Project number:	TH LODGE	Povision	elliottwood
2170605	5	nevision,	
Date:	Engineer:	Checked:	
	RETAINING WALL	DESIGNS CALCUL	ATION
	7 350 8	C Desamuel in	
	200		
	-7 500mm Te	DE DOWELLED	INTO SLAB
	> PROPED TOP	+ BOTTOM IN	TEMPORARY CASE
	> NEW GROUND	FLOOR SCAB F	props top
	- FROUND RETA	INSO ACIOSS FU	L HEIGHT
	> DESIGN	out from Sit	E INVESTIGATION
	> LINE LOAD NEW RC	ACTING UPON G-ROUND BLAN	STEM FROM
	DL=	20 ku/m	
	LL =	10 KN/m	
	-> AT REST PRESCU	as Contractor pp	PLIED TO GOIL
	SEE TEDDS	CALCUCATION	OVERLEAF
	=>		
		*	

 \bigcirc

×.,

Tekla [®] Tedds	Project	South	Lodge		Job no. 2170)605
Elliott Wood 46-48	Calcs for	Retaini	Retaining Wall		Start page no./Re	vision 1
London	Calcs by W	Calcs date	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.00

Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 3300 mm
Prop height	h _{prop} = 3300 mm
Stem thickness	t _{stem} = 350 mm
Angle to rear face of stem	α = 90 deg
Stem density	γ_{stem} = 25 kN/m ³
Toe length	I _{toe} = 1500 mm
Base thickness	t _{base} = 350 mm
Base density	γ_{base} = 25 kN/m ³
Height of retained soil	h _{ret} = 3300 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Retained soil properties	
Moist density	γ _{mr} = 20 kN/m ³
Saturated density	γ _{sr} = 22.3 kN/m ³
Base soil properties	
Soil type	Medium dense well graded sand and gravel
Soil density	γ _b = 20 kN/m ³
Presumed bearing capacity	P _{bearing} = 90 kN/m ²
Loading details	
Permanent surcharge load	Surcharge _G = 2.5 kN/m ²
Variable surcharge load	Surcharge _Q = 5 kN/m ²
Vertical line load at 1675 mm	P _{G1} = 70 kN/m
	P _{Q1} = 10 kN/m

Length of surcharge load

- Distance to vertical component

Effective height of wall

- Distance to horizontal component Area of wall stem

- Distance to vertical component Area of wall base

- Distance to vertical component

Soil coefficients

Coefficient of friction to back of wall Coefficient of friction to front of wall Coefficient of friction beneath base At rest pressure coefficient Passive pressure coefficient

Bearing pressure check

Vertical forces on wall Wall stem Wall base

 $l_{base} = l_{toe} + t_{stem} = 1850 \text{ mm}$ $h_{moist} = h_{soil} = 3300 \text{ mm}$ $l_{sur} = l_{heel} = 0 \text{ mm}$ $x_{sur_v} = l_{base} - l_{heel} / 2 = 1850 \text{ mm}$ $h_{eff} = h_{base} + d_{cover} + h_{ret} = 3650 \text{ mm}$ $x_{sur_h} = h_{eff} / 2 = 1825 \text{ mm}$ $A_{stem} = h_{stem} \times t_{stem} = 1.155 \text{ m}^2$ $x_{stem} = l_{toe} + t_{stem} / 2 = 1675 \text{ mm}$ $A_{base} = l_{base} \times t_{base} = 0.648 \text{ m}^2$ $x_{base} = l_{base} / 2 = 925 \text{ mm}$

$$\begin{split} & \mathsf{K}_{\rm fr} = \mathbf{0.325} \\ & \mathsf{K}_{\rm fb} = \mathbf{0.325} \\ & \mathsf{K}_{\rm fbb} = \mathbf{0.325} \\ & \mathsf{K}_{\rm 0} = \mathbf{0.500} \\ & \mathsf{K}_{\rm P} = \mathbf{4.977} \end{split}$$

 $F_{stem} = A_{stem} \times \gamma_{stem} = 28.9 \text{ kN/m}$ $F_{base} = A_{base} \times \gamma_{base} = 16.2 \text{ kN/m}$

	Project	Sou	th Lodge		Job no.	/0605	
Elliott Wood	Calcs for				Start page no./F	levision	
46-48	Retaining Wall				3		
Foley Street London	Calcs by W	Calcs date	Checked by	Checked date	Approved by	Approved date	
Line loads		F _{P_v} = P _G	₁ + P _{Q1} = 80 kN/	m			
Total		$F_{total_v} = F$	stem + F _{base} + F _P	_v = 125.1 kN/m			
Horizontal forces on wall							
Surcharge load		F _{sur_h} = K	$_{0} \times (Surcharge_{G})$	+ Surcharge _Q) \times	h _{eff} = 13.7 kN/r	n	
Moist retained soil		F _{moist_h} = 1	$K_0 imes \gamma_{mr}' imes h_{eff}^2$ / 2	2 = 66.6 kN/m			
Base soil		F _{pass_h} = -	$K_P imes \gamma_b' imes (d_{cover})$	+ h _{base}) ² / 2 = -6.4	1 kN/m		
Total		F _{total_h} = F	moist_h + Fpass_h +	_{oist_h} + F _{pass_h} + F _{sur_h} = 74.2 kN/m			
Moments on wall							
Wall stem		M _{stem} = F _s	stem × x stem = 48.4	\$ kNm/m			
Wall base		M _{base} = F _t	base × Xbase = 15 k	<nm m<="" td=""><td></td><td></td></nm>			
Surcharge load		M _{sur} = -F _s	.ur_h × X sur_h = -25	kNm/m			
Line loads		M _P = (P _{G1}	1 + P _{Q1}) × p ₁ = 1 ;	34 kNm/m			
Moist retained soil		M _{moist} = -F	$-$ moist_h \times Xmoist_h =	= -81 kNm/m			
Total		$M_{total} = M_s$	_{stem} + M _{base} + M _m	$M_{\rm oist} + M_{\rm sur} + M_{\rm P} =$	91.3 kNm/m		
Check bearing pressure							
Propping force to stem		F _{prop_stem} =	= ($F_{total_v} \times I_{base}$ /	2 - M _{total}) / (h _{prop} -	+ t _{base}) = 6.7 kN	/m	
Propping force to base		F _{prop_base} :	= F _{total_h} - F _{prop_ste}	_{em} = 67.5 kN/m	•		
Moment from propping force		$M_{prop} = F_{pr}$	prop_stem \times (hprop +	t _{base}) = 24.4 kNm	ı/m		
Distance to reaction		$\overline{\mathbf{x}} = (\mathbf{M}_{\text{total}})$	al + Mprop) / F _{total_}	v = 925 mm			
Eccentricity of reaction		$e = \overline{x} - I_b$	_{ase} / 2 = 0 mm				
Loaded length of base		I _{load} = I _{base}	∍ = 1850 mm				
Bearing pressure at toe		$q_{toe} = F_{tota}$	$_{al_v}$ / I_{base} $ imes$ (1 - 6	\times e / I _{base}) = 67.6	kN/m²		
Bearing pressure at heel		$q_{heel} = F_{to}$	$_{tal_v}$ / I_{base} $ imes$ (1 + ($6 \times e / I_{base}$) = 67.	6 kN/m ²		
Factor of safety		$FoS_{bp} = F$	^o bearing / max(q _{toe} ,	, q _{heel}) = 1.331			
	PASS -	Allowable bear	ing pressure ex	ceeds maximu	m applied bea	ring pressure	

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.00

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class	C32/40
Characteristic compressive cylinder strength	f _{ck} = 32 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 40 N/mm ²
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 40 \text{ N/mm}^2$
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 3.0 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.1 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	E_{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 33346 N/mm ²
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	α _{cc} = 0.85
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = 18.1 \text{ N/mm}^2$
Maximum aggregate size	h _{agg} = 20 mm
Reinforcement details	
Characteristic yield strength of reinforcement	f _{yk} = 500 N/mm ²
Modulus of elasticity of reinforcement	Es = 200000 N/mm ²

Tekla"	Project				Job no.	
Tedds		South	Lodge		217	0605
Elliott Wood	Calcs for				Start page no./Re	evision
46-48 Ecloy Street		Retain	Retaining Wall			5
London	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	VV					
Structural system factor - Table	7.4N	K _b = 1				
Reinforcement factor - exp.7.17		K _s = min(50	00 N/mm² / (f _{vk} :	× AsfM.reg / AsfM.prov), 1.5) = 1.5	
Limiting span to depth ratio - ex	p.7.16.a	$K_s \times K_b \times [1]$	$1 + 1.5 \times \sqrt{(f_{ck})}$	$1 \text{ N/mm}^2) \times \rho_0 /$	ρ + 3.2 × √(f _{ck} /	1 N/mm^2) ×
	•	(ρ ₀ / ρ - 1) ^{3/}	²] = 982	, 11		,
Actual span to depth ratio		$h_{prop} / d = 1$	1.3			
		PASS	- Span to dept	h ratio is less th	nan deflection	control limit
Check stem design at base of	stem					
Depth of section	otonii	h = 350 mn	n			
Rectangular section in flexure	- Section 6 1					
Desian bending moment combined	nation 1	M = 39.7 ki	Nm/m			
Depth to tension reinforcement		d = h - C _{sr} -	φ _{sr} / 2 = 294 mi	m		
		$K = M / (d^2)$	$\times f_{ck}$ = 0.014			
		K' = 0.207				
			K' > K - I	No compression	reinforcemer	nt is required
Lever arm		z = min(0.5	+ 0.5 × (1 - 3.5	53 × K) ^{0.5} , 0.95) ×	: d = 279 mm	-
Depth of neutral axis		$x = 2.5 \times (d$	– z) = 37 mm			
Area of tension reinforcement re	equired	$A_{sr.req} = M /$	(f _{yd} × z) = 327 i	mm²/m		
Tension reinforcement provided		12 dia.bars	@ 200 c/c			
Area of tension reinforcement p	rovided	$A_{sr.prov} = \pi \times$	$<\phi_{ m sr}^2$ / (4 \times s _{sr}) =	= 565 mm²/m		
Minimum area of reinforcement	- exp.9.1N	A _{sr.min} = ma	$x(0.26 imes f_{ctm} / f_y)$	_k , 0.0013) × d = 4	l62 mm²/m	
Maximum area of reinforcement	t - cl.9.2.1.1(3)	$A_{sr.max} = 0.0$	04 × h = 14000	mm²/m		
		max(A _{sr.req} ,	Asr.min) / Asr.prov	= 0.817		
	PASS - Area or	f reinforcement	provided is g	reater than area	of reinforcen	nent required
Deflection control - Section 7	.4					
Reference reinforcement ratio		$ ho_0$ = $\sqrt{f_{ck}}$ / 1	l N/mm²) / 1000) = 0.006		
Required tension reinforcement	ratio	$\rho = A_{sr.req} / c$	d = 0.001			
Required compression reinforce	ement ratio	$\rho' = A_{sr.2.req}$	/ d ₂ = 0.000			
Structural system factor - Table	7.4N	K _b = 1				
Reinforcement factor - exp.7.17		K _s = min(50	00 N/mm² / (f _{yk} :	× A _{sr.req} / A _{sr.prov}),	1.5) = 1.5	
Limiting span to depth ratio - ex	p.7.16.a	$K_s imes K_b imes [1]$	1 + 1.5 × $\sqrt{(f_{ck} / f_{ck})}$	1 N/mm ²) $\times \rho_0$ /	ρ + 3.2 × $\sqrt{f_{ck}}$	$1 \text{ N/mm}^2) \times$
		(ρ₀ / ρ - 1) ^{3/}	²] = 305.1			
Actual span to depth ratio		$h_{prop} / d = 1$	1.2			
		PASS	- Span to dept	h ratio is less th	nan deflection	control limit
Rectangular section in shear	- Section 6.2					
Design shear force		V = 70 kN/r	n			
		$C_{Rd,c} = 0.18$	3 / γ _C = 0.120			
		k = min(1 +	√(200 mm / d)	, 2) = 1.825		
Longitudinal reinforcement ratio	•	ρι = min(A _{sr}	.prov / d, 0.02) =	0.002		
		v _{min} = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	× f _{ck} ^{0.5} = 0.488 N	l/mm²	
Design shear resistance - exp.6	.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (10))$	$0 \text{ N}^2/\text{mm}^4 \times \rho_1 \times \text{f}$	$_{\rm ck})^{1/3}, V_{\rm min}) imes d$	
		V _{Rd.c} = 143 .	. 5 kN/m			
		$V / V_{Rd.c} = 0$).488 C. Decision (
		PAS	esign she ں ۔ د	ear resistance e	xceeas desigi	i snear force
Check stem design at prop						
Depth of section		h = 350 mn	n			

Tedds		South	South Lodge			2170605			
Elliott Wood	Calcs for				Start page no./Revision				
46-48		Retain	Retaining Wall			6			
London	Calcs by W	Calcs date	Checked by	Checked date	Approved by	Approved date			
Rectangular section in shear -	Section 6.2								
Design shear force		V = 21.4 k	N/m						
		$C_{Rd,c} = 0.13$	8 / γ _C = 0.120						
		k = min(1 -	k = min(1 + √(200 mm / d), 2) = 1.825						
Longitudinal reinforcement ratio		ρι = min(A₅	$p_l = min(A_{sr1.prov} / d, 0.02) = 0.002$						
	v _{min} = 0.03	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	^{/2} × f _{ck} ^{0.5} = 0.488 I	N/mm ²					
Design shear resistance - exp.6.	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (10))$	00 N ² /mm ⁴ $ imes$ $ ho_{l}$ $ imes$	$f_{ck})^{1/3}, v_{min}) imes d$					
	V _{Rd.c} = 143	.5 kN/m							
		$V / V_{Rd.c} =$	0.149						
		PAS	SS - Design sh	near resistance e	exceeds desig	In shear forc			
Horizontal reinforcement paral	lel to face of s	tem - Section	9.6						
Minimum area of reinforcement -	- cl.9.6.3(1)	A _{sx.req} = ma	$ax(0.25 imes A_{sr.pro})$	w, $0.001 \times t_{stem}$) =	350 mm²/m				
Maximum spacing of reinforceme	ent – cl.9.6.3(2)	s _{sx_max} = 40	s _{sx_max} = 400 mm						
I ransverse reinforcement provid	ed	12 dia.bars	s@200 c/c						
Area of transverse reinforcement	provided	$A_{sx.prov} = \pi$	$A_{sx,prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 565 \text{ mm}^2/\text{m}$						
ŀ	ASS - Area of	reinforcemen	t provided is g	greater than area	a of reinforcei	ment require			
Check base design at toe									
Depth of section		h = 350 mi	n						
Rectangular section in flexure	- Section 6.1								
Design bending moment combin	ation 1	M = 90.3 k	Nm/m						
Depth to tension reinforcement		d = h - c _{bb} - φ _{bb} / 2 = 267 mm							
		$K = M / (d^2)$	\times f _{ck}) = 0.040						
		K' = 0.207							
			K' > K -	No compression	n reinforceme	nt is require			
_ever arm		z = min(0.8	$5 + 0.5 \times (1 - 3)$.53 × K) ^{0.5} , 0.95)	× d = 254 mm				
Depth of neutral axis									
		$x = 2.5 \times (0)$	d – z) = 33 mm	l					
Area of tension reinforcement re	quired	$x = 2.5 \times (0$ $A_{bb.req} = M$	d – z) = 33 mm / (f _{yd} × z) = 819) mm²/m					
Area of tension reinforcement re Tension reinforcement provided	quired	$x = 2.5 \times (d)$ $A_{bb,req} = M$ 16 dia.bars	d – z) = 33 mm / (f _{yd} × z) = 819 s @ 200 c/c) mm²/m					
Area of tension reinforcement reaction Tension reinforcement provided Area of tension reinforcement pro	quired	$x = 2.5 \times (a$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$	d - z) = 33 mm / (f _{yd} × z) = 819 s @ 200 c/c × ϕ_{bb}^2 / (4 × s _{bb}) mm²/m) = 1005 mm²/m					
Area of tension reinforcement rea Tension reinforcement provided Area of tension reinforcement pro Minimum area of reinforcement -	quired ovided exp.9.1N	$x = 2.5 \times (d$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$	d - z) = 33 mm / (f _{yd} × z) = 819 s @ 200 c/c × ϕ_{bb}^2 / (4 × sbt ax(0.26 × f _{ctm} /	9 mm²/m 5) = 1005 mm²/m f _{yk} , 0.0013) × d =	420 mm²/m				
Area of tension reinforcement reaction reinforcement provided Area of tension reinforcement provided Minimum area of reinforcement - Maximum area of reinforcement	quired ovided exp.9.1N - cl.9.2.1.1(3)	$x = 2.5 \times (a + bb.req = M)$ 16 dia.bars $A_{bb.prov} = \pi$ $A_{bb.min} = ma$ $A_{bb.max} = 0.$	d - z) = 33 mm / (f _{yd} × z) = 819 s @ 200 c/c × ϕ_{bb}^2 / (4 × sbc ax(0.26 × f_{ctm} / 04 × h = 14000)) mm²/m b) = 1005 mm²/m f _{yk} , 0.0013) × d = 0 mm²/m	420 mm²/m				
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement - Maximum area of reinforcement	quired ovided exp.9.1N - cl.9.2.1.1(3)	$x = 2.5 \times (d$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$	d - z) = 33 mm / (f _{yd} × z) = 819 s @ 200 c/c × ϕ_{bb}^2 / (4 × sbt ax(0.26 × fctm / 04 × h = 14000 , Abb.min) / Abb.pr	$f_{yk} = 1005 \text{ mm}^2/\text{m}^$	420 mm²/m				
Area of tension reinforcement rea Tension reinforcement provided Area of tension reinforcement pro Minimum area of reinforcement - Maximum area of reinforcement	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of	$x = 2.5 \times (a + bb, req = M)$ 16 dia.bars $A_{bb, prov} = \pi$ $A_{bb, min} = ma$ $A_{bb, max} = 0$ $max(A_{bb, req})$	$d - z) = 33 \text{ mm} / (f_{yd} \times z) = 819$ $s @ 200 \text{ c/c} / (4 \times s_{bb}^2 /$	$f_{yk} = 1005 \text{ mm}^2/\text{m}$ $f_{yk} = 1005 \text{ mm}^2/\text{m}$ $f_{yk} = 0.0013 \times \text{d} = 0 \text{ mm}^2/\text{m}$ $f_{yv} = 0.814$ $f_{yreater than area$	420 mm²/m a of reinforce	nent require			
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement Maximum area of reinforcement Rectangular section in shear -	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2	$x = 2.5 \times (a$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$	$d - z) = 33 \text{ mm} / (f_{yd} \times z) = 819$ $s @ 200 \text{ c/c} / (4 \times s_{bb}^2 / (4 \times s_{bb}^2 / (4 \times s_{bb}^2 / (4 \times s_{bb}^2 / (4 \times s_{bb} - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	$f_{yk} = 1005 \text{ mm}^2/\text{m}^2$ $f_{yk} = 0.0013 \times \text{d} = 0 \text{ mm}^2/\text{m}^2$ $f_{yr} = 0.814$ $f_{yr} = 0.814$	420 mm²/m a of reinforce	nent require			
Area of tension reinforcement re- Tension reinforcement provided Area of tension reinforcement pro- Minimum area of reinforcement - Maximum area of reinforcement Rectangular section in shear - Design shear force	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2	$x = 2.5 \times (a$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$ $Treinforcemen$ $V = 120.4$	$d - z) = 33 \text{ mm} / (f_{yd} \times z) = 819$ $s @ 200 \text{ c/c} / (4 \times s_{bb}^2 / (4 \times s_{bb}^2 / (4 \times s_{bb}^2 / (4 \times s_{bb}^2 / (4 \times s_{bb} / ($	$f_{yk} = 1005 \text{ mm}^2/\text{m}$ $f_{yk} = 1005 \text{ mm}^2/\text{m}$ $f_{yk} = 0.0013 \times \text{d} = 0 \text{ mm}^2/\text{m}$ $f_{yv} = 0.814$ $f_{yreater than area}$	420 mm²/m a of reinforce	nent require			
Area of tension reinforcement rea Tension reinforcement provided Area of tension reinforcement pro- Minimum area of reinforcement - Maximum area of reinforcement Rectangular section in shear - Design shear force	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2	$x = 2.5 \times (a + b) + c = 0$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$ $reinforcemen$ $V = 120.4$ $C_{Rd,c} = 0.14$	d - z) = 33 mm / (fyd × z) = 819 s @ 200 c/c × ϕ_{bb}^2 / (4 × sbb ax(0.26 × fctm / 04 × h = 14000 , Abb.min) / Abb.pr t provided is g kN/m 8 / γ_c = 0.120	f_{yk} mm ² /m b) = 1005 mm ² /m f_{yk} , 0.0013) × d = 0 mm ² /m r_{ov} = 0.814 greater than area	420 mm²/m a of reinforcei	nent require			
Area of tension reinforcement rea Tension reinforcement provided Area of tension reinforcement pro- Minimum area of reinforcement - Maximum area of reinforcement Rectangular section in shear - Design shear force	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2	$x = 2.5 \times (a$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$ $Freinforcemen$ $V = 120.4$ $C_{Rd,c} = 0.14$ $k = min(1 - b$	d - z) = 33 mm / (fyd × z) = 819 s @ 200 c/c × ϕ_{bb}^2 / (4 × sbt ax(0.26 × fctm / 04 × h = 14000 , Abb.min) / Abb.pr t provided is g kN/m B / $\gamma_{C} = 0.120$ + $\sqrt{(200 \text{ mm } / d)}$	$f_{yk} = 1005 \text{ mm}^2/\text{m}$ $f_{yk}, 0.0013) \times d = 0 \text{ mm}^2/\text{m}$ $f_{yk} = 0.814$ greater than area $f_{yk} = 1.865$	420 mm²/m a of reinforce	ment require			
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement - Maximum area of reinforcement Rectangular section in shear - Design shear force Longitudinal reinforcement ratio	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2	$x = 2.5 \times (a + b) + c = 0$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$ $Freinforcemen$ $V = 120.4$ $C_{Rd,c} = 0.13$ $k = min(1 - p) = min(A_{b})$	d - z) = 33 mm / (fyd × z) = 819 s @ 200 c/c × ϕ_{bb}^2 / (4 × sbb ax(0.26 × form / 04 × h = 14000 , Abb.min) / Abb.pr t provided is g kN/m 8 / $\gamma_c = 0.120$ + $\sqrt{(200 \text{ mm / d})}$	$f_{yk} = 1005 \text{ mm}^2/\text{m}$ $f_{yk} = 0.0013 \times \text{d} = 0 \text{ mm}^2/\text{m}$ $f_{yv} = 0.814$ $f_{yreater than area$ $f_{y} = 1.865$ $f_{y} = 0.004$	420 mm²/m	nent require			
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement - Maximum area of reinforcement Maximum area of reinforcement - Maximum area of reinforcement - Maximum area of reinforcement ratio	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2	$x = 2.5 \times (a$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$ $Treinforcemen$ $V = 120.4$ $C_{Rd,c} = 0.14$ $k = min(1 - \rho_{I} = min(A_{bb} + min))$	d - z) = 33 mm / (fyd × z) = 819 s @ 200 c/c × ϕ_{bb}^2 / (4 × sbt ax(0.26 × fctm / 04 × h = 14000 , Abb.min) / Abb.pr t provided is g kN/m B / $\gamma_c = 0.120$ + $\sqrt{(200 \text{ mm / d})}$ b.prov / d, 0.02) 5 N ^{1/2} /mm × k ^{3/}	$p mm^{2}/m$ $p = 1005 mm^{2}/m$ $f_{yk}, 0.0013) \times d =$ $0 mm^{2}/m$ $greater than area$ $(1), 2) = 1.865$ $= 0.004$ $f^{2} \times f_{ck}^{0.5} = 0.504 f^{2}$	420 mm²/m a of reinforce V/mm²	nent require			
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement - Maximum area of reinforcement Maximum area of reinforcement - Maximum area of reinforcement - Maximum area of reinforcement - Maximum area of reinforcement ratio Design shear resistance - exp.6.	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2 2a & 6.2b	$x = 2.5 \times (a$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$ $Teinforcemen$ $V = 120.4$ $C_{Rd,c} = 0.12$ $k = min(1 - \rho_{I} = min(A_{b})$ $V_{rd,c} = max$	d - z) = 33 mm / (fyd × z) = 819 s @ 200 c/c × ϕ_{bb}^2 / (4 × Sbt ax(0.26 × fctm / 04 × h = 14000 , Abb.min) / Abb.pr t provided is g kN/m 8 / γ_c = 0.120 + $\sqrt{(200 \text{ mm / d})}$ b.prov / d, 0.02) 5 N ^{1/2} /mm × k ^{3/} x(C _{Rd.c} × k × (10)	$f_{yk} = 1005 \text{ mm}^2/\text{m}$ $f_{yk} = 1005 \text{ mm}^2/\text{m}$ $f_{yk} = 0.0013 \times \text{d} = 0 \text{ mm}^2/\text{m}$ $f_{yv} = 0.814$ $greater than area f_{y} = 0.814greater than area f_{y} = 0.004f_{y} = 0.504 \text{ f}f_{y} = 0.804 \text{ f}$	420 mm ² /m a of reinforces V/mm^2 $f_{ck})^{1/3}$, Vmin) × d	nent require			
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement - Maximum area of reinforcement Maximum area of reinforcement Maximum area of reinforcement Maximum area of reinforcement Longitudinal reinforcement ratio Design shear resistance - exp.6.	quired exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2 2a & 6.2b	$x = 2.5 \times (a + bb) + c = 1$ $Abb.req = M$ $16 dia.bars$ $Abb.prov = \pi$ $Abb.max = 0$ $max(Abb) + c = 0$ $Treinforcemen$ $V = 120.4$ $C_{Rd,c} = 0.14$ $k = min(1 - c)$ $\rho_I = min(Ab)$ $V_{rd,c} = max$ $V_{Rd,c} = 137$	d - z) = 33 mm / (fyd × z) = 819 s @ 200 c/c × ϕ_{bb}^2 / (4 × sub ax(0.26 × form / 04 × h = 14000 , Abb.min) / Abb.pr t provided is g kN/m B / $\gamma_c = 0.120$ + $\sqrt{(200 \text{ mm / d})}$ b.prov / d, 0.02) 5 N ^{1/2} /mm × k ^{3/} x(C _{Rd.c} × k × (10))	$p mm^{2}/m$ $p = 1005 mm^{2}/m$ $f_{yk}, 0.0013) \times d =$ $p mm^{2}/m$ $rov = 0.814$ $greater than area$ $(1), 2) = 1.865$ $= 0.004$ $r^{2} \times f_{ck}^{0.5} = 0.504 \text{ I}$ $r^{2} \times f_{ck}^{0.5} = 0.504 \text{ I}$	420 mm ² /m a of reinforces V/mm ² f_{ck}) ^{1/3} , Vmin) × d	nent require			
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement pr Minimum area of reinforcement - Maximum area of reinforcement Maximum area of reinforcement Maximum area of reinforcement Maximum area of reinforcement F Rectangular section in shear - Design shear force Longitudinal reinforcement ratio Design shear resistance - exp.6.	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2 2a & 6.2b	$x = 2.5 \times (a$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$ $Teinforcemen$ $V = 120.4$ $C_{Rd,c} = 0.13$ $k = min(1 - \rho_{I} = min(A_{b})$ $V_{min} = 0.03$ $V_{Rd,c} = max$ $V_{Rd,c} = 137$ $V / V_{Rd,c} = 137$	$d - z) = 33 \text{ mm}$ $/ (f_{yd} \times z) = 819$ $s @ 200 \text{ c/c}$ $\times \phi_{bb}^2 / (4 \times s_{bt})^2 + (4 \times s_{bt})^2$	$p mm^{2}/m$ $p = 1005 mm^{2}/m$ $f_{yk}, 0.0013) \times d =$ $p mm^{2}/m$ $r_{ov} = 0.814$ $greater than area$ $1), 2) = 1.865$ $= 0.004$ $1/2 \times f_{ck}^{0.5} = 0.504 I$ $00 N^{2}/mm^{4} \times \rho_{I} \times 10^{10}$	420 mm²/m a of reinforce V/mm² f _{ck}) ^{1/3} , v _{min}) × d	nent require			
Area of tension reinforcement rea Tension reinforcement provided Area of tension reinforcement provided Minimum area of reinforcement - Maximum area of reinforcement Maximum area of reinforcement F Rectangular section in shear - Design shear force Longitudinal reinforcement ratio Design shear resistance - exp.6.	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2 2a & 6.2b	$x = 2.5 \times (a$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$ $Treinforcemen$ $V = 120.4$ $C_{Rd,c} = 0.12$ $k = min(1 - p_{I} = min(A_{b} + min(1 - p_{I} = min(A_{b} + min(1 - p_{I} = min(A_{b} + mi$	$d - z) = 33 \text{ mm}$ $/ (f_{yd} \times z) = 819$ $s @ 200 \text{ c/c}$ $\times \phi_{bb}^2 / (4 \times s_{bb}^2) / (4 \times s_{bb}^2)$	$p = 1005 \text{ mm}^2/\text{m}$ $f_{yk}, 0.0013) \times d = 0 \text{ mm}^2/\text{m}$ $f_{yk}, 0.0013) \times d = 0 \text{ mm}^2/\text{m}$ $f_{yv} = 0.814$ $greater than area f_{y}(x) = 1.865= 0.004f_{y}^2 \times f_{ck}^{0.5} = 0.504 \text{ m}^2f_{ck}^{0.5} = 0.504 \text{ m}^2f_{ck}^{0.5} = 0.504 \text{ m}^2$	420 mm²/m a of reinforce V/mm² f _{ck}) ^{1/3} , v _{min}) × d	nent require			
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement provided Minimum area of reinforcement - Maximum area of reinforcement Maximum area of reinforcement ratio Design shear force Design shear resistance - exp.6. Secondary transverse reinforc	quired ovided exp.9.1N - cl.9.2.1.1(3) PASS - Area of Section 6.2 2a & 6.2b	$x = 2.5 \times (a$ $A_{bb,req} = M$ 16 dia.bars $A_{bb,prov} = \pi$ $A_{bb,min} = ma$ $A_{bb,max} = 0$ $max(A_{bb,req}$ $Treinforcemen$ $V = 120.4$ $C_{Rd,c} = 0.13$ $k = min(1 - \rho_{I} = min(A_{b} + min))$ $V_{Rd,c} = max$ $V_{Rd,c} = 137$ $V / V_{Rd,c} = 137$ $V / V_{Rd,c} = 137$ $V / V_{Rd,c} = 137$ $V - Section 9.3$	$d - z) = 33 \text{ mm}$ $/ (f_{yd} \times z) = 819$ $s @ 200 \text{ c/c}$ $\times \phi_{bb}^2 / (4 \times s_{bb}^2) / (4 \times s_{bb}^2)$	$p mm^{2}/m$ $p = 1005 mm^{2}/m$ $f_{yk}, 0.0013) \times d =$ $p mm^{2}/m$ $rov = 0.814$ $greater than area$ $p = 0.004$ $r^{2} \times f_{ck}^{0.5} = 0.504 \text{ H}$ $r^{2} \times f_{ck}^{0.5} = 0.504 \text{ H}$ $r^{2} \times f_{ck}^{0.5} = 0.504 \text{ H}$	420 mm²/m a of reinforce V/mm² f _{ck}) ^{1/3} , v _{min}) × d exceeds desig	ment require In shear forc			

