

APPENDIX D

Methodology of Risk Assessment

Risk Assessment Methodology

CLR11 outlines the framework to be followed for risk assessment in the UK. The framework is designed to be consistent with UK legislation and policies including planning. Under CLR11, three stages of risk assessment exist: Preliminary, Generic Quantitative and Detailed Quantitative. An outline Conceptual Model should be formed at the preliminary risk assessment stage that collates all the existing information pertaining to a site in text, tabular or diagrammatic form. The outline conceptual model identifies potentially complete (termed possible) pollutant linkages (source–pathway–receptor) and is used as the basis for design of the site investigation. The outline Conceptual Model is updated as further information becomes available, for example as a result of the site investigation.

Production of a Conceptual Model requires an assessment of risk to be made. Risk is a combination of the likelihood of an event occurring and the magnitude of its consequences. Therefore, both the likelihood and the consequences of an event must be taken into account when assessing risk. RSK has adopted guidance provided in CIRIA C552 for use in the production of conceptual models.

The likelihood of an event can be classified on a four-point system using the following terms and definitions based on CIRIA C552:

- Highly likely: the event appears very likely in the short term and almost inevitable over the long term or there is evidence at the receptor of harm or pollution;
- Likely: it is probable that an event will occur or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term;
- Low likelihood: circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term; and
- Unlikely: circumstances are such that it is improbable the event would occur even in the long term.

The severity can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to severity are:

- Severe: short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short-term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000);
- Medium: chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000);

- Mild: pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment; and
- Minor: harm, not necessarily significant, but that could result in financial loss or expenditure to resolve. Non-permanent human health effects easily prevented by use of personal protective clothing. Easily repairable damage to buildings, structures and services.

Once the likelihood of an event occurring and its severity have been classified, a risk category can be assigned the table below.

			Conseq	uences	
		Severe	Medium	Mild	Minor
>	Highly likely	Very high	High	Moderate	Moderate/Low
Probability	Likely	High	Moderate	Moderate/Low	Low
rot	Low likelihood	Moderate	Moderate/Low	Low	Very Low
	Unlikely	Moderate/Low	Low	Very Low	Very Low

Definitions of these risk categories are as follows together with an assessment of the further work that might be required:

- Very high: there is a high probability that severe harm could occur or there is evidence that severe harm is currently happening. This risk, if realised, could result in substantial liability and urgent investigation and remediation are likely to be required;
- High: harm is likely to occur. Realisation of the risk is likely to present a substantial liability and urgent investigation is required and remedial works may be necessary in the short term and are likely over the long term;
- Moderate: it is possible that harm could arise, but it is unlikely that the harm would be severe and it is more likely that the harm would be relatively mild. Investigation is normally required to clarify the risk and determine the liability. Some remedial works may be required in the longer term;
- Low: it is possible that harm could occur, but it is likely that if realised this harm would at worst normally be mild; and
- Very Low: there is a low possibility that harm could occur and if realised the harm is unlikely to be severe.

APPENDIX E

Exploratory Hole Records

GR	SK	K			ST	AT:	S	BOR (Perc	EHOLE ussive)	RECORD	Borehole Number:
Site: Gonda	ar Gai	rdens,	London					Location:			BH1
Client:								Ground Le	evel:	Date:	Job No:
_inder	n Horr	nes Lto	d					GL not me	easured	17 Nov 09	23283
		ATER		SAMPLES	/TEST	S			STRATA RE	CORD	Sheet 1 of 2
trike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description		
×	××××		0.10 D 001		-	,	0.35	\times	MADE GROU	ND (Reinforced concrete))
			0.40 D 002 0.70 D 003		0.35 _ 0.50 _		0.15	×××××× ×–––×	MADE GROU coarse gravel and brick)	ND (brown silty sandy cla , stone and fragments of o	y with fine to concrete
X		-1						<u> </u>	Firm becoming silty CLAY with	g stiff brown occasional m h occasional fine to mediu	nottled grey
×	***		1.30-1.60 U 001					<u> </u>	gravel. Occas	ional pockets of sand.	
×			1.60 D 004					<u>× </u>			
×	***	2						××			
X					-			<u>×</u> ×_			
X		-						<u>×_^_</u> ×			
×	****	-3	3.00 D 005	s⊤				<u></u>			
×	****				-			<u></u>			
X	****	2		⊥_N=11 (1,1,2,2,3,4 [1,1](2,2,3,4)				<u></u>			
X	***							<u></u>			
×		-4						<u> </u>			
X	****		4.50-4.80 U 002		-			<u>××</u>			
X	****	<u>6</u> <u>6</u>			-		8.30	<u>××</u>			
X	>>>	-5	4.80 D 006					<u>x_^x</u>			
X	****							<u></u> X			
X		_						<u></u>			
X	****							<u></u>			
X		6	6.00 D 007	s	-			<u>^x</u>			
X	****			-N-20 (3 3 4 5 5 6				<u></u> ^^			
X		2		N=20 (3,3,4,5,5,6 [3,3](4,5,5,6)	-			<u>xx</u>			
X	\otimes	-7			-			<u>xx</u>			
\otimes		1			-			<u></u> X			
\bigotimes	\otimes		7.50-7.90 U 003		-			<u></u>			
\otimes	\otimes										
\gtrsim		-8	7.90 D 008					<u>××</u>			
\otimes	\otimes				-			<u>××</u>			
X					-			<u>x</u> x			
×	\otimes		8.80 D 009		8.80 -				Stiff grey silty	CLAY with occasional fin	e
\otimes		-9	9.00 D 010	s	-				gravel. Occas	ional pockets of sand.	
X	\otimes	-		N=20 (3,3,4,5,6,5 [3,3](4,5,6,5)							
\otimes	***	<u>6.</u> 5. 7.		[3,3](4,3,8,5)							
emar	ks an	- d Wate	er Observat	ions					Continued ne	ext sheet	Scale: 1.50
Fround	water s	eepage	was slightly er	ncountered at	13.0mb	gl.					Scale: 1:50 Logged by: MB
											Figure:

R	SK ROUP P				ST	ATS	5	BOR (Perc	EHOLE ussive)	RECORD	Boreł Numb	
Site: Gond	dar Ga	rdens,	London					Location:			BH1	
Clien	it:							Ground Le	evel:	Date:	Job No:	
Linde	en Horr	nes Lto	b					GL not me	easured	17 Nov 09	23283	
	UND W			SAMPLES					STRATA RE	CORD	Sheet 2	2 of 2
Strike	Well	Depth (m)	Depth/Type (m)	SPT 'N' or U Blows	Depth (m)	Level (mAOD)		Key	Description			
		-11	10.50-10.80/ 004 10.80 D 011 12.00 D 012									
\square		-13	13.50-13.9 0 / 005	⊥ <u>N=22 (4,4,5,7,6</u> [4,4](4,5,7,6)								
		-14	13.90 D 013				11.20					
		-15	15.00 D 014	S 								
		-17	16.50-16.80U 006 16.80 D 015									
~~~~~~~~~~~~		-18	18.00 D 016	S 								
		19	19.50-19.90U 007 19.90 D 017									
Rema Groun	arks an dwater s	d Wate	er Observati was slightly er	ons icountered at	13.0mbo	gl.			End of Boreh	ole at 20.00 m	Scale:	1:50
					·	-					Logged by:	MB
										-	Figure:	

	OUP PL	c				AT S			low Sa	RECORD mpler)	Numb	ber
<b>Site:</b> Gond	ar Garo	dens, L	ondon.	I				Location	1:		PH1	I
<b>Clier</b> .inde	<b>nt:</b> n Home	es Ltd						Ground GL not me		<b>Dates:</b> 17 Nov 09	Job No 23283	.:
ROL	JND W	ATER		SAMP	LES/TES	TS			STRATA R	ECORD	Sheet 1	of 1
rike	Well	Depth (m)	Type/De (m)	epth In-situ T	ests Depth	Level (mAOD)		Кеу	Description			
		-1	D001 D002 D003 D004 D00 <b>3</b> .90-	0.30 0.70 1.20 C 1.20 C L N=18, (2,3,3,4,4,7) C C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ C $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4,7)$ $Z_{-3}(3,4,4$	(.9) (.9) (.9) (.1) (.9) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1) (.1)		2.10		occasional f stone, brick MADE GRC silty clay. O bricks betwe desiccation. Stiff becomi grey silty CL gravel. Occ	ng very stiff brown occas AY with occasional fine t asional roots. Occasional ble desiccation.	fragments of ery stiff brown nents of issible ional mottled o medium pockets of	
				bservati							Scale:	1:2
	dwater w r than 24		encount	ered. Hand	vane at 1.0	m and 2.	0m i	6		Key for Insitu tests	Logged by:	
		-								HV-Hand Vane (kN/m2) ket Penotometer (kN/m2)		

Condar Gardens, London         PH2           Client:		SK ROUP PL	C			ST	ATS	5	(Wind	low Sa	E RECORD mpler)	Borehole Number:
Linden Homes Lid         GL not measured         17 Nov 09         23283           GROUND WATER         SAMPLES/TESTS         STRATA RECORD         Sheet 1 of 1           Brite         Weil         Deen         TypeDopting in-situ Tests         Strate         Strate RECORD         Sheet 1 of 1           Brite         Weil         Deen         TypeDopting in-situ Tests         Deen         If Nov 09         23283           Image: Strate RECORD         Sheet 1 of 1         Image: Strate RECORD         Sheet 1 of 1         Decasional fire to medium gravel, stone and roots)         Image: Strate RECORD         Sheet 1 of 1           Image: Strate RECORD         0001 o.nd         -0.30         Image: Strate RECORD         MADE GROUND (remoted strift to very stift brown and roots)         Image: Strate RECORD         Shift betoming youry stift brown and roots)         Shift betoming youry stift brown and stone and mudstone)         Image: Strate RECORD         Shift betoming youry stift brown and stone)         Image: Strate RECORD         Shift betoming youry stift brown and stone)         Image: Strate RECORD         Shift betoming youry stift brown and stone)         Image: Strate RECORD         Shift betoming youry stift brown and stone)         Image: Strate RECORD         Ima	Site: Gond		dens, L	ondon					Location	):		PH2
Static         Wei         Depth (m)         TopeDopth (m)         Image: Depth (m)         Description           Image: Depth (m)         (m) <t< th=""><th></th><th></th><th>es Ltd</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>			es Ltd									
Image: stand water Observations     Constructions     Stiff becoming very stiff brown occasional mottled gravel, stone and mudstone)       Remarks and Water Observations     2.000     0.00     2.000     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80     1.80	GROL	JND W	ATER		SAMPLES	S/TES	TS			STRATA R	ECORD	Sheet 1 of 1
Remarks and Water Observations     Scale:       Groundwater was not encountered     1:2	Strike		(m) 	0001 0.400 0002 1.000 0003 2.000	$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	(m) - 0.30 		1.50	Key	TOPSOIL (g occasional f MADE GRC silty clay. C bricks, conc Stiff becomi grey silty Cl gravel. Occa pockets of s	fine to medium gravel, sto DUND (remolded stiff to v loccasional roots and frag rrete, stone and mudstor ing very stiff brown occas AY with occasional fine asional roots up to 3.0mb sand.	ional mottled to medium
Key for Insitu tests     Logged by: NT       HV-Hand Vane (kN/m2)						- - - 5						Scale: 1:25 Logged by: NT

GI	OUP P				JI	AT.			dow Sa	E RECORD mpler)	Borehol Number
Site: Sond		dens, L	ondon					Location	ו:		PH3
lier	nt:							Ground	Level:	Dates:	Job No.:
nde	n Hom	es Ltd						GL not m	easured	17 Nov 09	23283
ROL	JND W	/ATER		SAMPLES	S/TES	TS			STRATA R	ECORD	Sheet 1 of 1
ike	Well	Depth		In-situ Tests				Key	Description		
		(m) - -	(m)		(m) - -	(mAOD)				grass over grey silty sand ine to medium gravel and	
		-			- 0.30		0.30	XXXX	MADE GRO	UND (Fine coarse grave	and stone)
		-	D001 0.50		- 0.40 - - -		0.10		MADE GRO	OUND (remolded stiff brow fine to medium gravel. O	vn silty clay with
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								grey silty Cl gravel. Occa	ng very stiff brown occasi LAY with occasional fine asional roots. Occasiona ble remolded clay)	to medium
	D004 3.70					1.90		CLAY with c	brown occasional mottlec occasional fine to medium pockets of sand.		
	· A	<b>4</b>		c _	4.00 - -		0.90		End of Boreh	ole at 4.00 m	
		-		N=8 (1,1,1,2,2,3) [1,1](1,2,2,3)	-						
-				ervations	-	m is area	ator				Scale: 1:2
	40kPa.	was nul			ις αι 2.0	in is gied	aiti			Key for Insitu tests HV-Hand Vane (kN/m2)	Logged by: NT
										ket Penotometer (kN/m2)	Figure:

R G Site:	SK	c			ST	AT S	S		low Sa	RECORD	Borehol Number
	ar Garo	dens, L	ondon					Location			PH4
Clier								Ground		Dates:	Job No.:
Linde	n Home	es Ltd						GL not me	easured	17 Nov 09	23283
ROL	JND W			SAMPLES		TS	1		STRATA R	ECORD	Sheet 1 of 1
trike	Well	<b>Depth</b> (m)	Type/Depth (m)	In-situ Tests	Depth (m)	Level (mAOD)		Key	Description		
					- - 0.20		0.20		TOPSOIL (g occasional fi	rass over grey brown silt ne to medium gravel and	ty sandy clay with d roots)
-		_			-			$\times$	occasional fi	UND (brown grey silty sa ne to coarse gravel and	andy clay with fragments of
		-	D001 0.50		- 0.40 -		0.20		stone, tarma	,	
		-			-					UND (remolded stiff brov bockets of sand)	wn silty clay.
		-			-						
		1		с —	_						
					_						
		-	D002 1.30		- 1.20		0.80	*****	MADE GRO	UND (remolded Firm to	stiff brown silty
		-			-			$\times$	clay. Occasio between 3.5	onal pockets of sand. Fra m and 3.7m)	agments of brick
				N=6 (1,1,1,1,2,2) [1,1](1,1,2,2)	-			$\times$			
					-			$\times$			
					-			$\times$			
		-2		c ⊥	_			$\times$			
		-			_			$\times$			
		<u>.</u>			_			$\otimes$			
		-		 N=5 (0,1,1,1,1,2) [0,1](1,1,1,2)	-			$\otimes$			
		-	D003 2.70		-			$\otimes$			
		_			-			$\otimes$			
		-3			-			$\otimes$			
					_			$\times$			
					[			$\times$			
		-						$\times$			
		<u>.</u>	D004 3.60					$\times$			
								$\otimes$			
-				_	-			$\times$			
	~~~XX	-4			4.00 -		2.80	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	End of Boreho	ble at 4.00 m	
	-	-									
	-	-		\perp	[
	=	-		N=5 (1,1,1,1,1,2) [1,1](1,1,1,2)							
		-			_						
	-	-									
em	arks a	nd Wa	ater Obs	ervations	 ;						Scale:
roun	dwarter v			d. Hand van)m (100k	Pa) a	and		Key for Insitu tests	Logged by: NT
un (70kPa).									HV-Hand Vane (kN/m2) ket Penotometer (kN/m2)	
										Aackintosh Probe (N150)	Figure:

R	SK ROUP PL	< c			ST	AT S	5		EHOLE Iow Sai	RECORD	Borehole Number:
Site: Gonc	lar Garo	dens, L	ondon					Location	:		PH5
Clier								Ground		Dates:	Job No.:
	n Hom							GL not me		17 Nov 09	23283
SROU	JND W Well	Depth	Type/Dei	SAMPLES				Key	STRATA R	ECORD	Sheet 1 of 1
	***	(m) -	(m)		(m) -	(mAOD)			TOPSOIL (g occasional fi	rass over grey brown silf	ty sandy clay with d stone)
		-	D001 0	.30	- 0.20 - - - - -		0.20		MADE GRO occasional fi tramac, brick	JND (grey brown silty sa ne to coarse gravel, frag and stone)	andy clay with gments of
		-1		C	- 0.90 - - - -		0.70		MADE GRO Occasional p	JND (remolded stiff brow ockets of sand).	wn silty clay.
		-2	D002 1.60 N=0(1,1,2,2,2) - 1.1](2,2,2) - - - - - - - - - - - - -						clay. Occasio	JND (remolded firm to s	tiff brown silty and pockets of
		-3	D003 2	N=6 (1,1,1,2,1,2) 1,1](1,2,1,2) .80 C					sand)		
			D004 3	.50 N=5 (1,1,1,1,1,2) [1,1](1,1,1,2)	-						
	~~~XX	4 - - - - - -		C N=7 (1,1,2,1,2,2) (1,1)(2,1,2,2)	4.00 - - - - - - - -		1.90		End of Boreho	ole at 4.00 m	
201	orke e	nd \4/			_						Scalo
			ater OI	<b>oservations</b> red.	5			-		Key for Insitu tests	Scale: 1:25
										HV-Hand Vane (kN/m2) ket Penotometer (kN/m2)	Logged by: NT Figure:
										Aackintosh Probe (N150)	

GR	LOUP PL	c			STA			low Sa	RECORD mpler)	Borehole Number
<b>ite:</b> Sond	ar Garo	dens, L	ondon				Location	:		PH6
lier	nt:						Ground	Level:	Dates:	Job No.:
nde	n Hom	es Ltd					GL not me	asured	17 Nov 09	23283
ROL	JND W	ATER		SAMPLE	S/TESTS			STRATA R	ECORD	Sheet 1 of 1
ike	Well	Depth (m)	Type/De (m)	pth In-situ Tests	Depth Let (m) (mA		Кеу	Description		
	****		()		- 0.10	0.10		TOPSOIL (g	rass over grey brown silt	y sandy clay with
•					-			`	ine to medium gravel and UND (remolded brown si	· · · · · ·
			D001 0	0.30	-		$\times$	occasional	fine to coarse gravel)	
4					- 0.50	0.40		MADE GRO	UND (brown grey silty sa	Indv clav with
		-			_			occasional f	ine to coarse gravel and a and brick and roots)	fragments of
•					-			,	,	
•		-1		c $\pm$	-					
		- 			- 1.10	0.60		MADE GRO	UND (Remolded stiff bro	wn silty clay with
•					-		$\times$		fine to coarse gravel and	
-					-		$\otimes$		,	
		-		N=12 (2,2,3,2,3,4) [2,2](3,2,3,4)	-		$\otimes$			
1					- 1.70	0.60		Stiff brown o	occasional mottled grey s	ilty CLAY with
•					-			occasional f	ine to medium gravel. Oc	casional pockets
		-2	D002 2	2.00 T	_		$\underline{\times}$	or sand.		
-					-		<u>×                                    </u>			
-		<u>-</u>			-		<u>××</u>			
				N=12 (3.2.2.3.3.4)	-		<u>x_^x</u>			
				[3,2](2,3,3,4)	-		<u> </u>			
•			D003 2	2.70	-		<u></u>			
•					-		<u></u> X			
-		-3		c 🕹	_		<u></u>			
•		-			-		<u>_</u>			
		1 7								
•		1		N=21 (3,3,4,4,6,7) [3,3](4,4,6,7)						
		1					×^			
		-	D004 3	3.80	-		××			
		1		с <i>—</i>	- 4.00	2.30	<u>××</u>			
	-	-		Ĩ		2.50		End of Boreh	ole at 4.00 m	
	-	-								
	-	-								
	-	-		N=12 (2,2,2,3,3,4) [2,2](2,3,3,4)						
	-	-			-					
	-	_								
0.55	orlia -	nd 14/		boonation						Scale:
			ater O	bservations ered.	5		-		Koy for Insity tooto	1:2:
									Key for Insitu tests HV-Hand Vane (kN/m2)	Logged by: NT
									ket Penotometer (kN/m2)	Figure:

G	SK	د د				51	AT :	5		EHOLE	RECORD	Borehol Number
Site: Gond	lar Garo	dens, L	ondo	n					Locatior	1:		PH7
Clier	nt:								Ground	Level:	Dates:	Job No.:
.inde	n Hom	es Ltd							GL not me	easured	17 Nov 09	23283
ROL	JND W	ATER			SAMPLES	/TES	TS			STRATA R	ECORD	Sheet 1 of 1
rike	Well	<b>Depth</b> (m)			In-situ Tests		Level (mAOD)		Key	Description		
		-	(m	<u>,</u>		(m) -	(IIIAOD)			TOPSOIL (g occasional fi	rass over grey brown silt ne to medium gravel)	y sandy clay with
		- - - -	D001	0.30		- 0.20 - - - -		0.20		MADE GRO occasional fi stone, brick	UND (brown grey silty sa ne to coarse gravel and and roots)	ndy clay with fragments of
	1.552	- - 1			с —	- 0.80 - 		0.60		MADE GRO	UND (sand and gravel w	ith stone)
								0.30		Occasional r of sand) Stiff bown oo occasional fi	UND (remolded stiff brov oots, fragments of brick	s and pockets
		3	D003							up to 3.0mb	gl. Occasional pockets of	sand.
		-4			C N=12 (1.2.2.3.3.4) [1.2](2.3.3.4)			1.80	X	End of Boreh	ole at 4.00 m	
	auler -	m cl 14/	-	<b>N-</b> -	an (at a				l			Seele:
	dwater w				ervations	•					Vou for Incident	Scale: 1:25
<u>_</u>			2.5 41								Key for Insitu tests HV-Hand Vane (kN/m2)	Logged by: NT
										PP-Poc	ket Penotometer (kN/m2)	Figure:

# APPENDIX F

**Chemical Test Certificates** 



# FINAL ANALYTICAL TEST REPORT

**Envirolab Job Number: Issue Number:** 

09/01125 2

Date: 27 November, 2009

**Client:** 

**RSK STATS Hemel Hempstead** 18 Frogmore Road Hemel Hempstead UK HP3 9RT

**Project Manager: Project Name: Project Ref: Order No: Date Samples Received: Date Instructions Received: Date Analysis Completed:** 

Naveneethan Thiruchelvam Gondar Gardens, London 23283 Not specified 19/11/09 19/11/09 25/11/09

#### **Prepared by:**

Marshall

Melanie Marshall Laboratory Coordinator

Approved by:

Gill Scott Laboratory Manager

Notes - Soil samples Stones >10mm are removed from the sample prior to analysis and results corrected where appropriate. Subscript A indicates analysis performed on the sample as received. Subscript D indicates analysis performed on the dried sample. Superscript M indicates method accredited to MCERTS. Samples with matrix code 7 are not predominantly sand/loam/clay and are not covered by our MCERTS accreditation.

<u>Notes - General</u> Superscript * indicates subcontracted analysis.

Superscript # indicates method accredited to ISO 17025.

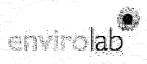
Analytical results reflect the quality of the sample at the time of analysis only.

Method summaries are available upon request.

Opinions and interpretations expressed are outside the scope of our accreditation.

IS indicates Insufficient sample for analysis.

IS-QC indicates Insufficient sample for reanalysis following QC failure.


NDP indicates No Determination Possible.





#### Client Project Name: Gondar Gardens, London

					Client	Project Ref	: 23283			
Lab Sample ID	09/01125/1	09/01125/2	09/01125/3	09/01125/4	09/01125/5	09/01125/6	09/01125/7	09/01125/8		
Client Sample No										
Client Sample ID	PH1	PH1	PH2	РНЗ	PH6	PH7	PH1	BH1		
Depth to Top	0.30	0.70	0.40	0.50	0.30	0.30	2.20	3.00		
Depth To Bottom										
Date Sampled	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09		ef
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	ഗ	Method ref
Sample Matrix Code	6	6	3	6	6	6A	6	3	Units	Meth
Asbestos Screen _A	No ACM	-	-		Visual					
pH _D ^{M#}	7.9	8.1	8.8	8.1	7.6	8.3	8.1	8.2		A-T-031s
Sulphate (water soi 2:1) ^{D^{M#}}	0.03	0.04	0.03	0.18	0.02	<0.01	-	-	g/i	A-T-026s
Sulphate BRE (water sol 2:1) _D ^{M#}	-	-	-	-	-	-	0.58	1.92	g/l	A-T-026s
Sulphate (acid soluble) _D ^{M#}	750	460	310	340	280	560	-	-	mg/kg	A-T-028
Sulphate BRE (acid sol) _D ^{M#}	-	-	-	-	-	-	0.14	1.32	% w/w	A-T-028
Arsenic _o ^{M#}	12	10	7	14	11	22	-	-	mg/kg	A-T-024
Cadmium₀ ^{M#}	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	mg/kg	A-T-024
Copper _D ^{M#}	32	22	18	55	43	49	-	-	mg/kg	A-Ť-024
Chromium _D ^{M#}	75	77	60	44	82	44	-	-	mg/kg	A-T-024
Chromium (hexavalent) Dep _D	<1	<1	<1	<1	<1	<1	-	-	mg/kg	A-T-040s
Lead _D ^{M#}	74	24	16	201	215	367	-	-	mg/kg	A-T-024
Mercury _D	0.47	0.25	0.25	4.20	0.36	0.64	-	-	mg/kg	A-T-024
Nickel ^{M#}	45	47	36	33	50	31	-	-	mg/kg	A-T-024
Selenium _D ^{M#}	2	2	2	2	2	2	-	-	mg/kg	A-T-024
Sulphur BRE (total) _D	-	-	-	· -	-	-	0.06	0.54	% w/w	A-T-024
Zinc _o ^{M#}	100	82	65	118	193	194	-	-	mg/kg	A-T-024



.....

┫

#### Client Project Name: Gondar Gardens, London

Lab Sample ID	09/01125/1	09/01125/2	09/01125/3	09/01125/4	09/01125/5	09/01125/6	09/01125/7	09/01125/8		
Client Sample No				Sec.			Sec. 1			
Client Sample ID	PH1	PH1	PH2	PH3	PH6	PH7	PH1	BH1		
Depth to Top	0.30	0.70	0.40	0.50	0.30	0.30	2.20	3.00		
Depth To Bottom										
Date Sampled	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil		po
Sample Matrix Code	6	6 *****	3 ~~~	6 · · · · ·	6	6A	6	3	Units	Method ref
Speciated TPH										
Ali >C5-C6 _A *	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	-		mg/kg	A-T-022s
Ali >C6-C8 _A *	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	mg/kg	A-T-022\$
Ali >C8-C10 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	mg/kg	A-T-022s
Ali >C10-C12 ₄ *	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		•	mg/kg	A-T-023s
Ali >C12-C16 _A [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	mg/kg	A-7-023s
Ali >C16-C21 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	• · · ·		mg/kg	A-T-023s
Ali >C21-C35 _A #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	mg/kg	A-T-023s
Total Aliphatics _A *	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	- 14 -		mg/kg	A+T-022+23s
Aro >C5-C7 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	mg/kg	A-T-022s
Aro >C7-C8 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	- -	mg/kg	A-T-022s
Aro >C8-C9 _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	mg/kg	A-T-022s
Aro >C9-C10 _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	1 <mark>.</mark> 1999	- 11 - 11	mg/kg	A-T-022s
Aro >C10-C12 _A [#]	2.0	2.4	2.4	3.6	1.7	2.0	-	-	mg/kg	A-T-023s
Aro >C12-C16 _A #	5.7	3.3	4.5	4.2	2.3	2.0	-	-	mg/kg	A-T-023s
Aro >C16-C21 _A *	13.3	0.9	0.5	1.2	1.2	<0.1	-	-	mg/kg	A-T-023s
Aro >C21-C35 _A *	8.7	<0.1	<0.1	<0.1	<0.1	<0.1	-		mg/kg	A-T-023s
Total Aromatics _A #	30	6.6	7.4	9.0	5.2	3.9	<b></b> .	-	mg/kg	A-T-022+23s
TPH (Ali & Aro) _A #	30	6.6	7.4	9 <b>.</b> 1	5.2	3.9	-		mg/kg	A-T-022+23s
BTEX - Benzene _A #	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	mg/kg	A-T-0225
BTEX - Toluene [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		-	mg/kg	A-T-922s
BTEX - Ethyl Benzene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	mg/kg	A-T-022s
BTEX - m & p Xylene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	•	· -	mg/kg	A-T-0223
BTEX - o Xylene _A [#]	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	mg/kg	A-T-022s
MTBE _A *	<0.01	<0.01	<0.01	0.01	0.01	<0.01	-	-	mg/kg	A-T-0225



Ξ

#### Client Project Name: Gondar Gardens, London

					Client	Project Ref	: 23283			
Lab Sample ID	09/01125/1	09/01125/2	09/01125/3	09/01125/4	09/01125/5	09/01125/6	09/01125/7	09/01125/8		
Client Sample No										
Client Sample ID	PH1	PH1	PH2	PH3	PH6	PH7	PH1	BH1		
Depth to Top	0.30	0.70	0.40	0.50	0.30	0.30	2.20	3.00		
Depth To Bottom										
Date Sampled	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09		-t
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	10	Method ref
Sample Matrix Code	6	6	3	6	6	6A	6	3	Units	Meth
PAH 16										
Acenapthene _A ^{M#}	0.13	0.04	0.01	0.11	<0.01	0.08	-	-	mg/kg	A-T-019s
Acenapthylene _A [#]	0.07	<0.01	<0.01	<0.01	<0.01	0.02	-	-	mg/kg	A-T-019s
Anthracene _A ^{M#}	1.67	0.14	<0.01	1.19	<0.01	0.25	-	-	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.93	0.01	0.02	0.22	<0.01	0.03	-	-	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	2.13	0.04	0.04	0.92	<0.01	0.34	-	-	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	1.04	0.05	0.02	0.26	<0.01	0.09	-	-	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	1.47	0.05	0.04	0.40	<0.01	0.43	-	-	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	1.31	0.07	0.02	0.57	<0.01	0.34	-	-	mg/kg	A-T-019s
Chrysene _A ^{M#}	4.16	0.12	0.05	1.80	<0.01	0.73	-	-	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	0.06	0.01	0.06	0.06	<0.01	0.16	-	-	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	9.08	0.14	0.02	4.20	0.01	1.57	-	-	mg/kg	A-T-019s
Fluorene _A ^{M#}	0.02	<0.01	<0.01	<0.01	<0.01	<0.01	-	-	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.53	0.08	0.07	0.06	<0.01	0.12	-	+	mg/kg	A-T-019s
Naphthalene _A ^{M#}	0.04	0.02	0.02	0.04	<0.01	0.07	· •	-	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	2.50	0.05	<0.01	1.80	<0.01	0.34	-	-	mg/kg	A-T-019s
Pyrene _A ^{M#}	8.04	0.37	0.02	3.87	<0.01	1.28	-	-	mg/kg	A-T-019s ·
Total PAH _A [#]	33.2	1.19	0.41	15.5	0.01	5.85	-	-	mg/kg	A-T-0195



. .

·---

## Client Project Name: Gondar Gardens, London Client Project Ref: 23283

Lab Sample ID	09/01125/9	09/01125/10	09/01125/11	09/01125/12				
Client Sample No								
Client Sample ID	BH1	BH1	BH1	BH1			1	
Depth to Top	6.00	9.00	15.00	19.90		 		
Depth To Bottom								
Date Sampled	17-Nov-09	17-Nov-09	17-Nov-09	17-Nov-09			1	ef
Sample Type	Soil	Soil	Soil	Soil			w	Method ref
Sample Matrix Code	3	3	3	3			Units	Meth
pH _D ^{M#}	8.3	8.7	8.9	9.1				A-T-031s
Sulphate BRE (water sol 2:1) ^{M#}	2.00	2.10	0.97	0.41			g/I	A-T-026s
Sulphate BRE (acid sol) _D ^{M#}	0.40	0.69	0.15	0.11			% w/w	A-T-028
Sulphur BRE (total) _D	0.12	0.71	0.42	1.41			% w/w	A-T-024

# APPENDIX G

Generic Assessment Criteria for Human Health With gardens



## <u>Generic Assessment Criteria for Human Health</u> <u>Residential Scenario – Private Gardens</u>

The human health generic assessment criteria (GAC) have been developed during a period of regulatory review and updating of the Contaminated Land Exposure Assessment (CLEA) project. Hence, the Environment Agency (EA) is in the process of publishing updated reports relating to the CLEA project and the GAC presented in this document may change to reflect these updates. This issue was prepared following the publication of soil guideline value reports and associated publications⁽¹⁾ for mercury, selenium, benzene, toluene, ethylbenzene and xylene in March 2009 plus arsenic and nickel in May 2009. Where available, the published soil guideline values (SGV)⁽¹⁾ have been used as GAC.

### 1. Model Selection

Soil assessment criteria (SAC) were calculated for compounds where SGV have not been published using CLEA v1.04. Groundwater assessment criteria (GrAC) protective of human health via the inhalation pathway were derived using the RBCA 1.3b model. RSK has updated the inputs within RBCA to reflect the UK guidance⁽²⁻⁵⁾. The SAC and GrAC collectively are termed GAC.

## 2. Conceptual Model

In accordance with EA Science Report SC050221/SR3⁽³⁾, the residential with private garden scenario considers risks to a female child between the ages of 0 and 6 years old. In accordance with Box 3.1, SR3⁽³⁾, the pathways considered for production of the SAC in the residential with gardens scenario are:

- Direct soil and dust ingestion;
- Consumption of homegrown produce;
- Consumption of soil attached to homegrown produce;
- Dermal contact with soil and indoor dust, and
- Inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

The pathway considered in production of the GrAC is the volatilisation of compounds from groundwater and subsequent vapour inhalation by residents whilst indoors. Figure 2 illustrates this linkage. Although the outdoor air inhalation pathway is also valid, this contributes little to the overall risks owing to the dilution in outdoor air.

Within RBCA, the solubility limit of the determinant restricts the extent of volatilisation, which in turn drives the indoor air inhalation pathway. Whilst the same restriction is not built into the CLEA model, the model output cells are flagged red where the soil saturation limit has been exceeded. In accordance with the SGV report for xylene⁽¹⁾, where the soil saturation or solubility limit has been exceeded the GAC has been set at this limit. It should be noted this is a highly conservative assumption. Unless free-phase product is present, concentrations of the chemical are unlikely to be present at sufficient concentration to result in an exceedance of the health criteria value (HCV).

### 3. Input Selection

Chemical data was obtained from EA Report SC050021/SR7⁽⁵⁾ and the health criteria values (HCV) from the UK TOX reports (published 2002 and 2009) where available.



For total petroleum hydrocarbons (TPH), HCV and chemical specific parameters were taken from the TPH Criteria Working Group (TPHCWG). Until further information is available regarding whether the TPH fractions should be considered cumulatively and/or additional data becomes available regarding background exposure, RSK has taken the conservative view that 50% exposure to TPH fractions is derived from background. Thus, the mean daily intake has been set at 50% of the toxicological data. Aromatic hydrocarbons C₅-C₈ were not modelled since benzene and toluene are being modelled separately. The aromatic C₈-C₉ hydrocarbon fraction comprises ethylbenzene, xylene and styrene. Since ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for this band has been taken from styrene. Owing to the lack of UK-specific data, default information in the RBCA model was used to evaluate methyl tertiary butyl ether (MTBE). No published UK data was available for 1,2,4- and 1,3,5-trimethylbenzene, so information was obtained from the US EPA. Toxicity reports were generated by RSK in line with guidance in CLR9⁽⁷⁾ for 14 of the 16 USEPA polycyclic aromatic hydrocarbons (PAH). RSK notes that CLR9⁽⁷⁾ has been withdrawn and these toxicity reports may need to be updated using additional references included within SR2⁽²⁾. However, the data in these documents is considered to remain valid since it broadly follows the approach outlined in SR2. Therefore, the HCV from these reports was used with the chemical data obtained from SR7⁽⁵⁾, where available.

RBCA uses toxicity data for the inhalation pathway in different units to the CLEA model and cannot consider separately the mean daily intake (MDI), occupancy periods or breathing rates. Therefore, the HCV was amended to take account of:

- Amendments to the MDI using Table 3.4 of SR2⁽²⁾;
- A child weighing 13.3kg (average of 0-6 year old female in accordance with Table 4.6 of SR3⁽³⁾) and breathing 11.85m³ (average daily inhalation rate for a 0-6yr old female in accordance with Table 4.14 of SR3⁽³⁾; and
- The 50% rule (for petroleum hydrocarbons, trimethylbenzenes and MTBE)⁽²⁾ where MDI data is not currently available but background exposure is considered important in the overall exposure.

### Physical Parameters

For the residential with private gardens scenario, the CLEA default building is a small two-storey terrace house with concrete ground bearing slab. The house is assumed to have a 100m² private garden consisting of lawn, flowerbeds and incorporating a 20m² plot for growing fruit and vegetables consumed by the residents. SR3⁽³⁾ notes this residential building type to be the most conservative in terms of protection from vapour intrusion. The building parameters are outlined in Table 5.

The parameters for a sandy loam soil type were used in line with SR3⁽³⁾. This includes a value of 6% for the percentage soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site specific risk assessments for this parameter, RSK has produced an additional set of SAC for an SOM of 1%.

For the GrAC, the depth to groundwater was taken as 2.5m based on RSK's experience of assessing the volatilisation pathway from groundwater.

## <u>4. GAC</u>

The SAC were produced using the input parameters in Tables 1 to 5 and the GrAC using input parameters in Table 6. The final selected GAC are presented by pathway in Table 7 and the combined GAC in Table 8.



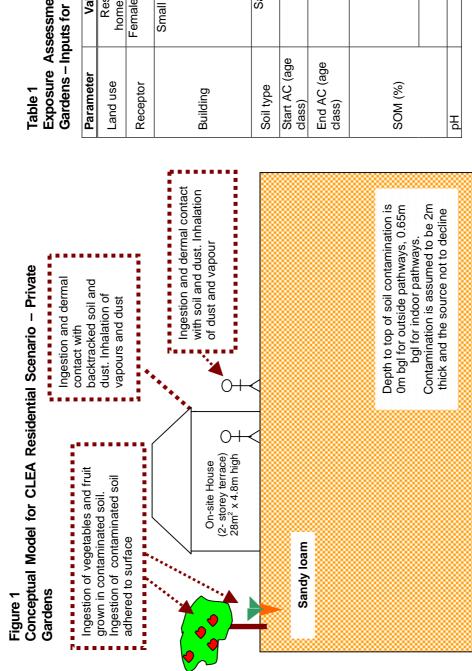



Table 1 Exposure Assessment Parameters for Residential Scenario - Private Gardene – Innute for RRCA Model

Gardens – In	Gargens - Inputs for RBCA Model	
Parameter	Value	Justification
Land use	Residential with homegrown produce	Chosen land use
Receptor	Female child age 1 to 6	Key generic assumption given in Box 3.1, SR3
	Small terraced house	Key generic assumption given in Box 3.1, report SC050021/SR3. Two storey small terraced house chosen as
Building		it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, SR3)
Soil type	Sandy Loam	Most common UK soil type (Section 4.3.1, From Table 3.1, SR3)
Start AC (age class)	1	Range of age classes corresponding to key generic assumption that the
End AC (age class)	Q	critical receptor is a young female child aged zero to six. From Box 3.1, report SC050021/SR3.
SOM (%)	9 (i)	Representative of sandy loamy soil according to EA Guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents'
	(ii) 1	To provide SAC for sites where SOM <6% as often observed by RSK
РН	7	Model default



#### Table 2 Desidential with Drivete Condense III

Residential with Private Gardens –Homegrown Produce Data for CLEA Model

	Con			te (g F Age Cl		BW	Dry Weight Conversion Factor	Homegrown Fraction (average)	Homegrown Fraction (high end)	Soil Ioading factor	Preparation correction factor
Name	1	2	3	4	5	6	g DW g ⁻¹ FW	-	-	g g ⁻¹ DW	-
Green vegetables	7.12	6.85	6.85	6.85	3.74	3.74	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	10.69	3.30	3.30	3.30	1.77	1.77	0.103	0.06	0.4	1.00E-03	1.00E+00
Tuber vegetables	16.03	5.46	5.46	5.46	3.38	3.38	0.21	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	1.83	3.96	3.96	3.96	1.85	1.85	0.058	0.06	0.4	1.00E-03	6.00E-01
Shrub fruit	2.23	0.54	0.54	0.54	0.16	0.16	0.166	0.09	0.6	1.00E-03	6.00E-01
Tree fruit	3.82	11.96	11.96	11.96	4.26	4.26	0.157	0.04	0.27	1.00E-03	6.00E-01
Justification		Т	able 4.	17, SR	3		Table 6.3, SR3	Table 4	.19, SR3	Table	6.3, SR3

#### GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH Residential Scenario – Private Gardens



# Table 3 Residential with Private Gardens – Land Use Data for CLEA Model

Deremeter	l Imit			Ag	e Class		
Parameter	Unit	1	2	3	4	5	6
EF (soil and dust ingestion)	day yr ⁻¹	180	365	365	365	365	365
EF (consumption of homegrown produce)	day yr ⁻¹	180	365	365	365	365	365
EF (skin contact, indoor)	day yr ⁻¹	180	365	365	365	365	365
EF (skin contact, outdoor)	day yr ⁻¹	180	365	365	365	365	365
EF (inhalation of dust and vapour, indoor)	day yr ⁻¹	365	365	365	365	365	365
EF (inhalation of dust and vapour, outdoor)	day yr ⁻¹	365	365	365	365	365	365
Justification				Tabl	e 3.1, SR3	·	
Occupancy period (indoor)	hr day ⁻¹	23	23	23	23	19	19
Occupancy period (outdoor)	hr day ⁻¹	1	1	1	1	1	1
Justification				Tabl	e 3.2, SR3		
Soil to skin adherence factor (indoor)	mg cm ⁻² day ⁻¹	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02	6.00E-02
Soil to skin adherence factor (outdoor)	mg cm ⁻² day ⁻¹	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00
Justification				Tabl	e 8.1, SR3	· · · · ·	
Soil and dust ingestion rate	g day⁻¹	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01	1.00E-01
Justification				Tabl	e 6.2, SR3		

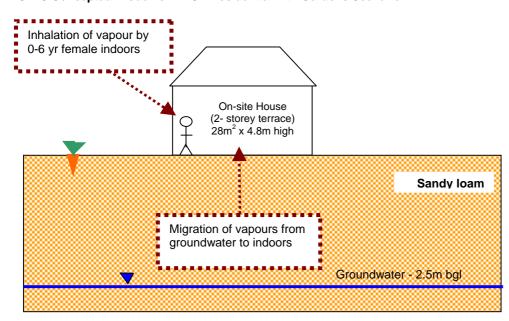
#### Table 4

#### Residential with Private Gardens – Receptor Data for CLEA Model

Parameter	Unit			Age	Class			Justification
Farameter	Unit	1	2	3	4	5	6	Justification
Body weight	kg	5.6	9.8	12.7	15.1	16.9	19.7	Table 4.6, SR3
Body height	m	0.7	0.8	0.9	0.9	1	1.1	
Inhalation rate	m ³ day ⁻¹	8.5	13.3	12.7	12.2	12.2	12.2	Table 4.14, SR3
Max exposed skin fraction (indoor)	$m^2 m^{-2}$	0.32	0.33	0.32	0.35	0.35	0.33	Table 4.8. SR3
Max exposed skin fraction (outdoor)	$m^2 m^{-2}$	0.26	0.26	0.25	0.28	0.28	0.26	

#### GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH Residential Scenario – Private Gardens




Table 5

#### Residential with Private Gardens – Soil and Building Inputs for CLEA Model

Residential with Filvate Galdens			
Parameter	Unit	Value	Justification
		ROPERTIES for	sandy loam
Porosity, total	cm ³ cm ⁻³	0.53	
Porosity, air filled	cm ³ cm ⁻³	0.20	
Porosity, water filled	cm ³ cm ⁻³	0.33	
Residual soil water content	cm ³ cm ⁻³	0.12	Default soil type is sandy loam, section 4.3.1, SR3.
Saturated hydraulic conductivity	cm s ⁻¹	3.56E-03	Parameters for sandy loam from Table 4.4, SR3
van Genuchten shape parameter (m)	-	3.20E-01	
Bulk density	g cm ⁻³	1.21	
Threshold value of wind speed at 10m	m s⁻¹	7.20	Default value taken from Section 9.2.2, SR3
Empirical function (F _x ) for dust model	-	1.22	Value taken from Section 9.2.2, SR3
Ambient soil temperature	к	283	Annual average soil temperature representative of UK surface soils. Section 4.3.1, SR3
		<b>DISPERSION MO</b>	DEL
Mean annual wind speed (10 m)	m s ⁻¹	5.00	Default value taken from Section 9.2.2, SR3
Air dispersion factor at height of 0.8 m	g m ⁻² s ⁻¹ per kg m ⁻³	2400	Values for a 0.01 ha site, appropriate to a residential land use in Newcastle (most
Air dispersion factor at height of 1.6 m	g m ⁻² s ⁻¹ per kg m ⁻³	0	representative city for UK). (from Table 9.1, SR3) Assumed child of 6 is not tall enough to reach 1.6m
Fraction of site with hard or vegetative cover	$m^2 m^{-2}$	0.75	Section 3.2.6, SR3 based on residential land use
BUILDING PROPE	RTIES for sr	nall terrace house	with ground-bearing floor slab
Building footprint	m ²	28	
Living space air exchange rate	hr⁻¹	0.50	From Table 3.3 and 4.21, SR3
Living space height (above ground)	m	4.8	
Living space height (below ground)	m	0.0	Assumed no basement
Pressure difference (soil to enclosed space)	Pa	3.1	
Foundation thickness	m	0.15	From Table 3.3, SR3
Floor crack area	cm ²	423	
Dust loading factor	µg m⁻³	50	Default value for a residential site taken from Section 9.3, SR3
		VAPOUR MOD	EL
Default soil gas ingress rate	cm ³ s ⁻¹	25	Generic flow rate, Section 10.3, SR3
Depth to top of source (beneath building)	cm	50	Section 3.2.6, SR3 states source is 50cm below building or 65cm below ground surface
Depth to top of source (no building)	cm	0	Section 10.2, SR3 assumes impact from 0-1m for outdoor inhalation pathway
Thickness of contaminant layer	cm	200	Model default for indoor air, Section 4.9, SR4
Time average period for surface emissions	years	6	Time period of a 0 to 6 year old, Box 3.5, SR3
User-defined effective air permeability	cm ²	3.05E-08	Calculated for sandy loam using equations in Appendix 1, SR3



#### Figure 2 GrAC Conceptual Model for RBCA Residential with Gardens Scenario



# Table 6Residential with Private Gardens RBCA Inputs

Parameter	Unit	Value	Justification
			RECEPTOR
Averaging time	Years	6	From Box 3.1, SR3
Receptor weight	kg	13.3	Average of CLEA 0-6 year old female data, Table 4.6, SR3
Exposure duration	Years	6	From Box 3.1, report, SR3
Exposure frequency	Days/yr	350	Weighted using occupancy period of 23 hours per day for 365 days of the year
		SOIL TY	PE – SANDY LOAM
Total porosity	-	0.53	
Volumetric water content	-	0.33	CLEA value for sandy loam. Parameters for sandy loam from
Volumetric air content	-	0.20	Table 4.4, SR3
Dry bulk density	g cm ⁻³	1.21	
Vertical hydraulic conductivity	cm s ⁻¹	3.56E-3	CLEA value for saturated conductivity of sandy loam, Table 4.4, SR3
Vapour permeability	m ²	3.05E-12	Calculated for sandy loam using equations in Appendix 1, SR3
Capillary zone thickness	m	0.1	Professional judgement
Fraction organic carbon	%	(i) 0.0348	Representative of sandy loam according to EA Guidance note dated January 2009 entitled Changes We Have Made to the CLEA Framework Documents
		(ii) 0.0058	To provide SAC for site's where SOM < 6% as often observed by RSK
			BUILDING
Building volume/area ratio	m	4.8	Table 3.3, SR3
Foundation area	m ²	28	· ·
Foundation perimeter	m	22	Calculated assuming building measures 7m x 4m to give 28m ² foundation area
Building air exchange rate	d ⁻¹	12	
Depth to bottom of foundation slab	m	0.15	Table 3.3, SR3
Foundation thickness	m	0.15	
Foundation crack fraction	-	0.0151	Calculated from floor crack area of 423 cm ² and building footprint of 28m ² in Table 4.21, SR3
Volumetric water content of cracks	-	0.33	Assumed equal to underlying soil type in assumption that cracks
Volumetric air content of cracks	-	0.2	become filled with soil over time. Parameters for sandy loam from Table 4.4, SR3
Indoor/outdoor differential pressure	Pa	3.1	From Table 3.3, SR3



## REFERENCES

1) Environment Agency, 31 March 2009 and May 2009. Science Report SC050021 / benzene SGV, toluene SGV, ethylbenzene SGV, xylene SGV, mercury SGV, selenium SGV, nickel SGV and arsenic SGV. Supplementary information for the derivation of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel and arsenic. Contaminants in soil: updated collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel and arsenic.

2) Environment Agency, January 2009. Science Report SC050021/SR2 Human Health Toxicological Assessment of Contaminants in Soil.

3) Environment Agency, January 2009. Science Report SC050021/SR3 Updated Technical Background to the CLEA Model.

4) Environment Agency, January 2009. Science Report SC050021/SR4 CLEA Software (Version 1.04) Handbook.

5) Environment Agency. 2008. Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values.

6) Environment Agency and DEFRA. Contaminants in Soil: Collation of Toxicological Data and Intake Values for Humans. Numbers 1–12, 14, 16–25.

7) Environment Agency. March 2002. CLR 9. Contaminants in soil: Collation of Toxicological Data and Intake Values for Humans.

Human Health Generic Assessment Criteria by Pathway for Residential Scenario	nt Criteri	ia by Pathway for	Residential Scena	ario - Private Gardens	dens					GROUP PLC
Compound		GrAC (mg/l)	SAC Appropriate Oral		to Pathway SOM 1% (mg/kg) Inhalation Combined	Soil Saturation Limit (mg/kg)	SAC Appropri Oral	SAC Appropriate to Pathway SOM 6% (mg/kg) Oral   Inhalation   Combined	DM 6% (mg/kg) Combined	Soil Saturation Limit (mg/kg)
Metals	1		L			4				4
Arsenic Cadmium	(b,c)		3.24E+01 6.21E+01	8.50E+01 4.25E+01	2.35E+01 2.93E+01	X NX	3.24E+01 6.21E+01	8.50E+01 4.25E+01	2.35E+01 2.93E+01	AR AR
Chromium (hexavalent)			2.78E+02	4.25E+01	3.76E+01	R	2.78E+02	4.25E+01	3.76E+01	R
Copper			8.96E+03	6.08E+03	4.74E+03	NR	8.96E+03	6.08E+03	4.74E+03	NR
Lead	(a)		4.50E+02			NR	4.50E+02			NR
Elemental Mercury (Hg ^v )	(b,d)	9.40E-03		1.70E-01		4.31E+00		1.02E+00		2.58E+01
Inorganic Mercury (Hg ²⁺ )	(q)		1.81E+02	2.55E+03	1.69E+02	NR	1.81E+02	2.55E+03	1.69E+02	NR
Methyl Mercury (Hg ⁴⁺ )	(q)	2.00E+01	1.39E+01	1.59E+01	7.40E+00	7.33E+01	1.39E+01	6.53E+01	1.14E+01	3.04E+02
Nickel	(p,d)		5.31E+02	1.27E+02	1.19E+02	AR A	5.31E+02	1.27E+02	1.19E+02	AR A
Selenium Zioo	(D,C)		3.51E+UZ			AX D	3.51E+UZ			AN DA
Zunc Cyanide	6		2.03E+04 2.66E+01	3.97E+00	3.68E+00	NR	2.66E+01	3.97E+00	3.68E+00	NN
Volatile Organic Compounds	141	2 605 -04	1 105 01	2 60F 04	7 075 00	1 225.02	1 805 04	1 046 -00	2 22E 04	1 71 - 00
Derizerie Toliene	(a) (4	2.00E+01	1.12E-UI 1.47E+02	6.26F±07	1 19F +02	8 69F+03	7 59F +02	3 14F+00	6.11F±02	4.7 IE +03 4 36F +03
Ethvlbenzene	(q)	2.60E+02	1.06E+02	0.20E+02 1.70E+02	6.52E+01	5.18E+02	5.70E+02	9.32E+02	3.54E+02	2.84E+03
Xylene - m		8.40E+01	2.02E+02	5.56E+01	4.36E+01	6.25E+02	1.09E+03	3.07E+02	2.40E+02	3.46E+03
Xylene - o	<u>a</u>	1.00E+02	1.85E+02	5.98E+01	4.52E+01	4.78E+02	9.96E+02	3.27E+02	2.46E+02	2.62E+03
Xylene - p		8.70E+01	1.91E+02	5.34E+01	4.17E+01	5.76E+02	1.02E+03	2.94E+02	2.28E+02	3.17E+03
Total xylene		8.40E+01	2.02E+02	5.56E+01	4.36E+01	6.25E+02	1.09E+03	3.07E+02	2.40E+02	3.46E+03
Methyl t-Butyl ether		2.20E+03	1.75E+00	1.84E+02	1.75E+00	1.66E+04	7.41E+00	3.70E+02	7.37E+00	3.34E+04
I richloroethene Totrochloroothono		1.80E+00 2 60E-00	2.83E+00 1.06E+01	1.10E-01	1.06E-01	1.54E+03 4 24E+03	1.40E+01 5 55E+01	5.11E-01	4.93E-01 7.46E-00	7.14E+03
1.1.1-Trichloroethane		2.60E+01	3.20E+02	6.33E+00	6.21E+00	1.43E+03	1.55E+03	2.84E+01	2.79E+01	6.39E+03
1,1,1,2Tetrachloroethane		1.40E+01	5.19E+00	1.08E+00	8.93E-01	2.60E+03	2.78E+01	5.83E+00	4.82E+00	1.40E+04
1,1,2,2-Tetrachloroethane		1.40E+01	2.70E+00	2.76E+00	1.37E+00	2.67E+03	1.30E+01	1.24E+01	6.34E+00	1.20E+04
Carbon Tetrachloride	_	5.50E-02	1.05E+00	1.81E-02	1.79E-02	1.52E+03	5.44E+00	8.99E-02	8.92E-02	7.54E+03
1,2-Dichloroethane		3.00E-01	3.06E-02	6.46E-03 5 42E 04	5.34E-03	3.41E+03	1.05E-01	1.60E-02	1.39E-02	8.43E+03
VIII JI O III JI O A-Trimethylhenzene		7 50E-02	3.39F+01	0.43E-04 7 42E-01	7 38F-01	1.03E±02	1.2.1C-02 1.87E+02	4 19F+00	3.00L-04 4.17F+00	5 855 +02
1,3,5-Trimethylbenzene		4.70E-02	1.45E+01	4.60E-01	4.56E-01	9.47E+01	7.94E+01	2.59E+00	2.56E+00	5.33E+02
Semi-Volatile Organic Compounds	s									
Acenaphthene	_	3.20E+00	2.05E+02	7.34E+00	7.08E+00	1.32E+02	7.49E+02	4.32E+01	4.09E+01	7.89E+02
Acenaphthylene		4.20E+00	1.23E+01	5.45E-01	5.22E-01	3.89E+02	5.32E+01	3.21E+00	3.03E+00	2.31E+03
Anthracene		2.10E-02	4.26E+04	1.39E+03	1.34E+03	3.60E+00	5.15E+04	7.40E+03	6.47E+03	2.16E+01
Benzo(a)anthracene		3.80E-03	1.42E+01	8.09E+00	5.16E+00	1.71E+00	1.5/E+01	2.05E+01	8.90E+00	1.03E+01
Berizo(b)ridoraritirerie Benzo(d h i)nervlene		2.00E-03 2.60E-04	2.35F+03	5.38F+04	9.23E +00	1.22E+00 1.87E-02		5.63F+04	2.30F+03	1.12E-00
Benzo(k)fluoranthene		8.00E-04	1.50E+01	2.66E+01	9.60E+00	6.87E-01	1.59E+01	2.91E+01	1.03E+01	4.12E+00
Chrysene		2 00E-03	1.37E+02	1.95E+02	8.03E+01	4.40E-01	1.55E+02	2.72E+02	9.90E+01	2.64E+00
Dibenzo(a,h)anthracene		6.00E-04	1.53E+00	2.37E+00	9.28E-01	3.93E-03	1.59E+00	2.85E+00	1.02E+00	2.36E-02
Fluoranthene		2.30E-01	1.12E+02	1.51E+01	1.33E+01	1.89E+01	1.50E+02	7.18E+01	4.85E+01	1.13E+02
Fluorene		1.90E+00	2.35E+03	8.85E+01	8.53E+01	1.53E+02	6.86E+03	5.23E+02	4.86E+02	9.13E+02
indeno( i,∠,3-ca)pyrene Phenanthrene	-	5 30E-04	2.39F+03	2.43E+01 1 17E+03	9.06E+00 7.85E+02	0.14E-02 7 06F+01	3.03E+03	2.80E+U1 6.33E+03	2 05E +03	3.00E-UI 4 23E+02
Pyrene		1 30E-01	1.08E+03	1.44E+02	1.27E+02	2.20E+00	1.49E+03	6.93E+02	4.73E+02	1.32E+01
Benzo(a)pyrene		3 80E-03	1.49E+00	2.62E+00	9.49E-01	9.11E-01	1.58E+00	2.90E+00	1.02E+00	5.46E+00
Naphthalene	, ,	1 90E+01	2.68E+01	1.64E+00	1.54E+00	7.64E+01	1.43E+02	9.27E+00	8.71E+00	4.32E+02
Phenol	(c)		4.40E+02		•	4.16E+04	1.98E+03			

Table 7

RSK GAC_2009_02

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL	FOR HUMAN HE/	ALTH - RESIDENTI	IAL WITH PRIVATE GARDENS	GARDENS					
Table 7 Human Health Generic Assessment Criteria by Pathway for Residential Scenario - Private Gardens	riteria by Pathway	for Residential Sc	enario - Private Gar	dens					GROUP PLC
	GrAC	SAC Appropriat	e	OM 1% (mg/kg)	Soil Saturation	SAC Appropri	SAC Appropriate to Pathway SOM 6% (mg/kg)	OM 6% (mg/kg)	Soil Saturation
Compound	(I/gm)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
Total Petroleum Hydrocarbons									
Aliphatic hydrocarbons EC ₅ -EC ₆	1.00E+01	8 97E+03	2.47E+01	2.47E+01	3.69E+02	4.31E+04	8.04E+01	8.03E+01	1.20E+03
Aliphatic hydrocarbons >EC ₆ -EC ₈	5 40E+00	1.52E+04	5.11E+01	5.10E+01	1.69E+02	6.62E+04	2.39E+02	2.39E+02	7.93E+02
Aliphatic hydrocarbons >EC ₈ -EC ₁₀	2.30E-01	3.14E+03	1.11E+01	1.11E+01	8.46E+01	4.12E+03	6.29E+01	6.27E+01	4.79E+02
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	3.40E-02	3.99E+03	5.36E+01	5.35E+01	5.02E+01	4.34E+03	3.18E+02	3.12E+02	2.98E+02
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆	7.60E-04	4.39E+03	2.48E+02	2.45E+02	2.22E+01	4.41E+03	1.49E+03	1.34E+03	1.33E+02
Aliphatic hydrocarbons >EC ₁₆ -EC ₂₁	(c) -	8.84E+04			9.15E+00	8.84E+04			5.49E+01
Aliphatic hydrocarbons >EC ₂₁ -EC ₃₅	(c) -	8.84E+04			6.45E+00	8.84E+04			3.87E+01
Aromatic hydrocarbons >EC ₈ -EC ₉	6.50E+01	1.66E+02	2.65E+02	1.33E+02	6.20E+02	8.50E+02	1.54E+03	7.02E+02	3.61E+03
Aromatic hydrocarbons >EC ₉ -EC ₁₀	7.40E+00	5.53E+01	1.77E+01	1.60E+01	6.20E+02	2.83E+02	1.03E+02	9.17E+01	3.61E+03
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂	2 50E+01	8.04E+01	9.74E+01	5.84E+01	3.72E+02	3.90E+02	5.74E+02	3.04E+02	2.19E+03
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆	5.80E+00	1.40E+02	5.05E+02	1.29E+02	1.70E+02	6.01E+02	3.00E+03	5.67E+02	1.01E+03
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	(c) -	8.84E+04			5.99E+01	8.84E+04			3.59E+02
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅		1.11E+03	,		4.82E+00	1.29E+03	1		2.89E+01
Notes: - Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or EC - equivalent carbon. GrAC - groundwater assessment criteria. SAC - soil assessment criteria. The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.	to low volatility of substr sment criteria. SAC - so upon whether the soil s	ince and therefore no pat il assessment criteria. #uration limit has been ex	hway, or an absence of toxicological data xœeded.	vicological data.					
	Calculated SAC e >10%. This Calculated SAC e	xceeds soil saturation lim shading has also been u xceeds soil saturation limi	Calculated SAC exceeds soil saturation limit and may significantly effect the interpretation of any exceedances since the contribution of the indoor and outdoor vapour pathway to total exposure is >10%. This shading has also been used for the RBCA output where the theoretical solubility limit has been exceeded. SAC/GAC is set at soil saturation/solubility limit.	ect the interpretation of a here the theoretical solut V significantly since the o	ny exceedances since the vility limit has been exceed ontribution of the indoor ar	contribution of the indo led. SAC/GrAC is set a rd outdoor vapour path	ior and outdoor vapour, it soil saturation/solubili wav to total exposure is	pathway to total exposurr ty limit. s <10%.	.s
	Calculated SAC d	Calculated SAC does not exceed the soil saturation limit.	aturation limit.			5			
For consistency where the theoretical solubility limit within RBCA has been exceeded in production of the GrAC, these cells have also been hatched red. The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994. SAC for TPH fractions, polyoyclic aromatic hydrocarbons, MTBE, BTEX and trimethybenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.11, SR3	within RBCA has been on soil organic matter (S bons, MTBE, BTEX and	exceeded in production o OM) (%) content. To obt i trimethylbenzene compo	f the GrAC, these cells hav ain SOM from total organic ounds were produced using	ve also been hatched rec ; carbon (TOC) (%) dividé ] an attenuation factor foi	3rAC, these cells have also been hatched red. OM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Lor were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour	8% TOC. DL Rowell Sc athway of 10 to reduce	oil Science: Methods ar conservatism associati	ld Applications, Longmar ed with the vapour	ıs, 1994.
<ul> <li>(a) GAC taken as former Soil Guideline Value owing to uncertainty regarding toxicological approach to be</li> <li>(b) GAC taken from the Environment Agency SGV reports published March and May 2009.</li> </ul>	g to uncertainty regardin eports published March	g toxicological approach t and May 2009.	to be adopted by the Environment Agency	onment Agency.					
(c) SAC for selenium, zinc, phenol, aliphatic and aromatic hydrocarbons >EC16 does not include inhalation pathway owing to absence of toxicity data. SAC for arsenic is only based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report.	omatic hydrocarbons >E rt.	C16 does not include inh	alation pathway owing to at	bsence of toxicity data.	SAC for arsenic is only bas	sed on oral contribution	(rather than combined)	owing to the relative sm	all contribution
(d) SAC for elemental mercury and nickel is based on the inhalation pathway only owing to an absence of	on the inhalation pathwa	y only owing to an absen	ce of toxicity for elemental	mercury andr in accorda	toxicity for elemental mercury andr in accordance with the SGV report for nickel.	sr nickel.			

#### GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH PRIVATE GARDENS



Table 8 Human Health Generic Assessment Criteria for Residential Scenario - Private Gardens

	GrAC for Groundwater	SAC for Soil SOM 1%	SAC for Soil SOM 6%
Compound	(mg/l)	(mg/kg)	(mg/kg)
Metals			
Arsenic	-	32	32
Cadmium	-	29	29
Chromium (hexavalent)	-	38	38
Copper	-	4,700	4,700
Lead	-	450	450
Elemental Mercury (Hg ⁰ )	0.009	0.17	1.0
norganic Mercury (Hg ²⁺ )	-	170	170
Methyl Mercury (Hg ⁴⁺ )	20	7.4	11
Nickel	-	130	130
Selenium	-	350	350
Zinc	-	25,000	25,000
Cyanide	-	3.7	3.7
(alatila Ormania Commonweda			
/olatile Organic Compounds Benzene	26	0.08	0.33
Foluene	1,900	120	610
Ethylbenzene	260	65	350
Kylene - m	84	44	240
Xylene - o	100	45	250
Kylene - p	87	42	230
Total xylene	84	44	240
Methyl t-Butyl ether	2,200	1.8	7.4
Trichloroethene	1.8	0.11	0.49
Tetrachloroethene	3.6	1.4	7.2
1,1,1-Trichloroethane	26	6.2	28
1,1,1,2Tetrachloroethane	14	0.89	4.8
1,1,2,2-Tetrachloroethane	14	1.4	6.3
Carbon Tetrachloride	0.06	0.02	0.09
1,2-Dichloroethane	0.3	0.005	0.01
Vinyl Chloride	0.02	0.0005	0.001
1,2,4-Trimethylbenzene	0.08	0.74	4.2
1,3,5-Trimethylbenzene	0.05	0.46	2.6
Semi-Volatile Organic Compounds			
Acenaphthene	3.2	7.1	41
Acenaphthylene	4.2	0.52	3.0
Anthracene	0.02	1,300	6,500
Benzo(a)anthracene	0.004	5.2	8.9
Benzo(b)fluoranthene	0.002	9.3	10
Benzo(g,h,i)perylene	0.0003	2,300	2,300
Benzo(k)fluoranthene	0.0008	9.6	10
Chrysene	0.002	80	99
Dibenzo(a,h)anthracene	0.0006	0.93	1.0
	0.23	13	<u>49</u> 490
Fluoranthene		85	490
Fluorene	1.9		40
Fluorene Indeno(1,2,3-cd)pyrene	0.0002	9.1	10
Fluorene ndeno(1,2,3-cd)pyrene Phenanthrene	0.0002 0.53	9.1 790	2,100
Fluorene Indeno(1,2,3-cd)pyrene Phenanthrene Pyrene	0.0002 0.53 0.13	9.1 790 130	2,100 470
Fluorene ndeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene	0.0002 0.53 0.13 0.004	9.1 790 130 0.95	2,100 470 1.0
Fluorene ndeno(1,2,3-cd)pyrene Phenanthrene Pyrene Senzo(a)pyrene Naphthalene	0.0002 0.53 0.13	9.1 790 130	2,100 470
Fluorene ndeno(1,2,3-cd)pyrene Phenanthrene Pyrene Senzo(a)pyrene Naphthalene	0.0002 0.53 0.13 0.004 19	9.1 790 130 0.95 1.5	2,100 470 1.0 8.7
Fluorene ndeno(1,2,3-cd)pyrene Phenanthrene Pyrene Benzo(a)pyrene Naphthalene Phenol	0.0002 0.53 0.13 0.004 19	9.1 790 130 0.95 1.5	2,100 470 1.0 8.7
Fluorene ndeno(1,2,3-cd)pyrene Phenanthrene Pyrene Banzo(a)pyrene Vaphthalene Phenol Fotal Petroleum Hydrocarbons	0.0002 0.53 0.13 0.004 19	9.1 790 130 0.95 1.5	2,100 470 1.0 8.7
Fluorene ndeno(1,2,3-cd)pyrene Phenanthrene Pyrene Banzo(a)pyrene Naphthalene Phenol Fotal Petroleum Hydrocarbons Niphatic hydrocarbons EC ₅ -EC ₆	0.0002 0.53 0.13 0.004 19 -	9.1 790 130 0.95 1.5 440	2,100 470 1.0 8.7 2,000
Fluorene           ndeno(1,2,3-cd)pyrene           Phenanthrene           >yrene           3enzo(a)pyrene           Naphthalene           Phenol           Fotal Petroleum Hydrocarbons           Aliphatic hydrocarbons ECs-EC6           Aliphatic hydrocarbons >EC6-EC8	0.0002 0.53 0.13 0.004 19 - 10 5.4	9.1 790 130 0.95 1.5 440 25 51	2,100 470 1.0 8.7 2,000 80 240
Fluorene           ndeno(1,2,3-cd)pyrene           Phenanthrene           >yrene           3enzo(a)pyrene           Naphthalene           Phenol           Total Petroleum Hydrocarbons           Niphatic hydrocarbons ECs-EC6           Niphatic hydrocarbons >ECg-EC8           Niphatic hydrocarbons >EC6-EC8           Niphatic hydrocarbons >EC6-EC8	0.0002 0.53 0.13 0.004 19 - - 10 5.4 0.23	9.1 790 130 0.95 1.5 440 25 51 11	2,100 470 1.0 8.7 2,000 80 240 63
Fluorene         ndeno(1,2,3-cd)pyrene         Phenanthrene         >yrene         3enzo(a)pyrene         Naphthalene         Phenol         Fotal Petroleum Hydrocarbons         Aliphatic hydrocarbons $EC_5$ - $EC_6$ Aliphatic hydrocarbons > $EC_6$ - $EC_8$ Aliphatic hydrocarbons > $EC_6$ - $EC_10$ Aliphatic hydrocarbons > $EC_6$ - $EC_{10}$	0 0002 0.53 0.13 0.004 19 - 10 5.4 0.23 0.03	9.1 790 130 0.95 1.5 440 25 51 11 50	2,100 470 1.0 8.7 2,000 80 240 63 <b>300</b>
Fluorene         ndeno(1,2,3-cd)pyrene         Phenanthrene         Pyrene         Benzo(a)pyrene         Naphthalene         Phenol         Fotal Petroleum Hydrocarbons         Aliphatic hydrocarbons EC ₆ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₆ -EC ₁₀ Aliphatic hydrocarbons >EC ₆ -EC ₁₀ Aliphatic hydrocarbons >EC ₆ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	0 0002 0.53 0.13 0.004 19 - - 10 5.4 0.23 0.03 0.008	9.1 790 130 0.95 1.5 440 25 51 11 50 22	2,100 470 1.0 8.7 2,000 80 240 63 300 130
Fluorene         ndeno(1,2,3-cd)pyrene         Phenanthrene         Pyrene         Banzo(a)pyrene         Naphthalene         Phenol         Fotal Petroleum Hydrocarbons         Aliphatic hydrocarbons EC ₅ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₆ -EC ₁₀ Aliphatic hydrocarbons >EC ₆ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆	0 0002 0.53 0.13 0.004 19 - 10 5.4 0.23 0.03	9.1 790 130 0.95 1.5 440 25 51 11 50	2,100 470 1.0 8.7 2,000 80 240 63 <b>300</b>
Fluorene         ndeno(1,2,3-cd)pyrene         Phenanthrene         Pyrene         Banzo(a)pyrene         Naphthalene         Phenol         Fotal Petroleum Hydrocarbons         Aliphatic hydrocarbons EC ₅ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₆ -EC ₁₀ Aliphatic hydrocarbons >EC ₆ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂ Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆	0 0002 0.53 0.13 0.004 19 - - 10 5.4 0.23 0.03 0.008	9.1 790 130 0.95 1.5 440 25 51 11 50 22	2,100 470 1.0 8.7 2,000 80 240 63 300 130
Fluorene ndeno(1,2,3-cd)pyrene Phenanthrene Pyrene Banzo(a)pyrene Naphthalene Phenol Fotal Petroleum Hydrocarbons Aliphatic hydrocarbons $>C_6-EC_6$ Aliphatic hydrocarbons $>EC_6-EC_8$ Aliphatic hydrocarbons $>EC_6-EC_10$ Aliphatic hydrocarbons $>EC_10-EC_{12}$ Aliphatic hydrocarbons $>EC_{10}-EC_{12}$ Aliphatic hydrocarbons $>EC_{10}-EC_{12}$ Aliphatic hydrocarbons $>EC_{10}-EC_{12}$ Aliphatic hydrocarbons $>EC_{10}-EC_{12}$ Aliphatic hydrocarbons $>EC_{10}-EC_{12}$ Aliphatic hydrocarbons $>EC_{10}-EC_{21}$ Aliphatic hydrocarbons $>EC_{10}-EC_{21}$	0.0002 0.53 0.13 0.004 19 - - 10 5.4 0.23 0.03 0.0008 -	9.1 790 130 0.95 1.5 440 25 51 11 50 22 88,000	2,100 470 1.0 8.7 2,000 80 240 63 300 130 88,000
Fluorene         ndeno(1,2,3-cd)pyrene         Phenanthrene         Pyrene         Benzo(a)pyrene         Naphthalene         Phenol         Total Petroleum Hydrocarbons         Aliphatic hydrocarbons $EC_6 \cdot EC_6$ Aliphatic hydrocarbons > $EC_6 \cdot EC_6$ Aliphatic hydrocarbons > $EC_6 \cdot EC_6$ Aliphatic hydrocarbons > $EC_6 \cdot EC_10$ Aliphatic hydrocarbons > $EC_1 \cdot EC_{12}$ Aliphatic hydrocarbons > $EC_1 \cdot EC_{21}$ Aliphatic hydrocarbons > $EC_1 \cdot EC_{35}$ Aromatic hydrocarbons > $EC_8 \cdot EC_9$	0.0002 0.53 0.13 0.004 19 - - 10 5.4 0.23 0.03 0.008 - - - 65	9.1 790 130 0.95 1.5 440 25 51 11 50 22 88,000 88,000 130	2,100 470 1.0 8.7 2,000 80 240 63 300 130 88,000 88,000 88,000 700
Fluorene         ndeno(1,2,3-cd)pyrene         Phenanthrene         Pyrene         Benzo(a)pyrene         Naphthalene         Phenol         Total Petroleum Hydrocarbons         Aliphatic hydrocarbons $EC_6$ - $EC_6$ Aliphatic hydrocarbons > $EC_6$ - $EC_6$ Aliphatic hydrocarbons > $EC_6$ - $EC_1$ Aliphatic hydrocarbons > $EC_6$ - $EC_{10}$ Aliphatic hydrocarbons > $EC_1$ - $EC_{12}$ Aliphatic hydrocarbons > $EC_1$ - $EC_{12}$ Aliphatic hydrocarbons > $EC_1$ - $EC_{12}$ Aliphatic hydrocarbons > $EC_1$ - $EC_{21}$ Aliphatic hydrocarbons > $EC_1$ - $EC_{21}$ Aliphatic hydrocarbons > $EC_2$ - $EC_{35}$ Aromatic hydrocarbons > $EC_8$ - $EC_9$ Aromatic hydrocarbons > $EC_9$ - $EC_{10}$	0.0002 0.53 0.13 0.004 19 - - 10 5.4 0.23 0.03 0.008 - - - 65 7.4	9.1 790 130 0.95 1.5 440 25 51 11 50 22 88,000 88,000 130 16	2,100 470 1.0 8.7 2,000 80 240 63 300 130 88,000 88,000 88,000 700 92
Fluorene         Indeno(1,2,3-cd)pyrene         Phenanthrene         Pyrene         Benzo(a)pyrene         Naphthalene         Phenol         Total Petroleum Hydrocarbons         Aliphatic hydrocarbons $EC_6$ - $EC_6$ Aliphatic hydrocarbons > $EC_6$ - $EC_6$ Aliphatic hydrocarbons > $EC_6$ - $EC_1$ Aliphatic hydrocarbons > $EC_6$ - $EC_1$ Aliphatic hydrocarbons > $EC_6$ - $EC_1$ Aliphatic hydrocarbons > $EC_1$ - $EC_1$ Aliphatic hydrocarbons > $EC_1$ - $EC_1$ Aliphatic hydrocarbons > $EC_1$ - $EC_2$ Aliphatic hydrocarbons > $EC_1$ - $EC_2$ Aliphatic hydrocarbons > $EC_1$ - $EC_2$ Aliphatic hydrocarbons > $EC_2$ - $EC_3$ Aromatic hydrocarbons > $EC_8$ - $EC_9$ Aromatic hydrocarbons > $EC_9$ - $EC_{10}$ Aromatic hydrocarbons > $EC_1$ - $EC_1$	0.0002 0.53 0.13 0.004 19 - 10 5.4 0.23 0.03 0.0008 - - 65 7.4 25	9.1 790 130 0.95 1.5 440 25 51 11 50 22 88,000 88,000 130 16 58	2,100 470 1.0 8.7 2,000 80 240 63 300 130 88,000 88,000 700 92 300
Fluorene         Indeno(1,2,3-cd)pyrene         Phenanthrene         Pyrene         Benzo(a)pyrene         Naphthalene         Phenol         Total Petroleum Hydrocarbons         Aliphatic hydrocarbons $EC_6$ - $EC_6$ Aliphatic hydrocarbons > $EC_6$ - $EC_6$ Aliphatic hydrocarbons > $EC_6$ - $EC_1$ Aliphatic hydrocarbons > $EC_6$ - $EC_1$ Aliphatic hydrocarbons > $EC_6$ - $EC_1$ Aliphatic hydrocarbons > $EC_1$ - $EC_1$ Aliphatic hydrocarbons > $EC_1$ - $EC_1$ Aliphatic hydrocarbons > $EC_1$ - $EC_2$ Aliphatic hydrocarbons > $EC_1$ - $EC_2$ Aliphatic hydrocarbons > $EC_1$ - $EC_2$ Aliphatic hydrocarbons > $EC_2$ - $EC_3$ Aromatic hydrocarbons > $EC_9$ - $EC_1$ Aromatic hydrocarbons > $EC_1$ - $EC_1$ Aromatic hydrocarbons > $EC_1$ - $EC_1$ Aromatic hydrocarbons > $EC_1$ - $EC_1$	0.0002 0.53 0.13 0.004 19 - - 10 5.4 0.23 0.03 0.008 - - - 65 7.4	9.1 790 130 0.95 1.5 440 25 51 11 50 22 88,000 88,000 130 16	2,100 470 1.0 8.7 2,000 80 240 63 300 130 88,000 88,000 700 92 300 570
Fluorene         ndeno(1,2,3-cd)pyrene         Phenanthrene         Pyrene         Benzo(a)pyrene         Naphthalene         Phenol <b>fotal Petroleum Hydrocarbons</b> Aliphatic hydrocarbons ECg-EC6         Aliphatic hydrocarbons >ECg-EC6         Aliphatic hydrocarbons >ECg-EC10         Aliphatic hydrocarbons >ECg-EC12         Aliphatic hydrocarbons >EC10-EC12         Aliphatic hydrocarbons >EC21-EC16         Aliphatic hydrocarbons >EC21-EC21         Aliphatic hydrocarbons >EC21-EC35         Aromatic hydrocarbons >EC9-EC10         Aromatic hydrocarbons >EC9-EC10         Aromatic hydrocarbons >EC10-EC12	0.0002 0.53 0.13 0.004 19 - 10 5.4 0.23 0.03 0.0008 - - 65 7.4 25	9.1 790 130 0.95 1.5 440 25 51 11 50 22 88,000 88,000 130 16 58	2,100 470 1.0 8.7 2,000 80 240 63 300 130 88,000 88,000 700 92 300

-' Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data. EC - equivalent carbon. GrAC - groundwater assessment criteria. SAC - soil assessment criteria.

The SAC for organic compounds are dependent on Soil Organic Matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, polycyclic aromatic hydrocarbons, MTBE, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3.

SAC for aliphatic C10-C12 and C12-C16 is taken as soil saturation limit in acordance with CLEA. For consistency with CLEA, the GrAC for aliphatic and aromatic C12-C16 hydrocarbons and all PAH (acenaphthylene) has been set as the theoretical solubility limit.

Calculated SAC exceeds soil saturation limit (SSL), thus SSL taken as SAC in line with recently published SGV. For consistency where the GrAC exceeds the solubility limit, GrAC has been set at the solubility limit. These are highly conservative since concentrations of the chemical are very unlikely to be at sufficient concentration to result in an exceedance of the health criteria value at the point of exposure (i.e. indoor air) provided free-phase product is absent.

# APPENDIX H

Generic Assessment Criteria for Phytotoxic Effects, Pipelines and Controlled Waters



## GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS, PIPELINES AND CONTROLLED WATERS

This appendix presents the generic assessment criteria (GAC) that RSK considers are suitable for assessing risks to:

- Vegetation via the uptake of phytotoxic determinants through plant roots;
- Water supply pipes constructed using conventional pipe materials, i.e. polyethylene; and
- Controlled waters.

The GAC for each of these receptors is discussed in turn.

#### PHYTOTOXIC DETERMINANTS TO FACILITATE HEALTHY PLANT GROWTH

Copper and zinc can inhibit plant growth but are not normally hazardous to human health. The GAC for this pollutant linkage have been taken from Department of the Environment Publication, Code of Practice for Agricultural Use of Sewage Sludge, 1996. The GAC for the phytotoxic determinants are presented in Table A1. The table also includes nickel since this is also phytotoxic determinant and the Soil Guideline Value (SGV which is protective of human health) for a commercial (5000mg/kg) or residential without plant uptake (75mg/kg) is greater than the GAC to protect plant growth in acidic soil. Therefore, the SGV may not be suitably protective of the phytotoxic effects pathway.

Determinant		Generic Assessm	ent Criteria (mg/k	(g)
	pH 5.0 < 5.5	pH 5.5 < 6.0	pH 6.0 < 7.0	pH >7.0
Zinc	200	200	200	300
Copper	80	100	135	200
Nickel	50	60	75	110

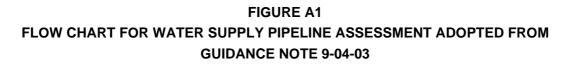
Table A1: Generic Assessment Criteria for Phytotoxic Determinants

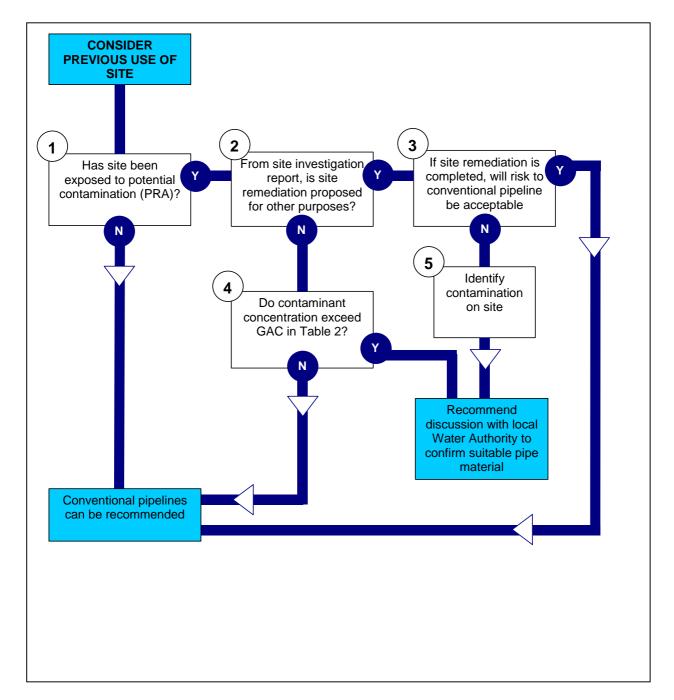
#### WATER SUPPLY PIPES

Risks to water supply pipes have been assessed in accordance with the Water Regulations Advisory Scheme Information and Guidance Note 9-04-03, dated October 2002 and the flow chart included as Figure A1 in this appendix.

The regulations include a requirement to use only suitable materials when laying water pipes and laying water pipes without protection is not permitted at contaminated sites. The water supplier has a statutory duty to enforce the regulations. Therefore, this assessment is a guide, the results of which should be checked with the water supplier.

Since water supply pipes are typically laid at a minimum depth of 750mm below finished ground levels, sample results from depths between 0.5m and 1.5m below finished level are generally





considered suitable for assessing risks to water supply. Samples outside these depths can be used providing the strata is the same as that in which water supply pipes are likely to be located. The GAC for this linkage are recorded in Table A2 and are based on recommendations of the 'Foundation for Water Research Guidance Note, FR0448: Laying Potable Water Pipelines in Contaminated Ground, 1994'. Owing to the number of caveats and lack of research into contaminants that could affect water supply, the water industry has undertaken research on a project entitled 'Pipe Materials Selection and Specification for use in Contaminated Land'. This document will be used to update the GAC for this pathway once available.

CONTAMINANT	GAC (mg/kg dried soil)
Corrosion	
Sulphate (SO ₄ )	2000
Sulphur (S)	5000
Sulphide	250
рН	Less than pH5
	Greater than pH8
Toxic Substances	
Antimony(Sb)	10
Arsenic (As)	10*
Cadmium(Cd)	3
Chromium (hexavalent)	25
(Cr)	
Chromium (total) (Cr)	600
Cyanide (free) (CN)	25*
Cyanide (complexed)	250*
(CN)	
Lead (Pb)	500
Mercury (Hg)	1
Selenium(Se)	3
Thiocyanate (SCN)	50
Organic Contaminants	
Coal Tar	50
Cyclohexane extractable	50
Phenol	5
Polycyclic Aromatic	50
Hydrocarbons	
Toluene extractable	50
Petroleum Hydrocarbons	50
Notes: * denotes 'it is not	recommended that water pipes should be laid in sites where these
substances are identified of	r suspected'.

Table A2: Generic Assessment Criteria for Water Supply Pipes









#### CONTROLLED WATERS

The GAC for controlled waters are presented in Table A3. In line with the Environment Agency's Remedial Targets Methodology dated December 2006, the GAC for controlled waters are termed 'target concentrations'.

The target concentration can be derived by several means with consideration to:

- Whether the substance is classified as List I or List II substance by the EU under the Groundwater Directive 80/68/EEC;
- Background concentrations in the aquifer; and
- Published guidance such as Environmental Quality Standards that are protective of ecology or The Water Supply (Water Quality) Regulations 2001 that are protective of drinking water.

A list of target concentrations considered suitable to assess risks to major aquifers and minor aquifers are presented in Table A3. Those for a major aquifer are taken from the UK Water Supply (Water Quality) Standards where possible owing to the possibility of a drinking water supply being within an influencing distance from the site or the possibility of one being installed. The target concentrations for a minor aquifer are generally taken as the freshwater Environmental Quality Standards where available owing to groundwater in minor aquifers commonly providing baseflow to surface watercourses.

	Target Conc	entrations (mg/l)
Determinant	Major Aquifer/Source	Minor Aquifer/Surface
	Protection Zone	Watercourse
Metals		
Arsenic	0.01 ⁽¹⁾	0.05 ⁽⁷⁾
Cadmium	0.005 ⁽¹⁾	0.005 ⁽⁷⁾
Chromium (total)	0.05 ⁽¹⁾	0.005, 0.01, 0.02, 0.02, 0.05,
		0.05 ⁽⁸⁾
Copper	2.0 ⁽¹⁾	0.001, 0.006, 0.01, 0.01, 0.01
		0.028 ⁽⁸⁾
Lead	0.025 ⁽¹⁾	0.004, 0.01, 0.01, 0.02, 0.02,
		0.02 ⁽⁸⁾
Mercury	0.001 ⁽¹⁾	0.001 ⁽⁷⁾
Selenium	0.01 ⁽¹⁾	0.01 ^(1,12)
Nickel	0.02 ⁽¹⁾	0.05, 0.1, 0.15, 0.15, 0.2,
		0.2 ⁽⁸⁾
Zinc	5 ⁽²⁾	0.008, 0.05, 0.075, 0.075,
		0.075, 0.125 ⁽⁸⁾

Table A3: Target	<b>Concentrations for</b>	Controlled Waters
Tuble / Willinger		

#### LINDEN HOMES LTD GONDAR GARDENS, LONDON, NW6 1EW GEO-ENVIRONMENTAL SITE ASSESSMENT



Chlorinated Solvents		
Trichloroethene	0.01 ⁽¹⁾	0.01 ⁽⁷⁾
Tetrachloroethene		0.01 ⁽⁷⁾
1,1,1-Trichloroethane	0.0001 ⁽³⁾	0.1 ⁽⁷⁾
1,1,2-Trichloroethane	0.0001 ⁽³⁾	0.4 ⁽⁷⁾
Carbon Tetrachloride	0.003 ⁽¹⁾	0.012 ⁽⁷⁾
1,2-Dichloroethane	0.003 ⁽¹⁾	0.01 ⁽⁷⁾
Vinyl Chloride	0.0005 ⁽¹⁾	0.0005 ^(1,12)
Trihalomethanes	0.1 ⁽⁴⁾	0.1 ^(4,12)
Chloroform (one of the	-	0.012 ⁽⁷⁾
trihalomethanes included above)		
Polycyclic Aromatic Hydrocarbor	าร	
Acenaphthene	0.0058 ^(9,13)	0.0058 ⁽⁹⁾
Acenaphthylene	0.0058 ^(9,13)	0.0058 ⁽⁹⁾
Anthracene	0.000012 ^(9,13)	0.000012 ⁽⁹⁾
Benzo(a)anthracene	0.000018 ^(9,13)	0.000018 ⁽⁹⁾
Benzo(b)fluoranthene	0.0001 ⁽¹⁾	0.000014 ⁽⁹⁾
Benzo(k)fluoranthene		0.000014 ⁽⁹⁾
Benzo(g,h,i)perylene		0.00002 ⁽⁹⁾
Indeno(1,2,3-cd)pyrene		No data ⁽⁹⁾
Chrysene	0.00001 ^(9,13)	0.00001 ⁽⁹⁾
Dibenzo(a,h)anthracene	0.00001 ^(9,13)	0.00001 ⁽⁹⁾
Fluoranthene	0.00001 ^(9,13)	0.00001 ⁽⁹⁾
Fluorene	0.0021 ^(9,13)	0.0021 ⁽⁹⁾
Phenanthrene	0.003 ^(9,13)	0.003 ⁽⁹⁾
Pyrene	0.00004 ^(9,13)	0.00004 ⁽⁹⁾
Benzo(a)pyrene	0.00001 ⁽¹⁾	0.000015 ⁽⁹⁾
Naphthalene	0.01 ^(9,13)	0.01 ⁽⁷⁾
Petroleum Hydrocarbons		
Total Petroleum Hydrocarbons	0.01 ⁽²⁾	0.01 ^(2,10)
Benzene	0.001 ⁽¹⁾	0.03 ⁽⁷⁾
Toluene	0.004 ⁽³⁾	0.05 ⁽⁷⁾
Ethylbenzene	0.02 ^(8,13)	0.02 ⁽⁸⁾
Xylene	0.003 ⁽³⁾	0.03 ⁽⁷⁾
Methyl t-Butyl ether	0.015 ⁽⁶⁾	0.015 ^(6,12)
Pesticides and Herbicides		
Aldrin	0.00003 ⁽¹⁾	0.00001 ⁽⁷⁾
Dieldrin	0.00003 ⁽¹⁾	0.00003 ^(1,12)
Heptachlor	0.00003 ⁽¹⁾	0.00003 ^(1,12)
Heptachlor epoxide	0.00003 ⁽¹⁾	0.00003 ^(1,12)
Other pesticides	0.0001 ⁽¹⁾	0.0001 ^(1,12)
Total pesticides	0.0005 ⁽¹⁾	0.0005 ^(1,12)

#### LINDEN HOMES LTD GONDAR GARDENS, LONDON, NW6 1EW GEO-ENVIRONMENTAL SITE ASSESSMENT



Endrin	0.000005 ^(7,13)	0.000005 ⁽⁷⁾
Total DDT	0.000025 ^(7,13)	0.000025 ⁽⁷⁾
Azinphos - methyl	0.00001 ^(7,13)	0.00001 ⁽⁷⁾
Cyfluthrin	0.000001 ^(7,13)	0.000001 ⁽⁷⁾
Demeton	0.0005 ^(7,13)	0.0005 ⁽⁷⁾
Dichlorvos	0.000001 ^(7,13)	0.000001 ⁽⁷⁾
Dimethoate	0.001 ^(7,13)	0.001 ⁽⁷⁾
Endosulphan	0.000003 ^(7,13)	0.000003 ⁽⁷⁾
Fenitrothion	0.000001 ^(7,13)	0.000001 ⁽⁷⁾
Flucofuron	0.001 ^(7,13)	0.001 ⁽⁷⁾
Malathion	0.00001 ^(7,13)	0.00001 ⁽⁷⁾
Mevinphos	0.00002 ^(7,13)	0.00002 ⁽⁷⁾
Omethoate	0.00001 ^(7,13)	0.00001 ⁽⁷⁾
PCSDs	0.00005 ^(7,13)	0.00005 ⁽⁷⁾
Permethrin	0.00001 ^(7,13)	0.00001 ⁽⁷⁾
Sulcofuron	0.025 ^(7,13)	0.025 ⁽⁷⁾
Triazaphos	0.000005 ^(7,13)	0.000005 ⁽⁷⁾
Atrazine & Simazine	0.002 ^(7,13)	0.002 ⁽⁷⁾
Bentazone	0.5 ^(7,13)	0.5 ⁽⁷⁾
Linuron	0.002 ^(7,13)	0.002 ⁽⁷⁾
Mecoprop	0.02 ^(7,13)	0.02 ⁽⁷⁾
Trifluralin	0.0001 ^(7,13)	0.0001 ⁽⁷⁾
Miscellaneous		
Cyanide	0.05 ⁽¹⁾	0.05 ^(1,12)
Phenol	0.0005 ⁽²⁾	0.03 ⁽⁷⁾
Sodium	200 ⁽¹⁾	170 ⁽⁷⁾
Chloride	250 ⁽¹⁾	250 ⁽⁷⁾
Ammonium (as NH ₄₊ )	0.5 ⁽¹⁾	0.5 ^(1,12)
Ammonia (NH ₃ as N)	0.015 ^(7,13)	0.015 ⁽⁷⁾
Sulphate	250 ⁽¹⁾	400 ⁽⁷⁾
Iron	0.20 ⁽¹⁾	1 ⁽⁷⁾
Manganese	0.05 ⁽¹⁾	0.05 ^(1,12)
Aluminium	0.2 ⁽¹⁾	0.2 ^(1,12)
Nitrate (as NO ₃ )	50 ⁽¹⁾	50 ^(1,12)
Nitrite (as NO ₂ )	0.5 ⁽¹⁾	0.5 ^(1,12)



#### Notes

- 1. Statutory Instrument 2000 No 3184. The Water Supply (Water Quality) Regulations.
- 2. Statutory Instrument 1989 No 1147. The Water Supply (Water Quality) Regulations, 1989.
- Environment Agency. Minimum Reporting Values listed in Appendix 7 of Hydrogeological Risk Assessments for Landfills and the Derivation of Groundwater Control and Trigger Levels. LFTGN01. Note target concentration for xylenes is 0.003mg/l each for o-xylene and m/p xylene.
- 4. Statutory Instrument 1989 No 3184. The Water Supply (Water Quality) Regulations, 2000 sum of chloroform, bromoform, dibromochloromethane and bromodichloromethane.
- 5. Target concentration for Major Aquifer receptor taken as equal to target concentration for Minor Aquifer owing to absence of published guidance for PAH compounds other than those which are carcinogenic.
- 6. Environment Agency MTBE Guidance.
- 7. Freshwater Environmental Quality Standards.
- 8. Freshwater Environmental Quality Standards for all fish life (including game) and dependent upon hardness range. Hardness ranges are: 0-50mg/l CaCO₃, 50-100 mg/l CaCO₃, 100-150 mg/l CaCO₃, 150-200 mg/l CaCO₃, 200-250 mg/l CaCO₃ and >250 mg/l CaCO₃. The target concentrations included in Table 3 are listed in order of increasing calcium carbonate concentrations.
- Polycyclic Aromatic Hydrocarbons (PAH): Priorities for Environmental Quality Standard Development, WRc Plc, R&D Technical Report P45. 2002. Where Predicted No-Effect Concentration is below the laboratory method detection limit (LMDL) for chrysene, dibenzo(ah)anthracene and fluoranthene, the target concentration has been set at the LMDL of 0.00001mg/l.
- 10. Owing to hydrocarbons being List I substances, 0.01mg/I (DWS) should be used in the first instance against the total of the hydrocarbon bands. However, if the hydrocarbon concentrations measured in groundwater exceed this value, an alternative value of 0.05mg/I could be used providing it is justified based on the type of aquifer and distance to secondary receptors such as a stream. The value is taken as the lowest concentration in Statutory Instrument 1996 No. 3001 titled The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations, 1996.
- 11. Value for ethylbenzene taken from R&D Technical Report P2-115/TR4 Proposed Environmental Quality Standards for Ethylbenzene in Water.
- 12. Where a published target concentration considered suitable for use with a minor aquifer could not be found for certain substances such as selenium, the target concentration used for the major aquifer has been adopted.
- 13. Where a published target concentration considered suitable for use with a major aquifer could not be found for certain substances such as ethylbenzene, the target concentration used for the minor aquifer has been adopted.

'-' A target concentration for chloroform for a major aquifer is absent since it is one of the trihalomethane compounds. See note 4 above.

## **APPENDIX I**

**HAZWASTE Assessment Results** 

As empts (AsS), Cd (CdO), CrVI empts (FeCrO₄), Cu (Cu₂O), Inorg Hg empts (HgO), Pb empts (PsSO₂), H (McO₂), So empts (SeS) and Zn as ZnD. Also Ba (BsCO₃), Do empts (BeSO₂), Co (CoO), Mn (MrO₂) and Ma (McO₃)

HASWASTE. Envirolab's Contaminated Land Soil Hazardous Waste Assessment Tool. Envirolab, Units 7&8 Sandpits Business Park, Mattram Road, Hyde, Cheshire SK14 3AR. Dr Iain Hastock, BSc, PhD, CChem, MRSC.



Site Code and Name															
'P/WS/BH Jepth (m) "Invirolab reference	]	PH1 0.30	PH1 0.70	PH2 0.40	PH3 0.50	PH8 0.30	PH7 0.30								
Arsenic Ihromium Sopper .ead Nickel	]	mg/kg 12 0.1 32 74 45	22 24 47	18 16 36	55 201 33	43 215 50	49 367 31	mg/kg	mg/kg	mg/kg	mg/kg	mplag	mg/kg	mg/kg	mg/kg
Zinc Codmium Aercury Jeleolum	ĺ	100 0.47 2	82 5 0.5 0.25 2	65 0.25 2	118 i 0.5 4.20 2	193 5 0.5 0.36 2	194 5 0.5 0.64 2		123			1.23		1250	
Janum Berytlium Cobalt Aanganese Jolybdenum fotal USEPA 16 PAHs							3/21								
Naphthalene Acenaphthylene Acenaphthylene Jaurene Hananthrene withracene Filoranthene Pyrene Senzo(a)anthracene Ihrysene Ienzo(b)fluoranthene Ienzo(b)fluoranthene Ienzo(a)pyrene Indano(123cd)pyrene Jibenzo(ah)anthracene Intracene		0.04 0.07 0.13 0.02 2.50 1.67 9.08 8.04 0.93 4.16 1.04 1.31 2.13 0.53 0.06 1.47	0.02 0.04 0.05 0.14 0.37 0.01 0.37 0.01 0.12 0.05 0.07 0.05 0.07 0.04 0.08 0.01 0.05	0.01 0.01 0.01	0.11	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.06								
Ienzo())fluoranthene Benzene Tolsene Ethylbenzene Cylenes "rimethylbenzenes	]	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.01 0.01					N TON	No.		
Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4-Trichlorobenzene -Chlorotoluene -Chlorotoluene										1000		Sec.			
Oil is Waste Carcinogenic H7 Total TPH ¹ etrol or (C6-C10) Jiesal or (C10-C25) .ube Oil or (C25+) 1 6MRCH7 Carchegenic PAtis marke test (applicable to LRO sety	+1.000mg/kg +1.000mg/kg +10.000mg/kg +1.000mg/kg +1%	#DW/0	FOIVIO	#Div/0*	#DIV/IP	#DW/01	#Divio	EDIV/Or	FDIVICE	aD/v/0r	#Drvr@r	#DIV/01	#Dividr	ebiwa.	KDIV/07
Kerosene Gerosene Treosote Treosote pH Corrosive H8 (Initant H4)															
pH (soll) H (leachete) Ukall Reserve (sNaCHV100g) H4 Aball Reserve las H0 Aball Reserve las		7.9	8.1 8.1 8.1	58 58	8.1 6.1	7.6 7.6 7.6	8.3 8.3 8.3	00	D 0 0 0	0.0	00	00	00	00	00
Produces Toxic Gases H12 Total Sulphise Tree Cvaride CBs Total	*1,400mgAg *1,200mgAg													0.0	00
Phenol Cresols (ylenols I-Naphihol Resourcinol			1 100												
Asbestos Screen (enter Y or N)	H7×0.1%; H5×3%; H0×25%	30				20									and and
fazard Codes Initiant H4 Imitant H4 Harmful H5	Thresholds +10% +20% +25% +0.1%H5+7%	% 0.000 0.000 0.024	% 0.000 0.000 0.015	% 0.000 0.000 0.012	\$ 0.000 0.042	% 0.000 0.000 FVALUE!	% 0 000 0 000 0 005	\$ 0.000 0.000	\$ 0.000 0.000 0.000	5 000 0 000 0 000 0 0 000 0 0 000 0 0 0 0	\$ 0.000 0.000 0.000	% 0.000 0.000	% 0.000 0.000 0.000	% 0.000 0.000 0.000	N 000 0.000 0.000
"oxic H6 (Harmful H5) "oxic H6 (Harmful H5) Carcinogenic H7 Carcinogenic H7	H0+7% +3%H5+25% H0+25% +01% +1%	0.000 0.000 0.000	0.000	0.000	0 001 0 002 9 000 9 000 9 000	0.000	00000	0 000	0 000 0 000 0 000 0 000 0 000 0 000 0 000 0	0 000 0 000 0 000 0 000	0.000 0.000 0.000	0.000	0.000 0.000 0.000 0.000	0.000	0.000 0.000 0.000 0.000
Corrosive HB (Initiant H4) axis for Reproduction H10 axis for Reproduction H10 Mutagenic H11 Mutagenic H11	*53444<10%; HB×10% *0.5% *5% *5% *0.1% *0.1%	0.000 0.011 0.011 0.000 0.000	0 000 0 004 0 004 0 000 0 000	0.000 0.002 0.002 0.000 0.000	0 000 0 029 0 029 0 000 0 000	9.000 9.031 0.031 0.009 0.009	0 000 0 054 0 054 0 000 0 000	0 000 0 000 0 000 0 000 0 000	0 000 0 000 0 000 0 000 0 000	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0 000 0 000 0 000 0 000 0 000	0.000 0.000 0.000 0.000 0.000
Ecoloxic H14	*10	0.141	0.104	0 CO1	0.202	#VALUE!	0.302	0.000	0.000	0.000	0.000	0000	0 000	0.000	0.000

# APPENDIX J

Geotechnical Testing Results Certificates





SITE INVESTIGATION

SOIL, ROCK & MATERIAL TESTING

GEOTECHNICAL CONSULTANCY

CONTAMINATED

Nava RSK STATS Geoconsult Limited 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT

25th November 2009

#### **TESTING REPORT**

YOUR REF: 23283

SITE: GONDAR GARDENS, LONDON

CERTIFICATE NUMBER: 580876

DATE SAMPLES RECEIVED: 18th November 2009 DATE TESTING COMMENCED: 18th November 2009

DATE OF SAMPLE DISPOSAL: 25th December 2009

INSTRUCTIONS: Please carry out Moisture Content, Atterberg Limit, Quick Un-drained Triaxial and Oedometer tests on the samples provided.

Dear Nava,

I have pleasure in enclosing the test report for the above project that you submitted to us for testing.

Yours sincerely

Paul Kent Laboratory Manager

Enc.

18 FROGMORE ROAD HEMEL HEMPSTEAD HERTS HP3 9RT TEL: 01442 416660 FAX: 01442 437550 hemel@soils.co.uk www.soils.co.uk

> HEAD OFFICE: Bristo

BRANCH OFFICE: Castleford West yorkshire



Borehole	Depth (m)	Moisture Content (%)	Sample Description
BH1 / 1	1.30-1.60	29	Bright brown mottled brown sandy CLAY becoming less sandy with depth.
BH1 / 2	4.50-4.80	32	Brown CLAY with occasional gypsum.
BH1 / 3	7.50-7.90	31	Brown CLAY with occasional gypsum.
BH1 / 4	10.50-10.80	25	Very dark brown CLAY with occasional pockets of black silt and gypsum.
BH1 / 5	13.50-13.90	28	Very dark brown CLAY.
BH1 / 6	16.50-16.80	27	Very dark grey CLAY.
BH1 / 7	19.50-19.90	27	Very dark grey CLAY.
BH1 / 4	1.60	33	Brown CLAY with pockets of yellowish brown silty fine sand and some gypsum.
PH1 / 5	2.90-3.00	20	Brown mottled grey CLAY with occasional pockets of silty fine sand
PH2 / 3	2.00	24	Brown CLAY with some small pockets of silty fine sand and traces of gypsum.

Key to Gravel Sizes:

2 to 6mm fine -6 to 20mm medium -20 to 60mm coarse -

# SUMMARY OF SAMPLE DESCRIPTIONS AND MOISTURE CONTENT

Filename: 580876 / 01_SD.XLS

- mare: 25/17/2009

- Drawn by.-SC-

נוניגים ביושטיים ביואט אין אין אין דער גערער אין דער גערער אין דער גערער אין גערער גערער גערער גערער גערער גערע

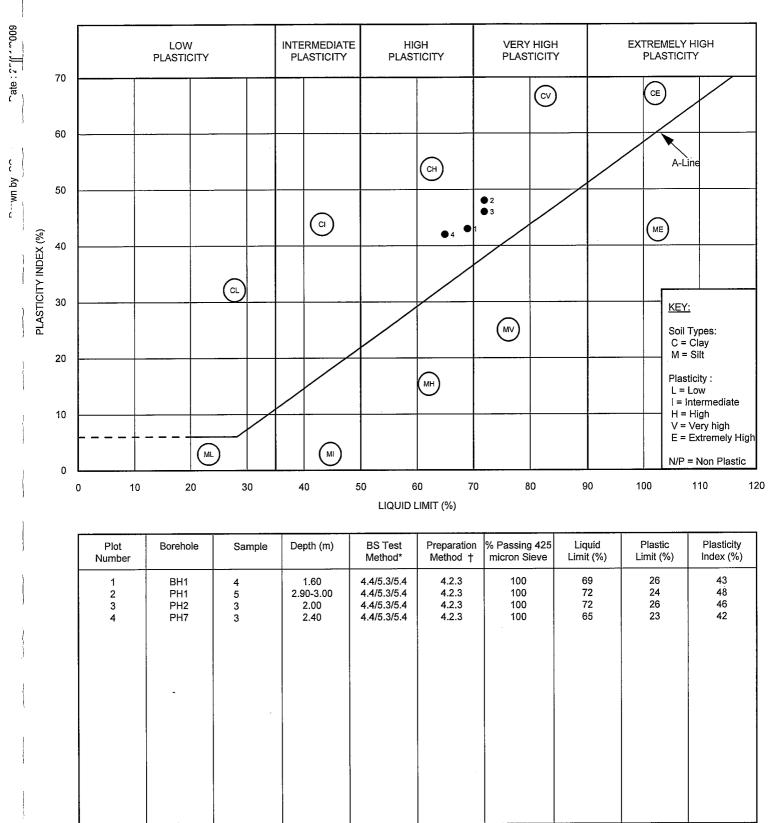
Filename: 580876 / 02_SD.XLS

remplate reader 4



Borehole	Depth (m)	Moisture Content (%)	Sample Description
PH7 / 3	2.40	25	Brown mottled grey CLAY with occasional pockets of silty fine sand.
		: : 	
	· · · ·		
	÷		
	L	L	accordance with BS 1377: Part 2: 1990: Clause 3

Moisture contents tested in accordance WITH BS 13/7 Part 2. 1990. Cla


Key to Gravel Sizes:

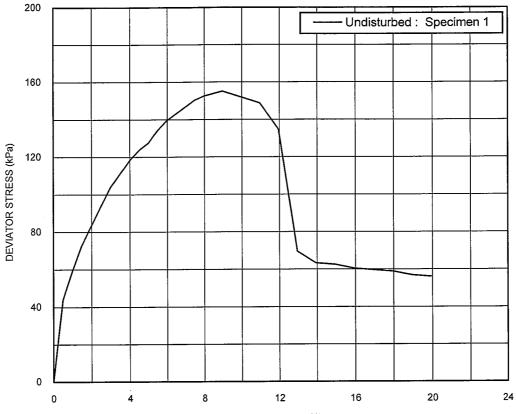
- 2 to 6mm fine -6 to 20mm medium -
- -20 to 60mm coarse

## SUMMARY OF SAMPLE DESCRIPTIONS AND MOISTURE CONTENT

.






*Tested in accordance with the following clauses of BS 1377:Part 2:1990: 4.3 - Cone Penetrometer Method 4.4 - One point Cone Penetrometer Method 4.5 - Casagrande Method 4.6 - One point Casagrande Method 5.3 - Plastic Limit Method

5.4 - Plasticity Index

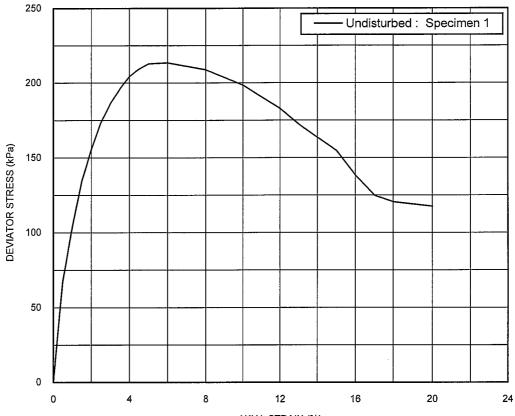
+Tested in accordance with the following clauses of BS 1377:Part 2:1990: 4.2.3 - Natural Soil 4.2.4 - Sieved Specimen

ATTERBERG LIMITS TEST RESULTS





AXIAL STRAIN (%)


Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	202.8
Sample diameter	mm	102.7
Membrane thickness	mm	0.24
Rate of strain	%/min	2.0
Bulk density	Mg/m³	1.98
Dry density	Mg/m ³	1.56
Moisture content	%	27
Failure Conditions		
Cell pressure	kPa	26
Membrane correction	kPa	0.5
Corrected deviator stress	kPa	155
Strain at failure	%	9.0
Undrained shear strength	kPa	78
Sample Details		Failure shape
Borehole B	H1	
Sample 1		
Depth (m)	.30	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

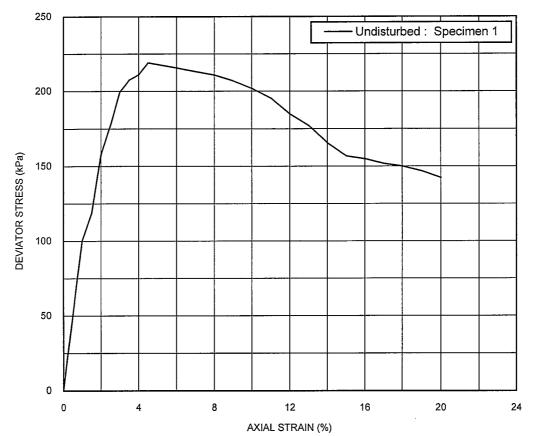
#### UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

D





AXIAL STRAIN (%)

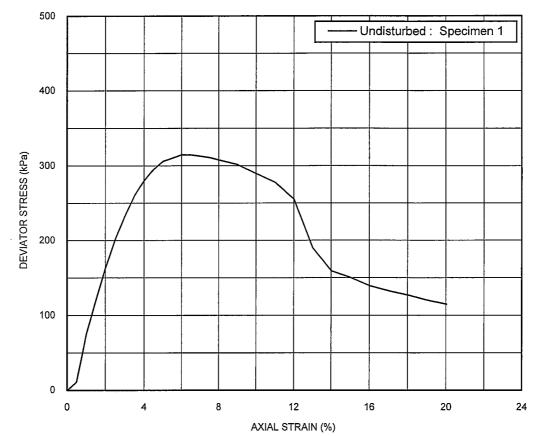

Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	210.0
Sample diameter	mm	102.4
Membrane thickness	mm	0.24
Rate of strain	%/min	2.0
Bulk density	Mg/m ³	1.96
Dry density	Mg/m ³	1.49
Moisture content	%	31
Failure Conditions		
Cell pressure	kPa	90
Membrane correction	kPa	0.4
Corrected deviator stress	kPa	214
Strain at failure	%	6.0
Undrained shear strength	kPa	107
Sample Details		Failure shape
Borehole :	BH1	
Sample	2	
Depth (m)	- 4.50	
		\

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

#### UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Certificate No: 580876



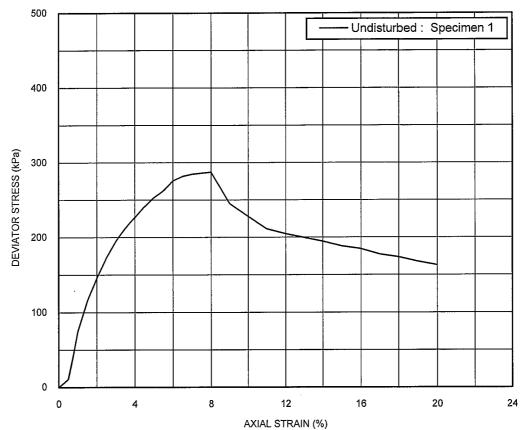



Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.8
Sample diameter	mm	102.7
Membrane thickness	mm	0.24
Rate of strain	%/min	2.0
Bulk density	Mg/m³	1.95
Dry density	Mg/m ³	1.48
Moisture content	%	32
Failure Conditions Cell pressure Membrane correction Corrected deviator stress	kPa kPa kPa	150 0.3 219
Strain at failure	%	4.5
Undrained shear strength	kPa	110
Sample : :	BH1 3 7.50	Failure shape

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

#### UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST





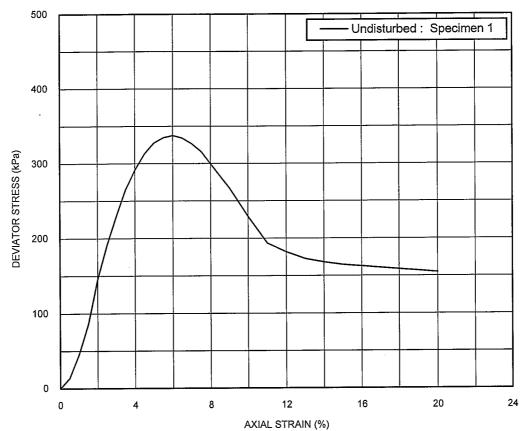

Initial Conditions Specimen 1 <u>Units</u> Sample length 209.6 mm Sample diameter 102.5 mm Membrane thickness 0.24 mm Rate of strain 2.0 %/min Bulk density Mg/m³ 2.01 1.59 Dry density Mg/m³ Moisture content % 26 Failure Conditions Cell pressure kPa 210 Membrane correction kPa 0.4 Corrected deviator stress 314 kPa Strain at failure 6.0 % 157 Undrained shear strength kPa Sample Details Failure shape Borehole : BH1 Sample : 4 Depth (m) : 10.50

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

#### UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST






Initial Conditions	Units	Specimen 1
		210.2
Sample length	mm	
Sample diameter	mm	102.6
Membrane thickness	mm	0.24
Rate of strain	%/min	2.0
Bulk density	Mg/m³	1.98
Dry density	Mg/m ³	1.55
Moisture content	%	28
Failure Conditions		
Cell pressure	kPa	270
Membrane correction	kPa	0.5
Corrected deviator stress	kPa	287
Strain at failure	%	8.0
Undrained shear strength	kPa	144
Sample Details		Failure shape
Borehole . F	3H1	1
Sample		
Depth (m)	-	
F - · · · · · ·	13.50	

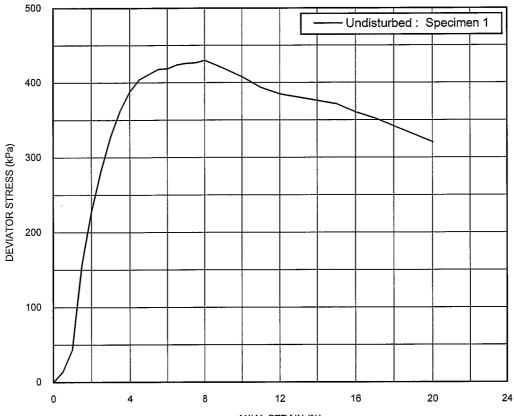
Tested in accordance with BS 1377: Part 7: 1990: Clause 8

#### UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Certificate No: 580876






···· ··· ··· ··· ··· ··· ··· ···		
Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.9
Sample diameter	mm	102.7
Membrane thickness	mm	0.24
Rate of strain	%/min	2.0
Bulk density	Mg/m ³	1.98
Dry density	Mg/m ³	1.56
Moisture content	%	27
Failure Conditions	<u>.                                    </u>	
Cell pressure	kPa	330
Membrane correction	kPa	0.4
Corrected deviator stress	kPa	337
Strain at failure	%	6.0
Undrained shear strength	kPa	169
Sample Details		Failure shape
Borehole .	BH1	
Somple	6	
Donth (m)	16.50	
1	10.00	

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

### UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

Certificate No: 580876





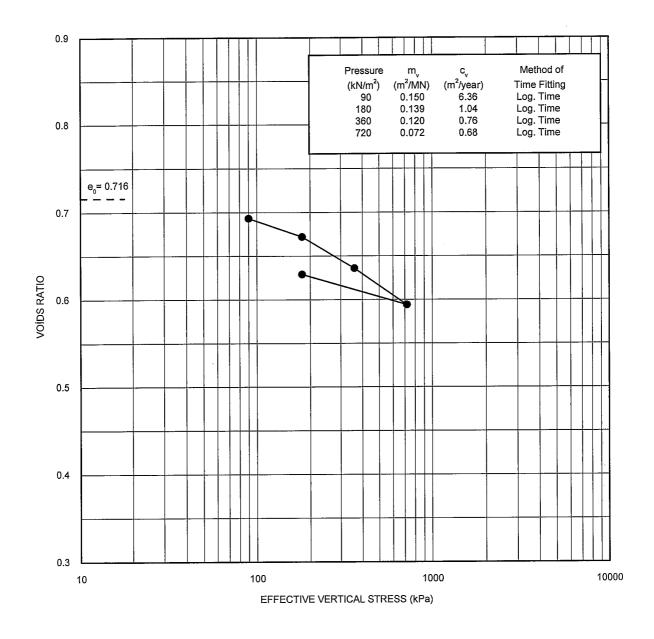
AXIAL STRAIN (%)

Initial Conditions	<u>Units</u>	Specimen 1
Sample length	mm	209.7
Sample diameter	mm	102.9
Membrane thickness	mm	0.24
Rate of strain	%/min	2.0
Bulk density	Mg/m³	2.01
Dry density	Mg/m³	1.58
Moisture content	%	27
Failure Conditions		
Cell pressure	kPa	390
Membrane correction	kPa	0.5
Corrected deviator stress	kPa	430
Strain at failure	%	8.0
Undrained shear strength	kPa	215
Sample Details		Failure shape
Borehole	3H1	
Sample .		
Denth (m)	19.50	
		اا

Tested in accordance with BS 1377: Part 7: 1990: Clause 8

#### UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST

2009


Date: ]]

wn by

Filename: 580876 \ COMPRESS \ BH1_U2_OD.OPJ

Issue

Te

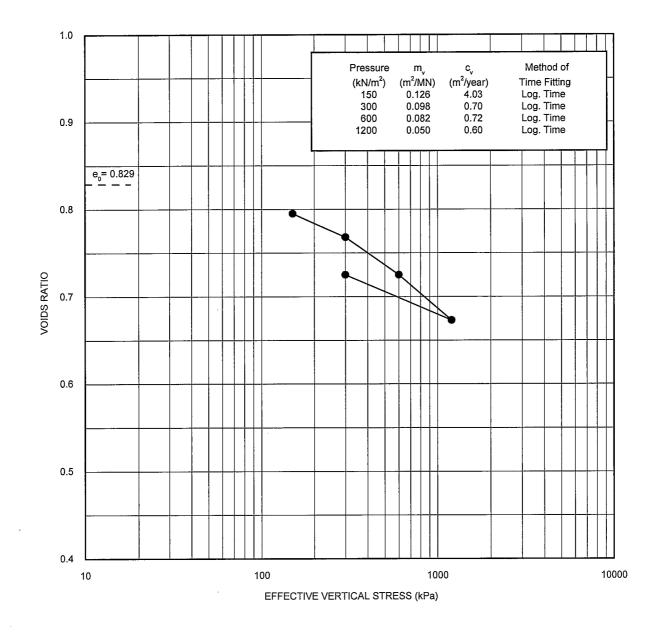


	Initial Co	onditions			
Specimen height	: 20.0 mm	Bulk density	: 2.00 Mg/m ³	Borehole :	BH1
Specimen diameter	: 75.0 mm	Dry density	: 1.57 Mg/m ³	Sample :	U2
Degree of saturation Particle density	: 100 % : 2.70 Mg/m ³ (Assumed)	Moisture content Lab. temperature	: 27 % : 21 °C	Depth (m):	4.50-4.80
Specimen condition	: Undisturbed	Swelling pressure	: NA kPa	Specimen Depth (m):	4.70

Tested in accordance with BS1377: Part 5: 1990: Clause 3

#### ONE - DIMENSIONAL CONSOLIDATION TEST (OEDOMETER)

ļ,


wn by ~ _ Date: ~ ]| · · 2009

t

Filename: 580876 \ COMPRESS \ BH1_U3_OD.OPJ

Issue

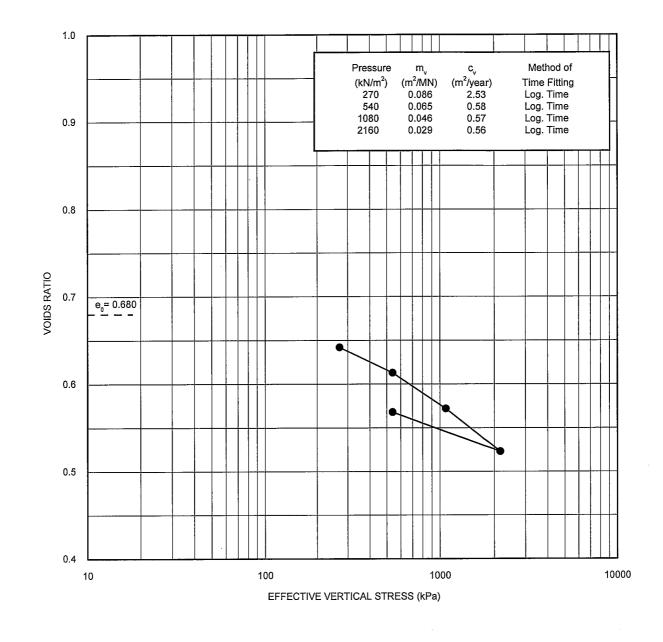
Чe



	Initial C	onditions			
Specimen height	: 19.0 mm	Bulk density	: 1.93 Mg/m ³	Borehole :	BH1
Specimen diameter	: 75.0 mm	Dry density	: 1.48 Mg/m³	Sample :	U3
Degree of saturation Particle density	: 100 % : 2.70 Mg/m ³ (Assumed)	Moisture content Lab. temperature	: 31 % :21 ℃	Depth (m):	7.50 <b>-7</b> .90
Specimen condition	: Undisturbed	Swelling pressure	: NA kPa	Specimen Depth (m):	7.80

Tested in accordance with BS1377: Part 5: 1990: Clause 3

#### ONE - DIMENSIONAL CONSOLIDATION TEST (OEDOMETER)


wn by ~~ ____ate: ~_][ ~ . .2009

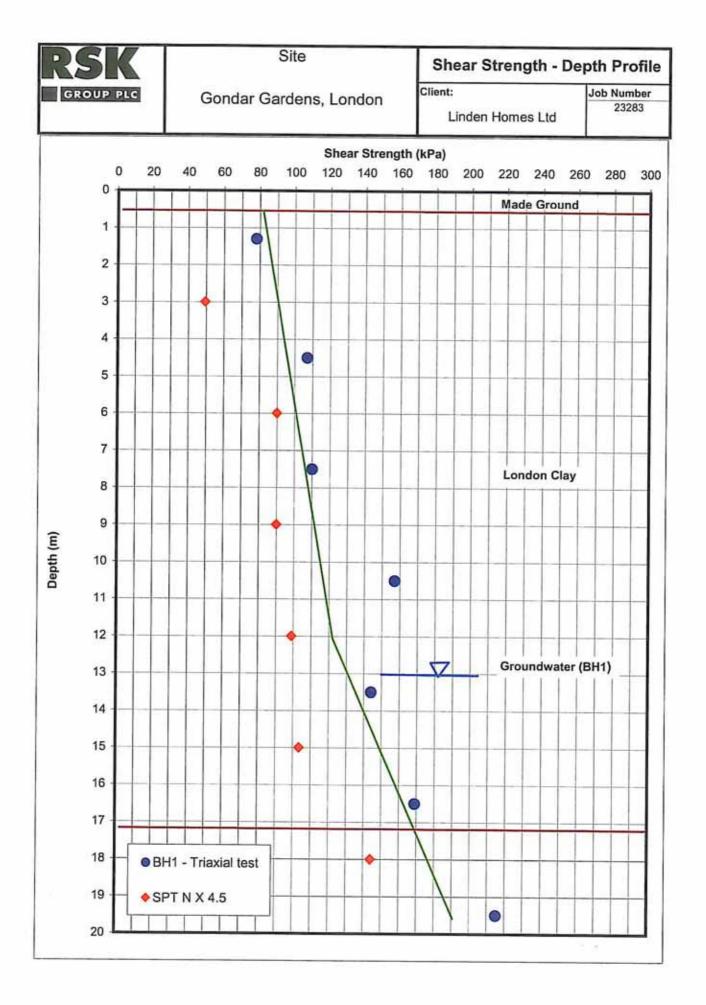
t

Filename: 580876 \ COMPRESS \ BH1_U5_OD.OPJ

Issue

Ъ




, · · · · · · · · · · · · · · · · · · ·	Initial C	onditions			
Specimen height	: 20.0 mm	Bulk density	: 2.02 Mg/m ³	Borehole :	BH1
Specimen diameter	: 75.0 mm	Dry density	: 1.61 Mg/m ³	Sample :	U5
Degree of saturation	: 100 %	Moisture content	: 26 %		
Particle density	: 2.70 Mg/m ³ (Assumed)	Lab. temperature	: 21 °C	Depth (m);	13.50-13.9
Specimen condition	: Undisturbed	Swelling pressure	: NA kPa	Specimen	
				Depth (m):	13.80

Tested in accordance with BS1377: Part 5: 1990: Clause 3

#### ONE - DIMENSIONAL CONSOLIDATION TEST (OEDOMETER)

# APPENDIX K

Shear Strength/Depth Profile



23283-1 (00)



18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT UK

Telephone: +44 (0)1442 437500 Fax: +44 (0)1442 437550 www.rsk.co.uk

Our ref: 25113-01L (01)

7th April 2015

Linden Wates (West Hampstead) Limited Linden House Linden Square Harefield Middlesex UB9 6TQ

For the attention of Lisa Probyn

Dear Lisa

#### Gondar Gardens – Summary of Hydrogeology

RSK Environment Limited was instructed by Linden Wates (West Hampstead) Limited to provide a summary of the hydrogeology beneath the above site in order to inform the preparation of basement impact assessment.

The published geological map of the area identifies the geology of the site as London Clay Formation, with no overlying superficial Drift deposits. The lithology of the London Clay Formation in the site vicinity comprises stiff grey silty clay, and the stratum extends to a depth of approximately 40m below ground level. The London Clay Formation is underlain by the Lambeth Group, Thanet Sand Formation and White Chalk Sub-group, the latter at a depth of approximately 100m below ground level.

The London Clay Formation is classified by the Environment Agency as a Non-aquifer (non-productive strata), reflecting its inability to store and transmit significant quantities of groundwater. Values for the coefficient of permeability for the London Clay Formation typically range from  $3 \times 10^{-9}$  m/s for clay with sand partings and silty clay to  $3 \times 10^{-11}$  m/s for intact clay, indicating the very low permeability of these materials.

At depth, the Thanet Sand Formation and White Chalk Sub-group are designated as Secondary 'A' and Principal Aquifers, respectively, and form a regional resource for public supply. However, given the significant thickness of the overlying London Clay Formation, the proposals will have no impact on the deeper groundwater resources.

The results of the ground investigation indicate that the site is underlain by a variable thickness of made ground ranging from 0.5m to in excess of 4m and comprises predominantly cohesive silty sandy clay. The variable thickness of made ground reflects the fill materials placed during the construction of the former covered reservoir. The made ground is directly underlain by the London Clay Formation comprising firm, brown mottled grey silty clay, becoming stiff grey clay with depth.

No groundwater was observed during the exploratory investigation, with the exception of a minor seepage within the London Clay at a depth of approximately 13m below ground level. The investigation results therefore confirmed the anticipated absence of any continuous body of shallow groundwater.





In terms of surface watercourses, there are no known ponds, streams or drainage ditches on or adjacent to the site.

The hydrogeological site conditions outlined above have been considered for the purpose of screening in accordance with CPG4, Figure 1 - Subterranean (ground water) flow screening chart:

#### 1. Is the site located directly above an aquifer?

No.

The site is directly underlain by a non-aquifer (non-productive strata) consisting of the London Clay Formation.

#### 1a. Will the proposed basement extend beneath the water table surface?

No.

The proposed basement level will extend to a maximum depth of approximately 8.0m below existing ground level and does not extend below any continuous body of shallow groundwater.

#### 2. Is the site within 100m of a watercourse, well (used/disused) or potential spring line?

No.

The site is not located within 100m of a known watercourse, well or potential spring line, such as typically present at the Claygate Member/London Clay boundary.

#### 3. Is the site within the catchment of the pond chains on Hampstead Heath?

No.

The site lies approximately 1.7km northeast of the nearest Hampstead Heath drainage catchment and will therefore not impact any catchments.

# 4. Will the proposed basement development result in a change in the proportion of hard surfaced / paved areas?

Yes.

Whilst the proposed development is envisaged to result in a small net change in the proportion of hard cover across the site, the vast majority of the proposed development (~94%) lies within the footprint of the former covered reservoir. The site is also not underlain by an aquifer, so the proposals will not affect any changes to groundwater levels of flows. Further, the proposed basement lies within the former reservoir so there will be no potential changes in the degree of moisture content of the underlying ground, which in turn could affect stability.

# 5. As part of the site drainage, will more surface water (e.g. rainfall and run-off) than at present be discharged to the ground (e.g. via soakaways and/or SUDS)?

No.

There are no SUDS/soakaway schemes proposed for the site that would increase discharge to the ground.

# 6. Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to, or lower than, the mean water level in any local pond (not just the pond chains on Hampstead Heath) or spring line?

No.

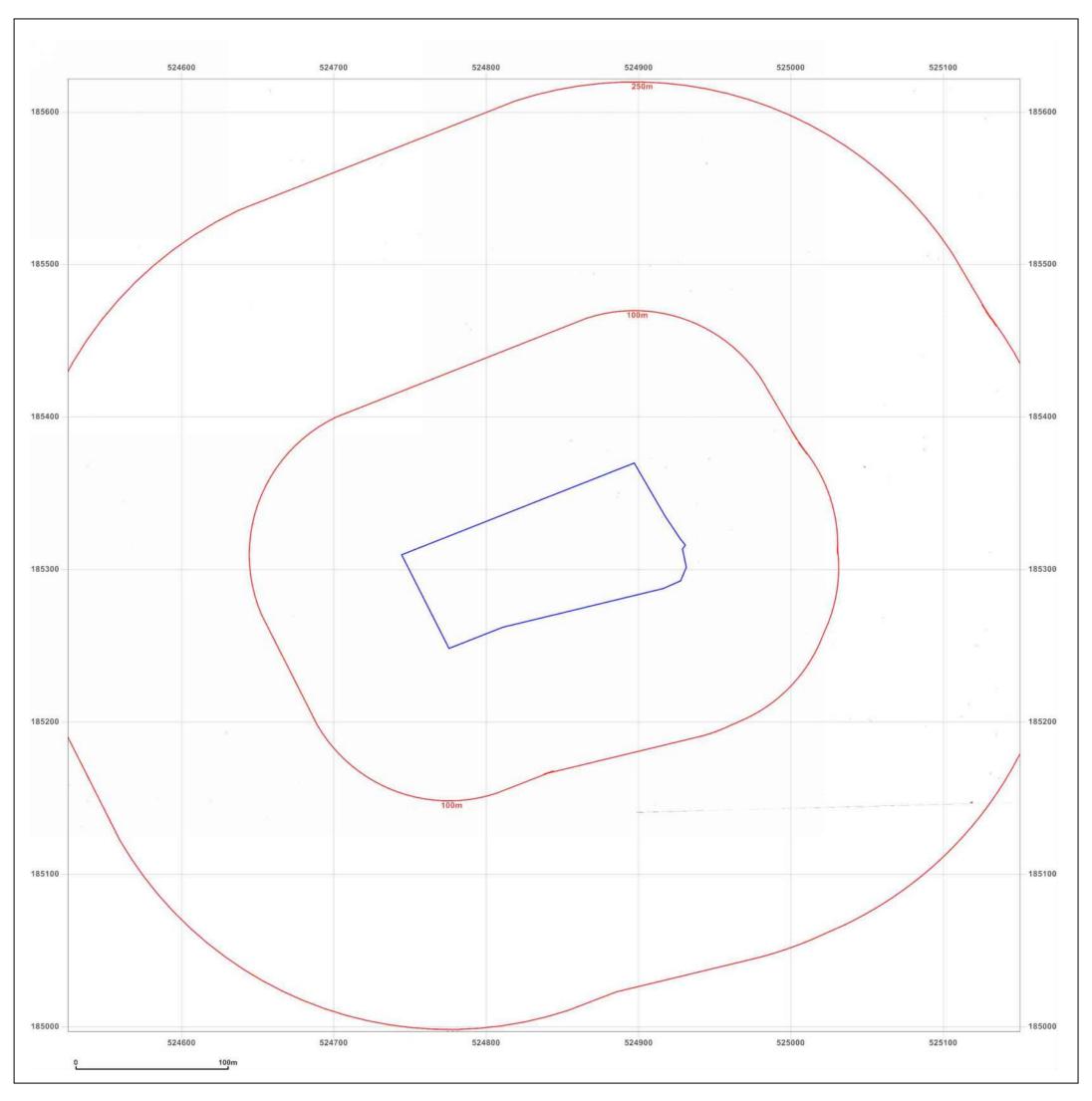
There are no known surface water courses in the immediate vicinity of the site that could plausibly be impacted by the proposals.



On the basis of the information presented above, it is considered that the impact of the proposed development upon the local hydrogeological regime will be minimal.

We trust the information provided is sufficient for your current requirements, should however, you have any queries or require anything further, please do not hesitate to contact the undersigned.

Yours sincerely For RSK Environment Ltd


Jon Bailey FGS MICE Associate Director, Geosciences

Vivie Dert

Vivien Dent BSc MSc CGeol FGS Principal Hydrogeologist

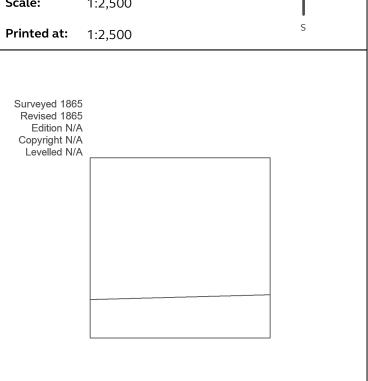


# APPENDIX E GROUNDSURE REPORT



To view map legend click here <u>Legend</u>




#### Site Details:

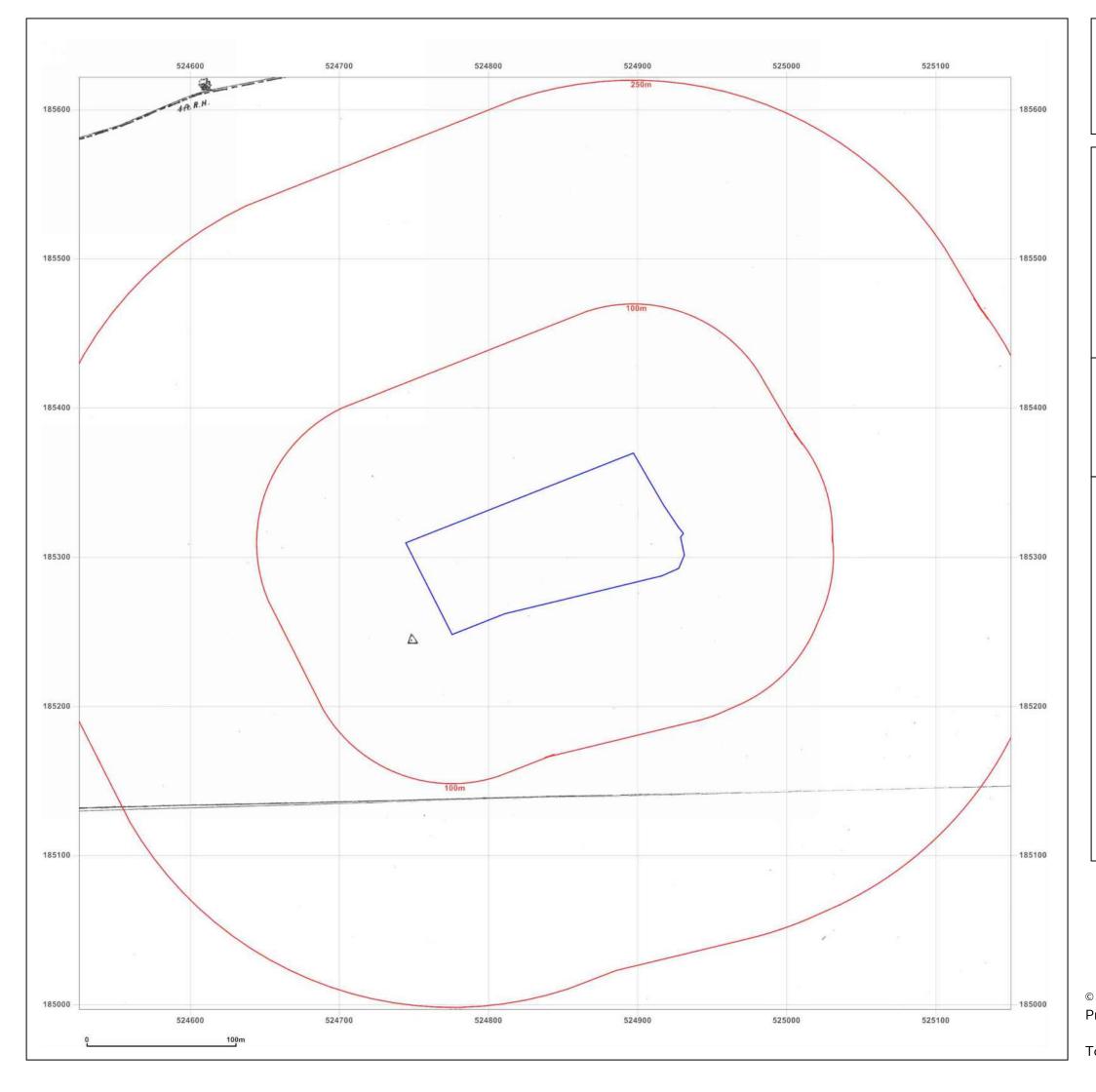
Gondor Gardens,Gondor Gardens,West Hampstead,NW6 1QF

Client Ref: EMS_418652_559409 **Report Ref:** EMS-418652_559409 524838, 185309 Grid Ref: Map Name: County Series

1865 Map date:

1:2,500 Scale:




Ν

-W

F



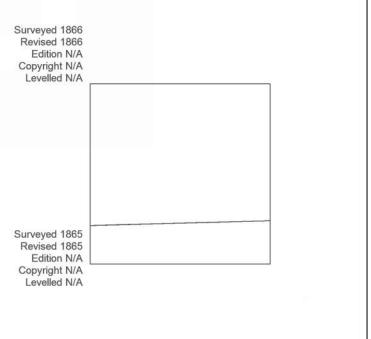
Production date: 03 May 2017





#### Site Details:

Gondor Gardens,Gondor Gardens,West Hampstead,NW6 1QF


Client Ref:EMS_418652_559409Report Ref:EMS-418652_559409Grid Ref:524838, 185309

Map Name: County Series

Map date: 1865-1866

**Scale:** 1:2,500

**Printed at:** 1:2,500



Ν

 $\oplus$ 

F

W



© Crown copyright and database rights 2015 Ordnance Survey 100035207 Production date: 03 May 2017

To view map legend click here <u>Legend</u>



To view map legend click here <u>Legend</u>



#### Site Details:

Gondor Gardens,Gondor
Gardens,West Hampstead,NW6
1QF

Client Ref: Report Ref: Grid Ref:	EMS_418652_559409 EMS-418652_559409 524838, 185309	
Map Name:	1056 Scale Town Plan	Ν
Map date:	1806	
Map date.	1896	
Scale:	1:1,056	W - E
-		W F S

Surveyed 1893 Revised N/A Edition 1896 Copyright N/A Levelled N/A



Production date: 03 May 2017