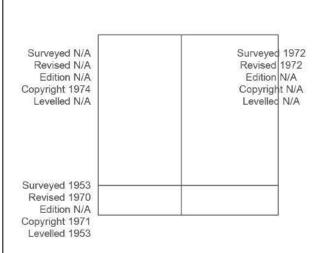





16, ROSECROFT AVENUE, LONDON, NW3 7QB

Client Ref: GWPR2630\_16\_Rosecroft\_Avenue Report Ref: HMD-445-5129163


**Grid Ref:** HMD-445-512916 525519, 186167

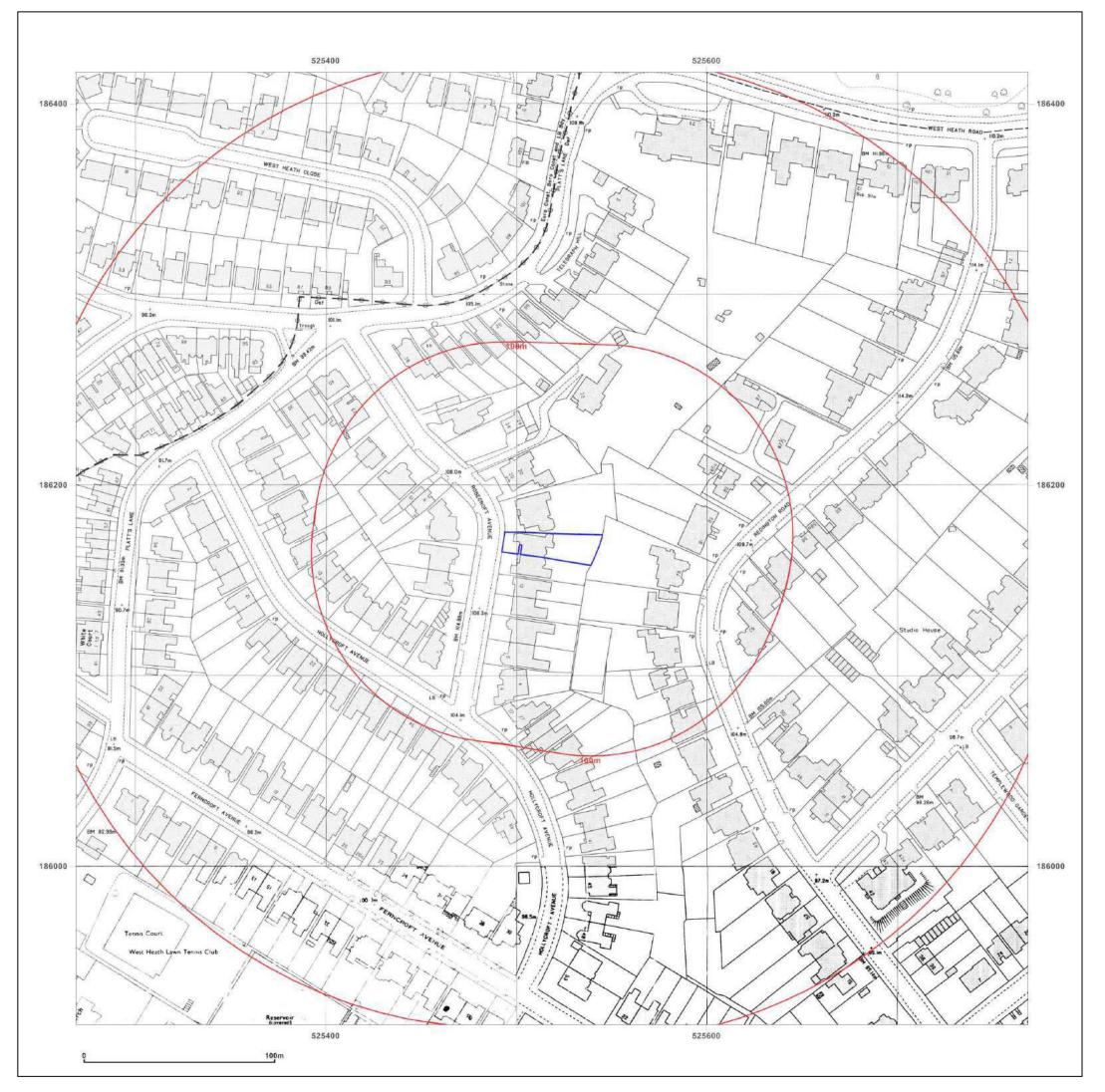
Map Name: National Grid

Map date: 1971-1974

**Scale:** 1:1,250

**Printed at:** 1:2,000






Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 13 June 2018

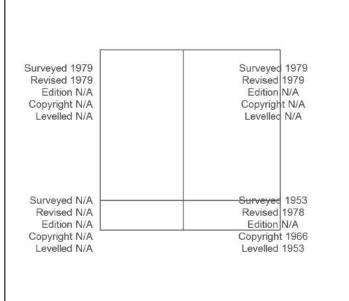
Map legend available at:





16, ROSECROFT AVENUE, LONDON, NW3 7QB

Client Ref: GWPR2630\_16\_Rosecroft\_Avenue Report Ref: HMD-445-5129163


Grid Ref: 525519, 186167

Map Name: National Grid

Map date: 1974-1979

**Scale:** 1:1,250

**Printed at:** 1:2,000





Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 13 June 2018

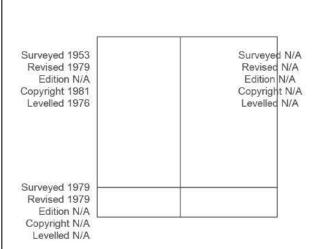
Map legend available at:





16, ROSECROFT AVENUE, LONDON, NW3 7QB

Client Ref: GWPR2630\_16\_Rosecroft\_Avenue Report Ref: HMD-445-5129163


**Grid Ref:** HMD-445-512916. **Grid Ref:** 525519, 186167

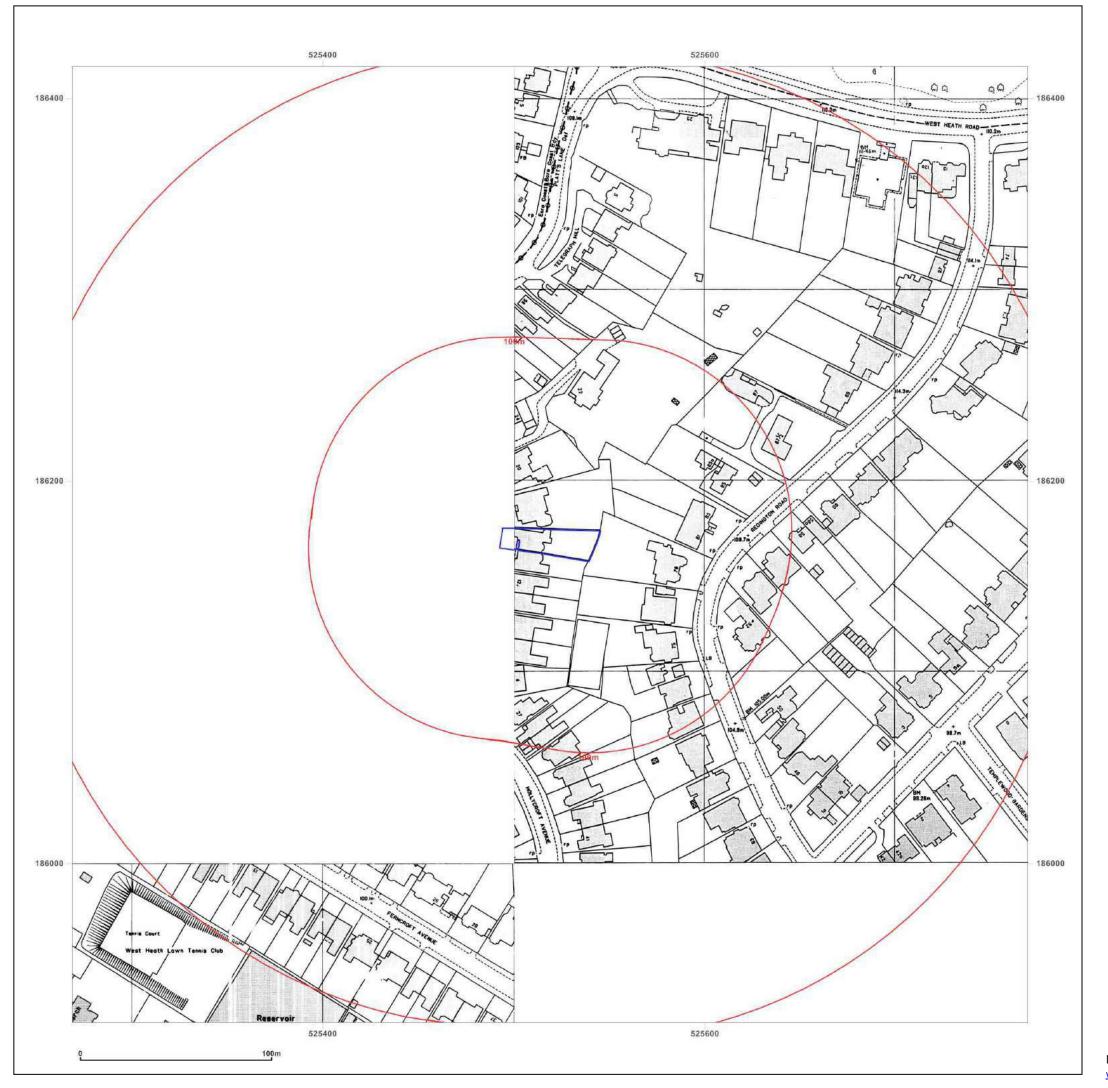
Map Name: National Grid

Map date: 1979-1981

**Scale:** 1:1,250

**Printed at:** 1:2,000






Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 13 June 2018

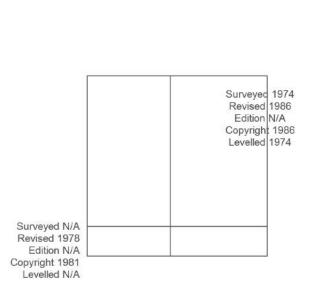
Map legend available at:





16, ROSECROFT AVENUE, LONDON, NW3 7QB

Client Ref: GWPR2630\_16\_Rosecroft\_Avenue Report Ref: HMD-445-5129163


**Grid Ref:** HMD-445-512916. **Grid Ref:** 525519, 186167

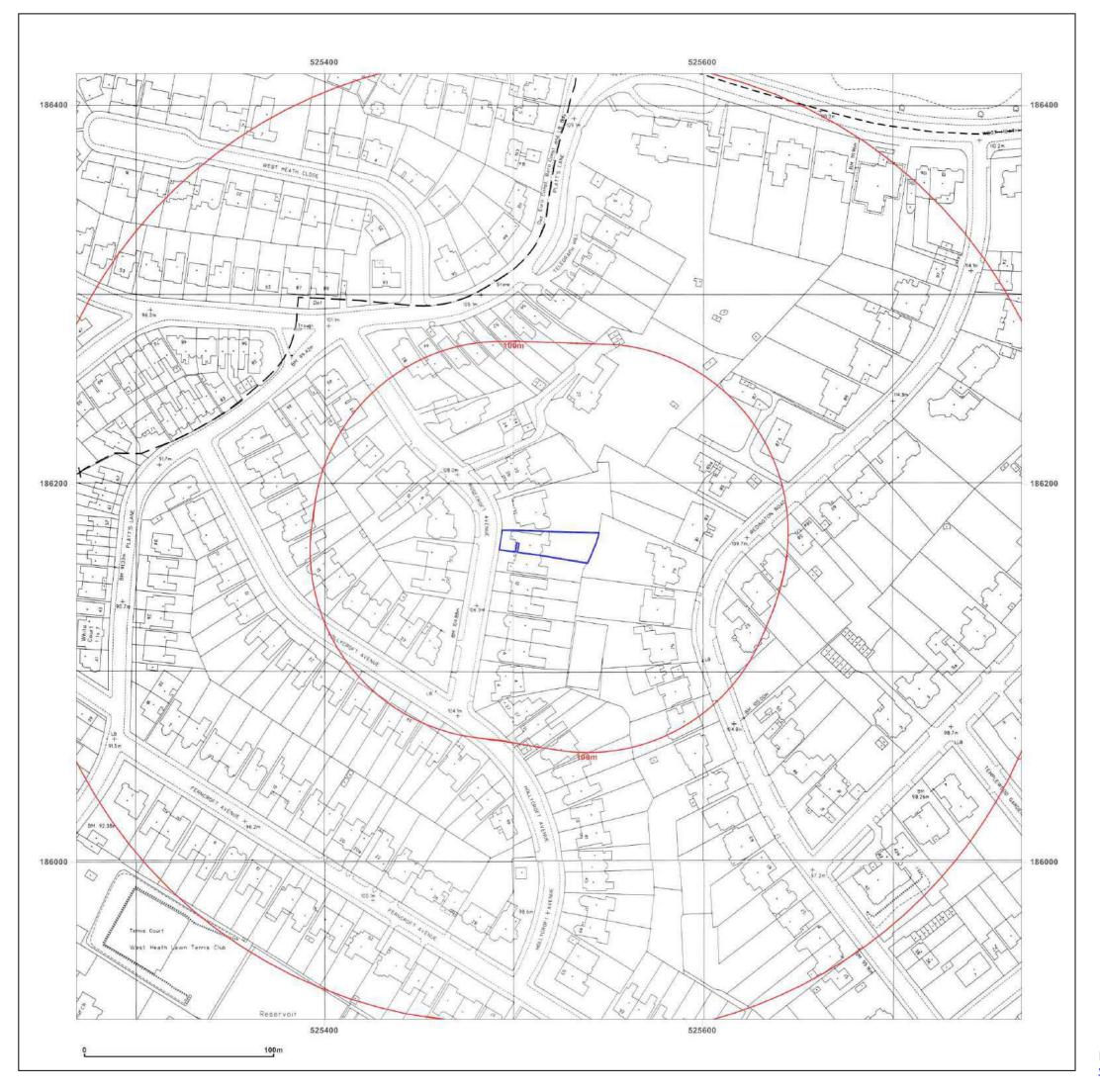
Map Name: National Grid

Map date: 1981-1986

**Scale:** 1:1,250

**Printed at:** 1:2,000






Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 13 June 2018

Map legend available at:





16, ROSECROFT AVENUE, LONDON, NW3 7QB

Client Ref: GWPR2630\_16\_Rosecroft\_Avenue Report Ref: HMD-445-5129163

Grid Ref: 525519, 186167

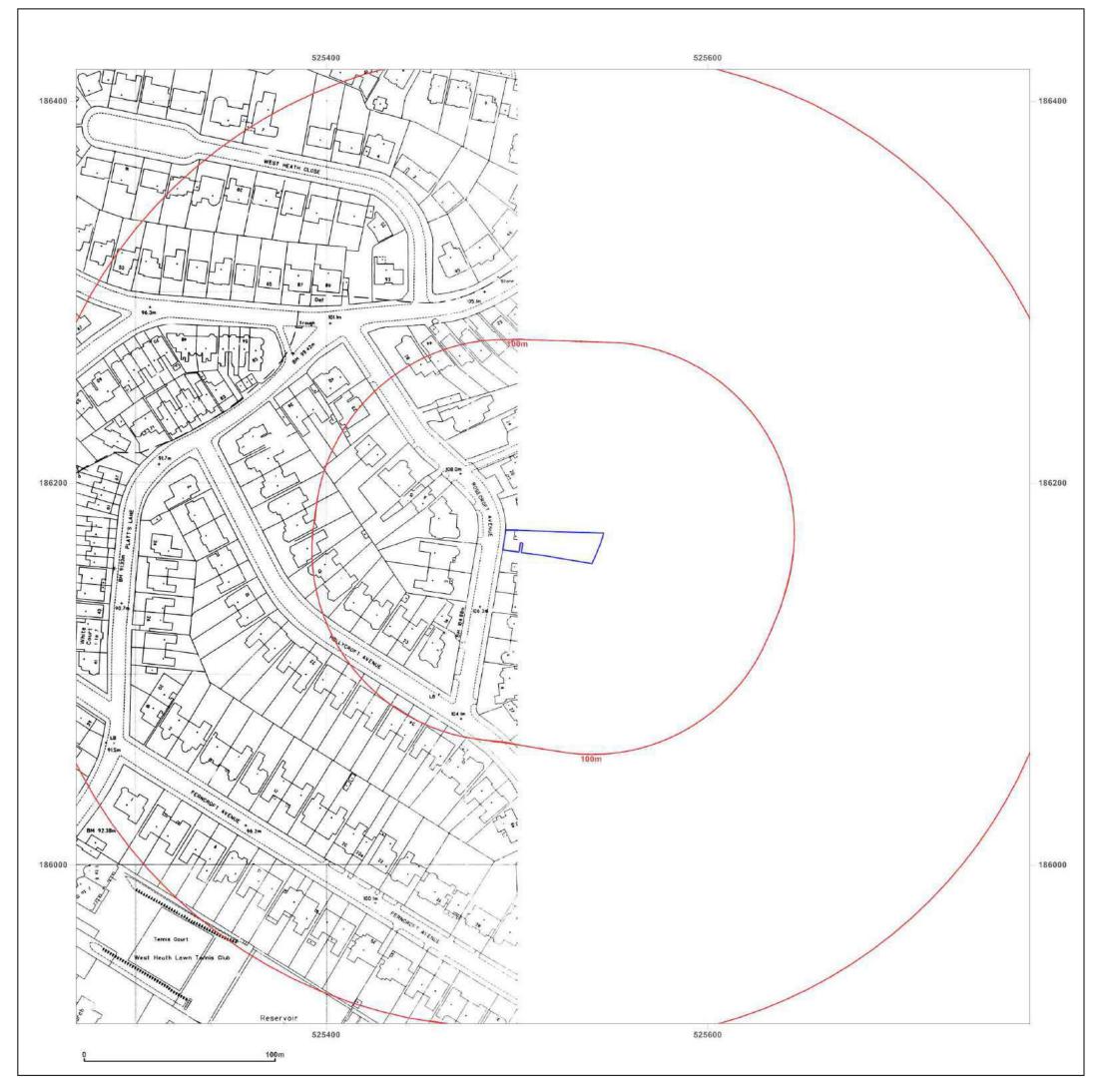
Map Name: National Grid

Map date: 1991

**Scale:** 1:1,250

**Printed at:** 1:2,000

Surveyed 1991 Revised 1991 Surveyed 1991 Revised 1991 Edition N/A Edition N/A Copyright 1991 Copyright 1991 Levelled N/A Levelled N/A Surveyed Revised 1991 Surveyed 1991 Revised 1991 Edition N/A Copyright 1991 Edition N/A Copyright 1991 Levelled N/A Levelled N/A




Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 13 June 2018

Map legend available at:





| Site Details:                                                                                        |                                                                   |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| 16, ROSECROFT AVENUE,<br>LONDON, NW3 7QB                                                             |                                                                   |  |  |  |  |  |  |
|                                                                                                      |                                                                   |  |  |  |  |  |  |
|                                                                                                      |                                                                   |  |  |  |  |  |  |
|                                                                                                      | GWPR2630_16_Rosecroft_Avenue<br>HMD-445-5129163<br>525519, 186167 |  |  |  |  |  |  |
| Map Name:                                                                                            | National Grid N                                                   |  |  |  |  |  |  |
| Map date:                                                                                            | 1993-1994                                                         |  |  |  |  |  |  |
| Scale:                                                                                               | 1:1,250                                                           |  |  |  |  |  |  |
| Printed at:                                                                                          | 1:2,000                                                           |  |  |  |  |  |  |
| Surveyed N// Revised N// Edition N// Copyright 199 Levelled N// Surveyed N// Revised N// Edition N// | A A A A A A                                                       |  |  |  |  |  |  |
| Copyright 199<br>Levelled N/                                                                         |                                                                   |  |  |  |  |  |  |



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 13 June 2018

Map legend available at:





| Site Details:                                 |                                   |  |  |  |  |  |  |  |
|-----------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|
| 16, ROSECROFT AVENUE,<br>LONDON, NW3 7QB      |                                   |  |  |  |  |  |  |  |
|                                               |                                   |  |  |  |  |  |  |  |
|                                               |                                   |  |  |  |  |  |  |  |
|                                               |                                   |  |  |  |  |  |  |  |
| Client Ref:                                   | GWPR2630_16_Rosecroft_Avenue      |  |  |  |  |  |  |  |
| Report Ref:<br>Grid Ref:                      | HMD-445-5129163<br>525519, 186167 |  |  |  |  |  |  |  |
| Map Name:                                     | National Grid N                   |  |  |  |  |  |  |  |
| Map date:                                     | 1993-1994                         |  |  |  |  |  |  |  |
| Scale:                                        | 1:1,250                           |  |  |  |  |  |  |  |
| Printed at:                                   | 1:2,000                           |  |  |  |  |  |  |  |
|                                               |                                   |  |  |  |  |  |  |  |
|                                               |                                   |  |  |  |  |  |  |  |
|                                               |                                   |  |  |  |  |  |  |  |
|                                               |                                   |  |  |  |  |  |  |  |
| Surveyed 1993<br>Revised 1993                 | 3                                 |  |  |  |  |  |  |  |
| Edition N/A<br>Copyright 1993<br>Levelled N/A | 3                                 |  |  |  |  |  |  |  |
| Lovelled 147                                  | `                                 |  |  |  |  |  |  |  |
|                                               |                                   |  |  |  |  |  |  |  |
| Surveyed N/A                                  |                                   |  |  |  |  |  |  |  |
| Revised N/A<br>Edition N/A                    | \                                 |  |  |  |  |  |  |  |
| Copyright N/A<br>Levelled N/A                 |                                   |  |  |  |  |  |  |  |
|                                               |                                   |  |  |  |  |  |  |  |



Produced by
Groundsure Insights
T: 08444 159000
E: info@groundsure.com
W: www.groundsure.com

© Crown copyright and database rights 2018 Ordnance Survey 100035207

Production date: 13 June 2018

Map legend available at:

#### APPENDIX C Fieldwork Logs

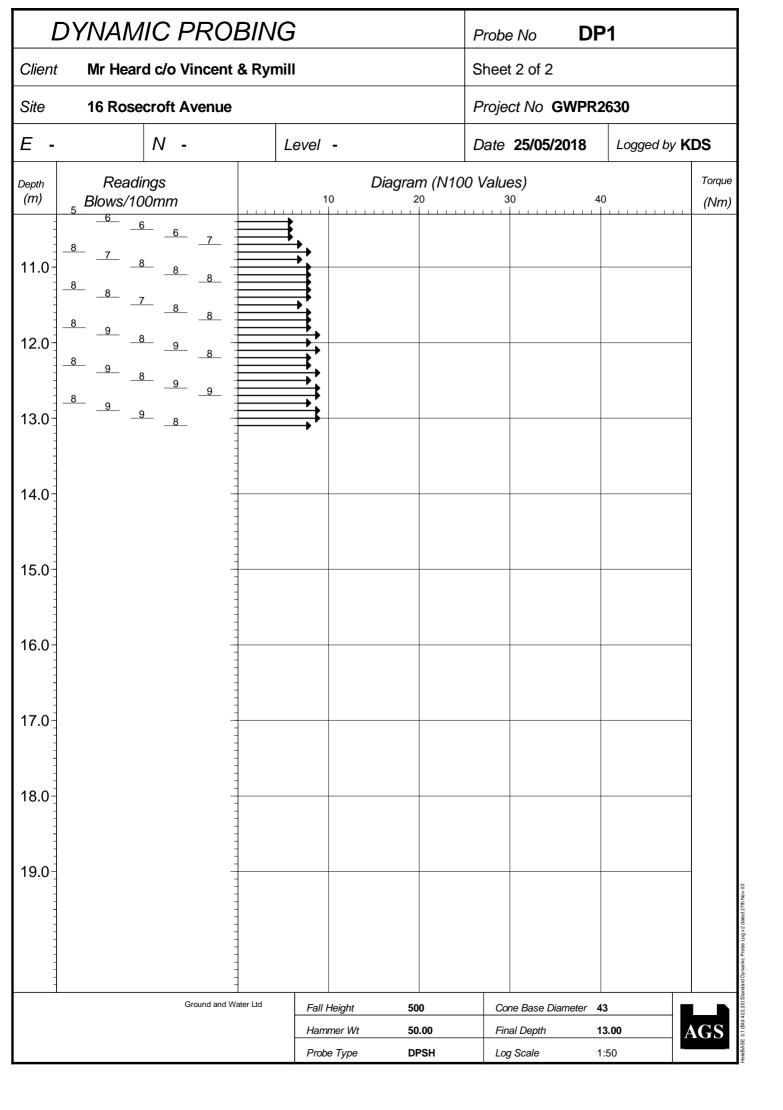
|                                       |                          |                     |                 |                           |           |                  |                                         |                                                                                                     | D 1 1 N           | _        |
|---------------------------------------|--------------------------|---------------------|-----------------|---------------------------|-----------|------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|----------|
|                                       |                          |                     |                 |                           |           | Ground           | l and Wat                               | er Ltd                                                                                              | Borehole N        | 10       |
|                                       |                          |                     |                 |                           |           |                  |                                         |                                                                                                     | BH1<br>Sheet 1 of | ,        |
| Proi                                  | Project Name Project No. |                     |                 |                           |           |                  |                                         |                                                                                                     |                   |          |
| 16 Rosecroft Avenue GWPR2630          |                          |                     |                 |                           |           |                  |                                         | Co-ords: -                                                                                          | Hole Type<br>WLS  |          |
| Location: Hampstead, London NW3 7QB   |                          |                     |                 |                           |           |                  |                                         | Lovel                                                                                               | Scale             |          |
|                                       |                          |                     |                 |                           |           |                  |                                         | Level: - 1:50                                                                                       |                   |          |
| Client: Mr Heard c/o Vincent & Rymill |                          |                     |                 |                           |           |                  |                                         | Dates: 25/05/2018                                                                                   | Logged By<br>HB   | y        |
| Well                                  | Water<br>Strikes         | Sample<br>Depth (m) | es & In<br>Type | Situ Testing Results      | Depth (m) | Level<br>(m AOD) | Legend                                  | Stratum Description                                                                                 |                   |          |
| 2.1                                   |                          | 0.30                | D               |                           | 0.15      |                  | - xx                                    | Lean concrete.                                                                                      | ND O LIST         | <u> </u> |
|                                       |                          | 0.50                | D               |                           |           |                  | × × ×                                   | BAGSHOT FORMATION: Brown-orange clayey silty SAI to medium grained. Becomes more clayey with depth. | ND. Sand is fine  | -        |
|                                       |                          | 0.80                | D               |                           |           |                  | * × * * * * * * * * * * * * * * * * * * |                                                                                                     |                   | -        |
|                                       |                          | 1.00<br>1.00        | SPT<br>D        | N=12<br>(2,2/             | 1.10      |                  |                                         | BAGSHOT FORMATION: Brown-orange silty sandy CLA                                                     | V Sand is fine    | -1       |
|                                       |                          |                     |                 | 3,3,3,3)                  |           |                  | X - X - X                               | to medium grained.                                                                                  | AT. Sand is line  | -        |
|                                       |                          | 1.50                | D               |                           |           |                  | <u> </u>                                |                                                                                                     |                   | -        |
|                                       |                          | 2.00                | SPT             | N=15                      |           |                  |                                         |                                                                                                     |                   | -2       |
|                                       |                          | 2.00                | D               | (3,3/<br>4,3,4,4)         | 2.20      |                  | <u> </u>                                | CLAYGATE MEMBER OF THE LONDON CLAY FORM                                                             | ATION: Brown      | ļ        |
|                                       |                          | 2.50                | D               |                           |           |                  | * *                                     | clayey silty SAND. Sand is fine to medium grained.                                                  |                   | -        |
|                                       |                          |                     |                 |                           |           |                  | ***                                     |                                                                                                     |                   | -        |
|                                       |                          | 3.00<br>3.00        | SPT<br>D        | N=11<br>(2,3/             |           |                  | × ×                                     |                                                                                                     |                   | -3<br>-  |
|                                       |                          | 3.50                | D               | 2,3,3,3)                  | 3.30      |                  | X                                       | CLAYGATE MEMBER OF THE LONDON CLAY FORM                                                             | ATION: Brown      | ţ I      |
|                                       | $\Box$                   | 0.00                |                 |                           |           |                  | X-1-27<br>V-1-24                        | silty very sandy CLAY. Sand is fine to medium grained                                               |                   | -        |
|                                       |                          | 4.00                | SPT             | N=8                       | 4.00      |                  | <br>x                                   | CLAYGATE MEMBER OF THE LONDON CLAY FORM                                                             | ATION: Brown      | 4        |
|                                       |                          | 4.00                | D               | (2,2/<br>2,2,2,2)         |           |                  | - x - x - 1                             | silty very clayey SAND. Sand is fine to medium grained. observed.                                   |                   | -        |
|                                       |                          | 4.50                | D               |                           |           |                  | * * * *                                 |                                                                                                     |                   | -        |
|                                       |                          | 5.00                | SPT             | N=10                      | 4.80      |                  | X-1-2                                   | CLAYGATE MEMBER OF THE LONDON CLAY FORM                                                             | ATION: Brown      | f        |
|                                       |                          | 5.00                | D               | (2,2/<br>3,2,2,3)         |           |                  | <u></u>                                 | silty very sandy CLAY. Sand is fine to medium grained.                                              |                   | -5<br>-  |
|                                       |                          | 5.50                | D               | 0,2,2,0)                  |           |                  | <u> </u>                                |                                                                                                     |                   |          |
|                                       |                          |                     |                 |                           |           |                  | <u>x:-x</u> *                           |                                                                                                     |                   | -        |
|                                       |                          | 6.00<br>6.00        | SPT<br>D        | N=13<br>(2,3/             |           |                  | <u> </u>                                |                                                                                                     |                   | -6       |
|                                       |                          | 6.50                | D               | (2,3/<br>3,3,4,3)         |           |                  | <del>x</del> *                          |                                                                                                     |                   | -        |
|                                       |                          | 6.50                |                 |                           |           |                  |                                         |                                                                                                     |                   | -        |
|                                       |                          | 7.00                | D               |                           | 7.00      |                  | <u> </u>                                | Edd (Darlat at 700)                                                                                 |                   | 7        |
|                                       |                          |                     |                 |                           |           |                  |                                         | End of Borehole at 7.00 m                                                                           |                   | -        |
|                                       |                          |                     |                 |                           |           |                  |                                         |                                                                                                     |                   |          |
|                                       |                          |                     |                 |                           |           |                  |                                         |                                                                                                     |                   | -        |
|                                       |                          |                     |                 |                           |           |                  |                                         |                                                                                                     |                   | -8<br>-  |
|                                       |                          |                     |                 |                           |           |                  |                                         |                                                                                                     |                   | -        |
|                                       |                          |                     |                 |                           |           |                  |                                         |                                                                                                     |                   |          |
|                                       |                          |                     |                 |                           |           |                  |                                         |                                                                                                     |                   | -9       |
|                                       |                          |                     |                 |                           |           |                  |                                         |                                                                                                     |                   | <b> </b> |
|                                       |                          |                     |                 |                           |           |                  |                                         |                                                                                                     |                   | <u> </u> |
|                                       |                          |                     | <b>T</b> . •    | D                         | 1         |                  |                                         |                                                                                                     |                   | -        |
| Rem                                   | arke.                    | Groundy             | Type            | Results strike at 3.80m b |           | ļ                |                                         |                                                                                                     |                   | ╣        |

Remarks: Groundwater strike at 3.80m bgl. Roots noted to 1.50m bgl.



|      |                                         |                     |                 |                      |      | Ground           | and Wat                                      | er Ltd Borehole N                                                                                                   | No      |
|------|-----------------------------------------|---------------------|-----------------|----------------------|------|------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------|
|      |                                         |                     |                 |                      |      | 0.00             |                                              | WS2                                                                                                                 |         |
|      |                                         |                     |                 |                      |      |                  |                                              | Sheet 1 of                                                                                                          | 1       |
| Proj | ect Na                                  | ame                 |                 |                      | Pr   | oject N          | lo.                                          | Hole Typ                                                                                                            |         |
| 16 F | 16 Rosecroft Avenue GWPR2630 Co-ords: - |                     |                 |                      |      | Co-ords: - WS    |                                              |                                                                                                                     |         |
| Loca | Location: Hampstead, London NW3 7QB     |                     |                 |                      |      |                  |                                              | Level: - Scale 1:50                                                                                                 |         |
| Clie | nt:                                     |                     |                 | Vincent & Rymi       | II   |                  |                                              | Dates: 23/05/2018 Logged B                                                                                          | У       |
| Well | Water<br>Strikes                        | Sample<br>Depth (m) | es & In<br>Type | Situ Testing Results |      | Level<br>(m AOD) | Legend                                       | Stratum Description                                                                                                 |         |
|      |                                         | 0.30                | D               |                      | 0.08 |                  |                                              | Concrete slab.  BAGSHOT FORMATION: Brown sandy silty CLAY. Sand is fine grained.                                    | 1       |
|      |                                         | 0.50                | D               |                      |      |                  | <u>× ×</u>                                   | Pockets of sand observed.                                                                                           | -       |
|      |                                         | 0.80                | D               |                      |      |                  | <u> </u>                                     |                                                                                                                     |         |
|      |                                         | 1.00                | D               |                      | 1.00 |                  | <u> </u>                                     | BAGSHOT FORMATION: Brown silty very clayey SAND. Sand is fine to                                                    | 1       |
|      |                                         | 1.50                | D               |                      |      |                  |                                              | medium grained.                                                                                                     |         |
|      |                                         | 2.00                | D               |                      | 2.00 |                  | x x - x x x x - x                            | BAGSHOT FORMATION: Brown-orange mottled silty sandy CLAY. Sand is fine to medium grained. Pockets of sand observed. | 2       |
|      |                                         | 2.50                | D               |                      |      |                  | X - X                                        |                                                                                                                     | -       |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -       |
|      |                                         | 3.00                | D               |                      |      |                  | X. X.                                        |                                                                                                                     | -3      |
|      |                                         |                     |                 |                      |      |                  | <u>x</u>                                     |                                                                                                                     |         |
|      | $\subseteq$                             |                     |                 |                      |      |                  | <u>x                                    </u> |                                                                                                                     | -       |
|      |                                         | 4.00                | D               |                      |      |                  | <del>z_*</del> _*                            |                                                                                                                     | -4      |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     |         |
|      |                                         | 4.50                | D               |                      |      |                  | <u>x</u> x                                   |                                                                                                                     |         |
|      |                                         |                     |                 |                      | 4.80 |                  | <u></u>                                      | End of Borehole at 4.80 m                                                                                           |         |
|      |                                         |                     |                 |                      |      |                  |                                              | End of Borenote at 4.00 m                                                                                           | -5<br>- |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -       |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -       |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -6      |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     |         |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -       |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     |         |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -7      |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     |         |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -       |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     |         |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -8<br>- |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -       |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -       |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -9      |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     | -       |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     |         |
|      |                                         |                     |                 |                      |      |                  |                                              |                                                                                                                     |         |
|      |                                         |                     | Туре            | Results              |      |                  |                                              |                                                                                                                     | -       |

Remarks: Groundwater strike at 3.70m bgl. Roots noted to 1.50m bgl.

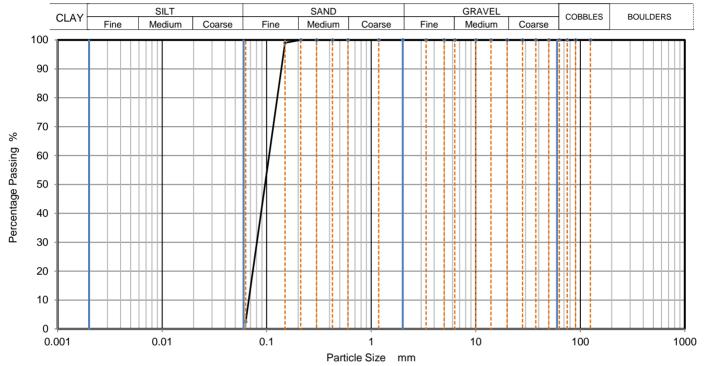



|       |                 |                                                 |                 |                  |                     | Ground           | l and Wat | WS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
|-------|-----------------|-------------------------------------------------|-----------------|------------------|---------------------|------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|       | ect Na<br>Rosec | ame<br>roft Avenu                               | ıe              |                  |                     | oject N<br>NPR26 |           | Sheet 1 of 1 Hole Type Co-ords: - WS                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| Loca  | ation:          | Hamps                                           | tead, I         | ondon NW3 7Q     | В                   |                  |           | Level: - Scale<br>1:50                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| Clier | nt:             | Mr Hea                                          | rd c/o          | Vincent & Rymill |                     |                  |           | Dates: 23/05/2018 Logged By                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| Well  | Water           | Sample<br>Dooth (m)                             | es & In         | Situ Testing     | Depth<br>(m)        | Level<br>(m AOD) | Legend    | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
|       | Strikes         | Depth (m)  0.30 0.50 0.80 1.00  2.00  2.50 3.00 | Type  D D D D D | Results          | (m)<br>0.70<br>1.00 | (m AOD)          | Legend    | MADE GROUND: Orange-brown gravelly sandy silty clay. Sand is fine to medium grained. Gravel is rare, fine, sub-angular to sub-rounded brick and ash. Pockets of sand noted. Becomes more sandy with depth.  MADE GROUND: Brown gravelly silty clayey sand. Sand is fine to coarse grained. Gravel is occasional, fine, sub-angular to sub-rounded brick.  BAGSHOT FORMATION: Brown sandy silty CLAY. Sand is fine grained. Becomes more sandy with depth.  End of Borehole at 3.30 m | 1 1 2 2 3 3 4 4 9 9 |
|       |                 |                                                 | Type            | Results          |                     |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |

Remarks: No groundwater encountered. Roots noted to 1.80m bgl.



| Site 16 E -                                       | Ir Heard c/o Vincent & 6 Rosecroft Avenue | & Rymill  Level -             |               | Sheet 1 of 2                       |              |                |  |  |  |
|---------------------------------------------------|-------------------------------------------|-------------------------------|---------------|------------------------------------|--------------|----------------|--|--|--|
| E -  Depth (m) Blo   1.0  2.0  3.0  4.0  5.0  6.0 | N -                                       | Level -                       |               |                                    | Sheet 1 of 2 |                |  |  |  |
| Depth (m) Blo                                     |                                           | Level -                       |               | Project No GWPR2630                |              |                |  |  |  |
| (m) Blo                                           | Doodings                                  |                               |               | Date <b>25/05/2018</b>             | Logged by K  | DS             |  |  |  |
| 1.0                                               | Readings<br>lows/100mm                    | 10                            | Diagram (N100 | 30 4                               | 0            | Torque<br>(Nm) |  |  |  |
| 9.0 3<br>-4.                                      |                                           |                               |               |                                    |              | 0              |  |  |  |
| 1                                                 | 4 5 Ground and War                        | ter Ltd Fall Height Hammer Wt | 500<br>50.00  | Cone Base Diameter 4 Final Depth 1 |              | AGS            |  |  |  |




| Sheet 1 of 1   Project Name   16 Rosecroft Avenue   Project No. GWPR2630   Level: -   23/05/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Ground and Water Ltd Trialpit No. |                  |                          |         |          |                                  |                                                     |                                                              | lo        |          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------|------------------|--------------------------|---------|----------|----------------------------------|-----------------------------------------------------|--------------------------------------------------------------|-----------|----------|--|--|
| Project Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              | TP2       |          |  |  |
| 16 Rosecroft Avenue GWPR2630 Level: - 23/05/2018  Location: Hampstead, London NW3 7QB Dimensions: Depth 0.80m Dept |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              | Sheet 1 c | of 1     |  |  |
| Dimensions: Depth      | Project   | Name                              | е                |                          |         |          |                                  |                                                     |                                                              | Date      |          |  |  |
| Client: Mr Heard c/o Vincent & Rymill  Samples & In Situ Testing Depth (m) Type Results  0.20 D D 0.12 0.20  0.80 D 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16 Rose   |                                   |                  |                          |         |          | PR2630                           | Level: -                                            |                                                              | 23/05/20  | 18       |  |  |
| Client: Mr Heard c/o Vincent & Rymill   Depth   Level   Depth (m)   Type   Results   Depth (m)   Type   Results   Depth (m)   MADD   Depth (m)    | Location  | n: F                              | Hampstead, Lon   | don NV                   | V3 7QI  | 3        |                                  |                                                     | -                                                            |           |          |  |  |
| Depth (m)   Type   Results   Control   Contr   | Client:   | N                                 | Mr Heard c/o Vin | ard c/o Vincent & Rymill |         |          |                                  |                                                     |                                                              |           | Зу       |  |  |
| MADE GROUND: Slab / sand.  MADE GROUND: Brown stone sub-base.  MADE GROUND: Brown gravelly sandy sitry clay. Sand is fine to medium grained. Gravel is rare, sub-angular to sub-rounded brick and ash.  D.50 D  MADE GROUND: Brown gravelly sandy sitry clay. Sand is fine to medium grained. Gravel is rare, sub-angular to sub-rounded brick and ash.  BAGSHOT FORMATION: Orange-brown sandy sitry CLAY. Sand is fine to medium grained. Pockets of sand observed.  Trialpit Complete at 0.80 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                   |                  | Depth                    | Level   | Legend   |                                  | Stratum I                                           | Description                                                  | ļ         |          |  |  |
| D 0.12 0.20 MADE GROUND: Brown stone sub-base.  MADE GROUND: Brown gravelly sandy sifty clay. Sand is fine to medium grained. Gravel is rare, sub-angular to sub-rounded brick and ash.  BAGSHOT FORMATION: Orange-brown sandy silty CLAY. Sand is fine to medium grained. Pockets of sand observed.  Trialpit Complete at 0.80 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth (m) | Туре                              | Results          | (m)                      | (m AOD) | XXXXX    | MADE GROUND:                     |                                                     | <u> Эезсприон</u>                                            |           |          |  |  |
| MADE GROUND: Brown gravelly sandy sitly clay. Sand is fine to medium grained. Gravel is rare, sub-angular to sub-rounded brick and ash.  0.50 D 0.48  O.80 D 0.80  MADE GROUND: Brown gravelly sandy sitly clay. Sand is fine to medium grained. Gravel is rare, sub-angular to sub-rounded brick and ash.  BAGSHOT FORMATION: Orange-brown sandy sitly CLAY. Sand is fine to medium grained. Pockets of sand observed.  Trialpit Complete at 0.80 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.20      | n                                 |                  |                          |         |          |                                  |                                                     |                                                              |           | <u> </u> |  |  |
| 0.80 D 0.80 BAGSHOI FORMATION: Orange-brown sandy silty CLAY. Sand is tine to medium grained. Pockets of sand observed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.20      | D                                 |                  | 0.20                     |         |          | MADE GROUND: grained. Gravel is  | Brown gravelly sandy si<br>rare, sub-angular to sub | Ity clay. Sand is fine to medium<br>o-rounded brick and ash. |           |          |  |  |
| 0.80 D 0.80 Trialpit Complete at 0.80 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.50      | D                                 |                  | 0.48                     |         | *        | BAGSHOT FORM grained. Pockets of | ATION: Orange-brown of sand observed.               | sandy silty CLAY. Sand is fine t                             | o medium  | _        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.80      | D                                 |                  | 0.80                     |         |          |                                  | Trialnit Comp                                       | loto at 0.90 m                                               |           |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  | -1                                                  |                                                              |           |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -1       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -2       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -3       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -4       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | -        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                   |                  |                          |         |          |                                  |                                                     |                                                              |           | }        |  |  |
| Remarks: Roots noted to 0.80m bgl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remarks   | :<br>::                           | Roots noted to   | 0.80m k                  | ogl.    | <u> </u> |                                  |                                                     |                                                              |           |          |  |  |
| Groundwater: No groundwater encountered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Groundw   | ater:                             | No groundwate    | r encou                  | ntered. |          |                                  |                                                     |                                                              | AG        | S        |  |  |

## APPPENDIX D Geotechnical Laboratory Test Results

| roject No. | 4628   |          | Project                            | · vaiiit |                                           |                           |                                                                                           |     |    |            |           | 'amme                            |   |
|------------|--------|----------|------------------------------------|----------|-------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------|-----|----|------------|-----------|----------------------------------|---|
| roject No. | .40∠ŏ  |          | 16 Rosecroft Avenue London NW3 7OB |          |                                           |                           |                                                                                           |     |    |            |           | 1/069/201                        | 8 |
| GW         |        |          | Schedule receive                   |          |                                           |                           |                                                                                           |     |    |            | 31/05/201 |                                  |   |
|            |        |          |                                    |          |                                           |                           |                                                                                           |     |    |            |           | 01/06/201                        | 8 |
| Hole No.   | PR2630 | )        | Ground                             | I & Wa   | ter Ltd                                   |                           | 1                                                                                         |     |    | Testing St | arted     | 12/06/201                        | 8 |
|            |        |          | nple                               | I_       | Soil Des                                  | Soil Description NMC Pass |                                                                                           |     | LL | PL         | PI        | Remarks                          |   |
|            | Ref    | Top<br>m | Base<br>m                          | Туре     |                                           |                           | %                                                                                         | %   | %  | %          | %         |                                  |   |
| BH1        | -      | 3.50     |                                    | D        | Orangish brown sligh silty sandy CLAY     | ntly mottled grey         | 30                                                                                        | 100 | 44 | 16         | 28        |                                  |   |
| BH1        | -      | 6.50     |                                    | D        | Orangish brown sligh silty sandy CLAY     | ntly mottled grey         | 34                                                                                        | 100 | 40 | 16         | 24        |                                  |   |
| WS2        | -      | 2.50     |                                    | D        | Light orangish brown grey silty sandy CLA |                           | 23                                                                                        | 100 | 37 | 14         | 23        |                                  |   |
| WS3        | -      | 1.50     |                                    | D        | Orangish brown sligh silty sandy CLAY     | ntly mottled grey         | 20                                                                                        | 100 | 37 | 15         | 22        |                                  |   |
|            |        |          |                                    |          |                                           |                           |                                                                                           |     |    |            |           |                                  |   |
|            |        |          |                                    |          |                                           |                           |                                                                                           |     |    |            |           |                                  |   |
|            |        |          |                                    |          |                                           |                           |                                                                                           |     |    |            |           |                                  |   |
|            |        |          |                                    |          |                                           |                           |                                                                                           |     |    |            |           |                                  |   |
|            |        |          |                                    |          |                                           |                           |                                                                                           |     |    |            |           |                                  |   |
|            |        |          |                                    |          |                                           |                           |                                                                                           |     |    |            |           |                                  |   |
|            |        |          |                                    |          |                                           |                           |                                                                                           |     |    |            |           |                                  |   |
|            |        |          |                                    |          |                                           |                           |                                                                                           |     |    |            |           |                                  |   |
|            |        |          |                                    |          |                                           |                           |                                                                                           |     |    |            |           |                                  |   |
| <u></u>    |        |          | : BS137<br>Content<br>clause 4.    |          | t 2: 1990:<br>e 3.2                       | Test<br>(                 | Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU |     |    |            |           | Checked a<br>Approve<br>Initials |   |

| 14               | DARTIC                 | 1 E 817E DIS        | STRIBUTION         | Job Ref            | 24628      |   |
|------------------|------------------------|---------------------|--------------------|--------------------|------------|---|
| SOILS            | PARTIC                 | LE SIZE DIS         | RIBUTION           | Borehole/Pit No.   | BH1        |   |
| Site Name        | 16 Rosecroft Avenue, I | ondon, NW3 7QE      | 3                  | Sample No.         | -          |   |
| Project No.      | GWPR2630               | Client              | Ground & Water Ltd | Depth Top          | 4.50       | m |
|                  |                        |                     |                    | Depth Base         | -          | m |
| Soil Description | Orang                  | gish brown slightly | silty SAND         | Sample Type        | D          |   |
|                  |                        |                     | •                  | Samples received   | 01/06/2018 |   |
|                  |                        |                     |                    | Schedules received | 31/05/2018 |   |
| Test Method      | BS1377:Part 2: 1990, o | clause 9.0          |                    | Project started    | 01/06/2016 |   |
|                  |                        |                     |                    | Date tested        | 13/06/2018 |   |



| Siev             | ving      | Sedime           | entation  |
|------------------|-----------|------------------|-----------|
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 100       |                  |           |
| 63               | 100       |                  |           |
| 50               | 100       |                  |           |
| 37.5             | 100       |                  |           |
| 28               | 100       |                  |           |
| 20               | 100       |                  |           |
| 14               | 100       |                  |           |
| 10               | 100       |                  |           |
| 6.3              | 100       |                  |           |
| 5                | 100       |                  |           |
| 3.35             | 100       |                  |           |
| 2                | 100       |                  |           |
| 1.18             | 100       |                  |           |
| 0.6              | 100       |                  |           |
| 0.425            | 100       |                  |           |
| 0.3              | 100       |                  |           |
| 0.212            | 100       |                  |           |
| 0.15             | 99        |                  |           |
| 0.063            | 3         |                  |           |

| Dry Mass of sample, g | 375 |
|-----------------------|-----|
|-----------------------|-----|

| Sample Proportions | % dry mass |  |  |  |
|--------------------|------------|--|--|--|
| Very coarse        | 0.0        |  |  |  |
| Gravel             | 0.0        |  |  |  |
| Sand               | 97.5       |  |  |  |
|                    | ·          |  |  |  |
| Fines <0.063mm     | 2.5        |  |  |  |

| <b>Grading Analysis</b> |    |        |
|-------------------------|----|--------|
| D100                    | mm |        |
| D60                     | mm | 0.106  |
| D30                     | mm | 0.0807 |
| D10                     | mm | 0.0674 |
| Uniformity Coefficient  |    | 1.6    |
| Curvature Coefficient   |    | 0.91   |

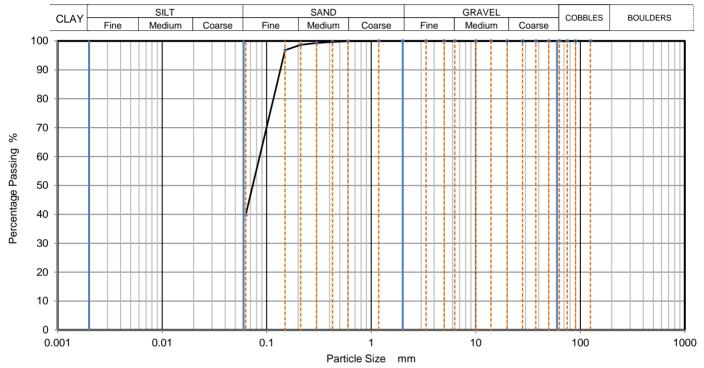
#### Remarks

Preparation and testing in accordance with BS1377 unless noted below



**K4 Soils Laboratory** Unit 8, Olds Close, Watford, Herts, WD18 9RU Email: james@k4soils.com

Tel: 01923 711288


Initials: kp Date: 14/06/2018

**Checked and Approved** 

MSF-5-R3

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)

|                  | DARTIC                 | 1 E 817E DI8      | TRIBUTION          | Job Ref            | 24628      |   |
|------------------|------------------------|-------------------|--------------------|--------------------|------------|---|
| SOILS            | PARTIC                 | LE SIZE DIS       | STRIBUTION         | Borehole/Pit No.   | WS2        |   |
| Site Name        | 16 Rosecroft Avenue, I | ondon, NW3 7QE    | 3                  | Sample No.         | -          |   |
| Project No.      | GWPR2630               | Client            | Ground & Water Ltd | Depth Top          | 1.00       | m |
|                  |                        |                   |                    | Depth Base         | -          | m |
| Soil Description | Orangish b             | rown mottled grey | silty sandy CLAY   | Sample Type        | D          |   |
|                  |                        |                   |                    | Samples received   | 01/06/2018 |   |
|                  |                        |                   |                    | Schedules received | 31/05/2018 |   |
| Test Method      | BS1377:Part 2: 1990, o | clause 9.0        |                    | Project started    | 01/06/2018 |   |
| <u>-</u>         |                        |                   |                    | Date tested        | 13/06/2018 |   |



| Sion             | ving      | Sadima           | entation  |
|------------------|-----------|------------------|-----------|
|                  | virig     |                  | HILALION  |
| Particle Size mm | % Passing | Particle Size mm | % Passing |
| 125              | 100       |                  |           |
| 90               | 100       |                  |           |
| 75               | 100       |                  |           |
| 63               | 100       |                  |           |
| 50               | 100       |                  |           |
| 37.5             | 100       |                  |           |
| 28               | 100       |                  |           |
| 20               | 100       |                  |           |
| 14               | 100       |                  |           |
| 10               | 100       |                  |           |
| 6.3              | 100       |                  |           |
| 5                | 100       |                  |           |
| 3.35             | 100       |                  |           |
| 2                | 100       |                  |           |
| 1.18             | 100       |                  |           |
| 0.6              | 100       |                  |           |
| 0.425            | 100       |                  |           |
| 0.3              | 99        |                  |           |
| 0.212            | 99        |                  |           |
| 0.15             | 97        |                  |           |
| 0.063            | 40        |                  |           |

| Dry Mass of sample, g | 211 |
|-----------------------|-----|
|-----------------------|-----|

| Sample Proportions | % dry mass |
|--------------------|------------|
| Very coarse        | 0.0        |
| Gravel             | 0.0        |
| Sand               | 60.2       |
|                    | ·          |
| Fines <0.063mm     | 39.8       |

| Grading Analysis       |    |        |
|------------------------|----|--------|
| D100                   | mm |        |
| D60                    | mm | 0.0856 |
| D30                    | mm |        |
| D10                    | mm |        |
| Uniformity Coefficient |    |        |
| Curvature Coefficient  |    |        |

#### Remarks

Preparation and testing in accordance with BS1377 unless noted below



K4 Soils Laboratory
Unit 8, Olds Close, Watford, Herts, WD18 9RU
Email: james@k4soils.com
Tel: 01923 711288

Initials: kp

**Checked and Approved** 

MSF-5-R3

Date:

14/06/2018

Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)



## Sulphate Content (Gravimetric Method) for 2:1 Soil: Water Extract and pH Value - Summary of Results

| V                 | SOIL | S                                                                                                                                                                                                       |           |           | Tested in accordance with BS1377 : I                  | Part 3 : 1       | 990, claı | use 5.3 a | and clau                | se 9    |                                                        |
|-------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-------------------------------------------------------|------------------|-----------|-----------|-------------------------|---------|--------------------------------------------------------|
| Job No.           |      |                                                                                                                                                                                                         | Project N | lame      |                                                       |                  |           |           |                         | Progran | nme                                                    |
| 24628             |      |                                                                                                                                                                                                         |           |           | nue, London, NW3 7QB                                  |                  |           |           | Samples r               | eceived | 01/06/2018                                             |
|                   |      |                                                                                                                                                                                                         | Client    |           |                                                       |                  |           |           | Schedule r<br>Project s |         | 31/05/2018<br>01/06/2018                               |
| Project No        |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
| GWPR263           | 30   |                                                                                                                                                                                                         | Ground &  | & Water I | _td                                                   |                  | 1         | 1         | Testing S               | Started | 12/06/2018                                             |
|                   |      | Sa                                                                                                                                                                                                      | mple      |           |                                                       | Dry Mass passing | SO3       | SO4       |                         |         |                                                        |
| Hole No.          | Ref  | Тор                                                                                                                                                                                                     | Base      | Type      | Soil description                                      | 2mm              | Content   | Content   | pН                      | F       | Remarks                                                |
|                   |      | m                                                                                                                                                                                                       | m         |           |                                                       | %                | g/l       | g/l       |                         |         |                                                        |
| BH1               | -    | 3.50                                                                                                                                                                                                    |           | D         | Orangish brown slightly mottled grey silty sandy CLAY | 100              | 0.12      | 0.15      | 7.70                    |         |                                                        |
|                   |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
|                   |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
|                   |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
|                   |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
|                   |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
|                   |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
|                   |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
|                   |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
|                   |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
|                   |      |                                                                                                                                                                                                         |           |           |                                                       |                  |           |           |                         |         |                                                        |
| U K A TESTIN 2519 |      | Test Report by K4 SOILS LABORATORY  Unit 8 Olds Close Olds Approach  Watford Herts WD18 9RU  Tel: 01923 711 288  Email: James@k4soils.com  Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr) |           |           |                                                       |                  |           |           |                         |         | ecked and<br>pproved<br>kp<br>14/06/2018<br>//SF-5-R29 |

## APPPENDIX E Chemical Laboratory Test Results





Harry Brock
Ground & Water Ltd
2 The Long Barn
Norton Farm
Selborne Road
Alton
Hampshire
GU34 3NB

**DETS Ltd** 

Unit 1

Rose Lane Industrial Estate

Rose Lane

Lenham Heath

Kent

ME17 2JN **t:** 01622 850410

russell.jarvis@qtsenvironmental.com

### **DETS Report No: 18-76084**

**Site Reference:** 16 Rosecroft Avenue, London, NW3 7QB

Project / Job Ref: GWPR2630

Order No: None Supplied

**Sample Receipt Date:** 01/06/2018

**Sample Scheduled Date:** 01/06/2018

**Report Issue Number:** 2

**Reporting Date:** 13/06/2018

Authorised by:

Russell Jarvis

Associate Director of Client Services

Authorised by:

Dave Ashworth

Deputy Quality Manager





| Soil Analysis Certificate                        |                 |               |               |               |  |
|--------------------------------------------------|-----------------|---------------|---------------|---------------|--|
| DETS Report No: 18-76084                         | Date Sampled    | 25/05/18      | 23/05/18      | 23/05/18      |  |
| Ground & Water Ltd                               | Time Sampled    | None Supplied | None Supplied | None Supplied |  |
| Site Reference: 16 Rosecroft Avenue, London, NW3 | TP / BH No      | WS3           | None Supplied | None Supplied |  |
| 7QB                                              |                 |               |               |               |  |
| Project / Job Ref: GWPR2630                      | Additional Refs | None Supplied | None Supplied | None Supplied |  |
| Order No: None Supplied                          | Depth (m)       | 0.25          | 0.80          | 7.00          |  |
| Reporting Date: 13/06/2018                       | QTSE Sample No  | 337553        | 337555        | 337556        |  |

| Determinand                                    | Unit     | RL     | Accreditation |              |        |        |  |
|------------------------------------------------|----------|--------|---------------|--------------|--------|--------|--|
| Asbestos Screen (S)                            | N/a      | N/a    |               | Not Detected |        |        |  |
| pH                                             | pH Units | N/a    | MCERTS        | 5.8          | 4.8    | 6.3    |  |
| Total Cyanide                                  | mg/kg    | < 2    | NONE          | < 2          |        |        |  |
| Total Sulphate as SO <sub>4</sub>              | mg/kg    | < 200  | NONE          |              | 246    | < 200  |  |
| Total Sulphate as SO <sub>4</sub>              | %        | < 0.02 | NONE          |              | 0.02   | < 0.02 |  |
| W/S Sulphate as SO <sub>4</sub> (2:1)          | mg/l     | < 10   | MCERTS        | 16           | 76     | 88     |  |
| W/S Sulphate as SO <sub>4</sub> (2:1)          | g/l      | < 0.01 | MCERTS        | 0.02         | 0.08   | 0.09   |  |
| Total Sulphur                                  | %        | < 0.02 | NONE          |              | < 0.02 | < 0.02 |  |
| Organic Matter                                 | %        | < 0.1  | MCERTS        | 1.4          |        |        |  |
| Total Organic Carbon (TOC)                     | %        | < 0.1  | MCERTS        | 0.8          |        |        |  |
| Ammonium as NH <sub>4</sub>                    | mg/kg    | < 0.5  | NONE          |              | 1.1    | 2      |  |
| Ammonium as NH <sub>4</sub>                    | mg/l     | < 0.05 | NONE          |              | 0.11   | 0.20   |  |
| W/S Chloride (2:1)                             | mg/kg    | < 1    | MCERTS        |              | 45     | 55     |  |
| W/S Chloride (2:1)                             | mg/l     | < 0.5  | MCERTS        |              | 22.5   | 27.4   |  |
| Water Soluble Nitrate (2:1) as NO <sub>3</sub> | mg/kg    | < 3    | MCERTS        |              | 4      | 14     |  |
| Water Soluble Nitrate (2:1) as NO <sub>3</sub> | mg/l     | < 1.5  | MCERTS        |              | 2      | 6.9    |  |
| Arsenic (As)                                   | mg/kg    | < 2    | MCERTS        | 8            |        |        |  |
| W/S Boron                                      | mg/kg    | < 1    | NONE          | < 1          |        |        |  |
| Cadmium (Cd)                                   | mg/kg    | < 0.2  | MCERTS        | < 0.2        |        |        |  |
| Chromium (Cr)                                  | mg/kg    | < 2    | MCERTS        | 16           |        |        |  |
| Chromium (hexavalent)                          | mg/kg    | < 2    | NONE          | < 2          |        |        |  |
| Copper (Cu)                                    | mg/kg    | < 4    | MCERTS        | 20           |        |        |  |
| Lead (Pb)                                      | mg/kg    | < 3    | MCERTS        | 80           |        |        |  |
| W/S Magnesium                                  | mg/l     | < 0.1  | NONE          |              | 1.9    | 3.1    |  |
| Mercury (Hg)                                   | mg/kg    | < 1    | NONE          | < 1          |        |        |  |
| Nickel (Ni)                                    | mg/kg    | < 3    | MCERTS        | 5            |        |        |  |
| Selenium (Se)                                  | mg/kg    | < 3    | NONE          | < 3          |        |        |  |
| Vanadium (V)                                   | mg/kg    | < 2    | NONE          | 30           |        |        |  |
| Zinc (Zn)                                      | mg/kg    | < 3    | MCERTS        | 48           |        |        |  |
| Total Phenols (monohydric)                     | mg/kg    | < 2    | NONE          | < 2          |        |        |  |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than  $30^{\circ}$ C Subcontracted analysis (S)





Soil Analysis Certificate - Speciated PAHs DETS Report No: 18-76084 **Date Sampled** 25/05/18 **Time Sampled** None Supplied **Ground & Water Ltd** Site Reference: 16 Rosecroft Avenue, TP / BH No WS3 London, NW3 7QB Project / Job Ref: GWPR2630 None Supplied **Additional Refs** Order No: None Supplied Depth (m) 0.25 Reporting Date: 13/06/2018 **QTSE Sample No** 

337553

| Determinand            | Unit  | RL    | Accreditation |       |   |  |  |
|------------------------|-------|-------|---------------|-------|---|--|--|
| Naphthalene            | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Acenaphthylene         | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Acenaphthene           | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Fluorene               | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Phenanthrene           | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Anthracene             | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Fluoranthene           | mg/kg | < 0.1 | MCERTS        | 0.21  |   |  |  |
| Pyrene                 | mg/kg | < 0.1 | MCERTS        | 0.19  |   |  |  |
| Benzo(a)anthracene     | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Chrysene               | mg/kg | < 0.1 | MCERTS        | 0.13  |   |  |  |
| Benzo(b)fluoranthene   | mg/kg | < 0.1 | MCERTS        | 0.18  |   |  |  |
| Benzo(k)fluoranthene   | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Benzo(a)pyrene         | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Indeno(1,2,3-cd)pyrene | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Dibenz(a,h)anthracene  | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Benzo(ghi)perylene     | mg/kg | < 0.1 | MCERTS        | < 0.1 |   |  |  |
| Total EPA-16 PAHs      | mg/kg | < 1.6 | MCERTS        | < 1.6 | - |  |  |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C





| Soil Analysis Certificate - TPH CWG Banded |                 |               |  |  |  |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|--|--|--|--|--|--|--|--|
| DETS Report No: 18-76084                   | Date Sampled    | 25/05/18      |  |  |  |  |  |  |  |  |
| Ground & Water Ltd                         | Time Sampled    | None Supplied |  |  |  |  |  |  |  |  |
| Site Reference: 16 Rosecroft Avenue,       | TP / BH No      | WS3           |  |  |  |  |  |  |  |  |
| London, NW3 7QB                            |                 |               |  |  |  |  |  |  |  |  |
| Project / Job Ref: GWPR2630                | Additional Refs | None Supplied |  |  |  |  |  |  |  |  |
| Order No: None Supplied                    | Depth (m)       | 0.25          |  |  |  |  |  |  |  |  |
| Reporting Date: 13/06/2018                 | QTSE Sample No  | 337553        |  |  |  |  |  |  |  |  |

| Determinand          | Unit  | RL     | Accreditation |        |  |  |
|----------------------|-------|--------|---------------|--------|--|--|
| Aliphatic >C5 - C6   | mg/kg | < 0.01 | NONE          | < 0.01 |  |  |
| Aliphatic >C6 - C8   | mg/kg | < 0.05 | NONE          | < 0.05 |  |  |
| Aliphatic >C8 - C10  | mg/kg | < 2    | MCERTS        | < 2    |  |  |
| Aliphatic >C10 - C12 | mg/kg | < 2    | MCERTS        | < 2    |  |  |
| Aliphatic >C12 - C16 | mg/kg | < 3    | MCERTS        | < 3    |  |  |
| Aliphatic >C16 - C21 | mg/kg | < 3    | MCERTS        | < 3    |  |  |
| Aliphatic >C21 - C34 | mg/kg | < 10   | MCERTS        | < 10   |  |  |
| Aliphatic (C5 - C34) | mg/kg | < 21   | NONE          | < 21   |  |  |
| Aromatic >C5 - C7    | mg/kg | < 0.01 | NONE          | < 0.01 |  |  |
| Aromatic >C7 - C8    | mg/kg | < 0.05 | NONE          | < 0.05 |  |  |
| Aromatic >C8 - C10   | mg/kg | < 2    | MCERTS        | < 2    |  |  |
| Aromatic >C10 - C12  | mg/kg | < 2    | MCERTS        | < 2    |  |  |
| Aromatic >C12 - C16  | mg/kg | < 2    | MCERTS        | < 2    |  |  |
| Aromatic >C16 - C21  | mg/kg | < 3    | MCERTS        | < 3    |  |  |
| Aromatic >C21 - C35  | mg/kg | < 10   | MCERTS        | < 10   |  |  |
| Aromatic (C5 - C35)  | mg/kg | < 21   | NONE          | < 21   |  |  |
| Total >C5 - C35      | mg/kg | < 42   | NONE          | < 42   |  |  |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C





| Soil Analysis Certificate - BTEX / MTBE |                 |               |  |  |  |  |
|-----------------------------------------|-----------------|---------------|--|--|--|--|
| DETS Report No: 18-76084                | Date Sampled    | 25/05/18      |  |  |  |  |
| Ground & Water Ltd                      | Time Sampled    | None Supplied |  |  |  |  |
| Site Reference: 16 Rosecroft Avenue,    | TP / BH No      | WS3           |  |  |  |  |
| London, NW3 7QB                         |                 |               |  |  |  |  |
| Project / Job Ref: GWPR2630             | Additional Refs | None Supplied |  |  |  |  |
| Order No: None Supplied                 | Depth (m)       | 0.25          |  |  |  |  |
| Reporting Date: 13/06/2018              | QTSE Sample No  | 337553        |  |  |  |  |

| Determinand  | Unit  | RL  | Accreditation |     |
|--------------|-------|-----|---------------|-----|
| Benzene      | ug/kg | < 2 | MCERTS        | < 2 |
| Toluene      | ug/kg | < 5 | MCERTS        | < 5 |
| Ethylbenzene | ug/kg | < 2 | MCERTS        | < 2 |
| p & m-xylene | ug/kg | < 2 | MCERTS        | < 2 |
| o-xylene     | ug/kg | < 2 | MCERTS        | < 2 |
| MTBE         | ug/kg | < 5 | MCERTS        | < 5 |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C



Tel: 01622 850410



Waste Acceptance Criteria Analytical Certificate - BS EN 12457/2 DETS Report No: 18-76084 **Date Sampled** 25/05/18 **Landfill Waste Acceptance Criteria Limits** None **Ground & Water Ltd** Time Sampled Supplied Site Reference: 16 Rosecroft Avenue, TP / BH No WS3 Stable Non-London, NW3 7QB reactive **Hazardous** None Project / Job Ref: GWPR2630 **Additional Refs Inert Waste HAZARDOUS** Waste Supplied Landfill waste in non Landfill hazardous Order No: None Supplied Depth (m) 0.50 Landfill **QTSE Sample** Reporting Date: 13/06/2018 337554 No MDL Determinand Unit TOCMU 0.6 5% < 0.1 6% Loss on Ignition % < 0.01 10% BTEX<sup>MU</sup> < 0.05 < 0.05 6 mg/kg < 0.1 Sum of PCBs < 0.1 mg/kg 1 Mineral Oil<sup>MU</sup> < 10 500 < 10 mg/kg Total PAH<sup>MU</sup> < 1.7 100 mg/kg < 1.7 ---pH Units + / - 0.1 >6 ----To be To be Acid Neutralisation Capacity mol/kg (+/-) N/a evaluated evaluated Cumulative Limit values for compliance leaching test 10:1 using BS EN 12457-3 at L/S 10 l/kg **Eluate Analysis** 10:1 mg/l mg/kg (mg/kg) < 0.1 < 0.01 0.5 25 Arsenic<sup>U</sup> 100 Barium<sup>U</sup> < 0.02 < 0.2 20 300 Cadmium<sup>l</sup> < 0.0005 < 0.005 0.04 1 5 < 0.005 < 0.05 0.5 10 70 Chromium<sup>U</sup> < 0.1 Copper<sup>l</sup> < 0.01 2 50 100 0.01 0.2 Mercury<sup>u</sup> < 0.0005 < 0.01 2 Molybdenum<sup>U</sup> < 0.001 0.5 10 30 < 0.01 40 Nickel<sup>U</sup> < 0.007 < 0.07 0.4 10 50 Lead<sup>∪</sup> < 0.05 0.5 10 < 0.005 Antimony<sup>U</sup> < 0.005 < 0.05 0.06 0.7 5 Selenium<sup>∪</sup> < 0.005 < 0.05 0.1 0.5 7 Zinc<sup>U</sup> 0.019 0.19 4 50 200 Chloride<sup>U</sup> < 10 800 15000 25000 Fluoride<sup>U</sup> < 0.5 < 5 10 150 500 1000 50000 2 19 20000 Sulphate<sup>∪</sup> 130 100000 13 4000 60000 TDS Phenol Index < 0.01 < 0.1 56.8 500 800 1000 **Leach Test Information** Sample Mass (kg) 0.11 Dry Matter (%) 83.7 Moisture (%) 19.4 Stage 1 Volume Eluate L10 (litres) 0.88

Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test



Tel: 01622 850410



Soil Analysis Certificate - Sample Descriptions

DETS Report No: 18-76084

Ground & Water Ltd

Site Reference: 16 Rosecroft Avenue, London, NW3 7QB

Project / Job Ref: GWPR2630

Order No: None Supplied

Reporting Date: 13/06/2018

| QTSE Sample No | TP / BH No    | Additional Refs | Depth (m) | Moisture<br>Content (%) | Sample Matrix Description    |
|----------------|---------------|-----------------|-----------|-------------------------|------------------------------|
| 337553         | WS3           | None Supplied   | 0.25      | 14.6                    | Brown sandy clay with stones |
| 337554         | WS3           | None Supplied   | 0.50      | 16.3                    | Brown sandy clay with stones |
| 337555         | None Supplied | None Supplied   | 0.80      | 18.8                    | Brown sandy clay             |
| 337556         | None Supplied | None Supplied   | 7.00      | 17                      | Brown sandy clay             |

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample  $^{\rm I/S}$  Unsuitable Sample  $^{\rm U/S}$ 





Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 18-76084

**Ground & Water Ltd** 

Site Reference: 16 Rosecroft Avenue, London, NW3 7QB

Project / Job Ref: GWPR2630 Order No: None Supplied Reporting Date: 13/06/2018

|      | On | Determinand                                                              | Brief Method Description                                                                                                                            |      |  |  |
|------|----|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| Soil | D  | Boron - Water Soluble                                                    | Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES                                                           | E012 |  |  |
| Soil | AR |                                                                          | Determination of BTEX by headspace GC-MS                                                                                                            | E001 |  |  |
| Soil | D  | Cations                                                                  | Determination of cations in soil by aqua-regia digestion followed by ICP-OES                                                                        | E002 |  |  |
| Soil | D  |                                                                          | Determination of chloride by extraction with water & analysed by ion chromatography                                                                 | E009 |  |  |
| Soil | AR |                                                                          | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of                                              | E016 |  |  |
| Soil | AR | Cyanide - Complex                                                        | Determination of complex cyanide by distillation followed by colorimetry                                                                            | E015 |  |  |
| Soil | AR | , , , , , , , , , , , , , , , , , , , ,                                  | Determination of free cyanide by distillation followed by colorimetry                                                                               |      |  |  |
| Soil | AR | •                                                                        | Determination of total cyanide by distillation followed by colorimetry                                                                              | E015 |  |  |
| Soil | D  |                                                                          | Gravimetrically determined through extraction with cyclohexane                                                                                      |      |  |  |
| Soil | AR |                                                                          | Determination of hexane/acetone extractable hydrocarbons by GC-FID                                                                                  | E004 |  |  |
| Soil | AR |                                                                          | Determination of electrical conductivity by addition of saturated calcium sulphate followed by                                                      | E022 |  |  |
| Soil | AR | ,                                                                        | Determination of electrical conductivity by addition of water followed by electrometric measurement                                                 | E023 |  |  |
| Soil | D  | Elemental Sulphur                                                        | Determination of elemental sulphur by solvent extraction followed by GC-MS                                                                          | E020 |  |  |
| Soil | AR | EPH (C10 - C40)                                                          | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                  | E004 |  |  |
| Soil | AR | EPH Product ID                                                           | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                  | E004 |  |  |
| Soil | AR | EPH TEXAS (C6-C8, C8-C10, C10-C12,<br>C12-C16, C16-C21, C21-C40)         | Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS                                       | E004 |  |  |
| Soil | D  |                                                                          | Determination of Fluoride by extraction with water & analysed by ion chromatography                                                                 | E009 |  |  |
| Soil | D  | FOR (Fraction Organic Carpon )                                           | utration with iron (11) suiphate                                                                                                                    | E010 |  |  |
| Soil | D  | Loss on Ignition @ 450oC                                                 | Turnace                                                                                                                                             | E019 |  |  |
| Soil | D  | Magnesium - Water Soluble                                                | Determination of water soluble magnesium by extraction with water followed by ICP-OES                                                               | E025 |  |  |
| Soil | D  | Metals                                                                   | Determination of metals by aqua-regia digestion followed by ICP-OES                                                                                 | E002 |  |  |
| Soil | AR | Mineral Oil (C10 - C40)                                                  | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                 | E004 |  |  |
| Soil | AR | Moisture Content                                                         | Moisture content; determined gravimetrically                                                                                                        | E003 |  |  |
| Soil | D  | Nitrate - Water Soluble (2:1)                                            | Determination of nitrate by extraction with water & analysed by ion chromatography                                                                  | E009 |  |  |
| Soil | D  | Organic Matter                                                           | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                |      |  |  |
| Soil | AR |                                                                          | use of surrogate and internal standards                                                                                                             | E005 |  |  |
| Soil | AR |                                                                          | Determination of PCB by extraction with acetone and hexane followed by GC-MS                                                                        | E008 |  |  |
| Soil | D  | ` /                                                                      | Gravimetrically determined through extraction with petroleum ether                                                                                  | E011 |  |  |
| Soil | AR |                                                                          | Determination of pH by addition of water followed by electrometric measurement                                                                      | E007 |  |  |
| Soil | AR |                                                                          | Determination of phenols by distillation followed by colorimetry                                                                                    | E021 |  |  |
| Soil | D  | •                                                                        | Determination of phosphate by extraction with water & analysed by ion chromatography                                                                | E009 |  |  |
| Soil | D  | · , ,                                                                    | Determination of total sulphate by extraction with 10% HCl followed by ICP-OES                                                                      | E013 |  |  |
| Soil | D  |                                                                          | Determination of sulphate by extraction with water & analysed by ion chromatography                                                                 | E009 |  |  |
| Soil | D  | · · · · · · · · · · · · · · · · · · ·                                    | Determination of water soluble sulphate by extraction with water followed by ICP-OES                                                                | E014 |  |  |
| Soil | AR |                                                                          | Determination of sulphide by distillation followed by colorimetry                                                                                   | E018 |  |  |
| Soil | D  | Sulphur - Total                                                          | Determination of total sulphur by extraction with aqua-regia followed by ICP-OES                                                                    | E024 |  |  |
| Soil | AR | SVOC                                                                     | Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS                                              | E006 |  |  |
| Soil | AR | Thiocyanate (as SCN)                                                     | Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry | E017 |  |  |
| Soil | D  | , ,                                                                      | Gravimetrically determined through extraction with toluene                                                                                          | E011 |  |  |
| Soil | D  | Total Organic Carbon (TOC)                                               | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron                                              | E010 |  |  |
| Soil | AR | TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS      |      |  |  |
| Soil | AR | C5-C7, C7-C8, C8-C10, C10-C12, C12-<br>C16, C16-C21, C21-C35, C35-C44)   | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS      |      |  |  |
| Soil | AR |                                                                          | Determination of volatile organic compounds by headspace GC-MS                                                                                      | E001 |  |  |
| 2011 | AR | VDIT (CC CO 0 CO C10)                                                    | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                                                                           | E001 |  |  |

D Dried AR As Received

## APPPENDIX F Soil Assessment Criteria

### Appendix F Soil Guideline Values and Genera Assessment Criteria

#### F1 Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'.

#### F1.1 Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA Guidance comprises the following documents:

- 1) EA Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
- 2) EA Science Report SC050021/SR3: *Updated technical background to the CLEA model.*
- 3) EA CLEA Bulletin (2009).
- 4) CLEA software version 1.06 (2009)
- 5) Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

- do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures.
- do not cover risks to the environment, such as groundwater, ecosystems or buildings.
- do not provide a definitive test for telling when human health risks are significant.
- are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

#### F1.2 Land-use Scenarios

The CLEA model uses a range of standard land-use scenarios to develop conceptual exposure models as follows:

#### 1 Residential (with home grown produce) (RwHP)

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur. (Residential without homegrown produce (RwoHP)).

#### 2) Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

#### 3) Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a three-storey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

#### F1.4 LQM/CIEH SUITABLE 4 USE LEVELS (S4UL)

For derivation of these S4UL reference must be made to:

Nathanial, P., McCaffrey, C., Gillet, A., Ogden, R., Nathanial, J., The LQM/CIEH S4UL's for Human Health Risk Assessment. Land Quality Press. 2015

The LQM/CIEH S4UL for a given land use is the concentration of the contaminant in soil at which the predicted daily exposure, as calculated by the CLEA software, equals the Health Criteria Value.

The final output for each contaminant represents a synthesis of new toxicological (and fate and transport) reviews published since the preparation of the 2<sup>nd</sup> edition LQM/CIEH GAC's (Nathanial et al., 2009).

In the derivation of LQM/CIEH S4UL's the principles of 'minimal' or 'tolerable' risk enshrined in SR2, which has not been withdrawn, has been maintained.

S4UL's have been derived for the basic CLEA land-uses, as described above, and for two new land uses:

- Public Open Spaces near Residential Housing (POSresi)
- Public Park (POSpark).

#### **Public Open Spaces near Residential Housing (POSresi)**

Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930's – 1970's housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soils with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

#### Public Park (POSpark)

An area of open space, usually owned and maintained by the local authority, provided for recreational uses including family visists and picnics, children's play area, informal sporting activities (not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into places of residence will be negligible.

The following LQM/CIEH S4UIs (Copyright Land Quality Management Limited) have been reproduced with permission, to the publication number S4UL3072

#### F1.5 Category 4 Screening Levels (C4SLs)

In the case of Lead, no SGV or GAC has been published to date. This is likely to be due to the toxicity review that is currently being undertaken by the Environment Agency. In the absence of updated toxicity information the SGV derived using CLEA 1.06 methodology and related toxicity will be used.

The overall objective of the C4SLs research project was to assist the provision of technical guidance in support of Defra's revised Statutory Guidance (SG) for Part 2A of the Environmental Protection Act 1990 (Part 2A) (Defra, 2012a). Specifically, the project aimed to deliver:

- A methodology for deriving C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space; and
- A demonstration of the methodology, via the derivation of C4SLs for six substances arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.

To help achieve a more targeted approach to identifying and managing contaminated land in relation to the risk (or possibility) of harm to human health, the revised SG presented a new four category system for considering land under Part 2A, ranging from Category 4, where there is no risk that land poses a significant possibility of significant harm (SPOSH), or the level of risk is low, to Category 1, where the risk that land poses a significant possibility of significant harm (SPOSH) is unacceptably high. More specific guidance on what type of land should be considered as Category 4 (Human Health) is provided in Paragraphs 4.21 and 4.22 of the revised SG, as follows:

- "4.21 The local authority should consider that the following types of land should be placed into Category 4: Human Health:
- (a) Land where no relevant contaminant linkage has been established.
- (b) Land where there are only normal levels of contaminants in soil, as explained in Section 3 of this Guidance.
- (c) Land that has been excluded from the need for further inspection and assessment because contaminant levels do not exceed relevant generic assessment criteria in accordance with Section 3 of this Guidance, or relevant technical tools or advice that may be developed in accordance with paragraph 3.30 of this Guidance.
- (d) Land where estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure (e.g. in relation to average estimated national levels of exposure to substances commonly found in the environment, to which receptors are likely to be exposed in the normal course of their lives).
- 4.22 The local authority may consider that land other than the types described in paragraph 4.21 should be placed into Category 4: Human Health if following a detailed quantitative risk assessment it is satisfied that the level of risk posed is sufficiently low."

The C4SLs are intended as "relevant technical tools" (in relation to Paragraph 4.21(c)) to help local authorities and others when deciding to stop further assessment of a site, on the grounds that it falls within Category 4 (Human Health).

The Impact Assessment (IA), which accompanied the revised SG (Defra, 2012b) provides further information on the nature and potential role of the C4SLs. Paragraph 47(h) of the IA states that:

"The new statutory guidance will bring about a situation where the current SGVs/GACs are replaced with more pragmatic (but still strongly precautionary) Category 4 screening levels (C4SLs) which will provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land."

A key distinction between the Soil Guideline Values (SGVs) and the C4SLs is the level of risk that they describe. As described by the Environment Agency (2009a): "SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health."

The implication of Paragraph 47(h) of the IA is that minimal risk is well within Category 4 and that the C4SLs should describe a higher level of risk which, whilst not minimal, can still be considered low enough to allow a judgement to be made that land containing substances at, or below, the C4SLs would typically fall within Category 4. This reflects Paragraph 4.20 of the revised SG, which states:

"4.20 The local authority should not assume that land poses a significant possibility of significant harm if it considers that there is no risk or that the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4: Human Health" case. The authority may decide that the land is a Category 4: Human Health case as soon as it considers it has evidence to this effect, and this may happen at any stage during risk assessment including the early stages."

C4SLs, therefore, should not be viewed as "SPOSH levels" and they should not be used as a legal trigger for the determination of land under Part 2A.

The generic screening values referred to before usually take the form of risk-based Soil Guideline Values (SGVs) or other Generic Assessment Criteria (GACs) that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) model, as described in the Environment Agency's SR2, SR3 and SR7 reports (EA, 2009b & c; EA, 2008). It is anticipated that C4SLs will be used in a similar manner; as generic screening criteria that can be used within a GQRA, albeit describing a higher level of risk than the SGVs.

The suggested approach to the development of C4SLs consists of the retention and use of the CLEA framework, modified according to considerations of the underlying science within the context of Defra's policy objectives relating to the revised SG. Within this context, it is suggested that the development of C4SLs may be achieved in one of three ways, namely:

- By modifying the toxicological parameters used within CLEA (while maintaining current exposure parameters);
- By modifying the exposure parameters embedded within CLEA (while maintaining current toxicological "minimal risk" interpretations); and
- By modifying both toxicological and exposure parameters.

There is also a suggested check on "other considerations" (e.g., background levels, epidemiological data, sources of uncertainty) within the approach, applicable to all three options.

It is suggested that a new term is defined for the toxicological guidance values associated with the derivation of C4SLs – a Low Level of Toxicological Concern (LLTC). A LLTC should represent an intake of low concern that remains suitably protective of health, and definitely does not approach an intake level that could be defined as SPOSH.

#### F1.6 CL:AIRE Generic Assessment Criteria (GAC)

For derivation of the CL:AIRE Generic Assessment Criteria (GAC) reference should be made to the following report:

CL:AIRE, The Soil Generic Assessment Criteria for Human Health Risk Assessment. Contaminated Land: Applications in the Real Environment. 2009.

Within this report CL:AIRE provided Generic Assessment Criteria (GAC's) in accordance with the CLEA software and the principles outlined above for a further 35 contaminants sometime encountered on land affected by contamination.

#### E1.7 Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of an S4UL/GAC/C4SL is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses then a DQRA may be undertaking to develop site specific values for relevant soil contaminants.

⇒ Establishing the plausibility that generic exposure pathways exist in practice by measurement and observation.

⇒ Developing more accurate parameters using site data.

#### F1.8 Phytotoxicity

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

• ICRCL 70/90: Notes on the restoration and aftercare of metalliferous mining sites for pasture and grazing.

#### F1.8 Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95<sup>th</sup> percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

The DEFRA discussion paper Assessing risks from land contamination — a proportionate approach ('the way forward') (CLAN06/2006) aimed to increase understanding of the role that statistics can play in quantifying the uncertainty attached to the estimates of the mean concentration of contaminants in soil. In direct response CLAIRE/CIEH published a joint report, *Guidance in comparing soil contamination data with a critical concentration* (CLAIRE/CIEH 2008). A software implementation of the statistical techniques given in the report was published by ESI International (2008).

#### **Treatment of Hot-Spots**

- ⇒ A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.
- ⇒ Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hotspot(s) may be excluded and the mean of the remaining data assessed.

#### F2 Ground and Water Limited Soil Assessment Criteria

The Soil Assessment Criteria used in the preparation of this report are tabulated in the following pages:

#### **C4SL Low Level of Toxicological Concern**

| C4SL Low Level of Toxicological Concern |                 |                  |                      |                       |                    |                    |
|-----------------------------------------|-----------------|------------------|----------------------|-----------------------|--------------------|--------------------|
| Contaminant                             | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg) | Allotment<br>(mg/kg) | Commercial<br>(mg/kg) | POSresi<br>(mg/kg) | POSpark<br>(mg/kg) |
|                                         |                 |                  |                      |                       |                    |                    |
| Lead                                    | <210            | <330             | <84                  | <6000                 | <760               | <1400              |
|                                         |                 |                  |                      |                       |                    |                    |

#### **Phytotoxicity Recommendations**

ICRCL 70/90 Restoration of metalliferous mining areas

| Phytotoxicity (Harmful to Plants) Threshold Trigger Values                                                                              |           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| Copper                                                                                                                                  | 250mg/kg  |  |  |  |
| Zinc                                                                                                                                    | 1000mg/kg |  |  |  |
| Notes:                                                                                                                                  |           |  |  |  |
| Many cultivars and specifically grasses have a high tolerance and there will be no ill-effect at the threshold trigger values given for |           |  |  |  |
| neutral or near neutral pH. Site observation of plant vitality may give additional guidance.                                            |           |  |  |  |

Cont'd Overleaf:

## LQM CIEH Suitable 4 Use Levels (S4UL's)

| LQM/CIEH Suitable 4 Use Levels – Metals and Semi-metals |                 |                  |                      |                       |                    |                    |  |  |
|---------------------------------------------------------|-----------------|------------------|----------------------|-----------------------|--------------------|--------------------|--|--|
| Contaminant                                             | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg) | Allotment<br>(mg/kg) | Commercial<br>(mg/kg) | POSresi<br>(mg/kg) | POSpark<br>(mg/kg) |  |  |
| Metals:                                                 |                 |                  |                      |                       |                    |                    |  |  |
| Arsenic                                                 | 37              | 40               | 43                   | 640                   | 79                 | 170                |  |  |
| Beryllium                                               | 1.7             | 1.7              | 35                   | 12                    | 2.2                | 63                 |  |  |
| Boron                                                   | 290             | 11000            | 45                   | 240000                | 21000              | 46000              |  |  |
| Cadmium                                                 | 11              | 85               | 1.9                  | 190                   | 120                | 532                |  |  |
| Chromium (III)                                          | 910             | 910              | 18000                | 8600                  | 1500               | 33000              |  |  |
| Chromium (VI)                                           | 6               | 6                | 1.8                  | 33                    | 7.7                | 20                 |  |  |
| Copper                                                  | 2400            | 7100             | 520                  | 68000                 | 12000              | 44000              |  |  |
| Elemental<br>Mercury                                    | 1.2             | 1.2              | 21                   | 58                    | 16                 | 30                 |  |  |
| Inorganic<br>Mercury                                    | 40              | 56               | 19                   | 1100                  | 120                | 240                |  |  |
| Methylmercury                                           | 11              | 15               | 6                    | 320                   | 40                 | 68                 |  |  |
| Nickel                                                  | 180             | 180              | 230                  | 980                   | 230                | 3400               |  |  |
| Selenium                                                | 250             | 430              | 88                   | 12000                 | 1100               | 1800               |  |  |
| Vanadium                                                | 410             | 1200             | 91                   | 9000                  | 2000               | 5000               |  |  |
| Zinc                                                    | 3700            | 40000            | 620                  | 730000                | 81000              | 170000             |  |  |

| LQM/CIEH Suitable 4 Use Levels – BTEX Compounds |                        |                      |                  |                      |                       |                    |                    |
|-------------------------------------------------|------------------------|----------------------|------------------|----------------------|-----------------------|--------------------|--------------------|
| Contaminant                                     | Soil Organic<br>Matter | RwHP<br>(mg/kg)      | RwoHP<br>(mg/kg) | Allotment<br>(mg/kg) | Commercial<br>(mg/kg) | POSresi<br>(mg/kg) | POSpark<br>(mg/kg) |
|                                                 | 1.0% SOM               | 0.087                | 0.38             | 0.017                | 27                    | 72                 | 90                 |
| Benzene                                         | 2.5% SOM               | 0.170                | 0.70             | 0.034                | 47                    | 72                 | 100                |
|                                                 | 6.0% SOM               | 0.370                | 1.40             | 0.075                | 90                    | 73                 | 110                |
|                                                 |                        |                      |                  |                      |                       |                    |                    |
|                                                 | 1.0% SOM               | 130                  | 880              | 22                   | 56000                 | 56000              | 87000              |
| Toluene                                         | 2.5% SOM               | 290                  | 1900             | 51                   | 110000                | 56000              | 95000              |
|                                                 | 6.0% SOM               | 660                  | 3900             | 120                  | 180000                | 56000              | 100000             |
|                                                 |                        |                      |                  |                      |                       |                    |                    |
|                                                 | 1.0% SOM               | 47                   | 83               | 16                   | 5700                  | 24000              | 17000              |
| Ethylbenzene                                    | 2.5% SOM               | 110                  | 190              | 39                   | 13000                 | 24000              | 22000              |
|                                                 | 6.0% SOM               | 260                  | 440              | 91                   | 27000                 | 25000              | 27000              |
|                                                 |                        |                      |                  |                      |                       |                    |                    |
|                                                 | 1.0% SOM               | 60                   | 88               | 28                   | 6600                  | 41000              | 17000              |
| o-Xylene                                        | 2.5% SOM               | 140                  | 210              | 67                   | 15000                 | 42000              | 24000              |
|                                                 | 6.0% SOM               | 330                  | 480              | 160                  | 33000                 | 43000              | 33000              |
|                                                 |                        |                      |                  |                      |                       |                    |                    |
|                                                 | 1.0% SOM               | 59                   | 82               | 31                   | 6200                  | 41000              | 17000              |
| m-Xylene                                        | 2.5% SOM               | 140                  | 190              | 74                   | 14000                 | 42000              | 24000              |
|                                                 | 6.0% SOM               | 320                  | 450              | 170                  | 31000                 | 43000              | 33000              |
|                                                 |                        |                      |                  |                      |                       |                    |                    |
|                                                 | 1.0% SOM               | 56                   | 79               | 29                   | 5900                  | 41000              | 17000              |
| p-Xylene                                        | 2.5% SOM               | 130                  | 180              | 69                   | 14000                 | 42000              | 23000              |
|                                                 | 6.0% SOM               | 310                  | 430              | 160                  | 30000                 | 43000              | 31000              |
|                                                 | The mo                 | st nealth protective | e value in each  | scenario for Xylene  | is highlighted in bol | d.                 |                    |

#### LQM/CIEH Suitable 4 Use Levels For TPH Allotment Commercial **RWHP RwoHP POSresi POSpark Aliphatic** (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 42 730 3,200 (304) sol 570,000 (304) sol 95,000 (304) sol 1.0% SOM 42 5,900 (558) sol 130,000 (558) sol EC 5-6 2.5% SOM 78 78 1,700 590,000 6.0% SOM 3,900 12,000 (1150) sol 600,000<sup>1</sup> 180,000 (1150) sol 160 160 1.0% SOM 100 100 2,300 7,800 (144) sol 600,000 150,000 (144) sol 17,000 (322) sol 220,000 (322) sol EC >6-8 2.5% SOM 230 230 5,600 610,000 6.0% SOM 530 530 13,000 40,000 (736) sol 620,000 320,000 (736) sol 1.0% SOM 27 27 320 2,000 (78) sol 13,000 14,000 (78) sol EC >8-10 2.5% SOM 65 65 770 4,800 (118) vap 13,000 18,000 (118) vap 6.0% SOM 150 150 1,700 11,000 (451) vap 13,000 21,000 (451) vap 9,700 (48) sol 1.0% SOM 130 (48) vap 130 (48) vap 2,200 13,000 21,000 (48) sol 2.5% SOM 330 (118) vap FC >10-12 330 (118) vap 4,400 23,000 (118) vap 13,000 23,000 (118) vap 760 (283) vap 7,300 47,000 (283) vap 24,000 (283) vap 6.0% SOM 770 (283) vap 13,000 1,100 (24) sol 1,100 (24) sol 59,000 (24) sol 25,000 (24) sol 1.0% SOM 11,000 13,000 EC >12-16 2.5% SOM 2,400 (59) sol 2,400 (59) sol 13,000 82,000 (59) sol 13,000 25,000 (59) sol 6.0% SOM 4,300 (142) sol 4,400 (142) sol 13,000 90,000 (142) sol 13,000 26,000 (142) sol 65,000 (8.48) sol 1.0% SOM 65,000 (8.48) sol 260,000 1,600,000 250,000 450,000 EC >16-35 2.5% SOM 92,000 (21) sol 92,000 (21) sol 270,000 1,700,000 250,000 480,000 6.0% SOM 110,000 110,000 270,000 1,800,000 250,000 490,000 1.0% SOM 65,000 (8.48) sol 65,000 (8.48) sol 260,000 1,600,000 250,000 450,000 EC >35-44 92,000 (21) sol 92,000 (21) sol 270,000 1,700,000 250,000 480,000 2.5% SOM 490,000 6.0% SOM 110,000 110,000 270,000 1,800,000 250,000

| LQM/CIEH Suitable 4 Use Levels For TPH |             |                 |                  |                      |                       |                    |                    |  |
|----------------------------------------|-------------|-----------------|------------------|----------------------|-----------------------|--------------------|--------------------|--|
| Aroma                                  | atic        | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg) | Allotment<br>(mg/kg) | Commercial<br>(mg/kg) | POSresi<br>(mg/kg) | POSpark<br>(mg/kg) |  |
| 5657                                   | 1.0% SOM    | 70              | 370              | 13                   | 26,000 (1220) sol     | 56,000             | 76,000 (1220 sol   |  |
| EC 5-7                                 | 2.5% SOM    | 140             | 690              | 27                   | 46,000 (2260) sol     | 56,000             | 84,000 (2260) sol  |  |
| (Benzene)                              | 6.0% SOM    | 300             | 1,400            | 57                   | 86,000 (4710) sol     | 56,000             | 92,000 (4710) sol  |  |
|                                        |             |                 |                  |                      |                       |                    |                    |  |
| EC >7-8                                | 1.0% SOM    | 130             | 860              | 22                   | 56,000 (869) vap      | 56,000             | 87,000 (869) sol   |  |
| (Toluene)                              | 2.5% SOM    | 290             | 1,800            | 51                   | 110,000 (1920) sol    | 56,000             | 95,000 (1920) sol  |  |
| (Toluelle)                             | 6.0% SOM    | 660             | 3,900            | 120                  | 180,000 (4360) vap    | 56,000             | 100,000 (4360) val |  |
|                                        |             |                 |                  |                      |                       |                    |                    |  |
|                                        | 1.0% SOM    | 34              | 47               | 8.6                  | 3,500 (613) vap       | 5,000              | 7,200 (613) vap    |  |
| EC >8-10                               | 2.5% SOM    | 83              | 110              | 21                   | 8,100 (1500) vap      | 5,000              | 8,500 (1500) vap   |  |
|                                        | 6.0% SOM    | 190             | 270              | 51                   | 17,000 (3850) vap     | 5,000              | 9,300 (3580) vap   |  |
|                                        | 1.0% SOM    | 74              | 250              | 13                   | 16,000 (364) sol      | 5,000              | 9,200 (364) sol    |  |
| EC >10-12                              | 2.5% SOM    | 180             | 590              | 31                   | 28,000 (899) sol      | 5,000              | 9,700 (889) sol    |  |
|                                        | 6.0% SOM    | 380             | 1,200            | 74                   | 34,000 (2150) sol     | 5,000              | 10,000             |  |
|                                        |             |                 |                  |                      |                       |                    |                    |  |
|                                        | 1.0% SOM    | 140             | 1,800            | 23                   | 36,000 (169) sol      | 5,100              | 10,000             |  |
| EC >12-16                              | 2.5% SOM    | 330             | 2,300 (419) sol  | 57                   | 37,000                | 5,100              | 10,000             |  |
|                                        | 6.0% SOM    | 660             | 2,500            | 130                  | 38,000                | 5,000              | 10,000             |  |
|                                        | 1.0% SOM    | 260             | 1,900            | 46                   | 28,000                | 3,800              | 7,600              |  |
| EC >16-21                              | 2.5% SOM    | 540             | 1,900            | 110                  | 28,000                | 3,800              | 7,700              |  |
| 2071021                                | 6.0% SOM    | 930             | 1.900            | 260                  | 28,000                | 3,800              | 7,800              |  |
|                                        | 0.070 30111 | 330             | 2,300            | 200                  | 20,000                | 3,000              | 7,000              |  |
|                                        | 1.0% SOM    | 1,100           | 1,900            | 370                  | 28,000                | 3,800              | 7,800              |  |
| EC >21-35                              | 2.5% SOM    | 1,500           | 1,900            | 820                  | 28,000                | 3,800              | 7,800              |  |
|                                        | 6.0% SOM    | 1,700           | 1,900            | 1,600                | 28,000                | 3,800              | 7,900              |  |
|                                        |             |                 |                  |                      |                       |                    |                    |  |
|                                        | 1.0% SOM    | 1,100           | 1,900            | 370                  | 28,000                | 3,800              | 7,800              |  |
| EC >35-44                              | 2.5% SOM    | 1,500           | 1,900            | 820                  | 28,000                | 3,800              | 7,800              |  |
|                                        | 6.0% SOM    | 1,700           | 1,900            | 1,600                | 28,000                | 3,800              | 7,900              |  |
|                                        | 4.00/.001   | 4.600           | 4.000            | 4 200                | 20.000                | 2.000              | 7.000              |  |
| 50.44.70                               | 1.0% SOM    | 1,600           | 1,900            | 1,200                | 28,000                | 3,800              | 7,800              |  |
| EC >44-70                              | 2.5% SOM    | 1,800           | 1,900            | 2,100                | 28,000                | 3,800              | 7,800              |  |
|                                        | 6.0% SOM    | 1,900           | 1,900            | 3,000                | 28,000                | 3,800              | 7,900              |  |

SOM = Soil Organic Matter Content (%)

# LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's)

| Determinant           | s        | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg) | Allotment<br>(mg/kg) | Commercial<br>(mg/kg) | POSresi<br>(mg/kg) | POSpark<br>(mg/kg) |
|-----------------------|----------|-----------------|------------------|----------------------|-----------------------|--------------------|--------------------|
|                       | 1.0% SOM | 210             | 3,000 (57.0) sol | 34                   | 84,000(57.0) sol      | 15,000             | 29,000             |
| Acenapthene           | 2.5% SOM | 510             | 4,700(141) sol   | 85                   | 97,000(141) sol       | 15,000             | 30,000             |
|                       | 6.0% SOM | 1100            | 6,000(336) sol   | 200                  | 100,000               | 15,000             | 30,000             |
|                       | 1.0% SOM | 170             | 2,900(86.1) sol  | 28                   | 83,000(86.1) sol      | 15,000             | 29,000             |
| Acenapthylene         | 2.5% SOM | 420             | 4,600(212) sol   | 69                   | 97,000(212) sol       | 15,000             | 30,000             |
|                       | 6.0% SOM | 920             | 6,000(506) sol   | 160                  | 100,000               | 15,000             | 30,000             |
|                       | 1.0% SOM | 2,400           | 31,000(1.17) vap | 380                  | 520,000               | 74,000             | 150,000            |
| Anthracene            | 2.5% SOM | 5,400           | 35,000           | 950                  | 540,000               | 74,000             | 150,000            |
|                       | 6.0% SOM | 11,000          | 37,000           | 2,200                | 540,000               | 74,000             | 150,000            |
|                       | 1.0% SOM | 7.20            | 11               | 2.90                 | 170                   | 29                 | 49                 |
| Benzo(a)anthracene    | 2.5% SOM | 11              | 14               | 6.50                 | 170                   | 29                 | 56                 |
|                       | 6.0% SOM | 13              | 15               | 13                   | 180                   | 29                 | 62                 |
|                       | 1.0% SOM | 2.20            | 3.20             | 0.97                 | 35                    | 5.70               | 11                 |
| Benzo(a)pyrene        | 2.5% SOM | 2.70            | 3.20             | 2.00                 | 35                    | 5.70               | 12                 |
|                       | 6.0% SOM | 3.00            | 3.20             | 3.50                 | 36                    | 5.70               | 13                 |
|                       | 1.0% SOM | 2.60            | 3.90             | 0.99                 | 44                    | 7.10               | 13                 |
| Benzo(b)flouranthene  | 2.5% SOM | 3.30            | 4.00             | 2.10                 | 44                    | 7.20               | 15                 |
|                       | 6.0% SOM | 3.70            | 4.00             | 3.90                 | 45                    | 7.20               | 16                 |
|                       | 1.0% SOM | 320             | 360              | 290                  | 3,900                 | 640                | 1,400              |
| Benzo(ghi)perylene    | 2.5% SOM | 340             | 360              | 470                  | 4,000                 | 640                | 1,500              |
|                       | 6.0% SOM | 350             | 360              | 640                  | 4,000                 | 640                | 1,600              |
|                       | 1.0% SOM | 77              | 110              | 37                   | 1,200                 | 190                | 370                |
| Benzo(k)flouranthene  | 2.5% SOM | 93              | 110              | 75                   | 1,200                 | 190                | 410                |
|                       | 6.0% SOM | 100             | 110              | 130                  | 1,200                 | 190                | 440                |
|                       | 1.0% SOM | 15              | 30               | 4.10                 | 350                   | 57                 | 93                 |
| Chrysene              | 2.5% SOM | 22              | 31               | 9.40                 | 350                   | 57                 | 110                |
|                       | 6.0% SOM | 27              | 32               | 19                   | 350                   | 57                 | 120                |
|                       | 1.0% SOM | 0.24            | 0.31             | 0.14                 | 3.50                  | 0.57               | 1.10               |
| Dibenzo(ah)anthracene | 2.5% SOM | 0.28            | 0.32             | 0.27                 | 3.60                  | 0.57               | 1.30               |
|                       | 6.0% SOM | 0.30            | 0.32             | 0.43                 | 3.60                  | 0.58               | 1.40               |

## LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's)

| Determinar           | its      | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg) | Allotment<br>(mg/kg) | Commercial<br>(mg/kg)                  | POSresi<br>(mg/kg) | POSpark<br>(mg/kg)        |
|----------------------|----------|-----------------|------------------|----------------------|----------------------------------------|--------------------|---------------------------|
|                      | 1.0% SOM | 280             | 1,500            | 52                   | 2,3000                                 | 3,100              | 6,300                     |
| Flouranthene         | 2.5% SOM | 560             | 1,600            | 130                  | 2,3000                                 | 3,100              | 6,300                     |
|                      | 6.0% SOM | 890             | 1,600            | 290                  | 2,3000                                 | 3,100              | 6,300                     |
|                      | 1.0% SOM | 170             | 2,800 (30.9) sol | 27                   | 63,000(30.9) sol                       | 9,900              | 20,000                    |
| Flourene             | 2.5% SOM | 400             | 3,800(76.5) sol  | 67                   | 68,000                                 | 9,900              | 20,000                    |
|                      | 6.0% SOM | 860             | 4,500(183) sol   | 160                  | 71,000                                 | 9,900              | 20,000                    |
|                      | 1.0% SOM | 27              | 45               | 9.50                 | 500                                    | 82                 | 150                       |
| Indeno(123-cd)pyrene | 2.5% SOM | 36              | 46               | 21                   | 510                                    | 82                 | 170                       |
|                      | 6.0% SOM | 41              | 46               | 39                   | 510                                    | 82                 | 180                       |
|                      | 1.0% SOM | 2.30            | 2.6              | 4.10                 | 190 <sup>f</sup> (76.4) <sup>sol</sup> | 4,900 <sup>f</sup> | 1,200 <sup>f</sup> (76.4) |
| Napthalene           | 2.5% SOM | 5.60            | 5.6              | 10                   | 460 f(183) sol                         | 4,900 <sup>f</sup> | 1,900 <sup>f</sup> (183)  |
|                      | 6.0% SOM | 13              | 13               | 24                   | 1,100f(432) sol                        | 4,900 <sup>f</sup> | 3,000                     |
|                      | 1.0% SOM | 95              | 1,300(183) sol   | 18                   | 22,000                                 | 3,100              | 6,200                     |
| Phenanthrene         | 2.5% SOM | 220             | 1,500            | 38                   | 22,000                                 | 3,100              | 6,200                     |
|                      | 6.0% SOM | 440             | 1,500            | 90                   | 23,000                                 | 3,100              | 6,300                     |
|                      | 1.0% SOM | 620             | 3,700            | 110                  | 54,000                                 | 7,400              | 15,000                    |
| Pyrene               | 2.5% SOM | 1200            | 3,800            | 270                  | 54,000                                 | 7,400              | 15,000                    |
|                      | 6.0% SOM | 2000            | 3,800            | 620                  | 54,000                                 | 7,400              | 15,000                    |
| Coal Tar             | 1.0% SOM | 0.79            | 1.2              | 0.32                 | 15                                     | 2.20               | 4.40                      |
| (Benzo(a)pyrene used | 2.5% SOM | 0.98            | 1.2              | 0.67                 | 15                                     | 2.20               | 4.70                      |
| as marker compound   | 6.0% SOM | 1.10            | 1.2              | 1.20                 | 15                                     | 2.20               | 4.80                      |

<sup>&</sup>lt;sup>vap</sup> – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

sol – GAC presented exceeds the soil saturation limit, which is presented in brackets.

# Cont'd from previous page: LQM/CIEH Suitable 4 Use Levels (cont.)

## LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds

|                           |                 |                  |                   |                       | _                  | -                       |
|---------------------------|-----------------|------------------|-------------------|-----------------------|--------------------|-------------------------|
| Contaminant               | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg) | Allotment (mg/kg) | Commercial<br>(mg/kg) | POSresi<br>(mg/kg) | POSpark<br>(mg/kg)      |
| Chloroalkanes & alkenes   |                 |                  |                   |                       |                    |                         |
| 1,2 Dichloroethane        |                 |                  |                   |                       |                    |                         |
| 1.0% SOM                  | 0.0071          | 0.0092           | 0.0046            | 0.67                  | 29                 | 21                      |
| 2.5% SOM                  | 0.011           | 0.0032           | 0.0083            | 0.97                  | 29                 | 24                      |
| 6.0% SOM                  | 0.011           | 0.023            | 0.016             | 1.70                  | 29                 | 28                      |
|                           |                 |                  |                   |                       |                    |                         |
| 1,1,2,2 Tetrachloroethane |                 |                  |                   |                       |                    |                         |
| 1.0% SOM                  | 1.60            | 3.90             | 0.41              | 270                   | 1,400              | 1,800                   |
| 2.5% SOM                  | 3.40            | 8.00             | 0.89              | 550                   | 1,400              | 2,100                   |
| 6.0% SOM                  | 7.50            | 17               | 2.00              | 1,100                 | 1,400              | 2,300                   |
| 1,1,1,2 Tetrachloroethane |                 |                  |                   |                       |                    |                         |
| 1.0% SOM                  | 1.20            | 1.50             | 0.79              | 110                   | 1,400              | 1,500                   |
| 2.5% SOM                  | 2.80            | 3.50             | 1.90              | 250                   | 1,400              | 1,800                   |
| 6.0% SOM                  | 6.40            | 8.20             | 4.40              | 560                   | 1,400              | 2,100                   |
| Tetrachloroethene         |                 |                  |                   |                       |                    |                         |
|                           | 0.10            | 0.18             | 0.65              | 19                    | 1 400              | 810 sol(424)            |
| 1.0% SOM                  | 0.18            | 1                | 0.65              | 42                    | 1,400              |                         |
| 2.5% SOM                  | 0.39            | 0.40             | 1.50              | 95                    | 1,400<br>1,400     | 1,100 sol(951)<br>1,500 |
| 6.0% SOM                  | 0.90            | 0.92             | 3.60              | 33                    | 1,400              | 1,300                   |
| 1,1,1 Trichloroethane     |                 |                  |                   |                       |                    |                         |
| 1.0% SOM                  | 8.80            | 9.00             | 48                | 660                   | 140,000            | 57,000 vap(1425)        |
| 2.5% SOM                  | 18              | 18               | 110               | 1,300                 | 140,000            | 76,000 vap(2915)        |
| 6.0% SOM                  | 39              | 40               | 240               | 3,000                 | 140,000            | 100,000<br>vap(6392)    |
|                           |                 |                  |                   |                       |                    |                         |
| Tetrachloromethene        |                 |                  |                   | 2.00                  | 200                | 100                     |
| 1.0% SOM                  | 0.026           | 0.026            | 0.45              | 2.90                  | 890                | 190                     |
| 2.5% SOM                  | 0.056           | 0.056            | 1.00              | 6.30                  | 920                | 270                     |
| 6.0% SOM                  | 0.130           | 0.130            | 2.40              | 14                    | 950                | 400                     |
| Trichloroethene           |                 |                  |                   |                       |                    |                         |
| 1.0% SOM                  | 0.016           | 0.017            | 0.041             | 1.20                  | 120                | 70                      |
| 2.5% SOM                  | 0.034           | 0.036            | 0.091             | 2.60                  | 120                | 91                      |
| 6.0% SOM                  | 0.075           | 0.080            | 0.210             | 5.70                  | 120                | 120                     |
|                           |                 |                  |                   |                       |                    |                         |
| Trichloromethane          |                 |                  |                   |                       |                    |                         |
| 1.0% SOM                  | 0.91            | 1.20             | 0.42              | 99                    | 2,500              | 2,600                   |
| 2.5% SOM                  | 1.70            | 2.10             | 0.83              | 170                   | 2,500              | 2,800                   |
| 6.0% SOM                  | 3.40            | 4.20             | 1.70              | 350                   | 2,500              | 3,100                   |
| Vinyl Chloride            |                 |                  |                   |                       |                    |                         |
| 1.0% SOM                  | 0.00064         | 0.00077          | 0.00055           | 0.059                 | 3.50               | 4.80                    |
| 2.5% SOM                  | 0.00087         | 0.00100          | 0.00100           | 0.077                 | 3.50               | 5.00                    |
| 6.0% SOM                  | 0.00014         | 0.00150          | 0.00180           | 0.120                 | 3.50               | 5.40                    |

# LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds

| Volatile and Semi-Volatile Organic Compounds                              |                 |                           |                   |                             |                    |                             |  |  |
|---------------------------------------------------------------------------|-----------------|---------------------------|-------------------|-----------------------------|--------------------|-----------------------------|--|--|
| Contaminant                                                               | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg)          | Allotment (mg/kg) | Commercial<br>(mg/kg)       | POSresi<br>(mg/kg) | POSpark<br>(mg/kg)          |  |  |
| Explosives                                                                |                 |                           |                   |                             |                    |                             |  |  |
|                                                                           |                 |                           |                   |                             |                    |                             |  |  |
| 2,4,6 Trinitrotoluene                                                     |                 |                           |                   |                             |                    |                             |  |  |
| 1.0% SOM                                                                  | 1.60            | 65                        | 0.24              | 1,000                       | 130                | 260                         |  |  |
| 2.5% SOM                                                                  | 3.70            | 66                        | 0.58              | 1,000                       | 130                | 270                         |  |  |
| 6.0% SOM                                                                  | 8.10            | 66                        | 1.40              | 1,000                       | 130                | 270                         |  |  |
| RDX<br>(Hexogen/Cyclonite/1,3,5-<br>trinitro-1,3,5-<br>triazacyclohexane) |                 |                           |                   |                             |                    |                             |  |  |
| 1.0% SOM                                                                  | 120             | 13,000                    | 17                | 210,000                     | 26,000             | 49,000(18.7) <sup>sol</sup> |  |  |
| 2.5% SOM                                                                  | 250             | 13,000                    | 38                | 210,000                     | 26,000             | 51,000                      |  |  |
| 6.0% SOM                                                                  | 540             | 13,000                    | 85                | 210,000                     | 27,000             | 53,000                      |  |  |
| HMX (Octogen/1,3,5,7-<br>tetrenitro-1,3,5,7-<br>tetrazacyclo-octane)      |                 |                           |                   |                             |                    |                             |  |  |
| 1.0% SOM                                                                  | 5.70            | 67,00                     | 0.86              | 110,000                     | 13,000             | 23,000(0.35) <sup>vap</sup> |  |  |
| 2.5% SOM                                                                  | 13              | 67,00                     | 1.90              | 110,000                     | 13,000             | 23,000(0.39) <sup>vap</sup> |  |  |
| 6.0% SOM                                                                  | 26              | 67,00                     | 3.90              | 110,000                     | 13,000             | 24,000(0.48) <sup>vap</sup> |  |  |
|                                                                           |                 |                           |                   |                             |                    |                             |  |  |
| Atrazine                                                                  |                 |                           |                   |                             |                    |                             |  |  |
| 1.0% SOM                                                                  | 3.30            | 610                       | 0.50              | 9,300                       | 1,200              | 2,300                       |  |  |
| 2.5% SOM                                                                  | 7.60            | 620                       | 1.20              | 9,400                       | 1,200              | 2,400                       |  |  |
| 6.0% SOM                                                                  | 17.40           | 620                       | 2.70              | 9,400                       | 1,200              | 2,400                       |  |  |
| Pesticides                                                                |                 |                           |                   |                             |                    |                             |  |  |
| Aldrin                                                                    |                 |                           |                   |                             |                    |                             |  |  |
| 1.0% SOM                                                                  | 5.70            | 7.30                      | 3.20              | 170                         | 18                 | 30                          |  |  |
| 2.5% SOM                                                                  | 6.60            | 7.40                      | 6.10              | 170                         | 18                 | 31                          |  |  |
| 6.0% SOM                                                                  | 7.10            | 7.50                      | 9.60              | 170                         | 18                 | 31                          |  |  |
| Dieldrin                                                                  |                 |                           |                   |                             |                    |                             |  |  |
| 1.0% SOM                                                                  | 0.97            | 7.00                      | 0.17              | 170                         | 18                 | 30                          |  |  |
|                                                                           | 2.00            | 7.00                      | 0.17              | 170                         | 18                 | 30                          |  |  |
| 2.5% SOM                                                                  |                 |                           |                   | 170                         | 18                 | 31                          |  |  |
| 6.0% SOM                                                                  | 3.50            | 7.40                      | 0.96              | 1/0                         | 18                 | 31                          |  |  |
| Dichlorvos                                                                |                 |                           |                   |                             |                    |                             |  |  |
| 1.0% SOM                                                                  | 0.032           | 6.40                      | 0.0049            | 140                         | 16                 | 26                          |  |  |
| 2.5% SOM                                                                  | 0.066           | 6.50                      | 0.0100            | 140                         | 16                 | 26                          |  |  |
| 6.0% SOM                                                                  | 0.140           | 6.60                      | 0.0220            | 140                         | 16                 | 27                          |  |  |
| Alpha Endosulfon                                                          |                 |                           |                   |                             |                    |                             |  |  |
| Alpha - Endosulfan                                                        | 7.40            | 160(0,003)van             | 1.20              | E 600/0 003\van             | 1 200              | 2.400                       |  |  |
| 1.0% SOM                                                                  | 7.40            | 160(0.003) <sup>vap</sup> | 1.20              | 5,600(0.003) <sup>vap</sup> | 1,200              | 2,400                       |  |  |
| 2.5% SOM                                                                  | 18              | 280(0.007)vap             | 2.90              | 7,400(0.007) <sup>vap</sup> | 1,200              | 2,400                       |  |  |
| 6.0% SOM                                                                  | 41              | 410(0.016) <sup>vap</sup> | 6.80              | 8,400(0.016) <sup>vap</sup> | 1,200              | 2,400                       |  |  |
|                                                                           |                 |                           |                   |                             |                    |                             |  |  |

## LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds

| Contaminant             | RwHP<br>(mg/kg) | RwoHP<br>(mg/kg)            | Allotment (mg/kg) | Commercial<br>(mg/kg)         | POSresi<br>(mg/kg) | POSpark<br>(mg/kg)           |
|-------------------------|-----------------|-----------------------------|-------------------|-------------------------------|--------------------|------------------------------|
| Pesticides              |                 |                             |                   |                               |                    |                              |
| Beta - Endosulfan       |                 |                             |                   |                               |                    |                              |
| 1.0% SOM                | 7.00            | 190(0.00007) <sup>vap</sup> | 1.10              | 6,300(0.00007) <sup>vap</sup> | 1,200              | 2,400                        |
| 2.5% SOM                | 17              | 320(0.0002) <sup>vap</sup>  | 2.70              | 7,800(0.0002) <sup>vap</sup>  | 1,200              | 2,400                        |
| 6.0% SOM                | 39              | 440(0.0004) <sup>vap</sup>  | 6.40              | 8700                          | 1,200              | 2,500                        |
|                         |                 |                             |                   |                               |                    |                              |
| Alpha -                 |                 |                             |                   |                               |                    |                              |
| Hexachlorocyclohexanes  |                 |                             |                   |                               |                    |                              |
| 1.0% SOM                | 0.23            | 6.90                        | 0.035             | 170                           | 24                 | 47                           |
| 2.5% SOM                | 0.55            | 9.20                        | 0.087             | 180                           | 24                 | 48                           |
| 6.0% SOM                | 1.20            | 11                          | 0.210             | 180                           | 24                 | 48                           |
|                         |                 |                             |                   |                               |                    |                              |
| Beta -                  |                 |                             |                   |                               |                    |                              |
| Hexachlorocyclohexanes  | 0.005           | 0.70                        | 0.010             | 65                            | 0.40               | 4.5                          |
| 1.0% SOM                | 0.085           | 3.70                        | 0.013             | 65                            | 8.10               | 15                           |
| 2.5% SOM                | 0.200           | 3.80                        | 0.032             | 65<br>65                      | 8.10               | 15                           |
| 6.0% SOM                | 0.460           | 3.80                        | 0.077             | 05                            | 8.10               | 16                           |
| Gamma -                 |                 |                             |                   |                               |                    |                              |
| Hexachlorocyclohexanes  |                 |                             |                   |                               |                    |                              |
| 1.0% SOM                | 0.06            | 2.90                        | 0.0092            | 67                            | 8.2                | 14                           |
| 2.5% SOM                | 0.14            | 3.30                        | 0.0230            | 69                            | 8.2                | 15                           |
| 6.0% SOM                | 0.33            | 3.50                        | 0.0540            | 70                            | 8.2                | 15                           |
| 0.0% 30101              | 0.55            | 3.30                        | 0.0340            | 70                            | 0.2                | 15                           |
| Chlorobenzenes          |                 |                             |                   |                               |                    |                              |
| Chlorobenzene           |                 |                             |                   |                               |                    |                              |
| 1.0% SOM                | 0.46            | 0.46                        | 5.90              | 56                            | 11,000             | 1,300(675)sol                |
| 2.5% SOM                | 1.00            | 1.00                        | 14                | 130                           | 13,000             | 2,000(1520)sol               |
| 6.0% SOM                | 2.40            | 2.40                        | 32                | 290                           | 14,000             | 2,900                        |
|                         |                 |                             | -                 |                               | ,                  | ,                            |
| 1,2-Dichlorobenzene     |                 |                             |                   |                               |                    |                              |
| 1.0% SOM                | 23              | 24                          | 94                | 2,000 (571) sol               | 90,000             | 24,000(571)sol               |
| 2.5% SOM                | 55              | 57                          | 230               | 4,800 (1370) sol              | 95,000             | 36,000(1370)sol              |
| 6.0% SOM                | 130             | 130                         | 540               | 11,000 (3240) sol             | 98,000             | 51,000(3240)sol              |
|                         |                 |                             |                   |                               |                    |                              |
| 1,3-Dichlorobenzene     |                 |                             |                   |                               |                    |                              |
| 1.0% SOM                | 0.40            | 0.44                        | 0.25              | 30                            | 300                | 390                          |
| 2.5% SOM                | 1.00            | 1.10                        | 0.60              | 73                            | 300                | 440                          |
| 6.0% SOM                | 2.30            | 2.50                        | 1.50              | 170                           | 300                | 470                          |
|                         |                 |                             |                   |                               |                    |                              |
| 1,4-Dichlorobenzene     |                 |                             |                   |                               |                    |                              |
| 1.0% SOM                | 61              | 61                          | 15                | 4,400 (224) <sup>vap</sup>    | 17,000g            | 36,000 (224) <sup>vap</sup>  |
| 2.5% SOM                | 150             | 150                         | 37                | 10,000 (540) <sup>vap</sup>   | 17,000g            | 36,000 (540) <sup>vap</sup>  |
| 6.0% SOM                | 350             | 350                         | 88 <sup>g</sup>   | 25,000 (1280) <sup>vap</sup>  | 17,000g            | 36,000 (1280) <sup>vap</sup> |
| 1,2,3,-Trichlorobenzene |                 |                             |                   |                               |                    |                              |
| 1.0% SOM                | 1.50            | 1.50                        | 4.70              | 102                           | 1,800              | 770(134 <sup>)vap</sup>      |
| 2.5% SOM                | 3.60            | 3.70                        | 12                | 250                           | 1,800              | 1,100(330) <sup>vap</sup>    |
| 6.0% SOM                | 8.60            | 8.80                        | 28                | 590                           | 1,800              | 1,600(789) <sup>vap</sup>    |
|                         |                 |                             |                   |                               |                    |                              |

#### **LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds** RwHP RwoHP Commercial **POSresi POSpark** Allotment (mg/kg) **Contaminant** (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Chlorobenzenes 1.2.3.-Trichlorobenzene 1,800 770(134)vap 1.0% SOM 1.50 1.50 4.70 102 1,800 1,100(330)vap 2.5% SOM 3.60 3.70 12 250 6.0% SOM 590 1,800 1,600(789)vap 8.60 8.80 28 1,2,4,-Trichlorobenzene 220 15,000 1,700(318)vap 1.0% SOM 2.60 2.60 55 2.5% SOM 6.40 6.40 140 530 17,000 2,600(786)vap 1,300 19,000 4,000(1880)vap 6.0% SOM 15 15 320 1,3,5,-Trichlorobenzene 1,700 380(36.7)vap 1.0% SOM 0.33 0.33 4.70 23 55 1,700 590(90.8)vap 2.5% SOM 0.81 0.81 12 130 1,800 860(217)vap 6.0% SOM 1.90 1.90 140 1,2,3,4,-Tetrachlorobenzene 4.40 1,700(122)vap 830 1,500(122)vap 1.0% SOM 15 24 2.5% SOM 36 56 11 3,080(304)vap 830 1,600 4,400(728)vap 830 1,600 6.0% SOM 26 78 120 1,2,3,5,-Tetrachlobenzene 49(39.4)vap 110(39)vap 1.0% SOM 0.66 0.75 0.38 78 0.90 120(98.1)vap 79 120 2.5% SOM 1.60 1.90 2.20 240(235)vap 79 130 6.0% SOM 3.70 4.30 1,2,4, 5,-Tetrachlobenzene 42(19.7)sol 0.73 0.06 13 25 1.0% SOM 0.33 0.16 72(49.1)sol 13 26 2.5% SOM 0.77 1.70 0.37 96 13 26 6.0% SOM 1.60 3.50 Pentachlrobenzene 1.20 640(43.0)sol 100 190 1.0% SOM 5.80 19 770(107)sol 3.10 100 190 2.5% SOM 12 30 7.00 830 100 190 6.0% SOM 22 38 Hexachlorobenzene 1.80(0.20)vap 4.10 (0.20)vap 110(0.20)vap 1.0% SOM 0.47 16 30 3.30(0.50)vap 5.70 (0.50)vap 120 2.5% SOM 1.10 16 30 4.90 6.70 (1.2)vap 2.50 120 16 6.0% SOM 30

#### **LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds** Commercial **POSresi RwHP** RwoHP **POSpark Contaminant** Allotment (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) Phenols & Chlorophenols Phenols 760<sup>dir</sup>(31,000) 750 760<sup>dir</sup>(11,000) 760<sup>dir</sup>(8,600) 1.0% SOM 280 66 2.5% SOM 1,300 140 1,500dir(9,700) 550 1,500<sup>dir</sup>(35,000) 1,500<sup>dir</sup>(11,000) 6.0% SOM 1100 2,300 280 3,200<sup>dir</sup>(37,000) 3,200<sup>dir</sup>(11,000) 3,200<sup>dir</sup>(11,000) Chlorophenols (4 Congeners) 1.0% SOM 0.87 94 0.13 620 3,500 1,100 2.5% SOM 2.00 150 0.30 4,000 620 1,100 6.0% SOM 0.70 4,300 620 1,100 4.50 210 Pentachlorophenols 400 1.0% SOM 0.22 27(16.4)vap 0.03 60 110 2.5% SOM 0.08 400 60 120 0.52 29 0.19 400 120 6.0% SOM 1.20 31 60 Others **Carbon Disulphide** 1.0% SOM 0.14 0.14 4.80 11 11,000 1,300 2.5% SOM 0.29 0.29 11,000 1,900 10 22 6.0% SOM 23 47 12,000 2,700 0.62 0.62 Hexachloro-1,3-**Butadiene** 1.0% SOM 0.29 0.25 31 48 0.32 25 0.61 68 25 50 2.5% SOM 0.70 0.78 6.0% SOM 1.60 1.80 1.40 120 25 51

| CL:AIRE Soil Generic Assessment Criteria |                                                                                                      |      |    |       |  |  |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------|------|----|-------|--|--|--|--|
| Contaminant                              | Residential (mg/kg)  Residential without plant uptake (mg/kg)  Allotment (mg/kg)  Commercial (mg/kg) |      |    |       |  |  |  |  |
| Metals:                                  |                                                                                                      |      |    |       |  |  |  |  |
|                                          |                                                                                                      |      |    |       |  |  |  |  |
| Antimony                                 | ND                                                                                                   | 550  | ND | 7500  |  |  |  |  |
| Barium                                   | ND                                                                                                   | 1300 | ND | 22000 |  |  |  |  |
| Molybdenum                               | ND                                                                                                   | 670  | ND | 17000 |  |  |  |  |
|                                          |                                                                                                      |      |    |       |  |  |  |  |

ND – Not Derived. NA – Not Applicable

## CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds

| voiatile and Semi-volatile Organic Compounds |                     |                                          |                   |                    |  |  |  |  |
|----------------------------------------------|---------------------|------------------------------------------|-------------------|--------------------|--|--|--|--|
| Contaminant                                  | Residential (mg/kg) | Residential without plant uptake (mg/kg) | Allotment (mg/kg) | Commercial (mg/kg) |  |  |  |  |
| 1,1,2 Trichloroethane                        |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 0.60                | 0.88                                     | 0.28              | 94                 |  |  |  |  |
| 2.5% SOM                                     | 1.20                | 1.8                                      | 0.28              | 190                |  |  |  |  |
| 6.0% SOM                                     | 2.70                | 3.9                                      | 1.40              | 400                |  |  |  |  |
| 0.0% 3OW                                     | 2.70                | 3.9                                      | 1.40              | 400                |  |  |  |  |
| 1,1-Dichloroethane                           |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 2.40                | 2.50                                     | 9.20              | 280                |  |  |  |  |
| 2.5% SOM                                     | 3.90                | 4.10                                     | 17                | 450                |  |  |  |  |
| 6.0% SOM                                     | 7.40                | 7.70                                     | 35                | 850                |  |  |  |  |
|                                              |                     |                                          |                   |                    |  |  |  |  |
| 1,1-Dichloroethene                           |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 0.23                | 0.23                                     | 2.80              | 26                 |  |  |  |  |
| 2.5% SOM                                     | 0.40                | 0.41                                     | 5.60              | 46                 |  |  |  |  |
| 6.0% SOM                                     | 0.82                | 0.82                                     | 12                | 92                 |  |  |  |  |
|                                              |                     |                                          |                   |                    |  |  |  |  |
| 1,2,4-Trimethylbenzene                       | 0.25                | 0.44                                     | 0.20              | 42                 |  |  |  |  |
| 1.0% SOM                                     | 0.35                | 0.41                                     | 0.38              | 42                 |  |  |  |  |
| 2.5% SOM                                     | 0.85                | 0.99                                     | 0.93              | 99                 |  |  |  |  |
| 6.0% SOM                                     | 2.00                | 2.30                                     | 2.20              | 220                |  |  |  |  |
| 1,2-Dichloropropane                          |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 0.024               | 0.024                                    | 0.62              | 3.3                |  |  |  |  |
| 2.5% SOM                                     | 0.042               | 0.042                                    | 1.20              | 5.9                |  |  |  |  |
| 6.0% SOM                                     | 0.084               | 0.085                                    | 2.60              | 12                 |  |  |  |  |
|                                              |                     |                                          |                   |                    |  |  |  |  |
| 2,4-Dimethylphenol                           |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 19                  | 210                                      | 3.10              | 16000*             |  |  |  |  |
| 2.5% SOM                                     | 43                  | 410                                      | 7.20              | 24000*             |  |  |  |  |
| 6.0% SOM                                     | 97                  | 730                                      | 17                | 30000*             |  |  |  |  |
|                                              |                     |                                          |                   |                    |  |  |  |  |
| 2,4-Dinitrotoluene                           |                     | . =                                      |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 1.50                | 170*                                     | 0.22              | 3700*              |  |  |  |  |
| 2.5% SOM                                     | 3.20                | 170                                      | 0.49              | 3700*              |  |  |  |  |
| 6.0% SOM                                     | 7.20                | 170                                      | 1.10              | 3800*              |  |  |  |  |
| 2,6-Dinitrotoluene                           |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 0.78                | 78                                       | 0.12              | 1900*              |  |  |  |  |
| 2.5% SOM                                     | 1.70                | 84                                       | 0.27              | 1900*              |  |  |  |  |
| 6.0% SOM                                     | 3.90                | 87                                       | 0.61              | 1900*              |  |  |  |  |
|                                              |                     |                                          |                   |                    |  |  |  |  |
| 2-Chloronapthalene                           |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 3.70                | 3.80                                     | 40                | 390*               |  |  |  |  |
| 2.5% SOM                                     | 9.20                | 9.30                                     | 98                | 960*               |  |  |  |  |
| 6.0% SOM                                     | 22                  | 22                                       | 230               | 2200*              |  |  |  |  |

#### **CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds Residential without** Contaminant Residential (mg/kg) Allotment (mg/kg) Commercial (mg/kg) plant uptake (mg/kg) **Biphenyl** 66\* 220\* 1.0% SOM 14 18000\* 160 500\* 33000\* 2.5% SOM 35 6.0% SOM 360 980\* 83 48000\* Bis (2-ethylhexyl) phthalate 47\* 1.0% SOM 280\* 2700\* 85000\* 2.5% SOM 120\* 86000\* 610\* 2800\* 6.0% SOM 1100\* 2800\* 280\* 86000\* Bromobenzene 0.87 0.91 3.2 97 1.0% SOM 2.5% SOM 2.0 220 2.1 7.6 4.9 6.0% SOM 4.7 18 520 **Bromodichloromethane** 0.016 1.0% SOM 0.016 0.019 2.1 2.5% SOM 0.030 0.034 0.032 3.7 6.0% SOM 0.061 0.070 0.068 7.6 Bromoform 1.0% SOM 2.8 5.2 0.95 760 1500 2.5% SOM 5.9 11 2.1 6.0% SOM 13 23 4.6 3100 **Butyl benzyl phthalate** 1400\* 42000\* 220\* 940000\* 1.0% SOM 2.5% SOM 3300\* 44000\* 550\* 940000\* 950000\* 6.0% SOM 7200\* 44000\* 1300\* Chloroethane 1.0% SOM 8.3 8.4 110 960 2.5% SOM 11 11 200 1300 6.0% SOM 18 380 2100 18 Chloromethane 1.0% SOM 0.0083 0.0085 0.066 1.0 2.5% SOM 0.0098 0.0099 0.13 1.2 6.0% SOM 0.013 0.013 0.23 1.6 Cis 1,2 Dichloroethene 1.0% SOM 0.11 0.12 0.26 14

0.20

0.39

2.5% SOM

6.0% SOM

0.19

0.37

Cont'd Overleaf:

24

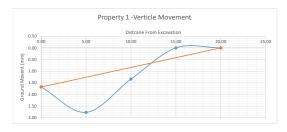
0.50

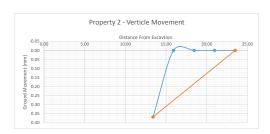
1.0

# CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds Residential (mg/kg) Residential without Allotment (mg/kg)

| voiatile and Semi-voiatile Organic Compounds |                     |                                          |                   |                    |  |  |  |  |
|----------------------------------------------|---------------------|------------------------------------------|-------------------|--------------------|--|--|--|--|
| Contaminant                                  | Residential (mg/kg) | Residential without plant uptake (mg/kg) | Allotment (mg/kg) | Commercial (mg/kg) |  |  |  |  |
| Dichloromethane                              |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 0.58                | 2.10                                     | 0.10              | 270                |  |  |  |  |
| 2.5% SOM                                     | 0.98                | 2.80                                     | 0.10              | 360                |  |  |  |  |
| 6.0% SOM                                     | 1.70                | 4.50                                     | 0.34              | 560                |  |  |  |  |
| 0.0% 30W                                     | 1.70                | 4.50                                     | 0.54              | 300                |  |  |  |  |
| Diethyl Phthalate                            |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 120*                | 1800*                                    | 19*               | 150000*            |  |  |  |  |
| 2.5% SOM                                     | 260*                | 3500*                                    | 41*               | 220000*            |  |  |  |  |
| 6.0% SOM                                     | 570*                | 6300*                                    | 94*               | 290000*            |  |  |  |  |
|                                              |                     |                                          |                   |                    |  |  |  |  |
| Di-n-butyl phthalate                         |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 13*                 | 450*                                     | 2.00              | 15000*             |  |  |  |  |
| 2.5% SOM                                     | 31*                 | 450*                                     | 5.00              | 15000*             |  |  |  |  |
| 6.0% SOM                                     | 67*                 | 450*                                     | 12                | 15000*             |  |  |  |  |
| Di-n-octyl phthalate                         |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 2300*               | 3400*                                    | 940*              | 89000*             |  |  |  |  |
| 2.5% SOM                                     | 2800*               | 3400*                                    | 2100*             | 89000*             |  |  |  |  |
| 6.0% SOM                                     | 3100*               | 3400*                                    | 3900*             | 89000*             |  |  |  |  |
| 0.0% 30IVI                                   | 3100                | 3400                                     | 3900              | 89000              |  |  |  |  |
| Hexachloroethane                             |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 0.20                | 0.22                                     | 0.27              | 22*                |  |  |  |  |
| 2.5% SOM                                     | 0.48                | 0.54                                     | 0.67              | 53*                |  |  |  |  |
| 6.0% SOM                                     | 1.10                | 1.30                                     | 1.60              | 120*               |  |  |  |  |
| Isopropylbenzene                             |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 11                  | 12                                       | 32                | 1400*              |  |  |  |  |
| 2.5% SOM                                     | 27                  | 28                                       | 79                | 3300*              |  |  |  |  |
| 6.0% SOM                                     | 64                  | 67                                       | 190               | 7700*              |  |  |  |  |
| 0.0% 30IVI                                   | 04                  | 07                                       | 190               | 7700               |  |  |  |  |
| Methyl tert-butyl ether                      |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 49                  | 73                                       | 23                | 7900               |  |  |  |  |
| 2.5% SOM                                     | 84                  | 120                                      | 44                | 13000              |  |  |  |  |
| 6.0% SOM                                     | 160                 | 220                                      | 90                | 24000              |  |  |  |  |
|                                              |                     |                                          |                   |                    |  |  |  |  |
| Propylbenzene                                |                     |                                          |                   |                    |  |  |  |  |
| 1.0% SOM                                     | 34                  | 40                                       | 34                | 4100*              |  |  |  |  |
| 2.5% SOM                                     | 82                  | 97                                       | 83                | 9700*              |  |  |  |  |
| 6.0% SOM                                     | 190                 | 230                                      | 200               | 21000*             |  |  |  |  |
| Character                                    |                     |                                          |                   |                    |  |  |  |  |
| Styrene                                      | 0.10                | 25                                       | 1.00              | 2200*              |  |  |  |  |
| 1.0% SOM                                     | 8.10                | 35                                       | 1.60              | 3300*              |  |  |  |  |
| 2.5% SOM                                     | 19                  | 78                                       | 3.70              | 6500*              |  |  |  |  |
| 6.0% SOM                                     | 43                  | 170                                      | 8.70              | 11000*             |  |  |  |  |

#### **CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds Residential without** Contaminant Residential (mg/kg) Allotment (mg/kg) Commercial (mg/kg) plant uptake (mg/kg) Total Cresols (2-, 3-, and 4methylphenol) 1.0% SOM 80 3700 12 160000 180 2.5% SOM 5400 27 180000\* 6.0% SOM 400 6900 180000\* 63 Trans 1,2 Dichloroethene 1.0% SOM 0.19 0.19 0.93 22 2.5% SOM 0.34 0.35 1.90 40 0.70 6.0% SOM 0.24 0.71 81 Tributyl tin oxide 1.0% SOM 0.25 1.40 0.042 130\* 0.100 180\* 2.5% SOM 0.59 3.10 6.0% SOM 1.30 5.70 0.240 200\*


Notes: \*Soil concentration above soil saturation limit

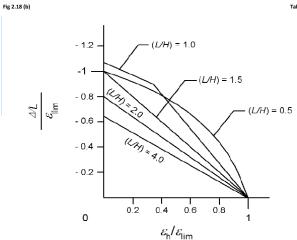

# APPENDIX G Ground Movement Assessment Calculations

#### Potential Damage to Building

#### Excavation Depth: 3.00m bgl








| Neighbouring Property 1                                                           | eighbouring Property 1 No. 18 Rosecroft Avenue |                                                                            | Neighbouring Property 2                                                            | No. 12              | Rosecroft Avenue                                                           |
|-----------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------|
| L<br>H                                                                            | m mm<br>16.80 16800<br>12.00 12000             | )                                                                          | L<br>H                                                                             | m<br>10.10<br>12.00 | mm<br>10100<br>12000                                                       |
| L/H                                                                               | 1.40                                           |                                                                            | L/H                                                                                | 0.84                |                                                                            |
| Verticle Deflection ( $\Delta$ ) Defelction Ratio ( $\Delta/L$ )                  | 1.5 mm<br>0.008929 %                           | from graph (max difference<br>between blue and orange line)                | Verticle Deflection ( $\Delta$ ) Defelction Ratio ( $\Delta$ /L)                   | 2.75 mr             | n from graph (max difference<br>between blue and orange line)              |
| Horizontal Movement ( $\delta h$ )<br>Horzontal Strain ( $\xi h$ ) = $\delta h/L$ | 6.30 mm<br>0.03750 %                           | difference between horizontal<br>movement at nearest and<br>farthest walls | Horizontal Movement ( $\delta h$ )<br>Horizontal Strain ( $\xi h$ ) = $\delta h/L$ | 1.28<br>0.01262 %   | difference between horizontal<br>movement at nearest and<br>farthest walls |

CATEGORY OF DAMAGE Damage category limits are given in Table 2.5 (below) you will also need Fig 2.18 (also shown below). L/H 1.40 L/H 0.84 Negligible damage limit (Elim) 0.05 Negligible damage limit (Elim) 0.05 0.178571429 Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below 0.544554455 Plot this point on fig2.18 (b) if the plotted point is below the 0.252475248 appropriate L/H line then damage falls into 'negligible' category - no need to plot points below (Δ/L)/(Elim) (Δ/L)/(Elim) (£h)/(£lim) Very Slight damage limit (Elim) 0.075 Very Slight damage limit (Elim) 0.075 0.119047619 Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below 0.363036304 Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below (Δ/L)/(Elim) (Eh)/(Elim) (Δ/L)/(Elim) (Eh)/(Elim) Slight damage limit (Elim) 0.15 Slight damage limit (Elim) 0.05952381 Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category - no need to plot points below 0.181518152 Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category-no need to plot points below (Δ/L)/(Elim) (Eh)/(Elim) (Δ/L)/(Elim) (Eh)/(Elim) 0.3 Moderate damage limit (Elim) Moderate damage limit (Elim) 0.3 0.029761905 Plot this point on fig2.18 (b) if the plotted point is below 0.090759076 Plot this point on fig2.18 (b) if the plotted point is below the (Δ/L)/(Elim) (Δ/L)/(Elim) the appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe' (Eh)/(Elim) 0.125 (Eh)/(Elim) 0.042079208 appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe'

Negligible

Calculated Category of Damage



Calculated Category of Damage

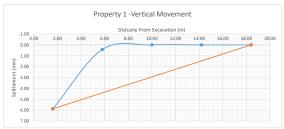
Table 2.5 Chastification of visites demage to wate (other Burians at al., 1977, Beacardin and Chetchig, 1999) and Bustanst, 2001)

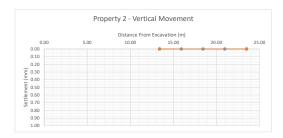
Negligible

| Catagory of<br>domage |             | Description of cypical damage<br>(ease of sepair is underlined)                                                                                                                                                                                                                                            | Approximate<br>crack width<br>(mm)                   | Limiting<br>tensile strain<br>t <sub>lim</sub> (per cent) |  |
|-----------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|--|
| 0                     | Negligible  | Harfore cracks of less than about 0.1 sum are classed as negligible.                                                                                                                                                                                                                                       | <0.1                                                 | 0.0-0.05                                                  |  |
| t                     | Very slight | Fige cracks that can easily be neared during<br>acound decorrison. Festigas notined slight<br>fracture in building. Cracks in external<br>brickwork visible on impection.                                                                                                                                  | <1                                                   | 0.03-0.075                                                |  |
| 2                     | Slight      | Contin could filled Referencion probable regards. Several slight fractures showing inside of building Corks an visible cuttinally and some presenting may be required externally to course worshort-glatum. Does and madewn may rock objetity.                                                             | × 5                                                  | 0-075-0-15                                                |  |
| 3                     | Moderate    | The cracks separas some opening up and can be particled by a mason. Recurrent cracks can be masted to contrible human. Repositing of centural brickword and possible a small amount of brackwords in the replaced. Doors and wandows stacking, Service pages may facture. Westlershythmess often impasted. | 5-15 or a<br>muscler of<br>cracks > 3                | 0.15-0.3                                                  |  |
| +                     | Sever       | Enterant repair work involving bendeing-out and reclosing octions of entit, expensive over focus and vanidors. Windows and frames flavorted. Door sloping noticeship: Walls learning or budging noticeshy; some loss of venting in Sensin. Service pipes shimple.                                          | 15-25 but<br>also depends<br>on anumber of<br>cracks | ≻03                                                       |  |
| 3                     | Very severe | This organes a major repair arrestiving partial or<br>complete rebuilding. Beams lose bearings, walls<br>lean budly and require sharing. Windows broken<br>with destuction Damper of availability.                                                                                                         | but depends                                          | 4                                                         |  |

(b) Influence of horizontal strain on  $\Delta\!\!\!/ L \, / \, \varepsilon_{\rm lim}$ (after Burland, 2001)

#### **Potential Damage to Building**





Neighbouring Property 2

L/H

Vertical Deflection (Δ)

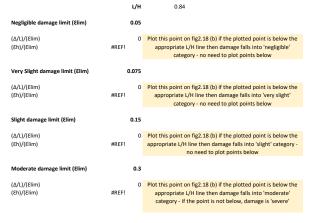
Defelction Ratio (Δ/L)





from graph (max difference between blue and orange line)

Neighbouring Property 1 No. 18 Rosecroft Avenue 16.80 12.00 L/H 1.40 Vertical Deflection (Δ) 3.1 mm from graph (max difference n blue and orange line) Defelction Ratio (Δ/L) 0.018452 %


Damage category limits are given in Table 2.5 (below).

#### CATEGORY OF DAMAGE

- Method 1 Prefferred method Open up 'Damage Category Relationship Plots GMA' spreadsheet
- Open by Daminge Casegory ineutoximap in October Appealsment
   Find relevant L/H graph (different graph on each each tab along the bottom of the spreadsheet)
   Input calculated values for deflection ratio and horizontal strain
   Point will plot on graph and show category of dameg

# Method 2 - can be used to confirm category or is useful if L/H for property is between the given L/H graphs - Plot points calculated below on figure 2.18 for each damage category - Appropriate damage category will plot be

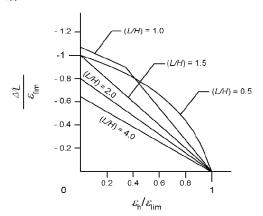
| rippropriate damage category wi | ,                    |                                                                                                                                                                                           |
|---------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L/H                             | 1.40                 |                                                                                                                                                                                           |
| Negligible damage limit (Elim)  | 0.05                 |                                                                                                                                                                                           |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0.369047619<br>#REF! | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into<br>'negligible' category - no need to plot points below                   |
| Very Slight damage limit (Elim) | 0.075                |                                                                                                                                                                                           |
| (Δ/L)/(εlim)<br>(εh)/(εlim)     | 0.246031746<br>#REF! | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into 'very<br>slight' category - no need to plot points below                  |
| Slight damage limit (Elim)      | 0.15                 |                                                                                                                                                                                           |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0.123015873<br>#REF! | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into 'slight'<br>category - no need to plot points below                       |
| Moderate damage limit (Elim)    | 0.3                  |                                                                                                                                                                                           |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0.061507937<br>#REF! | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into<br>'moderate' category - if the point is not below, damage is<br>'severe' |



Negligible

No. 12 Rosecroft Avenue

0.84


0 mm

0.000000 %

**Calculated Category of Damage** 

Negligible

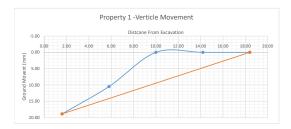
Fig 2.18 (b)



(b) Influence of horizontal strain on  $\Delta L / \varepsilon_{\rm lim}$ (after Burland, 2001)

Table 2.5

Calculated Category of Damage


Table 2.5 Classification of visible damage to units (offer Burland et al. 1977, Boccardin and Complete, 1989), and Burland 2009.


| Category of<br>damage |              | Description of typical damage<br>(case of repair is underlaned)                                                                                                                                                                                                                                                                                        | Appreximate<br>crack width<br>ouns                  | Limiting<br>touche strain<br>a <sub>ne</sub> (per cent) |
|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| 0                     | Neglighte    | Hairline cracks of less than about 0.1 mm are classed as negligible.                                                                                                                                                                                                                                                                                   | < 0.1                                               | 0.0-0.05                                                |
| 1                     | Very digital | Fire cracks that can easily be treated during<br>normal decoration. Perhaps notated slight<br>facture in building. Condense external<br>brickwork visible on inspection.                                                                                                                                                                               | ∈1                                                  | 0.05-0.075                                              |
| 2                     | Slight       | Cracks casily filled. Redeceration probable<br>inguized, Several slight fractures showing inside<br>of brilding. Cracks are visible externally and<br>same represents may be required externally to<br>ensure weathertightness. Doors and windows<br>may stock slightly.                                                                               | <5                                                  | 0.075-0.15                                              |
| 3                     | Moderate     | The cracks require some opening up and can be just hed by a mason. Recurrent tracks can be mastered by a whitele language tracks can be mastered by a whitele language. Septemble of external brickwork and goosely a good amount of hostwork to be replaced. Does and wandows cheking. Service gives may fracture. Weathertightness offers arguinged. | 5-15 or a<br>matrix of<br>cracks = 3                | 0.15-0.3                                                |
| 4                     | Severe       | Extensive report work anything breaking our<br>and replacing sections of walls, especially over<br>doors and standows. Windows will see<br>distorted those sloping noticeabily. With Jeaning<br>or bulging noticeabily, some loss of Jeaning in<br>beam. Service pipes disrupted.                                                                      | 15-25 but<br>also depends<br>on number of<br>cracks | > 0.3                                                   |
| 5                     | Vay severe   | This requires a major irror involving partial or<br>complete releabiling. Beams love bearings, wells<br>lean bodly and require shoring. Windows broken<br>with distortion. Dancer of mumbelity                                                                                                                                                         |                                                     |                                                         |



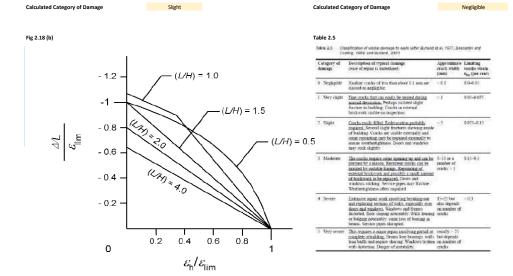
## <u>Potential Damage to Building</u> Soft to firm clays - Conservative







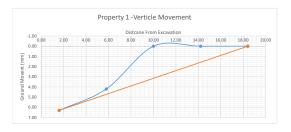
from graph (max difference between blue and orange line)


difference between horizontal movement at nearest and farthest walls

| Neighbouring Property 1      |                                                                          | No. 18 |                                                             | Neighbouring Property 2  | No. 12     |      |
|------------------------------|--------------------------------------------------------------------------|--------|-------------------------------------------------------------|--------------------------|------------|------|
|                              | m                                                                        | mm     |                                                             |                          | m          | m    |
| L                            | 16.80                                                                    | 16800  |                                                             | L                        | 10.10      | 1010 |
| н                            | 12.00                                                                    | 12000  |                                                             | н                        | 12.00      | 120  |
| L/H                          | 1.40                                                                     |        |                                                             | L/H                      | 0.84       |      |
| Verticle Deflection (Δ)      | 9                                                                        |        | from graph (max difference<br>between blue and orange line) | Verticle Deflection (Δ)  | 0 mm       |      |
| Defelction Ratio (Δ/L)       | Defelction Ratio (Δ/L) 0.053571 %                                        |        | between blue and orange line)                               | Defelction Ratio (Δ/L)   | 0.000000 % |      |
| Horizontal Movement (δh)     | 6.30                                                                     | mm     | difference between horizontal                               | Horizontal Movement (δh) | 3.79       |      |
| Horzontal Strain (εh) = δh/L | movement at nearest and<br>I Strain (Eh) = δh/L 0.03750 % farthest walls |        | Horzontal Strain (Eh) = δh/L                                | 0.03750 %                |            |      |

CATEGORY OF DAMAGE Damage category limits are given in Table 2.5 (below) you will also need Fig 2.18 (also shown below).

Slight


| L/H                             | 1.40                 |                                                                                                                                                                                           |                                               | L/H        | 0.84                                                                                                                                                                             |
|---------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Negligible damage limit (Elim)  | 0.05                 |                                                                                                                                                                                           | Negligible damage limit (Elim)                | 0.05       |                                                                                                                                                                                  |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 1.071428571<br>0.75  | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into<br>'negligible' category - no need to plot points below                   | ( <u>\( \L) /(Elim)</u><br>(\( \text{Elim} \) | 0<br>0.75  | Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below                |
| Very Slight damage limit (Elim) | 0.075                |                                                                                                                                                                                           | Very Slight damage limit (Elim)               | 0.075      |                                                                                                                                                                                  |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0.714285714<br>0.5   | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into 'very<br>slight' category - no need to plot points below                  | (Δ/L)/(Elim)<br>(Eh)/(Elim)                   | 0<br>0.5   | Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below               |
| Slight damage limit (Elim)      | 0.15                 |                                                                                                                                                                                           | Slight damage limit (Elim)                    | 0.15       |                                                                                                                                                                                  |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0.357142857<br>0.25  | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into 'slight'<br>category - no need to plot points below                       | (Δ/L)/(Elim)<br>(Eh)/(Elim)                   | 0<br>0.25  | Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category - no need to plot points below                    |
| Moderate damage limit (Elim)    | 0.3                  |                                                                                                                                                                                           | Moderate damage limit (Elim)                  | 0.3        |                                                                                                                                                                                  |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0.178571429<br>0.125 | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into<br>'moderate' category - if the point is not below, damage<br>is 'severe' | (Δ/L)/(Elim)<br>(Eh)/(Elim)                   | 0<br>0.125 | Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe' |

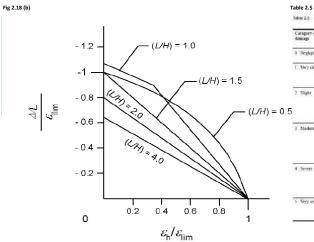


(b) Influence of horizontal strain on  $\Delta\!\!/L \,/\,\, \mathcal{E}_{\!\! lim}$  (after Burland, 2001)

# <u>Potential Damage to Building</u> Soft to firm clays - Conservative








| Neighbouring Property 1      | No. 18     |                                                               | Neighbouring Property 2      | No. 12     |                                                             |
|------------------------------|------------|---------------------------------------------------------------|------------------------------|------------|-------------------------------------------------------------|
|                              | m          | mm                                                            |                              | m          | mm                                                          |
| L                            |            | 16800                                                         | L                            | 10.10      | 10100                                                       |
| н                            | 12.00      | 12000                                                         | н                            | 12.00      | 12000                                                       |
| L/H                          | 1.40       |                                                               | L/H                          | 0.84       |                                                             |
| Verticle Deflection (Δ)      | 3.2 mr     | m from graph (max difference<br>between blue and orange line) | Verticle Deflection (Δ)      | 0 mm       | from graph (max difference<br>between blue and orange line) |
| Defelction Ratio (Δ/L)       | 0.019048 % |                                                               | Defelction Ratio (Δ/L)       | 0.000000 % | between blue and orange line)                               |
| Horizontal Movement (δh)     | 6.30 mr    | m difference between horizontal movement at nearest and       | Horizontal Movement (δh)     | 0.00       | difference between horizontal<br>movement at nearest and    |
| Horzontal Strain (Eh) = δh/L | 0.03750 %  |                                                               | Horzontal Strain (£h) = δh/L | 0.00000 %  | farthest walls                                              |

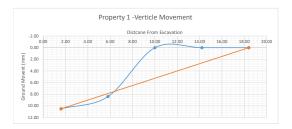
CATEGORY OF DAMAGE Damage category limits are given in Table 2.5 (below) you will also need Fig 2.18 (also shown below).

| L/H                             | 1.40                 |                                                                                                                                                                                           |                                 | L/H   | 0.84                                                                                                                                                                             |
|---------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Negligible damage limit (Elim)  | 0.05                 |                                                                                                                                                                                           | Negligible damage limit (Elim)  | 0.05  |                                                                                                                                                                                  |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0.380952381<br>0.75  | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into<br>'negligible' category - no need to plot points below                   | (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0     | Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below                |
| Very Slight damage limit (Elim) | 0.075                |                                                                                                                                                                                           | Very Slight damage limit (Elim) | 0.075 |                                                                                                                                                                                  |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0.253968254<br>0.5   | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into 'very<br>slight' category - no need to plot points below                  | (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0     | Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below               |
| Slight damage limit (Elim)      | 0.15                 |                                                                                                                                                                                           | Slight damage limit (Elim)      | 0.15  |                                                                                                                                                                                  |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0.126984127<br>0.25  | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into 'slight'<br>category - no need to plot points below                       | (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0     | Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category no need to plot points below                      |
| Moderate damage limit (Elim)    | 0.3                  |                                                                                                                                                                                           | Moderate damage limit (Elim)    | 0.3   |                                                                                                                                                                                  |
| (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0.063492063<br>0.125 | Plot this point on fig2.18 (b) if the plotted point is below<br>the appropriate L/H line then damage falls into<br>'moderate' category - if the point is not below, damage<br>is 'severe' | (Δ/L)/(Elim)<br>(Eh)/(Elim)     | 0     | Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe' |

Negligible Negligible Calculated Category of Damage Calculated Category of Damage



|   | emage<br>steggery of | Description of repical damage<br>(ease of repair is underlined)                                                                                                                                                                                                                                               | Approximate<br>crack width<br>(mm)                  | Limiting<br>tonsile strain<br>s <sub>be</sub> (per cent |  |
|---|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|--|
| 0 | Negligitle           | Hardise cracks of less than about 0.1 mm are classed to acquigable.                                                                                                                                                                                                                                           | ~0.1                                                | 0.0-0.05                                                |  |
| t | Very slight          | Fine cracks first can easily be meated during<br>account decoupling. Perhaps included slight<br>fracture in building. Cracks in external<br>brickwork visible on inspection.                                                                                                                                  | s1                                                  | 0.05-0.075                                              |  |
| 2 | Slight               | Crecks cauls filled Redecuration probably<br>regard. Several slight frectures showing mode<br>of building. Crecks are visible externally and<br>seems resolvering may be recraimed externally to<br>ensure weedberingstrates. Does and wandows<br>may stack algority.                                         | 4.5                                                 | 0.075-0.15                                              |  |
| 3 | Moderate             | The cracks require some opening up and can be positive for a mation. Recruited cracks can be massled by a matiole limite. Repositing of estimate indicated, and possibly a small amount of buckwork to be neglighted. Doors and windows videously, Service pipes may fracture. Weathernglities often implied. | 5-15 or a<br>ramber of<br>gracks > 3                | 015-0.5                                                 |  |
| 4 | Sewar                | Entracre sepain work envolving breaking-our and replacing sections of walls, encecably over doesn had windown. Windows and frames discoved, from sloping acceptably. Walls learning or beiging conceptly, were loss of bearing in Seniors. Service opies discoved pages discoved pages along the seniors.     | 15-25 but<br>also depends<br>on number of<br>cracks | >0.3                                                    |  |
| 3 | Very severe          | This requires a major repair involving poetral or<br>complete orbitalding. Deans lose bearings, with<br>lean budly and require shoring. Windows broken<br>with deportune. Danger of instability.                                                                                                              | but depends                                         | 3                                                       |  |


(b) Influence of horizontal strain on  $\Delta\!\!/L \,/\,\, \mathcal{E}_{\!\! lim}$  (after Burland, 2001)

#### Potential Damage to Building

Soft to firm clays - Conservative

Calculated Category of Damage







| Neighbouring Property 1      | No. 18                          |                                                             | Neighbouring Property 2                         | No. 12              |                                                             |
|------------------------------|---------------------------------|-------------------------------------------------------------|-------------------------------------------------|---------------------|-------------------------------------------------------------|
| L<br>H                       | m m<br>16.80 1680<br>12.00 1200 | 10                                                          | L<br>H                                          | m<br>10.10<br>12.00 | mm<br>10100<br>12000                                        |
| L/H                          | 1.40                            |                                                             | L/H                                             | 0.84                |                                                             |
| Verticle Deflection (Δ)      | 5.2 mm                          | from graph (max difference<br>between blue and orange line) | Verticle Deflection (Δ)                         | 0 mm                | from graph (max difference<br>between blue and orange line) |
| Defelction Ratio (Δ/L)       | 0.030952 %                      |                                                             | Defelction Ratio (Δ/L)                          | 0.000000 %          |                                                             |
| Horizontal Movement (δh)     | 6.30 mm                         | difference between horizontal<br>movement at nearest and    | Horizontal Movement (δh)                        | 2.00<br>2.81        | difference between horizonta<br>movement at nearest and     |
| Horzontal Strain (εh) = δh/L | 0.03750 %                       | farthest walls                                              | Horzontal Strain ( $\epsilon$ h) = $\delta$ h/L | 0.01980 %           | farthest walls                                              |

CATEGORY OF DAMAGE Damage category limits are given in Table 2.5 (below) you will also need Fig 2.18 (also shown below).

Very Slight

L/H 1.40 L/H 0.05 Negligible damage limit (Elim) 0.05 0.619047619 Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below 0 Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below (Δ/L)/(Elim) (Eh)/(Elim) Very Slight damage limit (Elim) Very Slight damage limit (Elim) 0.412698413 Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below 0 Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below (Δ/L)/(Elim) (Eh)/(Elim) Slight damage limit (Elim) Slight damage limit (Elim) (Δ/L)/(Elim) 0.206349206 Plot this point on fig2.18 (b) if the plotted point is below (Δ/L)/(Elim) 0 Plot this point on fig2.18 (b) if the plotted point is below the 0.132013201 appropriate L/H line then damage falls into 'slight' category-no need to plot points below (Eh)/(Elim) 0.25 the appropriate L/H line then damage falls into 'slight' category - no need to plot points below (Eh)/(Elim) Moderate damage limit (Elim) 0.3 Moderate damage limit (Elim) 0.3 0 Plot this point on fig2.18 (b) if the plotted point is below the 01 appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe' 0.103174603 Plot this point on fig2.18 (b) if the plotted point is below (Δ/L)/(Elim) (Δ/L)/(Elim) the appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe' (Eh)/(Elim) 0.066006601

Calculated Category of Damage

This requires a major repair involving pointd or wowlly 25 complete inhalding. Beams lose bearings, with but depends lean halfy and require shoring. Windows broken on number of with authorities. Beauty of the state of the stat

Negligible

Fig 2.18 (b)

Table 2.5

Table 2.

0.2 0.4 0.6 0.8 1  $\varepsilon_{\rm h}/\varepsilon_{\rm lim}$  (b) Influence of horizontal strain on  $\Delta VL/\varepsilon_{\rm lim}$  (after Burland, 2001)