. This equates to a characteristic situation (CS) 1 classification, which represents a very low risk from ground gas. No specific gas protection measures are required for a CS1 category site.

6 Risk assessment

6.1 Risk classification definitions

The potential risks to various receptors have been considered in the context of the conceptual site model in accordance with the current UK approach to contaminated land assessment. The method for risk evaluation has been based on a qualitative assessment taking into consideration the magnitude of the potential severity of the risk as well as the probability of the risk occurring. The risk characterisations provided below have been assessed using a scale from very high to very low based on the CIRIA guidance C552 [5]. A brief summary of each risk classification is provided in Table 8.

Table 8 Risk classification

Classification	Description of risk
Very high	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, or there is evidence that severe harm to a designated receptor is currently happening. The risk, if realised, is likely to result in substantial liability. Remediation is likely to be required.
High	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Remedial works may be necessary
Moderate	It is possible that harm could arise to a receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Some remedial works may be required.
Low	It is possible that harm could arise to a receptor from an identified hazard but it is likely that this harm, if realised, would typically be mild.
Very low	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised the consequence would at worst be mild.
Negligible	There is no plausible pollutant linkage due to the absence of a pathway or receptor (without any intervention).

6.2 Site sensitivity

6.2.1 Environmental sensitivity

The secondary aquifer within the RTD is of relatively low sensitivity and will be truncated by existing basements particularly to the south. The deeper principal aquifer within the Chalk is overlain by a significant thickness of London Clay (over 20m) which will provide significant protection. There are no source protection zones, surface water receptors, abstractions, environmentally sensitive areas or historic or current landfills near the site. The environmental sensitivity of the site is **low**.

6.2.2 Development sensitivity

The development comprises a new residential apartment building including a private garden in the north east corner. Residents will include adults and children and therefore sensitive receptors will be present at the site. Fewer pathways will be active for residents on upper floors since they will not have access to the private garden and gas and vapour pathways will be less relevant. The development sensitivity is **high** for ground floor residents with access to private gardens; elsewhere on site it will be low.

6.3 Summary of results

Most soil results were below the protective initial GAC used in the assessment. Concentrations of beryllium marginally the GAC were recorded in two samples and concentrations of lead above the GAC were recorded in ten samples. Six samples (30%) reported low concentrations of chrysotile and/or amosite fibres and asbestos was identified during the ground investigation works at several locations.

The results of the testing indicate the groundwater in this area is relatively good quality given the environmental setting (a shallow aquifer in central London).

The soil leachability results were generally low and none of the recorded concentrations were above the WQS.

6.4 Human health risk assessment

6.4.1 During construction

A PCL was identified in the preliminary risk assessment between ground contamination and site workers (including visitors) during construction works. Made Ground was identified in all exploratory locations to depths of between 3.9m and 6.0m bgl.

Asbestos as chrysotile and amosite loose fibres was identified in six samples (from BH02B, HP03, HP04, TP03 and TP04) typically within the top 1.0m at concentrations of between <0.001% and 0.002%. There are no specific thresholds for safe levels of asbestos fibres in soils. ACMs were identified and therefore higher concentrations may be present within Made Ground. The risks associated with the asbestos identified can be managed during construction with enhanced health and safety measures.

Based on the findings of the ground investigation the risk of harm to human health during construction of the development is assessed to be **moderate** principally due to the relatively frequent identification of asbestos (both visual and in the laboratory). The identified receptors which could be affected include construction workers onsite and site neighbours offsite.

With mitigation comprising appropriate enhanced control and risk management measures during construction the risk of harm to construction workers and site neighbours can be reduced to **very low**. Recommendations are presented in Section 9.

6.4.2 **During operation**

After development the main receptors at the site will be site residents, visitors and maintenance workers.

The results of the ground investigation have identified generally low concentrations of contaminants in the ground. Concentrations of lead and three PAH compounds above the residential GAC and asbestos fibres have been identified relatively frequently. These contaminants were found at locations in the north east of the site which will be a private garden following development. The garden should therefore be provided above a suitable thickness of clean cover (minimum of 1m) with a no dig layer (150mm thick hard layer which allows drainage) beneath. Further details are provided in Section 9.

There is the potential for maintenance workers to be exposed to underlying Made Ground soils if the hard and/or soft surfacing is penetrated during future maintenance works. Mitigation in the form of a marker layer and safety controls are described in Section 9.

Assuming the various mitigation measures (including the cover layer within the garden area) are implemented as described in Section 9 the risk of harm to future site users and maintenance workers will be **very low**.

6.5 Controlled waters

The conceptual model identified that controlled waters receptors are limited to the shallow RTD secondary A aquifer. The aquifer is of low sensitivity.

The new building will have a suspended reinforced concrete ground floor slab and piled foundations. The slab will be suspended from the pile caps. Due to the presence of the garden area (in place of the existing hard surfaced yard), the net effect of the development is expected to be a small increase in infiltration of water into the ground.

The results of the ground investigation have identified no significant contamination onsite within the groundwater and low concentrations of leachable contaminants. The risk of pollution of controlled waters is therefore **very low**.

6.6 Risk to building materials

Building materials normally identified as being at risk on contaminated sites are concrete, plastic and metals. The results of the ground investigation have not identified significant contamination onsite. Because detectable concentrations of TPH and PAHs were recorded, suitable pipe materials may need to be selected for any new or existing potable water supply at the site.

Assuming building materials and services are appropriately specified the risks are assessed to be **very low.**

6.7 Risk to ecological receptors

The site is not located in an area of ecological importance and the risk of harm to designated ecological receptors from contaminated ground is therefore **negligible**.

The principal (non-designated) ecological receptors identified are new planting (grass, trees and shrubs etc.) within the garden area in the northeast corner of the site. Three concentrations of zinc within shallow soils were above the phytotoxicity thresholds given in BS3882 [8]. A suitable thickness of clean imported soils will be provided within the development and is required to mitigate the risks from other contaminants; site won soils will not be reused in the upper layers of gardens and will therefore not present a potential risk to new planting.

The risk of harm to new planting is therefore considered to be **very low**.

7 Revised conceptual site model

The preliminary conceptual model has been updated based on the findings of the ground investigation and the risk assessment. Table 9 presents the revised conceptual model based on assessment of the PCLs for the site.

Table 9 Revised conceptual model

PCL	Summary	Mitigation measures	Risk
Construction workers (including visitors) via dermal contact, ingestion and inhalation of soils, soilderived dust and vapours. Site neighbours via inhalation of soils, soil-	Generally low levels of contamination identified. Low concentrations of chrysotile and amosite asbestos fibres identified in six locations. Asbestos visually identified during investigation Lead and PAHs identified above residential criteria. Potential for other	Enhanced safety measures and material management, proactive dust control measures and PPE. Watching brief during excavation works.	Very low
derived dust and vapours	unexpected contamination.		
Future site users via dermal contact, ingestion and inhalation of soils and soilderived dust.		Garden area will include 1m thick cover layer of imported soils and no dig layer.	Very low
Future site maintenance workers via dermal contact, ingestion and inhalation of soils and soil-derived dust.		Marker layer below hard surfacing build up. Services laid in clean material and trenches lined with marker layer/	Very low
Secondary aquifer (RTD).	Low levels of contamination in soils and leachable contaminants.	None	Very low
Construction materials and services	No significant contamination identified in soil and groundwater.	Materials to be appropriately specified. Water supply pipes specified.	Very low
Planting within garden area	Generally low levels of contamination identified. Three concentrations of zinc were above phytotoxicity thresholds	Gardens will include 1m thick cover layer of imported soils.	Very low

8 Preliminary waste classification assessment

8.1 Background and methodology

This section provides a preliminary waste classification for the materials represented by the laboratory data obtained during the ground investigation.

The following documents have been utilised for the preliminary waste classification and disposal assessment of Made Ground and natural soil arisings generated by the proposed development:

- Environment Agency, Hazardous Waste, August 2009 Update [9];
- Environment Agency, Hazardous Waste, Technical Guidance WM3 2018 [10];
- The Hazardous Waste (England and Wales) Regulations [11]; and
- Table 3.2 of Annex VI to Regulation (EC) No. 1272/2008 [12].

8.2 Framework

There are three types of permitted landfill (inert, non-hazardous and hazardous) and four principal types of waste, as outlined below.

- Inert; generally uncontaminated natural soils that may be disposed of to an
 inert landfill. Other materials such as Made Ground may be classified as inert
 if it contains no hazardous properties and satisfies the inert waste acceptance
 criteria (WAC).
- Hazardous; defined by the analysis of 'total' chemical parameters to assess the hazard properties. If classed as hazardous it may only be disposed of (following treatment) if it satisfies the TOC and leachability WAC for hazardous waste.
- Stable non-reactive (SNR) hazardous waste; defined in a similar manner to hazardous waste but satisfying stricter WAC. Following treatment, it may be disposed of in specifically designed separate cells in non-hazardous landfills (if the operator has obtained a permit to operate these cells).
- Non-hazardous waste; if the waste is not classified as inert or hazardous then it is non-hazardous. There is no WAC for non-hazardous waste.

8.3 Hazardous waste

The concentrations of TPH, BTEX, TOC, PCB and PAHs were all below hazardous waste thresholds as were the results for asbestos.

The concentrations of asbestos in soil were generally below the 0.1% threshold for hazardous waste. However, ACM was identified visually in a sample from TP02 and potential ACMs were also encountered in HP05 (aborted at 0.4m),

HP06 (0.65m) and TP03 (arisings). Soils containing visible fragments of materials that might reasonably be ACM will be classed as hazardous (mixed) waste unless that ACM can be segregated.

Where soils are excavated that might contain visually identifiable fragments of ACM these should be segregated by picking or other means where possible. The soils would then be tested and might be classed as non-hazardous waste and the fragments of ACM as hazardous waste. If that is not practical, then the entire excavation might be classed as hazardous waste.

8.4 Non-hazardous and inert waste

Waste soils not classed as hazardous waste could be classified either as non-hazardous or inert waste. The 19 samples were analysed for leachability WAC testing.

Six of the 19 samples recorded leachable concentrations of antimony, selenium, sulphate and total dissolved solids above the inert WAC. Of these samples two had leachable concentrations of only sulphate or total dissolved solids which might not prevent an inert classification.

Two samples from the London Clay had concentrations of selenium above the inert WAC, which is not unusual. The remaining two Made Ground samples contained concentrations of antimony and sulphate and/or total dissolved solids above the inert WAC.

8.5 Summary

The results suggest that Made Ground material arising from the works will be classified as non-hazardous if ACM can be segregated. The potential presence of low levels of asbestos would prevent a classification of inert. Soils containing visible fragments of materials that might reasonably be ACM will be classed as hazardous waste unless that ACM can be segregated.

Natural soils, not suspected of being contaminated should be classed as inert waste. The contractor will be responsible for undertaking sufficient testing of material to confirm their waste classification prior to off-site disposal.

9 Conclusions and recommendations

9.1 Conclusions

Soil and groundwater contamination levels at the site were generally low. Concentrations of lead above the GAC were reported in ten soil samples from eight locations and PAH in one sample at shallow depths. Low concentrations of chrysotile and amosite asbestos fibres were reported in six soil samples (30%) from five locations. ACM were identified during the investigation TPH concentrations were below the residential assessment criteria.

The environmental sensitivity of the site is low. The development sensitivity is high in some areas because it comprises a residential building which includes a garden area at ground level.

Based on the risk assessment for the proposed development, risks to human health and the environment have been assessed as either low, very low or negligible (without mitigation). Proposed mitigation measures including good and enhanced construction practices (e.g. health and safety, environmental controls) and the form of development (1m clean cover and no dig layer in garden areas, marker layer beneath hard landscaping and utilities laid in clean material) will reduce any residual risk to very low or negligible (with mitigation).

Table 10 below summarises the risk of harm to receptors through the identified PCLs.

Description	Classification			
Contaminant sources and site sensitivity				
Environmental sensitivity	Low			
Development sensitivity	High (ground floor residents)			
Risk assessment				
Risk of harm to human health during construction	Very low (with mitigation)			
Risk of harm to human health during operation	Very low (with mitigation)			
Risk of pollution to groundwater	Very low			
Risk of pollution to surface water	Negligible			
Risk to construction materials and services	Very low (with mitigation)			
Risk to designated ecological receptors	Negligible			
Risk to planting in garden area	Very low (with mitigation)			

9.2 Recommendations

Based on the findings of the ground investigation and risk assessment, there is no requirement for a specific advance phase of remediation. However, specifically enhanced control and safety measures are presented in the following sections to be

put in place during the construction work to minimise potential exposure of receptors during the construction and operational phases. Additional soil cover layers will be included in gardens, with other measures for services and hardstanding implemented elsewhere.

The contractor(s) should incorporate the findings of this report applicable to their works as part of their risk assessment process, to determine the appropriate level of mitigation and control measures. As with most brownfield sites, there is the potential for conditions different to those identified in this report to exist onsite, for example between investigation locations.

9.3 Site safety and control

The development works should be undertaken in a fashion to prevent the creation of dusts and appropriately specified PPE and good control of arisings is necessary, where the following may apply:

- The requirements described in Control of Asbestos Regulations (CAR) 2012
 [13] and CL:AIRE CAR SOIL [14] guidance should be adhered to where they apply.
- The low levels of asbestos identified by the laboratory during the recent investigation are typical of Made Ground in London. However, the identification of the low levels was relatively frequent and it was visually identified during site works. It will not necessarily be identifiable during all groundworks so a protective and pragmatic approach will be necessary, primarily through prevention of dust, control of materials, appropriate PPE and asbestos awareness briefings.
- An assessment should be undertaken by a competent assessor (asbestos specialist) in accordance with CAR 2012 and the associated code of practice to determine the likely exposure resulting from the works and the level of protection and management required by CAR 2012.
- Air monitoring may be required which will be advised by the specialist. If the
 works will take place adjacent to occupied premises (neighbours), a lower
 detection limit (than used for occupational monitoring), i.e. 0.00001 f/ml, for
 air monitoring at the boundary may be appropriate.
- Sufficient hygiene units and PPE should be provided for the works. Suitably
 competent personnel should advise on and supervise the works and all staff
 should be briefed on the working methods.

9.4 Clean cover and marker layer

The ground investigation identified elevated lead, PAH and asbestos concentrations. The proposed development includes both hard and soft surfaced areas.

It is recommended that a clean cover layer and a marker sheet are placed to limit any future contact with potentially contaminated soils. A clean cover layer of a minimum 1.0m thickness is recommended in the garden area that should be

underlain by a hard no dig layer which allows drainage. A marker layer should be placed beneath hard surfaced areas to mitigate potential risks to future maintenance workers. This should be recorded in the verification report.

Any services, utilities and other parts of the public realm that may require future maintenance should be provided with a marker layer, denoting the potential presence of asbestos and contamination below that layer and clean backfill provided so that the potential for future exposure is limited.

A record of the installed measures, including the cover layer in the garden area and depth to marker sheet, should be maintained after completion of the development works. Any proposed belowground maintenance work should be reviewed to ensure that appropriate measures are taken.

9.5 Watching brief and unexpected contamination

A watching brief should be maintained during the works for the presence of contamination and to ensure the various recommendations provided are implemented and recorded.

The method for implementing the watching brief should be described in the construction risk assessment method statement (RAMS). The watching brief should be documented, reported on during progress meetings and compiled in the verification report. Specialist personnel will be necessary to advise on the method statement for the safe handling of asbestos materials onsite where encountered and air monitoring if required.

Where it is necessary to sample and test soils for waste classification purposes, verification, or for dealing with unexpected contamination, this should be undertaken in an appropriate manner by appropriately experienced and qualified staff. Soil testing should be to MCERTS and UKAS standards (where available). All such activities should be recorded and reported on.

These measures and any others deemed necessary by the contractor should be included in the relevant method statements. The contractor will prepare a method detailing how unexpected contamination will be dealt with should it be encountered during the works to comply with planning condition 12. This condition requires unexpected contamination to be dealt with to the satisfaction of the local authority. This would normally include;

- suspending excavation in the area and undertaking insitu soil sampling, or segregating and stockpiling the excavated material separately in an appropriate manner and then collecting soil samples;
- undertaking laboratory testing of potentially contaminated materials; and
- carrying out measures to restrict dust, odour and surface water run-off.

Any additional significant contamination will need to be reported to LBC and any necessary modifications to the remediation scheme should be submitted to and approved by LBC prior to implementation.

9.6 Materials management

9.6.1 Excavated soils

During the earthworks, the contractor will ensure that stockpiles and arisings will be appropriately managed to prevent the spread of material and potential cross contamination. The contractor will implement a robust material and waste management procedure to ensure that all necessary licences/ permits and waste documentation are compliant with the relevant regulations and guidance.

9.6.2 Imported materials

Material will be imported onto site, which is likely to consist of:

- topsoil and subsoil, to be placed in the garden area; and,
- 'product' material, such as concrete and 'virgin' quarry materials which may include drainage shingle, bedding sands and road/pavement aggregate.

The contractor will document their import of material in their works method statement, but as a minimum will implement the following:

- prior to any import: review the suppliers' certificates, including chemical testing results (where/if available);
- upon arrival to site: visual inspection to ensure that the material is free of any obvious visual or olfactory evidence of contamination and is consistent with the expected material. If suspect material is identified, any lorry loads should either be rejected or chemically tested prior to placement;
- insitu validation chemical testing (or stockpile testing onsite): topsoil and subsoil verification sampling on a frequency of one sample every 50m³ for a suite of chemical determinands consisting of metals, TPH, PAH and asbestos;
- the frequency may be subject to review, for example, based on Local Authority requirements or volume/consistency of source(s);
- if it proposed to import recycled material or use site won material, then testing for asbestos will be undertaken; and,
- 'product' materials will not be chemically tested on site.

9.7 Decommissioning standpipes

The two groundwater monitoring wells will require decommissioning. Where required, these wells should be decommissioned in line with the EA guidance [15]. This is required to ensure that no contaminant migration pathways are created during the development works from the surface/Made Ground to the underlying natural soils/aquifer. This shall be undertaken before any significant ground works take place.

9.8 Verification report

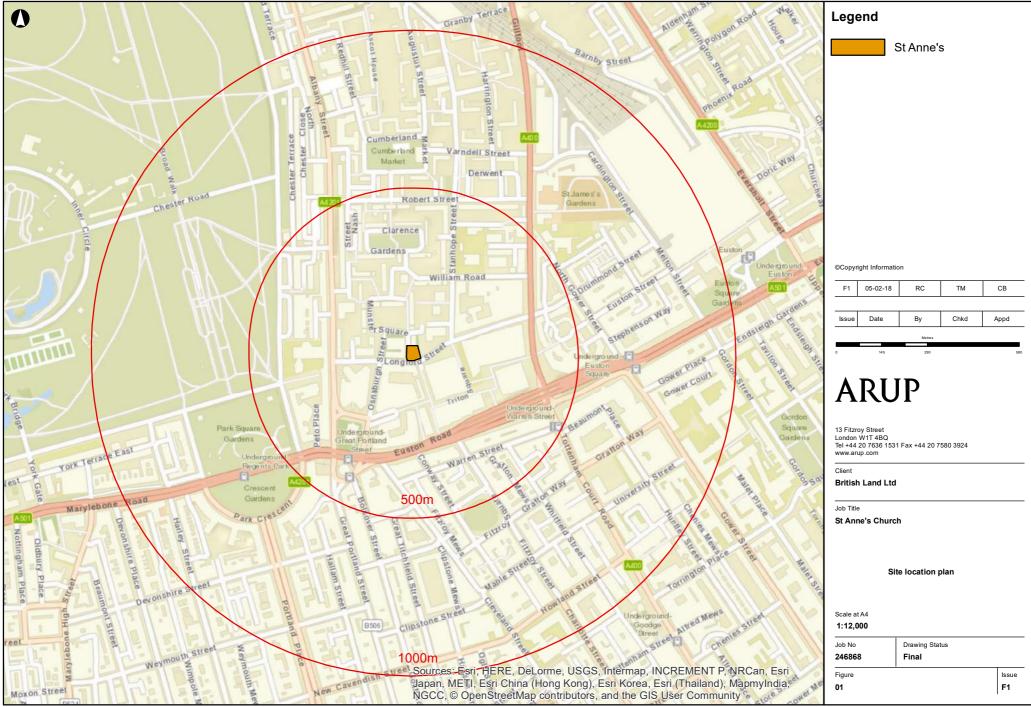
A verification report should be prepared following completion of the works to demonstrate that the requirements of the remediation strategy have been achieved. Typical information which is included in a verification report and which will need to be collected is set out in Table 11 below.

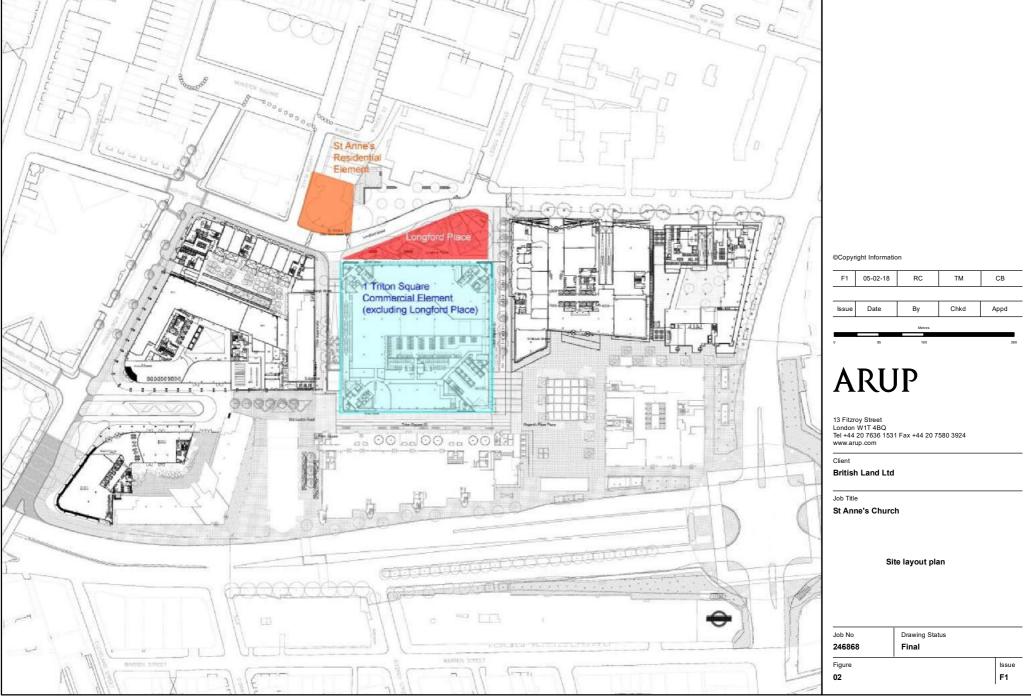
Table 11 Requirements relating to verification

Requirement	Method	
Details of works	details of the parties involved and a summary of the works undertaken, including method of works, health and safety and environmental control measures implemented, as-built records and photographs of key stages of the ground works.	
Health and Safety	 method statement and risk assessment from earthworks contractor and specialist sub-contractors and/or consultants relating to contamination/waste/asbestos; contamination and asbestos discovery strategies and records of communication to operatives via site induction and tool box talks; and minutes of site progress meetings including a section on safety and 	
Asbestos	 environment. evidence of compliance with CAR 2012 and other legislation; CAR assessment and asbestos management plan; evidence of induction and toolbox talks to operatives; evidence of control measures; records of results above relevant exposure limits and actions undertaken as a result to mitigate associated risks; records of air monitoring, and waste disposal records. 	
Marker layer	 details of the cover layer placed in the garden area and photographic evidence of its depth; details of marker layer beneath hard landscaped areas which should be shown on drawings to inform future maintenance works; and Details of service runs, marker layer and record of clean material. 	
Watching brief	 details of any ground contamination encountered and how it was dealt with; any other observations made by operatives during works; and photographic records to be included. 	
Previously unidentified contamination	record of actions taken and mitigation measures put in place; records of chemical sampling to assess nature and extent of potential contamination; and records of excavation, stockpiling and waste disposal.	
Dust control	 mitigation measures to be detailed in contractor's method statements; and evidence that proactive dust control was implemented. 	
Imported material	 results of testing of imported material at source (prior to import) and insitu testing following placement. This should include details of volumes, material sources and chemical testing, where appropriate, with assessment against GAC; and record of the extent and thickness of any imported soil/soft 	
	landscaping layers.	

Requirement	Method	
Waste	• results of waste classification testing (chemical laboratory results);	
management	 summary of waste disposal records, including conveyance tickets and evidence of compliance with the relevant waste regulations; 	
	 volumes or tonnage of each waste stream removed from site; 	
	• permits of all hauliers, treatment centres, landfills and other receiving facilities used to remove waste from site; and	
	• haulage/disposal tickets.	
Photographs	 photographic record of activities undertaken onsite, with particular attention to key tasks; and 	
	• if fixed points can be set out at the site which will remain constant for periodic photographs to be taken to document the progress of the site, this would be beneficial.	
Regulatory correspondence	evidence of communication with the regulators, such as the Local Authority Environmental Health Officer (EHO) and Environment Agency and compliance with any permit, consent and licence and relevant planning condition requirements.	
Outstanding actions	details of any outstanding actions and site constraints and how these will be addressed, including maintenance plan; and	
	 description of final site conditions 	

The verification report should form part of the Health and Safety file in accordance with the Construction Design and Management (CDM) Regulations 2015 and the development operations & maintenance (O&M) manual or maintenance plan. This is to allow the owner/occupant to address any residual ground contamination risks associated with future operations and maintenance.


References


- [1] Arup (2018), 1 Triton Square, St Anne's Contamination Desk Study and Programme of Investigation, February 2018.
- [2] Concept (2018), Site Investigation report, St Anne's, 1 Triton Square.
- [3] Groundsure (2016) EnviroInsight, St Anne's Church, Ref. CGL01-3083559
- [4] Landmark (2015) Envirocheck Report, Order No 76872908_1_1, Dec 2015
- [5] CIRIA (2001), Contaminated Land Risk Assessment A Guide to Good Practice (C552).
- [6] CLR 11 (2004), Model Procedures for the Management of Land
 Contamination, Department for Environment, Food and Rural
 Affairs.
- [7] Defra, 2012. Environmental Protection Act 1990: Part 2A. Contaminated Land Statutory Guidance.
- [8] BSI (2015), Specification for topsoil, BS3882:2015.
- [9] Environment Agency (Aug 2009) Hazardous Waste August 2009 Update, Technical Guidance WM2 and Changes to Chemical Legislation.
- [10] Environment Agency (2018), Waste Classification, Guidance on the classification and assessment of waste (1st Edition v1.1), Technical guidance WM3.
- [11] The Hazardous Waste (England and Wales) Regulations 2005.
- [12] European CLP Regulations (Updated 2010) CLP-Regulation (EC) No 1272/2008.
- [13] HSE (2012) The Control of Asbestos Regulations (CAR).
- [14] CAR-SOILTM (CLAIRE & JIWG) (2016) Control of Asbestos Regulations 2012, Interpretation for Managing and Working with Asbestos in Soil and Construction and Demolition Materials, Industry Guidance.
- [15] Environment Agency (March 2012), Good practice for decommissioning redundant boreholes and wells.

Figures

Figure 1 Site location plan

Figure 2 Site layout plan

Appendix A

Concept 2018 factual report

SITE INVESTIGATION REPORT

1 Triton Square - St Anne's

C.NCEPT **ISSUE 01**

SITE INVESTIGATION REPORT

1 Triton Square – St Anne's

Prepared for: British Land

Concept: 18/3106 - FR 01 17/07/2018

Unit 8, Warple Mews, Warple Way London W3 0RF Tel: 020 8811 2880 Fax: 020 8811 2881

e-mail: si@conceptconsultants.co.uk www.conceptconsultants.co.uk

Unit 8 Warple Mews, Warple Way, London W3 0RF Tel: 0208 811 2880, Fax: 0208 811 2881 Email: si@conceptconsultants.co.uk

DOCUMENT ISSUE REGISTER				
Project Name: 1 Triton Square - St Anne's				
Project Number:	3/3106			
Document Reference:	18/3106 - FR 01	Current Issue	Issue 01	
Document Type:	Site Investigation Report			

Development	Name	Signature	Date
Prepared by:	F Elliston	(In	17/07/2018
Checked by:	O Savvidou	Jamolan	17/07/2018
Approved by:	I Penchev	AL	17/07/2018

Issued to:	Arup
------------	------

Date	Issue	Amendment Details/ Reason for issue	Issued to
27/06/2018	Issue 00	DRAFT	Arup
17/07/2018	Issue 01	FINAL - Updated with monitoring & chemical test results	Arup

Notes:

CONTENTS

1.	PROJECT	DADTICI	II A DC
ı.	PROJECT	PARTIC	JLAKS

- 2. PURPOSE AND SCOPE OF WORKS
- 3. DESCRIPTION OF WORKS
- 4. INVESTIGATION METHODS
- 4.1 Inspection Pits
- 4.2 Cable Percussion Drilling
 - 4.2.1 Sampling and Testing during Cable Percussion Drilling
- 4.3 Hand Excavated Trial Pits
- 4.4 Standpipe Installations
- 4.5 Instrumentation Monitoring
- 4.6 Logging / Laboratory Testing
- 4.7 Setting Out
- 5. GEOLOGICAL GROUND PROFILE
- 6. SITE LOCATION PLAN
- 7. EXPLORATORY HOLE LOCATION PLAN
- 8. CABLE PERCUSSION BOREHOLE LOGS
- 9. TRIAL PIT LOGS AND SKETCHES

18/3106 - Issue 01 Page 1 of 16

- 10. INSTRUMENTATION MONITORING RESULTS
- 11. GEOTECHNICAL LABORATORY TEST RESULTS
- 12. CHEMICAL LABORATORY TEST RESULTS
- 13. PHOTOGRAPHS

18/3106 - Issue 01 Page 2 of 16

1. PROJECT PARTICULARS

Site Location: 1 Laxton Place, London NW1 3PT

Client: British Land

Investigation Supervisor: Ove Arup & Partners

Fieldwork: 24/04/2018 – 04/05/2018

Laboratory Work: 03/05/2017 – Ongoing

Postfield Work: 18/05/2017 – 27/06/2018

2. PURPOSE AND SCOPE OF WORKS

The purpose of the investigation was to provide information on the geometry and condition of the existing substructure, the contamination status of the site in relation to ground conditions, ground gas and groundwater regime and confirm geotechnical parameters for the design of new foundations.

The site at the time of the investigation was occupied by the main church hall adjoined to a two storey building containing bathrooms, a kitchen, an office and storage rooms. An existing single storey building extension was also present to the north-east of site.

The proposed works involve the demolition of the existing buildings on site and construction of a new part 6 storey, part 9 storey above ground building.

The scope of the works comprised the following:

- 2 No. Cable Percussion Boreholes to a maximum depth of 30.00m.
- 11 Hand Excavated Pits to a maximum depth of 1.50m;
- Logging and Photographing;
- Instrumentation Monitoring and Sampling;
- Geotechnical & Chemical Testing.

Table 1 - Exploratory Hole List

Hole ID	Hole Type	Depth (m)	Easting Northing		Level (mOD)
BH01	СР	30.00	528988.26	182406.28	28.04
BH02	IP	1.20	529002.71	182398.02	28.71
BH02A	IP	1.20	529004.91	182403.27	28.71
BH02B	СР	30.00	529005.25	182401.93	28.71
HP01	TP	0.80	529002.06	182413.08	28.58
HP02	TP	1.20	529002.48	182410.66	28.60
HP03	TP	1.20	529005.10	182413.53	28.55
HP04	TP	1.20	529005.23	182410.79	28.59
HP05	TP	0.40	529005.31	182416.20	28.52

18/3106 - Issue 01 Page 3 of 16

Hole ID	Hole Type	Depth (m)	Easting	Northing	Level (mOD)
HP06	TP	0.65	529009.25	182399.47	28.35
TP01	TP	1.50	528988.60	182416.89	28.63
TP02	TP	0.40	528998.90	182417.20	28.66
TP03	TP	1.30	529004.34	182418.13	28.55
TP04	TP	1.40	529007.92	182400.64	28.40
TP05	TP	1.40	529001.32	182416.73	28.55

Key

CP – Cable Percussion Borehole
TP – Hand Excavated Trial Pit

IP – Inspection Pit

3. DESCRIPTION OF WORKS

The works were carried out in accordance with the Arup "1 Triton Square – St Anne's" Ground Investigation Specification document, Draft 1 dated 5 March 2018 and Concept's Method Statement (St Annes MS).

The site was bounded by 1 Laxton Place to the north, a small park to the east, Longford Street to the south and Laxton Place to the west.

The approximate centre of the site was located at National Grid Reference 528997E, 182419N.

The locations of all exploratory holes are shown in the Exploratory Hole Location Plan presented in Section 7 of this report.

4. INVESTIGATION METHODS

4.1 Inspection Pits

Inspection pits were hand excavated to a maximum depth of 1.20m at all borehole locations. BH02 and BH02A locations were aborted at 1.20m depth due to strong CAT signal. Position moved to location BH02B.

4.2 Cable Percussion Drilling

2 No. Cable Percussion Boreholes (BH01 and BH02B) were drilled to a maximum depth of 30.00m depth using a standard cable percussion rig (Dando 1000) with 200mm and 150mm diameter casing as appropriate.

4.2.1 Sampling and Testing during Cable Percussion Drilling

Bulk samples were taken at regular intervals in the Made Ground or as instructed by the Investigation Supervisor. Undisturbed Thin Walled samples (UT) were taken in accordance with EC7 using a down-hole sliding hammer in cohesive material at regular intervals or as instructed by the Investigation Supervisor.

Standard Penetration Tests (SPT) were carried out at specified intervals or as otherwise instructed by the Investigation Supervisor. The resulting SPT "N" blowcount values are

18/3106 - Issue 01 Page 4 of 16

presented in the relevant borehole records. Where an SPT using a split spoon sampler was not possible, due to the granular nature of the material, a solid cone was used.

Small, disturbed samples were retrieved from the cutting shoe of the UT100 sampler, the SPT split spoon sampler and at intervals specified by the Investigation Supervisor.

Environmental samples (tubs, jars and vials) were taken for chemical analysis in the Made Ground or at each change of strata and where visual or olfactory evidence of contamination was noted or as instructed by the Investigation Supervisor. Headspace readings for volatile organic compound (VOC) content were taken in all the samples using a Phocheck Tiger photoionization detector.

The borehole logs are presented in Section 8 of this report.

4.3 Hand Excavated Trial Pits

11 No. Hand Excavated Pits were carried out to a maximum depth of 1.50m.

HP01 - HP06 were carried out for environmental testing purposes. Bulk samples were also taken for geological testing. HP05 and HP06 were aborted at 0.40m and 0.65m respectively due to presence of asbestos and no logging or sampling was carried out.

TP01 - TP05 were carried out to expose the width and depth of the existing boundary foundations and to assess the shallow ground conditions. TP02 was aborted at 0.60m depth and was not sketched or logged due to presence of asbestos. Specialist subcontractor 4-Rail was called on site and a sample was taken for testing. Asbestos was encountered also in TP03 and TP04.

Environmental samples (tubs, jars and vials) were taken for chemical analysis in the Made Ground or at each change of strata and where visual or olfactory evidence of contamination was noted or as instructed by the Investigation Supervisor. Headspace readings for volatile organic compound (VOC) content were taken in all the samples using a Phocheck Tiger photoionization detector. Bulk samples were also taken for soils analysis.

All pits were logged and photographed. Trial pits (TP01-TP05) were also sketched. The logs and sketches of the pits are presented in Section 9 of this report and the photographs are presented in Section 13 of this report.

4.4 Standpipe Installations

Monitoring wells were installed in the boreholes as follows:

Table 2 – Monitoring Installation Details

Hole ID	Base of Borehole (m bgl)	Diameter of Installation (mm)	Type of Installation	Base (m bgl)	Top RZ (m bgl)	Bottom RZ (m bgl)
DUO1	BH01 30.00	50	SPG/GW	3.50	2.00	3.50
RH01		50	SPGW	7.90	5.00	7.90
вно2в	30.00	50	SPG/GW	5.50	2.00	5.50

18/3106 - Issue 01 Page 5 of 16

50	SPGW	8.30	6.50	8.30

KEY

SPG/GW – Gas and groundwater Standpipe

SPGW – Goundwater Standpipe

RZ – Response Zone

The boreholes were backfilled with bentonite pellets with gas/groundwater response zones backfilled with a 10mm pea shingle filter with a geosoc surround. All installations were finished with bentonite pellets to the surface with concrete and a lockable stopcock cover flush with the ground.

4.5 Instrumentation Monitoring

Gas and groundwater monitoring and sampling was carried out by Concept subsequent to completion of the boreholes on 6 monitoring visits between the 18/05/2018 and 27/06/2018. All boreholes were developed prior to monitoring commencing.

Groundwater in the standpipes was monitored using an In-Situ Rugged interface and the gas concentrations were recorded using a Gas data GFM436 gas monitor. The accuracy of the instrument is summarised in Section 10 where the gas monitoring reports and groundwater results are presented.

4.6 Logging / Laboratory Testing

Logging of all soil samples was carried out in accordance with BS 5930:2015.

Geotechnical testing was performed at Concept Site Investigations laboratory in accordance with BS1377:1990 unless otherwise stated in the report. Concept is accredited by UKAS for tests where the UKAS logo is appended to the individual test report or summary. Approved signatories for laboratory testing are as follows:

- LG Lynn Griffin (Quality Manager)
- KM Kasia Mazerant (Laboratory Manager)

Where subcontracted analysis has been carried out, the details of the laboratory (and accreditation where applicable) are shown in the individual test report or summary.

The results are presented in tabular format in Section 11 of this report.

All chemical testing was specified and scheduled by Arup and carried out by i2 Analytical Ltd in accordance with the requirements of UKAS ISO17025 and MCERTS. The results are presented in tabular format in Section 12 of this report.

4.7 Setting Out

The locations of all exploratory holes were agreed with the Investigation Supervisor and set out prior to commencement of the site works.

Following completion of the ground works the locations and elevations of the boreholes and pits were established by Concept's specialist subcontractor JPP Surveying Ltd using total survey equipment with an accuracy between +/- 2mm and 5mm and GPS equipment with an accuracy between +/- 10mm and 20mm.

18/3106 - Issue 01 Page 6 of 16

The co-ordinates and levels of the as-built locations of the boreholes and pits are shown in the Exploratory Hole Location Plan presented in Section 7 of this report.

5. GEOLOGICAL GROUND PROFILE

The geological strata encountered during the investigation are summarised in the table below. The Top and Bottom of the strata noted in the table indicates the highest and lowest boundaries encountered in all exploratory holes.

Table 3 - Geological Ground Profile

STRATUM	TOP (mOD)	BASE (mOD)	DESCRIPTION		
MADE GROUND	28.71	22.21	Soft to firm, brown to yellowish brown gravelly very sandy CLAY. Gravel comprises angular to subrounded fine to coarse flint, brick, concrete and chalk fragments. Loose, dark brown to dark grey gravelly fine to coarse SAND with high brick and concrete cobble content. Gravel comprises angular to rounded fine to coarse flint, brick and concrete fragments. Light grey sandy GRAVEL with low brick and concrete cobble content. Gravel comprises angular to subrounded fine to coarse flint, brick, concrete,		
RIVER TERRACE DEPOSITS	24.14	20.71	ceramic fragments. Medium dense, yellowish brown slightly sandy angular to rounded fine to medium flint GRAVEL. Sand is fine to coarse.		
LONDON CLAY	LONDON CLAY 20.94 -1.76		Stiff, dark grey slightly sandy CLAY with rare pockets of silty fine sand.		
LAMBETH GROUP	-1.76	Extent not proven	Very stiff, reddish brown mottled bluish grey CLAY.		

18/3106 - Issue 01 Page 7 of 16

REFERENCES

British Standards Institution, (2015) Code of practice for ground investigations, British Standard BS5930: 2015, BSI, London

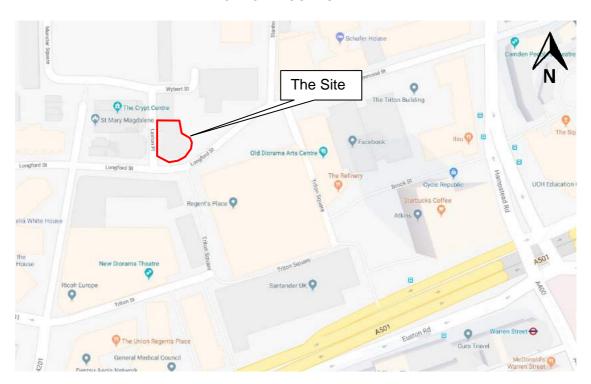
British Standards Institution, (2011) Investigation of potentially contaminated sites, British Standard BS10175: 2011, BSI, London.

UK Specification for Ground Investigation, (2011) Site Investigation Steering Group, Thomas Telford, London

British Geological Survey (1996) London and the Thames Valley 4th Edition, London HMSO.

British Standards Institution BS EN ISO 22475-1, (2006) Geotechnical Investigation and Testing – Sampling Methods and Groundwater Measurements – Part 1: Technical Principles for Execution

British Standards Institution BS EN 1997:1 (2004) EuroCode 7 - Geotechnical Design. Part 1 – General Rules.

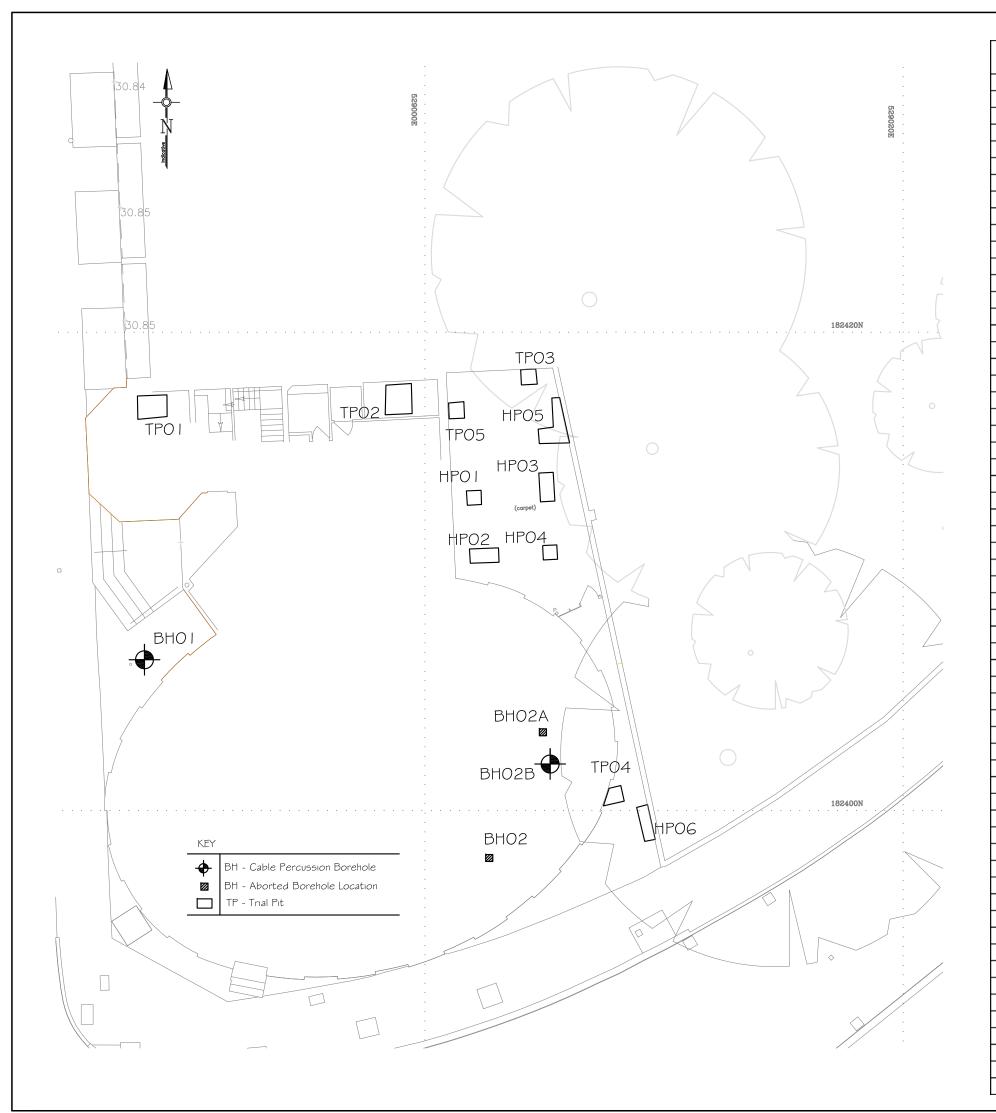

British Standards Institution BS EN 1997:2 (2007) EuroCode 7 - Geotechnical Design. Part 2 - Ground Investigation and Testing.

King C. (1981) The stratigraphy of the London Basin and associated deposits. Tertiary Research Special Paper, Vol. 6, Backhuys, Rotterdam, p158.

Entwisle N D C, Hobbs, P R N, Northmore, K J, Skipper, J, Raines, M R, Self, S J, Ellison, R A & Jones L D (2013) Investigation Supervisor ing Geology of British Rocks and Soils - Lambeth Group. British Geological Survey Open Report, OR/13/006. 316pp.

18/3106 - Issue 01 Page 8 of 16

6. SITE LOCATION PLAN



Not to Scale © Crown Copyright reserved

18/3106 - Issue 01 Page 9 of 16

7. EXPLORATORY HOLE LOCATION PLAN

18/3106 - Issue 01 Page 10 of 16

Point ID	Easting	Northing	Level (mOD)
BH01	528988.26	182406.28	28.04
BH02	529002.71	182398.02	28.71
BH02A	529004.91	182403.27	28.71
BH02B	529005.25	182401.93	28.71
HP01	529001.74	182413.37	28.58
181107 1000/01/	529001.77	182412.76	28.58
	529002.37	182412.80	28.57
	529002.35	182413.39	28.57
	525002.00		
HP02	529001.90	182410.34	28.61
0_	529001.86	182410.94	28.60
	529003.08	182410.98	28.60
	529003.10	182410.38	28.60
	020000.10	102410.00	20.00
HP03	529004.83	182412.91	28.55
111-03	529004.83	182414.11	28.55
	529004.76	182414.11	28.53
		182414.14	28.55
	529005.43	102412.94	20.00
LIDO4	E00004.00	100444.00	20.50
HP04	529004.92	182411.08	28.58
	529004.95	182410.48	28.60
	529005.55	182410.51	28.59
	529005.51	182411.11	28.58
		W3555500 10 - 5455-55	
HP05	529005.63	182417.27	28.52
	529005.31	182417.25	28.53
	529005.37	182416.03	28.53
	529004.73	182415.95	28.52
	529004.79	182415.34	28.52
	529006.05	182415.37	28.51
HP06	529008.86	182400.12	28.37
	529009.19	182398.71	28.33
	529009.63	182398.79	28.32
	529009.31	182400.25	28.37
TP01	528989.21	182417.38	28.65
	528987.97	182417.33	28.60
	528987.99	182416.36	28.65
	528989.22	182416.47	28.64
	02000.22	.521 (5.71	
TP02	528998.37	182417.79	28.66
02	528999.43	182417.86	28.67
	528999.47	182416.60	28.66
	528998.34	182416.55	28.66
	020000.04	1024 10.00	20.00
TP03	529004.64	182418.46	28.56
11-03	529004.04	182418.43	The Control of the Co
			28.56
	529004.04	182417.80	28.53
	529004.70	182417.83	28.53
TDO 4	E00000 0 4	100100 00	00.00
TP04	529008.34	182400.39	28.39
	529007.47	182400.19	28.40
	529007.71	182400.93	28.41
	529008.19	182401.04	28.41
			JUNUAN - AND -
TP05	529000.99	182417.04	28.55
	529001.63	182417.10	28.54
	529001.66	182416.41	28.56
		182416.38	28.56

NOTES

I. This drawing should not be scaled.

0	Revision	Drawn	Checked	Passed	Date	

CONCEPT SITE INVESTIGATIONS

Unit 8, Warple Mews Warple Way London W3 0RF

Tel: 020 8811 2880 Fax: 020 8811 2881

e-mail: concept@conceptconsultants.co.uk www.conceptconsultants.co.uk

Client: British Land						
Project: 1 Triton Square - St Anne's						
Title: Exploratory Hole Location Plan						
Dwg. No	: 183106/0)1				
Status:	Issue					
Scale:	NTS					
Drawn OS	Checked IP	Passed IP	Date June 2018			

8. CABLE PERCUSSION BOREHOLE LOGS

18/3106 - Issue 01 Page 11 of 16

Borehole No

BH01

Project

1 Triton Square - St Anne's

Job No	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	04/05/18	28.04	E 528988.3 N 182406.3	30.00m

Client

British Land

	BOREHOLE SUMMARY										
Top (m)	Base (m)	Type	Date Started	Date Ended	Crew	Logged By	Core Barrel (mm)	Core Bit	Plant Used/ Method	SPT Hammer Reference	
0.00 1.20	1.20 30.00	IP CP	01/05/2018 02/05/2018	01/05/2018 03/05/2018	GM GM	SB SB			Hand Excavated Dando 1000	WW1	

	WATER STRIKES				WATER	R ADDED	CHISELLING / SLOW DRILLING			
Strike at (m)	Rise to (m)	Time to Rise (min)	Casing Depth (m)	Sealed (m)	From (m)	To (m)	From (m)	To (m)	Duration (hr)	Remarks
					2.00	7.00				

НС	DLE	CASING				
Depth (m)	Diameter (mm)	Depth (m)	Diameter (mm)			
0.00 7.30 30.00	200 200 150	0.00 7.30 7.50	200 200 150			

ROTARY FLUSH DETAIL									
From (m) To (m) Flush Type Flush Return (%) Flush Colo									

	INSTALLATION DETAILS								
Type	Diameter (mm)	Depth of Installation (m)	Top of Response Zone (m)	Bottom of Response Zone (m)	Date of Installation				
SPG/GW SPGW	50 50	3.50 7.90	2.00 5.00	3.50 7.90	04/05/2018 04/05/2018				

Top (m)	Bottom (m)	Material	Backfill Date
0.00	0.30	Concrete / Flush Cover	04/05/2018
0.30	2.00	Bentonite Pellets	
2.00	3.50	Pea Shingle	
3.50	5.00	Bentonite Pellets	
5.00	7.90	Pea Shingle	
7.90	30.00	Bentonite Pellets	

From (m) To (m) Blows Recovery (%)							
From (m)	To (m)	Blows	Recovery (%)				

04/05/2018			

Issue No:

01

Checked By:

Borehole No

BH01

Project

1 Triton Square - St Anne's

Job I				Ground Level (mOD)	Co-Ordinates	Final Depth
	18/3106	Date Completed	04/05/18	28.04	E 528988.3 N 182406.3	30.00m

Client

British Land

		PROGR	ESS					SPT DETAILS	8	
Date	Hole Depth (m)	Casing Depth (m)	Water Depth (m)	Remarks	Туре	Depth (m)	N Value	Blow Count / 75mm	Casing Depth (m)	Water Depth (m
01/05/18	0.00		Dry		С	1.20	N8	2 1 /2 2 2 2		Dry
01/05/18	1.20		Dry		11		N9	3, 1 / 2, 2, 2, 2	2.00	Dry
2/05/18	1.20		Dry		C	2.00	N7	2, 1 / 3, 2, 2, 2		3.00
2/05/18	2.00	2.00	2.00	Water Added	C	3.00		4, 1 / 2, 1, 2, 2	3.00	
2/05/18	7.10	6.50	Dry	Water ridded	C	4.00	N36	1, 1 / 4, 8, 11, 13	4.00	4.00
2/05/18	7.10	7.50			C	5.00	N15	1, 1 / 2, 3, 4, 6	5.00	5.00
			Dry	ana Damark 1	C	6.50	N13	2, 2 / 4, 3, 3, 3	6.50	6.50
3/05/18	7.50	7.50	7.40	see Remark 1	S	9.00	N19	2, 2 / 3, 4, 5, 7	7.50	Dry
3/05/18	7.95	7.50	Dry		S	12.00	N23	2, 4 / 5, 5, 6, 7	7.50	Dry
3/05/18	30.00	7.50	Dry		S	15.00	N27	3, 4 / 5, 6, 6, 10	7.50	Dry
					S	18.00	N33	3, 4 / 6, 7, 9, 11	7.50	Dry
					S	21.00	N42	4, 6 / 8, 10, 10, 14	7.50	Dry
					\parallel s	24.00	N45	4, 8 / 10, 10, 11, 14	7.50	Dry
					\parallel s	27.00	N46	4, 6 / 10, 10, 11, 15	7.50	Dry
					$\parallel s$	29.50	N50/0.235	4, 8 / 9, 14, 21, 6	7.50	Dry
	REMARKS ring the borehole	between 02/05/20	018 and 03/05/20	18.						
J - 100mm I JT - 100mm I J38 - 38mm D - Disturbed - Core San	nental Sample (Tub, V Diameter Undisturbed Diameter Thin Wall U Jiameter Undisturbed I J Sample, B-Bulk Sam uple, W-Water Sample	Sample ndisturbed Sample Sample ıple, LB- Large Bulk S	Sample, BLK-Block S	ample						
PGW - Ground PG/GW - Gas / C WP - Vibrati CM - Incline	pipe Piezometer dwater Monitor Standa Groundwater Monitor S ing Wire Piezometer ometer	oipe IP CP DS DC	-Cable Percussion, Ro -Dynamic Sampling, -Diamond Coring, Cl	rial Pit TT - Trial Trench C-Rotary/Conic DS/R-Dynamic Sampling /Rotary PR-Cable Percussion Rotary follow on Probe, VOC-Volatile Organic Compound						

Report ID: SUMMARY SHEET 2 || Project: 183106 - ST ANNES CHURCH.GPJ || Library: CONCEPT LIBRARY - 2017-NEW, GLB || Date: 18 June 2018

VWP Vibrating Wire Piezometer DS -Dynamic Sampling, DS/R-Dynamic Sam Note: All depths are in metres, all diameters in millimetres, water strike rise time in minutes. For details of abbreviations see Key

Borehole No BH01

Project

Report ID: CONCEPT CABLE PERCUSSION | Project: 183106 - ST ANNES CHURCH.GPJ || Library: CONCEPT LIBRARY - 2017-NEW.GLB || Date: 18 June 2018

1 Triton Square - St Anne's

Checked By: AN

Approved By: OS

Issue No: 01

	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	04/05/18	28.04	E 528988.3 N 182406.3	30.00m
Client British L	and			Method/ Plant Used Cable Percussion	Sheet 1 of 3

PRO	OGRI	ESS			Sī	TRATA	SAMPLI	ES & T	ESTS		
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	
01/05/18		Dry	27.84 27.69		0.20	Brown ceramic tiles (0.02m) over CONCRETE.	- 0.20-0.25 0.20-0.25	ES01 B02		VOC 0.1ppm	
			27.09		- 0.33 - - - -	Light grey sandy GRAVEL with low brick and concrete cobble content. Gravel comprises angular to subrounded fine to coarse flint,	0.50-0.60	ES03 B04		VOC 0.1ppm	
01/05/18		Dry Dry			- - - -	brick, concrete and ceramic fragments. (MADE GROUND) Loose, dark brown gravelly silty SAND with high brick cobble content. Gravel comprises angular to subrounded fine to coarse flint,	- 1.10-1.20 - 1.20 - 1.20-1.65	ES05 B06	N8	VOC 0.1ppm 3, 1/2, 2, 2, 2	
02/05/18	2.00	2.00			(3.45)	concrete and ceramic fragments. (MADE GROUND)	1.90-2.00 2.00 2.00-2.45	ES07 B08	N9	VOC 0.0ppm 2, 1/3, 2, 2, 2	
					- - - -		2.70	D09			
					- - - - -		3.00 3.00-3.10 3.00-3.45	ES10 B11	N7	4, 1 / 2, 1, 2, 2 VOC 0.1ppm	
			24.24		3.80		3.70	D12			
			24.14	000	3.90	Firm, brown slightly sandy gravelly CLAY. Gravel comprises angular to subrounded fine to coarse flint, brick and concrete fragments. (MADE GROUND)	4.00 4.00-4.10 4.00-4.45	ES13 B14	N36	1, 1 / 4, 8, 11, 13 VOC 0.0ppm	
				0.0.0	- - -	Medium dense, yellowish brown sandy angular to rounded fine to coarse flint	4.70	D15			
				0.00	- (2.20)	GRAVEL. Sand is fine to coarse. (RIVER TERRACE DEPOSITS - LYNCH HILL GRAVEL) 5.00 becoming slightly silty and very sandy	5.00 5.00-5.10 5.00-5.45	ES16 B17	N15	1, 1 / 2, 3, 4, 6 VOC 0.9ppm	
				0000	(3.20)		6.00-6.10	ES18 D19		VOC 0.5ppm	
				0000	- - - -	6.50 with no silt	6.50 6.50-6.95	B20	N13	2, 2 / 4, 3, 3, 3	
02/05/18	6.50	Dry	20.94		7.10	Firm to stiff, light brown silty CLAY with	7.10-7.20 7.10-7.50	ES21 B22		VOC 0.1ppm	
02/05/18	7.50	Dry	20.44	× × ×	(0.50) 7.60	occasional selenite crystals. (THAMES GROUP: WEATHERED LONDON CLAY FORMATION)	7.50-7.95	UT23	35 blows	100% Recovery	
03/05/18	7.50	Dry			- - -	7.50 becoming very closely fissured and dark brown	7.95	D24			
					-	Stiff, extremely closely fissured grey CLAY with frequent selenite crystals (<1 mm) and rare pockets of grey fine sand and silt (<35mm). Fissures are of multiple orientation, planar, rough occasionally smooth.	8.50	D25			
					- - - -	(THAMES GROUP: LONDON CLAY FORMATION - A3ii) 7.95 becoming dark brown	9.00 9.00-9.10 9.00-9.45 9.50	ES26 D27 B28	N19	2, 2 / 3, 4, 5, 7 VOC 0.0ppm	
					- - -		F 9.30	D20			
					- - -		10.00-10.10	ES29 D30		VOC 0.1ppm	
					(5.90)	10.50 becoming your short Ground 12	10.50-10.95	UT31	55 blows	100% Recovery	
					- (3.70) - -	10.50 becoming very closely fissured with a parting of yellowish brown silty fine sand 10.60 - 10.69 with a claystone fragment	10.95	D32			

Log Print Date & Time:

18/06/2018 12:44

BH01

Borehole No

Project

1 Triton Square - St Anne's

	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	04/05/18	28.04	E 528988.3 N 182406.3	30.00m
Client British L	and			Method/ Plant Used Cable Percussion	Sheet 2 of 3

PRO	OGRE	ESS			S	TRATA	SAMPLE	ES & T	ESTS		ent/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
					-	10.75 - 10.77 with a pyrite nodule	11.50 11.70 12.00 12.00-12.10 12.00-12.45	D33 B34 ES35 D36	N23	2, 4 / 5, 5, 6, 7 VOC 0.1ppm	
			14.54		13.50		13.00-13.10 13.00 13.20 13.50-13.95	ES37 D38 B39 UT40	65 blows	VOC 0.1ppm	
					-	Stiff, extremely closely to very closely fissured brownish grey CLAY with rare pockets of grey fine sand (<30mm) and bioturbation. Fissures are of multiple orientation, planar,	13.95	D41			
					- - - - -	rough occasionally smooth. (THAMES GROUP: LONDON CLAY FORMATION - A3i) 13.65 with a pyrite nodule 13.90 with a band of claystone	14.50	D42 B43	Noz	2.4/5.6.6.10	
=					(2.95)	14.50 becoming dark brown	- 15.00 - 15.00-15.10 - 15.00-15.45	ES44 D45	N27	3, 4 / 5, 6, 6, 10 VOC 0.1ppm	
					- - - -		16.00 - 16.20	D46 B47			
			11.59		16.45	Very stiff, dark grey slightly sandy CLAY with rare pockets of silty fine sand. (THAMES GROUP: LONDON CLAY FORMATION - A2)	- 16.50-16.95 - 16.85 - 17.00-17.10	D49 ES50	100 blows	78% Recovery VOC 0.1ppm	
					-	16.80 - 16.90 with a band of claystone 16.85 becoming brownish grey and slightly sandy with rare claystone fragments	17.50 17.70	D51 B52	Naa	2.4/6.7.0.11	
					- - - - - -		18.00 18.00-18.45	D53	N33	3, 4 / 6, 7, 9, 11	
					- - - - - -	19.00 with occasional foraminifera	- 19.00-19.10 - 19.00 - 19.20	ES54 D55 B56	10011	VOC 0.1ppm	
					- - - - - -	19.50 becoming silty	19.50-19.95	D58	100 blows	100% Recovery	
					- - - - -		20.50	D59 B60			
					- - - - -		21.00 21.00-21.10 21.00-21.45	ES61 D62	N42	4, 6 / 8, 10, 10, 14 VOC 0.4ppm	
					- - - -		22.00	D63			

Report ID: CONCEPT CABLE PERCUSSION || Project: 183106 - ST ANNES CHURCH.GPJ || Library: CONCEPT LIBRARY - 2017-NEW.GLB || Date: 18 June 2018

18/06/2018 12:44

Borehole No

BH01

Project

1 Triton Square - St Anne's

Job No			Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	04/05/18	28.04	E 528988.3 N 182406.3	30.00m
Client British L	and			Method/ Plant Used Cable Percussion	Sheet 3 of 3

PRC	GRE	ESS			ST	TRATA		SAMPLE	ES & T	ESTS		nt/
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	ı	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
					- (10 0 -	22.50 becoming slightly micarare pockets of grey fine sand (<	ceous with	22.20 22.50-22.95 22.90 23.00-23.10	B64 UT65 D66 ES67	100 blows	89% Recovery VOC 0.9ppm	
					(13.05)	23.00 - 25.00 with dark grey to organic material	to black	23.50	D68 B69	NAS		
					- - - - - -			- 24.00 - 24.00-24.45	D70	N45	4, 8 / 10, 10, 11, 14	
					- - - - -	25.00 - 29.60 with partings of sand		- 25.00-25.10 - 25.00 - 25.20 - 25.50-25.95	ES71 D72 B73 UT74	100 blows	VOC 0.6ppm	
					- - - - -	25.50 with occasional pockets brown fine sand 25.68 with frequent pockets o sand, rare pockets of yellowish be sand (<10mm) and foraminifera	-	25.95	D75			
					- - - - -			26.50 26.70 27.00 27.00-27.10	D76 B77 ES78	N46	4, 6 / 10, 10, 11, 15 VOC 0.4ppm	
					-			27.00-27.45	D79 D80		ү ос от гррги	
					- - - - -			28.20	B81 UT82	100 blows	89% Recovery	
			-1.46		29.50			28.90	D83	N50/ 235 mm	4, 8 / 9, 14, 21, 6	
03/05/18	7.50	Dry	-1.96		(0.50)	Very stiff, reddish brown and re- mottled bluish grey CLAY. (LAMBETH GROUP: READIN FORMATION: Upper Mottled E End of Borehole	IG	29.50-29.95 29.90-30.00 30.00	D84 ES85 B86		VOC 0.2ppm	
					- - - - -			-				
					- - - - -			- - - - - - -				
					 - - - -			- - - - - -				
					-			-				

Report ID: CONCEPT CABLE PERCUSSION || Project: 183106 - ST ANNES CHURCH.GPJ || Library: CONCEPT LIBRARY - 2017-NEW.GLB || Date: 18 June 2018

Issue No: 01 Approved By: OS Log Print Date & Time: Checked By: AN18/06/2018 12:44

Trial Pit No BH02

Project

1 Triton Square - St Anne's

Job No	Date Started	24/04/18	Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	24/04/18	28.71	E 529002.7 N 182398.0	1.20m
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1

				STRATA	SAMPLI	ES & 7	TESTS	
Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
	28.36		(0.35)	Reinforced CONCRETE. 0.20 - 0.35 with Ø8mm rebar	-			
			-	Loose, orangish brown to dark brown slightly silty gravelly medium to coarse SAND with high brick and concrete cobble content. Gravel comprises angular to subrounded fine to coarse flint, brick and chalk fragments. (MADE GROUND)	- 0.40-0.45 0.40-0.50	ES01 B02		VOC 0.1ppm
=			(0.85)	0.80 becoming clayey	- 0.80-0.90 0.80-0.90 1.10-1.20 1.10-1.20	ES03 B04		VOC 0.0ppm
	27.51		1.20	End of Trial Pit	-	Вио		Pit aborted at 1.20m depth (see Remarks)

GENERAL REMARKS

1. Pit aborted at 1.20m depth due to strong CAT signal at the base of the pit. Location moved to position BH02A.

Log Print Date & Time: 18/06/2018 12:46 Checked By: AN Approved By: OS Issue No: 01 Drilled By: GM Logged By: SB

Trial Pit No

BH02A

Project

1 Triton Square - St Anne's

Job No	Date Started	24/04/18	Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	24/04/18	28.71	E 529004.9 N 182403.3	1.20m
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1

				STRATA	SAMPLI	ES & T	TESTS	
Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
	28.36		(0.35)	Reinforced CONCRETE. 0.20 - 0.35 with Ø8mm rebar	-			
	20.00		-	Loose, orangish brown and dark brown slightly clayey gravelly fine to coarse SAND with high brick and concrete cobble content. (MADE GROUND) 0.60 - 0.90 with 1No limestone boulder	- 0.40-0.50 0.40-0.50	ES01 B02		VOC 0.0ppm
			- (0.70)	(north-east of pit)	- 0.70-0.80 0.70-0.80	ES03 B04		VOC 0.0ppm
	27.66		1.05 (0.15) 1.20	Soft, brown to yellowish brown gravelly very sandy CLAY with low brick and concrete cobble content. Gravel comprises angular to subrounded fine to coarse flint, brick, concrete and chalk fragments. (MADE GROUND) End of Trial Pit	- 1.10-1.20 1.10-1.20	ES05 B06		VOC 0.0ppm Pit aborted at 1.20m depth (see Remarks)
				End of Inal Pit	-			(see remarks)

GENERAL REMARKS

1. Pit aborted at 1.20m depth due to strong CAT signal at 1.10m depth. Location moved to position BH02B.

Log Print Date & Time: 18/06/2018 12:47 Checked By: AN Approved By: OS Issue No: 01 Drilled By: GM Logged By: SB

Borehole No BH02B

Project

1 Triton Square - St Anne's

Job No	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	01/05/18	28.71	E 529005.3 N 182401.9	30.00m

Client

British Land

	BOREHOLE SUMMARY											
Top (m)	Base (m)	Type	Date Started	Date Ended	Crew	Logged By	Core Barrel (mm)	Core Bit	Plant Used/ Method	SPT Hammer Reference		
0.00 1.20	1.20 30.00	IP CP	26/04/2018 26/04/2018	26/04/2018 01/05/2018	GM GM	SB SB			Hand Excavated Dando 1000	WW1		

WATER STRIKES				WATER	R ADDED	CHIS	ELLIN	G / SLOW I	DRILLING	
Strike at (m)	Rise to (m)	Time to Rise (min)	Casing Depth (m)	Sealed (m)	From (m)	To (m)	From (m)	To (m)	Duration (hr)	Remarks
					1.65	8.00				

НС	DLE	CASING				
Depth (m)	Diameter (mm)	Depth (m)	Diameter (mm)			
0.00 8.30 30.00	200 200 150	0.00 8.30 8.50	200 200 150			

ROTARY FLUSH DETAIL									
To (m)	Flush Type	oe Flush Return (%) Flush							
	To (m)	To (m) Flush Type	To (m) Flush Type Flush Return (%)						

	INSTALLATION DETAILS											
Type	Diameter (mm)		Top of Response Zone (m)	Bottom of Response Zone (m)	Date of Installation							
SPG/GW SPGW	50 50	5.50 8.30	2.00 6.50	5.50 8.30	01/05/2018 01/05/2018							

Top (m)	Bottom (m)	Material	Backfill Date		
0.00	0.30	Concrete / Flush Cover	01/05/2018		
0.30	2.00	Bentonite Pellets			
2.00	5.50	Pea Shingle			
5.50	6.50	Bentonite Pellets			
6.50	8.30	Pea Shingle			
8.30	30.00	Bentonite Pellets			

ROTARY RECOVERY

Blows

Recovery (%)

To (m)

From (m)

Report ID: SUMMARY SHEET 1 || Project: 183106 - ST ANNES CHURCH.GPJ || Library: CONCEPT LIBRARY - 2017-NEW.GLB || Date: 18 June 2018

Issue No: 01 Checked By:

AN

Approved By: OS

Log Print Date & Time:

18/06/2018 12:47

Borehole No BH02B

Project

1 Triton Square - St Anne's

	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	01/05/18	28.71	E 529005.3 N 182401.9	30.00m

Client

British Land

	SII Lanu									
		PROGR	ESS					SPT DETAIL	S	
Date	Hole Depth (m)	Casing Depth (m)	Water Depth (m)	Remarks	Туре	Depth (m)	N Value	Blow Count / 75mm	Casing Depth (m)	Water Depth (m)
26/04/18	0.00		Dry		S	1.20	N36	7,7/9,10,10,7	1.20	Dry
26/04/18	1.20	1.20	Dry		$\begin{bmatrix} c \\ c \end{bmatrix}$	2.00	N16	2, 3 / 3, 4, 4, 5	2.00	2.00
26/04/18	1.65	1.60	Dry		$\begin{bmatrix} c \\ c \end{bmatrix}$	3.00	N17	2, 3 / 4, 4, 3, 6	3.00	3.00
27/04/18	1.65	1.60	1.65	Water Added	$\begin{bmatrix} c \\ c \end{bmatrix}$	4.00	N15	1, 4 / 3, 3, 4, 5	4.00	4.00
27/04/18	6.00	6.00	5.10		$\begin{bmatrix} c \\ s \end{bmatrix}$	5.00	N22	2, 8 / 4, 5, 6, 7	5.00	5.00
30/04/18	6.00	6.00	Dry		$\begin{bmatrix} c \\ c \end{bmatrix}$	6.50	N14	2, 2 / 3, 3, 4, 4	6.50	6.50
30/04/18	6.50	6.50	6.50	Water Added	$\begin{vmatrix} c \\ s \end{vmatrix}$	9.50	N21	2, 3 / 4, 5, 6, 6	8.50	Dry
30/04/18	8.20	8.20	Dry		$\begin{bmatrix} s \\ s \end{bmatrix}$	12.50	N25	2, 4 / 5, 6, 6, 8	8.50	Dry
30/04/18	16.00	8.50	Dry		S	15.50	N47	3, 4 / 6, 8, 9, 24	8.50	Dry
01/05/18	16.00	8.50	Dry		S	18.50	N31	3, 5 / 7, 7, 8, 9	8.50	Dry
01/05/18	30.00	8.50	Dry		S	21.50	N33		8.50	Dry
		0.00	,		11	24.50	N39	3, 5 / 7, 8, 8, 10	8.50	Dry
						27.50	N43	4, 7 / 8, 9, 11, 11 4, 6 / 9, 9, 10, 15	8.50	Dry
GENERAL	REMARKS									
J - 100mm E JT - 100mm I - 38mm D - Disturbed - Core Sam	ple, W-Water Sample	Sample ndisturbed Sample Sample nple, LB- Large Bulk	Sample, BLK-Block S	ample						
PGW - Ground PG/GW - Gas / C WP - Vibrati CM - Inclino	ipe Piezometer dwater Monitor Stand Groundwater Monitor ng Wire Piezometer meter	pipe IP Standpipe CP DS DC	-Cable Percussion, Re -Dynamic Sampling, -Diamond Coring, Cl	rial Pit TT - Trial Trench C-Rotary Coring, R/S-Rotary/Sonic DS/R-Dynamic Sampling /Rotary P/R-Cable Percussion Rotary follow on Probe, VOC-Volatile Organic Compounds						

Repot ID: SUMMARY SHEET 2 || Project: 183106 - ST ANNES CHURCH.GPJ || Library: CONCEPT LIBRARY - 2017-NEW.GLB || Date: 18 June 2018

Borehole No BH02B

Project

1 Triton Square - St Anne's

Job No	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth		
18/3106	18/3106 Date Completed 01/05/18 28.71 E 529005.3 N 18240			E 529005.3 N 182401.9	30.00m		
Client British L	and			Method/ Plant Used Cable Percussion	Sheet 1 of 3		

PRO	OGRI	ESS			S	TRATA	SAMPLI	ES & T	ESTS		/tue
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
26/04/18		Dry	20.26			Reinforced CONCRETE.	0.40.0.45	EGO1		WOO A A	F
			28.36		0.35	0.20 with Ø8mm rebar mesh Loose, dark brown slightly silty gravelly SAND with high brick and concrete cobble content. Gravel comprises angular to	0.40-0.45 0.40-0.45 0.60-0.70 0.60-0.70	ES01 B02 ES03 B04		VOC 0.0ppm	
					_ (1.25)	subrounded fine to coarse flint, brick, concrete and slate fragments.	1.10-1.20	ES05		VOC 0.0ppm	Ш
26/04/18	1.20	Dry	27.11		1.60	(MADE GROUND) 0.75 becoming slightly clayey	1.10-1.20 1.20 1.20-1.65 1.20-1.65	B06 D07 B08	N36	7, 7 / 9, 10, 10, 7	Ш
26/04/18 27/04/18	1.60 1.60	Dry 1.65				Firm, yellowish brown gravelly sandy CLAY. Gravel comprises angular to subrounded fine to coarse flint, brick and concrete fragments. (MADE GROUND)	1.90-2.00 2.00 2.00-2.45	ES09 B10	N16	VOC 0.0ppm 2, 3 / 3, 4, 4, 5	
					(2.90)		2.70 2.90-3.00 3.00 3.00-3.45	D11 ES12 B13	N17	VOC 0.0ppm 2, 3 / 4, 4, 3, 6	
			24.21				3.70 3.90-4.00 4.00 4.00-4.45	D15 ES14 B16	N15	VOC 0.0ppm 1, 4/3, 3, 4, 5	
			24.21		4.50	Medium dense, dark brown gravelly coarse SAND with frequent pockets of sandy clay. Gravel comprises angular to rounded fine to coarse brick, concrete and ceramic fragments. (MADE GROUND)	4.70 4.90-5.00 5.00 5.00-5.45 5.00-5.45	D17 ES18 D19 B20	N22	VOC 0.0ppm 2, 8 / 4, 5, 6, 7	
27/04/18	6.00	5.10	22.71		6.00	Medium dense, yellowish brown slightly	5.90-6.00	ES21 D22		VOC 0.1ppm	
30/04/18	6.50	6.50		0000	- - - -	sandy angular to rounded fine to coarse flint GRAVEL. Sand is medium to coarse. (RIVER TERRACE DEPOSITS)	6.50 6.50-6.95	B23	N14	2, 2 / 3, 3, 4, 4	
				0.0.0	(2.00)		6.90-7.00	ES24		VOC 0.0ppm	
				0 0 0	- - - -		7.50	D25			
			20.71	10 2 0 1	8.00		7.90-8.00 8.00-8.20	ES26 B27		VOC 0.0ppm	िष
30/04/18	8.20	Dry	20.21	× × × × × × × × × × × × × × × × × × ×	(0.50)	Firm, light brown gravelly silty CLAY with frequent selenite crystals (<1 mm). Gravel is angular to rounded fine to coarse flint.	8.20-8.65	UT28	35 blows	100% Recovery	
					-	(THAMES GROUP: WEATHERED LONDON CLAY FORMATION)	8.65 8.90-9.00	D29 ES30		VOC 0.0ppm	
					- - -	8.20 becoming extremely closely fissured and brownish grey	9.00	D31		v ОС 0.0ррш	
					-	Stiff, extremely closely fissured grey CLAY with rare pockets of grey silt (<40mm) and occasional selenite crystals. Fissures are of multiple orientation, planar, rough. (THAMES GROUP: LONDON CLAY FORMATION - A3ii)	9.50 9.50-9.95	D32	N21	2, 3 / 4, 5, 6, 6	
						8.56 - 8.63 with rare partings and pockets of yellowish brown fine sand (<15mm) and bioturbation 9.00 becoming brownish grey	10.50	D33			
					- - - -		- - 10.90-11.00 - 11.00-11.45	ES34 UT35	70 blows	VOC 0.0ppm 89% Recovery	

Report ID: CONCEPT CABLE PERCUSSION || Project: 183106 - ST ANNES CHURCH.GPJ || Library: CONCEPT LIBRARY - 2017-NEW.GLB || Date: 18 June 2018

Issue No: 01

BH02B

Borehole No

Project

1 Triton Square - St Anne's

Job No	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth	
18/3106	3106 Date Completed 01/05/18 28.71 E 529005.3 N 182401.9			30.00m		
Client British L	and			Method/ Plant Used Cable Percussion	Sheet 2 of 3	

PRO)GRI	ESS			S	ГКАТА	SAMPLE	ES & T	ESTS		ent/			
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill			
					(5.50)	11.00 becoming silty with a parting and rare pockets of yellowish brown fine sand (<15mm) and rare bioturbation 11.00 - 11.35 with a band of claystone	11.40	D36						
					- - - -	12.00 - 14.00 with frequent pockets of silt	12.50 12.50-12.95	D38	N25	2, 4 / 5, 6, 6, 8				
					- - - -		12.90-13.00	ES39		VOC 0.5ppm				
					- - - -		13.50	D40						
			14.71		14.00	Stiff, extremely closely to very closely fissured	14.00-14.45	UT41	80 blows	100% Recovery				
					-	Stiff, extremely closely to very closely fissured grey CLAY with rare pockets of light brown fine sand (<25mm) and rare bioturbation. Fissures are of multiple orientation, planar, rough.	14.45	D42						
					- - - -	(THAMES GROUP: LONDON CLAY FORMATION - A3i)	14.90-15.00 15.00	ES43 D44		VOC 0.0ppm				
					- - - -		15.50 15.50-15.95	D45	N47	3, 4 / 6, 8, 9, 24				
30/04/18 8.50 01/05/18 8.50	Dry Dry			(3.90)	15.80 - 16.00 with a band of claystone	- - - - -								
								- - - -		16.50 - 16.90-17.00	D46 ES47		VOC 0.1ppm	
					<u>-</u> - - -	17.00 becoming extremely closely fissured	17.00-17.45 17.45	D49	90 blows	100% Recovery				
				10.81		17.90	Variation deals around in high consider CLAV	18.00	D50					
					- - - -	Very stiff, dark grey slightly sandy CLAY with rare pockets of silty fine sand. (THAMES GROUP: LONDON CLAY FORMATION - A2)	- 18.50 - 18.50 - 18.50-18.95	D51	N31	3, 5 / 7, 7, 8, 9				
					- - - -		- 18.90-19.00	D51 ES52		VOC 0.0ppm				
					- - - -		19.50	D53						
					- - - -	20.00 becoming extremely closely fissured,	20.00-20.45	UT54	90 blows	100% Recovery				
					- - - - -	brownish grey and silty with occasional pockets of grey and brownish grey fine sand (<15mm), rare bioturbation and foraminifera 20.50 with occasional foraminifera	20.45	D55						
					- - -		20.90-21.00	ES56 D57		VOC 0.0ppm				
					- - - -		21.50 21.50-21.95	D58	N33	3, 5 / 7, 8, 8, 10				
					_	Log Print Data & Time:	-			WW 4				

Approved By: OS

Report ID: CONCEPT CABLE PERCUSSION || Project: 183106 - ST ANNES CHURCH.GPJ || Library: CONCEPT LIBRARY - 2017-NEW.GLB || Date: 18 June 2018

Issue No: 01

Checked By:

AN

Log Print Date & Time: 18/06/2018 12:48

Borehole No BH02B

Project

1 Triton Square - St Anne's

	Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth	
18/3106	Date Completed	01/05/18	28.71	E 529005.3 N 182401.9	30.00m	
Client				Method/	Sheet	
British L	and			Plant Used Cable Percussion	3 of 3	

PR	OGRI	ESS			Sī	TRATA	SAMPLE	ES & T	SAMPLES & TESTS		
Date	Casing	Water	Level (mOD)	Legend	Depth (Thickness)	Strata Description	Depth (m)	Type No	Test Result	Field Records	Instrument/ Backfill
	3	M	(mob)		(12.10)	22.00 - 26.00 with occasional pockets of black organic material 23.00 with rare pockets of light grey fine sand (<5mm)	22.50 22.90-23.00 23.00-23.45 23.45 24.00 24.50 24.50 24.50-24.95	D59 ES60 UT61 D62 D63	100 blows	VOC 0.1ppm 100% Recovery	Ins
=					-		24.90-25.00 25.50 26.00-26.45	D66 UT67 D68	100 blows	VOC 0.0ppm	
01/05/18					- - - - - - - - - - - - - - - - - - -		26.90-27.00 27.00 27.50 27.50-27.95	ES69 D70	N43	VOC 0.1ppm 4, 6 / 9, 9, 10, 15	
=					 - - - - - - - - - -	28.00 with occasional partings of fine sand	28.50	D72 ES73		VOC 0.1ppm	
01/05/18	8.50	Dry	-1.29		30.00	29.50 with frequent pockets of grey fine sand (<15mm)	29.50-29.95 29.85 29.90-30.00	D75 ES76	100 blows	78% Recovery VOC 0.1ppm	
=						End of Borehole					
-	1	<u> </u>		ı			L	ı	I		<u> </u>

Report ID: CONCEPT CABLE PERCUSSION || Project: 183106 - ST ANNES CHURCH.GPJ || Library: CONCEPT LIBRARY - 2017-NEW.GLB || Date: 18 June 2018

Issue No: 01

Checked By: AN

Approved By: OS

Log Print Date & Time:

18/06/2018 12:48

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Southern Testing Laboratories

Keeble House Stuart Way **East Grinstead** West Sussex

RH19 4QA

SPT Hammer Ref: WW1

Test Date:

11/09/2017

Report Date:

11/09/2017

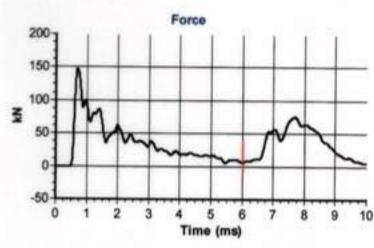
File Name:

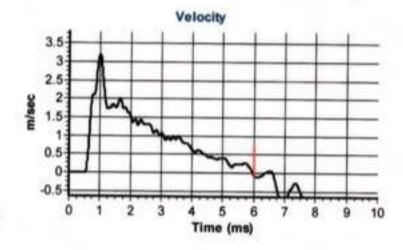
WW1.spt

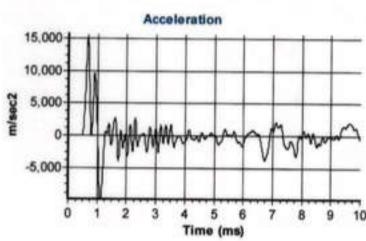
Test Operator:

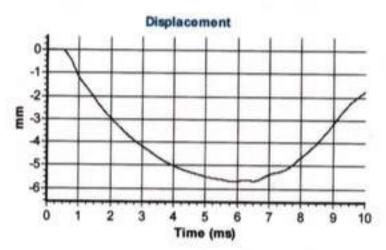
NPB

Instrumented Rod Data


Diameter d_r (mm): 54 Wall Thickness t_r (mm): 6.0 Assumed Modulus Ea (GPa): 200 Accelerometer No.1: 6458 Accelerometer No.2: 9607


SPT Hammer Information


Hammer Mass m (kg): Falling Height h (mm): 760 SPT String Length L (m): 14.5


Comments / Location

CHARLWOODS

Calculations

Area of Rod A (mm2): 905 Theoretical Energy E_{theor} (J): 473 Measured Energy E_{meas} (J): 301

> Signed: **Neil Burrows**

Title:

Field Operations Manager

Energy Ratio E_r (%):

64

The recommended calibration interval is 12 months

9. TRIAL PIT LOGS AND SKETCHES

18/3106 - Issue 01 Page 12 of 16

Trial Pit No

HP01

Project

1 Triton Square - St Anne's

Job No	Date Started 27/04/18 Ground Level (mOD) Co-Ordinates		Co-Ordinates	Final Depth	
18/3106	Date Completed	27/04/18	28.58	E 529002.1 N 182413.1	0.80m
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1

				STRATA	SAMPLI	ES & 7	TESTS	
Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
	28.53	P 7 4 B	0.05	CONCRETE paving.				
	28.48		0.10	CONCRETE.				
			-	Loose, dark brown to grey slightly gravelly silty fine to medium SAND with high brick, concrete and cement cobble and boulder content, rare glass fragments and metal bolts (100mm). Gravel comprises angular to subangular fine to coarse brick, concrete, cement, ceramic and slate fragments. (MADE GROUND)	- 0.20-0.30 0.20-0.30	ES01 B02		VOC 0.0ppm
	27.78		(0.70)		- 0.70-0.80 0.70-0.80	ES03 B04		VOC 0.0ppm Ø50mm damaged copper pipe encountered at 0.75m depth
3 June zu ia			-	End of Trial Pit				
LB Date: 18			-		_			
T. 183100 - S.I. ANNES CHORCH.GFJ LIDRAY. CONCEPT LIBRARY - 2017-NEW.GLB Date: 18 JURE 2018			-		-			
I LIBRARI			-		_			
ary: CONCE			-		-			
1. GPJ LIDIE					_			
ES CHORC			-		_			
06 - 31 ANN			-		-			
202								

GENERAL REMARKS

- Weather was partially cloudy.
 Pit was dry and stable.
 Pit dimensions: 0.35m x 0.35m x 0.80m depth.
 Pit backfilled with soil arisings and made up good upon completion.

Log Print Date & Time: 18/06/2018 11:34 Drilled By: ST Issue No: 01 Checked By: AN Logged By: SBApproved By: OS

Trial Pit No HP02

Project

1 Triton Square - St Anne's

Job No	b No Date Started		Ground Level (mOD)	Co-Ordinates	Final Depth	
18/3106	Date Completed	27/04/18	28.60	E 529002.5 N 182410.7	1.20m	
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1	

				STRATA	SAMPLI	ES & T	TESTS	
Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
	28.55	2 4 4 A	0.05	CONCRETE paving.				
	28.50		0.10	CONCRETE.	1			
			-	Loose, light brown to grey gravelly silty fine to coarse SAND with high brick and concrete cobble and boulder content. Gravel comprises angular to rounded fine to coarse flint, brick and concrete fragments. (MADE GROUND) 0.30 with slight hydrocarbon odour	- 0.20-0.30 0.20-0.30	ES01 B02		VOC 0.1ppm
			-	0.40 - 0.70 with 1No concrete boulder				
			(1.10)					
œ			-		- 0.70-0.80 0.70-0.80	ES03 B04		VOC 0.3ppm
18 June 20			-		-			
T. 183105 - S.I. ANNES CHUKCH.GFJ LIDIAY. CUNCEPI LIBRARY - 2017-NEW.GLB Date: 18 June 2018			-		-1.00-1.10 1.00-1.10	ES05 B06		VOC 0.3ppm
-NE	27.40		1.20					
- 201	27.40	XXXXX	1.20	End of Trial Pit	†			
ξ ξ ξ			_					
- L								
S C C C C C C C C C			-		-			
Library			-					
-			-		-			
\$ E								
DH3			-					
0 1 2 2			-		-			
<u> </u>								
3106 -			-					
<u> </u>			_					

GENERAL REMARKS

- Weather was partially cloudy.
 Pit was dry and stable.
 Pit dimensions: 0.35m x 0.35m x 1.20m depth.
 Pit backfilled with soil arisings and made up good upon completion.

Log Print Date & Time: 18/06/2018 11:34 Drilled By: ST Issue No: 01 Checked By: AN Logged By: SBApproved By: OS

Telephone: 020 88 112 880_Fax: 020 88 112 881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

HP03

Project

1 Triton Square - St Anne's

Job No	Date Started	27/04/18	Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	27/04/18	28.55	E 529005.1 N 182413.5	1.20m
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1

				STRATA	SAMPLI	ES & T	TESTS	
Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
	28.50		0.05	CONCRETE paving.				
	28.45		0.10	Reinforced CONCRETE.	_			
			(0.35)	Loose, dark brown to dark grey gravelly fine to coarse SAND. Gravel comprises angular to rounded fine to coarse flint, brick and concrete fragments. (MADE GROUND)	- 0.20-0.30 0.20-0.30	ES01 B02		VOC 1.8ppm
			-	0.30 - 0.35 with occasional roots and rootlets				
	28.10		0.45	Logga vallowish brown gravelly fine to goorge	_			
			-	Loose, yellowish brown gravelly fine to coarse SAND. Gravel comprises angular to rounded fine to coarse brick and concrete fragments. (MADE GROUND)	_			
			-		- 0.70-0.80 0.70-0.80	ES03 B04		VOC 0.1ppm
2			(0.75)		-			
7			-		_			
	27.35		1.20		- 1.10-1.20 1.10-1.20	ES05 B06		VOC 0.1ppm
34	27.30		1.20	End of Trial Pit				
יינים און בהמנהץ. כסמילבו זו בהמילהים במינים אינים בן במנה נסימות בסימות			-		-			
			-					
			-		-			
			-		_			

GENERAL REMARKS

- Weather was partially cloudy.
 Pit was dry and stable.
 Pit dimensions: 0.35m x 0.35m x 1.20m depth.
 Pit backfilled with soil arisings and made up good upon completion.

Log Print Date & Time: 18/06/2018 11:34 Drilled By: ST Issue No: 01 Checked By: AN Approved By: OS Logged By: SB

Report ID:

Telephone: 020 88 112 880_Fax: 020 88 112 881 E-mail: si@conceptconsultants.co.uk

Trial Pit No HP04

Project

1 Triton Square - St Anne's

Job No	Date Started	27/04/18	Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	27/04/18	28.59	E 529005.2 N 182410.8	1.20m
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1

				STRATA	SAMPLI	ES & T	TESTS	
Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
	28.54 28.49		0.05	CONCRETE paving. Reinforced CONCRETE. Loose, brown slightly gravelly medium to coarse SAND. Gravel comprises angular to rounded fine to coarse flint and concrete fragments.				
			(0.35)	coarse flint and concrete fragments. (MADE GROUND)	- 0.20-0.30 0.20-0.30	ES01 B02		VOC 0.1ppm
	28.14		0.45	Loose, brown slightly silty gravelly medium SAND with high concrete cobble content. Gravel comprises angular to subrounded fine to coarse brick and concrete fragments. (MADE GROUND) 0.50 with 1No metal paint bucket	-			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			(0.75)		- 0.70-0.80 0.70-0.80	ES03 B04		VOC 0.1ppm
-14EW. GED Date. 10			-		-1.00-1.10 1.00-1.10	ES05 B06		VOC 0.2ppm
TI.GTO LIDIAY, CONVERT LIBRAYN - ACTIVILANO, GLB Date. TO JULIE 20 TO	27.39		1.20	End of Trial Pit	-			
			-		-			
T. 100 100 100 100 100 100 100 100 100 10			-		-			

GENERAL REMARKS

- Weather was partially cloudy.
 Pit was dry and stable.
 Pit dimensions: 0.35m x 0.35m x 1.20m depth.
 Pit backfilled with soil arisings and made up good upon completion.

Log Print Date & Time: 18/06/2018 11:34 Drilled By: ST Issue No: 01 Logged By: SB Checked By: AN Approved By: OS

Telephone: 020 88 112 880_Fax: 020 88 112 881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

HP05

Project

1 Triton Square - St Anne's

Job No	Date Started	03/05/18	Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	03/05/18	28.52	E 529005.3 N 182416.2	0.40m
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1

	<u> </u>			STF	RATA		SAM	PLE	S & T	ESTS	F1.13
Water	Level (mOD)	Legend	Depth (Thickness)	Sta	ata Description		Dept	th	Type No	Test Result	Field Records
	28.12		0.40	(MADE GROUNI	0)	-					Pit aborted at 0.40m depth
				End of Trial Pit		_					Pit aborted at 0.40m depth (see Remarks)
			-			_	-				
			-			-					
GE	NERAI	REMA	.RKS			-					
				to presence of asbest	os.						
Issue N	Vo: 01	Drilled B	y: ST	Logged By: SB	Checked By: AN	Approved By	os	Log Pr	rint Date	e & Time:	18/06/2018 11:35 \\\\AG

GENERAL REMARKS

Telephone: 020 88 112 880_Fax: 020 88 112 881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

HP06

Project

1 Triton Square - St Anne's

Job No	Date Started	03/05/18	Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	03/05/18	28.35	E 529009.3 N 182399.5	0.65m
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1

				STRATA	SAMPLI	ES & 7	TESTS	
Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
	27.70		(0.65)	(MADE GROUND) End of Trial Pit	-		100000	Pit aborted at 0.65m depth (see Remarks)
			-		-			
			-		-			

GENERAL REMARKS

1. Pit aborted at 0.65m depth due to presence of asbestos.

Log Print Date & Time: 18/06/2018 11:35 Issue No: 01 Drilled By: ST Logged By: SB Checked By: AN Approved By: OS

Telephone: 020 88 112 880_Fax: 020 88 112 881 E-mail: si@conceptconsultants.co.uk

TP01

Trial Pit No

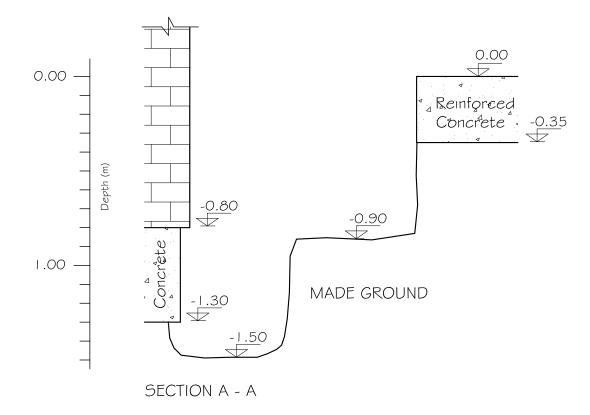
Project

1 Triton Square - St Anne's

Job No	Date Started	26/04/18	Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	26/04/18	28.63	E 528988.6 N 182416.9	1.50m
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1

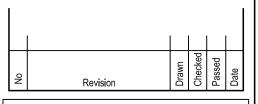
				STRATA	SAMPL	ES & 7	TESTS	
Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
	28.28	20 00 00 00 00 00 00 00 00 00 00 00 00 0	(0.35)	Reinforced CONCRETE. (Ømm mesh re-bar)	-			
			-	Loose, dark brown gravelly silty medium to coarse SAND with high brick, concrete and limestone cobble and boulder content. Gravel comprises angular to subrounded fine to coarse flint, brick, concrete, limestone and slate fragments. (MADE GROUND)	- 0.40-0.45 0.40-0.45	ES01 B02		VOC 0.0ppm
LD Udie: 10 Julië 20 10			- - (1.15)		- 0.60-0.70 0.60-0.70	ES03 B04		VOC 0.0ppm
69. COVCLI LIBOAN - 20174-W.	27.13		1.50	End of Trial Pit	- 1.20-1.30 1.20-1.30	ES05 B06		VOC 0.0ppm
BELL TOSTUG - ST MINNES CHURCH. GFJ LIDIALY, COINCEPT LIBRART - 2017-NEW, GLB DATE. TO JUIRE 2010			-	Eng of 11181 Fit	-			

GENERAL REMARKS


- Weather was partially cloudy.

- Nettuck of the property o

Log Print Date & Time: 18/06/2018 11:35 Drilled By: ST Issue No: 01 Logged By: SB Checked By: AN Approved By: OS



WALL Excavated to -1.50m depth 1000 Excavated to -0.90m depth 1200 1.00 2.00 0.00 PLAN TPO I

NOTES

I. This drawing should not be scaled, only use annotated dimensions.

CONCEPT SITE INVESTIGATIONS

Unit 8, Warple Mews Warple Way

London W3 0RF

Tel: 020 8811 2880 Fax: 020 8811 2881 e-mail: concept@conceptconsultants.co.uk

www.conceptconsultants.co.uk

Client:	British L	British Land					
Project: 1 Triton Square - St Anne's							
Title:	TP01 Plan and	TP01 Plan and Section A-A					
Dwg. No	: 183106/	183106/02					
Status:	Issue						
Scale:	1:20						
Drawn OS	Checked IP	Passed IP	Date May 2018				

Telephone: 020 88 112 880_Fax: 020 88 112 881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

TP02

Project

1 Triton Square - St Anne's

Job No	Date Started	26/04/18	Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	26/04/18	28.66	E 528998.9 N 182417.2	0.60m
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1

Ē					STRATA	SAMPLI	ES & T	TESTS	
	Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
		28.31		(0.35)	CONCRETE.	-			
		28.06		(0.25)	Loose, dark brown slightly silty gravelly medium to coarse SAND with high brick and concrete cobble content. Gravel comprises angular to subrounded fine to coarse brick and concrete fragments. (MADE GROUND)	- 0.40	D01		Pit aborted at 0.60m denth
:018				-	End of Trial Pit	-			Pit aborted at 0.60m depth (see Remarks)
GLB Date: 18 June 2				-		_			
BKAKY - 2017-NEW.				-		-			
Library: CONCEPT LI				-		-			
ES CHURCH.GPJ				-		-			
t: 183106 - ST ANNES CHURCH.GPJ Library: CONCEPT LIBRARY - 2017-NEW.GLB Date: 18 June 2018				-		-			

GENERAL REMARKS

- Weather was partially cloudy.
 Pit was dry and stable.
 Pit aborted at 0.60m depth due to presence of asbestos.
 Pit dimensions: 1.00m x 1.20m x 0.60m depth.
 Pit backfilled with soil arisings and made up good upon completion.

Log Print Date & Time: 18/06/2018 11:35 Issue No: 01 Drilled By: STLogged By: SB Checked By: AN Approved By: OS

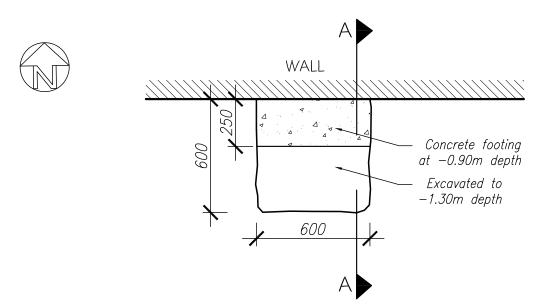
Telephone: 020 88 112 880_Fax: 020 88 112 881 E-mail: si@conceptconsultants.co.uk

TP03

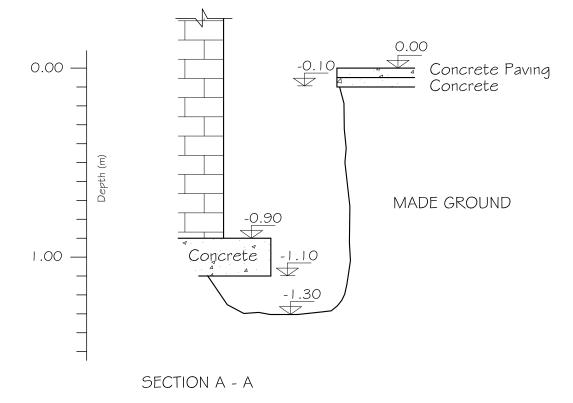
Trial Pit No

Project

1 Triton Square - St Anne's

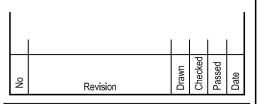

Job No	ob No Date Started 03/05/18		Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	03/05/18	28.55	E 529004.3 N 182418.1	1.30m
Client	1			Method/ Plant Used Hand Excavated	Sheet
British L	ana			Fiant Useu Hand Excavated	1 of 1

				STRATA	SAMPLI	ES & T	TESTS	
Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
	28.50	D 7 4 B	0.05	CONCRETE paving.				
	28.45	P 6 0 P	0.10	CONCRETE.				
			-	Light grey gravelly silty fine to medium SAND with high brick and concrete cobble and boulder content and occasional metal and glass fragments. Gravel comprises angular to rounded fine to coarse flint, brick, concrete, clinker and ceramic fragments. (MADE GROUND) 0.10 - 0.70 with frequent roots (<15mm) and rootlets (<2mm)	- 0.20-0.30 0.20-0.30	ES01 B02		VOC 0.0ppm
			-	0.50 with 1No metal paint can 0.55 with a black plastic membrane	- 0.50-0.60 0.50-0.60	ES03 B04		VOC 0.1ppm
וס סתווב אס וס			- (1.20)		-			
St. 183109 - ST. ANNES CHURCH. GP.3 LIDIANY. CONCEPT LIBRART - 2017-NEW. GLB Date. 10 Julie 2016	27.25		- 1.30		- 1.10-1.20 1.10-1.20	ES05 B06		VOC 0.0ppm
- -	27.23		- 1.30	End of Trial Pit	_			
					_			
בים			-		_			
ANIA CIO			-		-			
0 00 00 00 00 00 00 00 00 00 00 00 00 0					_			


GENERAL REMARKS

- Weather was partially cloudy.

- Weather was partially cloudy.
 Pit was dry and stable.
 Pit dimensions: 0.60m x 0.60m x 1.30m depth.
 Asbestos-containing material found in the pit during excavation.
 Pit backfilled with soil arisings and made up good upon completion.
 Also refer to TP03 sketch.



NOTES

I. This drawing should not be scaled, only use annotated dimensions.

CONCEPT SITE INVESTIGATIONS

Unit 8, Warple Mews Warple Way

Tel: 020 8811 2880 London W3 0RF

Fax: 020 8811 2881 e-mail: concept@conceptconsultants.co.uk

www.conceptconsultants.co.uk

Client:	British L	British Land								
Project:	1 Triton	1 Triton Square - St Anne's								
Title:	TP03 Plan and	TP03 Plan and Section A-A								
Dwg. No	183106/	183106/03								
Status:	Issue									
Scale:	1:20									
Drawn OS	Checked IP	Passed IP	Date May 2018							

Telephone: 020 88 112 880_Fax: 020 88 112 881 E-mail: si@conceptconsultants.co.uk

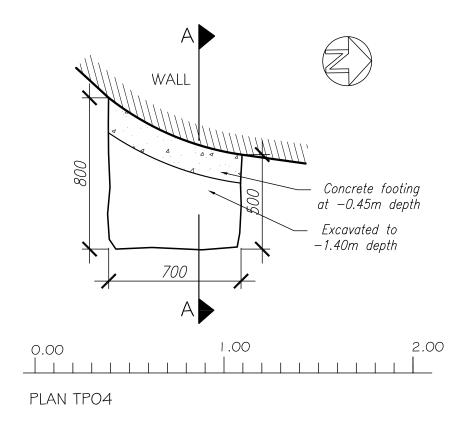
TP04

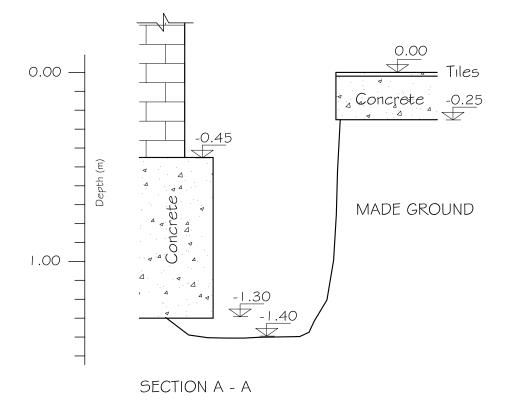
Trial Pit No

Project

1 Triton Square - St Anne's

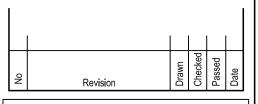
Job No			Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	03/05/18	28.40	E 529007.9 N 182400.6	1.40m
Client British L	and			Method/ Plant Used Hand Excavated	Sheet 1 of 1


				STRATA	SAMPLI	ES & T	TESTS	
Water	Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
		4	(0.25)	Brown ceramic tiles (0.02m) over CONCRETE.	-			
	28.15		0.25	Dark grey to brown gravelly silty fine to coarse SAND with high brick and concrete cobble and boulder content, occasional roots (<6mm), rootlets (<2mm) and rare glass fragments. Gravel comprises angular to rounded fine to coarse flint, brick, concrete, ceramic and slag fragments. (MADE GROUND)	- 0.25-0.35 0.25-0.35	ES01 B02		VOC 0.1ppm
LIBKARY - 2017-NEW, GLB Dâte: 16 June 2016			(0.90)	Brown slightly clayey gravelly fine to coarse SAND with high brick and concrete cobble content and glass fragments. Gravel comprises angular to subrounded fine to coarse flint, brick, concrete and ceramic fragments. (MADE GROUND)	0.55-0.65 0.55-0.65	ES03 B04		VOC 0.0ppm
20. 183106 - S.I. ANNES CHURCH. GFJ. LIDIAY. CONCEPT LIBRARY - 2017-NEW. GLB. Date. 18 June 2018	27.00		1.40	End of Trial Pit	-			


GENERAL REMARKS

- Weather was partially cloudy.

- Weather was partially cloudy.
 Pit was dry and stable.
 Pit dimensions: 0.70m x 0.80m x 1.40m depth.
 Asbestos found in spoil post-digging.
 Pit backfilled with soil arisings and made up good upon completion.
 Also refer to TP04 sketch.


Log Print Date & Time: 18/06/2018 11:35 Issue No: 01 Drilled By: STLogged By: SB Checked By: AN Approved By: OS

NOTES

I. This drawing should not be scaled, only use annotated dimensions.

CONCEPT SITE INVESTIGATIONS

Unit 8, Warple Mews Warple Way

London W3 0RF

Tel: 020 8811 2880 Fax: 020 8811 2881 e-mail: concept@conceptconsultants.co.uk

www.conceptconsultants.co.uk

Client:	British L	British Land							
Project:	1 Triton	1 Triton Square - St Anne's							
Title:	TP05 Plan and	TP05 Plan and Section A-A							
Dwg. No	: 183106/	183106/05							
Status:	Issue								
Scale:	1:20								
Drawn OS	Checked IP	Passed IP	Date May 2018						

Telephone: 020 88 112 880_Fax: 020 88 112 881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

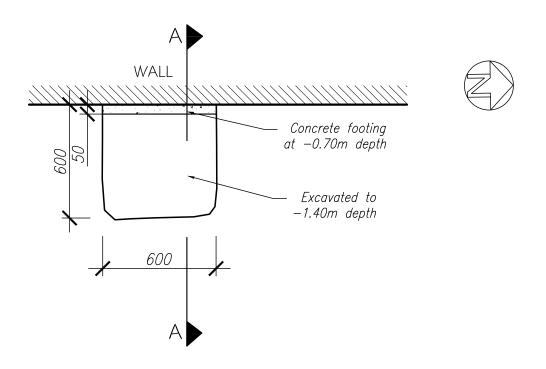
TP05

Project

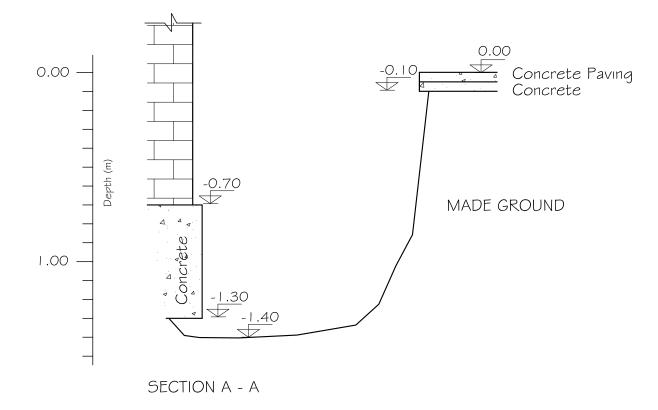
1 Triton Square - St Anne's

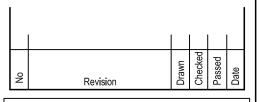
Job No	ob No Date Started 04/05/18		Ground Level (mOD)	Co-Ordinates	Final Depth
18/3106	Date Completed	04/05/18	28.55	E 529001.3 N 182416.7	1.40m
Client				Method/	Sheet
British L	and			Plant Used Hand Excavated	1 of 1

			STRATA	SAMPLI	ES & 7	TESTS	
Level (mOD)	Legend	Depth (Thickness)	Stata Description	Depth	Type No	Test Result	Field Records
28.50 28.45	Part of Part o	0.05	Paving slabs. (MADE GROUND) Reinforced CONCRETE. Loose, light brown gravelly silty fine to medium SAND with high brick and concrete cobble content, occasional roots (<12mm) and rootlets (<2mm). Gravel comprises angular to subrounded fine to coarse flint, brick, concrete and ceramic fragments. (MADE GROUND)	- 0.20-0.30 0.20-0.30	ES01 B02		VOC 0.1ppm
		(1.30)	0.60 - 1.40 with frequent pockets of brown clay	- 0.50-0.60 0.50-0.60	ES03 B04		VOC 0.1ppm
		-		-1.00-1.10 1.00-1.10	ES05 B06		VOC 0.0ppm
27.15		1.40	End of Trial Pit	-			
	(mOD) 28.50 28.45	(mOD) Legend 28.50 28.45	(mOD) Legend (Thickness) 28.50 0.05 28.45 2 2 2 2 0.10 (1.30)	Level (mOD) Legend (Thickness) 28.50	Level (mOD) Legend Depth (Thickness) Stata Description Depth 28.50 0.05 28.45 2 2 2 0.05 28.45 2 2 2 0 0.10 Reinforced CONCRETE. Local light brown gravelly silty fine to medium SAND with high brick and concrete cobble content, occasional roots (<12mm) and rootlets (<2mm). Gravel comprises angular to subrounded fine to coarse flint, brick, concrete and ceramic fragments. (MADE GROUND) (1.30) (1.30) (1.30) Depth Paving slabs. (MADE GROUND) Reinforced CONCRETE. Local light brown gravelly silty fine to medium SAND with high brick and concrete cobble content, occasional roots (<12mm) and rootlets (<2mm). Gravel comprises angular to subrounded fine to coarse flint, brick, concrete and ceramic fragments. (MADE GROUND) - 0.20-0.30 - 0.50-0.60 0.50-0.60 - 1.40 with frequent pockets of brown clay - 1.00-1.10 1.00-1.10 1.00-1.10	Level (mOD) Legend Depth (Thickness) Stata Description Depth Type No	Level (mOD) Legend Depth Type Test


GENERAL REMARKS

- Weather was partially cloudy.


- Weather was partially cloudy.
 Pit was dry and stable.
 Pit dimensions: 0.60m x 0.60m x 1.40m depth.
 Pit backfilled with soil arisings and made up good upon completion.
 Also refer to TP05 sketch.



NOTES

I. This drawing should not be scaled, only use annotated dimensions.

CONCEPT SITE INVESTIGATIONS

Unit 8, Warple Mews Warple Way

Tel: 020 8811 2880 London W3 0RF Fax: 020 8811 2881 e-mail: concept@conceptconsultants.co.uk

www.conceptconsultants.co.uk

Client:	British L	British Land							
Project:	1 Triton	1 Triton Square - St Anne's							
Title:	TP05 Plan and	TP05 Plan and Section A-A							
Dwg. No	183106/	183106/05							
Status:	Issue								
Scale:	1:20	1:20							
Drawn OS	Checked IP	Passed IP	Date May 2018						

10. INSTRUMENTATION MONITORING RESULTS

18/3106 - Issue 01 Page 13 of 16

Borehole	Depth of Installation (mbgl)	Date of Installation	Туре	Top (mbgl)	Bottom (mbgl)	Date & Time	Water Level (mbgl)	Water Level (mOD)	Remarks
BH01	3.50	04/05/2018	SPG/GW	2.00	3.50	18/05/2018 10:00:00	3.42	24.62	
	3.50	04/05/2018	SPG/GW	2.00	3.50	29/05/2018 11:35:00	Dry		
	3.50	04/05/2018	SPG/GW	2.00	3.50	06/06/2018 14:20:00	Dry		
	3.50	04/05/2018	SPG/GW	2.00	3.50	13/06/2018 10:48:00	3.49	24.55	
	3.50	04/05/2018	SPG/GW	2.00	3.50	20/06/2018 11:40:00	Dry		
	3.50	04/05/2018	SPG/GW	2.00	3.50	27/06/2018 10:15:00	Dry		
	7.90	04/05/2018	SPGW	5.00	7.90	18/05/2018 10:00:00	6.02	22.02	
	7.90	04/05/2018	SPGW	5.00	7.90	29/05/2018 11:37:00	6.05	21.99	
	7.90	04/05/2018	SPGW	5.00	7.90	06/06/2018 14:20:00	6.06	21.98	
	7.90	04/05/2018	SPGW	5.00	7.90	13/06/2018 10:48:00	6.08	21.96	
	7.90	04/05/2018	SPGW	5.00	7.90	20/06/2018 11:40:00	6.11	21.93	
	7.90	04/05/2018	SPGW	5.00	7.90	27/06/2018 10:15:00	6.15	21.89	
BH02B	5.50	01/05/2018	SPG/GW	2.00	5.50	18/05/2018 09:25:00	Dry		
	5.50	01/05/2018	SPG/GW	2.00	5.50	29/05/2018 10:10:00	Dry		
	5.50	01/05/2018	SPG/GW	2.00	5.50	06/06/2018 14:00:00	Dry		
	5.50	01/05/2018	SPG/GW	2.00	5.50	13/06/2018 09:48:00	Dry		
	5.50	01/05/2018	SPG/GW	2.00	5.50	20/06/2018 11:45:00	Dry		
	5.50	01/05/2018	SPG/GW	2.00	5.50	27/06/2018 10:15:00	No Access		No permit
	5.50	01/05/2018	SPG/GW	2.00	5.50	02/07/2018 14:00:00	Dry		
	8.30	01/05/2018	SPGW	6.50	8.30	18/05/2018 09:25:00	6.52	22.19	
	8.30	01/05/2018	SPGW	6.50	8.30	29/05/2018 10:15:00	6.58	22.13	
	8.30	01/05/2018	SPGW	6.50	8.30	06/06/2018 14:20:00	6.58	22.13	
	8.30	01/05/2018	SPGW	6.50	8.30	13/06/2018 09:48:00	6.59	22.12	
	8.30	01/05/2018	SPGW	6.50	8.30	20/06/2018 11:45:00	6.62	22.09	
	8.30	01/05/2018	SPGW	6.50	8.30	27/06/2018 10:15:00	No Access		No permit
	8.30	01/05/2018	SPGW	6.50	8.30	02/07/2018 14:00:00	6.67	22.04	

KEY

SPIE - Standpipe Piezometer SPGW - Groundwater Monitor Standpipe SPG/GW - Gas / Groundwater Monitor Standpipe VWP - Vibrating Wire Piezometer

GROUNDWATER MONITORING

Job No: 18/3106

1 Triton Square - St Anne's **Project:**

Client: British Land

JOB DETAILS													
Location:	St Annes						Engineer:	VC					
Date:	18/05/2018			Job Nu	ımber:	18/3106		Time:	10:00				
METEOROLOGIC	TAT AND CIT	E INEODM	ATION										
	AL AND SIT		ATION			Moist]xx/-4					Dalada Ala Da sustana d
State of ground:		X Dry						Wet			1_		Delete As Required
Wind:		Calm			X	Light		Moderate			Strong		Ground Level
Cloud cover:		X None	;		Slight Cloudy Overcast								
Precipitation X None Slight Moderate Heavy													
Barometric pressure	(mb) Before:	1022	dP (Pa) initial:	0	aP (m	b) After: 10	22	Temperature	(°C) 16			
INSTRUMENTATION USED Tick if gas sample taken:													
Gas concentration:	Gas Data LMS						3.0% (at 100%);					Tick	Instrument used
Gas concentration.	Gas Data GFM	436, Accurac	y: CH4 ±0.3%	(0 to 5%),	±3.0% (a	it 30%), ±3.0%	(at 100%); CO2	2 ±0.3% (0 to 5°	%), ±3.0% (at 4	10%); O2 ±0.2%;	X	TIOK	motrument asea
ВН	Depth to				Time	GTT (0/)		GO (0/)	0 (0)	TI C (PID	Comments
(No.)	GW (m)	Flow	Measureme	nts	(s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)	(ppm)	
DHAI	2.42	T' (-)	JD (L)	Flow	5	0.0	0.0	0.8	18.9	0	0	2.1	Short
BH01	3.42	Time (s)	dP (mb)	(l/h)	30	0.0	0.0	0.0	20.7	0	0	2.0	
		0	0	0	60	0.0	0.0	0.0	20.7	0	0	2.2	
		30			5	0.0	0.0	0.1	20.9	0	0	4.4	Long
		60			30	0.0	0.0	0.3	20.1	0	0	2.2	
		90			60	0.0	0.0	0.4	20.1	0	0	1.6	
		120			60	0.0	0.0	0.0	20.7	0	0		
		150			120	0.0	0.0	0.0	20.7	0	0		
		180			180	0.0	0.0	0.0	20.7	0	0	e	
		210			240	0.0	0.0	0.0	20.7	0	0	Circulation	Constant readings
		240			300							ıla	
		270			360							ว	
		300			420							Ü	
		360 420			480 540	1							
		480			600	1							-
		540			5	0.0	0.0	0.0	20.6	0	0	2.6	Short
		600			30	0.0	0.0	0.0	20.6	0	0	3.8	Short
		000			60	0.0	0.0	0.0	20.7	0	0	4.2	+
					5	0.0	0.0	0.0	20.6	0	0	2.9	Long
	1			 	30	0.0	0.0	0.0	20.4	0	0	2.9	Long
					60	0.0	0.0	0.0	20.4	0	0	2.4	
KEY	<u>I</u>	Į.	L	L	30	0.0	0.0	0.0	40.3		Ü	2.7	<u> </u>
aP: Atmospheric Pre	ssure N	NR: Not Reco	rded										
dP: Differential Pres		OR: Out of R											

	Annes 05/2018												
	05/2018		Engineer: VC										·
TEODOLOCICAL	03/2010			Job Nu	mber:	18/3106		Time:	08:54				
	AND SITE II	NFORMA	TION										
e of ground:		X Dry	111011			Moist		Wet					Delete As Required
id:	=	X Calm		ļ		Light		Moderate			Strong		Ground Level
	<u> </u>					_					_		Ground Lever
ad cover:						Slight		Cloudy			Overcast		
cipitation	Σ					Slight		Moderate			Heavy		
ometric pressure (mb)) Before: 10:)24	dP (F	Pa) initial:	0	aP (mb	o) After: 102	4	Temperature	(°C) 16			
TRUMENTATION	USED									Tick if gas	sample taken:		
concentration:							.0% (at 100%);					Tick	Instrument used
Gas	Data GFM 436	6, Accuracy	: CH4 ±0.3%	(0 to 5%),	±3.0% (at	30%), ±3.0%	(at 100%); CO2	±0.3% (0 to 5%	%), ±3.0% (at 4	0%); O2 ±0.2%;	X	TICK	ilisti dilletti used
BH De	epth to				Time							PID	Comments
(No.) G	W (m)	Flow N	Measuremer	nts	(s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)		
				Flow	5	0.0	0.0	0.8	19.2	0	0		Short
BH02B	DRY T	Time (s)	dP (mb)	(l/h)	30		0.0	0.6		0	0		~
		0	0	0	60	0.0	0.0	0.6	19.0	0	0	9.1	
		30			5	0.0	0.0	1.4	17.1	0	0	7.4	Long
		60			30	0.0	0.0	4.2	13.5	0	0	3.5	
		90			60	0.0	0.0	4.2	13.4	0	0	1.9	
		120			60	0.0	0.0	0.6	19.0	0	0		
					120	0.0		0.6	19.0	0	0		
										_		_	
						0.0	0.0	0.6	19.0	0	0	ioi	Constant readings
		-										ılaı	
												rcı	
												Ci	
						0.0	0.0	0.6	10.0	0	0	2.6	Cl4
											_		Snort
		000											
		+											Long
		1								_			Long
Υ					00	0.0	0.0	7.1	13.0	U	Ü	2.0	1
	e NR·1	Not Record	ded										
Differential Pressure		Out of Ra											
BH Do (No.) G BH02B	Depth to GW (m) DRY T	Flow N Fime (s) 0 30 60 90 120 150 180 210 240 270 300 360 420 480 540 600	Measuremen dP (mb) 0	Flow (l/h)	Time (s) 5 30 60 5 30 60 60	CH ₄ (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	CO ₂ (%) 0.8 0.6 0.6 1.4 4.2 4.2 0.6	O ₂ (%) 19.2 19.0 19.0 17.1 13.5 13.4 19.0	H ₂ S (ppm) 0 0 0 0 0 0 0 0 0 0 0 0	CO (ppm) 0 0 0 0 0 0 0 0 0 0 0	PID (ppm) 3.3 7.9 9.1 7.4 3.5	Short Long

JOB DETAILS													
Location:	St Annes						Engineer:	VC and	FG				
Date:	29/05/2018			Job Nu	ımber:	18/3106		Time:	11:00				
METEOROLOGIC	TAL AND SIT	TE INFODM	ATION										
State of ground:	AL AND SIT	Dry	ATION			Moist	X	Wet					Delete As Required
Ü					37		Λ	4 *** ***			l _a .		
Wind:		Calm			X	Light		Moderate			Strong		Ground Level
Cloud cover:		None			X	Slight		Cloudy			Overcast		
Precipitation		None	;			Slight	X	Moderate			Heavy		
Barometric pressure	(mb) Before:	1013	dP (l	Pa) initial:	0	aP (ml	b) After: 10	13	Temperature	(°C) 18			
INSTRUMENTAT	ION USED									Tick if gas	sample taken:		
Gas concentration:	Gas Data LMS						3.0% (at 100%);					Tick	Instrument used
Gas concentration.	Gas Data GFM	I 436, Accuracy	y: CH4 ±0.3%	(0 to 5%),	±3.0% (a	t 30%), ±3.0%	(at 100%); CO2	2 ±0.3% (0 to 59	%), ±3.0% (at 4	10%); O2 ±0.2%;	X	TION	monument dood
ВН	Depth to	F.1			Time	CII (0/)	T ET (0/)	CO (0/)	0 (0/)	II C ()	GO ()	PID	Comments
(No.)	GW (m)	Flow	Measureme	nts	(s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)	(ppm)	
DIIO1	DRY	T: (-)	JD (k)	Flow	5	0.0	0.0	0.0	20.8	0	0	1.0	Short
BH01	DKI	Time (s)	dP (mb)	(l/h)	30	0.0	0.0	0.0	20.8	0	0	3.6	
		0	0	0	60	0.0	0.0	0.0	20.7	0	0	3.6	
		30			5	0.0	0.0	0.0	21.0	0	0	6.2	Long
		60			30	0.0	0.0	0.2	20.4	0	0	3.2	
		90			60	0.0	0.0	0.2	20.4	0	0	2.1	
		120			60	0.0	0.0	0.0	20.6	0	0		
		150			120	0.0	0.0	0.0	20.5	0	0		
		180			180	0.0	0.0	0.1	20.4	0	0	_	
		210			240	0.0	0.0	0.1	20.4	0	0	Circulation	
		240			300	0.0	0.0	0.1	20.4	0	0	lat	
		270			360	0.0	0.0	0.1	20.4	0	0	5	Constant readings
		300			420							Ü	
		360			480								
		420			540								
		480			600			0.4			0.0		
	-	540			5	0.0	0.0	0.1	20.5	0.0	0.0	2.5	Short
		600			30	0.0	0.0	0.1	20.4	0.0	0.0	3.1	<u> </u>
					60	0.0	0.0	0.1	20.4	0	0	3.4	
					5	0.0	0.0	0.1	20.5	0.0	0.0	3.1	Long
	1				30	0.0	0.0	0.2	20.4	0.0	0.0	3.2	
TATA A	L		<u> </u>		60	0.0	0.0	0.2	20.3	0	0	3	
KEY aP: Atmospheric PredP: Differential Press		NR: Not Recor											

JOB DETAILS													
Location:	St Annes						Engineer:	VC and	FG				
Date:	29/05/2018			Job Nu	ımber:	18/3106		Time:	09:30				
METEOROLOGIC	NAT AND CIT	E INEODM	ATION										
	AL AND SIT		ATION		37	Tag : .		1557					D. (A. D)
State of ground:		Dry			X	Moist		Wet			1		Delete As Required
Wind:		X Calm				Light		Moderate			Strong		Ground Level
Cloud cover:		None	;			Slight	X	Cloudy			Overcast		
Precipitation		None	;		X	Slight		Moderate			Heavy		
Barometric pressure	(mb) Before:	1014	dP (l	Pa) initial:	0	aP (ml	b) After: 10	14	Temperature	(°C) 18			
INSTRUMENTATI	ION USED									Tick if gas	sample taken:		
		Sxi G3.18, Accı	uaracy: CH ₄ ±0	0.2% (0 to :	5%), ±1.0	% (at 30%), ±3	3.0% (at 100%);	CO ₂ ±0.1% (0	to 10%), ±3.0%			Tiel	Instrument used
Gas concentration:	Gas Data GFM	1 436, Accuracy	y: CH4 ±0.3%	(0 to 5%),	±3.0% (a	t 30%), ±3.0%	(at 100%); CO2	±0.3% (0 to 59	%), ±3.0% (at 4	0%); O2 ±0.2%;	X	TICK	instrument used
ВН	Depth to				Time							PID	Comments
(No.)	GW (m)	Flow	Measureme	nts	(s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)	(ppm)	
			Ī	Flow	5	0.0	0.0	2.1	17.8	0	0	4.0	Short
BH02B	6.58	Time (s)	dP (mb)	(l/h)	30	0.0	0.0	2.1	17.7	0	0	8.8	
		0	0	0	60	0.0	0.0	2.1	17.7	0	0	10.3	
		30			5	0.0	0.0	2.1	18.1	0	0	1.0	Long
		60			30	0.0	0.0	2.2	17.4	0	0	6.1	
		90			60	0.0	0.0	2.3	17.4	0	0	2.0	
		120			60	0.0	0.0	2.6	17.0	0	0		
		150			120	0.0	0.0	2.0	16.7	0	0		
		180			180	0.0	0.0	2.4	16.9	0	0	_	
		210			240	0.0	0.0	2.3	17.2	0	0	Circulation	
		240			300	0.0	0.0	2.1	17.5	0	0	lat	
		270			360	0.0	0.0	2.2	17.4	0	0		
		300			420	0.0	0.0	2.2	17.6	0	0	Ü	
		360			480	0.0	0.0	2.1	17.4	0	0		
		420			540	0.0	0.0	2.1	17.7	0	0		
		480			600	0.0	0.0	2.0	17.8	0	0		
		540			5	0.0	0.0	0.0	17.4	0	0	2.2	Short
		600			30	0.0	0.0	0.0	17.6	0	0	4.7	_
					60	0.0	0.0	0.0	17.6	0	0	5	
					5	0.0	0.0	0.0	17.4	0	0	0.7	Long
					30	0.0	0.0	0.0	17.6	0	0	0.5	
TATE A	L		<u> </u>		60	0.0	0.0	0.0	17.6	0	0	0.4	
KEY aP: Atmospheric PredP: Differential Press		NR: Not Recor											

JOB DETAILS													
Location:	St Annes						Engineer:	VC					
Date:	06/06/2018			Job Nu	ımber:	18/3106		Time:	14:03				
METEOROLOGIO	CAL AND CIT	E INEODM	ATION										
	AL AND SIT		ATION]M-:-4]xx/-4					Dalata A a Danastara I
State of ground:		X Dry				Moist		Wet			1_		Delete As Required
Wind:		X Calm				Light		Moderate			Strong		Ground Level
Cloud cover:		X None				Slight		Cloudy			Overcast		
Precipitation		X None	;			Slight		Moderate			Heavy		
Barometric pressure	(mb) Before:	1012	dP (Pa) initial:	0	aP (m	b) After: 10	12	Temperature	(°C) 24			
INSTRUMENTAT	ION USED									Tick if gas	sample taken:		
Gas concentration:	Gas Data LMS						3.0% (at 100%);					Tick	Instrument used
Gas concentration.	Gas Data GFM	436, Accurac	y: CH4 ±0.3%	(0 to 5%),	±3.0% (a	it 30%), ±3.0%	(at 100%); CO2	2 ±0.3% (0 to 5°	%), ±3.0% (at 4	10%); O2 ±0.2%;	X	TIOK	manument useu
ВН	Depth to	-			Time	CII (0/)	T ET (0/)	CO (0/)	0 (0/)	II C ()	GO ()	PID	Comments
(No.)	GW (m)	Flow	Measureme	nts	(s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)	(ppm)	
BH01	DRY	Time (a)	dP (mb)	Flow	5	0.0	0.0	0.7	18.8	0	0	0.9	Short
DUA	DKI	Time (s)	ar (mb)	(l/h)	30	0.0	0.0	0.2	20.2	0	0	3.5	
		0	0	0	60	0.0	0.0	0.2	20.2	0	0	3.0	
		30			5	0.0	0.0	0.2	20.4	0	0	5.8	Long
		60			30	0.0	0.0	0.3	20.2	0	0	4.2	
		90			60	0.0	0.0	0.3	20.2	0	0	3.0	
		120			60	0.0	0.0	0.2	20.2	0	0		
		150			120	0.0	0.0	0.2	20.2	0	0		
		180			180	0.0	0.0	0.2	20.2	0	0	e	
		210			240	0.0	0.0	0.2	20.2	0	0	Circulation	Constant readings
		240			300							ıla	
		270			360							ว	
		300			420							Ü	
		360 420			480 540	1							1
		480			600	 							l
		540			5	0.0	0.0	0.2	20.5	0	0	1.0	Ch4
		600			30	0.0	0.0	0.2	20.5	0	0	1.8 3.5	Short
		000			60	0.0	0.0	0.2	20.2	0	0	3.4	
				-	5	0.0	0.0	0.2	20.2	0	0	3.4	Tana
				-	30	0.0	0.0	0.2	20.4	0	0	2.9	Long
				 	60	0.0	0.0	0.2	20.2	0	0	2.6	1
KEY				I	UU	0.0	0.0	0.2	20.2	U	U	2.0	
aP: Atmospheric Pre dP: Differential Pres		NR: Not Recor											
di . Differential Pres	Suic	OK. Out of K	ange										

JOB DETAILS													
Location:	St Annes						Engineer:	VC					
Date:	06/06/2018			Job Nu	ımber:	18/3106		Time:	14:26				
METEOROLOGIC	TAT AND CIT	E INEODM	ATION										
	AL AND SIT		ATION			Moist		TXX-4					Dalada Ala Da sustana d
State of ground:		X Dry				4		Wet			1~		Delete As Required
Wind:		X Calm				Light		Moderate			Strong		Ground Level
Cloud cover:		X None				Slight		Cloudy			Overcast		
Precipitation		X None	;			Slight		Moderate			Heavy		
Barometric pressure	(mb) Before:	1012	dP (l	Pa) initial:	0	aP (ml	b) After: 10	12	Temperature	(°C) 23			
INSTRUMENTAT	ION USED									Tick if gas	sample taken:		
Gas concentration:	Gas Data LMS						3.0% (at 100%);			6 (at 40%); O ₂ ±			Instrument used
Gas concentration.	Gas Data GFM	I 436, Accuracy	y: CH4 ±0.3%	(0 to 5%),	±3.0% (a	t 30%), ±3.0%	(at 100%); CO2	2 ±0.3% (0 to 59	%), ±3.0% (at 4	10%); O2 ±0.2%;	X	TION	motrument asea
ВН	Depth to				Time							PID	Comments
(No.)	GW (m)	Flow	Measureme	nts	(s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)	(ppm)	
				Flow	5	0.0	0.0	0.7	18.6	0	0	3.1	Short
BH02B	DRY	Time (s)	dP (mb)	(l/h)	30	0.0	0.0	0.7	18.6	0	0	6.2	
		0	0	0	60	0.0	0.0	0.7	18.6	0	0	8.1	
		30			5	0.0	0.0	0.8	18.0	0	0	2.0	Long
		60			30	0.0	0.0	3.2	15.7	0	0	3.5	
		90			60	0.0	0.0	3.1	15.8	0	0	1.4	
		120			60	0.0	0.0	0.7	18.5	0	0		
		150			120	0.0	0.0	0.7	18.5	0	0		
		180			180	0.0	0.0	0.7	18.5	0	0		
		210			240	0.0	0.0	0.7	18.5	0	0	Circulation	Constant readings
		240			300							ılaı	
		270			360							ว	
		300			420							Ü	
		360 420			480 540	-							
		480			600	1							-
		540			5	0.0	0.0	0.7	18.6	0.0	0.0	1.8	Short
		600			30	0.0	0.0	0.7	18.4	0.0	0.0	4	Short
		000			60	0.0	0.0	0.7	18.4	0.0	0.0	4.3	
					5	0.0	0.0	0.7	17.6	0.0	0.0	1	Long
					30	0.0	0.0	0.0	17.5	0.0	0.0	0.4	Long
					60	0.0	0.0	0.0	17.5	0	0	0.5	
KEY	1	1								-	-		<u> </u>
aP: Atmospheric Pre	ssure N	NR: Not Reco	rded										
dP: Differential Pres	sure	OR: Out of Ra	ange										

JOB DETAILS													
Location:	St Annes						Engineer:	VC+RP					
Date:	13/06/2018			Job Nu	ımber:	18/3106		Time:	10:48				
METEOROLOGIC	CAL AND SIT	E INFORM	ATION										
State of ground:		X Dry				Moist		Wet					Delete As Required
Wind:		X Calm				Light		Moderate			Strong		Ground Level
Cloud cover:		X None				Slight		Cloudy			Overcast		
Precipitation Precipitation		X None				Slight		Moderate			Heavy		
Barometric pressure	(mala) Dofonos	1015		Pa) initial:	0	-	b) After: 10	·	Temperature		licavy		
Barometric pressure	(IIIb) before:	1013	ur (i	Pa) initiai:		ar (IIII	b) Alter: 10	13	Temperature	(C) 21			
INSTRUMENTAT											sample taken:	X	
Gas concentration:			-				3.0% (at 100%);					Tick	Instrument used
	Gas Data GFM	I 436, Accuracy	y: CH4 ±0.3%	(0 to 5%),	±3.0% (a)	± 30%), ±3.0%	(at 100%); CO2	$2 \pm 0.3\%$ (0 to 59)	%), ±3.0% (at 4	40%); O2 ±0.2%;	X		
ВН	Depth to	1731		,	Time	CII (0/)	I EU (0/)	CO (9/)	0 (0/)	II C (nnm)	GO ()	PID	Comments
(No.)	GW (m)	Flow	Measureme	nts	(s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O_2 (%)	H ₂ S (ppm)	CO (ppm)	(ppm)	
BH01	3.49	Time (s)	dP (mb)	Flow	5	0.0	0.0	1.2	18.1	0	0	9.3	Short
DHUI	3.49	Time (s)	ur (IIID)	(l/h)	30	0.0	0.0	0.5	19.7	0	0	2.2	
		0	0	0	60	0.0	0.0	0.5	19.6	0	0	1.3	
		30			5	0.0	0.0	0.4	20.2	0	0	4.3	Long
		60			30	0.0	0.0	0.2	20.0	0	0	5.5	
		90			60	0.0	0.0	0.2	20.0	0	0	5.9	
		120			60	0.0	0.0	0.4	19.6	0	0		
		150			120	0.0	0.0	0.4	19.7	0	0		
		180 210			180	0.0	0.0	0.4	19.8	0	0	Ħ	
		240			240 300	0.0	0.0	0.3	19.8 19.9	0	0	ıtio	Constant madinas
		270			360	0.0	0.0	0.3	19.9	U	U	Circulation	Constant readings
		300			420							ïrc	
		360			480							0	
		420			540								
		480			600								
		540			5	0.0	0.0	0.3	20.2	0.0	0.0	1	Short
		600			30	0.0	0.0	0.4	19.9	0.0	0.0	2.4	
					60	0.0	0.0	0.4	19.8	0	0	2.9	
					5	0.0	0.0	0.3	20.0	0.0	0.0	2.8	Long
					30	0.0	0.0	0.4	19.7	0.0	0.0	1.4	
					60	0.0	0.0	0.4	19.7	0	0	1.1	
KEY aP: Atmospheric Pre dP: Differential Pres		IR: Not Recor											

JOB DETAILS													
Location:	St Annes						Engineer:	VC+RP					
Date:	13/06/2018			Job N	umber:	18/3106			09:48				
	~		1 mm 0										•
METEOROLOGIC	CAL AND SIT		ATION			1 .	r	1					F
State of ground:		X Dry				Moist		Wet			-		Delete As Required
Wind:		X Calm				Light		Moderate			Strong		Ground Level
Cloud cover:		None	2		X	Slight		Cloudy			Overcast		
Precipitation		X None	•			Slight		Moderate			Heavy		
Barometric pressure	(mb) Before:	1016	dP (Pa) initial	: 0	aP (m	b) After: 10	15	Temperature	(°C) 21	1		
<u> </u>			`										
INSTRUMENTAT											sample taken:	X	
Gas concentration:										% (at 40%); $O_2 \pm$	<u> </u>	Tick	Instrument used
Gus concentration.	Gas Data GFM	A 436, Accurac	y: CH4 ±0.3%	(0 to 5%)	, ±3.0% (a	t 30%), ±3.0%	(at 100%); CO2	$2 \pm 0.3\%$ (0 to 5)	%), ±3.0% (at 4	10%); O2 ±0.2%	X	11010	monument acca
ВН	Depth to				Time							PID	Comments
(No.)	GW (m)	Flow	Measureme	nts	(s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)	(ppm)	
, ,	` ,			Flow	5	0.0	0.0	0.4	20.4	0	0	3.0	Short
BH02B	Dry	Time (s)	dP (mb)	(l/h)	30	0.0	0.0	0.8	18.6	0	0	7.7	Short
		0	0	0	60	0.0	0.0	0.8	18.5	0	0	8.8	
		30	Ť		5	0.0	0.0	1.8	18.4	0	0	2.8	Long
		60			30	0.0	0.0	3.8	14.8	0	0	5.8	2019
		90			60	0.0	0.0	3.8	14.8	0	0	2.7	
		120			60	0.0	0.0	0.8	18.5	0	0		
		150			120	0.0	0.0	0.8	18.5	0	0		
		180			180	0.0	0.0	0.8	18.5	0	0	l _	
		210			240	0.0	0.0	0.8	18.5	0	0	Circulation	Constant readings
		240			300							llat	
		270			360							2	
		300			420							Ü	
		360			480								
		420 480			540 600							-	
		540			5	0.0	0.0	0.9	19.0	0	0	3.2	Short
		600			30	0.0	0.0	0.9	19.0	0	0	4.6	Snort
		000			60	0.0	0.0	0.7	19.0	0	0	4.6	
					5	0.0	0.0	0.7	19.0	0	0	5.1	Long
					30	0.0	0.0	2.4	16.4	0	0	3.9	Long
	1				60	0.0	0.0	2.4	16.4	0	0	2.8	
KEY	<u> </u>	ı	I	L	00	0.0	0.0		10.7		Ü	2.0	<u> </u>
aP: Atmospheric Pre	essure N	NR: Not Reco	rded										
dP: Differential Pres		OR: Out of R											
			~										

JOB DETAILS													
Location:	St Annes						Engineer:	R.P					
Date:	20/06/2018			Job Nu	ımber:	18/3106		Time:	11:40				
METEOROLOGIC	NAT AND CIT	E INEODM	ATION										
	AL AND SH		AHON			1		1,,,					D1. 4 D . 1
State of ground:		X Dry				Moist		Wet			1		Delete As Required
Wind:		X Calm				Light		Moderate			Strong		Ground Level
Cloud cover:		None	;			Slight	X	Cloudy			Overcast		
Precipitation		X None	:			Slight		Moderate			Heavy		
Barometric pressure	(mb) Before:	1017	dP (l	Pa) initial:	0	aP (ml	b) After: 10	17	Temperature	(°C) 21			
INSTRUMENTATI	ON USED									Tick if gas	sample taken:	X	
		Sxi G3.18, Accı	uaracy: CH ₄ ±0	0.2% (0 to	5%), ±1.0	% (at 30%), ±3	3.0% (at 100%);	CO ₂ ±0.1% (0	to 10%), ±3.0%		запри шкеп.		<u>I</u>
Gas concentration:	Gas Data GFM	I 436, Accuracy	y: CH4 ±0.3%	(0 to 5%),	±3.0% (a	t 30%), ±3.0%	(at 100%); CO2	2 ±0.3% (0 to 59	%), ±3.0% (at 4	10%); O2 ±0.2%;	X	Tick	Instrument used
ВН	Depth to				Time							PID	Comments
(No.)	GW (m)	Flow	Measureme	nts	(s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)	(ppm)	
				Flow	5	0.0	0.0	0.6	17.8	0	0	3.5	Short
BH01	DRY	Time (s)	dP (mb)	(l/h)	30	0.0	0.0	0.2	20.2	0	0	6.1	
		0	0	0	60	0.0	0.0	0.2	20.3	0	0	6.7	
		30			5	0.0	0.0	0.2	20.5	0	0	14.5	Long
		60			30	0.0	0.0	0.5	20.0	0	0	2.5	
		90			60	0.0	0.0	0.5	20.0	0	0	1.6	
		120			60	0.0	0.0	0.2	20.3	0	0		
		150			120	0.0	0.0	0.2	20.3	0	0		
		180			180	0.0	0.0	0.2	20.3	0	0	c	Constant readings
		210			240							<u>[</u>	
		240			300							Circulation	
		270			360							ว	
		300			420							Ü	
		360 420			480 540								
		480			600	1							
		540			5	0.0	0.0	0.2	20.3	0.0	0.0	2.4	Short
		600			30	0.0	0.0	0.2	20.3	0.0	0.0	1.8	Short
	+	000			60	0.0	0.0	0.2	20.3	0.0	0.0	1.6	
					5	0.0	0.0	0.2	20.2	0.0	0.0	3.7	Long
	†				30	0.0	0.0	0.5	20.2	0.0	0.0	4.2	Long
					60	0.0	0.0	0.4	20.1	0	0	4.4	
KEY		1									-		
aP: Atmospheric Pre	ssure N	NR: Not Recor	rded										
dP: Differential Press		OR: Out of Ra	ange										

JOB DETAILS													
Location:	St Annes						Engineer:	R.P					
Date:	20/06/2018			Job Nu	mber:	18/3106		Time:	10:45				
METEOROLOGIC	'AL AND SIT	E INFORM	ATION										
State of ground:	ALL MILD DIT	X Dry	111011			Moist		Wet					Delete As Required
Wind:		X Calm				Light		Moderate			Strong		Ground Level
						-		-			Ü		Ground Level
Cloud cover:		X None				Slight		Cloudy			Overcast		
Precipitation		X None				Slight		Moderate			Heavy		
Barometric pressure	(mb) Before:	1018	dP (l	Pa) initial:	0	aP (ml	b) After: 10	17	Temperature	(°C) 21			
INSTRUMENTAT	ON USED									Tick if gas	sample taken:	X	
Gas concentration:							3.0% (at 100%);					Tick	Instrument used
	Gas Data GFM	436, Accuracy	y: CH4 ±0.3%	(0 to 5%),	±3.0% (at	± 30%), ±3.0%	(at 100%); CO2	$2 \pm 0.3\%$ (0 to 59)	%), ±3.0% (at 4	40%); O2 ±0.2%;	X		
BH (No.)	Depth to GW (m)	Flow	Measureme	nts	Time (s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)	PID (ppm)	Comments
	227			Flow	5	0.0	0.0	1.2	17.2	0	0		Short
BH02B	DRY	Time (s)	dP (mb)	(l/h)	30	0.0	0.0	1.2	15.6	0	0	7.7	
	Ì	0	0	0	60	0.0	0.0	1.2	15.5	0	0	8.5	
		30			5	0.0	0.0	1.4	15.6	0	0	14.7	Long
		60			30	0.0	0.0	2.4	12.6	0	0	3.2	
		90			60	0.0	0.0	4.3	11.7	0	0	1.6	
		120			60	0.0	0.0	0.9	16.5	0	0		
		150			120	0.0	0.0	1.2	15.5	0	0		
		180			180	0.0	0.0	1.2	15.4	0	0	_	
		210			240	0.0	0.0	1.2	15.3	0	0	Circulation	
		240			300	0.0	0.0	1.3	15.3	0	0	la1	
		270			360	0.0	0.0	1.3	15.3	0	0	ı	Constant readings
		300			420							Ü	
		360			480								
		420			540								
		480			600	0.0	0.0	2.2	12.4	0	0	1.0	G1 /
		540			5	0.0	0.0	3.3	12.4	0	0	1.9	Short
		600			30	0.0			15.0			2.6	
					<u>60</u> 5	0.0	0.0	1.7 1.4	15.0 16.6	0	0	2.5 4.1	T
					30	0.0	0.0	4.1	12.0	0	0	1.4	Long
					60	0.0	0.0	4.1	11.9	0	0	1.4	
KEY	<u> </u>			l	OU	0.0	0.0	4.2	11.9	U	U	1.2	<u> </u>
aP: Atmospheric Pre-	Y Atmospheric Pressure NR: Not Recorded Differential Pressure OR: Out of Range												

JOB DETAILS													
Location:	St Annes						Engineer:	R.P					
Date:	27/06/2018			Job Nu	ımber:	18/3106		Time:	10:15				
METEODOLOGIC	NAT AND CUT	E DIEODM	ATTION										
METEOROLOGIC	CAL AND SIT		ATION			1		1					
State of ground:		X Dry				Moist		Wet			1		Delete As Required
Wind:		Calm	ļ		X	Light		Moderate			Strong		Ground Level
Cloud cover:		X None				Slight		Cloudy			Overcast		
Precipitation		X None				Slight		Moderate			Heavy		
Barometric pressure	(mb) Before:	1024	dP (l	Pa) initial:	0	aP (ml	b) After: 102	24	Temperature	(°C) 19			
TAIGEDAIN (EDAIG) A GO	TON HOED					_				m: 1 :c	1 . 1	37	T.
INSTRUMENTATI		v: C2 10 A an	romo ovu CII. 10) 20/ (0 to	50/) +1.00	0/ (at 200/) +3	3.0% (at 100%);	CO +0.10/ (0.	to 100/ \ +2.00		sample taken:	X	
Gas concentration:											X	Tick	Instrument used
	Gas Data GFM	1 436, Accuracy	y: CH4 ±0.3%	(0 to 5%),	±3.0% (a)	t 30%), ±3.0%	(at 100%); CO2	2 ±0.3% (0 to 5)	%), ±3.0% (at 4	·0%); O2 ±0.2%;	X		
BH (No.)	Depth to GW (m)	Flow	Measureme	nts	Time (s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)	PID (ppm)	Comments
				Flow	5	0.0	0.0	0.1	19.9	0	0	2.2	Short
BH01	Dry	Time (s)	dP (mb)	(l/h)	30	0.0	0.0	0.2	19.7	0	0	4.5	SHOTE
		0	0	0	60	0.0	0.0	0.2	19.6	0	0	5.1	
		30			5	0.0	0.0	0.2	19.7	0	0	12.4	Long
		60			30	0.0	0.0	0.4	19.5	0	0	2.2	Ü
		90			60	0.0	0.0	0.3	19.5	0	0	1.4	
		120			60	0.0	0.0	0.2	19.6	0	0		
		150			120	0.0	0.0	0.2	19.6	0	0		
		180			180	0.0	0.0	0.2	19.6	0	0	_	
		210			240	0.0	0.0	0.2	19.6	0	0	Circulation	Constant Readings
		240			300							la 1	
		270			360							2	
		300			420							Ü	
		360			480								
		420			540								
		480			600	0.0	0.0	0.2	10.0	0.0	0.0	1.2	G
		540			5	0.0	0.0	0.2	19.9	0.0	0.0	1.2	Short
		600			30	0.0			19.7	0.0		2.3	
					60	0.0	0.0	0.3	19.7	0	0.0	2.5	
					5 30	0.0	0.0	0.2	19.7 19.5	0.0	0.0	2.7	Long
					60	0.0	0.0	0.3	19.5	0.0	0.0	2.5	
KEY				l	OU	0.0	0.0	0.5	19.5	U	U	2.2	
aP: Atmospheric Pre-	Y Atmospheric Pressure NR: Not Recorded Differential Pressure OR: Out of Range												

JOB DETAILS													
Location:	St Annes						Engineer:	VC					
Date:	02/07/2018			Job Nu	ımber:	18/3106		Time:	14:00				
METEODOL OCIO	NAT AND CIT	E INEODM	ATION										
METEOROLOGIC	AL AND SH		AHON]		1,,,					D D
State of ground:		X Dry				Moist		Wet			1		Delete As Required
Wind:		X Calm				Light		Moderate			Strong		Ground Level
Cloud cover:		X None	;			Slight		Cloudy			Overcast		
Precipitation		X None	:			Slight		Moderate			Heavy		
Barometric pressure	(mb) Before:	1011	dP (l	Pa) initial:	0	aP (ml	b) After: 10	11	Temperature	(°C) 28			
INSTRUMENTATI	ON USED									Tick if gas	sample taken:	X	
INSTRUMENTAL		Sxi G3.18. Accı	aracv: CH ₄ ±0	0.2% (0 to	5%), ±1.0	% (at 30%), ±3	3.0% (at 100%);	CO2±0.1% (0	to 10%), ±3.0%		sample taken.		
Gas concentration:										10%); O2 ±0.2%;	X	Tick	Instrument used
ВН	Depth to				Time			GO (01)		G ()		PID	Comments
(No.)	GW (m)	Flow	Measureme	nts	(s)	CH ₄ (%)	LEL (%)	CO ₂ (%)	O ₂ (%)	H ₂ S (ppm)	CO (ppm)	(ppm)	
D-1104D	-		15 (1)	Flow	5	0.0	0.0	0.0	20.1	0	0	4.1	Short
BH02B	Dry	Time (s)	dP (mb)	(l/h)	30	0.0	0.0	0.0	20.2	0	0	8.2	
		0	0	0	60	0.0	0.0	0.0	20.1	0	0	8.0	
		30			5	0.0	0.0	0.5	16.2	0	0	1.0	Long
		60			30	0.0	0.0	2.4	16.0	0	0	4.9	
		90			60	0.0	0.0	2.3	16.4	0	0	5.0	
		120			60	0.0	0.0	0.0	20.1	0	0		
		150			120	0.0	0.0	0.0	20.0	0	0		
		180			180	0.0	0.0	0.2	19.6	0	0	_	
		210			240	0.0	0.0	0.2	19.6	0	0	Circulation	
		240			300	0.0	0.0	0.2	19.6	0	0	ılaı	Constant readings
		270			360							ıcı	
	-	300			420	1						Ü	
		360			480								
		420 480			540 600								
		540			5	0.0	0.0	0.9	18.3	0	0	2	Short
		600			30	0.0	0.0	0.9	18.0	0	0	3.6	Snort
		600			60	0.0	0.0	0.9	18.0	0	0	3.8	
					5	0.0	0.0	0.9	18.8	0	0	4.9	T
	-			-	30	0.0	0.0	1.8	17.2	0	0	4.9	Long
					60	0.0	0.0	2.0	16.9	0	0	4.1	
KEY	I	I.	1	I.	00	0.0	0.0	2.0	10.7	Ü	Ü	7.3	
aP: Atmospheric PredP: Differential Pres		NR: Not Recor											

CONCEPT **GROUNDWATER - IN SITU ANALYSIS & SAMPLING** Site: St Annes Church Job No.: 18/3106 Date: 29/05/2018 Technician: VC + FG Sampling method: Peristactic pump Base of Top of Depth to well slotted GW (mbgl) (mbgl) (mbgl) BH No. **BH01** 7.96 5.00 6.05 Purge Redox Sample Detail SPC Volume DO **Potential** (Colour/Odour/Turbidity) Time (mS/cm) (mV) (L) Temp (°C) (mg/L) рΗ 2 11:48 14.5 2.22 1.54 6.87 73.5 Brown 3 11:50 14.4 1.83 1.48 6.86 71.7 Brown 4 11:52 1.45 14.4 1.45 6.84 69.9 Brown 5 11:54 14.4 1.07 1.43 6.83 68.0 Brown 6 11:56 14.4 0.86 1.42 6.82 66.5 Brown 7 11:58 14.4 0.69 1.42 6.82 64.6 Brown 8 12:00 14.4 0.61 1.41 6.82 63.1 Brown

CONCEPT **GROUNDWATER - IN SITU ANALYSIS & SAMPLING** Site: St Annes Church Job No.: 18/3106 Date: 29/05/2018 Technician: VC + FG Sampling method: Peristactic pump Base of Top of Depth to well slotted GW (mbgl) (mbgl) (mbgl) BH No. BH02B 8.45 6.50 6.58 Purge Redox Sample Detail SPC Volume DO **Potential** (Colour/Odour/Turbidity) Time (mS/cm) (mV) (L) Temp (°C) (mg/L) рΗ 2 10:24 14.4 1.24 1.42 6.75 72.4 **Turbid Clear** 3 10:26 14.4 1.10 1.42 6.75 73.0 **Turbid Clear** 4 10:28 0.89 **Turbid Clear** 14.4 1.42 6.75 73.9 5 10:31 14.4 0.71 1.42 6.77 71.0 **Turbid Clear** 6 10:33 14.4 0.65 1.42 6.77 69.6 **Turbid Clear** 7 10:36 14.4 0.57 1.42 6.78 68.0 **Turbid Clear** 8 10:39 14.4 0.50 1.42 6.78 66.9 **Turbid Clear** 9 10:42 14.4 0.48 1.42 6.78 65.7 **Turbid Clear**

CONCEPT **GROUNDWATER - IN SITU ANALYSIS & SAMPLING** Site: St Annes Church Job No.: 18/3106 Date: 13/06/2018 Technician: VC+RP Sampling method: Peristactic pump Base of Top of Depth to well slotted GW (mbgl) (mbgl) (mbgl) BH No. **BH01** 7.90 5.00 6.08 Purge Redox Sample Detail SPC Volume DO **Potential** (Colour/Odour/Turbidity) (mS/cm) (L) Time Temp (°C) (mg/L) рΗ (mV) 11:20 126.1 14.4 1.51 1.43 6.79 Brown 2.2 11:22 14.3 1.01 1.42 6.76 122.8 Brown 0.76 3.6 11:24 14.3 1.42 6.76 119.3 Brown 5 11:26 14.3 0.63 1.42 6.77 116.9 Brown 6 11:28 14.3 0.54 1.42 114.2 6.77 Brown 7 11:30 14.3 0.48 1.42 Brown 6.77 111.2 8 11:32 14.3 0.44 1.42 6.77 108.5 Brown 9 11:34 14.3 0.41 1.41 6.77 105.5 Brown 10 11:36 14.3 0.41 1.42 103.2 6.77 Brown 11 11:38 14.3 0.39 1.42 6.78 100.8 Brown 12 11:40 14.3 0.38 1.42 6.78 99.3 Brown

CONCEPT **GROUNDWATER - IN SITU ANALYSIS & SAMPLING** Site: St Annes Church Job No.: 18/3106 Date: 13/06/2018 Technician: VC+RP Sampling method: Peristactic pump Base of Top of Depth to well slotted GW (mbgl) (mbgl) (mbgl) BH No. BH02B 8.30 6.50 6.59 Purge Redox Sample Detail SPC Volume DO **Potential** (Colour/Odour/Turbidity) (L) **Time** Temp (°C) (mg/L) (mS/cm) рΗ (mV) 10:19 139.0 14.3 1.73 1.35 6.72 Brown 2 10:20 14.3 0.87 1.35 6.72 124.6 Brown 3 10:22 14.3 0.69 1.35 6.72 118.3 Brown 4 10:24 14.2 0.54 1.35 6.73 110.2 Brown 5 10:26 14.2 0.47 105.1 1.35 6.73 Brown 6 10:28 14.2 0.41 6.74 99.3 1.36 Brown 7 10:30 14.2 0.37 1.36 6.74 94.7 Brown 8 10:32 14.2 0.34 1.36 6.75 91.6 Brown 9 10:34 14.2 0.33 6.75 1.36 89.8 Brown 10 10:36 14.2 0.32 1.36 6.75 90.7 Brown 11 10:38 14.2 0.3 1.36 6.75 91.9 Brown 12 10:40 14.2 0.3 1.36 6.75 92.2 Brown

TEST DATE AND CO	NDITIONS
Date	15.11.17
Atmospheric Pressure	/∞) mB
Ambient Temp	22.1 °C
Environics Serial No.	5089

Inspection Technician

GAS DATA LTD Unit 4, Fairfield Court Seven Stars Estate Wheler Rd Coventry CV3 4LJ Tel 02476303311 Fax 02476307711

Date (Lil-17)

GFM436-1 OUTWARD INSPECTION & QUALITY CHECK SHEET

		INSTRUMENT DETAILS	
SO Number	Instrument Type	Instrument Serial Number + SW Version	n Job Number(s)
318481	GFM 436	12224 6436-00.0027/0011	119730
Calibration Tech	nician	Jed	Date 15-11-17

	INSTRUMENT	Pass (P), Fail (F) or	INSTRUMENT PACKING	Tick if
	CHECKS	not applicable (NA)	LIST	included
Function	Dust Caps Fitted	<u> </u>	Instrument	
Tests	Keyboard Test (All Keys)	L. "····································	Leather Case	>
i	Backlight	b	Instrument Strap	<u> </u>
	Clock Set / Running		AC Battery Charger (UK)	<i></i>
	Comms Test	P	AC Battery Charger (EURO)	<u>k</u>
	Pump Flow Test (In & Out)	· · · · · ·	AC Battery Charger (US)	<u>k</u>
	Overall Leak Test (30mB)	A A	AC Battery Charger (AUS)	<u>x</u>
	Battery Charge Test		Gas Sample Pipe	
	Service Date set to?	15-11-18	Hard Carry Case	
Channel	Data Logging Enabled?	· ·	Spares Pot	
Tests	Verify CH4/LEL/Hexane/PID	1	Allen Key	k
	Verify CO2	<u> </u>	Flow Sample Pipe	
	Verify O2	P _a	Temperature Probe	>
	Verify H2S	<u> </u>	Vane Anemometer	8
	Verify CO	7	USB Cable	
	Verify LEL	7	USB Memory stick	×
	Verify 1 st Option Gas	2/2	SM V5 Software Ver	
	Verify Atmospheric pressure		Internal Filter Pack Qty 6	>
	Verify differential pressure	h	External Filter Pack Qty	×
	Verify flow		Field Guide	Ж
	Verify temperature probe input	10	Extra Items:	
	Verify vane anemometer input	P	1	
DataBase	Jobcard(s) completed and signed		T' Prece adaptor	
Checks	Jobcard(s) booked off database	1	1	
	Calibration certificate completed	Ψ.		
	Complete & print QI record	20		
Label	No. of Calibration label fitted	GDC 08270	Comments:	
Checks	MCERTS label displayed			
	Warranty label fitted	λA		
H2S Range	H2S Range from Sales Order	Soco ppm		
	H2S Range from Cal Cert	නිරක ppm		
	Over-range value correct?	4		

(TIME
is a december of	5/11/17
a AmosphericPressiter	1007 mB
Ambient Temperature	22.1 °C
Environics/Sental No.	5089

GFM436 Final Inspection & Calibration Check Certificate

e. Customer is	Concept Site Investigations
Carillie (e Number)	119730
្សី(ទី១ពីរយ៉ាងខែទី)	318481

s, sa <u>dri Dun</u> iber 🔻	12224
Soluzie ve stor	G436-00.0027/0011

GAS DATA LTD Unit 4, Fairfield Court Seven Stars Estate Wheler Rd Coventry CV3 4LJ Tel 02476303311 Fax 02476307711

13 - Washing M. at 40	
15/11/18	

		instrume	nicehecks		
Keyboard		✓	Display Contrast		*
Pump Flow In	400	Accept > 200 cc/mîn	Pump Flow @ -200mB	300	Accept > 200 cc/min
Clock Set / Running		*	Labels Fitted		✓

			Gasidhecks				
	CH ₄		CO 2		02		
	Instrument Gas	True Gas	Instrument Gas	True Gas	Instrument Gas	True Gas	
	Readings %		Value % Readings %		Readings %	Value %	
Sensor	60	60	40	40	20.9	20.9	
l [Accept ±3.0	7 " [Accept ±3.0	ገ <i>*⁰</i> [Accept ±0.5		
Γ	4.9	5	4.9	5	6	6	
	Accept ±0.3	ן י ן	Accept ±0.3	7 ° [Accept ±0.3] °	
Zero	0	0	0		0		
Reading 100% N2	Accept ±0.0	7 " [Accept ±0.0	7 0 1	Accept ±0.1	0	

			Optional G	as Ghecks		
Annlied Cas & Pance		Concentration Tested @	Instrument Readings (ppm)			
Gas Type	Range (ppm)	(ppm) Zero Reading Inst		Zero Reading		ıment Gas Reading
H2S	5000	1500	0	Accept ±0.0	1500	Accept ±5.0
СО	2000	1000	0	Accept ±0.0	1000	Accept ±5.0
Hexane	2.0%	2.0%	0	Accept ±0.0	1.99	Accept ±10.0

	van den e			Cross Gas	Effects		Control of Control		
	d Gas (ppm)		Instrument Readings (ppm)						
Gas Type	· Concentration	Toxic 1:	H2S	Toxic 2;	со	Toxic 3:	HEX		
H2S	1500	15	00		0				
co	1000	6	0	10	000]		
Hexane	2.0%	Ú)		0	1.9	99		

	Pressure	Gliecks	
	Atmospheric Pres	ssure [AP] <i>(mB)</i>	
Current Atmospher	ic Pressure (mB)	Instrument Atmospheric	Pressure Reading (mB)
AP Open	Ports	1007	Accept ±2.0
AP Port (Internal)	+800 mB	800	Accept ±5.0
ne corr(internal)	+1200mb	1200	Accept ±5.0

Bo	rehole Flow	THE REPORT OF THE PROPERTY OF	(Grecks) Diffe	rential Pressi	
Applied Reading (I/h)	Instrun	nent Reading (I/h)	Applied Pressure (Pa)	Instruc	nent Reading (Pa)
-30	-30.4	Accept ±3.0	-263	-267	Accept ±50
-3	-3	Accept ±1.0	-13	-13	Accept ±6.0
o	0	Accept ±0.0	0	0	Accept ±0.5
3	3	Accept ±0.5	13	13	Accept ±3.0
30	30.1	Accept ±3.0	273	276	Accept ±50
60	60	Accept ±6.0	818	820	Accept ±130
90	88.4	Accept ±9.0	1597	1560	Accept ±250

Tempe	ature/Checks		
Calibration Temperature			
Applied Temperature ⁰ C	Instrument Temperature Reading ⁰ C		
-10	-10	Accept ±2.0	
0	0	Accept ±1.0	
30	30	Accept ±1.0	
60	60	Accept ±1.0	
190	100	Accept ±1.0	

Technician:	Date Tested:
Jack Rutland	16/11/17

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated. The results displayed on the instrument at each stage are recorded above.

TEXTONEL ASSOCIA	100700003
ter Daige 2	5/12/17
Amosphedeliesaneles	1016 mB
Amblent llemperture 👢	22.9
Environtes Settel No.	XXXX

LMSxi Final Inspection & Calibration Check Certificate

Section (1)	Concept Consultants
Confidence Kinnibor &	119772
	317832

Seifell Number	5037
Software/Version	G3.18v-LTBX

GAS DATA LTD Unit 4, Fairfield Court Seven Stars Estate Wheler Rd Coventry CV3 4LJ

Tel 02476303311

Fax 02476307711

	СН 4		co ₂		02	
	Instrument Gas	True Gas	Instrument Gas	True Gas	Instrument Gas	True Gas
Readings %	Value %	Readings % Value %		Readings %		
Sensor 56 Accept ±3.	56	- 56	40	42.3	20.7	20.9
	Accept ±3.0		Accept ±3.0	42.3	Accept ±0.5	20.9
	5.7	T	4	4.2		
	Accept ±0.3	5.8	Accept ±0.3	7 <i>4.2</i> [7
Zero	0		0		0.1	0
Reading 100% N2	Accept ±0.0	7 0	Accept ±0.0	7 <i>°</i> †	Accept ±0.1	

Applie	d Gas & Range	Concentration Tested @		Instrument :	(ppm)	
Toxic Gas	Range (ppm)	(ppm)		Zero Reading	Instru	ment Gas Reading
H2S	200	200	0	Accept ±0.0	200	Accept ±5.0
CO	1000	430	0	Accept ±0.0	433	Accept ±5.0
				Accept ±0.0		Accept ±5.0
i				Accept ±0.0		Accept ±5.0

Applied	l Gas (ppm)	Gross Gas Effects Instrument Readings (ppm)						
Toxic Gas	Concentration	Toxic 1:	н25	Toxic 2:	со	Toxic 3:		
H2S	200	200			0			•
со	430	3.	3	· 4	33			
			_					

Rressure (Gliecks: Atmospheric Pressure [AP] (mbar) Differential Pressure [DP] (mbar)							
Atmospheric Pressure (mba	ır)	Instrument AP Pressure Reading	Applied Pressure	Instrum	ent Pressure		
Current AP value	1016	Accept ±2.0	0.0 mbar		Accept ±0.0		
Current AP value + 50 mbar	1066	Accept ±2.0	+30 mbar	n/a	Accept ±1.0		
Current AP value - 50 mbar	966	Accept ±2.0	-30 mbar		Accept ±1.0		

Applied		Filov			
Flow Reading	Instrument Flow Reading (I/h) Pressure				al Pressure P Reading (Pa)
-5	-5	Accept ±0.5	-13	-13	Accept ±5.0
0	0	Accept ±0.0	0	0	Accept ±0.0
5	5.1	Accept ±0.5	13	13	Accept ±5.0
10	10	Accept ±0.7	30	30	Accept ±10.0
20	20	Accept ±3.0	76	76	Accept ±20.0

Temperature Checks						
Applied Temperature ⁰ C Instrument Reading ⁰ C						
0	0	Accept ±1.0				
25	25	Accept ±1.0				
40	40.2	Accept ±1.0				

Technician*	Date Tested:
Les Treece	05/12/17

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated. The results displayed on the instrument at each stage are recorded above.

SERVICE / INSPECTION SHEET

JOB NUMBER:

61331

T-108843

V.4.33

V7.05

29/06/2017

INSTRUMENT:

SERIAL NUMBER:

DATE RECEIVED:

UPGRADED TO:

Phocheck Tiger

Instrument House

91-92 Shrivenham Hundred Business Park

Watchfield

Oxfordshire
SN6 8TY FIRMWARE:

service@shawcity.co.uk

Fax: 01793 784466

CUSTOMER: Concept Engineering Consultants

		tteeteese:
ITEMS RECEIVED	CONDITION	RTN?
Instrument	YES	
Rubber Boot	YES	
Battery Charger	YES	
Charging Cradle	YE\$	
Operation Manual	NO	
Quick Start Guide	NO	
Spares Kit	YES	
Comms Cable	NO	
Probe FLEXI	NO	L
Peli Case	YES	
Tubing	NO	
Regulator	NO	
Software (Memory Stick)	NO	
	SIGNED:	

		AFTER
TESTS	AS REC'D	REPAIR
Charging Test	Ok	Ok
Battery Test	Ok	Ok
Lamp Test	Ok	Ok
Air Flow Test	Ok	Ok
Switch Test	Ok	Ok
Moisture Sensitivity	Failed	Ok
Sensor Test	Ok	Ok
Alarm Test	Ok	Ok
PC Comms Test	Qk	Ok
Datalog Test	Ok	Ok
Display Test	Ok	Ok
Physical Inspection	Ok	Ok
PAT Test	Ok	Ok
Firmware Upgrade	Completed	Ok
Software Upgrade (usb)	Ok	Ok
Function Test	Qk	Qk
	•	
<u>.</u>		

New probe kit fitted.
Sensor stack has been replaced.
Contaminated filter has been replaced
Sensor seal has been replaced.
Lamp cleaned with aluminium oxide.
Firmware has been upgraded to the latest version.
Instrument has been cleaned, serviced and calibrated.
Operationally tested to manufacturer's standards.

TECHNICIAN: Matthew Jordison

Hardone

DATE: 30.06.17

CERTIFICATE OF CALIBRATION Phocheck Tiger

61331

CALIBRATION CERTIFICATE NO:

ISSUED BY:

SHAWCITY LIMITED

DATE:

30.06.17

APPROVED SIGNATORY:

Adado Dozza

NAME:

Matthew Jordison

CUSTOMER:

Concept Engineering Consultants

INSTRUMENT:

Phocheck Tiger

SERIAL NUMBER:

T-108843

CALIBRATION METHOD:

CM03

AMBIENT CONDITIONS:

20°C ± 2°C and 50% (± 20%) RH

Prior to calibration the instrument was allowed to stabilise in the laboratory for at least 30 minutes.

The instrument was calibrated by exposing the sensor to known values of gas concentrations.

All gases were sampled through the complete probe and in line filter, where applicable.

The reference value is that generated by the certified source and the indicated value is that measured by the instrument.

CALIBRATION RESULTS

GAS	LOT No		INDICATED VALUE
Isobutylene	163183	100 ppm	100 ppm
Isobutylene	106389	1000 ppm	1000 ppm

COMMENTS:

The reported uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2.


This provides a level of confidence of uncertainty of approximately 95%.

The uncertainty of measurement is ±2 %

The results indicate that the instrument conforms to the applicable parts of the published specification.

HEALTH & SAFETY, OCCUPATIONAL HYGIENE AND ENVIRONMENTAL MONITORING INSTRUMENTS

Tel: 01793 780622 www.shawcity.co.uk Instrument House, 91-92 Shrivenham Hundred Business Park Watchfield, Oxfordshire, SN6 8TY Fax: 01793 784466 service@shawcity.co.uk

OUTWARDS CHECKLIST

YSI & Cable Serial Numbers:

	Reading	Target	Acceptable	Pass	Lot No:
Temp	74.7	Ref: 74.ዓ	± 1°C		N/A
pH7mv	-29.5	0.0	0 ± 50		18A1
pH4mv	147.6	177	177 ± 50		1881
pH Slope	177. 1	177	162 - 180		N/A
Cond. Cell Constant	4.9	5	4,6 - 5.4		18A1
Redox Offset	33.2	0.0	±50.0		1761
DO Gain	Pass or fail dete		N/A		

All parameters were within acceptable range on the day of despatch; however we do recommend that the instrument is calibrated daily to ensure accurate readings.

* Calibrated to manufacturers standards

Signed:

Name:

ON hacaen

Date: 2/7/18

Cross checked contents initials:

11. GEOTECHNICAL LABORATORY TEST RESULTS

18/3106 - Issue 01 Page 14 of 16

Site Name:	1 Triton Square - St Anne's	Job No.:	18/3106
Client:	British Land	Date Reported:	13/06/2018

Summary Test Report

Determination of Moisture Content and Liquid and Plastic Limits

						9				
Borehole			Depth	Description	Natural Moisture Content	^{1.} Passing 425 μm sieve	Liquid Limit	Plastic Limit	Plasticity Index	Remarks
No.	Type	No.	m		%	%	%	%	%	
BH01	D	24	7.95	Dark brown CLAY	25	100	63	25	38	
BH01	В	28	9.50	Dark brown CLAY	32	100	67	26	41	
BH01	В	34	11.70	Dark brown CLAY	25	100	71	24	47	
BH01	В	39	13.20	Dark brown CLAY	26	100	71	25	46	
BH01	D	42	14.50	Dark brown CLAY	26	100	75	29	46	
BH01	D	49	16.85	Brownish grey slightly sandy CLAY with rare claystone fragments	18	98	77	30	47	
BH01	D	63	22.00	Brownish grey slightly sandy CLAY	25	100	75	27	48	
BH01	D	76	26.50	Brownish grey slightly sandy CLAY	24	100	69	26	43	
BH01	В	81	28.20	Brownish grey slightly sandy CLAY	17	100	48	19	29	

BS 1377: Part 2: Clause 4.3 & 4.4: 1990 Determination of the liquid limit by the cone penetrometer method

BS 1377: Part 2: Clause 5: 1990 Determination of the plastic limit and plasticity index

BS 1377: Part 2: Clause 3.2: 1990 Determination of the moisture content by the oven drying method

CONCEPT

47-49 Brunel Road, London W3 7XR
Tel: 02087401553 Email: lab@conceptconsultants.co.uk

Site Name:	1 Triton Square - St Anne's	Job No.:	18/3106
Client:	British Land	Date Reported:	13/06/2018

Summary Test Report

Determination of Moisture Content and Liquid and Plastic Limits

				I		4 4 4 4 4 4				
Borehole		Sample	Depth	Description	Natural Moisture Content	^{1.} Passing 425 μm sieve	Liquid Limit	Plastic Limit	Plasticity Index	Remarks
No.	Type	No.	m		%	%	%	%	%	
BH01	D	84	29.50	Reddish grey mottled bluish grey CLAY	23	100	61	24	37	

BS 1377: Part 2: Clause 4.3 & 4.4: 1990 Determination of the liquid limit by the cone penetrometer method

BS 1377: Part 2: Clause 5: 1990 Determination of the plastic limit and plasticity index

BS 1377: Part 2: Clause 3.2: 1990 Determination of the moisture content by the oven drying method

Approved Signatories:	L Griffin LG (Quality Manager) – K Mazerant KM (Lab Mngr)		
Date - samples tested:	08/06/2018	Date:	11/06/2018
Date - samples received:	07/05/2018	Checked by:	KM

47-49 Brunel Road, London W3 7XR
Tel: 02087401553 Email: lab@conceptconsultants.co.uk

Site Name:	1 Triton Square - St Anne's	Job No.:	18/3106
Client:	British Land	Date Reported:	13/06/2018

Summary Test Report

Determination of Moisture Content and Liquid and Plastic Limits

				nmation of Moisture Conten	Natural	^{1.} Passing	Liquid	Plastic	Plasticity	
Borehole	Sample	Sample	Depth	Description	Moisture Content	425 µm sieve	Limit	Limit	Index	Remarks
No.	Type	No.	m		%	%	%	%	%	
BH02B	D	31	9.00	Brownish grey CLAY	27	100	69	27	42	
BH02B	D	37	12.00	Brownish grey CLAY	22	100	69	28	41	
BH02B	D	46	16.50	Brownish grey CLAY	28	100	75	29	46	
BH02B	D	51	18.50	Dark grey slightly sandy CLAY	31	100	73	28	45	
BH02B	D	55	20.45	Brownish grey slightly sandy CLAY	28	100	80	31	49	
BH02B	D	59	22.50	Brownish grey slightly sandy CLAY	22	100	55	23	32	
BH02B	D	63	24.00	Brownish grey slightly sandy CLAY	25	100	76	26	50	
BH02B	D	68	26.40	Brownish grey slightly sandy CLAY	26	100	73	28	45	
BH02B	D	72	28.50	Brownish grey slightly sandy CLAY	19	100	51	19	32	

BS 1377: Part 2: Clause 4.3 & 4.4: 1990 Determination of the liquid limit by the cone penetrometer method

BS 1377: Part 2: Clause 5: 1990 Determination of the plastic limit and plasticity index

BS 1377: Part 2: Clause 3.2: 1990 Determination of the moisture content by the oven drying method

Approved Signatories:	L Griffin LG (Quality Manager) – K Mazerant KM (Lab Mngr)		
Date - samples tested:	08/06/2018	Date:	11/06/2018
Date - samples received:	03/05/2018	Checked by:	KM

OOROEPT

9 Brunel Road London W

Site Name:	1 Triton Square - St Anne's	Job No.:	18/3106
Client:	British Land	Date Reported:	13/06/2018

Summary Test Report

Determination of Moisture Content and Liquid and Plastic Limits

Borehole	le Sample Sample Depth		Donth		Natural Moisture	^{1.} Passing 425 μm	Liquid	Plastic	Plasticity	Remarks
				Description	Moisture Content	sieve	Limit	Limit	Index	Kemarks
No.	Type	No.	m		%	%	%	%	%	
BH02B	D	75	29.85	Dark grey slightly sandy CLAY	19	100	50	20	30	

BS 1377: Part 2: Clause 4.3 & 4.4: 1990 Determination of the liquid limit by the cone penetrometer method

BS 1377: Part 2: Clause 5: 1990 Determination of the plastic limit and plasticity index

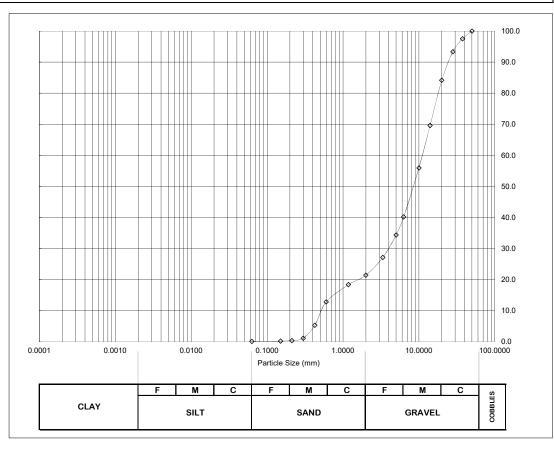
BS 1377: Part 2: Clause 3.2: 1990 Determination of the moisture content by the oven drying method

Approved Signatories:	L Griffin LG (Quality Manager) – K Mazerant KM (Lab Mngr)		
Date - samples tested:	08/06/2018	Date:	
Date - samples received:	03/05/2018	Checked by:	
Dete consider an edited	00/05/0040	Oh a alva d huu	

47-49 Brunel Road, London W3 7XR
Tel: 02087401553 Email: lab@conceptconsultants.co.uk

PARTICLE SIZE DISTRIBUTION

TEST REPORT


Site Name: 1 Triton Square - St Anne's							Job Number:	18/3106
Client: British Land						Date Reported:	13/06/2018	
Borehole No:	BH01	Sample Type/No.	В	14	Top Depth:	4.00 m	Bottom Depth:	4.45 m

Soil Description:

Yellowish brown very sandy fine to coarse flint GRAVEL

BS Test	BS Test Sieves						
Size (mm)	% Passing						
75.000	100						
63.000	100						
50.000	100						
37.500	98						
28.000	93						
20.000	84						
14.000	70						
10.000	56						
6.300	40						
5.000	34						
3.350	27						
2.000	21						
1.180	18						
0.600	13						
0.425	5						
0.300	1						
0.212	0						
0.150	0						
0.063	0						

Sedimentation					
(*if applicable)					
Size (mm) % Passing					
0.020					
0.006					
0.002					

Method/type: Dry Sieving

BS 1377: Part 2: Clause 9.3: 1990 Determination of particle size distribution - dry sieving method.

Particle Proportions %					
Cobbles					
Gravel	78.6				
Sand	21.3				
Silt and Clay	0.1				

Remarks:

 Date - samples received:
 07/05/2018
 Checked by:
 KM

 Date - samples tested:
 07/06/2018
 Date:
 11/06/2018

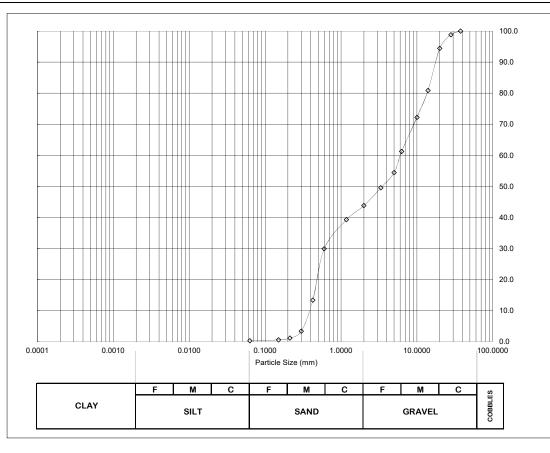
Approved Signatories: L Griffin LG (Quality Mngr) – K Mazerant KM (Lab Mngr)

CONCEPT47-49 Brunel Road, London W3 7XR

Tel: 02087401553 Email: lab@conceptconsultants.co.uk

PARTICLE SIZE DISTRIBUTION

TEST REPORT


Site Name:	ite Name: 1 Triton Square - St Anne's							18/3106
Client: British Land						Date Reported:	13/06/2018	
Borehole No:	BH01	Sample Type/No.	В	17	Top Depth:	5.00 m	Bottom Depth:	5.45 m

Soil Description:

Yellowish brown slightly silty very sandy fine to coarse flint GRAVEL

BS Test	Sieves		
Size (mm)	% Passing		
75.000	100		
63.000	100		
50.000	100		
37.500	100		
28.000	99		
20.000	94		
14.000	81		
10.000	72		
6.300	61		
5.000	54		
3.350	50		
2.000	44		
1.180	39		
0.600	30		
0.425	13		
0.300	3		
0.212	1		
0.150	1		
0.063	0		

Sedimentation					
(*if applicable)					
Size (mm) % Passing					
0.020					
0.006					
0.002					

Method/type: Dry Sieving

BS 1377: Part 2: Clause 9.3: 1990 Determination of particle size distribution - dry sieving method.

Particle Proportions %					
Cobbles					
Gravel	56.2				
Sand	43.5				
Silt and Clay	0.3				

Remarks:

 Date - samples received:
 07/05/2018
 Checked by:
 KM

 Date - samples tested:
 07/06/2018
 Date:
 11/06/2018

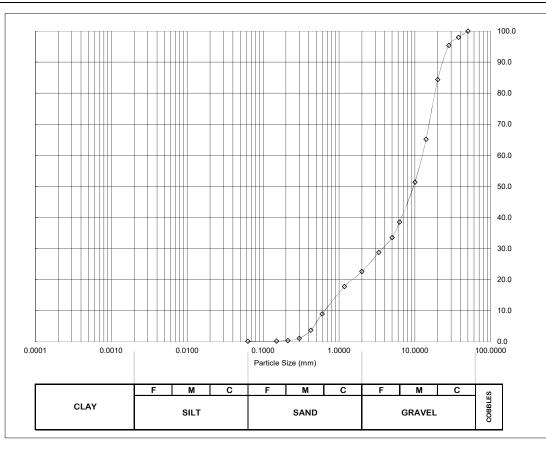
Approved Signatories: L Griffin LG (Quality Mngr) – K Mazerant KM (Lab Mngr)

OOROEPT 47-49 Brunel Road, London W3 7XR

Tel: 02087401553 Email: lab@conceptconsultants.co.uk

PARTICLE SIZE DISTRIBUTION

TEST REPORT


Site Name: 1 Triton Square - St Anne's							Job Number:	18/3106
Client: British Land							Date Reported:	13/06/2018
Borehole No:	ВН01	Sample Type/No.	В	20	Top Depth:	6.50 m	Bottom Depth:	6.95 m

Soil Description:

Yellowish brown very sandy fine to coarse flint GRAVEL

BS Test	Sieves		
Size (mm)	% Passing		
75.000	100		
63.000	100		
50.000	100		
37.500	98		
28.000	95		
20.000	84		
14.000	65		
10.000	51		
6.300	39		
5.000	34		
3.350	29		
2.000	23		
1.180	18		
0.600	9		
0.425	4		
0.300	1		
0.212	0		
0.150	0		
0.063	0		

Sedimentation				
(*if appl	icable)			
Size (mm)	% Passing			
0.020				
0.006				
0.002				

Method/type: Dry Sieving

BS 1377: Part 2: Clause 9.3: 1990 Determination of particle size distribution - dry sieving method.

Particle Proportions %			
Cobbles			
Gravel	77.4		
Sand	22.5		
Silt and Clay	0.1		

Remarks:

 Date - samples received:
 07/05/2018
 Checked by:
 KM

 Date - samples tested:
 07/06/2018
 Date:
 11/06/2018

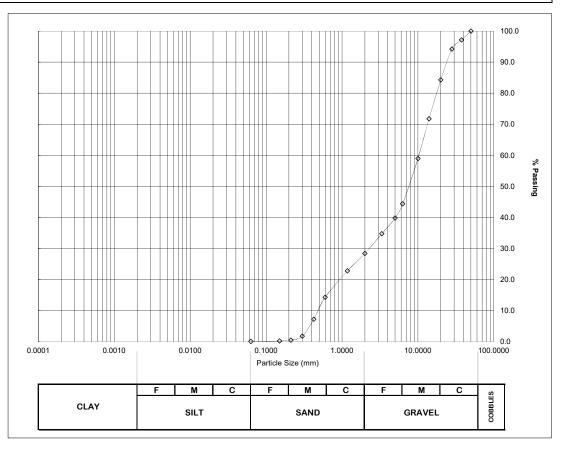
Approved Signatories: L Griffin LG (Quality Mngr) – K Mazerant KM (Lab Mngr)

CONCEPT

47-49 Brunel Road, London W3 7XR Tel: 02087401553 Email: lab@conceptconsultants.co.uk

PARTICLE SIZE DISTRIBUTION

TEST REPORT


Site Name:	1 Triton Square - St Anne's					Job Number:	18/3106	
Client:	British Land	British Land			Date Reported:	13/06/2018		
Borehole No:	ВН02В	Sample Type/No.	В	23	Top Depth:	6.50 m	Bottom Depth:	6.95 m

Soil Description:

Brown very sandy fine to coarse flint GRAVEL

BS Test	Sieves		
Size (mm)	% Passing		
75.000	100		
63.000	100		
50.000	100		
37.500	97		
28.000	94		
20.000	84		
14.000	72		
10.000	59		
6.300	44		
5.000	40		
3.350	35		
2.000	28		
1.180	23		
0.600	14		
0.425	7		
0.300	2		
0.212	1		
0.150	0		
0.063	0		

Sedimentation				
(*if appl	icable)			
Size (mm)	% Passing			
0.020				
0.006				
0.002				

Method/type: Dry Sieving

BS 1377: Part 2: Clause 9.3: 1990 Determination of particle size distribution - dry sieving method.

Particle Proportions %			
Cobbles			
Gravel	71.6		
Sand	28.3		
Silt and Clay	0.1		

Remarks:

 Date - samples received:
 03/05/2018
 Checked by:
 KM

 Date - samples tested:
 07/06/2018
 Date:
 11/06/2018

Approved Signatories: L Griffin LG (Quality Mngr) – K Mazerant KM (Lab Mngr)

OOROEPT47-49 Brunel Road, London W3 7XR

Tel: 02087401553 Email: lab@conceptconsultants.co.uk

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY

> Telephone: (01424) 718618 Facsimile: (01424) 729911 info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number: 18-17732

Issue: 1

Date of Issue: 30/05/2018

Contact: Kasia Mazerant

Customer Details: Concept Engineering Consultants Ltd

Unit 8, Warple Mews

Warple Way

London

W3 0RF

Quotation No: Q15-00395

Order No: L1767

Customer Reference: 18/3106

Date Received: 24/05/2018

Date Approved: 30/05/2018

Details: 1 Triton Square - St Annes

. ^ (

Mike Varley, Technical Manager

Approved by:

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683)

Sample Summary

Report No.: 18-17732

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
137337	BH01 D25 8.50	23/05/2018	24/05/2018	Clay	
137338	BH01 D59 20.50	23/05/2018	24/05/2018	Clay	
137339	BH01 B86 30.00	23/05/2018	24/05/2018	Clay	
137340	BH02B B10 2.00 - 2.45	23/05/2018	24/05/2018	Sandy loam	
137341	BH02B D36 11.40	23/05/2018	24/05/2018	Clay	
137342	BH02B D45 15.50 - 15.95	23/05/2018	24/05/2018	Clay	

Results Summary

Report No.: 18-17732

Report No.: 18-1//32									
	ELAB Reference			137337	137338	137339	137340	137341	137342
	C	Customer	Reference	D25	D59	B86	B10	D36	D45
		;	Sample ID						
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	e Location	BH01	BH01	BH01	BH02B	BH02B	BH02B
		Sample	Depth (m)	8.50	20.50	30.00	2.00 - 2.45	11.40	15.50 - 15.95
		Sam	pling Date	23/05/2018	23/05/2018	23/05/2018	23/05/2018	23/05/2018	23/05/2018
Determinand	Codes	Units	LOD						
Anions	Anions								
Water Soluble Chloride	М	mg/l	20	< 20	< 20	20	< 20	< 20	< 20
Water Soluble Sulphate	M mg/l 20		20	276	513	249	1310	257	578
Inorganics									
Total Sulphide	N	mg/kg	2	3	< 2	< 2	< 2	< 2	< 2
Acid Soluble Sulphate (SO4)	U	%	0.02	0.15	0.17	0.12	0.36	0.16	0.20
Miscellaneous									
рН	М	pH units	0.1	7.9	8.1	8.9	9.1	8.1	7.8

Method Summary Report No.: 18-17732

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
Sulphide	N	As submitted sample	30/05/2018	109	Colorimetry
pH	М	Air dried sample	30/05/2018	113	Electromeric
Acid Soluble Sulphate	U	Air dried sample	30/05/2018	115	Ion Chromatography
Water soluble anions	М	Air dried sample	29/05/2018	172	Ion Chromatography

Tests marked N are not UKAS accredited

Report Information

Report No.: 18-17732

Key

U	hold UKAS accreditation
M	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
٨	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"

Soil sample results are expressed on an air dried basis (dried at < 30°C) Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

PCB congener results may include any coeluting PCBs

Uncertainty of measurement for the determinands tested are available upon request

Deviation Codes

а	No date of sampling supplied
b	No time of sampling supplied (Waters Only)
С	Sample not received in appropriate containers
d	Sample not received in cooled condition
е	The container has been incorrectly filled
f	Sample age exceeds stability time (sampling to receipt)
g	Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

C	DNCE	PT SI	LE IUA	ESTIGATIONS	Summary Tes	-	- Undrain ingle-Sta		ial Compr	ession	Date R	eported:	13/06/2018
							7 : Part 7: 199				Job	No.:	18/3106
Sit	te Locatio	on:	1 Triton	Square - St Anne's		Client:	British La	nd					
BH No.	Sample Type	Sample No	Depth top (m)	Description	n	Cell pressure kN/m2	Strain at failure %	Bulk Density Mg/m3	Dry Density Mg/m3	NMC %	Max Dev. Stress kPa	Shear Strength kPa	Mode of failure/Comments
BH01	UT	23	7.50	with rare partings of yellowis occasional pockets of yellow				2.045	1.642	25	261	131	Brittle
BH01	UT	31	10.50	Stiff, very closely fissured dwith a parting of yellowish b sand, rare pockets of yellow sand, a claystone fragment and 10.69m and a pyrite not 10.75m and 10.77m.	rown silty fine vish brown silty fine between 10.60m								Insufficient testable sample (due to presence of claystone fragment)
BH01	UT	40	13.50	Very stiff, extremely closely fissured brownish grey silty pockets of grey fine sand (< bioturbation and a pyrite no	CLAY with rare 30mm) rare	270	5.7	2.025	1.617	25	426	213	Brittle
BH01	UT	48	16.50	Very stiff, extremely closely fissured brownish grey CLA flecks		330	2.7	1.937	1.526	27	199	100	Brittle
BH01	UT	57	19.50	Very stiff, brownish grey slig CLAY with frequent pockets (<15mm), rare foraminifera	of grey fine sand	390	3.6	2.007	1.622	24	352	176	Brittle
BH01	UT	65	22.50	Very stiff, brownish grey slig micaceous silty CLAY with r grey fine sand (<10mm), bio foraminifera	are pockets of	450	6.0	2.033	1.631	25	690	345	Brittle
Date - samples received: 07/05/2018 Date - samples tested: 31/05/2018/ Checked by: KM Date: 11/06/2018								Te	CONCEPT el Road, Londor el: 02087401553 conceptconsult	3		AGS	ASSOCIATION OF OFOTTCOMPICAL IS DECONVINCIONALISTAL SPECIALISTS UKAS TESTING
approved	Signatories	<i>i</i> :	L Griffin L	.G (Quality Manager) – K Mazer	rant KM (Lab Mngr)								4503

C	DNCE	PT SIT	LE IUA	ESTIGATIONS	Summary Test	(S	- Undrain Single-Sta 7 : Part 7: 199	age)	ial Compr	ession		eported:	13/06/2018
Si	te Location	 on:	1 Triton	I Square - St Anne's			British La				Job	No.:	18/3106
BH No.	Sample Type	Sample No	Depth top (m)	Description	1	Cell pressure kN/m2	Strain at failure	Bulk Density Mg/m3	Dry Density Mg/m3	NMC %	Max Dev. Stress kPa	Shear Strength kPa	Mode of failure/Comments
BH01	UT	74	25.50	Very stiff, brownish grey silty occasional pockets of light brane pyrite nodules at 26.68 bioturbation	510	10.7	2.074	1.731	20	571	286	Britlle	
BH01	Very stiff, brownish grey slightly sandy silty CLAY with frequent pockets of grey fine sar and rare yellowish brown fine sand (<10mm and foraminifera					510	4.6	2.068	1.653	25	552	276	Britlle
Date - samples received: 07/05/2018 Date - samples tested: 10/06/2018								47-49 Brune	CONCEPT el Road, Londor			AGS	ASSOCIATION OF GROTTICHICAL & SOCIATION OF GROTTICHICAL &
Checked b		KM	I Cuiffin !		11/06/2018				l: 02087401553 conceptconsult				Britlle Britlle Britlle Britlle
Approved	Signatories	<i>3</i> 1	L Griffin L	G (Quality Manager) – K Mazer	ant KM (Lab Mngr)								4503

C	ONCE	PT SI	LE IUA	ESTIGATIONS	Summary Tes	· (S	- Undrain Single-Sta 7 : Part 7: 199	age)	ial Compr	ession		eported:	13/06/2018 18/3106
Sit	te Location	on:	1 Triton	Square - St Anne's		Client:	British La	nd				-	
BH No.	Sample Type	Sample No	Depth top (m)	Description	n	Cell pressure kN/m2	Strain at failure	Bulk Density Mg/m3	Dry Density Mg/m3	NMC %	Max Dev. Stress kPa	Shear Strength kPa	Mode of failure/Comments
BH02B	UT	28	8.20	Stiff, extremely closely fissured CLAY with rare partings of y fine sand between 8.56m are pockets of grey fine sand are fine sand and bioturbation	175	8.0	2.012	1.607	25	228	114	Brittle	
BH02B	UT	35	11.00	Very stiff, extremely closely grey silty CLAY with one pa brown fine sand, rare pocke brown fine sand (<15mm) a bioturbation	rting of yellowish ets of yellowish	220	5.5	2.024	1.620	25	341	171	Brittle
BH02B	UT	41	14.00	Very stiff, extremely closely fissured brownish grey CLA pockets of light brown fine s bioturbation	Y with rare	280	4.5	2.000	1.589	26	371	186	Brittle
BH02B	UT	48	17.00	Very stiff, extremely closely grey CLAY with rare bioturb		340	5.2	1.968	1.544	27	464	232	Brittle
вно2в	UT	54	20.00	Very stiff, extremely closely grey slightly sandy silty CLA pockets of grey fine sand (< brownish grey fine sand (<1 bioturbation and foraminifer	AY with occasional (10mm) and 5mm), rare	400	3.3	2.026	1.623	25	324	162	Brittle
ВН02В	UT	61	23.00	Very stiff, brownish grey slig CLAY with rare pockets of li (<5mm) and rare bioturbatio	ight grey fine sand	460	5.4	2.008	1.604	25	618	309	Brittle
ate - samples received: 03/05/2018 ate - samples tested: 04/06/2018					11/06/2018			Te	OONGEPT el Road, Londor el: 02087401553	3		AGS	ASSOCIATION OF GEOTECHTICAL & CONTINUON MARTIAL SPECIALISTS
	ecked by: KM Date: proved Signatories: L Griffin LG (Quality Manager) – K Ma							Email: Lab@)conceptconsult	ants.co.uk			UKAS TESTING 4503

C	DNCE	PT SI	LE IUA	ESTIGATIONS	Summary Test	(S	- Undrain Single-Sta 7 : Part 7: 199	age)	ial Compr	ession		eported:	13/06/2018 18/3106
Sit	te Locatio	 on:	1 Triton	Square - St Anne's		Client:	British Laı	nd			300	NO	10/3100
BH No.	Sample Type	Sample No	Depth top (m)	Description	1	Cell pressure kN/m2	Strain at failure	Bulk Density Mg/m3	Dry Density Mg/m3	NMC %	Max Dev. Stress kPa	Shear Strength kPa	Mode of failure/Comments
BH02B	UT	67		Very stiff, extremely closely grey CLAY with rare pockets (<15mm) and foraminifera	520	2.1	2.012	1.614	25	369	185	Brittle	
BH02B	Very stiff, brownish grey slightly sandy silty CLAY with frequent pockets of grey fine sa (<15mm), occasional foraminifera and rare bioturbation					590	7.9	2.093	1.737	21	727	364	Brittle
Date - samples received: 03/05/2018 Date - samples tested: 04/06/2018								47-49 Brune	OONOEPT el Road, Londor			AGS	ASSOCIATION OF GEOTECHICAL & SECONMONIMENTAL SPECIALISTS
Checked by		KM	I Criffin !		11/06/2018				l: 02087401553 conceptconsult				UKAS TESTING
approved	Signatories	j :	L Griffin L	G (Quality Manager) – K Mazer	ant KM (Lab Mngr)								4503

12. CHEMICAL LABORATORY TEST RESULTS

18/3106 - Issue 01 Page 15 of 16

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-83584

Project / Site name: St. Annes Samples received on: 26/04/2018

Your job number: 18-3106 Samples instructed on: 26/04/2018

Your order number: CL1397 Analysis completed by: 03/05/2018

Report Issue Number: 1 **Report issued on:** 03/05/2018

Samples Analysed: 2 soil samples

Signed:

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 18-83584 Project / Site name: St. Annes

Your Order No: CL1397

				054070	054074		
Lab Sample Number				951073	951074		
Sample Reference Sample Number				BH2B	TP01		
•				None Supplied 0.40-0.45	None Supplied 0.60-0.70		
Depth (m) Date Sampled				25/04/2018	26/04/2018		
Time Taken				None Supplied	None Supplied		
Time Taken				None Supplied	None Supplied		
Analytical Parameter	Units	Limit of detection	Accreditation Status				
(Soil Analysis)	ľs	: of tion	tation us				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	9.0	11		
Total mass of sample received	kg	0.001	NONE	1.3	1.4		
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile & Amosite	-		
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.002	-		
Asbestos Quantification Total	%	0.001	ISO 17025	0.002	-		
Canada Inamania							
General Inorganics	al I I Inita	NI/A	MCEDIC	10.0	10.0	T	
pH - Automated Total Cyanide	pH Units mg/kg	N/A 1	MCERTS MCERTS	10.8	10.0	 	
Total Organic Carbon (TOC)	mg/kg %	0.1	MCERTS	0.3	0.8		
Total Organic Carbon (TOC)	70	0.1	MCERTS	0.5	0.0		
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Speciated PAHs						1	
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthene Fluorene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	< 0.05 < 0.05		
Phenanthrene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05	0.78		
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.76		
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.8		
Pyrene	mg/kg	0.05	MCERTS	< 0.05	1.6		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	1.1		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.90		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.4		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.72		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	1.2		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.62		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.14		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.74	 <u> </u>	
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	11.2		
Heavy Metals / Metalloids						 	
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	4.9	7.5		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17	20		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.64	1.2		
Boron (water soluble)	mg/kg	0.2	MCERTS	2.6	3.0		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	ļ	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	31		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	130		
Lead (aqua regia extractable)	mg/kg	0.3	MCERTS	580	1200	 	
Mercury (aqua regia extractable)	mg/kg		MCERTS MCERTS	< 0.3 18	1.0 24	 	
Nickel (aqua regia extractable) Selenium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	< 1.0	< 1.0		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	37	51		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	300	350	1	
Enio (aqua regia extractable)	mg/kg		INCLINIO	500	550		

Analytical Report Number: 18-83584 Project / Site name: St. Annes Your Order No: CL1397

Lab Sample Number				951073	951074		
Sample Reference				BH2B	TP01		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.40-0.45	0.60-0.70		
Date Sampled				25/04/2018	26/04/2018		
Time Taken				None Supplied	None Supplied		
			A				
Analytical Parameter	_	Limit of detection	Accreditation Status				
(Soil Analysis)	Units	nit ect	ätt				
(Son Analysis)	v	할 역	atic				
			ň				
Monoaromatics							
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0		
Datus laum Hudus canhons							
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	3.8		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	33		
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	20		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	44		
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	65		
TFTI-CWG - Allphatic (LCS - LC++)	mg/kg	10	NONL	< 10	05		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	5.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	20	†	
TPH-CWG - Aromatic > EC21 - EC35	mg/kg	10	MCERTS	25	98		
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	61	†	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	29	120		
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	29	180		
PCBs					1		•
PCB Congener 077	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 081	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 105	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 114	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 118	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 123	mg/kg	0.001	NONE	< 0.001	< 0.001		
		0.001	NONE	< 0.001	< 0.001		
PCB Congener 126	mg/kg	0.001	INOINL				
PCB Congener 156	mg/kg mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 156 PCB Congener 157		0.001 0.001		< 0.001	< 0.001		
PCB Congener 156 PCB Congener 157 PCB Congener 167	mg/kg	0.001	NONE	< 0.001 < 0.001	< 0.001 < 0.001		
PCB Congener 156 PCB Congener 157 PCB Congener 167 PCB Congener 169	mg/kg mg/kg	0.001 0.001 0.001 0.001	NONE NONE NONE	< 0.001 < 0.001 < 0.001	< 0.001 < 0.001 < 0.001		
PCB Congener 156 PCB Congener 157 PCB Congener 167	mg/kg mg/kg mg/kg	0.001 0.001 0.001	NONE NONE	< 0.001 < 0.001	< 0.001 < 0.001		

Analytical Report Number: 18-83584
Project / Site name: St. Annes
Your Order No: CL1397

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
951073	BH2B	0.40-0.45	152	Loose Fibrous Debris	Chrysotile & Amosite	0.002	0.002

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Analytical Report Number : 18-83584 Project / Site name: St. Annes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
951073	BH2B	None Supplied	0.40-0.45	Brown sandy loam with gravel.
951074	TP01	None Supplied	0.60-0.70	Brown sandy loam with gravel and rubble.

Analytical Report Number : 18-83584 Project / Site name: St. Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
PCBs WHO 12 in soil	Determination of PCBs (WHO-12 Congeners) by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS

Project / Site name: St. Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests'''	L009-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L076-PL	D	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-83587

Project / Site name: St. Annes Samples received on: 26/04/2018

Your job number: 18-3106 Samples instructed on: 26/04/2018

Your order number: CL1397 Analysis completed by: 03/05/2018

Report Issue Number: 1 **Report issued on:** 03/05/2018

Samples Analysed: 2 leachate samples

Signed:

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 18-83587 Project / Site name: St. Annes

Your Order No: CL1397							
Lab Sample Number				951083	951084		
Sample Reference				BH2B	TP01		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.40-0.45	0.60-0.70		
Date Sampled				25/04/2018	26/04/2018		
Time Taken				None Supplied	None Supplied		
			A				
		Limit of detection	20 00				
Analytical Parameter	Units	e mi	tat edi				
(Leachate Analysis)	द्ध	e of	is tat				
		3 "	Accreditation Status				
10:1 WAC Leachate							
Arsenic	mg/l	0.0011	ISO 17025	< 0.0011	0.0020		
Barium	mg/l	0.00005	ISO 17025	0.0427	0.0121	Ī	
Cadmium	mg/l	0.00008	ISO 17025	< 0.0001	< 0.0001		
Chromium	mg/l	0.0004	ISO 17025	0.032	0.0096	Ī	
Copper	mg/l	0.0007	ISO 17025	0.012	0.0040		
Mercury	mg/l	0.0005	ISO 17025	< 0.0005	< 0.0005		
Molybdenum	mg/l	0.0004	ISO 17025	0.0096	0.0102		
Nickel	mg/l	0.0003	ISO 17025	0.0007	< 0.0003		
Lead	mg/l	0.001	ISO 17025	0.011	< 0.0010	i i	
Antimony	mg/l	0.0017	ISO 17025	0.010	< 0.0017	i i	
Selenium	mg/l	0.004	ISO 17025	< 0.0040	< 0.0040	i i	
Zinc	mg/l	0.0004	ISO 17025	0.0024	0.0015		
Chloride	mg/l	0.15	ISO 17025	4.1	4.9	i i	
Fluoride	mg/l	0.05	ISO 17025	0.25	0.22	i i	
Sulphate	mg/l	0.1	ISO 17025	520	150	i i	
Total dissolved solids	mg/l	4	ISO 17025	510	240	i i	
Total monohydric phenols	mg/l	0.01	ISO 17025	< 0.010	< 0.010	i i	
Dissolved organic carbon	mg/l	0.1	NONE	4.88	5.16		İ
10:1 WAC Leachate							
Arsenic	mg/kg	0.011	NONE	< 0.0110	0.0151		
Barium	mg/kg	0.0005	NONE	0.360	0.0913		
Cadmium	mg/kg	0.0008	NONE	< 0.0008	< 0.0008		
Chromium	mg/kg	0.004	NONE	0.27	0.073		
Copper	mg/kg	0.007	NONE	0.10	0.030		
Mercury	mg/kg	0.005	NONE	< 0.0050	< 0.0050		
Molybdenum	mg/kg	0.004	NONE	0.0811	0.0769		
Nickel	mg/kg	0.003	NONE	0.0061	< 0.0030		
Lead	mg/kg	0.01	NONE	0.094	< 0.010		
Antimony	mg/kg	0.017	NONE	0.087	< 0.017		
Selenium	mg/kg	0.04	NONE	< 0.040	< 0.040		
Zinc	mg/kg	0.004	NONE	0.021	0.011		
Chloride	mg/kg	1.5	NONE	34	37		
Fluoride	mg/kg	0.5	NONE	2.1	1.6		
Sulphate	mg/kg	1	NONE	4300	1100		
Total dissolved solids	mg/kg	40	NONE	4300	1800		
Total monohydric phenols	mg/kg	0.1	NONE	< 0.10	< 0.10	Ī	
Dissolved organic carbon	mg/kg	1	NONE	41.1	39.0		

Project / Site name: St. Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-84041

Project / Site name: St Annes Samples received on: 01/05/2018

Your job number: 18-3106 Samples instructed on: 02/05/2018

Your order number: CL1403 Analysis completed by: 09/05/2018

Report Issue Number: 1 **Report issued on:** 09/05/2018

Samples Analysed: 7 soil samples

Signed:

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				953445	953446	953447	953448	953449
Sample Reference				BH2B	BH2B	HP01	HP02	HP03
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.90-2.00	4.90-5.00	0.7-0.80	0.20-0.30	0.20-0.30
Date Sampled				27/04/2018	27/04/2018	26/04/2018	26/04/2018	26/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	21	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	13	6.5	9.5	12
Total mass of sample received	kg	0.001	NONE	1.1	1.6	1.4	1.2	1.3
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-	-	Chrysotile
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Not-detected	Not-detected	Detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.002	-	-	-	< 0.001
Asbestos Quantification Total	%	0.001	ISO 17025	0.002	-	-	-	< 0.001
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	11.7	9.1	11.1	8.5	8.5
Total Cyanide	mg/kg	11	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.3	0.5	0.8	0.8	1.8
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Phenanthrene	mg/kg	0.05	MCERTS	0.21	0.36	1.4	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.25	-	-
Fluoranthene	mg/kg	0.05	MCERTS	0.37	0.82	3.5	-	-
Pyrene	mg/kg	0.05	MCERTS	0.28	0.69	2.8	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.4	-	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.2	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.4	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.64	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1.2	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.61	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.70	-	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	0.86	1.87	15.1	-	-
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			

Project / Site name: St Annes Your Order No: CL1403

p & m-xylene

o-xylene MTBE (Methyl Tertiary Butyl Ether)

			BH2B	BH2B	HP01	LIDOS	LIDOS
					HPUI	HP02	HP03
					None Supplied	None Supplied	None Supplied
				4.90-5.00	0.7-0.80	0.20-0.30	0.20-0.30
			27/04/2018	27/04/2018	26/04/2018	26/04/2018	26/04/2018
			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Units	Limit of detection	Accreditation Status					
g/kg	1	ISO 17025	< 1.0	1.7	2.7	4.1	2.7
g/kg	1	MCERTS	30	14	14	26	15
g/kg	0.06	MCERTS	0.53	0.97	0.76	0.74	0.77
g/kg	0.2	MCERTS	1.0	0.9	1.7	1.0	1.9
g/kg	0.2	MCERTS	< 0.2	< 0.2	0.3	< 0.2	0.4
g/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
g/kg	1	MCERTS	21	24	22	22	23
g/kg	1	MCERTS	17	34	38	66	44
g/kg	1	MCERTS	28	110	400	850	280
g/kg	0.3	MCERTS	< 0.3	0.5	0.6	5.3	0.5
g/kg	1	MCERTS	16	25	15	14	19
g/kg	1	MCERTS	1.2	2.3	< 1.0	< 1.0	< 1.0
g/kg	1	MCERTS	32	39	38	34	41
g/kg	1	MCERTS	160	63	120	130	160
	g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/kg	3/kg 1 1/kg 1 1/kg 0.06 1/kg 0.2 1/kg 0.2 1/kg 0.2 1/kg 1	1 ISO 17025 13/kg 1 MCERTS 13/kg 0.06 MCERTS 14/kg 0.2 MCERTS 15/kg 0.2 MCERTS 15/kg 0.2 MCERTS 15/kg 1 MCERTS	None Supplied None Supplie	None Supplied None Supplied None Supplied	None Supplied None Supplie	None Supplied None Supplie

MCERTS

MCERTS

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

< 1.0

μg/kg

μg/kg

Lab Sample Number				953445	953446	953447	953448	953449
Sample Reference				BH2B	BH2B	HP01	HP02	HP03
Sample Number				None Supplied				
Depth (m)				1.90-2.00	4.90-5.00	0.7-0.80	0.20-0.30	0.20-0.30
Date Sampled				27/04/2018	27/04/2018	26/04/2018	26/04/2018	26/04/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	1.3	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	3.2	< 2.0	5.9	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	19	41	9.1	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	72	110	44	19	22
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	9.9	< 8.4	24	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	95	150	61	26	25
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	100	150	85	26	25
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	4.5
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	16	16	20	19	16
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	53	55	60	46	49
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	11	12	31	8.9	26
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	70	73	80	66	71
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	81	85	110	75	97

Lab Sample Number				953445	953446	953447	953448	953449
Sample Reference				BH2B	BH2B	HP01	HP02	HP03
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.90-2.00	4.90-5.00	0.7-0.80	0.20-0.30	0.20-0.30
Date Sampled				27/04/2018	27/04/2018	26/04/2018	26/04/2018	26/04/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
			A	•				
A contract on the contract of	_	de Li	Accreditation Status					
Analytical Parameter	Units	Limit of detection	creditat Status					
(Soil Analysis)	S.	ig of	us					
			9					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Chloroethane	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Vinyl Chloride	μg/kg	11	NONE	-	-	-	< 1.0	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Cis-1,2-dichloroethene	μg/kg μg/kg	1	MCERTS MCERTS	-	-	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	μg/kg μg/kg	1	MCERTS	<u>-</u>	-	-	< 1.0 < 1.0	< 1.0 < 1.0
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	<u> </u>		-	< 1.0	< 1.0
Trichloromethane	μg/kg μg/kg	1	MCERTS	_	-	-	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	_	_	< 1.0	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
Benzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Dibromomethane	μg/kg 	1	MCERTS	-	-	-	< 1.0	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Cis-1,3-dichloropropene Trans-1,3-dichloropropene	μg/kg	1	ISO 17025 ISO 17025	-	-	-	< 1.0	< 1.0
Toluene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0 < 1.0	< 1.0 < 1.0
1,1,2-Trichloroethane	μg/kg μg/kg	1	MCERTS	<u>-</u>			< 1.0	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	_	_	_	< 1.0	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Tetrachloroethene	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Styrene	μg/kg "	1	MCERTS	-	-	-	< 1.0	< 1.0
Tribromomethane	μg/kg	1	NONE	-	-	-	< 1.0	< 1.0
o-Xylene 1,1,2,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS MCERTS	-	-	-	< 1.0 < 1.0	< 1.0 < 1.0
Isopropylbenzene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Bromobenzene	μg/kg μg/kg	1	MCERTS	_	_	-	< 1.0	< 1.0
n-Propylbenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
sec-Butylbenzene	μg/kg 	1	MCERTS	-	-	-	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025 MCERTS	-	-	-	< 1.0 < 1.0	< 1.0 < 1.0
1,2-Dichlorobenzene 1.4-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0 < 1.0	< 1.0 < 1.0
Butylbenzene	μg/kg μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	< 1.0	< 1.0

Sample Reference									
Somple Number None Supplied None Supplie	b Sample Number				953445	953446	953447	953448	953449
Depth (m)									HP03
Date Sampled									None Supplied
None Supplied None Supplie									0.20-0.30
Analytical Parameter Ge									26/04/2018
Aminor	ne Taken				None Supplied				
Amiline	•	Units	Limit of detection	Accreditation Status					
Penel	OCs					•			
Phenol		mg/kg	0.1	NONE	-	-	-	< 0.1	< 0.1
Birl 2 Ahlomethyllether	enol	mg/kg	0.2	ISO 17025	-	-	-	< 0.2	< 0.2
1.3-Dichlorobenzene	Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
12-Definorbenzene	(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
1.4-Dichlorobenzene	-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
BeSt2-Antorosproptylether	-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
2-Methylphenol		mg/kg			-	-	-		< 0.2
Hexachlorechane ma/ka 0.05 MCRETS									< 0.1
Nutoberace									< 0.3
Methylphenol mg/kg 0.2 NONE - - < 0.2 < 0.1									< 0.05
Sophonone									
2-Nitrophenol mg/kg	• •								
24-Dimethylphenol									
BisC2-chloroethoxy)methane									
12.4 Trichlorobenzene						1			
Naphthalene						1			
24-Dichlorophenol						1			
4-Chloropanline mg/kg 0.1 NONE - - < 0.1									
Hexachlorobutadeine					_	-	_		< 0.1
4-Chloro-3-methylphenol mg/kg 0.1 mCRTS - - - - - - - -					-	-	-		< 0.1
2,4,5-Trichlorophenol mg/kg 0.2 MCERTS - - < 0.2					-	-	-		< 0.1
2-Methylnaphthalene	,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	< 0.1	< 0.1
2-Chloronaphthalene mg/kg 0.1 MCERTS - - - 0.1 < 0.0 Dimethylphthalate mg/kg 0.1 MCERTS - - - 0.1 < 0.1	,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	< 0.2	< 0.2
Dimethylphthalate mg/kg 0.1 MCERTS - - < 0.1 < 0.2 2,6-Dinitrotoluene mg/kg 0.1 MCERTS - - - 0.1 < 0.2	1ethylnaphthalene	mg/kg	0.1	NONE	-	-	-	< 0.1	< 0.1
2,6-Dinitrotoluene mg/kg 0.1 MCERTS - - < 0.1 < 0. AcenaphtHylene mg/kg 0.05 MCERTS - - < 0.05 < 0.05 2,4-Dinitrotoluene mg/kg 0.05 MCERTS - - < 0.19 < 0.0 2,4-Dinitrotoluene mg/kg 0.2 MCERTS - - < 0.2 < 0.2 V-Chlorophenyl phenyl ether mg/kg 0.2 MCERTS - - < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 <td></td> <td>mg/kg</td> <td></td> <td>MCERTS</td> <td>-</td> <td>-</td> <td>-</td> <td>< 0.1</td> <td>< 0.1</td>		mg/kg		MCERTS	-	-	-	< 0.1	< 0.1
Acenaphthylene mg/kg 0.05 MCERTS - - < 0.05 < 0.05 Acenaphthene mg/kg 0.05 MCERTS - - 0.19 < 0.0					-	-	-		< 0.1
Acenaphthene						-			< 0.1
2,4-Dinitrotoluene mg/kg 0.2 MCERTS - - < 0.2									< 0.05
Dibenzofuran mg/kg 0.2 MCERTS - - < 0.2 < 0.2 4-Chlorophenyl phenyl ether mg/kg 0.3 ISO 17025 - - < 0.3 < 0.2 Diethyl phthalate mg/kg 0.2 MCERTS - - < 0.2 < 0.2 4-Nitroaniline mg/kg 0.2 MCERTS - - < 0.2 < 0.2 Fluorene mg/kg 0.05 MCERTS - - < 0.2 < 0.2 Azobenzene mg/kg 0.0 MCERTS - - < 0.14 < 0.0 Azobenzene mg/kg 0.2 MCERTS - - < 0.14 < 0.0 Bromophenyl phenyl ether mg/kg 0.3 MCERTS - - < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2									
4-Chlorophenyl phenyl ether mg/kg 0.3 ISO 17025 - - - <0.3						1			
Diethyl phthalate mg/kg 0.2 MCERTS - - < 0.2 < 0.2 4-Nitroaniline mg/kg 0.2 MCERTS - - < 0.2 < 0.2 Fluorene mg/kg 0.05 MCERTS - - < 0.14 < 0.0 Azobenzene mg/kg 0.3 MCERTS - - < 0.3 < 0.0 Bromophenyl phenyl ether mg/kg 0.3 MCERTS - - < 0.3 < 0.0 Hexachlorobenzene mg/kg 0.3 MCERTS - - < 0.2 < 0.3 Hexachlorobenzene mg/kg 0.3 MCERTS - - < 0.3 < 0.0 Hexachlorobenzene mg/kg 0.3 MCERTS - - < 0.2 < 0.2 Hexachlorobenzene mg/kg 0.3 MCERTS - - < 0.3 < 0.2 Hexachlorobenzene mg/kg 0.05 MCERTS - - - < 0.3						1			
4-Nitroaniline mg/kg 0.2 MCERTS - - - < 0.2	. , , ,								
Fluorene									
Azobenzene mg/kg 0.3 MCERTS - - 0.3 O. Bromophenyl phenyl ether mg/kg 0.2 MCERTS - - 0.2 0.0 Hexachlorobenzene mg/kg 0.3 MCERTS - - <0.3						-			< 0.05
Bromophenyl phenyl ether mg/kg 0.2 MCERTS - - - < 0.2 < 0.2 Hexachlorobenzene mg/kg 0.3 MCERTS - - - < 0.3 < 0.3 Phenanthrene mg/kg 0.05 MCERTS - - - 2.7 0.93 Anthracene mg/kg 0.05 MCERTS - - - 0.28 0.22 Carbazole mg/kg 0.3 MCERTS - - - 0.28 0.22 Carbazole mg/kg 0.3 MCERTS - - - < 0.3 < 0.3 Dibutyl phthalate mg/kg 0.2 MCERTS - - - < 0.2 < 0.3 Anthraquinone mg/kg 0.3 MCERTS - - - < 0.3 < 0.3 Fluoranthene mg/kg 0.3 MCERTS - - - < 0.3 < 0.3 Fluoranthene mg/kg 0.05 MCERTS - - - 4.1 2.3 Pyrene mg/kg 0.05 MCERTS - - - 3.0 1.9 Butyl benzyl phthalate mg/kg 0.3 ISO 17025 - - - < 0.3 < 0.3 Benzo(a)anthracene mg/kg 0.05 MCERTS - - - 1.8 1.4 Chrysene mg/kg 0.05 MCERTS - - - 1.4 1.2 Benzo(b)fluoranthene mg/kg 0.05 MCERTS - - - 1.8 1.4 Chrysene mg/kg 0.05 MCERTS - - - 1.8 1.4 Benzo(b)fluoranthene mg/kg 0.05 MCERTS - - - 0.80 0.82 Benzo(a)pyrene mg/kg 0.05 MCERTS - - - 0.80 0.82 Benzo(a)pyrene mg/kg 0.05 MCERTS - - - 0.63 0.83 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS - - - - 0.63 0.83 Chrysene mg/kg 0.05 MCERTS - - - - 0.63 0.83 Chrysene mg/kg 0.05 MCERTS - - - - 0.63 0.83 Chrysene mg/kg 0.05 MCERTS - - - - 0.63 0.83 Chrysene mg/kg 0.05 MCERTS - - - - 0.63 0.83 Chrysene mg/kg 0.05 MCERTS - - - - - 0.63 0.83 Chrysene mg/kg 0.05 MCERTS - - - - - 0.63 0.83 Chrysene mg/kg 0.05 MCERTS - - - - - 0.63 0.83 Chrysene mg/kg 0.05 MCERTS - - - - - - - - -					_	-	_		< 0.3
Phenanthrene mg/kg 0.05 MCERTS - - 2.7 0.93 Anthracene mg/kg 0.05 MCERTS - - 0.28 0.22 Carbazole mg/kg 0.3 MCERTS - - - 0.3 < 0.5					-	-	-		< 0.2
Anthracene mg/kg 0.05 MCERTS - - 0.28 0.22 Carbazole mg/kg 0.3 MCERTS - - - 0.3 0.2 Dibutyl phthalate mg/kg 0.2 MCERTS - - - 0.2 < 0.2	xachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	< 0.3	< 0.3
Carbazole mg/kg 0.3 MCERTS - - - 0.3 O.2 Dibutyl phthalate mg/kg 0.2 MCERTS - - - 0.2 0.2 Anthraquinone - - - - - 0.3 0.0 Anthraquinone -	enanthrene		0.05	MCERTS	-	-	-		0.93
Dibutyl phthalate mg/kg 0.2 MCERTS - - - 0.2 0.2 Anthraquinone - - - - - 0.2 0.3 ACERTS - - - - 0.3 0.2 MCERTS - - - - 4.1 2.3 2.3 Pyrene mg/kg 0.05 MCERTS - - - 4.1 2.3 2.3 Pyrene 9.0 0.0 MCERTS - - - 4.1 2.3 3.0 1.9 9.0	thracene	mg/kg	0.05	MCERTS	-	-	-	0.28	0.22
Anthraquinone mg/kg 0.3 MCERTS - - - 0.3 0.05 Fluoranthene mg/kg 0.05 MCERTS - - - 4.1 2.3 Pyrene mg/kg 0.05 MCERTS - - - 3.0 1.9 Butyl benzyl phthalate mg/kg 0.3 ISO 17025 - - - <0.3		mg/kg	0.3	MCERTS	-	-	-		< 0.3
Fluoranthene mg/kg 0.05 MCERTS - - - 4.1 2.3 Pyrene mg/kg 0.05 MCERTS - - - 3.0 1.9 Butyl benzyl phthalate mg/kg 0.3 ISO 17025 - - - <0.3	, ,					-			< 0.2
Pyrene mg/kg 0.05 MCERTS - - - 3.0 1.9 Butyl benzyl phthalate mg/kg 0.3 ISO 17025 - - - <0.3									< 0.3
Butyl benzyl phthalate mg/kg 0.3 ISO 17025 - - - 0.3 0.0 Benzo(a)anthracene mg/kg 0.05 MCERTS - - - 1.8 1.4 Chrysene mg/kg 0.05 MCERTS - - - 1.4 1.2 Benzo(b)fluoranthene mg/kg 0.05 MCERTS - - - 1.8 1.8 Benzo(k)fluoranthene mg/kg 0.05 MCERTS - - - 0.80 0.82 Benzo(a)pyrene mg/kg 0.05 MCERTS - - - 1.3 1.3 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS - - - 0.63 0.83				1					2.3
Benzo(a)anthracene mg/kg 0.05 MCERTS - - - 1.8 1.4 Chrysene mg/kg 0.05 MCERTS - - - 1.4 1.2 Benzo(b)fluoranthene mg/kg 0.05 MCERTS - - - 1.8 1.8 Benzo(k)fluoranthene mg/kg 0.05 MCERTS - - - 0.80 0.82 Benzo(a)pyrene mg/kg 0.05 MCERTS - - - 1.3 1.3 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS - - - 0.63 0.83									1.9
Chrysene mg/kg 0.05 MCERTS - - - 1.4 1.2 Benzo(b)fluoranthene mg/kg 0.05 MCERTS - - - 1.8 1.8 Benzo(k)fluoranthene mg/kg 0.05 MCERTS - - - 0.80 0.82 Benzo(a)pyrene mg/kg 0.05 MCERTS - - - 1.3 1.3 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS - - - 0.63 0.83									< 0.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
Benzo(a)pyrene mg/kg 0.05 MCERTS - - - 1.3 1.3 Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS - - - 0.63 0.83									
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.63 0.83									
				1					0.83
						4			0.95

Lab Sample Number				953445	953446	953447	953448	953449
Sample Reference				BH2B	BH2B	HP01	HP02	HP03
Sample Number				None Supplied				
Depth (m)				1.90-2.00	4.90-5.00	0.7-0.80	0.20-0.30	0.20-0.30
Date Sampled				27/04/2018	27/04/2018	26/04/2018	26/04/2018	26/04/2018
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs								
PCB Congener 077	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 081	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 105	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 114	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 123	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 126	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 156	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 157	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 167	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 169	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 189	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total PCBs	mg/kg	0.012	NONE	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012

Lab Sample Number				953450	953451		
Sample Reference				HP03	HP04		
Sample Number				None Supplied	None Supplied		
Depth (m)				1.00-1.10	0.70-0.80		
Date Sampled				26/04/2018	26/04/2018		
Time Taken				None Supplied	None Supplied		
Time Taken				Hone Supplied	Hone Supplied	1	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	5.3	11		
Total mass of sample received	kg	0.001	NONE	1.4	1.4	+	
Total mass of sample received	Kg	0.001	NONL	1.7	1.7		<u> </u>
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Amosite		
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Detected		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	0.001		
Asbestos Quantification Total	%	0.001	ISO 17025	-	0.001		
pH - Automated Total Cyanide Total Organic Carbon (TOC) Total Phenois	pH Units mg/kg %	N/A 1 0.1	MCERTS MCERTS MCERTS	8.1 < 1 1.0	9.3 < 1 0.8		
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	1	
Speciated PAHs		_		-			
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Phenanthrene	mg/kg	0.05	MCERTS	1.8	0.27		
Anthracene	mg/kg	0.05	MCERTS	0.32	< 0.05		
Fluoranthene	mg/kg	0.05	MCERTS	3.3	0.54	_	_
Pyrene	mg/kg	0.05	MCERTS	2.6	0.48	_	_
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.5	0.30		
Chrysene	mg/kg	0.05	MCERTS	1.2	0.27		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.8	0.36		_
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.77	0.22		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.3	0.30		1
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.85	< 0.05		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.99	< 0.05		
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	16.4	2.74	1	1
Openated . ottal El // 10 /	1119/109	0.0	LICEILIO	10.1	£17 I		

Project / Site name: St Annes Your Order No: CL1403

Lab Sample Number				953450	953451		
Sample Reference				HP03	HP04		
Sample Number				None Supplied	None Supplied		
Depth (m)	Depth (m)				0.70-0.80		
Date Sampled		26/04/2018	26/04/2018				
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	2.5	4.0		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	13		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.65	0.48		
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	0.8		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	1.0		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	20	19		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	42	42		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	320	400		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.1	0.9		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	18	15		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.6	< 1.0		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	36	31		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	230		

Monoaromatics

Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0		

Lab Sample Number				953450	953451			
Sample Reference				HP03	HP04			
Sample Number				None Supplied	None Supplied			
Depth (m)				1.00-1.10	0.70-0.80			
Date Sampled				26/04/2018	26/04/2018			
Time Taken				None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons						-		
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	1	1	, , , , , , , , , , , , , , , , , , ,
TPH-CWG - Aliphatic > EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aliphatic > EC10 - EC12	mg/kg	1	MCERTS	< 1.0	1.8			
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	10			
TPH-CWG - Aliphatic >EC16 - EC21	ma/ka	8	MCERTS	9.0	34			
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	36	75			
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	28			
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	45	120			
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	45	150			
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001			
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0			
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	3.6			
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	11	15			
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	36	34			
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4			
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	47	53			
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	47	53			