Tedds	Project 9 St Georges Terrace			Job no. 17054		
	Calcs for				Start page no./Revision 1	
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approved date

_ 👌	Project	9 St Geor	nes Terrace		Job no. 17	054
ledds	Calcs for		<u>yee tenace</u>		Start page no./Re	evision
						2
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approved date
Moist density of retained mate	erial	γm = 18.0 k	N/m ³			
Saturated density of retained	material	γ _s = 21.0 kl	N/m ³			
Design shear strength		_φ ' = 24.2 de	eg			
Angle of wall friction		$\delta = 0.0 \deg$	1			
Base material details						
Moist density		γ mb = 18.0	kN/m³			
Design shear strength		φ'ь = 24.2 c	leg			
Design base friction		δ^{b} = 18.6 d	eg			
Allowable bearing pressure		Pbearing = 12	20 kN/m²			
Using Coulomb theory						
Active pressure coefficient for	retained materia	I				
$K_a = sin($ Passive pressure coefficient for	$\alpha + \phi')^2 / (\sin(\alpha)^2$ or base material	$_{\times} \sin(\alpha - \delta) \times [1 - \delta]$	⊦ √(sin(_φ ' + δ) × s	$\sin(_{\phi}'$ - $_{\beta}) / (\sin(_{lpha}))$	$(-\delta) \times \sin(\alpha + \delta)$	β)))]²) = 0.419
	$K_p = sin(9)$	00 - _{\$\phi} '_b) ² / (sin(90) - _{δb}) _× [1 - √(sin	$n(\phi'_{b} + \delta_{b}) \times sin(\phi)$	' _b) / (sin(90 + δ	(j _b)))] ²) = 4.187
At-rest pressure						
At-rest pressure for retained n	naterial	$K_0 = 1 - sir$	n(_φ ') = 0.590			
Loading details						
Surcharge load on plan		Surcharge	= 1.5 kN/m ²			
Applied vertical dead load on	wall	W _{dead} = 6.2	₽ kN/m			
Applied vertical live load on w	all	W _{live} = 0.0	kN/m			
Position of applied vertical load	d on wall	$I_{load} = 1328$	mm kN/m			
Applied horizontal live load on	wall	Flive = 0.0 k	N/m			
Height of applied horizontal lo	ad on wall	$h_{load} = 0 \text{ mr}$	n			
•						
			6 ↓ [[]]2			
		Prop				
	21.4 31.6		0.6 30.7	7		
	0.00					
	I					
				Loads shown	n in kN/m, pressure	es shown in kN/m ²

	Project	9 St Geor	ges Terrace		1	7054		
16005	Calcs for				Start page no./	Revision		
						3		
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approved		
Vertical forces on wall								
Wall stem		$w_{wall} = h_{sten}$	$1 \times t_{wall} \times \gamma_{wall} =$	29 kN/m				
Wall base		$w_{base} = I_{base}$	$e \times t$ base $\times \gamma$ base	= 11.2 kN/m				
Surcharge	$w_{sur} = Surc$	$harge \times I_{heel} =$	0.1 kN/m					
Moist backfill to top of wall	l	$w_{m_w} = I_{heel}$	× (h _{stem} - h _{sat}) ;	×γ ^m = 3.4 kN/m				
Applied vertical load		$W_v = W_{\text{dead}}$	d + Wlive = 6.2	kN/m				
Total vertical load		$W_{total} = W_{wa}$	all + Wbase + Wsu	$w + w_{m_w} + W_v = 4$	9.8 kN/m			
Horizontal forces on wal	I							
Surcharge		$F_{sur} = K_a \times$	Surcharge $_{\times}$ h	_{eff} = 2.6 kN/m				
Moist backfill above water	table	$F_{m_a} = 0.5$	$_{\times}$ K _{a \times γm $_{\times}$ (h_{et}}	ff - h _{water}) ² = 62.7	kN/m			
Total horizontal load	$F_{total} = F_{sur}$	+ F _{m_a} = 65.3 I	kN/m					
Calculate total propping	force							
Passive resistance of soil	in front of wall	$F_p = 0.5 \times$	$K_{p \times} \cos(\delta_{b}) \times (\delta_{b})$	$(d_{cover} + t_{base} + d_{ds})$	$(-d_{exc})^2 \times \gamma_{mb} =$	3.2 kN/m		
Propping force		$F_{prop} = max(F_{total} - F_p - (W_{total} - w_{sur}) \times tan(\delta_b), 0 \text{ kN/m})$						
		F _{prop} = 45.	F _{prop} = 45.3 kN/m					
Overturning moments								
Surcharge		$M_{\text{sur}} = F_{\text{sur}}$	$_{ imes}$ (h _{eff} - 2 $_{ imes}$ d _{ds}) / 2 = 5.2 kNm/n	n			
Moist backfill above water	table	$M_{m_a} = F_{m_a}$	$M_{m_a} = F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 85.3 \text{ kNm/m}$					
Total overturning moment		$M_{ot} = M_{sur}$ -	$M_{ot} = M_{sur} + M_{m_a} = 90.5 \text{ kNm/m}$					
Restoring moments								
Wall stem		$M_{wall} = w_{wal}$	I_{\times} (I_{toe} + t_{wall} / 2	2) = 39.5 kNm/m				
Wall base		$M_{base} = W_{base}$	$I_{\text{base}} \times I_{\text{base}} / 2 = 8$	3.8 kNm/m				
Moist backfill		$M_{m_r} = (w_m)$	$_{w \times}$ (I _{base} - I _{heel}	$/2) + w_{m_s \times} (I_{base})$	- I _{heel} / 3)) = 5	3 kNm/m		
Design vertical dead load		$M_{dead} = W_{d}$	$M_{dead} = W_{dead} \times I_{load} = 8.2 \text{ kNm/m}$					
Total restoring moment		$M_{rest} = M_{wa}$	⊫ + M _{base} + M _m _	_r + M _{dead} = 61.7 k	«Nm/m			
Check bearing pressure								
Total vertical reaction		$R = W_{total} =$	= 49.8 kN/m					
Distance to reaction		$x_{bar} = I_{base}$ /	2 = 788 mm					
Eccentricity of reaction		$e = abs((I_{ba}))$	_{ase} / 2) - x _{bar}) =	0 mm				
D				Reaction acts	within middle	e third of		
Bearing pressure at toe		$p_{toe} = (R / I)$	base) - $(6 \times R \times$	e / Ibase ²) = 31.6 k	(N/m²			
Bearing pressure at heel	-	p _{heel} = (R /	I_{base}) + (6 \times R $_{2}$	$\times e / I_{base^2} = 31.6$	kN/m ²			
	P	ASS - WAXIMUM I	pearing press	ure is less than	allowable bea	aring pres		
Calculate propping force	es to top and base	e of wall						
Propping force to top of wa	ali r			- + / 0) / //		16 666 1		
Dropping force to been of	Fpro	p_top = (IVIot - IVIrest +	н _X Ibase / 2 - Н	-prop X lbase / 2) / (r	Istem + Ibase / 2)	= 15.565		
Fropping force to base of	wall	⊢prop_base =	□ prop - □ prop_top	= 29.139 KIN/M				

Todds	Project	9 St Georg	ges Terrace		Job no. 17	054	
Teuus	Calcs for		-		Start page no./Re	evision	
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	4 Approved date	
RETAINING WALL DESIGN	(BS 8002:1994)						
Ultimate limit state load fac	tors				IEDDS calculation	version 1.2.01.0	
Dead load factor		$\gamma_{f_d} = 1.4$					
Live load factor		γ _{f_l} = 1.6					
Earth and water pressure fac	tor	γ _{f_e} = 1.4					
Factored vertical forces on	wall						
Wall stem		$W_{wall_f} = \gamma_{f_d}$	$_{X}h_{stem X}t_{wall X}$	wall = 40.6 kN/m	ı		
Wall base		$W_{\text{base f}} = \gamma_{\text{f}}$	$_{\rm d} \times {\sf I}_{\rm base} \times {\sf t}_{\rm base} imes$	γ _{base} = 15.6 kN/	′m		
Surcharge		$W_{sur_f} = \gamma_{f}$	$_{\times}$ Surcharge $_{\times}$ I _t	neel = 0.1 kN/m			
Moist backfill to top of wall		$W_{m w f} = \gamma f c$	$_{\rm d} \times {\sf I}_{\rm heel} \times ({\sf h}_{\rm stem} -$	h_{sat} $\times \gamma m = 4.8$	kN/m		
Applied vertical load		$W_{\rm v f} = v_{\rm f} d x$	$_{\rm K}$ W _{dead} + v _f $_{\rm K}$ V	$V_{\text{live}} = 8.6 \text{ kN/m}$			
Total vertical load		$W_{total f} = W_w$	vall f + Wbase f + W	$V_{surf} + W_m w f + V$	V _{v f} = 69.7 kN/n	ı	
Factored horizontal at-rest	forces on wall	_			_		
Surcharge		$F_{surf} = \alpha f + s$	∠K₀ _∼ Surcharo	e ∨ h _{eff} = 5.8 kN/	/m		
Moist backfill above water tak	ble	Fm a f = of e	~ 0.5 × K ₀ × w	\sim (heff - hwater) ² =	123.8 kN/m		
Total horizontal load		$F_{\text{total } f} = F_{\text{sur_f}} + F_{\text{m}_a f} = 129.5 \text{ kN/m}$					
Calculate total propping for	200						
Passive resistance of soil in f	ront of wall	F	05	st) (d + t	$+ d_{1} - d_{2}$	– 4 5	
kN/m	Torne of Wall	$r_{p_t} = \gamma_{t_e} \times$	0.5 X Np X COS((Ocover + tbas)	se + Uds - Uexc) X	γmb = 4.3	
Propping force		$F_{prop_f} = ma$ $F_{prop_f} = 10^{-1}$	x(F _{total_f} - F _{p_f} -) 1.6 kN/m	(W _{total_f} - w _{sur_f}) ×	ːtan(δ₀), 0 kN/m	n)	
Factored overturning mom	ents						
Surcharge		Msur f = Fsur	f ∨ (h _{eff} - 2 ∨ d	, / 2 = 11.8 kN	m/m		
Moist backfill above water tak	ble	$M_{m,a,f} = F_{m}$	(herr + 2 \	hwater - 3 v dds) /	3 = 168.3 kNm/	m	
Total overturning moment		$M_{ot_f} = M_{sur_f} + M_{m_af} = 180.1 \text{ kNm/m}$					
Restoring momente							
Wall stem		M	su f s / (here it the set /	2) = 55.3 kMm/r	n		
Wall base		$M_{\text{bass}} = W_{\text{bass}}$	$an_1 \times (100 + 1)$	12 3 kNm/m			
Surcharge		$M_{\rm max} = M_{\rm b}$	$ase_1 \times base / 2 =$	(2) = 0.2 kNm/r	m		
Moist backfill		$VI_{sur_r_f} = W_s$	$\frac{1}{\sqrt{1}}$ sur_f \times (lbase - lheel	(2) = 0.2 kinit/i	II L L (2))_	7.4 kNm/m	
Design vertical load		$VIm_r_f = (Wn$	n_w_f X (Ibase - Ihee	m/m	1base - Iheel / 3) =	7.4 KINIII/III	
Total restoring moment		$\mathbf{M}_{\mathbf{v}_{\mathbf{f}}} = \mathbf{V}\mathbf{V}_{\mathbf{v}_{\mathbf{f}}}$	\times lload = 11.4 KN	111/111 1	M 86 6 kNm	n/m	
		ivirest_t – iviwa	all_T + TV Dase_T + TV			1/111	
Tatal vertical reaction			60.7 kN/m				
Distance to reaction		$\mathbf{H}\mathbf{f} = \mathbf{V}\mathbf{V}$ total_f	= 09.7 KIN/III				
Eccentricity of reaction		$e_f = abs(lb_h)$	$\frac{1}{2} - \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$	0 mm			
				Reaction acts	within middle	third of bas	
Bearing pressure at toe		$p_{\text{toe } f} = (R_f / P_f)$	I_{base}) - (6 \times R _f \times	$e_{\rm f} / l_{\rm base}^2 = 44.3$	3 kN/m ²		
Bearing pressure at heel		$D_{heel} f = (R_f)$	/ I _{base}) + (6 ~ R _f	\times ef / lbase ²) = 44	.3 kN/m ²		
Rate of change of base react	ion	rate = (ptoe	f - Pheel f) / Ibase	= 0.00 kN/m²/m			
Bearing pressure at stem / to	e	Dstem toe f =	max(p _{toe f} - (rate	$e_{\times} I_{toe}$), 0 kN/m ²	²) = 44.3 kN/m ²		
Bearing pressure at mid stem	ı	$D_{stom} mid f = f_{stom}$	max(ptop f - (rat	$e \propto (_{top} + t_{wall}/2)$)), 0 kN/m²) = 4	4.3 kN/m²	

Tedds	1 10,001	9 St Georg	ges Terrace		17054			
10005	Calcs for				Start page no./F	Revision		
	Calcs by MG	alcs by Calcs date Checked by Checked date MG 27/04/2018				5 Approved d		
Bearing pressure at stem / h		Datam kasi 6 -	max(nue (- (r	ate (luc + t))	$0 \text{ kN}/m^2) - 44$	3 kN/m ²		
Calculate propping forces	to top and base	Pstem_heel_f =	max(p _{toe_f} - (f	ale \times (Itoe + Iwall)),	$0 \text{ km/m}^{-}) = 44.$.3 KIN/III ⁻		
Propping force to top of wall								
	F _{prop_top_f} :	$= (M_{ot_f} - M_{rest_f} + R)$	$I_{f \times} I_{base} / 2 - F_{p}$	$_{rop_f \times t_{base}}$ / 2) / (h	$n_{stem} + t_{base} / 2)$	= 33.880 k		
Propping force to base of wa	all	Fprop_base_f =	= F _{prop_f} - F _{prop_f}	_{op_f} = 67.750 kN/i	m			
Design of reinforced conc	rete retaining wa	all toe (BS 8002:1	994)					
Material properties								
Characteristic strength of co	oncrete	f _{cu} = 40 N/r	nm²					
Characteristic strength of rei	inforcement	f _y = 500 N/	mm²					
Base details								
Minimum area of reinforcem	ent	k = 0.13 %						
Cover to reinforcement in to	e	c _{toe} = 40 m	m					
Calculate shear for toe des	sign							
Shear from bearing pressure	e	$V_{toe_bear} = (p_{toe_f} + p_{stem_toe_f}) \times I_{toe} / 2 = 53.1 \text{ kN/m}$						
Shear from weight of base		V _{toe_wt_base} =	$V_{toe_wt_base} = \gamma_{f_d} \times \gamma_{base} \times I_{toe} \times t_{base} = 11.9 \text{ kN/m}$					
Total shear for toe design		$V_{toe} = V_{toe_t}$	$V_{toe} = V_{toe_bear} - V_{toe_wt_base} = 41.2 \text{ kN/m}$					
Calculate moment for toe	design							
Moment from bearing pressu	ure	$M_{toe_bear} = ($	$2 \times p_{toe_f} + p_{ste}$	m_mid_f) \times (Itoe + twa	$(1/2)^2/6 = 41.$	1 kNm/m		
Moment from weight of base		$M_{toe_wt_base} = (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times (I_{toe} + t_{wall} / 2)^2 / 2) = \textbf{9.2 kNm/m}$						
Moment from weight of base	2	IVItoe_wt_base	= ($\gamma f_d \times \gamma base \times$	tbase X (Itoe + twail /	_) , _) = 01_ (
Moment from weight of base Total moment for toe design	1	$M_{toe} = M_{toe}$	= (γt_d × γbase × _{bear} - M _{toe_wt_bas}	_{be} = 31.9 kNm/m	_, , _, _, _ , .			
Moment from weight of base Total moment for toe design	, ,	Mtoe_wt_base = Mtoe_	= (γt_d × γbase × bear - Mtoe_wt_bas	_{se} = 31.9 kNm/m				
Moment from weight of base Total moment for toe design	3	Mtoe_wt_base	= (γt_d × γbase × bear - Mtoe_wt_bas	base × (rice + twai / se = 31.9 kNm/m				
Moment from weight of base Total moment for toe design		Mtoe_wt_base = Mtoe_	= (γt_d × γbase × bear - Mtoe_wt_bas	base × (rice + twai /				
Moment from weight of base Total moment for toe design		Mtoe_wt_base	= (γt_d × γbase × bear - Mtoe_wt_bas	base × (noe + twai / se = 31.9 kNm/m				
Moment from weight of base Total moment for toe design	•	Mtoe_wt_base = Mtoe_	= (γt_d × γbase × bear - Mtoe_wt_bas	• •				
Moment from weight of base Total moment for toe design	•	Mtoe_wt_base = Mtoe_	e (γt_d × γbase × bear - Mtoe_wt_bas	• •				
Moment from weight of base Total moment for toe design	•	Mtoe_wt_base = Mtoe_	= (γt_d × γbase × bear - Mtoe_wt_bas	• •				
Moment from weight of base Total moment for toe design	•	Mtoe_wt_base →	e (γt_d × γbase × bear - Mtoe_wt_bas	• •				
Moment from weight of base Total moment for toe design	• • • •	Mtoe_wt_base →	e (γt_d × γbase × bear - Mtoe_wt_bas	• •				
Moment from weight of base Total moment for toe design	•	 Mtoe_wt_base i Mtoe = Mtoe_ ● ● b = 1000 mtop 	e (γt_d × γbase × bear - Mtoe_wt_bas	• •				
Moment from weight of base Total moment for toe design	• • • •	b = 1000 m dtoe = toase -	e (γt_d × γbase × bear - Mtoe_wt_bas • 1m/m - Ctoe - (φtoe / 2)	• • •				
Moment from weight of base Total moment for toe design	• • •	b = 1000 m dtoe = Mtoe	• nm/m - Ctoe - (φtoe / 2) / (b × dtoe ² × fcu	• • • • • • • • • • • •				
Moment from weight of base Total moment for toe design	• • • • •	b = 1000 m dtoe = Mtoe	• im/m - Ctoe - (φtoe / 2) / (b × dtoe ² × fcu	• •	inforcement i	's not requ		
Moment from weight of base Total moment for toe design	• • •	b = 1000 m dtoe = Mtoe b = 1000 m dtoe = tbase - Ktoe = Mtoe ztoe = min(0	Im/m $- Ctoe - (\phi toe^2 \times fcu)$ $0.5 + \sqrt{(0.25 - (b))}$	• • • • • • • • • • • • • • • •	<i>inforcement i</i> 0.9)),0.95) × c	' s not requ I _{toe}		
Moment from weight of base Total moment for toe design	• • ←_162	$b = 1000 \text{ m}$ $b = 1000 \text{ m}$ $d_{\text{toe}} = \text{M}_{\text{toe}}$ $z_{\text{toe}} = \text{min}(0 \text{z}_{\text{toe}} = 241 \text{ m})$	• Im/m $- Ctoe - (\phi toe / 2)$ $(b \times dtoe^2 \times fcu)$ $0.5 + \sqrt{0.25 - (mm)}$	• • • • • • • • • • • • • • • • • • •	<i>inforcement i</i> 0.9)),0.95) × C	's not requ		
Moment from weight of base Total moment for toe design	• • • • • • • • • • •	b = 1000 m dtoe = Mtoe b = 1000 m dtoe = tbase - Ktoe = Mtoe ztoe = min(C ztoe = 241 m As_toe_des =	\bullet m/m $- Ctoe - (\phi toe^{/2})$ $(b \times dtoe^{2} \times fcu)$ $0.5 + \sqrt{(0.25 - (mm))}$ $Mtoe / (0.87 \times fc)$	• • • • • • • • • • • • • • • • • • • •	<i>inforcement i</i> 0.9)),0.95) × c	s not requ		
Moment from weight of base Total moment for toe design	nt required	$b = 1000 \text{ m}$ $b = 1000 \text{ m}$ $d_{toe} = b_{ase} - K_{toe} = M_{toe}$ $z_{toe} = min(0 \text{ z}_{toe} = 241 \text{ m}$ $A_{s_toe_des} = A_{s_toe_min} = 0$	$\mathbf{f}_{\text{tote}} = (\gamma t_{\text{d}} \times \gamma \text{base} \times \text{bear} - M_{\text{tote}_{\text{wt}_{\text{base}}}})$ $\mathbf{f}_{\text{bear}} = M_{\text{tote}_{\text{wt}_{\text{base}}}}$ $\mathbf{f}_{\text{tote}_{\text{bear}}} = (\phi_{\text{tote}} / 2)$ $f_{\text{tote}_{\text{bear}}} = (\phi_{\text{tote}_{\text{base}}})$ $\mathbf{f}_{\text{tote}_{\text{bear}}} = (0.87 \times f_{\text{bear}})$ $\mathbf{f}_{\text{tote}_{\text{bear}}} = (0.87 \times f_{\text{bear}})$	• • • • • • • • • • • • • • • • • • •	<i>inforcement i</i> 0.9)),0.95) × c	's not requ		
Moment from weight of base Total moment for toe design	• • • • • • • • • • • • • • • • • • •	$b = 1000 \text{ m}$ $b = 1000 \text{ m}$ $d_{toe} = b_{ase} - K_{toe} = M_{toe} / k_{toe}$ $z_{toe} = min(0 \text{ m})$ $z_{toe} = 241 \text{ m}$ $A_{s_toe_des} = A_{s_toe_ren} = A_{s_toe_$	$\mathbf{f}_{d} = (\gamma t_{d} \times \gamma \text{base} \times \text{bear} - M_{toe_wt_base})$ $\mathbf{f}_{d} = \frac{1}{2} (\mathbf{f}_{d} + \mathbf{f}_{d} + f$	• •	<i>inforcement i</i> 0.9)),0.95) × c n²/m nm²/m	s not requ		
Moment from weight of base Total moment for toe design	e ↓ ↓ ↓ ↓ 162– nt required nforcement nt required hord	$b = 1000 \text{ m}$ $b = 1000 \text{ m}$ $d_{toe} = b_{ase} - K_{toe} = M_{toe}$ $z_{toe} = m_{toe}$ $z_{toe} = 241 \text{ m}$ $A_{s_toe_des} = A_{s_toe_req} = 12 \text{ mm dia}$	$\mathbf{M}_{\text{toe}} = (\gamma t_{-} d \times \gamma \text{base} \times \text{bear} - M_{\text{toe}_{-}\text{wt}_{-}\text{base}})$	• • • • • • • • • • • • • • • • • • •	<i>inforcement i</i> 0.9)),0.95) × c n²/m nm²/m	s not requ I _{toe}		

Tedds	Project	9 St Geor	ges Terrace		Job no.	7054
	Calcs for				Start page no./F	Revision 6
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approved date
Check shear resistance at t	oe					
Design shear stress		$v_{toe} = V_{toe}$ /	$(b \times d_{toe}) = 0.1$	62 N/mm ²		
Allowable shear stress		v _{adm} = min(0.8 _{× √} (f _{cu} / 1 ľ	N/mm²), 5) _× 1 N/	mm² = 5.000 N	l/mm²
		PASS -	Design shea	r stress is less t	han maximun	n shear stress
From BS8110:Part 1:1997 –	Table 3.8		_			
Design concrete shear stress		Vc_toe = 0.5	38 N/mm ²			
			V_{t}	oe < Vc_toe - NO St	ear reinforce	ment required
Design of reinforced concre	ete retaining wa	all heel (BS 8002:	:1994)			
Material properties						
Characteristic strength of con	crete	$f_{cu} = 40 \text{ N/r}$	nm²			
Characteristic strength of rein	forcement	fy = 500 N/	mm²			
Base details						
Minimum area of reinforceme	nt	k = 0.13 %				
Cover to reinforcement in hee	el	Cheel = 20 n	nm			
Calculate shear for heel des	sign					
Shear from bearing pressure		$V_{heel_bear} =$	(pheel_f + pstem_h	$(\text{heel}_f) \times _{\text{heel}} / 2 = 2$. 2 kN/m	
Shear from weight of base		$V_{\text{heel}_wt_base}$	= $\gamma f_d \times \gamma base \times$	$I_{\text{heel}} \times t_{\text{base}} = 0.5 \text{ k}$	N/m	
Shear from weight of moist ba	ackfill	$V_{heel_wt_m} =$	w _{m_w_f} = 4.8 kl	N/m		
Shear from surcharge		$V_{heel_sur} = W$	/sur_f = 0.1 kN/r	n		
Total shear for heel design		$V_{heel} = -V_{heel}$	$heel_bear + V_{heel_v}$	$wt_{base} + V_{heel_wt_m}$ ·	+ V _{heel_sur} = 3.2	kN/m
Calculate moment for heel of	design					
Moment from bearing pressur	e	$M_{heel_bear} =$	$(2 \times p_{heel_f} + p_s)$	$tem_mid_f) \times (lheel + 1)$	$t_{wall} / 2)^2 / 6 = 1$	kNm/m
Moment from weight of base		$M_{heel_wt_base}$	= $(\gamma f_d \times \gamma base >$	$_{\times}$ tbase $_{\times}$ (lheel + twal	/ 2) ² / 2) = 0.2	kNm/m
Moment from weight of moist	backfill	M _{heel_wt_m} =	$w_{\text{m}_\text{w}_\text{f}} \times (I_{\text{heel}} +$	+ t _{wall}) / 2 = 0.9 kN	lm/m	
Moment from surcharge		$M_{heel_sur} = V$	$v_{sur_f \times} (I_{heel} + t_{v})$	wall) / 2 = 0 kNm/m	ı	
Total moment for heel design		$M_{heel} = -M_{heel}$	heel_bear + Mheel	_wt_base + $M_{heel_wt_m}$	$H + M_{heel_sur} = 0.$	1 kNm/m
	◄ —162—	_▶				
↑ ★	•	• •	•	• •		
	5					
3					\leq	
<u> </u>						
Check heel in bending			,			
Width of heel		b = 1000 n	nm/m			
Depth of reinforcement		d _{heel} = t _{base}	- Cheel - (pheel /	(2) = 274.0 mm		
Constant		K _{heel} = M _{hee}	h / (b $_{\times}$ dheel ² $_{\times}$	t _{cu}) = 0.000		
				<i>Compression re</i>	inforcement is	s not required

Lever arm

Area of tension reinforcement required

$$\begin{split} & \text{Z}_{\text{heel}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{heel}}, 0.225) / 0.9))}, 0.95) \times d_{\text{heel}} \\ & \text{Z}_{\text{heel}} = \textbf{260} \text{ mm} \\ & \text{A}_{\text{s_heel_des}} = M_{\text{heel}} / (0.87 \times f_{\text{y}} \times z_{\text{heel}}) = \textbf{1} \text{ mm}^2/\text{m} \end{split}$$

Tedds	Project	9 St Geor	ges Terrace		Job no. 1	7054		
	Calcs for				Start page no./I	Revision 7		
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approved date		
Minimum area of tension re	inforcement	$A_{s_heel_min} =$	$k \times b \times t_{base} =$	390 mm²/m				
Area of tension reinforceme	ent required	As_heel_req =	Max(As_heel_des	, As_heel_min) = 390) mm²/m			
Reinforcement provided		12 mm dia	.bars @ 162 r	nm centres				
Area of reinforcement prov	ded	As_heel_prov =	= 698 mm²/m					
		PASS - Reinf	orcement pro	vided at the reta	aining wall he	el is adequate		
Check shear resistance a	t heel							
Design shear stress		$v_{\text{heel}} = V_{\text{heel}}$	/ (b \times dheel) = C).012 N/mm ²				
Allowable shear stress		v _{adm} = min(0.8 _{× √} (f _{cu} / 1 №	N/mm ²), 5) \times 1 N/	mm² = 5.000 N	√mm²		
		PASS -	Design shea	r stress is less t	han maximur	n shear stress		
From BS8110:Part 1:1997	– Table 3.8							
Design concrete shear stre	SS	Vc_heel = 0.5	15 N/mm²					
			Vhee	el < Vc_heel - No sl	near reinforce	ment required		
Design of reinforced con	crete retaining wa	all stem (BS 8002	:1994)					
Material properties		, , , , , , , , , , , , , , , , , , ,	<u> </u>					
Characteristic strength of c	oncrete	fou = 40 N/r	nm²					
Characteristic strength of re	einforcement	$f_v = 500 \text{ N/mm}^2$						
Wall dotails		., <u> </u>						
Minimum area of reinforcer	nent	k – 0 13 %						
Cover to reinforcement in s	tem	$C_{stem} = 80 r$	nm					
Cover to reinforcement in v	vall	Cwall = 80 m	ım					
Factored horizontal at-rea	st forces on stem							
Surcharge		Fa	KoSurchs	arae(h. <u>"</u> - than -	. d.,) – 5 4 kN/	m		
Moist backfill above water t	ablo	$\Gamma s_sur_i = \gamma I_$		$(h_{ii} - t_{ii})$	$d_{\rm max} = 0.4 \rm KW$	6 2 kN/m		
		1 s_m_a_f = 0	$.5 \times \gamma_{t_e} \times 10 \times$	γm × (Heff - Chase - C	$d_{ds} = \Pi_{sat} = 10$	0.2 KN/III		
Calculate shear for stem	design							
Surcharge		$V_{s_sur_f} = 5$	$X \vdash_{s_sur_f} / 8 = 3$	3.3 kN/m				
Moist backfill above water f	able	$V_{s_m_a_f} = F$	s_m_a_f × b _{l ×} ((t	$b_{\rm X} {\rm L}^2$) - $b_{\rm I}^2$) / (5 $_{\rm X}$	L ³) = 83.3 kN/	m		
I otal shear for stem design	1	$V_{stem} = V_{s_s}$	$ur_f + V_{s_m_a_f} =$	86.6 kN/m				
Calculate moment for ste	m design							
Surcharge		$M_{s_sur} = F_{s_}$	$sur_f \times L / 8 = 2$.6 kNm/m				
Moist backfill above water t	able	$M_{s_m_a} = F_{s_m_a_f} \times b_{I} \times ((5 \times L^2) - (3 \times b_{I}^2)) \ / \ (15 \times L^2) = \textbf{59.6} \ kNm/m$. 6 kNm/m		
Total moment for stem des	ign	$M_{stem} = M_{s}$	$_{sur} + M_{s_m_a} = 6$	52.2 kNm/m				
Calculate moment for wa	ll design							
Surcharge		$M_{w_sur} = 9$	$F_{s_sur_f \times}L/1$	28 = 1.5 kNm/m				
Moist backfill above water t	able	$M_{w_m_a} = F_s$	_{_m_a_f ×} 0.577 _×	$b_{i\times}[(b_{i}^{3}+5\times a_{i\times}L^{2})/$	(5 _× L ³)-0.577 ² /3	B] = 24.4		
kNm/m								

Tedds	Project	9 St Geor	ges Terrace		Job no. 1	7054
redus	Calcs for				Start page no./F	Revision
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	9 Approved date
Desire service stress	ll.	£ 0 £	A //O		20 C N/mam ²	
Design service stress	factor – mi	$I_{s} = 2 \times I_{y} \times n(0.55 \pm (477 \text{ N}/m$	$A_{s_{stem_{req}}} / (3)$	\times As_stem_prov) = 30	JU.6 N/MM² /))) 2) – 1 29
Maximum span/effective den	th ratio	rationer - r	ations v factor	- 25 78	(D X Ustem)))),2) = 1.23
Actual span/effective depth r	atio	ratio _{act} = h_s	$t_{tem} / d_{stem} = 15$.82		
				PASS - Span	to depth ratio	is acceptable

Toe bars - 12 mm dia.@ 162 mm centres - (698 mm²/m) Heel bars - 12 mm dia.@ 162 mm centres - (698 mm²/m) Wall bars - 12 mm dia.@ 162 mm centres - (698 mm²/m) Stem bars - 12 mm dia.@ 162 mm centres - (698 mm²/m)