
Tedds	Project	Project St George's Terrace				
	Calcs for	Calcs for 5				
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approved date

edds [:]	Project	St George's Terrace Job no. 17054				
Teuus	Calcs for	-			Start page no./F	Revision
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	2 Approved date
Moist density of retained mate	rial	γm = 18.0 k	N/m ³			
Saturated density of retained i	material	, γs = 21.0 k				
Design shear strength		_φ ' = 24.2 de				
Angle of wall friction		$\delta = 0.0 \deg$)			
Base material details						
Moist density		γmb = 18.0	kN/m³			
Design shear strength		_φ ' _b = 24.2 c				
Design base friction		δ _b = 18.6 d				
Allowable bearing pressure		Pbearing = 12				
Using Coulomb theory						
Active pressure coefficient for	retained materi	al				
$K_a = sin($ Passive pressure coefficient for		$^{2} \times sin(\alpha - \delta) \times [1 - 1]$	+ $\sqrt{(\sin(\phi' + \delta))}$	$\frac{1}{3}\sin(\phi' - \beta) / (\sin(\phi'))$	$_{\chi}$ - $_{\delta}$) $_{\times}$ sin($_{\alpha}$ +	- β)))]²) = 0.41 9
		(90 - _q ' _b)² / (sin(90) - δ_b) $ imes$ [1 - \sqrt{s}	$\sin(\phi'_{b} + \delta_{b}) \times \sin(\phi'_{b})$	_φ ' _b) / (sin(90 +	$\delta_{b})))]^{2}) = 4.187$
At-rest pressure						
At-rest pressure for retained m	naterial	$K_0 = 1 - sir$	n(_{\$\phi} ') = 0.590			
Loading details						
Surcharge load on plan		Surcharge	= 1.5 kN/m ²			
Applied vertical dead load on	wall	$W_{dead} = 5.2$	₽ kN/m			
Applied vertical live load on wa		$W_{\text{live}} = 0.0$				
Position of applied vertical loa		l _{load} = 1328				
Applied horizontal dead load of		F _{dead} = 0.0				
Applied horizontal live load on Height of applied horizontal lo		F _{live} = 0.0 k h _{load} = 0 mi				
	au un wali		11			
			5 ↓ □□□□□	∏]2		
				~		
	Prop- 14.3 37.1		1.3	0.6 18.2		
	14.3		1.3	0.6 18.2		
	14.3		1.3	0.6 18.2		

Todda	Project	St Georg	e's Terrace		Job no. 1	7054		
Tedds	Calcs for				Start page no./I	Revision		
						3		
	Calcs by	Calcs date	Checked by	Checked date	e Approved by	Approved da		
	MG	27/04/2018						
Vertical forces on wall								
Wall stem		$w_{\text{wall}} = h_{\text{sten}}$	$1 \times t_{wall} \times \gamma_{wall} =$	14.1 kN/m				
Wall base			$_{\rm e} \times {\rm t}_{\rm base} \times {\rm \gamma}_{\rm base}$					
Surcharge			$harge \times I_{heel} =$					
Moist backfill to top of wall		$w_{m_w} = I_{heel}$	× (h _{stem} - h _{sat}) ;	_{≺ γm} = 2 kN/m				
Applied vertical load			d + Wlive = 5.2	•				
Total vertical load		$W_{total} = W_{wa}$	all + Wbase + Wsur	$w + w_{m_w} + W_v = 2$	8.9 kN/m			
Horizontal forces on wall								
Surcharge		$F_{sur} = K_a \times$	Surcharge $_{\times}$ h	_{eff} = 1.5 kN/m				
Moist backfill above water	table	$F_{m_a} = 0.5$	$_{\times}$ Ka $_{\times}$ $_{\gamma^m}$ $_{\times}$ (hef	f - h _{water}) ² = 21.9	⟨N/m			
Total horizontal load		$F_{total} = F_{sur}$	+ F _{m_a} = 23.4	≺N/m				
Calculate propping force								
Passive resistance of soil i	n front of wall	$F_p = 0.5 \times$	$K_{p \times} \cos(\delta_{b}) \times (\delta_{b})$	$d_{cover} + t_{base} + d_{ds}$	$- d_{exc})^2 \times \gamma^{mb} =$	1.4 kN/m		
Propping force		F _{prop} = max	$F_{prop} = max(F_{total} - F_p - (W_{total} - w_{sur}) \times tan(\delta_b), 0 \text{ kN/m})$					
		F _{prop} = 12.2	F _{prop} = 12.2 kN/m					
Overturning moments								
Surcharge		$M_{sur} = F_{sur}$	$_{ imes}$ (h _{eff} - 2 $_{ imes}$ d _{ds}) / 2 = 1.8 kNm/m	ı			
Moist backfill above water	table	$M_{m_a} = F_{m_a}$	$_{a \times}(h_{eff} + 2 \times h)$	water - 3 _× d _{ds}) / 3 :	= 17.6 kNm/m			
Total overturning moment		$M_{ot} = M_{sur} \cdot$	+ M _{m_a} = 19.4 k	kNm/m				
Restoring moments								
Wall stem		$M_{wall} = w_{wall}$	$_{I \times}$ (I _{toe} + t _{wall} / 2	2) = 18.8 kNm/m				
Wall base		$M_{base} = w_{ba}$	$_{\rm ase} \times I_{\rm base} / 2 = 5$	5.7 kNm/m				
Moist backfill		$M_{m_r} = (w_m$	$_w \times (I_{base} - I_{heel})$	$/2) + w_{m_s \times} (I_{base})$	- I _{heel} / 3)) = 2 .	9 kNm/m		
Design vertical dead load		$M_{dead} = W_{dead}$	$M_{dead} = W_{dead \times I_{load}} = 6.9 \text{ kNm/m}$					
Total restoring moment		M _{rest} = M _{wa}	I + Mbase + Mm_	r + M _{dead} = 34.3 k	Nm/m			
Check bearing pressure								
Surcharge		M _{sur} r = W _{su}	$_{\rm ur} \times ({\rm I}_{\rm base} - {\rm I}_{\rm heel} /$	2) = 0.1 kNm/m				
Total moment for bearing		$M_{total} = M_{res}$	st - Mot + Msur_r	= 15 kNm/m				
Total vertical reaction		$R = W_{total} =$	= 28.9 kN/m					
Distance to reaction		$x_{bar} = M_{total}$	/ R = 519 mm					
Eccentricity of reaction		$e = abs((I_b$	_{ase} / 2) - x _{bar}) =	234 mm				
				Reaction acts	within middle	e third of b		
Bearing pressure at toe		$p_{toe} = (R / I)$	$_{\rm base})$ + (6 $_{ imes}$ R $_{ imes}$	e / I _{base} ²) = 37.1	kN/m²			
Bearing pressure at heel		$p_{heel} = (R / $	I _{base}) - (6 $_{ imes}$ R $_{ imes}$	$(e / I_{base}^2) = 1.3 k$	N/m²			
	-	ASS - Maximum I				-		

Tedds	Project	St Georg	e's Terrace		Job no. 1	7054
10005	Calcs for				Start page no./I	Revision
		I	1			4
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approve
	IVIG	27/04/2018				
RETAINING WALL DESI	GN (BS 8002-1994)					
		<u>-</u>			TEDDS calculation	n version 1
Ultimate limit state load	factors					
Dead load factor		$\gamma_{f_d} = 1.4$				
Live load factor		γ _{f_l} = 1.6				
Earth and water pressure	factor	γ _{f_e} = 1.4				
Factored vertical forces	on wall					
Wall stem		$W_{wall_f} = \gamma_{f_c}$	$_{\rm d} \times {\rm h_{stem}} \times {\rm t_{wall}} \times$	γ wall = 19.8 kN/n	n	
Wall base		$W_{base_f} = \gamma_{f}$	$_{d \times} I_{\text{base} \times} t_{\text{base}}$	$\times \gamma \text{base} = 10.5 \text{ kN}$	/m	
Surcharge		$W_{sur_f} = \gamma_{f_i}$	$_{ imes}$ Surcharge $_{ imes}$	I _{heel} = 0.1 kN/m		
Moist backfill to top of wa	II	$W_{m_w_f} = \gamma_f$	$_{d} \times I_{heel} \times (h_{stem})$	- h _{sat}) _{× γm} = 2.8	kN/m	
Applied vertical load		•		W _{live} = 7.3 kN/m		
Total vertical load		•	•	$W_{sur_f} + W_{m_w_f} + V$	V _{v_f} = 40.5 kN/	m
Factored horizontal acti	ve forces on wall					
Surcharge		$F_{sur f} = \gamma_{f}$	$_{\times}$ K _{a \times} Surchar	ge $_{\times}$ h _{eff} = 2.4 kN	/m	
Moist backfill above water	r table			$m \times (h_{eff} - h_{water})^2 =$		
Total horizontal load		$F_{\text{total } f} = F_{\text{sur} f} + F_{\text{m} a f} = 33 \text{ kN/m}$				
Calculate propping forc	<u>م</u>	_				
Passive resistance of soil		$F_{r} = r + r$	05.K	$s(\delta_b) \times (d_{cover} + t_{bas})$	$- + d_{42} - d_{44})^2$	- 2
Propping force	in none of wall	•		$(W_{\text{total f}} - W_{\text{sur_f}}) >$		•
		$F_{prop_f} = 17$		(vv total_i vvsur_i) >		""
Factored overturning m	oments	r ·r_				
Surcharge		M _{sur} f = F _{su}	r f	d _{ds}) / 2 = 2.9 kNm	ı/m	
Moist backfill above water	r table	_		<hr/> kwater - 3 × dds) /		m
Total overturning moment			$f_{f} + M_{m_a_f} = 27$			
Restoring moments						
Wall stem		$M_{wall_f} = W_w$	$_{rall_f \times}(I_{toe} + t_{wall})$	/ 2) = 26.3 kNm/r	m	
Wall base			base_f × Ibase / 2			
Surcharge				el / 2) = 0.2 kNm/l	m	
Moist backfill				eel / 2) + w _{m_s_f ×} (= 4.1 kN
Design vertical load			\times I _{load} = 9.7 kN			
Total restoring moment				Msur_r_f + Mm_r_f +	M _{v_f} = 48.2 kN	m/m
Factored bearing press	Jre	_	_			
Total moment for bearing		M _{total} f = Mr	_{est f} - M _{ot f} = 20	. 7 kNm/m		
Total vertical reaction		_	f = 40.5 kN/m			
Distance to reaction			_{al_f} / R _f = 510 m	ım		
Eccentricity of reaction			 ase / 2) - x _{bar_f})			
				Reaction acts	within middle	e third o
Bearing pressure at toe		$p_{toe_f} = (R_f)$	/ I_{base}) + (6 $_{\times}$ R	$f \times e_f / I_{base^2} = 52$. 9 kN/m²	
Bearing pressure at heel		$p_{\text{heel}_f} = (R_f$	/ I_{base}) - (6 $_{ imes}$ R	$f \times e_f / I_{base}^2) = 0.9$	kN/m²	
Rate of change of base re	eaction	$rate = (p_{toe})$	_f - p _{heel_f}) / I _{base}	e = 34.55 kN/m²/r	n	
		n	mayin	to L) 0 kN/mé	$(115 k)/m^2$, ,
Bearing pressure at stem	/ toe	$p_{stem_toe_f} =$	max(ptoe_f - (ra	te $_{\times}$ I _{toe}), 0 kN/m ²) = 11.5 km/m	

Tedds	Project	St Georg	e's Terrace		Job no. 1	7054		
	Calcs for				Start page no./Revision 5			
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approve		
Bearing pressure at stem /	heel	Dstem heel f =	= max(ptoe f - (r	ate \times (I _{toe} + t _{wall})),	0 kN/m^2 = 2.6	kN/m ²		
				are X (100 + than)))				
Design of reinforced con	crete retaining wa	all toe (BS 8002:1	994)					
Material properties	anarata	f 40 NI/	~~ ²					
Characteristic strength of c Characteristic strength of r		f _{cu} = 40 N/r f _y = 500 N/						
-	emoreement	ly = 300 lv/						
Base details Minimum area of reinforcer	mont	k = 0.13 %						
Cover to reinforcement in t		c _{toe} = 40 m						
Calculate shear for toe de		N (LAL/m			
Shear from bearing pressu				$f_{f} \times l_{toe} / 2 = 38.6$				
Shear from weight of base Total shear for toe design			= $\gamma f_d \times \gamma \beta ase \times 1$ bear - V _{toe_wt_base}	toe \times tbase = 8.4 kN	v/m			
		v toe = v toe_	bear - v toe_wt_base	e = 30.2 KN/III				
Calculate moment for toe	-		0		10)210 00	N I . N I /		
Moment from bearing pres		$\begin{split} M_{toe_bear} &= (2 \times p_{toe_f} + p_{stem_mid_f}) \times (I_{toe} + t_{wall} / 2)^2 / 6 = 33.2 \ kNm/m \\ M_{toe_wt_base} &= (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times (I_{toe} + t_{wall} / 2)^2 / 2) = 6.2 \ kNm/m \\ M_{toe_wt_base} &= (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times (I_{toe} + t_{wall} / 2)^2 / 2) = 6.2 \ kNm/m \\ M_{toe_base} &= (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times t_{base} \times t_{base} \times t_{base} \times t_{base} \times t_{base} \\ M_{toe_base} &= (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times t_{base} \times t_{base} \times t_{base} \times t_{base} \times t_{base} \\ M_{base} &= (\gamma_{f_d} \times base \times t_{base} $						
Moment from weight of bas Total moment for toe desig								
	$M_{toe} = M_{toe_bear} - M_{toe_wt_base} = 27 \text{ kNm/m}$							
	<	• •	• •	• •				
Ţ Ţ	•	• •	• •	• •				
Ţ Ţ	- ← 133→	• •	• •	• •				
Ţ Ţ	 - -	• •	• •	• •				
	←133→	• • b = 1000 n	• •					
Check toe in bending	↓ ↓ −133→	b = 1000 n	• • nm/m – c _{toe} – (_{фtoe} / 2	• •				
Check toe in bending Width of toe	←133→	b = 1000 n d _{toe} = t _{base} -	$- c_{toe} - (\phi_{toe} / 2)$ / (b $\times d_{toe}^2 \times f_{cu}$) = 0.028				
Check toe in bending Width of toe Depth of reinforcement Constant	 ↓ ↓	b = 1000 n d _{toe} = t _{base} - K _{toe} = M _{toe}	$-c_{toe} - (_{\phi toe} / 2)$ / (b $\times d_{toe}^2 \times f_{cu}$) = 0.028 Compression re				
Check toe in bending Width of toe Depth of reinforcement	 ↓ ↓	b = 1000 n d _{toe} = t _{base} - K _{toe} = M _{toe} z _{toe} = min(0	$-c_{toe} - (\phi_{toe} / 2)/(b \times d_{toe}^2 \times f_{cu})$ / (b × d_{toe}^2 + f_{cu}) 0.5 + $\sqrt{0.25}$ - () = 0.028				
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm		$b = 1000 \text{ n}$ $d_{toe} = t_{base} - K_{toe} = M_{toe}$ $Z_{toe} = min(0)$ $Z_{toe} = 147 \text{ n}$	$-c_{toe} - (\phi_{toe} / 2)/(b \times d_{toe}^2 \times f_{cu})$ $-0.5 + \sqrt{0.25 - (mm)}$) = 0.028 <i>Compression re</i> min(K _{toe} , 0.225) /	′ 0.9)),0.95) _× d			
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcem	ent required	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - t_{\text{toe}} = M_{\text{toe}}$ $K_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = min(t_{\text{ztoe}} = 147 \text{ m}$ $A_{\text{s_toe_des}} = t_{\text{toe}}$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b_{\times} d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25} - (\phi_{toe})$ $M_{toe} / (0.87 \times f_{toe})$) = 0.028 <i>Compression re</i> min(K _{toe} , 0.225) / _{y × Ztoe}) = 422 mn	′ 0.9)),0.95) _× d			
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcem Minimum area of tension re	ent required einforcement	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 147 \text{ m}$ $A_{s_toe_des} = A_{s_toe_min} = t_{s_toe_min}$	$-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^{2} \times f_{cu})$ $0.5 + \sqrt{0.25} - (mm)$ $M_{toe} / (0.87 \times f_{k})$ $k \times b \times t_{base} = 2$) = 0.028 <i>Compression re</i> (min(K _{toe} , 0.225) / _{y × Ztoe}) = 422 mn 260 mm ² /m	′′ 0.9)),0.95) _× d n²/m			
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcem Minimum area of tension re Area of tension reinforcem	ent required einforcement	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - t_{\text{toe}} = M_{\text{toe}}$ $Z_{\text{toe}} = M_{\text{toe}}$ $Z_{\text{toe}} = 147 \text{ m}$ $A_{\text{s}_\text{toe}_\text{des}} = A_{\text{s}_\text{toe}_\text{min}} = A_{\text{s}_\text{toe}_\text{req}} = 0$	$-c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25 - (mm)}$ $M_{toe} / (0.87 \times f_{k} \times b \times t_{base} = 2)$ $Max(A_{s_toe_des}, -c_{s_toe_des})$) = 0.028 <i>Compression re</i> min(K _{toe} , 0.225) / y × Z _{toe}) = 422 mn 260 mm ² /m A _{s_toe_min}) = 422 r	′′ 0.9)),0.95) _× d n²/m			
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcem Minimum area of tension re Area of tension reinforcem Reinforcement provided	ent required einforcement ent required	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - t_{\text{toe}}$ $K_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = M_{\text{toe}}$ $z_{\text{toe}} = 147 \text{ m}$ $A_{\text{s}_\text{toe}_\text{des}} = A_{\text{s}_\text{toe}_\text{min}} = A_{\text{s}_\text{toe}_\text{req}} = 10 \text{ mm dia}$	$-c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{0.25} - (mm)$ $M_{toe} / (0.87 \times f_{to})$ $k \times b \times t_{base} = 2$ $Max(A_{s_toe_des}, m_{tobars} @ 133)$) = 0.028 <i>Compression re</i> min(K _{toe} , 0.225) / y × Z _{toe}) = 422 mn 260 mm ² /m A _{s_toe_min}) = 422 r	′′ 0.9)),0.95) _× d n²/m			
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcem Minimum area of tension re Area of tension reinforcem	ent required einforcement ent required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{bas} - t_{bas} - t_{base} - t_{base} - t_{base} - t_{base} - t_{bas$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (0.25 - (mm)) / (0.87 \times f_{toe} / (0.87 \times f_{toe}) / (0.87 \times f$) = 0.028 <i>Compression re</i> min(K _{toe} , 0.225) / y × Z _{toe}) = 422 mn 260 mm ² /m A _{s_toe_min}) = 422 r	′ 0.9)),0.95) _× d n²/m nm²/m	toe		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcem Minimum area of tension re Area of tension reinforcem Reinforcement provided	ent required einforcement ent required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{bas} - t_{bas} - t_{base} - t_{base} - t_{base} - t_{base} - t_{bas$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (0.25 - (mm)) / (0.87 \times f_{toe} / (0.87 \times f_{toe}) / (0.87 \times f$) = 0.028 <i>Compression re</i> (min(K _{toe} , 0.225) / y × Z _{toe}) = 422 mn 260 mm ² /m A _{s_toe_min}) = 422 r mm centres	′ 0.9)),0.95) _× d n²/m nm²/m	toe		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcem Minimum area of tension re Area of tension reinforcem Reinforcement provided Area of reinforcement provided Area of reinforcement provided	ent required einforcement ent required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{coe} = t_{base} - t_{coe} = t_{base} - t_{coe} = t_{coe}$ $z_{toe} = M_{toe} - t_{coe} - t_{coe} = t_{coe} - t_{coe} t_{coe} - t_{coe} - t_{coe} - t_{coe} = t_{coe} - t_{c$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (0.25 + \sqrt{0.25 + 0.25} + \sqrt{0.25 + 0.25} + \sqrt{0.25 + 0.25} + \sqrt{0.25 + 0.25} / (0.25 + \sqrt{0.25 + 0.25} + \sqrt{0.25} + \sqrt{0.25} + \sqrt{0.25 + 0.25} + \sqrt{0.25} + \sqrt{0.25}$) = 0.028 <i>Compression re</i> (min(K _{toe} , 0.225) / y × Z _{toe}) = 422 mn 260 mm ² /m A _{s_toe_min}) = 422 r mm centres <i>rovided at the re</i>	′ 0.9)),0.95) _× d n²/m nm²/m	toe		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcem Minimum area of tension re Area of tension reinforcem Reinforcement provided Area of reinforcement prov	ent required einforcement ent required	$b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - t_{\text{toe}} = t_{\text{base}} - t_{\text{toe}} = t_{\text{toe}}$ $z_{\text{toe}} = min(0)$ $z_{\text{toe}} = 147 \text{ m}$ $A_{\text{s}_\text{toe}_\text{des}} = A_{\text{s}_\text{toe}_\text{min}} = A_{\text{s}_\text{toe}_\text{req}} = 10 \text{ mm dia}$ $A_{\text{s}_\text{toe}_\text{prov}} = PASS - Rein$ $v_{\text{toe}} = V_{\text{toe}} / t_{\text{toe}} / t_{to$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (0.25 + 0.25 + ($) = 0.028 <i>Compression re</i> $fmin(K_{toe}, 0.225) /$ $y \times Z_{toe}) = 422 mn$ 260 mm ² /m $A_{s_toe_min}) = 422 r$ mm centres <i>rovided at the re</i> 195 N/mm ²	' 0.9)),0.95) _× d n²/m nm²/m taining wall to	ttoe De is ade		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcem Minimum area of tension re Area of tension reinforcem Reinforcement provided Area of reinforcement prov Check shear resistance a Design shear stress	ent required einforcement ent required	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{coe} = t_{base} - t_{coe} = t_{coe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 147 \text{ m}$ $A_{s_toe_des} = t_{s_toe_req} = t_{s_toe_req} = t_{s_toe_req} = t_{s_toe_req}$ $A_{s_toe_req} = t_{s_toe_req} = t_{s_toe_req}$ $PASS - Reir$ $v_{toe} = V_{toe} / t_{vadm} = min(t_{s_toe})$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (0.25 - (mm)) / (0.87 \times f_{toe}) / $) = 0.028 <i>Compression re</i> (min(K _{toe} , 0.225) / y × Z _{toe}) = 422 mn 260 mm ² /m A _{s_toe_min}) = 422 r mm centres <i>rovided at the re</i>	' 0.9)),0.95) _× d n²/m nm²/m t aining wall to 'mm² = 5.000 N	be <i>is ade</i> I/mm²		
Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcem Minimum area of tension re Area of tension reinforcem Reinforcement provided Area of reinforcement prov Check shear resistance a Design shear stress	ent required einforcement ent required rided at toe	$b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{coe} = t_{base} - t_{coe} = t_{coe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 147 \text{ m}$ $A_{s_toe_des} = t_{s_toe_req} = t_{s_toe_req} = t_{s_toe_req} = t_{s_toe_req}$ $A_{s_toe_req} = t_{s_toe_req} = t_{s_toe_req}$ $PASS - Reir$ $v_{toe} = V_{toe} / t_{vadm} = min(t_{s_toe})$	$- c_{toe} - (\phi_{toe} / 2) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (b \times d_{toe}^2 \times f_{cu}) / (0.25 - (mm)) / (0.87 \times f_{toe}) / $) = 0.028 <i>Compression re</i> (min(K _{toe} , 0.225) / y × Z _{toe}) = 422 mn 260 mm ² /m A _{s_toe_min}) = 422 r mm centres <i>rovided at the re</i> 195 N/mm ² N/mm ²), 5) × 1 N/	' 0.9)),0.95) _× d n²/m nm²/m t aining wall to 'mm² = 5.000 N	be <i>is ade</i> I/mm²		

Tedds	Project	St Georg	e's Terrace		Job no. 1	7054		
Tedas	Calcs for				Start page no./F			
						6		
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approved		
	ma	21/01/2010						
Design of reinforced con	crete retaining wa	all heel (BS 8002:	1994)					
Material properties			<u></u>					
Characteristic strength of c	concrete	f _{cu} = 40 N/r	nm²					
Characteristic strength of r		f _y = 500 N/						
Base details								
Minimum area of reinforcement		k = 0.13 %						
Cover to reinforcement in	heel	c _{heel} = 20 mm						
Calculate shear for heel	design							
Shear from bearing pressu	ire	V _{heel_bear} =	(Pheel_f + Pstem_h	$(\text{leel}_f) \times \text{l}_{\text{heel}} / 2 = 0$.1 kN/m			
Shear from weight of base		Vheel_wt_base	= $\gamma f_d \times \gamma base \times$	$I_{heel} \times t_{base} = 0.4 k$:N/m			
Shear from weight of mois	t backfill		w _{m_w_f} = 2.8 kl					
Shear from surcharge		$V_{heel_sur} = w$	$V_{heel_sur} = w_{sur_f} = 0.1 \ kN/m$					
Total shear for heel design	ı	$V_{heel} = -V_{heel}$	$V_{heel} = -V_{heel_bear} + V_{heel_wt_base} + V_{heel_wt_m} + V_{heel_sur} = \textbf{3.2 kN/m}$					
Calculate moment for he	el design							
Moment from bearing pres	sure	$M_{heel_bear} =$	$M_{\text{heel_bear}} = (2 \times p_{\text{heel_f}} + p_{\text{stem_mid_f}}) \times (I_{\text{heel}} + t_{\text{wall}} / 2)^2 / 6 = 0 \text{ kNm/m}$					
Moment from weight of base		Mheel_wt_base	$M_{\text{heel_wt_base}} = (\gamma_{\text{f_d}} \times \gamma_{\text{base}} \times t_{\text{base}} \times (I_{\text{heel}} + t_{\text{wall}} / 2)^2 / 2) = 0.1 \text{ kNm/m}$					
Moment from weight of mo	oist backfill		$M_{heel_wt_m} = W_{m_w_f} \times (I_{heel} + t_{wall}) / 2 = 0.4 \text{ kNm/m}$					
		$M_{heel_sur} = v$	$V_{sur_f \times}(I_{heel} + t_v)$	_{vall}) / 2 = 0 kNm/m	ı			
Moment from surcharge								

Check heel in bending Width of heel Depth of reinforcement Constant

Lever arm

Area of tension reinforcement required Minimum area of tension reinforcement Area of tension reinforcement required Reinforcement provided Area of reinforcement provided

Check shear resistance at heel

Design shear stress Allowable shear stress

b = **1000** mm/m

$$\begin{split} d_{heel} &= t_{base} - c_{heel} - (_{\varphi heel} / 2) = \textbf{175.0 mm} \\ K_{heel} &= M_{heel} / (b_{\times} d_{heel}^2 \times f_{cu}) = \textbf{0.000} \end{split}$$

Compression reinforcement is not required

$$\label{eq:zheel} \begin{split} z_{\text{heel}} &= \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{heel}}, \, 0.225) \, / \, 0.9))}, 0.95) \times d_{\text{heel}} \\ z_{\text{heel}} &= \textbf{166} \ \text{mm} \end{split}$$

 $A_{s_heel_des} = M_{heel} / (0.87 \times f_y \times z_{heel}) = 7 \text{ mm}^2/\text{m}$

 $A_{s_heel_min} = k \times b \times t_{base} = 260 \text{ mm}^2/\text{m}$

 $A_{s_heel_req} = Max(A_{s_heel_des}, A_{s_heel_min}) = 260 \text{ mm}^2/\text{m}$

10 mm dia.bars @ 133 mm centres

 $A_{s_heel_prov} = 591 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall heel is adequate

	Project	St Georg	e's Terrace		Job no. 17054		
16005	Calcs for				Start page no./F	Revision	
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	7 Approved	
From BS8110:Part 1:199			200 N1/ma ma 2				
Design concrete shear str	ess	Vc_heel = 0.6		el < Vc_heel - No sh	near reinforce	ment reau	
Design of reinforced cor	ocrete retaining w	all stom (BS 8002					
Material properties	lerete retaining w						
Characteristic strength of	concrete	f _{cu} = 40 N/r	nm²				
Characteristic strength of		$f_y = 500 \text{ N/}$					
Wall details		,					
Minimum area of reinforce	ment	k = 0.13 %					
Cover to reinforcement in		C _{stem} = 65 r					
Cover to reinforcement in		$C_{wall} = 65 \text{ m}$					
Factored horizontal activ	ve forces on stem						
Surcharge		Fe sur f = of	$1 \times K_a \times Surch$	arge $_{ imes}$ (h _{eff} - t _{base} -	dds) = 2.2 kN/r	n	
Moist backfill above water table		•		$\gamma_{m \times}$ (h _{eff} - t _{base} - c			
		· •a_i - •	- ^ /'_v ^ · · a X				
Calculate shear for stem Shear at base of stem	laesign	VE	E E	F _{prop_f} = 10.5 kN/r	m		
		v stem = 1 s_s	ur_t+ts_m_a_t-	$r prop_t = 10.3 \text{ KW/I}$	11		
Calculate moment for st	em design		4		,		
Surcharge				_{base}) / 2 = 2.7 kNn		/	
Moist backfill above water		$\begin{split} M_{s_m_a} &= F_{s_m_a_f} \times (2 \times h_{sat} + h_{eff} - d_{ds} + t_{base} / 2) / 3 = \textbf{21.5 kNm/m} \\ M_{stem} &= M_{s_sur} + M_{s_m_a} = \textbf{24.2 kNm/m} \end{split}$					
Total moment for stem de	sign	$IVI_{stem} = IVI_{s}$	$_{sur} + IVI_{s_m_a} = 4$	2 4.2 KINIII/III			
▲ ▲							
186							
256							
Ì 💻	• •	• •	•	• •	•		
<u> </u>							
	◄ —133 — ▶						
Check wall stem in bend Width of wall stem	ling	b = 1000 m	nm/m				
Depth of reinforcement			,	(2) - 186 0 mm			
Constant			1	/ 2) = 186.0 mm			
ounstant		r\stem = IVIste	$_{\rm em}$ / (b $_{\rm X}$ d _{stem} ² >	<tcu) 0.018<br="" =="">Compression re</tcu)>	inforcement is	s not requ	
Lever arm		Zator - min		(min(K _{stem} , 0.225		-	
		$Z_{\text{stem}} = 1111$ $Z_{\text{stem}} = 177$,,,,,,,,	Stem	
	ent required			\times f _y \times Z _{stem}) = 315	mm²/m		
Area of tension reinforcem			= $k \times b \times t_{wall} = 3$				
Area of tension reinforcem				$A_{s_stem_min}$ = 33	3 mm²/m		
Minimum area of tension r	lent teamea		-	mm centres			
Minimum area of tension r Area of tension reinforcem	lentrequired	10 mm dia					
Minimum area of tension r			= 591 mm²/m				
Minimum area of tension r Area of tension reinforcem Reinforcement provided		As_stem_prov =	= 591 mm²/m	vided at the reta	ining wall ster	m is adeq	
Minimum area of tension r Area of tension reinforcem Reinforcement provided	vided	As_stem_prov =	= 591 mm²/m	vided at the reta	ining wall ster	m is adeqi	

_ 💝	Project	St Georg	Job no. 17054			
Tedds	Calcs for	St George's Terrace 17054 Start page no./Revision				
	Calcs IOI				Start page no./r	8
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approved date
Allowable shear stress		v _{adm} = min(0.8 _{× √} (f _{cu} / 1 ľ	N/mm²), 5) _× 1 N/	mm ² = 5.000 N	J/mm ²
		PASS -	Design shea	r stress is less i	than maximun	n shear stres
From BS8110:Part 1:1997	– Table 3.8					
Design concrete shear stream	SS	Vc_stem = 0.6	611 N/mm²			
			Vsten	n < Vc_stem - No sl	hear reinforce	ment require

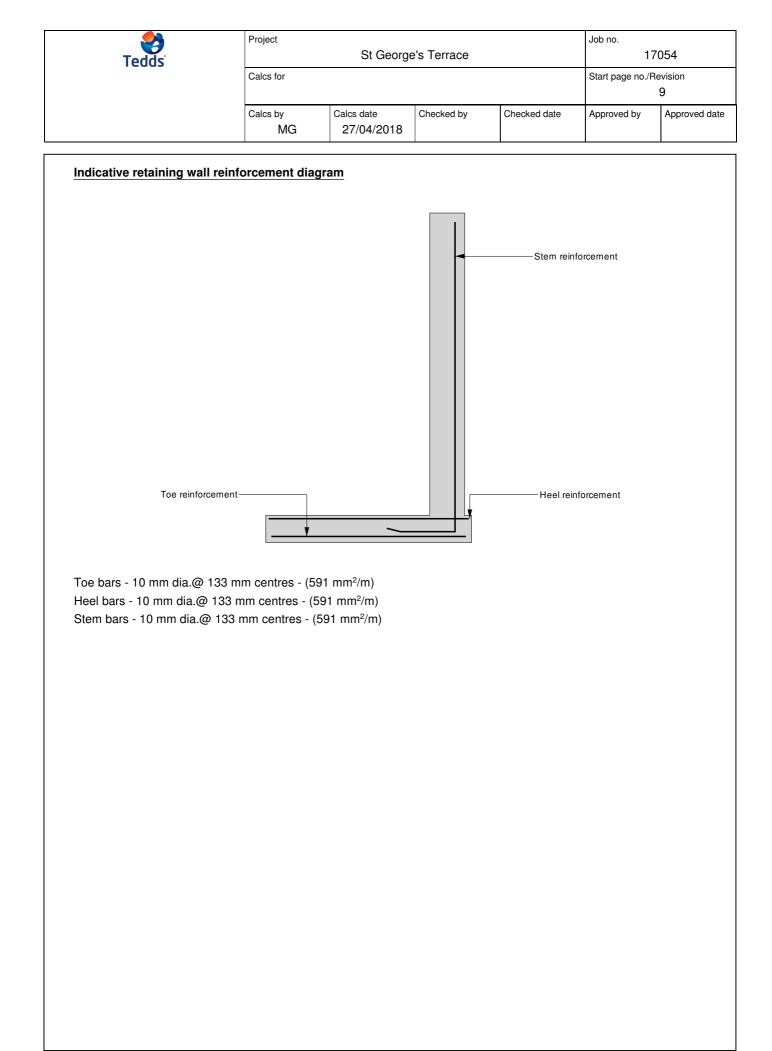
 $ratio_{bas} = 7$

Check retaining wall deflection

Basic span/effective depth ratio

Design service stress

Modification factor


Maximum span/effective depth ratio

Actual span/effective depth ratio

$$\begin{split} f_s &= 2 \, {}_{\times} \, f_{y \, \times} \, A_{s_stem_req} \, / \, (3 \, {}_{\times} \, A_{s_stem_prov}) = \textbf{187.9} \, N/mm^2 \\ factor_{tens} &= min(0.55 + (477 \, N/mm^2 - f_s) / (120 \, {}_{\times} \, (0.9 \, N/mm^2 + (M_{stem}/(b \, {}_{\times} \, d_{stem}^2)))), 2) = \textbf{2.00} \end{split}$$

 $ratio_{max} = ratio_{bas \times} factor_{tens} = 14.00$ $ratio_{act} = h_{stem} / d_{stem} = 11.88$

PASS - Span to depth ratio is acceptable

