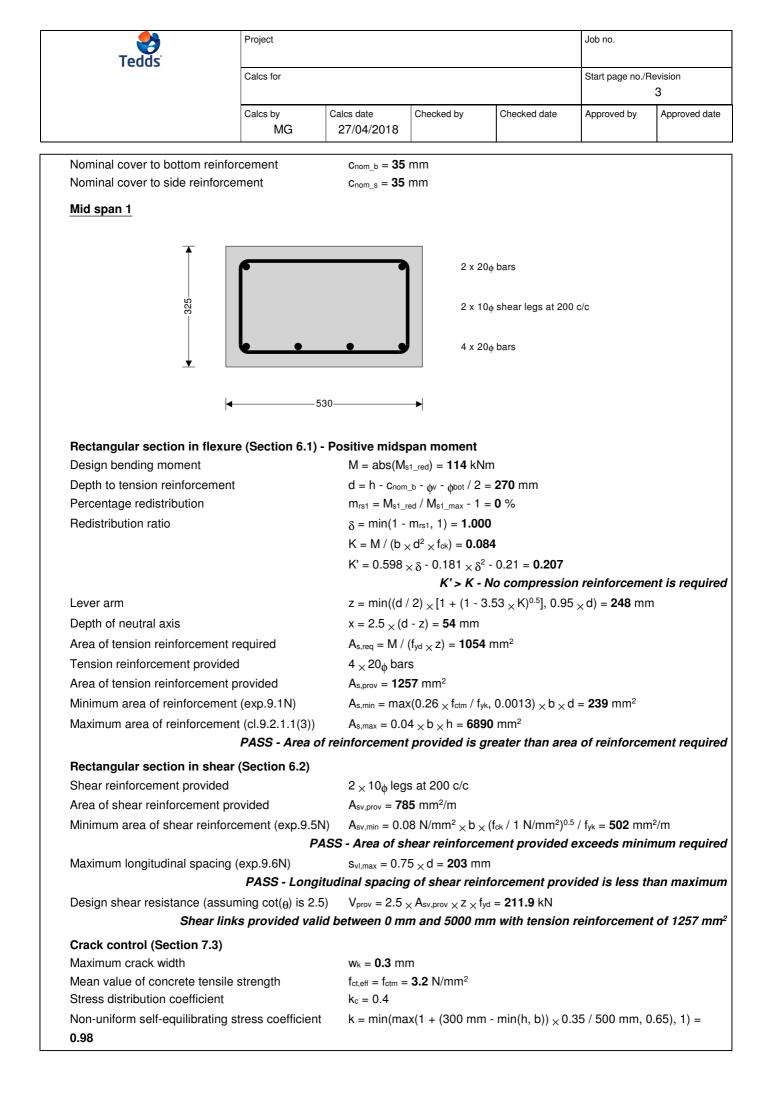


Tedds	Project	Project				Job no.	
10005	Calcs for	Calcs for				Start page no./Revision 2	
	Calcs by MG	Calcs date 27/04/2018	Checked by	Checked date	Approved by	Approved date	
Analysis results							

Maximum moment support A	$M_{A_{max}} = 0 \text{ kNm}$	$M_{A_{red}} = 0 \text{ kNm}$
Maximum moment span 1 at 2500 mm	$M_{s1_max} = 114 \text{ kNm}$	M _{s1_red} = 114 kNm
Maximum moment support B	$M_{B_{max}} = 0 \text{ kNm}$	$M_{B_{red}} = 0 \text{ kNm}$
Maximum shear support A	$V_{A_max} = 91 \text{ kN}$	$V_{A_red} = 91 \text{ kN}$
Maximum shear support A span 1 at 275 mm	$V_{A_{s1}_{max}} = 81 \text{ kN}$	$V_{A_s1_red} = 81 \text{ kN}$
Maximum shear support B	$V_{B_max} = -91 \text{ kN}$	V _{B_red} = -91 kN
Maximum shear support B span 1 at 4725 mm	$V_{B_{s1}max} = -81 \text{ kN}$	$V_{B_s1_red} = -81 \text{ kN}$
Maximum reaction at support A	R _A = 91 kN	
Unfactored dead load reaction at support A	R _{A_Dead} = 64 kN	
Unfactored imposed load reaction at support A	$R_{A_Imposed} = 3 \text{ kN}$	
Maximum reaction at support B	R _B = 91 kN	
Unfactored dead load reaction at support B	R _{B_Dead} = 64 kN	
Unfactored imposed load reaction at support B	$R_{B_{Imposed}} = 3 \text{ kN}$	
Destangular castion dataila		

b = **530** mm

h = **325** mm


Rectangular section details

Section width Section depth

> 325--530-

Concrete details (Table 3.1 - Strength and deformation characteristics for concrete)

Concrete strength class	C35/45
Characteristic compressive cylinder strength	f _{ck} = 35 N/mm ²
Characteristic compressive cube strength	$f_{ck,cube} = 45 \text{ N/mm}^2$
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 43 \text{ N/mm}^2$
Mean value of axial tensile strength	$f_{ctm} = 0.3 \; N/mm^2 \times (f_{ck}/ \; 1 \; N/mm^2)^{2/3} = \textbf{3.2} \; N/mm^2$
Secant modulus of elasticity of concrete	$E_{cm} = 22 \; kN/mm^2 \times [f_{cm}/10 \; N/mm^2]^{0.3} = \textbf{34077} \; N/mm^2$
Partial factor for concrete (Table 2.1N)	γc = 1.50
Compressive strength coefficient (cl.3.1.6(1))	_{OCc} = 0.85
Design compressive concrete strength (exp.3.15)	$f_{cd} = _{0cc} \times f_{ck} / \gamma_{C} = 19.8 \text{ N/mm}^2$
Maximum aggregate size	h _{agg} = 20 mm
Reinforcement details	
Characteristic yield strength of reinforcement	f _{yk} = 500 N/mm ²
Partial factor for reinforcing steel (Table 2.1N)	γs = 1.15
Design yield strength of reinforcement	$f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$
Nominal cover to reinforcement	
Nominal cover to top reinforcement	c _{nom_t} = 35 mm

Tedds	Project	Project Calcs for				Job no.		
	Calcs for					Start page no./Revision		
	,	Calcs date	Checked by	Checked date	Approved by	Approved date		
	MG	27/04/2018						
Depth of tensile zone		h _{cr} = h - x =	271 mm					
Area of concrete in the te	nsile zone	$A_{ct} = h_{cr} \times b$	= 143369 mm	n ²				
Adjusted maximum bar di	ameter (exp.7.6N)	ϕ mod = ϕ bot ×	(2.9 N/mm ² /	$f_{ct,eff}$ × 2 × (h - d)	$/(k_{c} \times h_{cr}) = 18$	3 mm		
Maximum adjusted bar dia	ameter	_{φmax} = 32 m	m					
Tension bar spacing		s _{bar} = (b - 2	$S_{bar} = (b - 2 \times (c_{nom_s} + \phi) - \phi) / (N_{bot} - 1) = 140 \text{ mm}$					
Maximum tension bar spacing		s _{max} = 300 mm						
Minimum allowable bar spacing		$s_{min} = max(\phi_{bot}, h_{agg} + 5 mm, 20 mm) + \phi_{bot} = 45 mm$						
Maximum stress permittee	d (Tables 7.2N & 7.3N)	_{Os} = 200 N/	mm²					
Minimum area of reinforce	ement required (exp.7.1) $A_{sc,min} = k_c$	${}_{K} k_{X} f_{ct,eff} {}_{X} A_{ct}$	/ ₀ s = 904 mm ²				
F	PASS - Area of tension	reinforcemer	t provided ex	xceeds minimur	n required for	crack control		
			PASS - Actua	al bar spacing e	xceeds minin	num allowable		
Deflection control (Sect	ion 7.4)							
Reference reinforcement	ratio	$p^{m0} = (f_{ck} / 1)$	N/mm ²) ^{0.5} / 1	000 = 0.006				
Required tension reinforcement ratio		$p^{m} = A_{s,req} / (b \times d) = 0.007$						
Required compression reinforcement ratio		$\rho'm = A_{s2,req} / (b \times d) = 0.000$						
Structural system factor (Table 7.4N)		K _b = 1.0						
Basic allowable span to depth ratio (7.16b)		$span_to_depth_{basic} = K_b \times [11 + 1.5 \times (f_{ck} / 1 \text{ N/mm}^2)^{0.5} \times \rho^{m0} / (\rho^{m} - \rho'^{m})$						
		+ $(f_{ck} / 1 N/mm^2)^{0.5} \times (\rho'm / \rho^{m0})^{0.5} / 12] = 18.129$						
Reinforcement factor (exp.7.17)		$K_s = min(A_{s,prov} / A_{s,req} \times 500 \text{ N/mm}^2 / f_{yk}, 1.5) = 1.192$						
Flange width factor		F1 = 1.000						
Long span supporting brittle partition factor		F2 = 1.000						
Allowable span to depth ratio		$span_to_depth_{allow} = min(span_to_depth_{basic} \times K_s \times F1 \times F2, 40 \times K_b) =$						
		21.619						
Actual span to depth ratio	span_to_depth _{actual} = L_{s1} / d = 18.519 PASS - Actual span to depth ratio is within the allowable limit							