

Lab Sample Number		953450	953451				
Sample Reference				HP03	HP04		
Sample Number				None Supplied	None Supplied		
Depth (m)				1.00-1.10	0.70-0.80		
Date Sampled				26/04/2018	26/04/2018		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
V00-			-				
VOCs		-	ISO 17025			1	
Chloromethane Chloroethane	μg/kg μg/kg	1	NONE	-	-		
Bromomethane	μg/kg μg/kg	1	ISO 17025	_			
Vinyl Chloride	μg/kg	1	NONE	-	_		
Trichlorofluoromethane	µg/kg	1	NONE	-	-		
1,1-Dichloroethene	μg/kg	1	NONE	-	-		
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-		
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-		
1,1-Dichloroethane	μg/kg	1	MCERTS MCERTS	-	-		
2,2-Dichloropropane Trichloromethane	μg/kg μg/kg	1	MCERTS	-	-		
1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	-		
1,2-Dichloroethane	μg/kg	1	MCERTS	-	_		
1,1-Dichloropropene	μg/kg	1	MCERTS	-	_		
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-		
Benzene	μg/kg	1	MCERTS	-	-		
Tetrachloromethane	μg/kg	1	MCERTS	-	-		
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-		
Trichloroethene	μg/kg 	1	MCERTS	-	-		
Dibromomethane	μg/kg	1	MCERTS MCERTS	-	-		
Bromodichloromethane Cis-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	-	-		
Trans-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	-	-		
Toluene	µg/kg	1	MCERTS	-	-		
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-		
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-		
Dibromochloromethane	μg/kg	1	ISO 17025	-	-		
Tetrachloroethene	μg/kg	1	NONE	-	-		
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-		
Chlorobenzene	μg/kg "	1	MCERTS	-	-		
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg	1 1	MCERTS MCERTS	-	-		
p & m-Xylene	μg/kg μg/kg	1	MCERTS	-	-		
Styrene	μg/kg μg/kg	1	MCERTS	-	_		
Tribromomethane	μg/kg	1	NONE	-	-		
o-Xylene	μg/kg	1	MCERTS	-	-		
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	ı	-		
Isopropylbenzene	μg/kg	1	MCERTS	-	-		
Bromobenzene	μg/kg	1	MCERTS	-	-		
n-Propylbenzene	μg/kg	1	ISO 17025	-	-		
2-Chlorotoluene 4-Chlorotoluene	μg/kg	1	MCERTS MCERTS	-	-		
4-Chlorotoluene 1,3,5-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	-		
tert-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	-		
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	ISO 17025	-	-		
sec-Butylbenzene	μg/kg	1	MCERTS	-	-		
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-		
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-		
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-		
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-		
Butylbenzene	μg/kg	1	MCERTS	-	-		
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-		
1,2,4-Trichlorobenzene Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS MCERTS	-	-		
1,2,3-Trichlorobenzene	μg/kg μg/kg	1	ISO 17025	-	-		
zjejo manorobenzene	P9/N9		100 1/023			1	1

Lab Sample Number				953450	953451		
Sample Reference				HP03	HP04		
Sample Number				None Supplied	None Supplied		
Depth (m)				1.00-1.10	0.70-0.80		
Date Sampled				26/04/2018	26/04/2018		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs							
Aniline	mg/kg	0.1	NONE	-	-		
Phenol	mg/kg	0.2	ISO 17025	-	-		
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-		
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-		
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-		
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-		
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-		
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-		
2-Methylphenol	mg/kg	0.3	MCERTS	-	-		
Hexachloroethane Nivel	mg/kg	0.05	MCERTS	-	-		
Nitrobenzene	mg/kg	0.3	MCERTS	-	-		
4-Methylphenol	mg/kg	0.2	NONE	-	-		
Isophorone 2-Nitrophenol	mg/kg mg/kg	0.2	MCERTS MCERTS	-	-		
2,4-Dimethylphenol	mg/kg mg/kg	0.3	MCERTS	-	-		
2,4-Dimethylphenoi Bis(2-chloroethoxy)methane	mg/kg mg/kg	0.3	MCERTS	-	-		
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-		
Naphthalene	mg/kg	0.05	MCERTS	-	_		
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	_	_		
4-Chloroaniline	mg/kg	0.1	NONE	_	_		
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-		
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-		
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-		
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-		
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-		
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-		
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-		
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-		
Acenaphthylene	mg/kg	0.05	MCERTS	-	-		
Acenaphthene	mg/kg	0.05	MCERTS	-	-		
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-		
Dibenzofuran 4-Chlorophenyl phenyl ether	mg/kg	0.2	MCERTS ISO 17025	-	-		
Diethyl phthalate	mg/kg mg/kg	0.3	MCERTS	-	-		
4-Nitroaniline	mg/kg	0.2	MCERTS	-			
Fluorene	mg/kg	0.05	MCERTS	-	_		
Azobenzene	mg/kg	0.3	MCERTS	-	_		
Bromophenyl phenyl ether	ma/ka	0.2	MCERTS	-	-		
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-		
Phenanthrene	mg/kg	0.05	MCERTS	-	-		
Anthracene	mg/kg	0.05	MCERTS	-	-		
Carbazole	mg/kg	0.3	MCERTS	-	-	 	
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-		
Anthraquinone	mg/kg	0.3	MCERTS	-	-		
Fluoranthene	mg/kg	0.05	MCERTS	-	-		
Pyrene	mg/kg	0.05	MCERTS	-	-		
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-		
Chrysene Renze(h)fluoranthana	mg/kg	0.05	MCERTS	-	-		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS MCERTS	-	-		
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.05	MCERTS	-	-		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-		
20.120(3.11)por fronc	mg/kg	5.05	LICERIO				

						_	
Lab Sample Number				953450	953451		
Sample Reference				HP03	HP04		
Sample Number				None Supplied	None Supplied		
Depth (m)				1.00-1.10	0.70-0.80		
Date Sampled		26/04/2018	26/04/2018				
Time Taken	None Supplied	None Supplied					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
PCBs							
PCB Congener 077	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 081	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 105	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 114	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 118	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 123	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 126	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 156	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 157	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 167	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 169	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 189	mg/kg	0.001	NONE	< 0.001	< 0.001		
Total PCBs	mg/kg	0.012	NONE	< 0.012	< 0.012		

Analytical Report Number: 18-84041
Project / Site name: St Annes
Your Order No: CL1403

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
953445	BH2B	1.90-2.00	109	Loose Fibres	Chrysotile	0.002	0.002
953449	HP03	0.20-0.30	149	Loose Fibres	Chrysotile	< 0.001	< 0.001
953451	HP04	0.70-0.80	161	Loose Fibrous Debris	Amosite	0.001	0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: St Annes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
953445	BH2B	None Supplied	1.90-2.00	Light grey sand with gravel and rubble.
953446	BH2B	None Supplied	4.90-5.00	Brown sand with gravel and brick.
953447	HP01	None Supplied	0.7-0.80	Brown sand with gravel and stones.
953448	HP02	None Supplied	0.20-0.30	Brown sand with gravel and brick.
953449	HP03	None Supplied	0.20-0.30	Brown loam and clay with gravel.
953450	HP03	None Supplied	1.00-1.10	Brown sand with gravel.
953451	HP04	None Supplied	0.70-0.80	Brown sand with gravel.

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
PCBs WHO 12 in soil	Determination of PCBs (WHO-12 Congeners) by GC MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests'''	L009-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L076-PL	D	NONE

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-84043

Project / Site name: St Annes Samples received on: 01/05/2018

Your job number: 18-3106 Samples instructed on: 02/05/2018

Your order number: CL1403 Analysis completed by: 09/05/2018

Report Issue Number: 1 **Report issued on:** 09/05/2018

Samples Analysed: 7 10:1 WAC leachate samples

Signed:

Rexona Rahman Head of Customer Services For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		18-8	4043				
					Client:	CONCEPT	
					Client.	CONCEPT	
Location		St A	nnes				
Lab Reference (Sample Number)		053	453		Landfill 1	Waste Acceptanc	e Criteria
Compline Date			1/2018			Limits Stable Non-	
Sampling Date Sample ID			12B				
Depth (m)			-2.00		Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	i				3%	5%	6%
Loss on Ignition (%) **	-						10%
BTEX (µg/kg) **	-				6000		
Sum of PCBs (mg/kg) **	-				1		
Mineral Oil (mg/kg)	=				500		
Total PAH (WAC-17) (mg/kg)	=				100		
pH (units)**	-					>6	
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test
	10.1			10.1	ucing PC EN	I 12457-2 at L/S 10	I/ka (ma/ka)
(BS EN 12457 - 2 preparation utilising end over end leaching	mg/l			mg/kg	using BS EN	1 12457-2 at L/S 10	i/kg (mg/kg)
procedure)	mg/i			mg/kg			
Arsenic *	< 0.0011			< 0.0110	0.5	2	25
Barium *	0.0842			0.564	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.026			0.17	0.5	10	70
Copper *	0.0037			0.025	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0028			0.0185	0.5	10	30
Nickel *	< 0.0003			< 0.0030	0.4	10	40
Lead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	< 0.0004			< 0.0040	4	50	200
Chloride *	13			90	800	4000	25000
Fluoride	0.10			0.70	10	150	500
Sulphate *	33			220	1000	20000	50000
TDS*	720			4800	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	=
DOC	6.45			43.2	500	800	1000
Leach Test Information						1	
Stone Content (%)	-			1			
Sample Mass (kg)	-						
Dry Matter (%)	-						
Moisture (%)	-						
•							
				İ		1	
				İ		1	
							alysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		18-8	4043					
Report No.		10 0	-10-15					
					Client:	CONCEPT		
Location		St A	nnes					
		-			Landfill V	Waste Acceptanc	e Criteria	
Lab Reference (Sample Number)		953	3454			Limits		
Sampling Date		27/04	1/2018			Stable Non-		
Sample ID Depth (m)			-5.00		Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil	
Solid Waste Analysis								
TOC (%)**	-				3%	5%	6%	
oss on Ignition (%) **	-						10%	
BTEX (µg/kg) **	-				6000			
Sum of PCBs (mg/kg) **	-				1			
Mineral Oil (mg/kg)	-				500			
Total PAH (WAC-17) (mg/kg)	-				100			
pH (units)**	-					>6		
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluate	
					Limitumlu	a for compliance le	anding toot	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching test using BS EN 12457-2 at L/S 10 l/kg (mg/kg			
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	doing 50 EN 12.107 E de 2/0 10 7/18 (mg//18)			
Arsenic *	0.0033			0.0262	0.5	2	25	
Barium *	0.0153			0.122	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0007			0.0054	0.5	10	70	
Copper *	0.0021			0.017	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0028			0.0225	0.5	10	30	
Nickel *	< 0.0003			< 0.0030	0.4	10	40	
Lead *	0.0016			0.013	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.015			0.12	4	50	200	
Chloride *	2.4			19	800	4000	25000	
Fluoride	0.38			3.0	10	150	500	
Sulphate *	35			280	1000	20000	50000	
TDS*	92			740	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	4.05			32.5	500	800	1000	
Leach Test Information								
Stone Content (%)	-							
Sample Mass (kg)	-							
Dry Matter (%)	-							
Moisture (%)	-							
						l		
Results are expressed on a dry weight basis, after correction for mo	oisture content where	applicable.			*= UKAS accredit	ed (liquid eluate ana	alysis only)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as

amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	1100 0110	18.	84043				
Report No.		10-0	04043				
					Client:	CONCEPT	
Location		St /	Annes				
Lab Reference (Sample Number)		0.5	2.455		Landfill	e Criteria	
			3455			Limits	
Sampling Date			4/2018			Stable Non-	
Sample ID		Н	IP01		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)		0.70	0-0.80		Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis							
TOC (%)**					3%	5%	6%
Loss on Ignition (%) **							10%
BTEX (μg/kg) **					6000		
Sum of PCBs (mg/kg) **	-				1		
Mineral Oil (mg/kg)					500		
Total PAH (WAC-17) (mg/kg)	-				100		
pH (units)**	-					>6	
Acid Neutralisation Capacity (mol / kg)	=					To be evaluated	To be evaluated
Eluato Analysia					Limit valu	es for compliance le	eaching test
Eluate Analysis	10:1			10:1			
(BS EN 12457 - 2 preparation utilising end over end leaching					using BS EN	N 12457-2 at L/S 10	l/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	0.0095			0.0806	0.5	2	25
Barium *	0.0056			0.0475	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0040			0.034	0.5	10	70
Copper *	0.014			0.12	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0008			0.0069	0.5	10	30
Nickel *	0.0045			0.038	0.4	10	40
Lead *	0.013			0.11	0.5	10	50
Antimony *	0.0061			0.051	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0057			0.048	4	50	200
Chloride *	1.2			11	800	4000	25000
Fluoride	0.31			2.6	10	150	500
Sulphate *	8.9			76	1000	20000	50000
TDS*	61		1	510	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010		1	< 0.10	1	-	-
						0	,
DOC	4.51			38.2	500	800	1000
Leach Test Information					-		
rest Information			1				
Stone Content (%)	-						
Sample Mass (kg)	=						
Dry Matter (%)	-						
Moisture (%)	=-						
	oisture content when		_		*= UKAS accredit		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results							
Report No:		18-8	34043					
					Client:	CONCEPT		
					-			
Location		St A	Innes		l andéill i	Masta Assautan	o Cuitouia	
Lab Reference (Sample Number)		95	3456		Landfill	Waste Acceptano Limits	e Criteria	
Sampling Date		26/0	4/2018			Stable Non-		
Sample ID			P02			reactive		
Depth (m))-0.30		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	-				3%	5%	6%	
Loss on Ignition (%) **	-						10%	
BTEX (µg/kg) **	-				6000			
Sum of PCBs (mg/kg) **	-				1			
Mineral Oil (mg/kg)	-				500			
Total PAH (WAC-17) (mg/kg)	-			1	100			
pH (units)**	-		ļ	1		>6		
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated	
Eluate Analysis	40.4			40.4	Limit value	es for compliance le	eaching test	
Litate Allalysis	10:1			10:1				
(BS EN 12457 - 2 preparation utilising end over end leaching					using BS EN	I 12457-2 at L/S 10	l/kg (mg/kg)	
procedure)	mg/l			mg/kg				
Arsenic *	0.0170			0.136	0.5	2	25	
Barium *	0.0448			0.359	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.016			0.13	0.5	10	70	
Copper *	0.0087			0.070	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0010			0.0082	0.5	10	30	
Nickel *	< 0.0003			< 0.0030	0.4	10	40	
Lead *	0.047			0.38	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0068			0.055	4	50	200	
Chloride *	1.2			9.9	800	4000	25000	
Fluoride	0.45			3.6	10	150	500	
Sulphate *	35			280	1000	20000	50000	
TDS*	95			760	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	4.99			40.0	500	800	1000	
Leach Test Information								
Stone Content (%)	-							
Sample Mass (kg)	-							
Dry Matter (%)	-							
Moisture (%)	-							
Results are expressed on a dry weight basis, after correction for m	oisture content who	ere applicable.	-		*= UKAS accredit	ed (liquid eluate ana	alysis only)	
Stated limits are for guidance only and i2 cannot be held responsib	ole for any discreper	ncies with current le	gislation		** = MCERTS acc	rediited	-	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results							
Report No:		18-8	34043					
					Client:	CONCEPT		
					4			
Location		St A	nnes		l am déill i	Masta Assautan	o Cuitouia	
Lab Reference (Sample Number)		953	3457		Landfill	Waste Acceptano Limits	e Criteria	
Sampling Date		26/0	4/2018			Stable Non-		
Sample ID			P03			reactive		
Depth (m))-0.30		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis								
TOC (%)**	-				3%	5%	6%	
Loss on Ignition (%) **	-						10%	
BTEX (µg/kg) **	-				6000			
Sum of PCBs (mg/kg) **	-				1			
Mineral Oil (mg/kg)	-				500			
Total PAH (WAC-17) (mg/kg)	-				100			
pH (units)**	-					>6		
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated	
Eluate Analysis					Limit valu	es for compliance le	eaching test	
Eluate Allalysis	10:1			10:1				
(BS EN 12457 - 2 preparation utilising end over end leaching					using BS EN	I 12457-2 at L/S 10	l/kg (mg/kg)	
procedure)	mg/l			mg/kg				
Arsenic *	0.0066			0.0528	0.5	2	25	
Barium *	0.0059			0.0473	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0015			0.012	0.5	10	70	
Copper *	0.012			0.092	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0016			0.0128	0.5	10	30	
Nickel *	0.0019			0.015	0.4	10	40	
Lead *	0.014			0.11	0.5	10	50	
Antimony *	0.0026			0.020	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0076			0.060	4	50	200	
Chloride *	1.6			13	800	4000	25000	
Fluoride	0.41			3.2	10	150	500	
Sulphate *	13			100	1000	20000	50000	
TDS*	68			540	4000	60000	100000	
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	5.64			44.8	500	800	1000	
Lorch Tost Information								
Leach Test Information								
Stone Content (%)	-							
Sample Mass (kg)	-							
Dry Matter (%)	-							
Moisture (%)	-							
Results are expressed on a dry weight basis, after correction for m	oisture content who	ere applicable.			*= UKAS accredit	ed (liquid eluate and	alysis only)	
Stated limits are for guidance only and i2 cannot be held responsib	le for any discrepe	ncies with current le	gislation		** = MCERTS acc	rediited		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical					1		
Report No:		18-8	4043				
					Oli t-		
					Client:	CONCEPT	
1		Ct. 4					
Location		St A	nnes		l andfill l	Wasta Assautan	a Cuitavia
Lab Reference (Sample Number)		953	3458		Landrill	Waste Acceptano Limits	e Criteria
Samulina Data			1/2018			Stable Non-	
Sampling Date			P03		-	reactive	
Sample ID		- 111	-03		Inert Waste	HAZARDOUS	Hazardous
Depth (m)		1.00	-1.10		Landfill	waste in non- hazardous Landfill	Waste Landfil
Solid Waste Analysis							
TOC (%)**	-				3%	5%	6%
oss on Ignition (%) **	-						10%
BTEX (µg/kg) **	-				6000		
Sum of PCBs (mg/kg) **	•				1		
Mineral Oil (mg/kg)					500		
Fotal PAH (WAC-17) (mg/kg)	•				100		-
pH (units)**	•					>6	-
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluate
-lunta Aughoria					Limit value	es for compliance le	aching test
Eluate Analysis	10:1			10:1			
BS EN 12457 - 2 preparation utilising end over end leaching					using BS EN	I 12457-2 at L/S 10	l/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	0.0026			0.0222	0.5	2	25
Barium *	0.0195			0.167	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.021			0.18	0.5	10	70
Copper *	0.0066			0.057	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0011			0.0092	0.5	10	30
vickel *	< 0.0003			< 0.0030	0.4	10	40
ead *	0.010			0.088	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0052			0.045	4	50	200
Chloride *	1.4			12	800	4000	25000
Fluoride	0.50			4.3	10	150	500
Sulphate *	22			190	1000	20000	50000
TDS*	95			810	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-
OOC	4.57			39.1	500	800	1000
Leach Test Information		-	-			1	
Stone Content (%)	-		1				
Sample Mass (kg)	-						
Ory Matter (%)	-	1	1			1	
Noisture (%)	-	1	1			1	
		1	1			1	
		1	!	-1		ļ	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		18-8	4043				
					Client:	CONCEPT	
Location		C+ A	nnes				
		St A	innes		Landfill	Waste Acceptanc	e Criteria
Lab Reference (Sample Number)			3459			Limits	
Sampling Date			1/2018			Stable Non- reactive	
Sample ID Depth (m)			-0.80		Inert Waste Landfill	HAZARDOUS waste in non- hazardous	Hazardous Waste Landfill
Solid Waste Analysis						Landfill	
ΓΟC (%)**	-				3%	5%	6%
Loss on Ignition (%) **	-						10%
BTEX (μg/kg) **	-				6000		
Sum of PCBs (mg/kg) **	-			1	1		
Mineral Oil (mg/kg)	-			1	500		
Fotal PAH (WAC-17) (mg/kg)	-			1	100		
bH (units)**	-					>6	
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated
Eluate Analysis					Limit valu	es for compliance le	
•	10:1			10:1		12457-2 at L/S 10	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg			, 3 (3, 3,
Arsenic *	0.0081			0.0663	0.5	2	25
Barium *	0.0191			0.157	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0072			0.059	0.5	10	70
Copper *	0.0075			0.062	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0005			0.0044	0.5	10	30
Nickel *	0.0003			< 0.0030	0.4	10	40
_ead *	0.019			0.16	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0096			0.079	4	50	200
Chloride *	5.6			46	800	4000	25000
Fluoride	0.28			2.3	10	150	500
Sulphate *	20			170	1000	20000	50000
TDS*	80			660	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-
оос	5.66			46.3	500	800	1000
Leach Test Information				+			
Stone Content (%)	-						
Sample Mass (kg)	-						
Ory Matter (%)	-						
Moisture (%)	-						
		-					

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Combined Report Nos: 18-85340 & 18-86014

Project / Site name: St Annes Samples received on: 08/05/2018

Your job number: 18-3106 Samples instructed on: 14/05/2018

Your order number: CL1425 Analysis completed by: 21/05/2018

Report Issue Number: 1 Report issued on: 25/05/2018

Samples Analysed: 7 soil samples

Signed:

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				960334	960335	960336	960337	960338
Sample Reference				BH2B	BH01	BH01	BH01	BH01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				6.90-7.00	0.20-0.25	1.10-1.20	3.00-3.10	5.00-5.10
Date Sampled				02/05/2018	02/05/2018	02/05/2018	02/05/2018	02/05/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	28	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	5.6	11	6.1	14	9.4
Total mass of sample received	kg	0.001	NONE	1.5	1.6	2.0	1.4	1.9
							ı	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics pH - Automated Total Cyanide	pH Units mg/kg	N/A 1	MCERTS MCERTS	9.3 < 1	10.2	11.1	10.9 < 1	6.6
Total Organic Carbon (TOC)	%	0.1	MCERTS	< 0.1	0.7	0.3	0.9	< 0.1
Total Phenols								
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Thomas (monony arroy	9,9		11021110	1 210	1210		1210	
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.63	< 0.05	0.31	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.12	< 0.05	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	1.7 1.5	< 0.05 < 0.05	0.24 0.21	-
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.05	MCERTS MCERTS	< 0.05	0.78	< 0.05	< 0.05	
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.97	< 0.05	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.1	< 0.05	< 0.05	_
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.36	< 0.05	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.47	< 0.05	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	7.59	< 0.80	< 0.80	-
Heavy Metals / Metalloids								
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	< 1.0	2.6	1.7	1.5	< 1.0
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	4.6	32	11	10	5.2
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.28	0.79	0.36	2.5	0.20
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	1.6	1.0	2.4	0.5
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	14	29	22	15	10
Copper (aqua regia extractable)	mg/kg	1	MCERTS	9.7	66	19	42	6.2
Lead (aqua regia extractable)	mg/kg	1	MCERTS	26	840	58	120	6.4
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	1.1	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	12	17	15	22	9.9
Selenium (aqua regia extractable) Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.5 52	< 1.0 23	1.1	< 1.0
Vanadium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	12 33	380	100	31 86	17 15
zinc (aqua regia extractable)	mg/kg		MCERTS	JJ	300	100	00	13

Project / Site name: St Annes Your Order No: CL1425

Lab Sample Number			960334	960335	960336	960337	960338	
Sample Reference				BH2B	BH01	BH01	BH01	BH01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				6.90-7.00	0.20-0.25	1.10-1.20	3.00-3.10	5.00-5.10
Date Sampled				02/05/2018	02/05/2018	02/05/2018	02/05/2018	02/05/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m-xylene µg/kg 1 MCI				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg mg/kg	2	MCERTS MCERTS	< 1.0 < 2.0	< 1.0 6.7	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0
TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg ma/ka	8 8	MCERTS MCERTS	< 8.0 < 8.0	23 34	< 8.0 11	< 8.0 < 8.0	< 8.0 < 8.0
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	65	18	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	65	18	< 10	< 10

TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	21	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	77	< 10	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	98	< 10	11	< 10
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	98	< 10	11	< 10

Lab Sample Number				060224	060225	060226	060227	060220
Sample Reference				960334 BH2B	960335 BH01	960336 BH01	960337 BH01	960338 BH01
Sample Number				None Supplied				
Depth (m)				6.90-7.00	0.20-0.25	1.10-1.20	3.00-3.10	5.00-5.10
Date Sampled				02/05/2018	02/05/2018	02/05/2018	02/05/2018	02/05/2018
Time Taken				None Supplied				
			D				1 1 1 1	
Analytical Danamatan	_	de Li	Accreditation Status					
Analytical Parameter	Units	Limit of detection	creditat Status					
(Soil Analysis)	(v)	할 역	atio					
			ğ					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Chloroethane	μg/kg	1	NONE	-	-	-	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE NONE	-	-	-	-	< 1.0
1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025		<u>-</u>	-	-	< 1.0 < 1.0
Cis-1,2-dichloroethene	μg/kg μg/kg	1	MCERTS	-	_			< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-		< 1.0
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1-Dichloropropene	μg/kg 	1	MCERTS	-	-	-	-	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE MCERTS	-	-	-	-	< 1.0
Benzene Tetrachloromethane	μg/kg μg/kg	1	MCERTS	-	<u>-</u>	<u>-</u>	-	< 1.0
1,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	<u> </u>	-	-	-	< 1.0 < 1.0
Trichloroethene	μg/kg	1	MCERTS	_	_	_	-	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	_	_	_	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Toluene	μg/kg 	1	MCERTS	-	-	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichloropropane Dibromochloromethane	μg/kg μg/kg	1	ISO 17025 ISO 17025	-	<u>-</u> -	<u>-</u> -	-	< 1.0 < 1.0
Tetrachloroethene	μg/kg μg/kg	1	NONE	-		-		< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	_	_	_	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	_	-	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Styrene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Tribromomethane	μg/kg	1	NONE	-	-	-	-	< 1.0
o-Xylene 1,1,2,2-Tetrachloroethane	μg/kg μα/kα	1	MCERTS	-	<u>-</u>	-	-	< 1.0 < 1.0
Isopropylbenzene	μg/kg μg/kg	1	MCERTS MCERTS	-	-	-	-	< 1.0
Bromobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
n-Propylbenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025		-	-	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg 	1	ISO 17025	-	-	-	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichlorobenzene p-Isopropyltoluene	μg/kg μα/kα	1	ISO 17025 ISO 17025	-	-	-	-	< 1.0 < 1.0
p-Isopropyitoluene 1,2-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	<u>-</u>	-	-	< 1.0 < 1.0
1.4-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
Butylbenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0

Lab Sample Number				960334	960335	960336	960337	960338
Sample Reference				BH2B	BH01	BH01	BH01	BH01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				6.90-7.00	0.20-0.25	1.10-1.20	3.00-3.10	5.00-5.10
Date Sampled				02/05/2018	02/05/2018	02/05/2018	02/05/2018	02/05/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs			1					
Aniline	mg/kg	0.1	NONE	-	-	-	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS MCERTS	-	-	-	-	< 0.2 < 0.1
Bis(2-chloroisopropyl)ether 2-Methylphenol	mg/kg mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	_	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
1,2,4-Trichlorobenzene Naphthalene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3 < 0.05
2,4-Dichlorophenol	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-	-	-	< 0.05
4-Chloroaniline	mg/kg	0.1	NONE	-	_	_	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1 < 0.1
2,6-Dinitrotoluene Acenaphthylene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-	-	-	< 0.1
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bromophenyl phenyl ether Hexachlorobenzene	mg/kg mg/kg	0.2	MCERTS MCERTS	<u>-</u>	-	-	-	< 0.2 < 0.3
Phenanthrene	mg/kg	0.05	MCERTS	_	_	-	_	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Pyrene But the second adult also	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-	< 0.3
Benzo(a)anthracene Chrysene	mg/kg	0.05	MCERTS MCERTS	-	-	-	-	< 0.05 < 0.05
Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS	<u>-</u>	-	-	<u>-</u>	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05

Lab Sample Number			-	960334	960335	960336	960337	960338
Sample Reference				BH2B	BH01	BH01	BH01	BH01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				6.90-7.00	0.20-0.25	1.10-1.20	3.00-3.10	5.00-5.10
Date Sampled				02/05/2018	02/05/2018	02/05/2018	02/05/2018	02/05/2018
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs								
PCB Congener 077	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 081	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 105	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 114	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 118	mg/kg	0.001	NONE	< 0.001	< 0.001	0.011	< 0.001	< 0.001
PCB Congener 123	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 126	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 156	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 157	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 167	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 169	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB Congener 189	mg/kg	0.001	NONE	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total PCBs	ma/ka	0.012	NONE	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012

Lah Sample Number				060220	063056	1	
Lab Sample Number				960339	963956	 	
Sample Reference				BH01	BH2B		
Sample Number				None Supplied	None Supplied		
Depth (m)				17.00-17.10	10.90-11.00		
Date Sampled				04/05/2018	02/05/2018	1	
Time Taken	1		1	None Supplied	None Supplied		
		•	Accreditation Status				
Analytical Parameter	_	Limit of detection	St				
(Soil Analysis)	Units	ecti	at u				
(Son Analysis)	V 1	of on	stio				
			Š				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	17	13		
Total mass of sample received	kg	0.001	NONE	1.3	0.97		
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected		
		-					
General Inorganics						 	
pH - Automated	pH Units	N/A	MCERTS	8.6	7.1		
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1		
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.9	0.8		
							_
Total Phenois						 	
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0		
	<u> </u>					•	
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1	
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	1	
Benzo(gm/per yiene	mg/kg	0.03	TICERTS	1 0.03	1 0.03		
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80		
Speciated Total LFA-10 FALIS	mg/Kg	0.0	MICERIO	\ U.OU	< 0.00	1	
Heavy Metals / Metalloids							
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	< 1.0	< 1.0	1	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	11		
Beryllium (aqua regia extractable)		0.06	MCERTS	1.4	0.86	 	
Boron (water soluble)	mg/kg		MCERTS	5.5	3.4	 	
	mg/kg	0.2				 	
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	 	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	46	33	 	
Copper (aqua regia extractable)	mg/kg	1	MCERTS	40	22	 	
Lead (aqua regia extractable)	mg/kg	1	MCERTS	16	9.0		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	 	
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	44	28		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	1.6	< 1.0		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	70	42		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	80	57	I	

Project / Site name: St Annes Your Order No: CL1425

Lab Sample Number				960339	963956		
Sample Reference	•		BH01	BH2B			
Sample Number				None Supplied	None Supplied		
Depth (m)				17.00-17.10	10.90-11.00		
Date Sampled				04/05/2018	02/05/2018		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics]			
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
MTBF (Methyl Tertiary Butyl Ether)	ua/ka	1	MCFRTS	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	< 8.4	< 8.4	
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	< 10	< 10	

Lab Sample Number				960339	963956		
Sample Reference				BH01	BH2B		
Sample Number				None Supplied	None Supplied		
Depth (m)				17.00-17.10	10.90-11.00		
Date Sampled				04/05/2018	02/05/2018		
Time Taken			_	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
VOCs							
Chloromethane	μg/kg	1	ISO 17025	-	_	I	
Chloroethane	μg/kg	1	NONE	_	_		
Bromomethane	μg/kg	1	ISO 17025	-	-		
Vinyl Chloride	μg/kg	1	NONE	-	-		
Trichlorofluoromethane	μg/kg	1	NONE	-	-		
1,1-Dichloroethene	μg/kg	1	NONE	-	-		
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-		
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-		
1,1-Dichloroethane 2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS MCERTS	-	-		
Z,Z-Dichloroproparie Trichloromethane	μg/kg μg/kg	1	MCERTS	-	-		
1,1,1-Trichloroethane	μg/kg	1	MCERTS	_	-		
1,2-Dichloroethane	μg/kg	1	MCERTS	-	_		
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-		
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-		
Benzene	μg/kg	1	MCERTS	-	-		
Tetrachloromethane	μg/kg	1	MCERTS	-	-		
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-		
Trichloroethene	μg/kg	1	MCERTS	-	-		
Dibromomethane Promodichleromethane	μg/kg μg/kg	1	MCERTS MCERTS	-	-		
Bromodichloromethane Cis-1,3-dichloropropene	μg/kg μg/kg	1	ISO 17025	-	-		
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-		
Toluene	µg/kg	1	MCERTS	-	-		
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-		
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-		
Dibromochloromethane	μg/kg	1	ISO 17025	-	-		
Tetrachloroethene	μg/kg	1	NONE	-	-		
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-		
Chlorobenzene	μg/kg 	1	MCERTS	-	-		
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg	1 1	MCERTS MCERTS	-	-		
p & m-Xylene	μg/kg μg/kg	1	MCERTS	-	-		
Styrene	μg/kg μg/kg	1	MCERTS	-	_		
Tribromomethane	μg/kg	1	NONE	-	-		
o-Xylene	μg/kg	1	MCERTS	-	-		
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-		
Isopropylbenzene	μg/kg	1	MCERTS	-	-		
Bromobenzene	μg/kg	1	MCERTS	-	-		
n-Propylbenzene	μg/kg	1	ISO 17025	-	-		
2-Chlorotoluene	μg/kg	1	MCERTS	-	-		
4-Chlorotoluene	μg/kg	1	MCERTS	- -	-		
1,3,5-Trimethylbenzene tert-Butylbenzene	μg/kg μg/kg	1	ISO 17025 MCERTS	-	-		
1,2,4-Trimethylbenzene	µg/кд µg/kg	1	ISO 17025	-	-		
sec-Butylbenzene	μg/kg μg/kg	1	MCERTS	-	-		
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-		
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-		
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-		-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-		
Butylbenzene	μg/kg	1	MCERTS	-	-		
1,2-Dibromo-3-chloropropane	μg/kg "	1	ISO 17025	-	-		
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-		
Hexachlorobutadiene 1,2,3-Trichlorobenzene	μg/kg μg/kg	1	MCERTS ISO 17025	- -	-		
1,2,3-111011010001120110	μy/Ky		130 1/025	-		I	

Lab Sample Number				960339	963956		
Sample Reference				BH01	BH2B		
Sample Number				None Supplied	None Supplied		
Depth (m)				17.00-17.10	10.90-11.00		
Date Sampled				04/05/2018	02/05/2018		
Time Taken				None Supplied	None Supplied		
		Li de	Accreditation Status				
Analytical Parameter	Units	mit	edii tat				
(Soil Analysis)	ß	Limit of detection	tatio us				
		_	9				
SVOCs							
Aniline	mg/kg	0.1	NONE	-	-		
Phenol	mg/kg	0.2	ISO 17025	-	-		
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-		
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-		
1,3-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg	0.2	MCERTS MCERTS	-	-		
1,4-Dichlorobenzene	mg/kg mg/kg	0.1	MCERTS	-	-		
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	_		
2-Methylphenol	mg/kg	0.3	MCERTS	-	-		
Hexachloroethane	mg/kg	0.05	MCERTS	-	-		
Nitrobenzene	mg/kg	0.3	MCERTS	-	-		
4-Methylphenol	mg/kg	0.2	NONE	-	-		
Isophorone	mg/kg	0.2	MCERTS	-	-		
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-		
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-		
Bis(2-chloroethoxy)methane 1,2,4-Trichlorobenzene	mg/kg mg/kg	0.3	MCERTS MCERTS	<u>-</u>	-		
Naphthalene	mg/kg	0.05	MCERTS	_	_		
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-		
4-Chloroaniline	mg/kg	0.1	NONE	-	-		
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-		
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-		
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-		
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-		
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-		
2-Chloronaphthalene Dimethylphthalate	mg/kg mg/kg	0.1	MCERTS MCERTS	<u> </u>			
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	_	_		
Acenaphthylene	mg/kg	0.05	MCERTS	-	-		
Acenaphthene	mg/kg	0.05	MCERTS	-	-		
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-		
Dibenzofuran	mg/kg	0.2	MCERTS	-	-		
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-		
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-		
4-Nitroaniline Fluorene	mg/kg mg/kg	0.2	MCERTS MCERTS	-	-		
Azobenzene	mg/kg	0.03	MCERTS	-	-		
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-		
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-		
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	
Anthracene	mg/kg	0.05	MCERTS	-	-		
Carbazole	mg/kg	0.3	MCERTS	-	-		
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-		
Anthraquinone	mg/kg	0.3	MCERTS	-	-		
Fluoranthene Pyrene	mg/kg mg/kg	0.05	MCERTS MCERTS	-	-		
Butyl benzyl phthalate	mg/kg mg/kg	0.05	ISO 17025	<u>-</u>	<u>-</u>		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-		
Chrysene	mg/kg	0.05	MCERTS	-	-		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-		

Lab Sample Number				960339	963956		
Sample Reference				BH01	BH2B		
Sample Number				None Supplied	None Supplied		
Depth (m)				17.00-17.10	10.90-11.00		
Date Sampled				04/05/2018	02/05/2018		
Time Taken	None Supplied	None Supplied					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
PCBs							
PCB Congener 077	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 081	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 105	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 114	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 118	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 123	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 126	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 156	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 157	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 167	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 169	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 189	mg/kg	0.001	NONE	< 0.001	< 0.001		
Total PCBs	mg/kg	0.012	NONE	< 0.012	< 0.012		

Project / Site name: St Annes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
960334	BH2B	None Supplied	6.90-7.00	Beige sand with gravel and stones.
960335	BH01	None Supplied	0.20-0.25	Brown gravelly sand with rubble.
960336	BH01	None Supplied	1.10-1.20	Brown sandy loam with gravel.
960337	BH01	None Supplied	3.00-3.10	Grey sand with gravel.
960338	BH01	None Supplied	5.00-5.10	Light brown sand with gravel.
960339	BH01	None Supplied	17.00-17.10	Brown clay.
963956	BH2B	None Supplied	10.90-11.00	Grey clay.

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
PCBs WHO 12 in soil	Determination of PCBs (WHO-12 Congeners) by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L076-PL	D	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH01		S	18-85340	960335	С	Total cyanide in soil	L080-PL	С
BH01		S	18-85340	960336	С	Total cyanide in soil	L080-PL	С
BH01		S	18-85340	960337	С	Total cyanide in soil	L080-PL	С
BH01		S	18-85340	960338	С	Total cyanide in soil	L080-PL	С
BH01		S	18-85340	960339	С	Total cyanide in soil	L080-PL	С
BH2B		S	18-85340	960334	С	Total cyanide in soil	L080-PL	С

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
BH2B		S	18-86014	963956	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С
BH2B		S	18-86014	963956	С	Total cyanide in soil	L080-PL	С
BH2B		S	18-86014	963956	С	Total organic carbon (Automated) in soil	L009-PL	С

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-85343

Project / Site name: St Annes Samples received on: 08/05/2018

Your job number: 18-3106 Samples instructed on: 14/05/2018

Your order number: CL1425 Analysis completed by: 21/05/2018

Report Issue Number: 1 **Report issued on:** 21/05/2018

Samples Analysed: 6 leachate samples

Signed:

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Lab Reference (Sample Number) Section St Annes	ste Acceptance Criteria Analytica	l Results						
Lab Reference (Sample Number) 960349 Landfill Waste Acce Landfill Waste L	t No:		18-8	85343				
Lab Reference (Sample Number) Sampling Date 102/05/2018 Sa		1						
Lab Reference (Sample Number) 960349						Client:	CONCEPT	
Lab Reference (Sample Number) 960349	Location		St A	nnes				
Library Career Case Ca						Landfill	Waste Acceptanc	e Criteria
Sample ID	Lab Reference (Sample Number)		960	349			Limits	
Depth (m) 6,907,00 Sind Waste Maskysis	Sampling Date		02/0	5/2018			Stable Non-	
Toc (%)** -							reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Loss on Ignition (%) ** -	Waste Analysis							
### BTEX (rig/kg) **	6)**	-				3%	5%	6%
Sum of PCBs (mg/kg) ** Mineral Oil (mg/kg) -		=						10%
Mineral Oil (mg/kg)	µg/kg) **	-				6000		
Total PAH (WAC-17) (mg/kg)		-						
PH (units)** -								
Eluate Analysis 10:1 10:				1				
Blate Analysis 10:1	its)**	-					>6	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure) ### ### ### ### ### ### ### ### ### #	eutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated
(BS EN 12457 - 2 preparation utilising end over end leaching procedure) ### ### ### ### ### ### ### ### ### #	Analysis	10.1			10.1	Limit valu	es for compliance le	eaching test
mg/kg	Analysis	10:1			10:1			
Barium * 0.0060 0.0507 20 100 Cadmium * < 0.0001		mg/l			mg/kg	using BS Er	N 12457-2 at L/S 10	i i/kg (mg/kg)
Cadmium * < 0.0001	*	0.0031			0.0265	0.5	2	25
Chromium * 0.0050 0.042 0.5 10 Copper * 0.0073 0.061 2 50 Mercury * < 0.0005								300
Copper * 0.0073 0.061 2 50 Mercury * < 0.0005	um *	< 0.0001			< 0.0008	0.04	1	5
Mercury * < 0.0005	ium *	0.0050			0.042	0.5	10	70
Molybdenum * 0.0005 0.0044 0.5 10 Nickel * 0.0021 0.017 0.4 10 Lead * 0.0046 0.039 0.5 10 Antimony * < 0.0017	*	0.0073			0.061	2	50	100
Nickel * 0.0021 0.017 0.4 10 Lead * 0.0046 0.039 0.5 10 Antimony * < 0.0017	y *	< 0.0005			< 0.0050	0.01	0.2	2
Lead * 0.0046 0.039 0.5 10 Antimony * < 0.0017	lenum *	0.0005			0.0044	0.5	10	30
Antimony *	*	0.0021			0.017	0.4	10	40
Selenium * < 0.0040		0.0046						50
Zinc * 0.014 0.12 4 50 Chloride * 0.88 7.4 800 4000 Fluoride < 0.050								5
Chloride * 0.88 7.4 800 4000 Fluoride < 0.050	ım *							7
Fluoride								200
Sulphate * 1.9 16 1000 2000 TDS* 11 89 4000 6000 Phenol Index (Monohydric Phenols) * < 0.010								25000
TDS								500
Phenol Index (Monohydric Phenols) * < 0.010	te *							50000 100000
DOC 5.03 42.2 500 800	Index (Monohydric Phenols) *							-
Leach Test Information	mack (Fiolionyane Friends)							1000
Stone Content (%) - Sample Mass (kg) - Sample Mass (kg)		3.03			42.2	300	800	1000
Stone Content (%) - Sample Mass (kg) - Sample Mass (kg)								
Sample Mass (kg)	Test Information							
Sample Mass (kg)	Content (%)	_						
				†		1	1	
Dry Matter (%)		-				1	1	
		-				1	İ	
							1	
Results are expressed on a dry weight basis, after correction for moisture content where applicable. *= UKAS accredited (liquid elu	are expressed on a dry weight basis, after correction for r	noisture content when	re applicable.	-	•	*= UKAS accredit	ted (liquid eluate an	alysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results				1		
Report No:		18-	85343				
					Client:	CONCEPT	
		-	•		4		
Location		St	Annes		I amaleill	Masta Assautans	o Cultouio
Lab Reference (Sample Number)		96	0350		Landfill	Waste Acceptano Limits	e Criteria
Campling Date			5/2018			Stable Non-	
Sampling Date Sample ID			H01			reactive	
Sample 10			1101		Inert Waste	HAZARDOUS	Hazardous
Depth (m)		0.2	0-0.25		Landfill	waste in non-	Waste Landfill
Deptii (iii)		0.2	0 0.25			hazardous Landfill	
Solid Waste Analysis							
TOC (%)**	-				3%	5%	6%
Loss on Ignition (%) **	-	1	1				10%
BTEX (μg/kg) **	-	1			6000		
Sum of PCBs (mg/kg) **	-	1	1		1		
Mineral Oil (mg/kg)	-	1	1		500		
Total PAH (WAC-17) (mg/kg)	-	1	1		100		
pH (units)**	-	1				>6	
		1	1				
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1	Limit valu	es for compliance le	eaching test
•	10.1			10.1	using BS FM	N 12457-2 at L/S 10) l/ka (ma/ka)
(BS EN 12457 - 2 preparation utilising end over end leaching	mg/l			ma/ka	using bach	V 12437-2 dt L/3 10	i/kg (ilig/kg)
procedure)	IIIg/I			mg/kg			
Arsenic *	0.0109			0.0850	0.5	2	25
Barium *	0.0376			0.294	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.016			0.13	0.5	10	70
Copper *	0.031			0.24	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0055			0.0432	0.5	10	30
Nickel *	0.0010			0.0082	0.4	10	40
Lead *	0.025			0.19	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.013			0.10	4	50	200
Chloride *	1.0			7.9	800	4000	25000
Fluoride	0.38			2.9	10	150	500
Sulphate *	10			80	1000	20000	50000
TDS*	120			970	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	7 27			F6 0	E00	800	1000
DOC	7.27			56.8	500	800	1000
Leach Test Information							
		1					
Stone Content (%)	-						
Sample Mass (kg)	-						
Dry Matter (%)	-						
Moisture (%)	-						
		1	1				
-		1	1				
Results are expressed on a dry weight basis, after correction for me	oisture content whe	ere applicable.			*= UKAS accredit	ed (liquid eluate an	alysis only)
	le for any discreper				** = MCERTS acc		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as

amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	Results	18-6	35343				
керот но.		10-0	3343				
					Client:	CONCEPT	
Location		St A	Innes				
Lab Reference (Sample Number)		96	0351		Landfill	Waste Acceptano Limits	e Criteria
Compline Date			5/2018			Stable Non-	
Sampling Date Sample ID			H01			reactive	
Depth (m))-1.20		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	-				3%	5%	6%
Loss on Ignition (%) **	-						10%
BTEX (μg/kg) **	-		1		6000		
Sum of PCBs (mg/kg) **	-				1 500		
Mineral Oil (mg/kg)	-		1		500		
Total PAH (WAC-17) (mg/kg)	-		 		100		
pH (units)**	-					>6	
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN	I 12457-2 at L/S 10) l/kg (mg/kg)
	0.0000			0.0550	0.5		25
Arsenic * Barium *	0.0069 0.0176			0.0559 0.143	0.5 20	2 100	25 300
Cadmium *	< 0.0001			< 0.0008	0.04	100	5
Chromium *	0.014			0.11	0.5	10	70
Copper *	0.014			0.11	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0021			0.0171	0.5	10	30
Nickel *	0.0009			0.0076	0.4	10	40
Lead *	0.0074			0.061	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0091			0.074	4	50	200
Chloride *	1.4			11	800	4000	25000
Fluoride	0.26			2.1	10	150	500
Sulphate *	34			280	1000	20000	50000
TDS*	160			1300	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	5.73			46.8	500	800	1000
Leach Test Information							
Stone Content (%)	-						
Sample Mass (kg)	-						
Dry Matter (%)	-						
Moisture (%)	-						
					l	<u> </u>	
Results are expressed on a dry weight basis, after correction for mo	pisture content whe	re applicable.			*= UKAS accredit	ed (liquid eluate ana	alysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	Results	10.	85343				
Report No:		18-	85343		+		
					Client:	CONCEPT	
Location		St /	Annes				
Lab Reference (Sample Number)		96	0352		Landfill	Waste Acceptano Limits	e Criteria
Sampling Date		02/0	5/2018			Stable Non-	
Sample ID			H01		reactive		
Depth (m)		3.0	0-3.10		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	-				3%	5%	6%
Loss on Ignition (%) **	-						10%
BTEX (µg/kg) **	-				6000		
Sum of PCBs (mg/kg) **	-				1		
Mineral Oil (mg/kg)	-				500		
Total PAH (WAC-17) (mg/kg)	-		ļ		100	-	
pH (units)**	-					>6	
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1	Limit valu	es for compliance le	eaching test
	1011			10.1	using BS FN	I 12457-2 at L/S 10	I/ka (ma/ka)
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)		
					0.5	_	25
Arsenic *	0.0061			0.0485	0.5	2	25
Barium *	0.0073			0.0581	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0014			0.011	0.5	10	70
Copper *	0.020			0.16	2	50	100
Mercury *	< 0.0005		-	< 0.0050	0.01	0.2	2
Molybdenum *	0.0070		-	0.0557	0.5	10	30
Nickel *	0.0008		-	0.0061	0.4	10	40
Lead *	0.0043		-	0.035	0.5	10 0.7	50
Antimony *	0.0085		-	0.068	0.06	0.7	5 7
Selenium * Zinc *	< 0.0040 0.010			< 0.040 0.082	0.1 4	50	200
Chloride *	1.8		-	15	800	4000	25000
Fluoride	0.31		-	2.5	10	150	500
Sulphate *	380			3000	1000	20000	50000
TDS*	410			3300	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	100000
DOC	5.45			43.6	500	800	1000
Look Tok Tofourskin							
Leach Test Information			+				
Stone Content (%)	-		+		-	-	
Sample Mass (kg)	-						
Dry Matter (%)	-		1				
Moisture (%)	-		1				
× 7							
					* 1974 = 1	120 11 1	
Results are expressed on a dry weight basis, after correction for mo	disture content whe	re applicable.			*= UKAS accredit	ed (liquid eluate and	alysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		18-8	85343				
					611		
					Client:	CONCEPT	
Location		St A	Annes		-		
					Landfill	Waste Acceptanc	e Criteria
Lab Reference (Sample Number)		96	0353			Limits	
Sampling Date		02/0	5/2018			Stable Non-	
Sample ID		BI	H01		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)		5.00	0-5.10		Landfill	waste in non- hazardous Landfill	Waste Landfil
Solid Waste Analysis							
FOC (%)**	-				3%	5%	6%
oss on Ignition (%) **	-						10%
BTEX (μg/kg) **	-				6000		
Sum of PCBs (mg/kg) **	-				1		
fineral Oil (mg/kg)	-		1		500		
Total PAH (WAC-17) (mg/kg)	-		1		100		
pH (units)**	-					>6	
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluate
Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test
DO EN 42457 2					using BS EN	I 12457-2 at L/S 10	I/ka (ma/ka)
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg			
Arsenic *	0.0018			0.0150	0.5	2	25
Barium *	0.0062			0.0529	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0025			0.021	0.5	10	70
Copper *	0.0086			0.073	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Yolybdenum *	0.0008			0.0069	0.5	10	30
vickel *	0.0020			0.017	0.4	10	40
ead *	0.0045			0.039	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
?inc *	0.011			0.095	4	50	200
Chloride *	1.0			8.5	800	4000	25000
Fluoride	0.31			2.6	10	150	500
Sulphate *	5.7			49	1000	20000	50000
TDS*	21			180	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010	_		< 0.10	1	-	-
DOC	5.20			44.2	500	800	1000
and Tak Information							
each Test Information							
Stone Content (%)	-						
Sample Mass (kg)	-						
Ory Matter (%)	-						
Noisture (%)	-						
	ı T		1	1	I	<u> </u>	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:	Results	10	85343		I		
Report No:		10-	05343				
					Client:	CONCEPT	
Location		St	Annes				
Lab Reference (Sample Number)		96	50354		Landfill	Waste Acceptance	e Criteria
Compline Date			05/2018			Limits Stable Non-	
Sampling Date Sample ID			35/2016 BH01		_	reactive	
Depth (m)			0-17.10		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	1				3%	5%	6%
Loss on Ignition (%) **	-						10%
BTEX (µg/kg) **	-				6000		
Sum of PCBs (mg/kg) **	-				1		
Mineral Oil (mg/kg)	-				500		
Total PAH (WAC-17) (mg/kg)	-				100		
pH (units)**	-					>6	
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated
Eluate Analysis	10.1			10:1	Limit valu	es for compliance le	eaching test
Endet Analysis	10:1			10:1			
(BS EN 12457 - 2 preparation utilising end over end leaching	,,				using BS Er	N 12457-2 at L/S 10	1/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	0.0035			0.0223	0.5	2	25
Barium *	0.0183			0.115	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0020			0.012	0.5	10	70
Copper *	0.017			0.11	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0160			0.101	0.5	10	30
Nickel *	0.0027			0.017	0.4	10	40
Lead *	0.0057			0.036	0.5	10	50
Antimony *	0.0051			0.032	0.06	0.7	5
Selenium *	0.043			0.27	0.1	0.5	7
Zinc *	0.0051			0.032	4	50	200
Chloride *	15			96	800	4000	25000
Fluoride	0.89			5.6	10	150	500
Sulphate *	68			430	1000	20000	50000
TDS*	130		1	830	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010		1	< 0.10	1	-	-
DOC	5.74			36.2	500	800	1000
	3.71			30.2	300	000	1000
Leach Test Information							
Stone Content (%)	-		+				
Sample Mass (kg)	-						
Dry Matter (%)	-						
Moisture (%)	-						
		<u> </u>				1	L
Results are expressed on a dry weight basis, after correction for mo	pisture content whe	re applicable.			*= UKAS accredit	ted (liquid eluate and	alysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

hazardous or non-hazardous.

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-86015

Project / Site name: St Annes Samples received on: 18/05/2018

Your job number: 18-3106 Samples instructed on: 18/05/2018

Your order number: CL1425 Analysis completed by: 25/05/2018

Report Issue Number: 1 **Report issued on:** 25/05/2018

Samples Analysed: 1 10:1 WAC leachate sample

Signed:

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

	St A 963 02/05 Bi	nnes 9957 7/2018 1218		Inert Waste Landfill 3% 6000	CONCEPT Waste Acceptanc Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5%	Hazardous Waste Landfill 6%	
- - - -	963 02/05 BH	8957 5/2018 12B		Inert Waste Landfill 3% 6000	Waste Acceptance Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5%	Hazardous Waste Landfill 6%	
- - - -	963 02/05 BH	8957 5/2018 12B		Inert Waste Landfill 3% 6000	Waste Acceptance Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5%	Hazardous Waste Landfill 6%	
- - - -	963 02/05 BH	8957 5/2018 12B		Inert Waste Landfill 3% 6000	Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5%	Hazardous Waste Landfill 6%	
- - - -	02/05 BH	5/2018 H2B		Inert Waste Landfill 3% 6000	Limits Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill 5%	Hazardous Waste Landfill 6%	
- - - -	02/05 BH	5/2018 H2B		3% 6000	Stable Non- reactive HAZARDOUS waste in non- hazardous Landfill	Waste Landfill 6%	
- - - -	BH	12B		3% 6000	reactive HAZARDOUS waste in non- hazardous Landfill 5%	Waste Landfill 6%	
- - - -				3% 6000	HAZARDOUS waste in non- hazardous Landfill	Waste Landfill 6%	
- - - -				 6000			
- - - -				 6000			
- - - -				6000		1001	
- - -						10%	
-				1		-	
-				500			
		1	ļ	100			
-		-			>6		
					To be evaluated	To be evaluated	
10.1			10.1	Limit value	es for compliance le	aching test	
10:1			10:1				
mg/l			mg/kg	using 65 EN 12457-2 at 1/5 10 f/kg (mg/kg)			
< 0.0011			< 0.0110	0.5	2	25	
0.0231			0.169	20	100	300	
< 0.0001			< 0.0008	0.04	1	5	
0.0041			0.030	0.5	10	70	
0.0099			0.073	2	50	100	
< 0.0005			< 0.0050	0.01	0.2	2	
0.0057			0.0414	0.5	10	30	
0.0032			0.023	0.4	10	40	
0.0096			0.070	0.5	10	50	
< 0.0017			< 0.017	0.06	0.7	5	
0.040				0.1		7	
0.0036						200	
						25000	
						500	
						50000	
						100000	
< 0.010			< 0.10	1	-	-	
4.00			29.2	500	800	1000	
		 	 		1		
		 	 		+		
		+	1		+		
			†				
			1				
		1	İ				
ure content whe	re applicable.			*= UKAS accredit	ed (liquid eluate ana	llysis only)	
_	10:1 mg/l < 0.0011 0.0231 < 0.0001 0.0041 0.0099 < 0.0005 0.0057 0.0032 0.0096 < 0.00017 0.040 0.0036 17 0.69 120 160 < 0.0010 4.00	10:1 mg/l < 0.0011 0.0231 < 0.0001 0.0041 0.0099 < 0.0005 0.0057 0.0032 0.0096 < 0.0017 0.040 0.0036 17 0.69 120 160 < 0.010 4.00	10:1 mg/l < 0.0011 0.0231 < 0.0001 0.0041 0.0099 < 0.0005 0.0057 0.0032 0.0096 < 0.00017 0.040 0.0036 17 0.69 120 160 < 0.010 4.00	10:1	10:1	10:1 mg/l co.0011 co.00231 co.0001 co.0001 co.0001 co.0001 co.0001 co.0001 co.0005 co.0005 co.0005 co.0005 co.0005 co.0006 co.0006 co.0006 co.0007 co.0006 co.0007 c	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-87114

Project / Site name: St Annes Samples received on: 30/05/2018

Your job number: 18-3106 Samples instructed on: 30/05/2018

Your order number: CL1453 Analysis completed by: 05/06/2018

Report Issue Number: 1 **Report issued on:** 06/06/2018

Samples Analysed: 1 gases sample - 2 water samples

Signed:

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: St Annes

Your O	rder	No:	CL1453
--------	------	-----	--------

ab Sample Number				970601	970602					
Sample Reference				BH2B	BH01					
Sample Number				None Supplied	None Supplied					
Depth (m)				None Supplied	None Supplied					
Date Sampled				29/05/2018	29/05/2018					
Time Taken				None Supplied	None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status							
General Inorganics										
pH	pH Units	N/A	ISO 17025	7.0	7.2					
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10					
Chloride	mg/l	0.15	ISO 17025	95	98					
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	< 15	17					
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	7.81	8.69					
Hardness - Total	mgCaCO3/I	1	ISO 17025	519	503					
Total Phenois Total Phenois (monohydric)	μg/l	10	ISO 17025	< 10	< 10					
Speciated PAHs										
Naphthalene	μg/l	0.01	ISO 17025	-	< 0.01					
Acenaphthylene	μg/l	0.01	ISO 17025	-	< 0.01					
Acenaphthene	μg/l	0.01	ISO 17025	-	< 0.01					
Fluorene	μg/l	0.01	ISO 17025	-	< 0.01					
Phenanthrene	μg/l	0.01	ISO 17025	-	< 0.01					
Anthracene	μg/l	0.01	ISO 17025	-	< 0.01					
Fluoranthene	μg/l	0.01	ISO 17025	-	< 0.01					
Pyrene	μg/l	0.01	ISO 17025	-	< 0.01					
Benzo(a)anthracene	μg/l	0.01	ISO 17025	-	< 0.01					
Chrysene	μg/l	0.01	ISO 17025	-	< 0.01					
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	-	< 0.01					
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	-	< 0.01					
Benzo(a)pyrene	μg/l	0.01	ISO 17025	-	< 0.01					
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	-	< 0.01					
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	-	< 0.01					
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	-	< 0.01					
Total PAH										
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	-	< 0.16					

Analytical Report Number: 18-87114 Project / Site name: St Annes

Your	Order	No:	CL1453
------	-------	-----	--------

Your Order No: CL1453										
Lab Sample Number				970601	970602					
Sample Reference				BH2B	BH01					
Sample Number				None Supplied	None Supplied					
Depth (m)				None Supplied	None Supplied					
Date Sampled				29/05/2018	29/05/2018					
Time Taken				None Supplied	None Supplied					
			Α							
	_	Limit of detection	Accreditation Status							
Analytical Parameter	Units	tec mi	edi							
(Water Analysis)	द्ध	<u>e</u> e	us							
		3	g							
Heavy Metals / Metalloids	l						l			
Antimony (dissolved)	//	0.4	ISO 17025	0.9	0.9					
, ` ,	μg/l	0.4		4.34						
Arsenic (dissolved)	μg/l		ISO 17025		1.52					
Beryllium (dissolved)	μg/l	0.1	ISO 17025	< 0.1	< 0.1					
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.04	0.02					
Calcium (dissolved)	mg/l	0.012	ISO 17025	190	180		1			
Chromium (dissolved)	μg/l	0.2	ISO 17025	0.3	0.3					
Copper (dissolved)	μg/l	0.5	ISO 17025	3.6	2.9		1			
Lead (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2					
Magnesium (dissolved)	mg/l	0.005	ISO 17025	12	12					
Manganese (dissolved)	μg/l	0.05	ISO 17025	95	18					
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	< 0.05		1			
Nickel (dissolved)	μg/l	0.5	ISO 17025	4.8	2.7					
Selenium (dissolved)	μg/l	0.6	ISO 17025	12	10					
Vanadium (dissolved)	μg/l	0.2	ISO 17025	5.1	4.2					
Zinc (dissolved)	μg/l	0.5	ISO 17025	15	4.2					
Monoaromatics										
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0					
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0					
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0					
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0					
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0					
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0					
= (,, =,	F 5/1									
Petroleum Hydrocarbons										
,										
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0					
TPH-CWG - Aliphatic > C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0					
TPH-CWG - Aliphatic > C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0					
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10		1			
TPH-CWG - Aliphatic >C10 - C12 TPH-CWG - Aliphatic >C12 - C16	μg/l μg/l	10	NONE	< 10	< 10		1			
TPH-CWG - Aliphatic >C12 - C10 TPH-CWG - Aliphatic >C16 - C21		10	NONE	< 10	< 10		 			
TPH-CWG - Aliphatic >C16 - C21 TPH-CWG - Aliphatic >C21 - C35	μg/l	10		< 10	< 10					
TPH-CWG - Aliphatic >C21 - C35 TPH-CWG - Aliphatic >C35 - C44	μg/l μg/l	10	NONE NONE	< 10 < 10	< 10 < 10		1			
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		 			
TPH-CWG - Aliphatic (C5 - C44)		10	NONE	< 10	< 10		.			
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10					
TRUL CIAIC Agencytics CF C7		1	100 17005	. 1.0	. 1.0		ı			
TPH-CWG - Aromatic > C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0					
TPH-CWG - Aromatic > C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0		1			
TPH-CWG - Aromatic > C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0		1			
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10		1			
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10					
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10					
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10		.			
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10					
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10					
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10					

Analytical Report Number: 18-87114 Project / Site name: St Annes

Your Order No: CL1453										
Lab Sample Number				970601	970602					
Sample Reference				BH2B	BH01					
Sample Number				None Supplied	None Supplied					
Depth (m)				None Supplied	None Supplied					
Date Sampled Time Taken				29/05/2018	29/05/2018					
Time Taken	1	I		None Supplied	None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status							
Voca			_							
VOCs Chloromethane	μg/l	1	ISO 17025	< 1.0	_					
Chloroethane	μg/l	1	ISO 17025	< 1.0	-					
Bromomethane	μg/l	1	ISO 17025	< 1.0	-					
Vinyl Chloride	μg/l	1	NONE	< 1.0	-					
Trichlorofluoromethane	μg/l	1	NONE	< 1.0	-					
1,1-Dichloroethene	μg/l	1	ISO 17025	< 1.0	-					
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	1	ISO 17025	< 1.0	-					
Cis-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	-					
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	-					
1,1-Dichloroethane 2,2-Dichloropropane	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-					
Z,Z-Dichloropropane Trichloromethane	μg/l μg/l	1	ISO 17025	< 1.0	-					
1,1,1-Trichloroethane	μg/l	1	ISO 17025	< 1.0	-					
1,2-Dichloroethane	μg/l	1	ISO 17025	< 1.0	-					
1,1-Dichloropropene	μg/l	1	ISO 17025	< 1.0	-					
Trans-1,2-dichloroethene	μg/l	1	ISO 17025	< 1.0	-					
Benzene	μg/l	1	ISO 17025	< 1.0	-					
Tetrachloromethane	μg/l	1	ISO 17025	< 1.0	-					
1,2-Dichloropropane	μg/l	1	ISO 17025	< 1.0	-					
Trichloroethene	μg/l	1	ISO 17025 ISO 17025	< 1.0	-					
Dibromomethane Bromodichloromethane	μg/l μg/l	1	ISO 17025	< 1.0 < 1.0	-					
Cis-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	-					
Trans-1,3-dichloropropene	μg/l	1	ISO 17025	< 1.0	_					
Toluene	μg/l	1	ISO 17025	< 1.0	-					
1,1,2-Trichloroethane	μg/l	1	ISO 17025	< 1.0	-					
1,3-Dichloropropane	μg/l	1	ISO 17025	< 1.0	-					
Dibromochloromethane	μg/l	1	ISO 17025	< 1.0	-					
Tetrachloroethene	μg/l	1	ISO 17025	< 1.0	-					
1,2-Dibromoethane	μg/l	1	ISO 17025	< 1.0	-					
Chlorobenzene 1,1,1,2-Tetrachloroethane	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-					
Ethylbenzene	μg/l μg/l	1	ISO 17025	< 1.0						
p & m-Xylene	μg/l	1	ISO 17025	< 1.0	-					
Styrene	μg/l	1	ISO 17025	< 1.0	-					
	μg/l	1	ISO 17025	< 1.0	-					
o-Xylene	μg/l	1	ISO 17025	< 1.0	-					
1,1,2,2-Tetrachloroethane	μg/l	1	ISO 17025	< 1.0	-					
Isopropylbenzene	μg/l	1	ISO 17025	< 1.0	-					
Bromobenzene	μg/l	1	ISO 17025	< 1.0	-					
n-Propylbenzene	μg/l	1	ISO 17025	< 1.0	-					
2-Chlorotoluene 4-Chlorotoluene	μg/l μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-					
1,3,5-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	-					
tert-Butylbenzene	μg/l	1	ISO 17025	< 1.0	-					
1,2,4-Trimethylbenzene	μg/l	1	ISO 17025	< 1.0	-	_				
sec-Butylbenzene	μg/l	1	ISO 17025	< 1.0	-					
1,3-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	-					
p-Isopropyltoluene	μg/l	1	ISO 17025	< 1.0	-					
1,2-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	-					
1,4-Dichlorobenzene	μg/l	1	ISO 17025	< 1.0	-					
Butylbenzene	μg/l	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-					
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	μg/l μg/l	1	ISO 17025	< 1.0	-					
Hexachlorobutadiene	μg/l μg/l	1	ISO 17025	< 1.0	-					
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	-					
		-			-	_				

Analytical Report Number: 18-87114 Project / Site name: St Annes

Your Order No: CL1453

Sample Reference	Your Order No: CL1453									
Sample Number None Supplied None Supplie	Lab Sample Number				970601	970602				
None Supplied None Supplie	Sample Reference									
Part Part	Sample Number									
None Supplied None Supplie										
Value Valu										
NOTE	Time Taken				None Supplied	None Supplied				
NOTE	Analytical Parameter	C	Lin	Accre						
NOTE	(Water Analysis)	nits	it of	ditatic atus						
Value Valu				š						
Person P	SVOCs									
Colliscondension No. No. No. No.	Aniline									
Section control whether sept 0.05 NoNe < 0.05 -										
33 Dichrochezenee										
2. Dichtorobenzene										
A-Dictorobenzene										
SEC2-thiorisopropylether										
Page										
Heachforderbane Hard 0.05 NONE < 0.05 .										
Althorizone Jugil 0.05 NONE < 0.05 .	Hexachloroethane									
Methylphenol	Nitrobenzene									
Sophonome	4-Methylphenol					-				
2,4-Dinethylphenol	Isophorone					-				
Sig 2-th (content boxy) methane	2-Nitrophenol	μg/l	0.05	NONE	< 0.05	-				
1,24-Trichforbenzene	2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05	-				
	Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05	-				
2.4-Dichlorophenol μg/l 0.05 NONE < 0.05 -	1,2,4-Trichlorobenzene	μg/l				-				
Chloronaline						-				
Hexachtrobutadiene										
Fichioro-3-methylphenol μg/l 0.05 NONE < 0.05 -										
2,45-Trichlorophenol										
2.4.5 Trickiorophenol										
Pettylnaphthalene										
Page Page										
Dimetrly phthalate										
2,6-Dinitrotoluene										
Second phthylene Second phth						-				
Accepthhene	Acenaphthylene					-				
Dibenzofuran	Acenaphthene		0.01	ISO 17025	< 0.01	-				
Hechlorophenyl phenyl ether	2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	-				
Delethyl phthalate	Dibenzofuran	μg/l	0.05	NONE	< 0.05	-				
Head Head	4-Chlorophenyl phenyl ether	μg/l				-				
Fluorene μg/ 0.01 ISO 17025 < 0.01 -	7.1									
Azobenzene										
Part Part										
Definition Def										
Definition De										
Anthracene										
Dibutyl phthalate										
Dibutyl phthalate μg/l 0.05 NONE < 0.05 -										
Anthraquinone	Dibutyl phthalate									
Eluoranthene	Anthraquinone					-				
Pyrene μg/l 0.01 ISO 17025 < 0.01 - Butyl benzyl phthalate μg/l 0.05 NONE < 0.05	Fluoranthene					-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pyrene		0.01	ISO 17025	< 0.01	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Butyl benzyl phthalate	μg/l				-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzo(a)anthracene	μg/l				-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Chrysene									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzo(b)fluoranthene									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzo(k)fluoranthene									
Dibenz(a,h)anthracene μg/l 0.01 ISO 17025 < 0.01 -										
perizo(qrii)peryiene µg/i 0.01 150 17025 < 0.01 -										
	penzo(grif)peryiene	μg/I	0.01	150 1/025	< 0.01	-				

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen as N in water	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method. Accredited matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chloride in water	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Gas Subcon to SAL	Subcontracted.	Subcontracted analysis		W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Semi-volatile organic compounds in water	Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE
Volatile organic compounds in water	Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Iss No 18-87114-1 St Annes 18-3106

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-88468

Project / Site name: St Annes Samples received on: 08/05/2018

Your job number: 18-3106 Samples instructed on: 11/06/2018

Your order number: CL1467 Analysis completed by: 15/06/2018

Report Issue Number: 1 Report issued on: 15/06/2018

Samples Analysed: 2 soil samples

Signed:

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				978426	978427		
Sample Reference				TP03	TP04		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.50-0.60	0.25-0.35		
Date Sampled				03/05/2018	03/05/2018		
Time Taken				None Supplied	None Supplied		
			>				
		de L	Accreditation Status				
Analytical Parameter	Units	Limit of detection	edi				
(Soil Analysis)	t's	tio of	tat				
		3 "	Ö				
Stone Content	%	0.1	NONE	< 0.1	17		
Moisture Content	%	N/A	NONE	6.1	4.4	1	
Total mass of sample received	kg	0.001	NONE	1.9	2.0		
rotal mass of sample received	кg	0.001	NONE	1.5	2.0		
	_						
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	Chrysotile		
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Detected		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.002	< 0.001		
Asbestos Quantification Total	%	0.001	ISO 17025	0.002	< 0.001		
					•	•	•
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	9.2	10.7		
Total Cyanide	mg/kg	1	MCERTS	1	< 1		
Total Organic Carbon (TOC)	%	0.1	MCERTS	2.5	0.3		
· · ·					-		
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05		
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05		
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05		
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	1	ļ
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05		
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	1	ļ
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05		
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	1	ļ
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05		
Total PAH							_
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	< 0.80		

Project / Site name: St Annes Your Order No: CL1467

Lab Sample Number				978426	978427		
Sample Reference				TP03	TP04		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.50-0.60	0.25-0.35		
Date Sampled				03/05/2018	03/05/2018		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	12	1.4		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22	12		
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	2.1	0.38		
Boron (water soluble)	mg/kg	0.2	MCERTS	2.3	0.8		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1.0	< 0.2		
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	33	16		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	200	21		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	490	58		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.8	< 0.3		
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	28	16		
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	64	18		
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	570	73		
Monoaromatics						_	
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	73	< 8.0		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	74	< 10		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	3.3	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	68	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	190	< 10		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	260	< 10		

Lab Sample Number				978426	978427		
Sample Reference	-			TP03	TP04	 	
Sample Number				None Supplied	None Supplied		
Depth (m)				0.50-0.60 03/05/2018	0.25-0.35		
Date Sampled					03/05/2018		
Time Taken				None Supplied	None Supplied		
		8 -	Accreditation Status				
Analytical Parameter	Units	Limit of detection	creditat Status				
(Soil Analysis)	its	ctio	itat				
		5 7	ion				
VOCs							
Chloromethane	μg/kg	1	ISO 17025	< 1.0		I	
Chloroethane	μg/kg μg/kg	1	NONE	< 1.0	-		
Bromomethane	μg/kg μg/kg	1	ISO 17025	< 1.0	<u>-</u>		
Vinyl Chloride	μg/kg	1	NONE	< 1.0	_		
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	_		
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	-		
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-		
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	 	
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-		
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-		
Trichloromethane	μg/kg	1	MCERTS	< 1.0	-		
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-		
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-		
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	-		
Trans-1,2-dichloroethene Benzene	μg/kg	1	NONE MCERTS	< 1.0 < 1.0	-		
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-		
1,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	< 1.0	-		
Trichloroethene	μg/kg μg/kg	1	MCERTS	< 1.0			
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-		
Bromodichloromethane	µg/kg	1	MCERTS	< 1.0	_		
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-		
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	-		
Toluene	μg/kg	1	MCERTS	< 1.0	-		
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	-		
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0	-		
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	-		
Tetrachloroethene	μg/kg	1	NONE	< 1.0	-		
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-		
Chlorobenzene	μg/kg 	1	MCERTS	< 1.0	-		
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg	1	MCERTS	< 1.0 < 1.0	-		
p & m-Xylene	μg/kg	1	MCERTS MCERTS	< 1.0	-		
Styrene	μg/kg μg/kg	1	MCERTS	< 1.0			
Tribromomethane	μg/kg μg/kg	1	NONE	< 1.0	-		
o-Xylene	μg/kg	1	MCERTS	< 1.0	-		
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-		
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	-		
Bromobenzene	μg/kg	1	MCERTS	< 1.0	-	 	
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	-		
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-		
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-		
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-		
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-		
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-		
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-		
1,3-Dichlorobenzene p-Isopropyltoluene	μg/kg	1	ISO 17025 ISO 17025	< 1.0 < 1.0	-		
p-Isopropyitoluene 1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0 < 1.0	-		
1,4-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0	-		
Butylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0	-		
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	ISO 17025	< 1.0	-		
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-		
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-		
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-		

Lab Sample Number				978426	978427	I	
Sample Reference				TP03	770427 TP04		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.50-0.60	0.25-0.35		
Date Sampled					03/05/2018		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs						1	
Aniline	mg/kg	0.1	NONE	< 0.1	-		
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-		
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-		
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-		
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-		
1,2-Dichlorobenzene 1,4-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1 < 0.2	-		
Bis(2-chloroisopropyl)ether	mg/kg mg/kg	0.2	MCERTS MCERTS	< 0.2	-		
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-		
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-		
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	-		
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-		
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-		
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-		
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-		
Bis(2-chloroethoxy)methane 1.2.4-Trichlorobenzene	mg/kg mg/kg	0.3	MCERTS MCERTS	< 0.3 < 0.3	-		
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	_		
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-		
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-		
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-		
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-		
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-		
2,4,5-Trichlorophenol 2-Methylnaphthalene	mg/kg	0.2	MCERTS NONE	< 0.2 < 0.1	-		
2-Chloronaphthalene	mg/kg mg/kg	0.1	MCERTS	< 0.1	-		
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	_		
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-		
Acenaphthylene	mg/kg	0.05	MCERTS	0.73	-		
Acenaphthene	mg/kg	0.05	MCERTS	0.38	-		
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-		
Dibenzofuran	mg/kg	0.2	MCERTS	0.3	-		
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	-		
Diethyl phthalate 4-Nitroaniline	mg/kg mg/kg	0.2	MCERTS MCERTS	< 0.2 < 0.2	-		
Fluorene	mg/kg	0.05	MCERTS	0.38	-		
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	-		
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	-		
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-		
Phenanthrene	mg/kg	0.05	MCERTS	7.5	-		
Anthracene	mg/kg	0.05	MCERTS	1.6	-		
Carbazole	mg/kg	0.3	MCERTS	0.7 < 0.2	-		
Dibutyl phthalate Anthraquinone	mg/kg mg/kg	0.2	MCERTS MCERTS	< 0.2 1.6	-		
Fluoranthene	mg/kg	0.05	MCERTS	14	-		
Pyrene	mg/kg	0.05	MCERTS	12	-		
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	5.5	-		
Chrysene	mg/kg	0.05	MCERTS	5.9	-		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	8.1	-		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	3.5	-		
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS MCERTS	6.7 3.3	-		
Dibenz(a,h)anthracene	mg/kg mg/kg	0.05	MCERTS	0.96	-		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	3.4	-		
₩ 1 - 1	. JI 3					•	-

Lab Sample Number				978426	978427		
Sample Reference				TP03	TP04		
Sample Number			None Supplied	None Supplied			
Depth (m)	pth (m)						
Date Sampled				03/05/2018	03/05/2018		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
PCBs	 						
PCB Congener 077	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 081	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 105	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 114	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 118	mg/kg	0.001	NONE	0.004	0.006		
PCB Congener 123	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 126	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 156	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 157	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 167	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 169	mg/kg	0.001	NONE	< 0.001	< 0.001		
PCB Congener 189	mg/kg	0.001	NONE	< 0.001	< 0.001		
Total PCBs	mg/kg	0.012	NONE	< 0.012	< 0.012		

Analytical Report Number: 18-88468
Project / Site name: St Annes
Your Order No: CL1467

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
978426	TP03	0.50-0.60	134	Loose Fibres & Loose Fibrous Debris	Chrysotile	0.002	0.002
978427	TP04	0.25-0.35	142	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: St Annes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
978426	TP03	None Supplied	0.50-0.60	Brown sandy loam with gravel and glass.
978427	TP04	None Supplied	0.25-0.35	Light brown sand with gravel and stones.

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
PCBs WHO 12 in soil	Determination of PCBs (WHO-12 Congeners) by GC MS.	In-house method based on USEPA 8082	L027-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Fotal organic carbon (Automated) in Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.		In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP03		S	18-88468	978426	С	Hexavalent chromium in soil	L080-PL	С
TP03		S	18-88468	978426	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С
TP03		S	18-88468	978426	С	Monohydric phenols in soil	L080-PL	С
TP03		S	18-88468	978426	С	Organic matter (Automated) in soil	L009-PL	С
TP03		S	18-88468	978426	С	PCBs WHO 12 in soil	L027-PL	С
TP03		S	18-88468	978426	С	Semi-volatile organic compounds in soil	L064-PL	С
TP03		S	18-88468	978426	С	TPHCWG (Soil)	L088/76-PL	С
TP03		S	18-88468	978426	С	Total cyanide in soil	L080-PL	С
TP03		S	18-88468	978426	С	Total organic carbon (Automated) in soil	L009-PL	С
TP03		S	18-88468	978426	С	Volatile organic compounds in soil	L073B-PL	С
TP03		S	18-88468	978426	С	pH in soil (automated)	L099-PL	С
TP04		S	18-88468	978427	С	Hexavalent chromium in soil	L080-PL	С
TP04		S	18-88468	978427	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С
TP04		S	18-88468	978427	С	Monohydric phenols in soil	L080-PL	С
TP04		S	18-88468	978427	С	Organic matter (Automated) in soil	L009-PL	С
TP04		S	18-88468	978427	С	PCBs WHO 12 in soil	L027-PL	С
TP04		S	18-88468	978427	С	Speciated EPA-16 PAHs in soil	L064-PL	С
TP04		S	18-88468	978427	С	TPHCWG (Soil)	L088/76-PL	С
TP04		S	18-88468	978427	С	Total cyanide in soil	L080-PL	С
TP04		S	18-88468	978427	С	Total organic carbon (Automated) in soil	L009-PL	С
TP04		S	18-88468	978427	С	pH in soil (automated)	L099-PL	С

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-88469

Project / Site name: St Annes Samples received on: 08/05/2018

Your job number: 18-3106 Samples instructed on: 11/06/2018

Your order number: CL1467 Analysis completed by: 15/06/2018

Report Issue Number: 1 **Report issued on:** 15/06/2018

Samples Analysed: 2 leachate samples

Dr Claire Stone Quality Manager

Signed:

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		18-	88469				
-							
					Client:	CONCEPT	
Location		St /	Annes		+		
					Landfill	Waste Acceptanc	e Criteria
Lab Reference (Sample Number)		97	8428			Limits	
Sampling Date		03/0	5/2018			Stable Non-	
Sample ID	TP03		Inert Waste	reactive HAZARDOUS	Hazardous		
Depth (m)		0.50	0-0.60	Landfill	waste in non- hazardous Landfill	Waste Landfill	
Solid Waste Analysis							
ΓΟC (%)**	ı				3%	5%	6%
oss on Ignition (%) **	-						10%
BTEX (μg/kg) **	-			-	6000		
Sum of PCBs (mg/kg) **	-		+	-	1		
Mineral Oil (mg/kg)	-				500		
Total PAH (WAC-17) (mg/kg)	-		-		100		
pH (units)**	-		+			>6	
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1		es for compliance le	_
(BS EN 12457 - 2 preparation utilising end over end leaching	//				using BS EN	I 12457-2 at L/S 10	l/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	0.0034			0.0243	0.5	2	25
Barium *	0.0095			0.0687	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0021			0.015	0.5	10	70
Copper *	0.019			0.14	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0035			0.0251	0.5	10	30
Nickel *	0.0019			0.013	0.4	10	40
ead *	0.015			0.11	0.5	10	50
Antimony *	0.0079			0.057	0.06	0.7	5 7
Selenium * Zinc *	< 0.0040 0.018			< 0.040 0.13	4	50	200
Chloride *	1.9			14	800	4000	25000
Fluoride	0.28			2.0	10	150	500
Sulphate *	26			180	1000	20000	50000
TDS*	80		1	580	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	7.47			54.0	500	800	1000
Leach Test Information							
Stone Content (%)	-						
Sample Mass (kg)	-		1		1	ļ	
Ory Matter (%)	-				<u> </u>		
Moisture (%)	-		1			1	
			+	+			
			+	+			
		1				1	alysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		18-8	8469				
					Client:	CONCEPT	
Location		St A	innes				
Lab Reference (Sample Number)					Landfill	Waste Acceptance	e Criteria
			3429			Limits	
Sampling Date Sample ID			5/2018 P04			Stable Non- reactive	
Depth (m)			i-0.35	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	-				3%	5%	6%
Loss on Ignition (%) **	-						10%
BTEX (μg/kg) **	-				6000		
Sum of PCBs (mg/kg) **	-			-	1		
Mineral Oil (mg/kg)	-			+	500		
Total PAH (WAC-17) (mg/kg)	-			+	100		
pH (units)**	-					>6	
Acid Neutralisation Capacity (mol / kg)	-					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1	Limit valu	es for compliance le	eaching test
(BS EN 12457 - 2 preparation utilising end over end leaching			 		using BS EI	N 12457-2 at L/S 10	l/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	0.0060			0.0519	0.5	2	25
Barium *	0.0182			0.157	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.017			0.15	0.5	10	70
Copper *	0.0090			0.078	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0041			0.0352	0.5	10	30
Nickel *	0.0006			0.0052	0.4	10	40
Lead *	0.0082			0.071	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0078			0.068	4	50	200
Chloride *	1.0			9.1	800	4000	25000
Fluoride	0.14			1.2	10	150	500
Sulphate *	31			270	1000	20000	50000
TDS*	120			1000	4000	60000	100000
Phenol Index (Monhydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	4.33			37.5	500	800	1000
Leach Test Information							
Stone Content (%)	-						
Sample Mass (kg)	-						
Dry Matter (%)	-						
Moisture (%)	-						
						1	
			1	1	1	1	alysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	w	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 ORF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-88970

Project / Site name: St Annes Samples received on: 13/06/2018

Your job number: 18-3106 Samples instructed on: 13/06/2018

Your order number: CL1467 Analysis completed by: 20/06/2018

Report Issue Number: 1 **Report issued on:** 20/06/2018

Samples Analysed: 1 soil sample

Signed:

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lah Sample Number				001440	1	1	1	
Lab Sample Number				981449		 		
Sample Reference				TP05				
Sample Number				None Supplied				
Depth (m)				0.20-0.30				
Date Sampled				03/05/2018				
Time Taken				None Supplied				
		•	Accreditation Status					
Analytical Parameter	_	Limit of detection	St					
(Soil Analysis)	Units	ecti	at u					
(Son Analysis)	V	of of	s					
			Š					
Stone Content	%	0.1	NONE	< 0.1				
Moisture Content	%	N/A	NONE	9.8				
Total mass of sample received	kg	0.001	NONE	1.8				
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected				
	-							
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	10.5				
Total Cyanide	mg/kg	1	MCERTS	< 1				
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.4				
				_	_	_	_	_
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0				
	<u> </u>					•		
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05				
Fluorene	mg/kg	0.05	MCERTS	< 0.05				
Phenanthrene	mg/kg	0.05	MCERTS	1.3				
Anthracene	mg/kg	0.05	MCERTS	0.17				
Fluoranthene	mg/kg	0.05	MCERTS	2.1				
Pyrene	mg/kg	0.05	MCERTS	1.8				
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.98				
Chrysene	mg/kg	0.05	MCERTS	0.78				
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	1.2				
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.40				
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.92				
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.45				
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	1	1	1	1
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.54				
penzo(grif)peryiene	mg/kg	0.03	PICENTO	0.57		1		
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	10.6	I			
Specialed Total LFA-10 FALIS	mg/kg	0.0	MICERIO	10.0		1		I
Heavy Metals / Metalloids								
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	2.8	I			
Arsenic (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	12		1		
Beryllium (aqua regia extractable)		0.06	MCERTS	1.0	 	1	 	
· · · · · ·	mg/kg				 	1	 	
Boron (water soluble)	mg/kg	0.2	MCERTS	2.4				
Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg	0.2 4	MCERTS	< 0.2 < 4.0	1	1	 	
	mg/kg		MCERTS		1	1	 	
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	30	-	1	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	32		 		
Lead (aqua regia extractable)	mg/kg	1	MCERTS	230				
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.7	ļ	1	ļ	ļ
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	28				
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0				
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	50				
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	130		l .		

			981449				
			TP05				
Sample Number							
Depth (m)							
Date Sampled							
			None Supplied				
Units	Limit of detection	Accreditation Status					
ug/kg	1	MCERTS	< 1.0				
μg/kg	1	MCERTS	< 1.0				
μg/kg	1	MCERTS	< 1.0				
μg/kg	1	MCERTS	< 1.0				
μg/kg	1	MCERTS	< 1.0				
µg/kg			< 1.0				
	ug/kg µg/kg µg/kg	ug/kg 1 μg/kg 1 μg/kg 1	ug/kg 1 MCERTS µg/kg 1 MCERTS µg/kg 1 MCERTS	TP05 None Supplied 0.20-0.30 0.20-0.30 0.3/05/2018 None Supplied None Supplied	TP05 None Supplied 0.20-0.30 03/05/2018 None Supplied	TP05 None Supplied 0.20-0.30 03/05/2018 None Supplied Value of the control of t	TP05 None Supplied 0.20-0.30 03/05/2018 None Supplied Value of the control of

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	27		
TPH-CWG - Aliphatic > EC35 - EC44	mg/kg	8.4	NONE	11		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	33		
TPH-CWG - Aliphatic (EC5 - EC44)	mg/kg	10	NONE	43		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	16		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	47		
TPH-CWG - Aromatic > EC35 - EC44	mg/kg	8.4	NONE	19		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	64		
TPH-CWG - Aromatic (EC5 - EC44)	mg/kg	10	NONE	83		

							T	
Lab Sample Number				981449				
Sample Reference				TP05				
Sample Number				None Supplied				
Depth (m)	0.20-0.30 03/05/2018							
Date Sampled	ate Sampled							
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
PCBs								
PCB Congener 077	mg/kg	0.001	NONE	< 0.001				
PCB Congener 081	mg/kg	0.001	NONE	< 0.001				
PCB Congener 105	mg/kg	0.001	NONE	< 0.001				
PCB Congener 114	mg/kg	0.001	NONE	< 0.001				
PCB Congener 118	mg/kg	0.001	NONE	< 0.001				
PCB Congener 123	mg/kg	0.001	NONE	< 0.001				
PCB Congener 126	mg/kg	0.001	NONE	< 0.001				
PCB Congener 156	mg/kg	0.001	NONE	< 0.001				
PCB Congener 157	mg/kg	0.001	NONE	< 0.001				
PCB Congener 167	mg/kg	0.001	NONE	< 0.001				
PCB Congener 169	mg/kg	0.001	NONE	< 0.001				
PCB Congener 189	mg/kg	0.001	NONE	< 0.001		·		
Total PCBs	mg/kg	0.012	NONE	< 0.012				

Project / Site name: St Annes

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
981449	TP05	None Supplied	0.20-0.30	Brown loam and clay with vegetation.

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

ht microscopy in conjunction with disperion sining techniques. Etermination of water soluble boron in soil by hot later extract followed by ICP-OES. Etermination of BTEX in soil by headspace GC-	In house method based on HSG 248 In-house method based on Second Site Properties version 3 In-house method based on USEPA8260 In house asbestos methods A001 & A006.	A001-PL L038-PL L073B-PL	D D W	ISO 17025 MCERTS
ht microscopy in conjunction with disperion sining techniques. Etermination of water soluble boron in soil by hot later extract followed by ICP-OES. Etermination of BTEX in soil by headspace GC-CS. Expendent option for Gravimetric Quant if	In-house method based on Second Site Properties version 3 In-house method based on USEPA8260	L038-PL	D	MCERTS
eter extract followed by ICP-OES. etermination of BTEX in soil by headspace GC-G. expendent option for Gravimetric Quant if	Properties version 3 In-house method based on USEPA8260			
ependent option for Gravimetric Quant if		L073B-PL	W	
	In house asbestos methods A001 & A006.			MCERTS
		A006-PL	D	NONE
etermination of hexavalent chromium in soil by traction in water then by acidification, addition of 5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
gestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
pisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
dium hydroxide followed by distillation followed	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
etermination of PCBs (WHO-12 Congeners) by GC- G.	In-house method based on USEPA 8082	L027-PL	D	NONE
etermination of pH in soil by addition of water lowed by automated electrometric easurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
etermination of PAH compounds in soil by traction in dichloromethane and hexane followed GC-MS with the use of surrogate and internal andards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
andard preparation for all samples unless	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
lowed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton(Skalar)	L080-PL	W	MCERTS
etermination of organic matter in soil by oxidising th potassium dichromate followed by titration th iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests"'	L009-PL	D	MCERTS
•	In-house method, TPH with carbon banding.	L076-PL	D	NONE
etermination of hexane extractable hydrocarbons soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS
tetes on the steel of the steel	diphenylcarbazide followed by colorimetry. ermination of metals in soil by aqua-regia stion followed by ICP-OES. eture content, determined gravimetrically. ermination of phenols in soil by extraction with um hydroxide followed by distillation followed olorimetry. ermination of PCBs (WHO-12 Congeners) by GC-ermination of pH in soil by addition of water wed by automated electrometric surement. ermination of PAH compounds in soil by action in dichloromethane and hexane followed GC-MS with the use of surrogate and internal dards. Endard preparation for all samples unless erwise detailed. Gravimetric determination of e > 10 mm as % dry weight. ermination of total cyanide by distillation wed by colorimetry. ermination of organic matter in soil by oxidising potassium dichromate followed by titration iron (II) sulphate. ermination of TPH bands by HS-GC-MS/GC-FID ermination of hexane extractable hydrocarbons	diphenylcarbazide followed by colorimetry. Permination of metals in soil by aqua-regia stion followed by ICP-OES. Sture content, determined gravimetrically. In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests Permination of phenols in soil by extraction with furn hydroxide followed by distillation followed olorimetry. Permination of PCBs (WHO-12 Congeners) by GC In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar) Permination of pH in soil by addition of water wed by automated electrometric surement. Permination of PAH compounds in soil by action in dichloromethane and hexane followed SC-MS with the use of surrogate and internal dards. Permination of PAH compounds in soil by action in dichloromethane and hexane followed SC-MS with the use of surrogate and internal dards. Permination of PAH compounds in soil by action in dichloromethane and hexane followed SC-MS with the use of surrogate and internal dards. Permination of PAH compounds in soil by action in dichloromethane and hexane followed with the use of surrogate and internal dards. Permination of PAH compounds in soil by action in dichloromethane and hexane followed with the use of surrogate and internal dards. Permination of PAH compounds in soil by action in dichloromethane and hexane followed by distillation with the use of surrogate and internal dards. In-house method based on British Standard Methods and MCERTS requirements. Permination of total cyanide by distillation with dichromate followed by titration iron (II) sulphate. Permination of organic matter in soil by oxidising potassium dichromate followed by titration iron (II) sulphate. Permination of TPH bands by HS-GC-MS/GC-FID In-house method, TPH with carbon banding.	diphenylcarbazide followed by colorimetry. Emination of metals in soil by aqua-regia stion followed by ICP-OES. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests Emination of phenols in soil by extraction with urn hydroxide followed by distillation followed olorimetry. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar) Emination of PCBs (WHO-12 Congeners) by GC In-house method based on USEPA 8082 Emination of PH in soil by addition of water wed by automated electrometric surement. In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests surement. In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests surement. In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests surements and hexane followed dards. In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests surements and In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests surements and In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests suremination of total cyanide by distillation wed by colorimetry. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) L080-PL Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests in 1990, Chemical and Electrochemical Tests in 1990, Chemical and Electrochemical Tests in 1990, Chemical and Electrochemical Tests in 1990, Chemical and Electrochemical Tests in 1990, Chemical and Electrochemical Tests in 1990, Chemical and Electrochemical Tests in 1990, Chemical and Electrochemical Tests in 1990, Chemical and Electrochemical Te	diphenylcarbazide followed by colorimetry. Permination of metals in soil by aqua-regia stion followed by ICP-OES. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar) Permination of PCBs (WHO-12 Congeners) by GC-In-house method based on USEPA 8082 In-house method based on USEPA 8082 In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on USEPA 8270 In-house method based on British Standard Methods and MCERTS requirements. In-house method based on British Standard Methods and MCERTS requirements. In-house method based on British Standard Methods and MCERTS requirements. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method based on British Standard Methods and MCERTS requirements. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method based on British Standard Methods and MCERTS requirements. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method based on British Standard Methods and MCERTS requirements. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method based on B

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Iss No 18-88970-1 St Annes 18-3106

Sample ID	Other_ID	Sample Type	Job	Sample Number	Sample Deviation Code	test_name	test_ref	Test Deviation code
TP05		S	18-88970	981449	С	Hexavalent chromium in soil	L080-PL	С
TP05		S	18-88970	981449	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С
TP05		S	18-88970	981449	С	Monohydric phenols in soil	L080-PL	С
TP05		S	18-88970	981449	С	Organic matter (Automated) in soil	L009-PL	С
TP05		S	18-88970	981449	С	PCBs WHO 12 in soil	L027-PL	С
TP05		S	18-88970	981449	С	Speciated EPA-16 PAHs in soil	L064-PL	С
TP05		S	18-88970	981449	С	TPH in (Soil)	L076-PL	С
TP05		S	18-88970	981449	С	TPHCWG (Soil)	L088/76-PL	С
TP05		S	18-88970	981449	С	Total cyanide in soil	L080-PL	С
TP05		S	18-88970	981449	С	Total organic carbon (Automated) in soil	L009-PL	С
TP05		S	18-88970	981449	С	pH in soil (automated)	L099-PL	С

Client: Mr. Ivo Penchev

Associate Director, Concept Engineering

Consultants Ltd

Unit 8

Warple Mews

Warple

London, W3 0RF

Head Office: Unit 3, Metro Centre, Britannia Way, London, NW10 7PA Phone: 020 8955 9680 Fax: 020 8955 9689

Laboratory: Unit 11, Ironbridge Close, Great Central Way, London, NW10 0UF Phone: 020 8955 1700 Fax: 020 8830 1003

> Email: enquiries@4-rail.com Web: www.4-rail.com

Results of Bulk Sampling & Asbestos Identification St Anne's Church NW1 3PT

Report Number: 4RS-JP-180074-R621626

4-RAIL Services (4RS) reference number(s): 180074/030518/01

Date of sampling: 3rd May 2018

Date sample(s) received: 4th May 2018

Date(s) of examination(s): 4th May 2018

Issue date: 8th May 2018

Sampling Strategy

Sampling for asbestos containing materials was carried out in accordance with the procedures described in HSE Document *HSG264 Asbestos, The Survey Guide* and in-house inspection procedure 4R-E200.

Test Method

Samples were examined in accordance with the methods described in the HSE Document *HSG 248 Asbestos: The analysts' guide for sampling, analysis and clearance procedures* and in-house test procedure 4R-E220.

The results relate only to the items submitted for testing. Where samples have been taken by others, 4-RAIL Services do not accept any responsibility for the sampling.

4RS Sample No	Sample Description*	Asbestos Type(s) Detected
180074/030518/01	Cement within trial pit 60cm depth (quantity unknown) in Trial Pit TP2 at St Ann's Church	Chrysotile

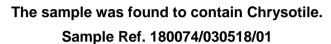
^{*}The sample description is outside the scope of UKAS accreditation.

Samples examined will be retained by 4-RAIL Services for a period of 6 months, unless otherwise specified by the Client.

Prepared by:...........Mrs. J. Patel, Delivery Support Administrator

Certified by:Mr. D. Rice, Consultant

Additional comments


The opinions and interpretations expressed herein are outside the scope of the UKAS Accreditation

4-RAIL Services Limited were requested by Mr. Ivo Penchev, Associate Director, Concept Engineering Consultants Ltd, Unit 8, to attend site and undertake sampling of materials suspected to contain asbestos from St Ann's Church NW1 3PT.

Sampling was undertaken during traffic hours on 3rd May 2018 by Miss. A. Popa of 4-RAIL Services Limited.

One sample was taken for analysis and it was found to contain asbestos.

Figure 1 below shows cement within trial pit 60cm depth (quantity unknown) in Trial Pit TP2 at St Ann's Church.

CONDITIONS OF ISSUE OF REPORTS.

THIS REPORT IS ISSUED TO THE CLIENT IN CONFIDENCE AND SHALL NOT BE REPRODUCED, EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF 4-RAIL SERVICES.

QUERIES OR FURTHER INFORMATION.

ANY QUERIES OR REQUESTS FOR ADDITIONAL INFORMATION ON THE SUBJECT OF THIS REPORT SHOULD BE ADDRESSED TO THE AUTHOR WHO MAY BE CONTACTED AT THE ADDRESS GIVEN ON THE TITLE PAGE.

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-88972

Project / Site name: St Annes Samples received on: 13/06/2018

Your job number: 18-3106 Samples instructed on: 13/06/2018

Your order number: CL1467 Analysis completed by: 20/06/2018

Report Issue Number: 1 **Report issued on:** 20/06/2018

Samples Analysed: 1 leachate sample

Signed:

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 18-88972 Project / Site name: St Annes

Your Order No: CL1467								
Lab Sample Number		981453						
Sample Reference				TP05				
Sample Number				None Supplied				
Depth (m)				0.20-0.30				
Date Sampled				03/05/2018				
Time Taken				None Supplied				
				. tone supplied				
		요ㅁ	Accreditation Status					
Analytical Parameter	Units	e ii	red Sta					
(Leachate Analysis)	its	Limit of detection	creditat Status					
		5 7	ġ					
10:1 WAC Leachate								
Arsenic	mg/l	0.0011	ISO 17025	0.0087				
Barium	mg/l	0.00011	ISO 17025	0.0007		İ	1	
Cadmium	mg/l	0.00003	ISO 17025	< 0.0001			1	
Chromium	ma/l	0.0004	ISO 17025	0.0058				
Copper	mg/l	0.0007	ISO 17025	0.014				
Mercury	mg/l	0.0005	ISO 17025	< 0.0005		Ì		
Molybdenum	mg/l	0.0003	ISO 17025	0.0035		Ì		
Nickel	mg/l	0.0003	ISO 17025	0.0048		Ì		
Lead	mg/l	0.0003	ISO 17025	0.0058				
Antimony	mg/l	0.0017	ISO 17025	0.0038				
Selenium	mg/l	0.0017	ISO 17025	< 0.0072				
Zinc	mg/l	0.0004	ISO 17025	0.013				
Chloride	mg/l	0.0004	ISO 17025	1.1				
Fluoride	mg/l	0.15	ISO 17025	0.91				
Sulphate	mg/l	0.03	ISO 17025	57				
Total dissolved solids	mg/l	4	ISO 17025	130				
Total monohydric phenols	mg/l	0.01	ISO 17025	< 0.010				
Dissolved organic carbon	mg/l	0.01	NONE	4.94				
properties organic carbon	9/	0.12	HOHE					
10:1 WAC Leachate								
Arsenic	mg/kg	0.011	NONE	0.0701				
Barium	mg/kg	0.0005	NONE	0.223				
Cadmium	mg/kg	0.0008	NONE	< 0.0008				
Chromium	mg/kg	0.004	NONE	0.047				
Copper	mg/kg	0.007	NONE	0.11				
Mercury	mg/kg	0.005	NONE	< 0.0050				
Molybdenum	mg/kg	0.004	NONE	0.0282				
Nickel	mg/kg	0.003	NONE	0.039				
Lead	mg/kg	0.01	NONE	0.047				
Antimony	mg/kg	0.017	NONE	0.058				
Selenium	mg/kg	0.04	NONE	< 0.040				
Zinc	mg/kg	0.004	NONE	0.10				
Chloride	mg/kg	1.5	NONE	8.9				
Fluoride	mg/kg	0.5	NONE	7.3	ĺ	İ		
Sulphate	mg/kg	1	NONE	460	ĺ	İ		
Total dissolved solids	mg/kg	40	NONE	1100		İ	1	1
Total monohydric phenols	mg/kg	0.1	NONE	< 0.10			1	
Dissolved organic carbon	mg/kg	1	NONE	39.8			1	
Dissolved organic carbon	my/ky		NONE	33.0			1	

Analytical Report Number: 18-88972

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Evangelos Kafantaris

Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 02087401553

e: Concept Group

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 18-89032

Project / Site name: St Annes Samples received on: 14/06/2018

Your job number: 18-3106 Samples instructed on: 15/06/2018

Your order number: CL1478 Analysis completed by: 25/06/2018

Report Issue Number: 1 Report issued on: 25/06/2018

Samples Analysed: 1 gases sample - 2 water samples

Signed:

Jordan Hill Reporting Manager

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Analytical Report Number: 18-89032 Project / Site name: St Annes

Your Order N	o: CL1478
--------------	-----------

Your Order No: CL1478								
Lab Sample Number		981928	981929					
Sample Reference		BH01A	BH02B					
Sample Number				None Supplied	None Supplied			
Depth (m)				None Supplied	None Supplied			
Date Sampled				13/06/2018	13/06/2018			
Time Taken				None Supplied	None Supplied			
			Accreditation Status					
Analytical Parameter	⊆	Limit of detection	St					
(Water Analysis)	Units	햧	dita					
, , , ,	•	을 약	s					
			3					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.1	7.2		1	
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10			
Chloride	mg/l	0.15	ISO 17025	110	110			
Ammoniacal Nitrogen as N	μg/l	15	ISO 17025	24	< 15			
Dissolved Organic Carbon (DOC)	mg/l	0.1	NONE	8.16	6.80		1	
Hardness - Total	mgCaCO3/I	1	ISO 17025	486	460			
				- 		-	-	-
Total Phenois					1	1	•	
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10			
Speciated PAHs								
Naphthalene	µq/l	0.01	ISO 17025	< 0.01	< 0.01		1	
Acenaphthylene	μg/I	0.01	ISO 17025	< 0.01	< 0.01			
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Fluorene	μg/I	0.01	ISO 17025	< 0.01	< 0.01			
Phenanthrene	μg/I	0.01	ISO 17025	< 0.01	< 0.01			
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01			
·- ·- · ·					-	-	-	
Total PAH		1 -	-			1	T	1
Total EPA-16 PAHs	μg/l	0.16	ISO 17025	< 0.16	< 0.16		1	
Heavy Metals / Metalloids								
Antimony (dissolved)	μg/l	0.4	ISO 17025	0.6	0.5		1	
Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.72	3.69			
Beryllium (dissolved)	μg/l	0.13	ISO 17025	< 0.1	< 0.1		1	
Cadmium (dissolved)	μg/l	0.02	ISO 17025	0.07	0.05			
Calcium (dissolved)	mg/l	0.012	ISO 17025	180	170			
Chromium (dissolved)	μg/l	0.2	ISO 17025		1.8	l	1	
Copper (dissolved)	μg/l	0.5	ISO 17025	4.9	7.8	l	1	
Lead (dissolved)	μg/l	0.2	ISO 17025	0.2	1.6			
Magnesium (dissolved)	mg/l	0.005	ISO 17025	11	11		1	
Manganese (dissolved)	μg/l	0.05	ISO 17025	93	130			
Mercury (dissolved)	μg/l	0.05	ISO 17025	< 0.05	0.08	l	1	
Nickel (dissolved)	μg/l	0.5	ISO 17025	2.2	7.5		1	
Selenium (dissolved)	μg/l	0.6	ISO 17025	10	6.7		1	
Vanadium (dissolved)	µg/l	0.2	ISO 17025	5.0	6.1		1	
Zinc (dissolved)	μg/l	0.5	ISO 17025	1.9	32		1	1
	P9/1	<u> </u>	100 17025		, J <u>-</u>	I		1

Analytical Report Number: 18-89032 Project / Site name: St Annes

Your Order No: CL1478

Your Order No: CL1478							
Lab Sample Number		981928	981929				
Sample Reference				BH01A	BH02B		
Sample Number				None Supplied	None Supplied		
Depth (m)				None Supplied	None Supplied		
Date Sampled				13/06/2018	13/06/2018		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0		
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0		
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0		
o-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	1	ISO 17025	< 1.0	< 1.0	1	
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic >C35 - C44	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aliphatic (C5 - C44)	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0		
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	1	
TPH-CWG - Aromatic >C35 - C44	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10		
TPH-CWG - Aromatic (C5 - C44)	μg/l	10	NONE	< 10	< 10		
PCBs by GC-MS							
PCB Congener 28	μg/l	0.02	NONE	< 0.02	< 0.02	ļ	
PCB Congener 52	μg/l	0.02	NONE	< 0.02	< 0.02		
PCB Congener 101	μg/l	0.02	NONE	< 0.02	< 0.02	1	
PCB Congener 118	μg/l	0.02	NONE	< 0.02	< 0.02		
PCB Congener 138	μg/l	0.02	NONE	< 0.02	< 0.02		
PCB Congener 153	μg/l	0.02	NONE	< 0.02	< 0.02		
PCB Congener 180	μg/l	0.02	NONE	< 0.02	< 0.02		<u> </u>
PCBs by GC-MS						 	
Total PCBs	μg/l	0.14	NONE	< 0.14	< 0.14		

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number: 18-89032

Project / Site name: St Annes Your Order No: CL1478

Lab Sample Number	981930					
Sample Reference				BH02B		
Sample Number				(Gas)		
Depth (m)				None Supplied		
Date Sampled				13/06/2018		
Time Taken				None Supplied		
Analytical Parameter	Units	Limit of detection	Accreditation Status			
					1	1
Gas (subcontracted)	N/A	N/A	NONE	See Attached		

Analytical Report Number: 18-89032

Project / Site name: St Annes

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Ammoniacal Nitrogen by the discrete analyser		In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	ISO 17025
BTEX and MTBE in water (Monoaromatics)	Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Chloride in water	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260. Accredited matrices: SW, PW, GW.	L082-PL	W	ISO 17025
Dissolved Organic Carbon in water	Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE
Gas Subcon to SAL	Subcontracted.	Subcontracted analysis		W	NONE
Metals in water by ICP-MS (dissolved)	Determination of metals in water by acidification followed by ICP-MS. Accredited Matrices: SW, GW, PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.	In-house method based on USEPA Method 6020 & 200.8 "for the determination of trace elements in water by ICP-MS.	L012-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al, Cu,Fe,Zn).	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
PCB's By GC-MS in water	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L028-PL	W	NONE
pH at 20oC in water (automated)	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L102B-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total Hardness of water	Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, PW.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L045-PL	W	ISO 17025
TPH in (Water)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding.	L070-PL	W	NONE
TPHCWG (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation.	In-house method	L070-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2404

Report Number: 741258-1

Date of Report: 06-Jun-2018

Customer: i2 Analytical Ltd

7 Woodshots Meadow

Croxley Green Business Park

Croxley Green Hertfordshire WD18 8YS

Customer Contact: Project Management

Customer Job Reference: 18-87114
Customer Purchase Order: 9941, 18-87114
Customer Site Reference: (ST ANNES)
Date Job Received at Concept: 01-Jun-2018

Date Analysis Started: 01-Jun-2018 Date Analysis Completed: 06-Jun-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by : Lauren Clarke

Lauren Clarke
Customer Service Advisor

Issued by: Lauren Clarke

Customer Service Advisor

Concept Reference: 741258 Project Site: (ST ANNES) Customer Reference: 18-87114 Gas Bag Analysed as Gas Bag Bulk Gas Concept Reference 741258 001 970603 (BH2B) **Customer Sample Reference** Test Sample Date Sampled 29-MAY-2018 Method LOD Units Determinand Symbol GC/TCD Methane 0.02 Ν <0.02 Carbon Dioxide GC/TCD 0.01 Ν 2.25 Oxygen GC/TCD 0.01 Ν 18.4 Nitrogen GC/TCD 0.01 Ν 79.3 GC/TCD Hydrogen 0.01 Ν < 0.01

Concept Reference: 741258 Project Site: (ST ANNES) Customer Reference: 18-87114 Gas Bag Analysed as Gas Bag H2S Concept Reference 741258 001 Customer Sample Reference 970603 (BH2B) Test Sample AR Date Sampled 29-MAY-2018 Method LOD Units Symbol Determinand GC/MS (DI) 10 <10 Hydrogen sulphide ppm

GC/TCD

Carbon Monoxide

Index to symbols used in 741258-1

<0.01

Value	Description
AR	As Received
N	Analysis is not UKAS accredited

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2404

Report Number: Supplement to 745340-1

Date of Report: 26-Jun-2018

Customer: i2 Analytical Ltd

7 Woodshots Meadow

Croxley Green Business Park

Croxley Green Hertfordshire WD18 8YS

Customer Contact: Project Management

Customer Purchase Order: 9988 18-89032

Customer Purchase Order: 9988, 18-89032
Customer Site Reference: St Annes

Date Job Received at Concept: 18-Jun-2018

Date Analysis Started: 20-Jun-2018 Date Analysis Completed: 25-Jun-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by : Kayleigh McCann Sales Support Manager Issued by : Kathryn Gleaves Customer Service Advisor

Concept Reference: 745340 Project Site: St Annes Customer Reference: 18-89032 Analysed as Gas Bag H2S Concept Reference 745340 001 BH02B **Customer Sample Reference Test Sample** Date Sampled 13-JUN-2018 Determinand Method LOD Units Symbol GC/MS (DI) Hydrogen sulphide 10 Ν <10 ppm

Concept Reference: 745340 Project Site: St Annes Customer Reference: 18-89032 Gas Bag Analysed as Gas Bag **Bulk Gas Screen** 745340 001 Concept Reference **Customer Sample Reference** BH02B **Test Sample** AR Date Sampled 13-JUN-2018 LOD Units Symbol Determinand Method Carbon Dioxide GC/TCD 0.01 Ν 0.77 GC/TCD % N <0.01 Carbon Monoxide 0.01 Hydrogen GC/TCD 0.01 Ν <0.01 Methane GC/TCD 0.02 < 0.02 Nitrogen GC/TCD 0.01 Ν 79.2 GC/TCD 0.01 Ν Oxygen 20.1

Index to symbols used in Supplement to 745340-1

Value	Description
AR	As Received
N	Analysis is not UKAS accredited

Notes

Supplement to 745340: Report issued to change sample 001 reference from BH02 to BH02B, at the customer's request.

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2404

Report Number: 747137-1

Date of Report: 27-Jun-2018

Customer: i2 Analytical Ltd

7 Woodshots Meadow

Croxley Green Business Park

Croxley Green Hertfordshire WD18 8YS

Customer Contact: Project Management

Customer Job Reference: 18-89869

Customer Purchase Order: 10013, 18-89869

Customer Site Reference: ST ANNES

Date Job Received at Concept: 25-Jun-2018

Date Analysis Started: 25-Jun-2018

Date Analysis Completed: 26-Jun-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by : Kathryn Gleaves Customer Service Advisor Issued by : Kathryn Gleaves

Customer Service Advisor

Concept Reference: 747137 Project Site: ST ANNES Customer Reference: 18-89869 Analysed as Gas Bag H2S Concept Reference 747137 001 Customer Sample Reference 986830 (BH02B) **Test Sample** Date Sampled 20-JUN-2018 LOD Determinand Method Units Symbol GC/MS (DI) 10 <10 Hydrogen sulphide Ν

ppm

Concept Reference: 747137 Project Site: ST ANNES Customer Reference: 18-89869 Gas Bag Analysed as Gas Bag **Bulk Gas Screen** Concept Reference 747137 001 Customer Sample Reference 986830 (BH02B) **Test Sample** AR 20-JUN-2018 Date Sampled LOD Units Symbol Determinand Method Carbon Dioxide GC/TCD 0.01 Ν 1.44 <0.01 GC/TCD 0.01 % Ν Carbon Monoxide Hydrogen GC/TCD 0.01 Ν <0.01 Methane GC/TCD 0.02 <0.02 Nitrogen GC/TCD 0.01 81.5 Ν

0.01

%

N

GC/TCD

Oxygen

Index to symbols used in 747137-1

17.1

Value	Description
AR	As Received
N	Analysis is not UKAS accredited

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2404

Report Number: 750271-1

Date of Report: 16-Jul-2018

Customer: i2 Analytical Ltd

7 Woodshots Meadow

Croxley Green Business Park

Croxley Green Hertfordshire WD18 8YS

Customer Contact: Project Management

Customer Job Reference: 18-91269

Customer Purchase Order: 10067, 18-91269

Customer Site Reference: St Annes

Date Job Received at Concept: 09-Jul-2018

Date Analysis Started: 09-Jul-2018

Date Analysis Completed: 16-Jul-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by : Kathryn Gleaves Customer Service Advisor Issued by : Kathryn Gleaves

Customer Service Advisor

Concept Reference: 750271 Project Site: St Annes Customer Reference: 18-91269 Analysed as Gas Bag H2S Concept Reference 750271 001 Customer Sample Reference 994216 (BH02B) **Test Sample** Date Sampled 02-JUL-2018 Method LOD Determinand Units Symbol GC/MS (DI) 10 <10 Hydrogen sulphide Ν ppm

Concept Reference: 750271 Project Site: St Annes Customer Reference: 18-91269 Gas Bag Analysed as Gas Bag **Bulk Gas Screen** Concept Reference 750271 001 Customer Sample Reference 994216 (BH02B) **Test Sample** AR 02-JUL-2018 Date Sampled LOD Units Symbol Determinand Method Carbon Dioxide GC/TCD 0.01 Ν 0.65 <0.01 GC/TCD 0.01 % Ν Carbon Monoxide Hydrogen GC/TCD 0.01 Ν <0.01 Methane GC/TCD 0.02 <0.02 Nitrogen GC/TCD 0.01 79.1 Ν GC/TCD 0.01 % N 20.3 Oxygen

Index to symbols used in 750271-1

Value	Description
AR	As Received
N	Analysis is not UKAS accredited

13. PHOTOGRAPHS

18/3106 - Issue 01 Page 16 of 16

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's		18/3106	HOLE	HP01
Carried out for	British Land	Date		Photograph	01 & 02

Photograph No 01

Photograph No 02

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	HP01-02
Carried out for	British Land	Date		Photograph	03 & 04

Photograph No 03- HP01

Photograph No 04 -HP02

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	HP03
Carried out for	British Land	Date		Photograph	05 & 06

Photograph No 05

Photograph No 06

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	HP03
Carried out for	British Land	Date		Photograph	07

Photograph No 07

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	HP04
Carried out for	British Land	Date		Photograph	08 & 09

Photograph No 08

Photograph No 09

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	HP04
Carried out for	British Land	Date		Photograph	10 & 11

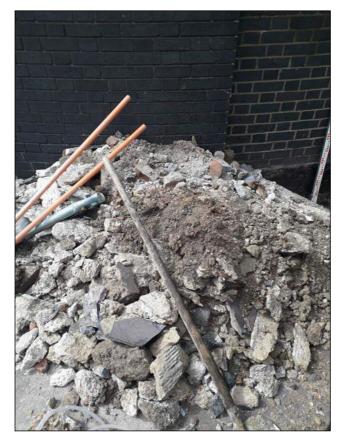
Photograph No 10


Photograph No 11

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	HP05
Carried out for	British Land	Date		Photograph	12 & 13

Photograph No 12


Photograph No 13

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	HP06
Carried out for	British Land	Date		Photograph	14 & 15

Photograph No 14

Photograph No 15

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	TP01
Carried out for	British Land	Date		Photograph	16 & 17

Photograph No 16

Photograph No 17

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	TP01
Carried out for	British Land	Date		Photograph	18 & 19

Photograph No 18

Photograph No 19

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	TP02
Carried out for	British Land	Date		Photograph	19A

Photograph No 19A

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	TP03
Carried out for	British Land	Date		Photograph	20 & 21

Photograph No 20

Photograph No 21

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	TP03
Carried out for	British Land	Date		Photograph	22 & 23

Photograph No 22

Photograph No 23

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	TP04
Carried out for	British Land	Date		Photograph	24 & 25

Photograph No 24

Photograph No 25

CONCEPT SITE INVESTIGATIONS

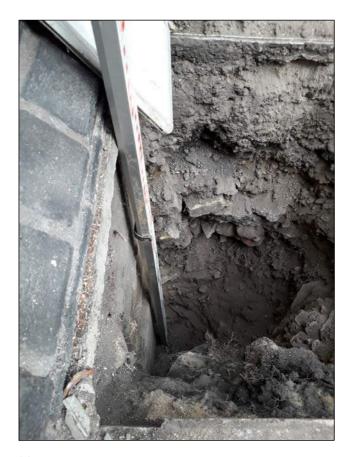
Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	TP04
Carried out for	British Land	Date		Photograph	26 & 27

Photograph No 26

Photograph No 27

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	TP05
Carried out for	British Land	Date		Photograph	28 & 29


Photograph No 28

Photograph No 29

CONCEPT SITE INVESTIGATIONS

Site Name	1 Triton Square - St Anne's	Job No.	18/3106	HOLE	TP05
Carried out for	British Land	Date		Photograph	30 & 31

Photograph No 30

Photograph No 31

Appendix B

Data assessment methodology

B1 Background

A generic quantitative assessment of the results of the ground investigation is provided in the report in accordance with the current UK guidance on the assessment of contaminated land and in particular the Contaminated Land Exposure Assessment (CLEA) framework.

B2 Human health

B2.1 Chemical contamination

B2.1.1 Generic assessment criteria

The UK statutory guidance suggests that generic soil quality guideline values may be used for an initial screening of soil contamination results in relation to human health risk assessment. Generic assessment criteria (GAC) provide an indication of concentrations in soil below which the long-term human health risks for various generic land-use scenarios are considered to be minimal. Concentrations above GAC do not necessarily indicate that significant contamination is present, but rather that further assessment or risk management measures may be warranted.

A generic residential with consumption of homegrown produce end use has been considered in the assessment to provide an initial appraisal of the results. The generic residential end use assumes a small two storey terraced house with a garden area, which could be used for growing fruit and vegetables. It is based on assessing risks to a 0 to six year old female child living at the property for 365 days a year and using the garden for an hour every day apart from in the first six months of life. The child is assumed to spend 23 hours a day indoors until they are five when they are at school for part of the day.

Category 4 Screening Levels (C4SLs), released by Defra for some determinands including lead, have been used in the first instance within this assessment. C4SLs are only available for six contaminants and consequently Arup has derived GAC using CLEA 1.07 which use C4SL exposure parameters but maintain the traditional minimal risk toxicological benchmarks. Input data for the toxicological effects, physical characteristics and contaminant fate and transport parameters for the determinands have been taken from sources published by the Environment Agency and other industry sources (including LQM/CIEH and the European Food Safety Authority (EFSA). Further details of the derivation of the Arup GACs including changes made to the default user chemical database and exposure assumptions are available on request.

B2.1.2 C4SLs

Defra has released a set of Category 4 Screening Levels (C4SLs) which, according to associated guidance may be applicable under the planning regime in some circumstances.

The Contaminated Land Statutory Guidance (2012) defines four 'categories' of land when considering human health and the water environment to assist in determining whether a site

might be "Contaminated Land" under Part 2A. Category 1 and 2 would indicate that the site would be determined; whereas in the case of both Category 3 and 4 it would not. Land that has been developed which is assessed to be within category 4 should be acceptable under planning. Defra recently confirmed in writing that C4SL (criteria developed to define the boundary between category 3 and category 4) could be used under the planning regime. It states that C4SL provide a simple test for deciding if land is "suitable for use" and definitely not contaminated. A developer may decide that in the cases where they are providing high quality new development that a higher level of protection may be preferred on a voluntary basis, for instance by using generic assessment criteria based on negligible levels of risk.

The conditions assumed in the C4SL calculations include sandy loam soil and 6% SOM. The detailed description of the Made Ground suggest that the soils could reasonable classified within the sandy loam to sandy clay range; the SOM is low, typically between 1% and 2%.

B2.1.3 Asbestos in soil

Work with asbestos in the UK is controlled by the Health and Safety Executive (HSE) and the Control of Asbestos Regulations (CAR) 2012. Certain activities, such as working with asbestos insulation, coatings, and insulting board require licensing and notification to the appropriate authority before work commences. All work with asbestos materials must be initially assessed by a competent person and various requirements arise from that assessment.

The HSE has published a Code of Practice for CAR 2012 which does not include specific guidance regulating asbestos in soils. In March 2014 CIRIA published C733 Asbestos in Soil and Made Ground: A guide to understanding and managing risks.

In order for asbestos found within soil to pose a risk to health, it has to be present in a form that can release fibres to air for inhalation (or may do after it has been disturbed). The potential for fibre release is likely to be relatively lower when asbestos is present in soil in the form of cements or other 'bonded' materials and higher when friable forms or unconsolidated forms such as 'free fibres' are present. However, even cemented and bonded ACM may eventually degrade and release fibres and can be disturbed and broken during construction for instance.

The release of fibres from the soil into the air can occur via wind-blown disturbance or physical disturbance either during site development (e.g. construction, remediation or earthworks) or during site use after development. The concentration of airborne fibres released is influenced by many factors including asbestos type, ACM type and condition/state, depth, distribution and concentration in soil, soil type, and soil moisture content. There is limited data on the release of airborne fibres from soils in real world environments, but soil moisture content has a particularly significant impact. In laboratory studies, the addition of 5% moisture to a dry soil reduced airborne fibre release by 80-95% and no airborne fibre were detected when the soil moisture content was greater than 15%.

There are currently no generic assessment criteria for asbestos in soils and C733 makes it clear that such criteria are unlikely in the near future due to uncertainties on the mechanisms for fibre release, calculating the likely exposure and the risk of harm at low levels of exposure. Instead the report recommends site specific assessment based on multiple lines of evidence.

In 2016 a guide was published by CL:AIRE referred to as 'Interpretation for managing and working with asbestos in soils CAR-SOILTM', which is currently the most authoritative guide on the topic and should be followed. CAR-SOILTM confirms that all work with asbestos in soil should be carried out under a 'plan of work' and defines the contents of that plan.

Analysis has been performed to the lowest possible accredited detection limit routinely reported by laboratories (0.001%) and a robust strategy to sever plausible pollutant linkages will be adopted in the remediation strategy, to reduce exposure as low as reasonably practicable during development and prevent exposure after development.

B3 Controlled waters

The framework within which the Environment Agency can work with others to manage and protect groundwater is set out within 'Groundwater protection: Principal and practice (GP3), 2013. Groundwater and leachability results have been screened against Water Quality Standards (WQS), initially by comparison with the environmental quality standards (EQS) for inland surface water, or where unavailable freshwater EQS. Where EQS screening criteria are not available, the following guidelines and standards have been referred to in this hierarchy:

- UK Drinking Water Standards (DWS);
- Surface Water Abstraction Directive (SWAD); and
- The World Health Organisation (WHO) Guidelines for Drinking Water.

No criteria are available at all for certain other PAH and for TPH. In the absence of criteria for TPH the withdrawn DWS of 0.01mg/kg has been considered as an initial assessment.

B4 Ground gas

The following published guidance on the assessment of ground gas has been used in the assessment:

- CIRIA 2007 Report C665 Assessing risks posed by hazardous ground gases to buildings;
- BS 8485 (2015) Code of practice for the characterisation and remediation from ground gas in affected developments; and
- Card, Wilson and Haines (2009) Ground gas handbook.

The Ground gas handbook describes a process of deriving gas screening values (GSV) for hazardous ground gases (it summarises the guidance presented in reference 14 and 15 above). The method uses both gas concentrations and borehole flow rates to define a range of characteristic situations (CS1 to CS6) based on limiting borehole gas volume flow for methane and carbon dioxide. The GSV is calculated by multiplying the borehole flow rate (litres per hour) by the gas concentration

B5 Waste assessment methodology

B5.1 Framework

There are three types of permitted landfill (inert, non-hazardous and hazardous) and four principal types of waste, as outlined below:

- Inert; generally uncontaminated natural soils and certain clean construction materials such as crushed concrete. The material may be disposed of to an inert landfill without testing. If the natural soils are suspected as contaminated, then it may be classed as inert if it satisfies the inert waste acceptance criteria (WAC). Made Ground would typically be required to be tested and pass the WAC in order to be classed as inert. Inert materials may also be used as a construction material in other sites given appropriate waste management permitting;
- Hazardous; defined by the analysis of 'total' chemical parameters to assess the hazard properties. The classified waste may only be disposed of to a hazardous landfill (following treatment) if in addition it satisfies the TOC and leachability WAC;
- Stable non-reactive hazardous waste; defined in a similar manner to hazardous waste (i.e. classed as hazardous) but then satisfying a stricter set of WAC. Following treatment, it may be disposed of in specifically designed separate cells in non-hazardous landfills (if the operator has obtained a permit to operate these cells); and
- Non-hazardous waste; if the waste is not classified as inert or hazardous then it is non-hazardous. There is no WAC for non-hazardous waste.

B5.2 Hazardous waste classification

The following documents were used to carry out the initial waste classification and disposal assessment of Made Ground and natural soil arisings generated by the development:

- Environment Agency (2009), Hazardous Waste August 2009 Update;
- Environment Agency (2015), Hazardous Waste, Technical guidance WM3;
- The Hazardous Waste (England and Wales) Regulations; and
- Table 3.2 of Annex VI to Regulation (EC) No. 1272/2008.

Metals may be classified as hazardous based on a number of potential hazardous properties including carcinogenic (H7 lowest threshold 1,000mg/kg), ecotoxic (H14 lowest threshold 2,500mg/kg), toxic for reproduction (H10 lowest threshold 5,000mg/kg), harmful (H5 lowest threshold 250,000mg/kg) and toxic (H6 lowest threshold 30,000mg/kg). With the exception of H7, the other classifications are additive i.e. the concentrations are converted to the worst case (for harm) compound and added together before comparison with the thresholds.

Hydrocarbons in contaminated soils are generally categorised against the hazardous properties carcinogenic (H7) and ecotoxic (H14). For H7, waste would be defined as hazardous if category 1 or 2 carcinogenic compounds (e.g. benzene) exceeded 0.1% (1,000mg/kg), or category 3 compounds (e.g. diesel) exceeded 1% (10,000mg/kg). TPH is an aggregate parameter that

includes a range of category 1, 2 and 3 compounds, along with other elements not classified as carcinogenic. In most circumstances TPH contaminated soil and stones should be assessed as 'unknown oil' (unless there is a specific documented record or a consistent hydrocarbon profile to indicate diesel or weathered diesel being the contaminating oil) and a worst case should be assumed.

For an unknown oil if the concentration of TPH is $\geq 0.1\%$ the waste will be H7 Carcinogenic and H11 Mutagenic unless the concentration of benzo[a]pyrene is <0.01% of the TPH concentration. Substance specific thresholds have been set for specific PAHs.

The hazardous waste threshold for asbestos is 0.1% w/w. It is noted that the quantification weight percentage of asbestos is difficult to achieve as asbestos can be present in a wide range of forms. While it is likely that ACM, such as cemented asbestos, board or lagging, will exceed such a threshold, the quantity of ACM in a bulk sample will often be below this level. WM3 states that where a waste contains identifiable pieces of ACM (that can be identified as potentially being asbestos by a competent person if examined by the naked eye) then these pieces must be assessed separately. If the ACM cannot be segregated the waste is regarded as hazardous if the concentration of asbestos in the ACM pieces alone is greater than 0.1%

Appendix C

Data assessment

St Anne's (Triton S Human Health Assessm			ploratory hole	BH01 0.20-0.25	BH01 1.10-1.20	BH01 3.00-3.10	BH2B 0.40-0.45	BH2B 1.90-2.00	BH2B 4.90-5.00	TP01 0.60-0.70	TP03 0.50-0.60	TP04 0.25-0.35	TP05 0.20-0.30	HP01 0.7-0.80	HP02 0.20-0.30	HP03 0.20-0.30	HP03 1.00-1.10	HP04 0.70-0.80	BH01 5.00-5.10	BH01 17.00-17.10	BH2B 6.90-7.00	BH2B 10.90-11.00
			Date sampled Strata			02/05/2018 MG	25/04/2018 MG	27/04/2018 MG	27/04/2018 MG	26/04/2018 MG				26/04/2018 MG	26/04/2018 MG	26/04/2018 MG	26/04/2018 MG	26/04/2018 MG			02/05/2018 RTD	
Determinants Inorganics	Units	Criterion*	Source																			
pH		NC		10.2	11.1	10.9	10.8	11.7	9.1	10	9.2	10.7	10.5	11.1	8.5	8.5	8.1	9.3	6.6	8.6	9.3	7.1
Total cyanide Total organic carbon	mg/kg %	NC		< 1 0.7	< 1	< 1 0.9	< 1	< 1 0.3	< 1 0.5	< 1 0.8	1 2.5	< 1 0.3	< 1 0.4	< 1 0.8	< 1 0.8	< 1 1.8	< 1	< 1 0.8	< 1 < 0.1	< 1 0.9	< 1 < 0.1	< 1 0.8
Soil organic matter	%	NC		1.21	0.52	1.55	0.52	0.52	0.86	1.38	4.31	0.52	0.69	1.38	1.38	3.10	1.72	1.38	0.00	1.55	0.00	1.38
Asbestos	5						Chrysotile &															
Asbestos identification	Detect/ non detect	NC		-	-	-	Amosite fibrous debris	Chrysotile fibres	_	_	Chrysotile fibres	Chrysotile fibres	-	-	_	Chrysotile fibres	_	Amosite fibrous debris	_	-	-	_
Asbestos quantification	%	NC		-	-	-	0.002	0.002	-	-	0.002	< 0.001	-	-	-	< 0.001	-	0.001	-	-	-	-
Heavy Metals / Metalloids Antimony	mg/kg	322	a	2.6	1.7	1.5	4.9	< 1.0	1.7	7.5	12	1.4	2.8	2.7	4.1	2.7	2.5	4	< 1.0	< 1.0	< 1.0	< 1.0
Arsenic Beryllium	mg/kg mg/kg	37 1.7	b b	32 0.79	11 0.36	10 2.5	17 0.64	30 0.53	14 0.97	20 1.2	22 2.1	12 0.38	12 1	14 0.76	26 0.74	15 0.77	16 0.65	13 0.48	5.2 0.2	14 1.4	4.6 0.28	11 0.86
Boron Cadmium	mg/kg mg/kg	290 14	b b	1.6 < 0.2	1 < 0.2	2.4 < 0.2	2.6 < 0.2	1 < 0.2	0.9 < 0.2	3 < 0.2	2.3 1	0.8 < 0.2	2.4 < 0.2	1.7 0.3	1 < 0.2	1.9 0.4	0.8 < 0.2	0.8 1	0.5 < 0.2	5.5 < 0.2	0.5 < 0.2	3.4 < 0.2
Chromium (hexavalent) Chromium (trivalent)	mg/kg mg/kg	6 907	b b	< 4.0 29	< 4.0 22	< 4.0 15	< 4.0 22	< 4.0 21	< 4.0 24	< 4.0 31	< 4.0 33	< 4.0 16	< 4.0 30	< 4.0 22	< 4.0 22	< 4.0 23	< 4.0 20	< 4.0 19	< 4.0 10	< 4.0 46	< 4.0 14	< 4.0 33
Copper Lead	mg/kg mg/kg	2430 200	b c	66 840	19 58	42 120	19 580	17 28	34 110	130 1200	200 490	21 58	32 230	38 400	66 850	44 280	42 320	42 400	6.2 6.4	40 16	9.7 26	22 9
Mercury inorganic Nickel	mg/kg mg/kg	32 126	b b	1.1 17	< 0.3 15	< 0.3 22	< 0.3 18	< 0.3 16	0.5 25	1 24	1.8 28	< 0.3 16	0.7 28	0.6 15	5.3 14	0.5 19	1.1 18	0.9 15	< 0.3 9.9	< 0.3 44	< 0.3 12	< 0.3 28
Selenium	mg/kg	253	b	1.5	< 1.0	1.1	< 1.0	1.2	2.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.6	< 1.0	< 1.0	1.6	< 1.0	< 1.0
Vanadium (Pentavalent) Zinc	mg/kg mg/kg	320 3745	b b	52 380	23 100	31 86	37 300	32 160	39 63	51 350	64 570	18 73	50 130	38 120	34 130	41 160	36 120	31 230	17 15	70 80	12 33	42 57
Speciated PAHs Acenaphthene	mg/kg	212		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.38	< 0.05	< 0.05	< 0.05	0.19	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene Anthracene	mg/kg mg/kg	173 2350		< 0.05 0.12	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 0.16	0.73 1.6	< 0.05 < 0.05	< 0.05 0.17	< 0.05 0.25	< 0.05 0.28	< 0.05 0.22	< 0.05 0.32	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Benzo(a)anthracene Benzo(a)pyrene	mg/kg mg/kg	7 2		0.78 0.47	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	1.1 1.2	5.5 6.7	< 0.05 < 0.05	0.98 0.92	1.4 1.2	1.8 1.3	1.4 1.3	1.5 1.3	0.3 0.3	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Benzo(b)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg	3 315		1.1 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	1.4 0.74	8.1 3.4	< 0.05 < 0.05	1.2 0.54	1.4 0.7	1.8 0.7	1.8 0.95	1.8 0.99	0.36 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Benzo(k)fluoranthene	mg/kg	77 15		0.36 0.97	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	0.72	3.5 5.9	< 0.05 < 0.05	0.4 0.78	0.64 1.2	0.8 1.4	0.82 1.2	0.77 1.2	0.22 0.27	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Chrysene Dibenzo(a,h)anthracene	mg/kg mg/kg	0.24		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.14	0.96	< 0.05	< 0.05	< 0.05	0.18	0.23	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene Fluorene	mg/kg mg/kg	284 168		1.7 < 0.05	< 0.05 < 0.05	0.24 < 0.05	< 0.05 < 0.05	0.37 < 0.05	0.82 < 0.05	1.8 < 0.05	14 0.38	< 0.05 < 0.05	2.1 < 0.05	3.5 < 0.05	4.1 0.14	2.3 < 0.05	3.3 < 0.05	0.54 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Indeno(1,2,3-c,d)pyrene Naphthalene	mg/kg mg/kg	27 2		< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	0.62 < 0.05	3.3 < 0.05	< 0.05 < 0.05	0.45 < 0.05	0.61 < 0.05	0.63 < 0.05	0.83 < 0.05	0.85 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Phenanthrene Pyrene	mg/kg mg/kg	95 617		0.63 1.5	< 0.05 < 0.05	0.31 0.21	< 0.05 < 0.05	0.21 0.28	0.36 0.69	0.78 1.6	7.5 12	< 0.05 < 0.05	1.3 1.8	1.4 2.8	2.7 3	0.93 1.9	1.8 2.6	0.27 0.48	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Total PAH (16) Phenols	mg/kg	#N/A		7.59	< 0.80	< 0.80	< 0.80	0.86	1.87	11.2	73.95	< 0.80	10.6	15.1	19.02	13.88	16.4	2.74	< 0.80	< 0.80	< 0.80	< 0.80
Total Phenol Petroleum Hydrocarbons	mg/kg	#N/A		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic >C5-C6 Aliphatic >C6-C8	mg/kg mg/kg	42 103		< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
Aliphatic >C8-C10 Aliphatic >C10-C12	mg/kg mg/kg	27 132 (47.5)		< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 1.3	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 1.8	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0
Aliphatic >C12-C16 Aliphatic >C16-C21	mg/kg mg/kg	1060 (23.7) #N/A)	6.7 23	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0	3.2 19	< 2.0 41	3.8 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0	5.9 9.1	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 9	10 34	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0
Aliphatic >C21-C35 Aliphatic >C16-C35	mg/kg mg/kg	#N/A 11900 (8.5))	34 57	11 11	< 8.0 <16	< 8.0 <16	72 91	110 151	33 33	73 73	< 8.0 <16	27 27	44 53.1	19 19	22 22	36 45	75 109	< 8.0 <16	< 8.0 <16	< 8.0 <16	< 8.0 <16
Aliphatic >C35-C44 Aliphatic >C5-C35	mg/kg mg/kg	11900 (8.5) #N/A		< 8.4 65	< 8.4 18	< 8.4 < 10	< 8.4 < 10	9.9 95	< 8.4 150	20 44	- 74	- < 10	11 33	24 61	< 8.4 26	< 8.4 25	< 8.4 45	28 120	< 8.4 < 10	< 8.4 < 10	< 8.4 < 10	< 8.4 < 10
Aliphatic >C5-C44 Aromatic >C5-C7	mg/kg mg/kg	#N/A 0		65 < 0.001	18 < 0.001	< 10 < 0.001	< 10 < 0.001	100 < 0.001	150 < 0.001	65 < 0.001	< 0.001	< 0.001	43 < 0.001	85 < 0.001	26 < 0.001	25 < 0.001	45 < 0.001	150 < 0.001	< 10 < 0.001	< 10 < 0.001	< 10 < 0.001	< 10 < 0.001
Aromatic >C7-C8	mg/kg	127		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Aromatic >C8-C10 Aromatic >C10-C12	mg/kg mg/kg	34 74		< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 1	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0	< 0.001 < 1.0
Aromatic >C12-C16 Aromatic >C16-C21	mg/kg mg/kg	142 251		< 2.0 21	< 2.0 < 10	< 2.0 < 10	< 2.0 < 10	< 2.0 16	< 2.0 16	20	3.3 68	< 2.0 < 10	< 2.0 16	< 2.0 20	< 2.0 19	4.5 16	< 2.0 11	3.6 15	< 2.0 < 10	< 2.0 < 10	< 2.0 < 10	< 2.0 < 10
Aromatic >C21-C35 Aromatic >C35-C44	mg/kg mg/kg	1117 1117		77 < 8.4	< 10 < 8.4	< 10 < 8.4	25 < 8.4	53 11	55 12	98 61	190 -	< 10 -	47 19	60 31	46 8.9	49 26	36 < 8.4	34 < 8.4	< 10 < 8.4	< 10 < 8.4	< 10 < 8.4	< 10 < 8.4
Aromatic >C5-C35 Aromatic >C5-C44	mg/kg mg/kg	#N/A #N/A		98 98	< 10 < 10	11 11	29 29	70 81	73 85	120 180	260	< 10 -	64 83	80 110	66 75	71 97	47 47	53 53	< 10 < 10	< 10 < 10	< 10 < 10	< 10 < 10
TPH Ali/Aro Total BTEX	mg/kg	#N/A		163		11	29	181	235	245				195	101	122	92	203				
Benzene Ethylbenzene	mg/kg mg/kg	0 47		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
Toluene Xylene	mg/kg mg/kg	127 #N/A		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
MTBE PCBs	mg/kg	#N/A		< 1.0 < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
PCB 77	mg/kg	#N/A		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PCB 81 PCB 105	mg/kg mg/kg	#N/A #N/A		< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
PCB 114 PCB 118	mg/kg mg/kg	#N/A #N/A		< 0.001 < 0.001	< 0.001 0.011	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 0.004	< 0.001 0.006	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
PCB 123 PCB 126	mg/kg mg/kg	#N/A #N/A		< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
PCB 156 PCB 157	mg/kg mg/kg	#N/A #N/A		< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
PCB 167 PCB 169	mg/kg mg/kg	#N/A #N/A		< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001
PCB 189	mg/kg	#N/A		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
otal PCBs	mg/kg	#N/A		< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012

Sample of possible ACM taken from TP02 and only tested for asbestos. Positively identified as chrysotile.

Page 1 of 9 OVE ARUP AND PARTNERS LTD

St Anne's (Triton Squa Human Health Assessment- Gr		Si	oratory hole ample round ate sampled	BH01 1 43249	BH2B 1 43249	BH01 2 43264	BH2E 2 4326
Determinants	Units	Criterion*	Source				
General Inorganics							
pH	pH Units	NC		7.2	7	7.1	7.2
Total Cyanide	μg/l	NC		< 10	< 10	< 10	< 10
Chloride	mg/l	250	DWS	98	95	110	110
Ammoniacal Nitrogen as N	μg/l	NC		17	< 15	24	< 15
Dissolved Organic Carbon (DOC)	mg/l	NC		8.69	7.81	8.16	6.8
Hardness - Total	mgCaCO3/I	NC		503	519	486	460
Total Phenols							
Total Phenois (monohydric)	μg/l	1000	UK 1989	< 10	< 10	< 10	< 10
Speciated PAHs Naphthalene	μg/l	2.0	EQS	< 0.01		< 0.01	< 0.0
Acenaphthylene	μg/l	NC		< 0.01		< 0.01	< 0.0
Acenaphthene	μg/l	NC		< 0.01		< 0.01	< 0.0
Fluorene	μg/l	NC		< 0.01		< 0.01	< 0.0
Phenanthrene	μg/l	NC		< 0.01		< 0.01	< 0.0
Anthracene	μg/l	NC		< 0.01		< 0.01	< 0.0
Fluoranthene	μg/l	NC		< 0.01		< 0.01	< 0.0
Pyrene	μg/l	NC		< 0.01		< 0.01	< 0.0
Benzo(a)anthracene	μg/l	NC		< 0.01		< 0.01	< 0.0
Chrysene	μg/l	NC		< 0.01		< 0.01	< 0.0
Benzo(b)fluoranthene	μg/l	0.10	DWS	< 0.01		< 0.01	< 0.0
Benzo(k)fluoranthene	μg/l	0.10	DWS	< 0.01		< 0.01	< 0.0
Benzo(a)pyrene	μg/l	0.01	DWS	< 0.01		< 0.01	< 0.0
Indeno(1,2,3-cd)pyrene	μg/l	0.10	DWS	< 0.01		< 0.01	< 0.0
Dibenz(a,h)anthracene	μg/l	NC	DWC	< 0.01		< 0.01	< 0.0
Benzo(ghi)perylene	μg/l	0.10	DWS	< 0.01		< 0.01	< 0.0
Total PAH							
Total EPA-16 PAHs	μg/l	NC		< 0.16		< 0.16	< 0.1
Heavy Metals / Metalloids							
Antimony (dissolved)	μg/l	5	DWS	0.9	0.9	0.6	0.5
Arsenic (dissolved)	μg/l	10	DWS	1.52	4.34	1.72	3.69
Beryllium (dissolved)	μg/l	NC		< 0.1	< 0.1	< 0.1	< 0.1
Cadmium (dissolved)	μg/l	5	DWS	0.02	0.04	0.07	0.05
Calcium (dissolved)	mg/l	250	UK 1989	180	190	180	170
Chromium (dissolved)	μg/l	50	DWS	0.3	0.3	0.3	1.8
Copper (dissolved)	μg/l	2000	DWS	2.9	3.6	4.9	7.8
Lead (dissolved)	μg/l	10 50	DWS	< 0.2	< 0.2	0.2	1.6
Magnesium (dissolved) Manganese (dissolved)	mg/l	100	UK 1989 EQS	12 18	12 95	11 93	11 130
Mercury (dissolved)	μg/l μg/l	100	DWS	< 0.05	< 0.05	< 0.05	0.08
Nickel (dissolved)	μg/l	20	DWS	2.7	4.8	2.2	7.5
Selenium (dissolved)	μg/l	10	EQS	10	12	10	6.7
Vanadium (dissolved)	μg/l	20	EQS	4.2	5.1	5	6.1
Zinc (dissolved)	μg/l	500	EQS	4.2	15	1.9	32
Monoaromatics							
Benzene	μg/l	1	DWS	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	50	DWS	< 1.0	< 1.0	< 1.0	< 1.0
TOIUETTE	M.9/ I	- 00					

St Anne's (Triton Square)		l l	Exploratory hole	BH01	BH2B	BH01	BH2B
Human Health Assessment- Grou	ndwater		Sample round	1	1	2	2
			Date sampled	43249	43249	43264	43264
p & m-xylene	μg/l	30	EQS	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	30	EQS	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	NC		< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons							
TPH-CWG - Aliphatic >C5 - C6	μg/l	15000	WHO	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	15000	WHO	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	300	WHO	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	300	WHO	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	300	WHO	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	NC		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	NC		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C35 - C44	μg/l	NC		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	NC		< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C44)	μg/l	NC		< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	10	WHO	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	700	WHO	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	300	WHO	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	90	WHO	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	90	WHO	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	90	WHO	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	90	WHO	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C35 - C44	μg/l	NC		< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	NC		< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C44)	μg/l	NC		< 10	< 10	< 10	< 10
PCBs by GC-MS							
PCB Congener 28	μg/l	NC				< 0.02	< 0.02
PCB Congener 52	μg/l	NC				< 0.02	< 0.02
PCB Congener 101	μg/l	NC				< 0.02	< 0.02
PCB Congener 118	μg/l	NC				< 0.02	< 0.02
PCB Congener 138	μg/l	NC				< 0.02	< 0.02
PCB Congener 153	μg/l	NC				< 0.02	< 0.02
PCB Congener 180	μg/l	NC				< 0.02	< 0.02
PCBs by GC-MS							
Total PCBs	μg/l	NC				< 0.14	< 0.14

St Anne's (Triton Square)		Exploratory hole	BH01	BH2B	BH01	BH2E
Human Health Assessment- Grou			Sample round	1	1	2	2
			Date sampled	43249	43249	43264	43264
VOCs							
Chloromethane	μg/l	NC			< 1.0		
Chloroethane	μg/l	NC			< 1.0		
Bromomethane	μg/l	NC			< 1.0		
Vinyl Chloride	μg/l	NC			< 1.0		
Trichlorofluoromethane	μg/l	NC			< 1.0		
1,1-Dichloroethene	μg/l	NC			< 1.0		
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/l	NC			< 1.0		
Cis-1,2-dichloroethene	μg/l	NC			< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	μg/l	NC			< 1.0		
1,1-Dichloroethane	μg/l	NC			< 1.0		
2,2-Dichloropropane	μg/l	NC			< 1.0		
Trichloromethane	μg/l	NC			< 1.0		
1,1,1-Trichloroethane	μg/l	NC			< 1.0		
1,2-Dichloroethane	μg/l	NC			< 1.0		
1,1-Dichloropropene	μg/l	NC			< 1.0		
Trans-1,2-dichloroethene	μg/l	NC			< 1.0		
Benzene	μg/l	1	DWS		< 1.0		
Tetrachloromethane	μg/l	NC	2,10		< 1.0		
1,2-Dichloropropane	μg/l	NC			< 1.0		
Trichloroethene	μg/l	NC			< 1.0		
Dibromomethane	μg/l	NC NC			< 1.0		
Bromodichloromethane	μg/l μg/l	NC NC			< 1.0		
Cis-1,3-dichloropropene	μg/l μg/l	NC NC			< 1.0		
Trans-1,3-dichloropropene	μg/l	NC NC			< 1.0		
Toluene	μg/l	50	DWS		< 1.0		
1,1,2-Trichloroethane	μg/l	NC	2,10		< 1.0		
1,3-Dichloropropane	μg/l	NC			< 1.0		
Dibromochloromethane	μg/l	NC			< 1.0		
Tetrachloroethene	μg/l	NC			< 1.0		
1,2-Dibromoethane	μg/l	NC			< 1.0		
Chlorobenzene	μg/l	NC			< 1.0		
1,1,1,2-Tetrachloroethane	μg/l	NC			< 1.0		
Ethylbenzene	μg/l	20	EQS		< 1.0		
o & m-Xylene	μg/l	30	EQS		< 1.0		
Styrene	μg/l	NC	LQU		< 1.0		
Tribromomethane	μg/l	NC NC			< 1.0		
o-Xylene	μg/l μg/l	30	EQS		< 1.0		
1,1,2,2-Tetrachloroethane	μg/l	NC	LQU		< 1.0		
Isopropylbenzene	μg/l	NC NC			< 1.0		
Bromobenzene	μg/l	NC NC			< 1.0		
n-Propylbenzene	μg/l μg/l	NC NC			< 1.0		
2-Chlorotoluene	μg/l μg/l	NC NC			< 1.0		
4-Chlorotoluene	μg/l μg/l	NC NC			< 1.0		
1,3,5-Trimethylbenzene	μg/l μg/l	NC NC			< 1.0		
tert-Butylbenzene	μg/l μg/l	NC NC			< 1.0		
1,2,4-Trimethylbenzene	μg/l μg/l	NC NC			< 1.0		
sec-Butylbenzene		NC NC			< 1.0		
sec-Butylberizerie 1,3-Dichlorobenzene	μg/l	NC NC			< 1.0		
p-Isopropyltoluene	μg/l	NC NC			< 1.0		
p-isopropyitoluene 1,2-Dichlorobenzene	μg/l	NC NC			< 1.0		
	µg/l						
1,4-Dichlorobenzene	µg/l	NC NC			< 1.0		
Butylbenzene	µg/l	NC NC			< 1.0		
1,2-Dibromo-3-chloropropane	μg/l	NC NC			< 1.0		
1,2,4-Trichlorobenzene	µg/l	NC NC			< 1.0		
Hexachlorobutadiene	μg/l	NC Page 4 of	9		< 1.0		

Human Health Assessment- G	roundwater		Sample round Date sampled	43249	43249	2 43264	2 43264
1,2,3-Trichlorobenzene	μg/l	NC			< 1.0		
SVOCs							
Aniline	μg/l	NC			< 0.05		
Phenol	μg/l	NC			< 0.05		
2-Chlorophenol	μg/l	NC			< 0.05		
Bis(2-chloroethyl)ether	μg/l	NC			< 0.05		
1,3-Dichlorobenzene	μg/l	NC			< 0.05		
1,2-Dichlorobenzene	μg/l	NC			< 0.05		
1,4-Dichlorobenzene	μg/l	NC			< 0.05		
Bis(2-chloroisopropyl)ether	μg/l	NC			< 0.05		
2-Methylphenol	μg/l	NC			< 0.05		
Hexachloroethane	μg/l	NC			< 0.05		
Nitrobenzene	μg/l	NC			< 0.05		
4-Methylphenol	μg/l	NC			< 0.05		
Isophorone	μg/l	NC			< 0.05		
2-Nitrophenol	μg/l	NC			< 0.05		
2,4-Dimethylphenol	μg/l	NC			< 0.05		
Bis(2-chloroethoxy)methane	μg/l	NC			< 0.05		
1,2,4-Trichlorobenzene	μg/l	NC			< 0.05		
Naphthalene Naphthalene	μg/l	2	EQS		< 0.01		

St Anne's (Triton Square)		Exploratory hole	BH01	BH01	BH01	BH2B	BH2B	BH2B	TP01	TP03	TP04	TP05	HP01	HP02	HP03	HP03	HP04	BH01	BH01	BH2B	BH2B
Controlled Waters		Sample depth (m)	0.20-0.25	1.10-1.20	3.00-3.10	0.40-0.45	1.90-2.00	4.90-5.00	0.60-0.70	0.50-0.60	0.25-0.35	0.20-0.30	0.7-0.80	0.20-0.30	0.20-0.30	1.00-1.10	0.70-0.80	5.00-5.10	17.00-17.10	6.90-7.00	10.90-11.00
Assessment - Soil Leachate		Date sampled	02/05/2018	02/05/2018	02/05/2018	25/04/2018	27/04/2018	27/04/2018	26/04/2018	3 43223	43223	43223	26/04/2018	26/04/2018	26/04/2018	26/04/2018	26/04/2018	02/05/2018	02/05/2018	02/05/2018	3 02/05/2018
			MG MG	MG	MG	MG	MG	MG	MG	RTD	LC	RTD	LC								
Determinants	Units Criter	ion Source																			
Arsenic	mg/l 0.05	EQS	0.0109	0.0069	0.0061	< 0.0011	< 0.0011	0.0033	0.002	0.0034	0.006	0.0087	0.0095	0.017	0.0066	0.0026	0.0081	0.0018	0.0035	0.0031	< 0.0011
Barium	mg/l 0.1	EQS	0.0376	0.0176	0.0073	0.0427	0.0842	0.0153	0.0121	0.0095	0.0182	0.0276	0.0056	0.0448	0.0059	0.0195	0.0191	0.0062	0.0183	0.006	0.0231
Cadmium	mg/l 0.005	EQS	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium	mg/l 0.05	EQS	0.016	0.014	0.0014	0.032	0.026	0.0007	0.0096	0.0021	0.017	0.0058	0.004	0.016	0.0015	0.021	0.0072	0.0025	0.002	0.005	0.0041
Copper	mg/l 2	UK DWS 2000	0.031	0.014	0.02	0.012	0.0037	0.0021	0.004	0.019	0.009	0.014	0.014	0.0087	0.012	0.0066	0.0075	0.0086	0.017	0.0073	0.0099
Mercury	mg/l 0.001	EQS	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Molybdenum	mg/l 0.1	WHO 2004	0.0055	0.0021	0.007	0.0096	0.0028	0.0028	0.0102	0.0035	0.0041	0.0035	0.0008	0.001	0.0016	0.0011	0.0005	0.0008	0.016	0.0005	0.0057
Nickel	mg/l 0.05	UK DWS 1989	0.001	0.0009	0.0008	0.0007	< 0.0003	< 0.0003	< 0.0003	0.0019	0.0006	0.0048	0.0045	< 0.0003	0.0019	< 0.0003	0.0003	0.002	0.0027	0.0021	0.0032
Lead	mg/l 0.05	EQS	0.025	0.0074	0.0043	0.011	< 0.0010	0.0016	< 0.0010	0.015	0.0082	0.0058	0.013	0.047	0.014	0.01	0.019	0.0045	0.0057	0.0046	0.0096
Antimony	mg/l 0.01	UK DWS 1989	< 0.0017	< 0.0017	0.0085	0.01	< 0.0017	< 0.0017	< 0.0017	0.0079	< 0.0017	0.0072	0.0061	< 0.0017	0.0026	< 0.0017	< 0.0017	< 0.0017	0.0051	< 0.0017	< 0.0017
Selenium	mg/l 0.01	EQS	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	< 0.0040	0.043	< 0.0040	0.04
Zinc	mg/l 5	UK DWS 1989	0.013	0.0091	0.01	0.0024	< 0.0004	0.015	0.0015	0.018	0.0078	0.013	0.0057	0.0068	0.0076	0.0052	0.0096	0.011	0.0051	0.014	0.0036
Chloride	mg/l NC		1	1.4	1.8	4.1	13	2.4	4.9	1.9	1	1.1	1.2	1.2	1.6	1.4	5.6	1	15	0.88	17
Fluoride	mg/l 1.5	UK DWS 2000	0.38	0.26		0.25	0.1	0.38	0.22	0.28	0.14	0.91	0.31	0.45	0.41	0.5	0.28	0.31	0.89	< 0.050	0.69
Sulphate	mg/l 250	UK DWS	10	34	380	520	33	35	150	26	31	57	8.9	35	13	22	20	5.7	68	1.9	120
Total Dissolved Solids	mg/I NC		120	160	410	510	720	92	240	80	120	130	61	95	68	95	80	21	130	11	160
Phenol Index	mg/l 0.5	DWS	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Dissolved Organic Carbon	mg/l NC		7.27	5.73	5.45	4.88	6.45	4.05	5.16	7.47	4.33	4.94	4.51	4.99	5.64	4.57	5.66	5.2	5.74	5.03	4

Page 7 of 9 OVE ARUP AND PARTNERS LTD

St Anne's (Triton S	Square)	Exploratory hole	BH01	BH01	BH01	BH2B	BH2B	BH2B	TP01	TP03	TP04	TP05	HP01	HP02	HP03	HP03	HP04	BH01	BH01	BH2B	BH2B
Controlled Waters Asse	essment- Soil	Sample depth (m)	0.20-0.25	1.10-1.20	3.00-3.10	0.40-0.45	1.90-2.00	4.90-5.00	0.60-0.70	0.50-0.60	0.25-0.35	0.20-0.30	0.7-0.80	0.20-0.30	0.20-0.30	1.00-1.10	0.70-0.80	5.00-5.10	17.00-17.10	6.90-7.00	10.90-11.00
Leachate		Date sampled	02/05/2018	02/05/2018	02/05/2018	25/04/2018	27/04/2018	27/04/2018	26/04/2018	03/05/2018	03/05.2018	03/05/2018	26/04/2018	26/04/2018	26/04/2018	26/04/2018	26/04/2018	02/05/2018	02/05/2018	02/05/2018	02/05/2018
		Strata	MG	RTD	LC	RTD	LC														
Determinants	Units	Inert WAC																			
Arsenic	mg/kg	0.5	0.085	0.0559	0.0485	< 0.0110	< 0.0110	0.0262	0.0151	0.0243	0.0519	0.0701	0.0806	0.136	0.0528	0.0222	0.0663	0.015	0.0223	0.0265	< 0.0110
Barium	mg/kg	20	0.294	0.143	0.0581	0.36	0.564	0.122	0.0913	0.0687	0.157	0.223	0.0475	0.359	0.0473	0.167	0.157	0.0529	0.115	0.0507	0.169
Cadmium	mg/kg	0.04	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008	< 0.0008
Chromium	mg/kg	0.5	0.13	0.11	0.011	0.27	0.17	0.0054	0.073	0.015	0.15	0.047	0.034	0.13	0.012	0.18	0.059	0.021	0.012	0.042	0.03
Copper	mg/kg	2	0.24	0.11	0.16	0.1	0.025	0.017	0.03	0.14	0.078	0.11	0.12	0.07	0.092	0.057	0.062	0.073	0.11	0.061	0.073
Mercury	mg/kg	0.01	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Molybdenum	mg/kg	0.5	0.0432	0.0171	0.0557	0.0811	0.0185	0.0225	0.0769	0.0251	0.0352	0.0282	0.0069	0.0082	0.0128	0.0092	0.0044	0.0069	0.101	0.0044	0.0414
Nickel	mg/kg	0.4	0.0082	0.0076	0.0061	0.0061	< 0.0030	< 0.0030	< 0.0030	0.013	0.0052	0.039	0.038	< 0.0030	0.015	< 0.0030	< 0.0030	0.017	0.017	0.017	0.023
Lead	mg/kg	0.5	0.19	0.061	0.035	0.094	< 0.010	0.013	< 0.010	0.11	0.071	0.047	0.11	0.38	0.11	0.088	0.16	0.039	0.036	0.039	0.07
Antimony	mg/kg	0.06	< 0.017	< 0.017	0.068	0.087	< 0.017	< 0.017	< 0.017	0.057	< 0.017	0.058	0.051	< 0.017	0.02	< 0.017	< 0.017	< 0.017	0.032	< 0.017	< 0.017
Selenium	mg/kg	0.1	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	0.27	< 0.040	0.29
Zinc	mg/kg	4	0.1	0.074	0.082	0.021	< 0.0040	0.12	0.011	0.13	0.068	0.1	0.048	0.055	0.06	0.045	0.079	0.095	0.032	0.12	0.026
Chloride	mg/kg	800	7.9	11	15	34	90	19	37	14	9.1	8.9	11	9.9	13	12	46	8.5	96	7.4	120
Fluoride	mg/kg	10	2.9	2.1	2.5	2.1	0.7	3	1.6	2	1.2	7.3	2.6	3.6	3.2	4.3	2.3	2.6	5.6	< 0.50	5
Sulphate	mg/kg	1000	80	280	3000	4300	220	280	1100	180	270	460	76	280	100	190	170	49	430	16	880
Total Dissolved Solids	mg/kg	4000	970	1300	3300	4300	4800	740	1800	580	1000	1100	510	760	540	810	660	180	830	89	1200
Phenol Index	mg/kg	1	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dissolved Organic Carbon	mg/kg	500	56.8	46.8	43.6	41.1	43.2	32.5	39	54	37.5	39.8	38.2	40	44.8	39.1	46.3	44.2	36.2	42.2	29.2
TOC	%	3%																			

Page 8 of 9 OVE ARUP AND PARTNERS LTD

	St Anne's (Triton Square) Ground gas monitoring														
Round	ВН	Date	Atm pressure	Depth to GW (m)	Flow rate	Methane	Carbon dioxide	Hydrogen Sulfide	Oxygen	GSV Methane	Gov Carbon	CS			
1	BH01	18.05.2018	1022	3.42	0.1	0	0.8	0	18.9	0	0.0008	CS1			
1	BH2B	18.05.2018	1024	DRY	0.1	0	4.2	0	13.4	0	0.0042	CS1			
2	BH01	29.05.2018	1013	DRY	0.1	0	0.2	0	20.3	0	0.0002	CS1			
2	BH2B	29.05.2018	1014	6.58	0.1	0	2.6	0	16.7	0	0.0026	CS1			
3	BH01	06.06.2018	1012	DRY	0.1	0	0.7	0	18.8	0	0.0007	CS1			
3	BH2B	06.06.2018	1012	DRY	0.1	0	3.2	0	15.7	0	0.0032	CS1			
4	BH01	13.06.2018	1015	3.49	0.1	0	1.2	0	18.1	0	0.0012	CS1			
4	BH2B	13.06.2018	1016	DRY	0.1	0	0.4	0	16.4	0	0.0004	CS1			
5	BH01	20.06.2018	1017	DRY	0.1	0	0.6	0	17.8	0	0.0006	CS1			
5	BH2B	20.06.2018	1018	DRY	0.1	0	4.3	0	11.7	0	0.0043	CS1			
6	BH01	27.06.2018	1024	DRY	0.1	0	0.4	0	19.5	0	0.0004	CS1			
6	BH2B	02.07.2018	1011	DRY	0.1	0	2.4	0	16	0	0.0024	CS1			