

1. Description:

Revision:

CC0 - N/A

Aim:

Provide calculations for 2.5m high hoarding with posts embedded into the ground. All set out on the drawing no. **3418-18-P0.**

Loadings:

This structure has been designed in accordance with the following guidance:

- BS EN 1991-1-4:2005 - Wind Actions & TG20-13 Wind Guidance

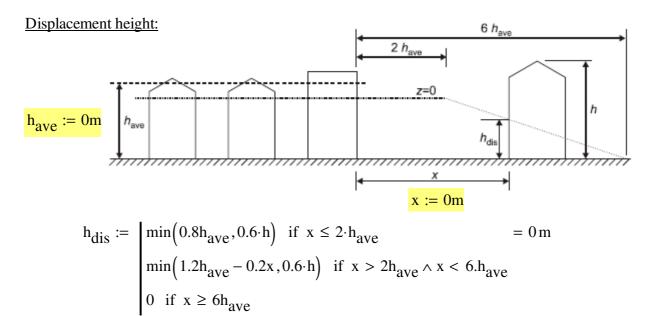
- BS 5975:2008 - Code of practice for temp. works procedures and the permissible

stress design of falsework

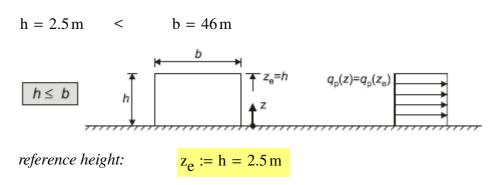
- TWf 2012:01 HOARDINGS: A guide to good practice

2. Loading:

2.1. Minimum notional horizonal load:


The minimum notional horizontal load applied to hoarding is:

 $H_z := 0.74 \frac{KN}{m}$, acting at height of: $h_z := 1.2m$ above the base.


2.2. Wind load:

Hoarding dimnesio	<u>ns:</u>	Site location data:	
hoarding length:	<mark>1 := 46m</mark>	altitude of the site:	A := 60m
total length:	b := l = 46 m	distance to shoreline:	dist _{sh} := 65km
bay width:	d := 10m	distance inside town terrain:	dist _{town} := 8km
hoarding height:	h := 2.5m		

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0	
	Title: HOARDING	Sheet:		2	
		Prepare	ed by:	MAT	
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS	
DESIGN HOUSE LTD		Date:	13-	06-2017	

Reference height for Wind Calculation:

Fundamental value of of basic wind velocity:

fundamental value of basic wind
velocity before altitude correction: $v_{b,map} := 21.5 \frac{m}{s}$ [Figure NA.1]
(see appendix A for details)

altitude factor: $c_{alt} := \begin{vmatrix} 1 + 0.001 \frac{A}{m} & \text{if } z_e \le 10m \\ 1 + 0.001 \frac{A}{m} \cdot \left(\frac{10m}{z_e}\right)^{0.2} & \text{if } z_e > 10m \end{vmatrix}$ $v_{b.0} := v_{b.map} \cdot c_{alt} = 22.79 \frac{m}{s}$

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0	
	Title: HOARDING	Sheet:		3	
		Prepare	ed by:	MAT	
т	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS	
		Date:	13-	06-2017	

The basic wind velocity:

directional factor:	$c_{dir} := 1.0$	(for simplification)
season factor:	$c_{season} := 1.0$	(for simplification)
probability factor:	$c_{prob} := 0.83$	(for two-year return time)

$v_b := c_{prob} \cdot c_{dir} \cdot c_{season} \cdot v_{b,0} = 18.91$	$16\frac{m}{s}$
--	-----------------

Basic velocity pressure:

air density (NA.2.18):

$$\rho := 1.226 \frac{\text{kg}}{\text{m}^3}$$

$$\mathbf{q}_{\mathbf{b}} := \frac{1}{2} \cdot \boldsymbol{\rho} \cdot \mathbf{v}_{\mathbf{b}}^{2} = 0.219 \cdot \mathbf{k} \mathbf{P} \mathbf{a}$$

Peak Velocity pressure:

Distance upwind to shoreline:	$dist_{sh} = 65 \cdot km$
Distance inside town terrain:	$dist_{town} = 8 \cdot km$
Reference height - displacement height:	$z_e - h_{dis} = 2.5 \mathrm{m}$

exposure factor:	c _e := 1.55	[Figure NA.7]	(see appendix B for details)
exposure factor for town terrain:	c _{e.T} := 0.64	[Figure NA.8]	(see appendix B for details)

(for country site terrain = 1.0)

FULL WIND
$$q_p := c_e \cdot c_{e,T} \cdot q_b = 0.218 \cdot kPa$$

WORKING WIND
$q_{p.work} := 0.2 kPa$

	CALCULATION SHEET	Job No	3417-18
	Project: UP HILL LONDON NW2 3QB	Revision:	CC0
	Title: HOARDING	Sheet:	4
		Prepared b	y: MAT
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checked by	r: TS
DESIGN HOUSE LTD		Date:	13-06-2017

Wind pressure on surfaces - free-standing wall:

solidity ratio:

return corners:

$$\varphi := 1$$

rc := YES

length to height ratio: $\frac{l}{h} = 18.4$

Table 7.9 — Recommended pressure coefficients $c_{\rm p,net}$ for free-standing walls and parapets

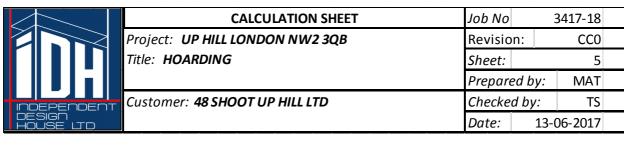
Solidity	Zone		Α	В	С	D
	= 1 Without	<i>ℓlh</i> ≤ 3	2,3	1,4	1,2	1,2
		<i>ℓlh</i> = 5	2,9	1,8	1,4	1,2
<i>φ</i> = 1		<i>ℓlh</i> ≥ 10	3,4	2,1	1,7	1,2
		n corners th ≥ h ³	2,1	1,8	1,4	1,2
$\varphi = 0,8$			1,2	1,2	1,2	1,2
^a Linear interpolation may be used for return corner lengths between 0,0 and h						

<u>Zone A:</u> Calculations may be neglected (Zone A is only 0.72m wide)

Zone B:

 $c_{pe.net.B} = 1.8$ $W_B := q_p \cdot c_{pe.net.B} = 0.392 \cdot kPa$ $l_{b.ac} := 2 \cdot h = 5 m$ $l_{b.ac} = 0.3 \cdot h = 4.25 m$

Zone C:


$c_{pe.net.C} = 1.4$	zone lengths:
$W_C := q_p \cdot c_{pe.net.C} = 0.305 \cdot kPa$	$l_{c.ac} := 4 \cdot h = 10 \mathrm{m}$
$W_{C.work} := q_{p.work} \cdot c_{pe.net.C} = 0.28 \cdot kPa$	$l_c := l_{c.ac} - l_{b.ac} = 5 \mathrm{m}$
Zone D:	

Zone D:

$c_{pe.net.D} = 1.2$	zone lengths:
$W_{D} := q_{p} \cdot c_{pe.net.D} = 0.261 \cdot kPa$	$l_{d.ac} := 1 = 46 \text{ m}$
$W_{D.work} := q_{p.work} \cdot c_{pe.net.D} = 0.24 \cdot kPa$	

Zone D_{FREE END}:

 $c_{pe.net.Dfe} := 2.1$ $W_{D.fe} := q_p \cdot c_{pe.net.Dfe} = 0.457 \cdot kPa$ $l_{d.fe} := 4 \cdot h = 10 \text{ m}$ $W_{Dfe.work} := q_{p.work} \cdot c_{pe.net.Dfe} = 0.42 \cdot kPa$

3. Post design:

CALCULATION SHEET Project: UP HILL LONDON NW2 3QB Title: HOARDING

Customer: 48 SHOOT UP HILL LTD

4. Horizontal rails design:

Rails used:50x75mm C16 timber beam

No. of rails used: n := 4

Calculated rails centres: CRS := $\frac{h}{n-1} = 0.833 \text{ m}$

The design assumption for worst case for one central rail is either full wind or working wind with half min. notional horizontal load applied to a single rail.

Max. linear loads on a single rail in different wind zones:

$$q_{B} := \max(W_{B} \cdot CRS, W_{B.work} \cdot CRS + 0.5H_{z}) = 0.67 \cdot \frac{kN}{m}$$
$$q_{C} := \max(W_{C} \cdot CRS, W_{C.work} \cdot CRS + 0.5H_{z}) = 0.603 \cdot \frac{kN}{m}$$
$$q_{D} := \max(W_{D} \cdot CRS, W_{D.work} \cdot CRS + 0.5H_{z}) = 0.57 \cdot \frac{kN}{m}$$

Extreme bending moment values for different wind zones:

$$M_{B} := 0.125 \cdot q_{B} \cdot CRS_{B}^{2} = 0.335 \cdot kNm$$

$$M_{C} := 0.125 \cdot q_{C} \cdot CRS_{C}^{2} = 0.302 \cdot kNm$$

$$M_{D} := 0.125 \cdot q_{D} \cdot CRS_{D}^{2} = 0.285 \cdot kNm$$
therefore a "Comparison of the second second

Extreme shear force values for different wind zones:

 $Q_{B} := 0.625 \cdot q_{B} \cdot CRS_{B} = 0.838 \text{ kN}$ $Q_{C} := 0.625 \cdot q_{C} \cdot CRS_{C} = 0.754 \text{ kN}$ $Q_{D} := 0.625 \cdot q_{D} \cdot CRS_{D} = 0.713 \text{ kN}$

 $\frac{\text{Allowable shear force:}}{Q_{Rd}} = 4.18 \text{ kN}$

therefore = "OK"

therefore = "OK"

Perm. BM and SF:

 $M_{Rd} := 0.45 \text{kNm}$

0.45kNm Q_{Rd} := 4.18kN (for details see app. C)

Job No3417-18Revision:CC0Sheet:6Prepared by:MATChecked by:TSDate:13-06-2017

	CALCULATION SHEET	Job No	3417-18
	Project: UP HILL LONDON NW2 3QB	Revision:	CC0
	Title: HOARDING	Sheet:	7
		Prepared b	y: MAT
	Customer: 48 SHOOT UP HILL LTD	Checked by	: TS
DESIGN HOUSE LTD		Date:	13-06-2017

5. Face material design:

Р	Perm.	BM	and	SF:	•
_					

Plywood used:	18mm FSC Grade	$M_{Rd} := 0.456 \frac{KNm}{m}$	$Q_{Rd} := 6.34 \frac{kN}{m}$
		111	111

Design for worst case loading of either panel robustness loading of 1.5 kN/m^2 or the effect of the min. notional horizontal load mid-way between rail, assuming face material simply supported.

$$\begin{split} \mathbf{M}_{\mathbf{f}} &\coloneqq \max\left(0.125 \cdot 1.5 \frac{\mathrm{kN}}{\mathrm{m}^2} \cdot \mathrm{CRS}^2, 0.125 \mathrm{W}_{\mathrm{B},\mathrm{work}} \cdot \mathrm{CRS}^2 + 0.25 \cdot \mathrm{H}_{\mathrm{Z}} \cdot \mathrm{CRS}\right) = 0.185 \cdot \frac{\mathrm{kNm}}{\mathrm{m}} \\ \mathbf{Q}_{\mathbf{f}} &\coloneqq \max\left(0.5 \cdot 1.5 \frac{\mathrm{kN}}{\mathrm{m}^2} \cdot \mathrm{CRS}, 0.5 \mathrm{W}_{\mathrm{B},\mathrm{work}} \cdot \mathrm{CRS} + 0.5 \cdot \mathrm{H}_{\mathrm{Z}}\right) = 0.625 \cdot \frac{\mathrm{kN}}{\mathrm{m}} \\ & \text{therefore} = "\mathrm{OK}" \end{split}$$

6. Connection of ply to rails:

NOTE: For connection design wind in zone A (worst case) should be considered.

Zone A:

Connection used:

Assumed screws centres:

$$c_{pe.net,A} = 2.1$$

$$W_{A} := q_{p} \cdot c_{pe.net,A} = 0.457 \cdot kPa$$

$$l_{a} := 0.3 \cdot h = 0.75 \text{ m}$$

$$W_{A,work} := q_{p,work} \cdot c_{pe.net,A} = 0.42 \cdot kPa$$

Max. linear load on a single rail in wind zone A:

$$q_{A} := \max(W_{A} \cdot CRS, W_{A.work} \cdot CRS + H_{z}) = 1.09 \cdot \frac{kN}{m}$$

6mm wood screws, 50mm long

crs := 300mm

Basic withdrawal load per mm of penetration:

$$F := 18.2 \frac{N}{mm}$$

Point side penetration: $e := 50mm - 18mm = 32 \cdot mm$

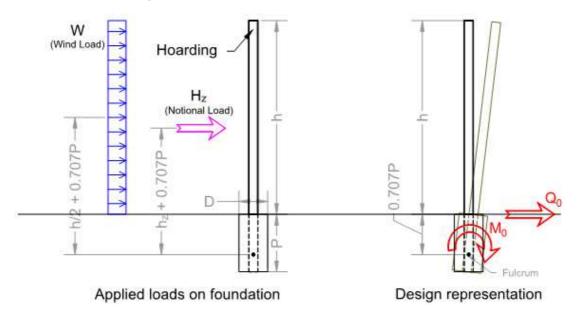
Design factors :
$$K_{52} := 1.25$$
 (very short term loading) $K_{53} := 0.7$ (Class 3)

Permissible load per metre:
$$q_{Rd} := \frac{e \cdot F \cdot K_{52} \cdot K_{53}}{crs} = 1.699 \cdot \frac{kN}{m} > q_A = 1.09 \cdot \frac{kN}{m}$$

therefore = "OK"

	CALCULATION SHEET	Job No		3417-18
	Project: UP HILL LONDON NW2 3QB	Revision: CC		CC0
	Title: HOARDING	Sheet:		8
		Prepare	ed by:	MAT
T	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS
		Date:	13	-06-2017

7. Connection of rails to post:


 $CRS_A := CRS_B = 2m$

NOTE: The rails are not continuous past the post, hence the loaded length is halved. <u>Max. point load on a single post in wind zone A:</u>

$$P := \max \begin{pmatrix} W_A \cdot CRS, W_{A,work} \cdot CRS + H_z \end{pmatrix} \frac{CRS_A}{2} = 1.09 \cdot kN$$
Basic withdrawal load per mm of penetration:
Connection used: 6mm wood screws, 150mm long
Assumed no. of screws: $n := 1$
Point side penetration: $e := 150mm - 75mm = 75 \cdot mm$
Design factors : $K_{52} := 1.25$ (very short term loading) $K_{53} := 0.7$ (Class 3)
Permissible load per connect.:
 $P_{Rd} := n \cdot e \cdot F \cdot K_{52} \cdot K_{53} = 1.45 \cdot kN$ > $P = 1.09 \cdot kN$

therefore = "OK"

8. Foundation design:

Max. overturning forces about post base:

$$\begin{split} \mathbf{M}_{0} &\coloneqq \max\left(\mathbf{M}_{0.B} \cdot \mathbf{CRS}_{B}, \mathbf{M}_{0.C} \cdot \mathbf{CRS}_{C}, \mathbf{M}_{0.D} \cdot \mathbf{CRS}_{D}\right) = 4.026 \cdot \mathrm{kNm}\\ \mathbf{Q}_{0} &\coloneqq \max\left(\mathbf{Q}_{0.B} \cdot \mathbf{CRS}_{B}, \mathbf{Q}_{0.C} \cdot \mathbf{CRS}_{C}, \mathbf{Q}_{0.D} \cdot \mathbf{CRS}_{D}\right) = 3.28 \cdot \mathrm{kN} \end{split}$$

	CALCULATION SHEET	Job No	3417-18
	Project: UP HILL LONDON NW2 3QB	Revision:	CC0
	Title: HOARDING	Sheet:	9
		Prepared by	: MAT
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checked by:	TS
DESIGN HOUSE LTD		Date: 1	3-06-2017

Ground resistance moment:

<i>Ground factor (for <u>average</u> quality of the ground):</i> [in accordance with:TWf2012: 01, Table D1]	$G := 390 \frac{k}{m}$
Minimum effective width of concreted foundation:	D := 0.40m
Planting depth of the post from ground level:	P := 0.85m
$G_{1}D_{2}P^{3}$	

 $M_g := \frac{G \cdot D \cdot P^3}{10m} = 9.58 \cdot kNm$

Max. overturning moment about fulcrum point:

(with 1.5 factor of safety)

< M_g = 9.58·kNm

$$M_{O} := [M_0 + (0.707 \cdot Q_0 \cdot P)] \cdot 1.5 = 8.996 \cdot kNm$$

therefore = "OK"

9. Summary:

* Use 75x200 C24 constructional sawn timber posts at crs: 2.00m (to all wind zones);

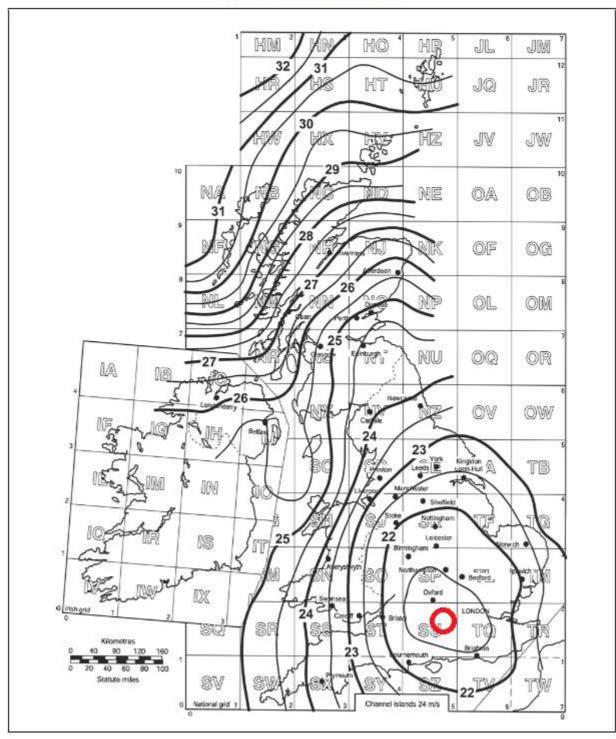
* Use 4No. 50x75 C16 constructional sawn timber rails at 800mm centres;

* Face material assumed as 18mm FSC Grade Plywood ;

* Use 6mm wood screws 50mm long for the ply to rail connection at 300mm centres;

* Use 1No. 6mm wood screws 150mm long per rail to post connection;

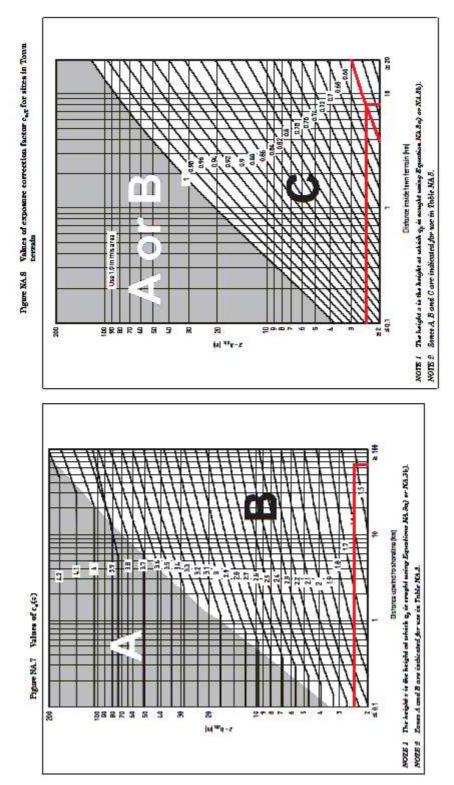
* Posts to be embedded in to the ground in 400mm dia. hole, 0.85m deep and infilled with concrete



CALCULATION SHEET
Project: UP HILL LONDON NW2 3QB
Title: HOARDING
Customer: 48 SHOOT UP HILL LTD

Job No3417-18Revision:CCOSheet:10Prepared by:MATChecked by:TSDate:13-06-2017

APPENDIX A


Figure NA.1 Value of fundamental basic wind velocity $v_{b,map}$ (m/s) before the altitude correction is applied

	CALCULATION SHEET	Job No	3417-18
\geq	Project: UP HILL LONDON NW2 3QB	Revision:	CC0
	Title: HOARDING	Sheet:	11
		Prepared by	: MAT
	Customer: 48 SHOOT UP HILL LTD	Checked by:	TS
		Date: 1	3-06-2017

APPENDIX B

	CALCULATION SHEET	Job No		3417-18
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0
	Title: HOARDING	Sheet:		12
		Prepare	ed by:	MAT
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS
DESIGN HOUSE LTD		Date:	13-0	06-2017

APPENDIX C

Allowable internal forces for timber beams (according to BS 5268-2:2002)

75x200mm C24 timber posts

Dimensions of cross-section:	$a = 3 \cdot in$	$b = 8 \cdot in$
	w c	0 0 111
Section area:	$A_{s} := a \cdot b = 140$	$4 \cdot \text{cm}^2$
Moment of inertia:	$I_y := \frac{a \cdot b^3}{12} = 444$	$18.925 \cdot \text{cm}^4$
Section modulus:	$W_y := \frac{a \cdot b^2}{6} = 4$	$56.3 \cdot \text{cm}^3$
Timber grade	- "C24"	
Timber_grade	= C24	
Bending stress parallel to grain:	$fZ = 7.5 \cdot \frac{N}{mm^2}$	
Shear stress parallel to grain (service class 3):	$qA = 0.71 \cdot \frac{N}{mm^2}$	
Mean modulus of elasticity (service class 3):	$E_{0.mean} = 8640$	$\frac{N}{mm^2}$
Minimum modulus of elasticity:	$E_{\min} = 5760 \cdot \frac{1}{m}$	$\frac{N}{m^2}$
Aplication = "load sh	aring - hoarding"	
reprodución – rodu sin	aning nouraning	
Factor converting service classes 1 and 2 strength	$K_{2h} := 0.8$	

$K_{2b} = 0.8$
$K_{2s} := 0.9$
$K_3 = 1.75$
$K_4 := 1.0$
K ₆ := 1.0
$K_7 = 1.046$
$K_8 = 1$

PERMISSIBLE STRESSES

Moment of resistance:

$$M_{RdP} := fZ \cdot W_v \cdot K_{2b} \cdot K_3 \cdot K_4 \cdot K_6 \cdot K_7 \cdot K_8 = 5.01 \cdot kN \cdot m$$

Shear load:

$$V_{RdP} := qA \cdot A_s K_{2s} \cdot K_3 \cdot K_4 \cdot K_6 \cdot K_8 = 15.7 \cdot kN$$

50x75mm C16 timber rails

JUX/JIIIII CTU LIIID	
Dimensions of cross-section:	$a = 2 \cdot in$ $b = 3 \cdot in$
Section area:	$A_s := a \cdot b = 33.84 \cdot cm^2$
Moment of inertia:	$I_y := \frac{a \cdot b^3}{12} = 146.189 \cdot cm^4$
Section modulus:	$W_y := \frac{a \cdot b^2}{6} = 40.6 \cdot cm^3$
Timber ande	"016"
Timber_grade	= C10
Bending stress parallel to grain:	$fZ = 5.3 \cdot \frac{N}{mm^2}$
Shear stress parallel to grain (service class 3):	$qA = 0.67 \cdot \frac{N}{mm^2}$
Mean modulus of elasticity (service class 3):	$E_{0.mean} = 7040 \cdot \frac{N}{mm^2}$
Minimum modulus of elasticity:	$E_{\min} = 4640 \cdot \frac{N}{mm^2}$
Aplication $=$ "load sh	aring - hoarding"
representation – Todd Sh	and nourang

Factor converting service classes 1 and 2 strength classes to service class 3 (bending):	$K_{2b} := 0.8$
Factor converting service classes 1 and 2 strength classes to service class 3 (shear):	$K_{2s} := 0.9$
Duration of load factor:	$K_3 = 1.75$
Bearing stress factor:	$K_4 := 1.0$
Form factor:	$K_6 := 1.0$
Depth factor:	$K_7 = 1.165$
Load sharing factor:	$K_8 = 1$

Plywood used:

ed: <u>18mm Finish plywood - sanded (9 veneers)</u>

Characteristic mean modulus of elasticity in bending -
face grain perpendicular to span:

$$E_{m.ply} \coloneqq 3350 \frac{N}{mm^2}$$

Modification factor for creep deformation and service class (table 38 BS EN 5268-2):

 $k_{def} := 0.0$

Duration of load and servce class factor for plywood (short and very short term - table 39 BS EN 5268-2):

$$K_{36} := 1.43$$

Grade modulus value:

$$\begin{split} & E_{d.ply} \coloneqq \frac{E_{m.ply}}{1 + k_{def}} \cdot K_{36} = 4790.5 \cdot \frac{N}{mm^2} \\ & A_{ply} \coloneqq 18mm \cdot a = 8.46 \cdot cm^2 \\ & \alpha \coloneqq \frac{E_{0.mean}}{E_{d.ply}} = 1.47 \\ & I_{y.ply} \coloneqq \frac{a \cdot (18mm)^3}{12} = 2.284 \cdot cm^4 \\ & A_i \coloneqq A_s + \frac{A_{ply}}{\alpha} = 39.597 \cdot cm^2 \\ & y_{dist} \coloneqq \frac{b}{2} + \frac{18mm}{2} = 4.5 \cdot cm \\ & y_r \coloneqq \frac{A_{ply}}{\alpha \cdot A_i} \cdot y_{dist} = 6.542 \cdot mm \\ & y_{ply} \coloneqq \frac{A_s}{A_i} \cdot y_{dist} = 3.846 \cdot cm \\ & y_u \coloneqq y_{ply} + \frac{18mm}{2} = 4.746 \cdot cm \\ & y_d \coloneqq y_r + \frac{b}{2} = 4.254 \cdot cm \\ & I_c \coloneqq I_y + \frac{I_{y.ply}}{\alpha} \dots = 247.369 \cdot cm^4 \\ & + A_s \cdot y_{dist} \cdot y_r \\ & W_{y.u} \coloneqq \frac{I_c}{y_u} = 52.124 \cdot cm^3 \\ & W_{y.d} \coloneqq \frac{I_c}{y_d} = 58.147 \cdot cm^3 \\ & W_y \coloneqq min(W_{y.u}, W_{y.d}) = 52.1 \cdot cm^3 \end{split}$$

Ν

Area of ply in the face contact with rail:

Rail and plywood modulus of elasticity ratio:

Moment of inertia of ply section:

Transformed area of the timber component:

Distance between centroid of ply section and centroid of rail section: Distance between centroid of rail section and centroid of transformed timber component:

Distance between centroid of ply section and centroid of transformed timber component:

Distance between centroid of transformed timber component and top fibre of the section:

Distance between centroid of transformed timber component and bottom fibre of the section:

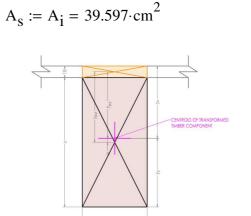
> Moment of inertia of transformed timber component:

> > Section modulus - top fibres:

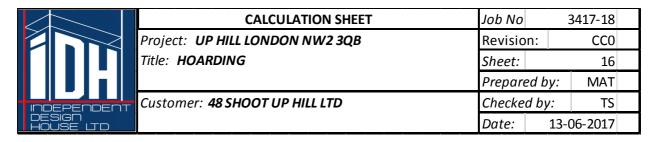
Section modulus - bottom fibres:

Min. section modulus:

Section area:


PERMISSIBLE STRESSES

Moment of resistance:


$$\mathbf{M}_{\mathrm{Rd}} := \mathbf{f} \mathbf{Z} \cdot \mathbf{W}_{\mathrm{V}} \cdot \mathbf{K}_{2\mathrm{b}} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{6} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} = 0.45 \cdot \mathrm{kN} \cdot \mathrm{n}$$

Shear load:

$$V_{Rd} \coloneqq qA \cdot A_s K_{2s} \cdot K_3 \cdot K_4 \cdot K_6 \cdot K_8 = 4.18 \cdot kN$$

geometric properties of transformed timber component

1. Description:

Revision:

CC0 - N/A

Aim:

Provide calculations for 2.5m high hoarding (on extension) with posts fixed to brick wall. All set out on the drawing no. **3417-18-P0**

Loadings:

This structure has been designed in accordance with the following guidance:

- BS EN 1991-1-4:2005 - Wind Actions & TG20-13 Wind Guidance

- BS 5975:2008 - Code of practice for temp. works procedures and the permissible

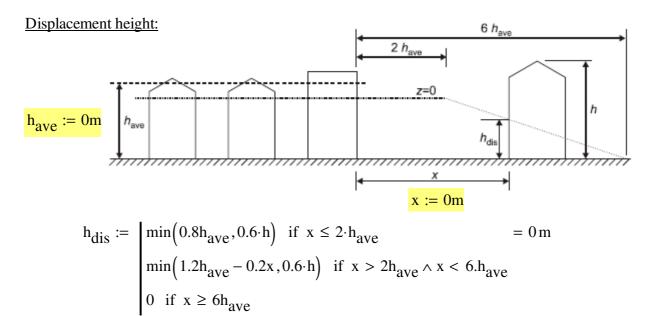
stress design of falsework

- TWf 2012:01 HOARDINGS: A guide to good practice

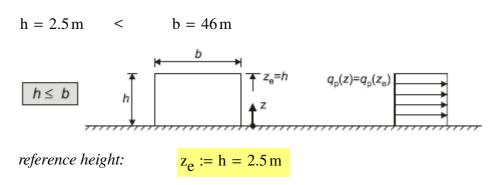
2. Loading:

2.1. Minimum notional horizontal load:

The minimum notional horizontal load applied to hoarding is:


, acting at height of: $h_Z := 1.2m$ above the base.

2.2. Wind load:


 $H_Z := 0.74 \frac{kN}{m}$

Hoarding dimensions:		Site locat	Site location data:				
hoarding length:	1 := 46m	altitude	of the site:	A := 60m			
total length:	$b := 1 = 46 \mathrm{m}$	distance	e to shoreline:	dist _{sh} := 65km			
bay width:	d := 10m	distance	e inside town terrain:	dist _{town} := 8km			
hoarding height:	h := 2.5m						
wall height:	h _{wall} := 980mm						
loaded area high:	$h_{ld} := h - h_{wall}$	= 1.52 m					

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	on:	CC0	
	tle: HOARDING	Sheet:		17	
		Prepare	ed by:	MAT	
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checked by:		TS	
DESIGN HOUSE LTD		Date:	13-	06-2017	

Reference height for Wind Calculation:

Fundamental value of of basic wind velocity:

fundamental value of basic wind
velocity before altitude correction: $v_{b,map} := 21.5 \frac{m}{s}$ [Figure NA.1]
(see appendix A for details)

altitude factor: $c_{alt} := \begin{vmatrix} 1 + 0.001 \frac{A}{m} & \text{if } z_e \le 10m \\ 1 + 0.001 \frac{A}{m} \cdot \left(\frac{10m}{z_e}\right)^{0.2} & \text{if } z_e > 10m \end{vmatrix}$ $v_{b.0} := v_{b.map} \cdot c_{alt} = 22.79 \frac{m}{s}$

	CALCULATION SHEET	Job No 3417-1		3417-18
	Project: UP HILL LONDON NW2 3QB	Revision: CO		
	Title: HOARDING	Sheet:		18
		Prepared by: MAT		
т	Customer: 48 SHOOT UP HILL LTD	Checked by:		TS
		Date: 13-06-201		

The basic wind velocity:

directional factor:	$c_{dir} := 1.0$	(for simplification)
season factor:	$c_{season} := 1.0$	(for simplification)
probability factor:	$c_{prob} := 0.83$	(for two-year return time)

$v_b := c_{prob} \cdot c_{dir} \cdot c_{season} \cdot v_{b,0} = 18.91$	$16\frac{m}{s}$
--	-----------------

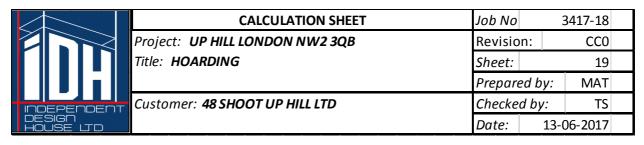
Basic velocity pressure:

air density (NA.2.18):

$$\rho := 1.226 \frac{\text{kg}}{\text{m}^3}$$

$$\mathbf{q}_{\mathbf{b}} := \frac{1}{2} \cdot \boldsymbol{\rho} \cdot \mathbf{v}_{\mathbf{b}}^{2} = 0.219 \cdot \mathbf{k} \mathbf{P} \mathbf{a}$$

Peak Velocity pressure:


Distance upwind to shoreline:	$dist_{sh} = 65 \cdot km$
Distance inside town terrain:	$dist_{town} = 8 \cdot km$
Reference height - displacement height:	$z_e - h_{dis} = 2.5 \mathrm{m}$

exposure factor:	c _e := 1.55	[Figure NA.7]	(see appendix B for details)
exposure factor for town terrain:	c _{e.T} := 0.64	[Figure NA.8]	(see appendix B for details)

(for country site terrain = 1.0)

$$FULL WIND$$
$$q_p := c_e \cdot c_{e,T} \cdot q_b = 0.218 \cdot kPa$$

VORKING WIND)
$A_{p.work} := 0.2 kPa$	

Wind pressure on surfaces - free-standing wall:

solidity ratio:

return corners:

$$\varphi := 1$$

rc := YES

o = 1

length to height ratio:
$$\frac{l}{h} = 18.4$$

Table 7.9 — Recommended pressure coefficients c_{p,net} for free-standing walls and parapets

Solidity	Zone		Α	В	С	D
<i>φ</i> = 1	Without	<i>ℓlh</i> ≤ 3	2,3	1,4	1,2	1,2
	corners	<i>ℓlh</i> = 5	2,9	1,8	1,4	1,2
		<i>ℓlh</i> ≥ 10	3,4	2,1	1,7	1,2
		n corners th ≥ h ª	2,1	1,8	1,4	1,2
$\varphi = 0,8$			1,2	1,2	1,2	1,2
^a Linear interpolation may be used for return corner lengths between 0,0 and h						

Zone A:

 $c_{pe.net.A} = 2.1$ zone lengths: $W_A := q_p \cdot c_{pe.net.A} = 0.457 \cdot kPa$ $l_a := 0.3 \cdot h = 0.75 \, m$ $W_{A.work} := q_{p.work} \cdot c_{pe.net.A} = 0.42 \cdot kPa$ Zone B: $c_{pe.net.B} = 1.8$ zone lengths: $W_{B} := q_{p} \cdot c_{pe.net.B} = 0.392 \cdot kPa$ $l_{b,ac} := 2 \cdot h = 5 m$ $W_{B.work} := q_{p.work} \cdot c_{pe.net.B} = 0.36 \cdot kPa$ $l_{\rm h} := l_{\rm hac} - l_{\rm a} = 4.25 \,\rm m$ Zone C: $c_{pe.net.C} = 1.4$ zone lengths: $W_C := q_p \cdot c_{pe.net.C} = 0.305 \cdot kPa$ $l_{c.ac} := 4 \cdot h = 10 \text{ m}$ $l_{c} := l_{c,ac} - l_{b,ac} = 5 \text{ m}$ $W_{C.work} := q_{p.work} \cdot c_{pe.net,C} = 0.28 \cdot kPa$ Zone D: $c_{pe.net.D} = 1.2$ zone lengths: $W_{D} := q_{p} \cdot c_{pe.net.D} = 0.261 \cdot kPa$ $l_{d.ac} := 1 = 46 \,\mathrm{m}$ $W_{D,work} := q_{p,work} \cdot c_{pe,net,D} = 0.24 \cdot kPa$ $l_d := 1 - l_{cac} = 36 m$ Zone D_{FREE END}: $c_{pe,net,Dfe} := 2.1$ zone lengths: $W_{D.fe} := q_p \cdot c_{pe.net.Dfe} = 0.457 \cdot kPa$ $l_{d.fe} := 4 \cdot h = 10 \,\mathrm{m}$ $W_{Dfe.work} := q_{p.work} \cdot c_{pe.net.Dfe} = 0.42 \cdot kPa$

CALCULATION SHEET Project: UP HILL LONDON NW2 3QB Title: HOARDING Customer: 48 SHOOT UP HILL LTD

Job No 3417-18 **Revision:** CC0 Sheet: 20 Prepared by: MAT Checked by: TS 13-06-2017 Date:

3. Post design:

Post used: 75x200mm C24 timber beam

 $M_{Rd} := 5.01 \text{kNm}$ $Q_{Rd} := 15.7 \text{kN}$ Connection information: - bolt to upper wall edge distance $c_{top} := 125 mm$ $c_{hot} := 125 mm$ - bolt to lower wall edge distance $crs_{bolt} := h_{wall} - c_{top} - c_{bot} = 0.73 \,\mathrm{m}$ - bolt centres (except bolt in *the middle)* **Two load cases:** Ctop LC1: Full Wind crs LC2: Working Wind Cbot + Lateral Load

Post cantilever length: $p := h - h_{wall} + c_{top} = 1.645 \,\mathrm{m}$ Notional load lever arm: $p_z := max(p + h_z - h, 0m) = 0.345 m$

Zone B:

Max. bending moment in post per m run of hoarding:

$$\begin{split} \mathbf{M}_{\mathrm{P},\mathrm{B}} &\coloneqq \max\left[\left(\mathbf{W}_{\mathrm{B}}\cdot\mathbf{h}_{\mathrm{ld}}\right)\cdot\left(0.5\mathbf{h}_{\mathrm{ld}}+\mathbf{c}_{\mathrm{top}}\right),\left(\mathbf{W}_{\mathrm{B},\mathrm{work}}\cdot\mathbf{h}_{\mathrm{ld}}\right)\cdot\left(0.5\mathbf{h}_{\mathrm{ld}}+\mathbf{c}_{\mathrm{top}}\right)+\mathbf{H}_{\mathrm{z}}\cdot\mathbf{p}_{\mathrm{z}}\right]\\ \mathbf{M}_{\mathrm{P},\mathrm{B}} &= 0.74\,\mathrm{kN} \end{split}$$

 $Q_{P.B} := \max \left(W_B \cdot h_{ld}, W_{B.work} \cdot h_{ld} + H_z \right) = 1.287 \cdot \frac{kN}{m}$ Max. shear force in post per m run of hoarding:

Max. possible posts CRS:
$$CRS'_B := min\left(\frac{M_{Rd}}{M_{P.B}}, \frac{Q_{Rd}}{Q_{P.B}}\right) = 6.774 m$$

 $no. of bays: n_B = 3$

Zone C:

Max. bending moment in post per m run of hoarding:

$$M_{P.C} := \max\left[\left(W_{C} \cdot h_{ld}\right) \cdot \left(0.5h_{ld} + c_{top}\right), \left(W_{C.work} \cdot h_{ld}\right) \cdot \left(0.5h_{ld} + c_{top}\right) + H_{z} \cdot p_{z}\right]$$
$$M_{P.C} = 0.632 \text{ kN}$$

Max. shear force in post $Q_{P.C} := \max \left(W_{C} \cdot h_{ld}, W_{C.work} \cdot h_{ld} + H_{z} \right) = 1.166 \cdot \frac{kN}{m}$ per m run of hoarding:

Max. possible posts CRS:
$$CRS'_C := min\left(\frac{M_{Rd}}{M_{P.C}}, \frac{Q_{Rd}}{Q_{P.C}}\right) = 7.928 m$$

 $no. of bays: n_C = 2$

(for details see app. C)

	CALCULATION SHEET	Job No		3417-18	
>	Project: UP HILL LONDON NW2 3QB	Revision:		CC0	
	Title: HOARDING	Sheet: 21			
		Prepared by: MAT			
	Customer: 48 SHOOT UP HILL LTD	Checked by:		TS	
		Date: 13-06-2017			

Zone D:

Max. bending moment in post per m run of hoarding:

$$\begin{split} \mathbf{M}_{\mathbf{P},\mathbf{D}} &\coloneqq \max\left[\left(\mathbf{W}_{\mathbf{D}}\cdot\mathbf{h}_{ld}\right)\cdot\left(0.5\mathbf{h}_{ld}+\mathbf{c}_{top}\right),\left(\mathbf{W}_{\mathbf{D},work}\cdot\mathbf{h}_{ld}\right)\cdot\left(0.5\mathbf{h}_{ld}+\mathbf{c}_{top}\right)+\mathbf{H}_{z}\cdot\mathbf{p}_{z}\right]\\ \mathbf{M}_{\mathbf{P},\mathbf{D}} &= 0.578\,\mathrm{kN} \end{split}$$

Max. shear force in post per m run of hoarding:

$$Q_{P,D} := \max \left(W_D \cdot h_{ld}, W_{D,work} \cdot h_{ld} + H_z \right) = 1.105 \cdot \frac{kN}{m}$$

Max. possible posts CRS: CRS'_D := min $\left(\frac{M_{Rd}}{M_{P.D}}, \frac{Q_{Rd}}{Q_{P.D}}\right) = 8.666 \text{ m}$ CRS_D := 2m *no. of bays: remainder*

Zone D_{FREE END}:

Max. bending moment in post per m run of hoarding:

$$M_{P.D.fe} := \max\left[\left(W_{D.fe} \cdot h_{ld}\right) \cdot \left(0.5h_{ld} + c_{top}\right), \left(W_{Dfe.work} \cdot h_{ld}\right) \cdot \left(0.5h_{ld} + c_{top}\right) + H_z \cdot p_z\right]$$
$$M_{P.D.fe} = 0.82 \text{ kN}$$

Max. shear force in post
per m run of hoarding:
$$Q_{P.D.fe} := max (W_{D.fe} \cdot h_{ld}, W_{Dfe.work} \cdot h_{ld} + H_z) = 1.378 \cdot \frac{kN}{m}$$

Max. possible posts CRS:
$$CRS_{D.fe} := min\left(\frac{M_{Rd}}{M_{P.D.fe}}, \frac{Q_{Rd}}{Q_{P.D.fe}}\right) = 6.108 m$$

CRS_{D.fe} := 2m

no. of bays: $n_{Dfe} = 5$

 $Q_{Rd} := 4.18$ kN

Perm. BM and SF:

(for details see app. C)

M_{Rd} := 0.45kNm

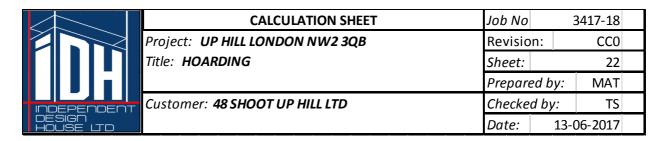
4. Horizontal rails design:

Calculated rails centres:

Rails used: 50x75mm C16 timber beamNo. of rails used: n = 3

No. of rails used:
$$n := 3$$

CRS :=
$$\frac{h_{ld}}{n-1} = 0.76 \,\mathrm{m}$$


Max. linear loads on a single rail in different wind zones:

$$q_{B} := \max\left(W_{B} \cdot CRS, W_{B.work} \cdot CRS + 0.5H_{z}\right) = 0.644 \cdot \frac{kN}{m}$$

$$q_{C} := \max\left(W_{C} \cdot CRS, W_{C.work} \cdot CRS + 0.5H_{z}\right) = 0.583 \cdot \frac{kN}{m}$$

$$q_{D} := \max\left(W_{D} \cdot CRS, W_{D.work} \cdot CRS + 0.5H_{z}\right) = 0.552 \cdot \frac{kN}{m}$$

$$q_{Dfe} := \max\left(W_{D.fe} \cdot CRS, W_{Dfe.work} \cdot CRS + 0.5H_{z}\right) = 0.689 \cdot \frac{kN}{m}$$

The design assumption for worst case for one central rail is either full wind or working wind with half min. notional horizontal load applied to a single rail.

Extreme bending moment values for different wind zones:

$$\begin{split} M_{B} &\coloneqq 0.125 \cdot q_{B} \cdot CRS_{B}^{2} = 0.322 \cdot kNm \\ M_{C} &\coloneqq 0.125 \cdot q_{C} \cdot CRS_{C}^{2} = 0.291 \cdot kNm \\ M_{D} &\coloneqq 0.125 \cdot q_{D} \cdot CRS_{D}^{2} = 0.276 \cdot kNm \\ M_{Dfe} &\coloneqq 0.125 \cdot q_{Dfe} \cdot CRS_{D,fe}^{2} = 0.345 \cdot kNm \end{split} \qquad \underbrace{Moment of resistance:}{M_{Rd} = 0.45 \cdot kNm} \\ \underline{Extreme shear force values for different wind zones:} \\ Q_{B} &\coloneqq 0.625 \cdot q_{B} \cdot CRS_{B} = 0.805 \, kN \\ Q_{C} &\coloneqq 0.625 \cdot q_{C} \cdot CRS_{C} = 0.729 \, kN \\ Q_{Dfe} &\coloneqq 0.625 \cdot q_{Dfe} \cdot CRS_{D,fe} = 0.862 \, kN \end{split} \qquad \underbrace{Allowable shear force:}{Q_{Rd} = 4.18 \, kN} \\ Q_{Dfe} &\coloneqq 0.625 \cdot q_{Dfe} \cdot CRS_{D,fe} = 0.862 \, kN \end{split}$$

5. Face material design:Perm. BM and SF:Plywood used:18mm FSC Grade $M_{Rd} := 0.456 \frac{kNm}{m}$ $Q_{Rd} := 6.34 \frac{kN}{m}$

Design for worst case loading of either panel robustness loading of 1.5 kN/m^2 or the effect of the min. notional horizontal load mid-way between rail, assuming face material simply supported.

$$M_{f} := \max\left(0.125 \cdot 1.5 \frac{\text{kN}}{\text{m}^{2}} \cdot \text{CRS}^{2}, 0.125 \text{W}_{A} \cdot \text{CRS}^{2}\right) = 0.108 \cdot \frac{\text{kNm}}{\text{m}}$$
$$Q_{f} := \max\left(0.5 \cdot 1.5 \frac{\text{kN}}{\text{m}^{2}} \cdot \text{CRS}, 0.5 \text{W}_{A} \cdot \text{CRS}\right) = 0.57 \cdot \frac{\text{kN}}{\text{m}}$$

therefore = "OK"

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	on:	CC0	
	Title: HOARDING	Sheet:		23	
		Prepare	ed by:	MAT	
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS	
DESIGN HOUSE LTD		Date:	13-	06-2017	

6. Connection of ply to rails:

For connection design wind in zone A (worst case) should be considered.

Zone A:

 $c_{pe.net.A} = 2.1$ $W_A = 0.457 \cdot kPa$ $W_{A,work} = 0.42 \cdot kPa$

zone lengths: $l_a = 0.75 \, m$

Max. linear load on a single rail in wind zone A:

$$q_{A} := \max(W_{A} \cdot CRS, W_{A.work} \cdot CRS + H_{z}) = 1.059 \cdot \frac{kN}{m}$$

Connection used: <u>6mn</u>	n wood screws, 50mm long	Basic withdrawal load per mm of penetration:
Assumed screws centres:	crs := 300mm	$F := 18.2 \frac{N}{100000000000000000000000000000000000$
Point side penetration:	$e := 50mm - 18mm = 32 \cdot mm$	mm
Design factors : K ₅₂	= 1.25 (very short term loading)	$K_{53} := 0.7 \text{ (Class 3)}$
Permissible load per metre	$\mathbf{\underline{:}} \mathbf{q_{Rd}} \coloneqq \frac{\mathbf{e} \cdot \mathbf{F} \cdot \mathbf{K}_{52} \cdot \mathbf{K}_{53}}{\mathrm{crs}} = 1.69$	$q_{\rm e} \cdot \frac{\rm kN}{\rm m} > q_{\rm A} = 1.059 \cdot \frac{\rm kN}{\rm m}$

7. Connection of rails to post:

 $CRS_A := CRS_B = 2m$

NOTE: the rails are not continuous past the post, hence the loaded length is halved. Max. point load on a single post in wind zone A:

 $P := \max\left(W_{A} \cdot CRS, W_{A.work} \cdot CRS + H_{z}\right) \frac{CRS_{A}}{2} = 1.059 \cdot kN$

6mm wood screws, 150mm long **Connection used:**

Basic withdrawal load per mm of penetration:

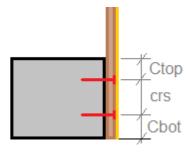
 $F := 22.1 \frac{N}{mm}$

therefore = "OK"

Assumed no. of screws: n := 1

Point side penetration: $e := 150mm - 75mm = 75 \cdot mm$

 $K_{53} := 0.7 \text{ (Class 3)}$ $K_{52} := 1.25$ (very short term loading) Design factors :


ermissible load per onnect.:	$P_{Rd} := n \cdot e \cdot F \cdot K_{52} \cdot K_{53} = 1.45 \cdot kN$	> $P = 1.059 \cdot kN$
		therefore = "OK"

	CALCULATION SHEET	Job No	3417	-18
	Project: UP HILL LONDON NW2 3QB	Revisior	า: (CC0
	Title: HOARDING	Sheet:		24
		Prepare	d by: 🛛 N	1AT
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checked	l by:	TS
DESIGN HOUSE LTD		Date:	13-06-2	017

8. Check withdrawal on connection bolts to block:

Connection information:

$c_{top} = 125 mm$	- bolt to upper wall	edge distance
$c_{bot} = 125 mm$	- bolt to lower wall	edge distance
$crs_{bolt} := h_{wall} - c$	$c_{top} - c_{bot} = 0.73 \mathrm{m}$	- bolt centres (except bolt in the middle)

Max. bending moment at top bolt position:

 $M_{\text{bolt}} := \max\left(M_{P,B} \cdot CRS_B, M_{P,C} \cdot CRS_C, M_{P,D} \cdot CRS_D, M_{P,D,fe} \cdot CRS_{D,fe}\right) = 1.641 \cdot \text{kNm}$

<u>Max. withdrawal force on bolts:</u> M.		<u>Allowable WF for M8 Excalibur bolts</u> <u>with edge reduction factor</u>
$F_{w} := \frac{M_{bolt}}{crs_{bolt} + c_{bot}} = 1.919 \cdot kN$	<	$\mathbf{F}_{\mathbf{w}.\mathbf{Rd}} \coloneqq 1.2.73 \mathrm{kN} = 2.73 \mathrm{kN}$
0011 001		therefore = "OK"

Characteristic value of compression perpendicular for timber post:

 $f_{c.90,k} \coloneqq 2.5MPa$ (BS EN 338:2009) $k_{mod} \coloneqq 0.7$ (Solid timber, service class 3, short term action) $\gamma_M \coloneqq 1.3$ (Recommended partial factor of material properties & resistances)

Design value of compression perpendicular for timber post:

$$f_{c.90.d} \coloneqq f_{c.90.k} \cdot \frac{k_{mod}}{\gamma_{M}} = 1.346 \cdot MPa$$

 $\frac{k_{c.90} \approx 1.5}{loads and/or by concentrated loads if crs_{bolt} > 2xh_{post}}$

Required area of embedment strength:

$$A_{req} := \frac{F_W}{f_{c.90.d} \cdot k_{c.90}} = 950.259 \cdot mm^2$$

Washer plate edge: Squ := 35mm

$$A_{prov.s} := Squ \cdot Squ - 0.25 \cdot \pi (12mm)^2 = 1111.903 \cdot mm^2$$

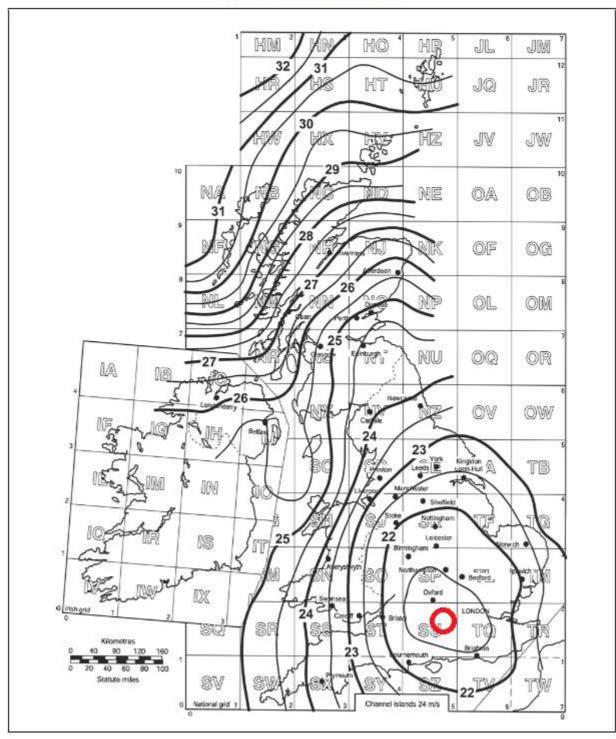
therefore = "OK"

NOTE: Min. edge distance is 80mm with min. 45mm embedment into brick 20N/mm².

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0	
	Title: HOARDING	Sheet:		25	
		Prepare	ed by:	MAT	
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS	
DESIGN HOUSE LTD		Date:	13-	06-2017	

9. Summary:

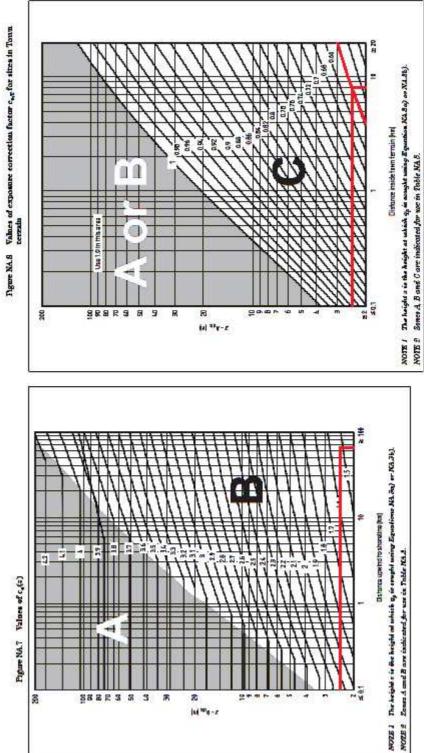
- * Use 75x200 C24 constructional sawn timber posts at following crs: 2.0m (to all zones);
- * Use 3No. 50x75 C16 constructional sawn timber rails at 760mm centres max;
- * Face material assumed as 18mm FSC Grade Plywood;
- * Use 6mm wood screws 50mm long for the ply to rail connection at 300mm centres;
- * Use 1No. 6mm wood screws 150mm long per rail to post connection;
- * Posts to be secured to brick wall;
- * Timber posts fixed directly to the **front** of kentledge blocks with **3No. M08 Excalibur bolts** (or other approved) with **35x35x6mm thick steel washer** under each bolt
- * All timber holes must be **pre-drilled**.



CALCULATION SHEET
Project: UP HILL LONDON NW2 3QB
Title: HOARDING
Customer: 48 SHOOT UP HILL LTD

Job No3417-18Revision:CCOSheet:26Prepared by:MATChecked by:TSDate:13-06-2017

APPENDIX A


Figure NA.1 Value of fundamental basic wind velocity $v_{b,map}$ (m/s) before the altitude correction is applied

	CALCULATION SHEET	Job No	3417-18	
	Project: UP HILL LONDON NW2 3QB	Revision:	CC0	
	Title: HOARDING	Sheet:	Sheet: 27	
		Prepared	by: MAT	
 ר⊤ו	Customer: 48 SHOOT UP HILL LTD	Checked b	<i>by:</i> TS	
		Date:	13-06-2017	

APPENDIX B

	CALCULATION SHEET	Job No	3	3417-18	
	Project: UP HILL LONDON NW2 3QB	Revision: CCC		CC0	
	Title: HOARDING	Sheet:	<i>eet:</i> 28		
		Prepare	ed by:	MAT	
Г	Customer: 48 SHOOT UP HILL LTD	Checked by: T		TS	
		Date:	13-0	06-2017	

APPENDIX C

Allowable internal forces for timber beams (according to BS 5268-2:2002)

75x200mm C24 timber posts

Dimensions of cross-section:	$a = 3 \cdot in$	$b = 8 \cdot in$
	w c	0 0 111
Section area:	$A_{s} := a \cdot b = 140$	$4 \cdot \text{cm}^2$
Moment of inertia:	$I_y := \frac{a \cdot b^3}{12} = 444$	$18.925 \cdot \text{cm}^4$
Section modulus:	$W_y := \frac{a \cdot b^2}{6} = 4$	$56.3 \cdot \text{cm}^3$
Timber grade	- "C24"	
Timber_grade	= C24	
Bending stress parallel to grain:	$fZ = 7.5 \cdot \frac{N}{mm^2}$	
Shear stress parallel to grain (service class 3):	$qA = 0.71 \cdot \frac{N}{mm^2}$	
Mean modulus of elasticity (service class 3):	$E_{0.mean} = 8640$	$\frac{N}{mm^2}$
Minimum modulus of elasticity:	$E_{\min} = 5760 \cdot \frac{1}{m}$	$\frac{N}{m^2}$
Aplication = "load sh	aring - hoarding"	
reprodución – rodu sin	aring nouraning	
Factor converting service classes 1 and 2 strength	$K_{2h} := 0.8$	

$K_{2b} = 0.8$
$K_{2s} := 0.9$
$K_3 = 1.75$
$K_4 := 1.0$
$K_6 := 1.0$
$K_7 = 1.046$
$K_8 = 1$

PERMISSIBLE STRESSES

Moment of resistance:

$$M_{RdP} := fZ \cdot W_v \cdot K_{2b} \cdot K_3 \cdot K_4 \cdot K_6 \cdot K_7 \cdot K_8 = 5.01 \cdot kN \cdot m$$

Shear load:

$$V_{RdP} := qA \cdot A_s K_{2s} \cdot K_3 \cdot K_4 \cdot K_6 \cdot K_8 = 15.7 \cdot kN$$

<u>50x75mm C16 timber rails</u>

Dimensions of cross-section:	$a = 2 \cdot in$	$b = 3 \cdot in$
Section area:	$A_s := a \cdot b = 33.8$	$4 \cdot \text{cm}^2$
Moment of inertia:	$I_y := \frac{a \cdot b^3}{12} = 146$	5.189·cm ⁴
Section modulus:	$W_y := \frac{a \cdot b^2}{6} = 40$	$0.6 \cdot \mathrm{cm}^3$
Timbor grada	- "016"	
Timber_grade	= C10	
Bending stress parallel to grain:	$fZ = 5.3 \cdot \frac{N}{mm^2}$	
Shear stress parallel to grain (service class 3):	$qA = 0.67 \cdot \frac{N}{mm^2}$	
Mean modulus of elasticity (service class 3):	$E_{0.mean} = 7040$	$\frac{N}{mm^2}$
Minimum modulus of elasticity:	$E_{\min} = 4640 \cdot \frac{1}{m}$	$\frac{N}{m^2}$
Aplication $=$ "load sh	aring - hoarding"	
Aprication – Toad sit		
Factor converting service classes 1 and 2 strength classes to service class 3 (bending):	K _{2b} := 0.8	

classes to service class 3 (bending):	20
Factor converting service classes 1 and 2 strength classes to service class 3 (shear):	$K_{2s} := 0.9$
Duration of load factor:	$K_3 = 1.75$
Bearing stress factor:	$K_4 := 1.0$
Form factor:	$K_6 := 1.0$
Depth factor:	$K_7 = 1.165$
Load sharing factor:	$K_8 = 1$

Plywood used:

18mm Finish plywood - sanded (9 veneers)

Characteristic mean modulus of elasticity in bending -
face grain perpendicular to span:

$$E_{m.ply} \coloneqq 3350 \frac{N}{mm^2}$$

Modification factor for creep deformation and service class (table 38 BS EN 5268-2):

 $k_{def} := 0.0$

Duration of load and servce class factor for plywood (short and very short term - table 39 BS EN 5268-2):

$$K_{36} := 1.43$$

Grade modulus value:

$$\begin{split} & E_{d.ply} \coloneqq \frac{E_{m.ply}}{1 + k_{def}} \cdot K_{36} = 4790.5 \cdot \frac{N}{mm^2} \\ & A_{ply} \coloneqq 18mm \cdot a = 8.46 \cdot cm^2 \\ & \alpha \coloneqq \frac{E_{0.mean}}{E_{d.ply}} = 1.47 \\ & I_{y.ply} \coloneqq \frac{a \cdot (18mm)^3}{12} = 2.284 \cdot cm^4 \\ & A_i \coloneqq A_s + \frac{A_{ply}}{\alpha} = 39.597 \cdot cm^2 \\ & y_{dist} \coloneqq \frac{b}{2} + \frac{18mm}{2} = 4.5 \cdot cm \\ & y_r \coloneqq \frac{A_{ply}}{\alpha \cdot A_i} \cdot y_{dist} = 6.542 \cdot mm \\ & y_{ply} \coloneqq \frac{A_s}{A_i} \cdot y_{dist} = 3.846 \cdot cm \\ & y_u \coloneqq y_{ply} + \frac{18mm}{2} = 4.746 \cdot cm \\ & y_d \coloneqq y_r + \frac{b}{2} = 4.254 \cdot cm \\ & I_c \coloneqq I_y + \frac{I_{y.ply}}{\alpha} \dots = 247.369 \cdot cm^4 \\ & + A_s \cdot y_{dist} \cdot y_r \\ & W_{y.u} \coloneqq \frac{I_c}{y_u} = 52.124 \cdot cm^3 \\ & W_{y.d} \coloneqq \frac{I_c}{y_d} = 58.147 \cdot cm^3 \\ & W_y \coloneqq min(W_{y.u}, W_{y.d}) = 52.1 \cdot cm^3 \end{split}$$

Ν

Area of ply in the face contact with rail:

Rail and plywood modulus of elasticity ratio:

Moment of inertia of ply section:

Transformed area of the timber component:

Distance between centroid of ply section and centroid of rail section: Distance between centroid of rail section and centroid of transformed timber component:

Distance between centroid of ply section and centroid of transformed timber component:

Distance between centroid of transformed timber component and top fibre of the section:

Distance between centroid of transformed timber component and bottom fibre of the section:

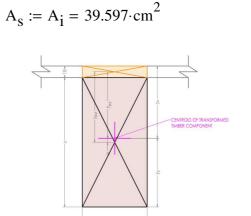
> Moment of inertia of transformed timber component:

> > Section modulus - top fibres:

Section modulus - bottom fibres:

Min. section modulus:

Section area:


PERMISSIBLE STRESSES

Moment of resistance:

$$\mathbf{M}_{\mathrm{Rd}} := \mathbf{f} \mathbf{Z} \cdot \mathbf{W}_{\mathrm{V}} \cdot \mathbf{K}_{2\mathrm{b}} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{6} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} = 0.45 \cdot \mathrm{kN} \cdot \mathrm{n}$$

Shear load:

$$V_{Rd} \coloneqq qA \cdot A_s K_{2s} \cdot K_3 \cdot K_4 \cdot K_6 \cdot K_8 = 4.18 \cdot kN$$

geometric properties of transformed timber component

	CALCULATION SHEET	Job No		3417-18
	Project: UP HILL LONDON NW2 3QB	Revision: CCC		
	Title: HOARDING	Sheet:	32	
		Prepare	ed by:	MAT
Т	Customer: 48 SHOOT UP HILL LTD	Checked by: TS		TS
		Date:	13	-06-2017

1. Description:

Revision:

CC0 - N/A

<u>Aim:</u>

Provide calculations for 5.0m width access gate secured to steel post embedded into the ground. All set out on the drawing no. **3417-18-P0**.

Loadings:

This structure has been designed in accordance with the following guidance:

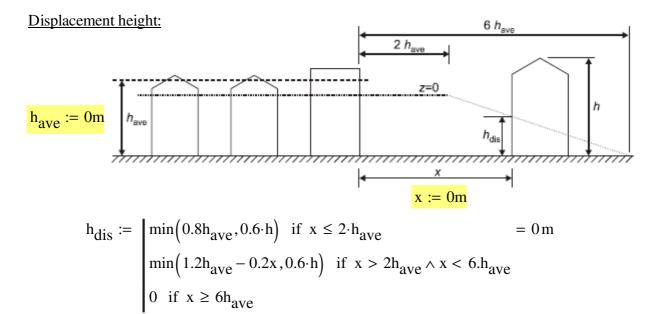
- BS EN 1991-1-4:2005 Wind Actions & TG20-13 Wind Guidance
- BS 5975:2008 Code of practice for temp. works procedures and the permissible stress design of falsework
- BS 6180:2011 Table 2
- TWf 2012:01 HOARDINGS: A guide to good practice

2. Loading:

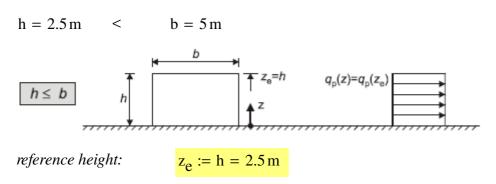
2.1. Minimum notional horizonal load:

The minimum notional horizontal load applied to hoarding is:

$$H_z := 0.74 \frac{kN}{m}$$
, acting at height of: $h_z := 1.2m$ above the base.


2.2. Wind load:

Gate dimnesions:


Site location data:

Gate length:	1 := 5m	altitude of the site:	A := 60m
total length:	b := 1 = 5 m	distance to shoreline:	dist _{sh} := 65km
bay width:	d := 0.1m	distance inside town terrain:	dist _{town} := 8km
Gate height:	h := 2.5m		

	CALCULATION SHEET	Job No	3417-18
	Project: UP HILL LONDON NW2 3QB	Revision:	CC0
	Title: HOARDING	Sheet:	33
		Prepared by	y: MAT
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checked by	r: TS
DESIGN HOUSE LTD		Date:	13-06-2017

Reference height for Wind Calculation:

Fundamental value of of basic wind velocity:

fundamental value of basic wind
velocity before altitude correction: $v_{b.map} := 21.5 \frac{m}{s}$ [Figure NA.1]
(see appendix A for details)

altitude factor:

$$c_{alt} := \begin{vmatrix} 1 + 0.001 \frac{A}{m} & \text{if } z_e \le 10m \\ 1 + 0.001 \frac{A}{m} \cdot \left(\frac{10m}{z_e}\right)^{0.2} & \text{if } z_e > 10m \end{vmatrix}$$

$$v_{b.0} := v_{b.map} \cdot c_{alt} = 22.79 \frac{m}{s}$$

CALCULATION SHEET Job No 3417-18 Project: UP HILL LONDON NW2 3QB **Revision**: CC0 Title: HOARDING Sheet: 34 Prepared by: MAT Customer: 48 SHOOT UP HILL LTD Checked by: ΤS Date: 13-06-2017

The basic wind velocity:

directional factor:	$c_{dir} \coloneqq 1.0$	(for simplification)
season factor:	$c_{season} := 1.0$	(for simplification)
probability factor:	$c_{\text{prob}} := 0.83$	(gate with hoarding up to 2 years)

$$v_b := c_{prob} \cdot c_{dir} \cdot c_{season} \cdot v_{b.0} = 18.916 \frac{m}{s}$$

Basic velocity pressure:

air density (NA.2.18):

$$\rho := 1.226 \frac{\text{kg}}{\text{m}^3}$$

$$\mathbf{q}_{\mathbf{b}} \coloneqq \frac{1}{2} \rho \cdot \mathbf{v}_{\mathbf{b}}^2 = 0.219 \cdot \mathbf{k} \mathbf{P} \mathbf{a}$$

Peak Velocity pressure:

Distance upwind to shoreline: $dist_{sh} = 65 \cdot km$

Distance inside town terrain: $dist_{town} = 8 \cdot km$

Reference height - displacement height: $z_e - h_{dis} = 2.5 \text{ m}$

exposure factor:

exposure factor for town terrain: c_e := 1.55 [Figure NA.7] (see appendix B for details) c_{e.T} := 0.64 [Figure NA.8] (see appendix B for details)

(for country site terrain = 1.0)

FULL WIND $q_p := c_e \cdot c_{e,T} \cdot q_b = 0.218 \cdot kPa$

WORKING WIND

 $q_{p.work} := 0.2kPa$

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0	
	Title: HOARDING	Sheet:		35	
		Prepare	ed by:	MAT	
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS	
DESIGN HOUSE LTD		Date:	13-0	06-2017	

Wind pressure on surfaces - free-standing wall:

solidity ratio:

return corners:

φ	:=	1.0	

rc := NO

 $\frac{1}{h} = 2$ length to height ratio:

Table 7.9 — Recommended pressure coefficients cp,net for free-standing walls and parapets

Solidity	Zo	ne	Α	В	С	D
	Without	<i>ℓlh</i> ≤ 3	2,3	1,4	1,2	1,2
	return	<i>ℓlh</i> = 5	2,9	1,8	1,4	1,2
<i>φ</i> = 1	φ = 1 corners	<i>ℓlh</i> ≥ 10	3,4	2,1	1,7	1,2
		n corners th ≥ h ª	2,1	1,8	1,4	1,2
$\varphi = 0,8$			1,2	1,2	1,2	1,2
^a Linear interpolation may be used for return corner lengths between 0,0 and h						

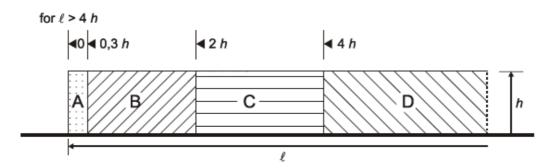
Zone A:

NOTE: Calculations may be neglected (Zone A is only 0.72m wide)

Zone B:

$c_{pe.net.B} = 1.4$
$W_{B} := q_{p} \cdot c_{pe.net.B} = 0.305 \cdot kPa$
$W_{B.work} := q_{p.work} \cdot c_{pe.net.B} = 0.28 \cdot kPa$

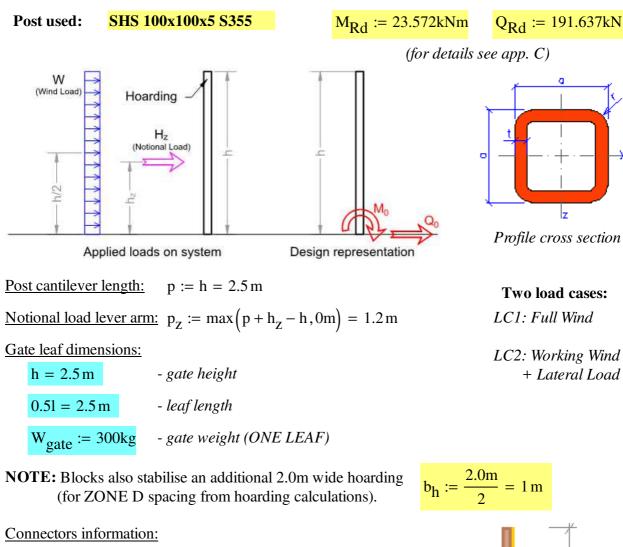
zone lengths: $l_{b.ac} := 2 \cdot h = 5 m$ $l_{b} := l_{b,ac} - 0.3 \cdot h = 4.25 \,\mathrm{m}$

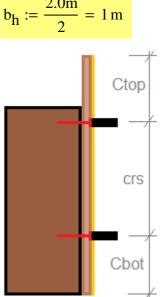

Zone C:

 $c_{pe.net.C} = 1.2$ $W_{C} := q_{p} \cdot c_{pe.net.C} = 0.261 \cdot kPa$ $W_{C.work} := q_{p.work} \cdot c_{pe.net.C} = 0.24 \cdot kPa$

zone lengths: $l_{c.ac} := 4 \cdot h = 10 \,\mathrm{m}$ $l_c := l_{c.ac} - l_{b.ac} = 5 \,\mathrm{m}$

Zone D:


NOTE: Calculations may be neglected (in the worst case scenario zone D does not include *the length of the gate)*



CALCULATION SHEET Job No Project: UP HILL LONDON NW2 3QB **Revision**: Title: HOARDING Sheet: Prepared by: Customer: 48 SHOOT UP HILL LTD Checked by: Date: 13-06-2017

3. Posts design:

$c_{top} := 300 mm$	- bolt to upper box	x edge distance
$c_{bot} := 300 mm$	- bolt to lower boy	c edge distance
$\operatorname{crs}_{\operatorname{conn}} := h - c_{\operatorname{to}}$	$c_{bot} - c_{bot} = 1.9 \mathrm{m}$	- bolt centres

3417-18

CC0

36

TS

MAT

Perm. BM and SF:

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0	
	Title: HOARDING	Sheet:		37	
		Prepare	ed by:	MAT	
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS	
DESIGN HOUSE LTD		Date:	13-	06-2017	

Max. bending moment in post:

$$M_{0} := \max \begin{bmatrix} (0.51 \dots + b_{h}) \cdot h \cdot W_{B} \cdot \frac{h}{2}, (0.51 + b_{h}) \cdot h \cdot W_{B,work} \cdot \frac{h}{2} \dots + (0.51 + b_{h}) \cdot H_{z} \cdot h_{z} \end{bmatrix} = 6.17 \cdot kNm$$

$$M_{90} := W_{gate} \cdot g \cdot 0.251 + 0.9kN \cdot 0.51 = 5.927 \cdot kNm$$
bence

NOTE: 0.9kN as a load from worker on leaf.

Max. shear force in post:

$$Q_0 := (0.51 + b_h) \cdot \max(W_B \cdot p, W_{B.work} \cdot p + H_z) = 5.04 \cdot kN$$
$$Q_{90} := \frac{M_{90}}{crs_{conn}} = 3.12 \cdot kN$$

Ground resistance moment:

<i>Ground factor (for <u>average</u> quality of the ground):</i>	$G := 390 \frac{kN}{m^2}$
Minimum effective width of concreted foundation:	D := 0.40m
Planting depth of the post from ground level:	P := 1.0m
Factor of safety for destabilizing variable actions:	$\gamma_{\rm F} \coloneqq 1.5$

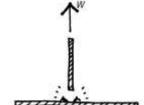
$$M_{g} := \frac{G \cdot D \cdot P^{3}}{10m} = 15.6 \cdot kNm$$

Max. overturning moment about fulcrum point:

$$\begin{split} \mathbf{M}_{\mathrm{O},0} &\coloneqq \left[\mathbf{M}_{0} + \left(0.707 \cdot \mathbf{Q}_{0} \cdot \mathbf{P} \right) \right] \cdot \gamma_{\mathrm{F}} = 14.601 \cdot \mathrm{kNm} & < \mathbf{M}_{\mathrm{g}} = 15.6 \cdot \mathrm{kNm} \\ & \text{therefore} = "\mathrm{OK"} \\ \mathbf{M}_{\mathrm{O},90} &\coloneqq \left[\mathbf{M}_{90} + \left(0.707 \cdot \mathbf{Q}_{90} \cdot \mathbf{P} \right) \right] \cdot \gamma_{\mathrm{F}} = 12.2 \cdot \mathrm{kNm} & < \mathbf{M}_{\mathrm{g}} = 15.6 \cdot \mathrm{kNm} \\ & \text{therefore} = "\mathrm{OK"} \end{split}$$

bending = "OK"

shear = "OK"


	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0	
	Title: HOARDING	Sheet:		38	
		Prepare	ed by:	MAT	
-	Customer: 48 SHOOT UP HILL LTD	Checked by:		TS	
		Date: 13-06-201		06-2017	

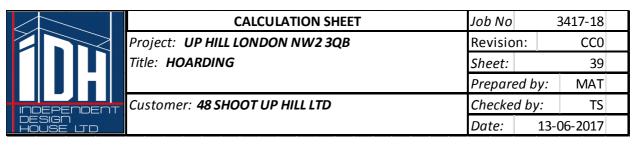
4. Connection of hinger to gate

4. Connection of hinger to gate	
Zone A:	
$W_A := q_p \cdot c_{pe.net.A} = 0.5 \cdot kPa$	zone length: $l_a := 0.3 \cdot h = 0.75 \text{ m}$
$W_{A.work} := q_{p.work} \cdot c_{pe.net.A} = 0.46 \cdot kPa$	a
Max. load on connection in wind zone A:	
$q_{close} := 0.5 \cdot h \cdot max (W_A \cdot 0.51, W_{A.work} \cdot 0.51 + H_z) =$	2.362·kN
Max. load on connection in case with open gates:	Basic withdrawal load per
$q_{open} := Q_{90} = 3.12 \text{ kN}$	mm of penetration:
Jopen 50	$F_t := 18.2 \frac{N}{mm}$
Connection used: <u>6mm wood screws, 50mm long</u>	mm
Assumed no. of screws: $n := 5$	Basic single shear lateral load
Point side penetration: $e := 50mm - 10mm = 40 \cdot mm$	[BS 5268-2:2002, table 66]:
$\frac{1}{2}$ on the period atom. $\frac{1}{2}$ = $\frac{1}{2}$ on the $\frac{1}{2}$ of the set of the	$F_{s} := 765N$
Design factors:	5
$K_{52} := 1.25$ (very short term loading) $K_{53} := 0.7$ (Class	(53) $K_{54} := 1$ (for no. of screws < 10)
Permissible load per metre:	
$Q_{t.Rd} := n \cdot e \cdot F_t \cdot K_{52} \cdot K_{53} \cdot K_{54} = 3.19 \cdot kN \qquad > \qquad ma$	$x(q_{close}, q_{open}) = 3.12 \cdot kN$
$Q_{s Rd} := n \cdot F_{s} \cdot K_{52} \cdot K_{53} \cdot K_{54} = 3.35 \cdot kN > q_{or}$	$p_{\text{pen}} = 3.12 \cdot \text{kN}$
-	shear = "OK"
5. Welded connection of steel hinge to post:	
Weld information:	
Weld length: $W_{Lg} := 50 \text{mm}$	
Weld leg length: s := 6mm	\uparrow^{w}

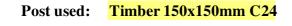
Throat thickness:

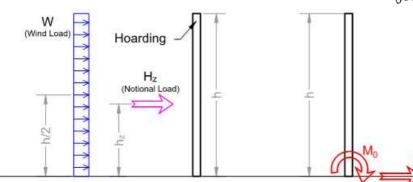
Transverse capacity: $P_L := 1.155 \text{kN} \cdot \text{mm}^{-1}$

NOTE: Calculations based on values S275, $\rho w = 220 \text{ N/mm}^2$ and K=1.25. Max. withdrawal force on connection:


 $a := 0.7s = 4.2 \cdot mm$

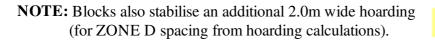
 $W := q_{open} = 3.12 \text{ kN}$


Permissible load (lower weld):


 $W_{Rd} := W_{Lg} \cdot P_L = 57.75 \cdot kN$ > $W = 3.12 \cdot kN$

therefore = "OK"

6. Timber posts design (alternative):


Applied loads on system

<u>Post cantilever length:</u> p := h = 2.5 m

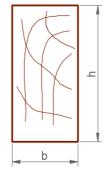
<u>Notional load lever arm</u>: $p_z := max(p + h_z - h, 0m) = 1.2 m$

Gate leaf dimensions:

h = 2.5 m	- gate height
$0.51 = 2.5 \mathrm{m}$	- leaf length
$W_{gate} = 300 kg$	- gate weight (ONE LEAF)

Connectors information:

$c_{top} = 300 \text{mm}$	- bolt to upper box	c edge distance
$c_{bot} = 300 mm$	- bolt to lower box	edge distance
$\operatorname{crs}_{\operatorname{conn}} := h - c_{\operatorname{to}}$	$c_{p} - c_{bot} = 1.9 \mathrm{m}$	- bolt centres

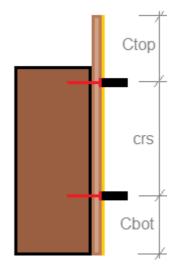

Perm. BM and SF:

 $M_{Rd} := 6.374 \text{kNm}$

Design representation

 $Q_{Rd} := 25.16$ kN

(for details see app. D)



Profile cross section

Two load cases: *LC1: Full Wind*

LC2: Working Wind + Lateral Load

 $b_h = 1 m$

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0	
	Title: HOARDING	Sheet:		40	
		Prepare	ed by:	MAT	
	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS	
ISIGN JUSE LTD		Date:	13-0	06-2017	

Max. bending moment in post:

$$M_{0} := \max \begin{bmatrix} (0.51 \dots + b_{h}) \cdot h \cdot W_{B} \cdot \frac{h}{2}, (0.51 + b_{h}) \cdot h \cdot W_{B,work} \cdot \frac{h}{2} \dots + (0.51 + b_{h}) \cdot H_{z} \cdot h_{z} \end{bmatrix} = 6.17 \cdot kNm$$

$$M_{90} := W_{gate} \cdot g \cdot 0.251 + 0.9kN \cdot 0.51 = 5.927 \cdot kNm$$
bending = "OK"

NOTE: 0.9kN as a load from worker on leaf.

Max. shear force in post:

$$Q_0 := (0.51 + b_h) \cdot \max(W_B \cdot p, W_{B.work} \cdot p + H_z) = 5.04 \cdot kN$$
$$Q_{90} := \frac{M_{90}}{crs_{conn}} = 3.12 \cdot kN$$

7. Connectionon of steel hinge to post:

Zone A:

$$W_{A} := q_{p} \cdot c_{pe.net.A} = 0.5 \cdot kPa$$
$$W_{A.work} := q_{p.work} \cdot c_{pe.net.A} = 0.46 \cdot kPa$$

Max. load on connection in wind zone A:

$$q_{close} \coloneqq 0.5 \cdot h \cdot max \left(W_{A} \cdot 0.51, W_{A,work} \cdot 0.51 + H_{z} \right) = 2.362 \cdot kN$$

Max. load on connection in case with open gates:

 $q_{open} := Q_{90} = 3.12 \,\text{kN}$

Connection used: <u>6mm wood screws, 50mm long</u>

Assumed no. of screws: n := 5

Point side penetration: $e := 50mm - 10mm = 40 \cdot mm$

Design factors:

 $K_{52} := 1.25$ (very short term loading) $K_{53} := 0.7$ (Class 3) $K_{54} := 1$ (for no. of screws < 10)

Permissible load per metre:

$$Q_{t.Rd} \coloneqq n \cdot e \cdot F_t \cdot K_{52} \cdot K_{53} \cdot K_{54} = 3.69 \cdot kN > max(q_{close}, q_{open}) = 3.12 \cdot kN$$

$$Q_{s.Rd} \coloneqq n \cdot F_s \cdot K_{52} \cdot K_{53} \cdot K_{54} = 3.61 \cdot kN > q_{open} = 3.12 \cdot kN$$

$$shear = "OK"$$

shear = "OK"

. Rasic withdrawal load per

zone length:

 $l_a := 0.3 \cdot h = 0.75 \, m$

Basic withdrawal load per mm of penetration:

$$F_t := 21.1 \frac{N}{mm}$$

Basic single shear lateral load [BS 5268-2:2002, table 66]:

 $F_s := 826N$

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0	
	Title: HOARDING	Sheet:		41	
		Prepare	ed by:	MAT	
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS	
DESIGN HOUSE LTD		Date:	13-	06-2017	

8. Summary:

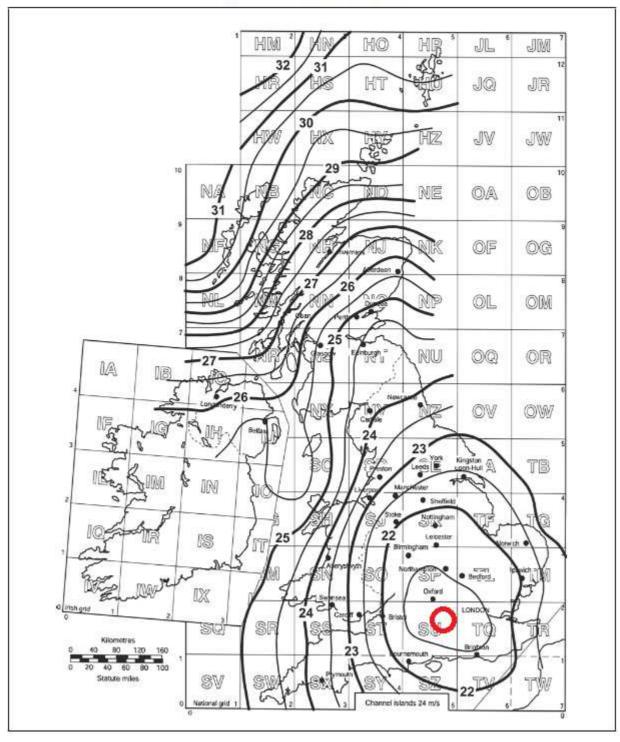
- * 2.5m high gate to be secured to SHS 100x100x5mm S355 steel post (or to timber post 150x150mm C24 as alternative (150mm <u>finished</u> size of a timber)
- * Posts also stabilise adjacent hoarding.
- * The gates were covered in **ply**.
- * Max. weigh of the gate to be **300kg** (one leaf).
- * Posts to be embedded into the ground in 400mm dia. hole, 1.00m deep and infilled with concrete.
- * Gate fixed to posts with steel hinge (using **5No. 6mm wood screws, 50mm long** (per connection), hinge fixed to steel post on **6mm welded** connection (for timber post connection use **5No. 6mm wood screws, 50mm long** (per one hinge).

CALCULATION SHEET
Project: UP HILL LONDON NW2 3QB
Title: HOARDING
Customer: 48 SHOOT UP HILL LTD

 Job No
 3417-18

 Revision:
 CC0

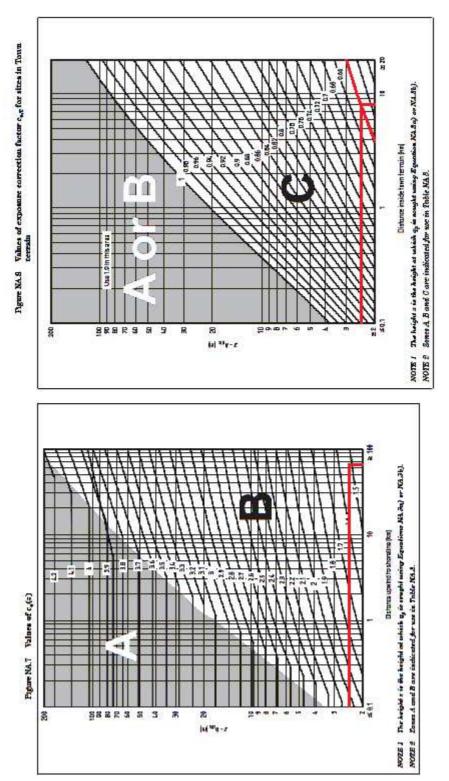
 Sheet:
 42


 Prepared by:
 MAT

 Checked by:
 TS

 Date:
 13-06-2017

APPENDIX A


Figure NA.1 Value of fundamental basic wind velocity $v_{b,map}$ (m/s) before the altitude correction is applied

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revision: C		CC0	
	Title: HOARDING	Sheet:		43	
		Prepare	ed by:	MAT	
-	Customer: 48 SHOOT UP HILL LTD	Checked by:		TS	
		Date:	13-	06-2017	

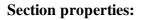
APPENDIX B

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0	
	Title: HOARDING	Sheet:		44	
		Prepare	ed by:	MAT	
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checked	d by:	TS	
DESIGN HOUSE LTD		Date:	13-0	06-2017	

APPENDIX C

Allowable internal forces for steel column (according to BS 1993-1-1:2006)

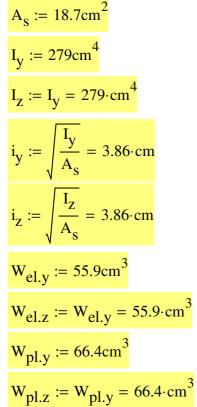
CALCULATION SHEET	Job No	3417-18
Project: UP HILL LONDON NW2 3QB	Revision:	CC0
Title: HOARDING	Sheet:	45
	Prepared by	: MAT
Customer: 48 SHOOT UP HILL LTD	Checked by:	TS
	Date: 1	3-06-2017


Profile: SHS 100x100x5 S355

Section dimensions:

a := 10cm

t := 0.5 cm


r := 0.75 cm

Steel properties:

f_v := 355MPa

 $E_s := 210$ GPa

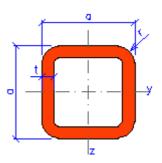
S355 steel

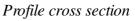
second moment of area (axis Z-Z) radius of gyration (axis Y-Y)

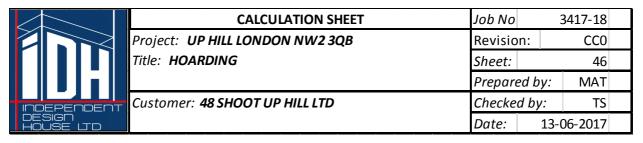
second moment of area (axis Y-Y)

sectional area

radius of gyration (axis Z-Z)


elastic modulus (axis Y-Y)


elastic modulus (axis Z-Z) plastic modulus (axis Y-Y)


plastic modulus (axis Z-Z)

(Table 3.1 BS EN 1993-1-1)

nominal yield strength modulus of elasticity

Classification of cross section

(Table 5.2 BS EN 1993-1-1)

$$\varepsilon := \sqrt{\frac{235\text{MPa}}{f_y}} = 0.814$$

$$\frac{-\text{WEB}}{c} := a - 2t - 2r = 75 \cdot \text{mm}$$

$$\frac{Bending:}{2} \text{ Cl}_{w.b} := \begin{vmatrix} 1 & \text{if } \frac{c}{t} \le 72\varepsilon \\ 2 & \text{if } \frac{c}{t} \le 83\varepsilon \wedge \frac{c}{t} > 72\varepsilon \\ 3 & \text{if } \frac{c}{t} \le 124\varepsilon \wedge \frac{c}{t} > 83\varepsilon \\ 4 & \text{otherwise} \end{vmatrix}$$

Bending

Partial factors: (Section 6.1 BS EN 1993-1-1)

 $\gamma_{M0} \coloneqq 1.00$ -resistance of cross-sections whatever the class is

<u>Design shear resistance</u>

$$M_{c.Rd} := \frac{W_{pl.y} \cdot f_y}{\gamma_{M0}} = 23.572 \cdot kNm$$

Shear

Shear area:

$$A_{v} := \frac{A_{s} \cdot a}{2a} = 935 \cdot \text{mm}^{2}$$
$$V_{\text{pl.Rd}} := \frac{A_{v} \cdot \left(\frac{f_{y}}{\sqrt{3}}\right)}{\gamma_{\text{M0}}} = 191.637 \cdot \text{kN}$$

Design shear resistance

$$V_{c.Rd} := \begin{vmatrix} V_{pl.Rd} & \text{if class} = 1 \lor \text{class} = 2 \\ \text{"stress analysis required"} & \text{if class} = 3 \end{vmatrix}$$

PERMISSIBLE STRESSES

Moment of resistance:	$M_{c.Rd} = 23.572 \cdot kNm$
Shear load:	$V_{c.Rd} = 191.637 kN$

	CALCULATION SHEET	Job No		3417-18	
	Project: UP HILL LONDON NW2 3QB	Revisio	n:	CC0	
	Title: HOARDING	Sheet:		47	
		Prepare	ed by:	MAT	
INDEPENDENT	Customer: 48 SHOOT UP HILL LTD	Checke	d by:	TS	
DESIGN HOUSE LTD		Date:	13-0	06-2017	

APPENDIX D

Allowable internal forces for timber beams (according to BS 5268-2:2002)

		CALCULATION SHEET	Job No	3417-18
		Project: UP HILL LONDON NW2 3QB	Revision:	CC0
		Title: HOARDING	Sheet:	48
			Prepared by:	MAT
nc)EPENDENT	Customer: 48 SHOOT UP HILL LTD	Checked by:	TS
DE	SIGN USE LTD		Date: 13	-06-2017

Profile: Timber 150x150mm C24

Dimensions of cross-section:
$$a = 6 \cdot in$$
 $b = 6 \cdot in$ Section area: $A_s := a \cdot b = 225 \cdot cm^2$ Moment of inertia: $I_y := \frac{a \cdot b^3}{12} = 4218.75 \cdot cm^4$ Section modulus: $W_y := \frac{a \cdot b^2}{6} = 562.5 \cdot cm^3$ Timber_grade = "C24"Bending stress parallel to grain: $fZ = 7.5 \cdot \frac{N}{mm^2}$ Shear stress parallel to grain: $gA = 0.71 \cdot \frac{N}{mm^2}$ Mean modulus of elasticity $F_0 = 8640 \cdot \frac{N}{mm^2}$

Bending stress parallel to grain:	$fZ = 7.5 \cdot \frac{N}{mm^2}$
Shear stress parallel to grain (service class 3):	$qA = 0.71 \cdot \frac{N}{mm^2}$
Mean modulus of elasticity (service class 3):	$E_{0.mean} = 8640 \cdot \frac{N}{mm^2}$
Minimum modulus of elasticity:	$E_{\min} = 5760 \cdot \frac{N}{mm^2}$

Aplication = "load sharing - hoarding"

Factor converting service classes 1 and 2 strength classes to service class 3 (bending):	K _{2b} := 0.8
Factor converting service classes 1 and 2 strength classes to service class 3 (shear):	$K_{2s} := 0.9$
Duration of load factor:	$K_3 = 1.75$
Bearing stress factor:	$K_4 := 1.0$
Form factor:	$K_6 := 1.0$
Depth factor:	$K_7 = 1.079$
Load sharing factor:	$K_8 = 1$

PERMISSIBLE STRESSES

Moment of resistance:	$\mathbf{M}_{RdP} := \mathbf{f} \mathbf{Z} \cdot \mathbf{W}_{y} \cdot \mathbf{K}_{2b} \cdot \mathbf{K}_{3} \cdot \mathbf{K}_{4} \cdot \mathbf{K}_{6} \cdot \mathbf{K}_{7} \cdot \mathbf{K}_{8} = 6.374 \cdot \mathbf{kN} \cdot \mathbf{m}$
Shear load:	$V_{RdP} := qA \cdot A_s K_{2s} \cdot K_3 \cdot K_4 \cdot K_6 \cdot K_8 = 25.16 \cdot kN$