

PHASE 2 – ADDITIONAL GROUND INVESTIGATION REPORT

FOR A PROPOSED EDUCATIONAL DEVELOPMENT

AT

MARIA FIDELIS SCHOOL, 34 PHOENIX ROAD, LONDON, NW1 1TA.

Prepared For

Kier Construction Ltd - London 2 Langston Road Loughton Essex **IG10 3SD**

3163, GI, RS /GROUND/FS,JD/29-6-18/V2 Report Reference Number:

3163,GI, RS Project Number:

Issue Number

29 June 2018 Issue Date:

DOCUMENT ISSUED RECORD

Report Number: 3163,GI,RS/FS,JD/29-06-2018/V2

Client: Kier Construction Ltd - London

Project: Maria Fidelis School, 34 Phoenix Road, London, NW1 1TA

Project Number: 3163,GI,RS

Report Type: **Ground Investigation**

Date of Report: 29 June 2018

Prepared by: Flora Sutherland

Assistant

Geoenvironmental

Engineer

Reviewed by: Jim Dawson

Associate Director

Date: 29 June 2018

29 June 2018 Date:

Authorised by: **Paul Davies**

Director

Date: 29 June 2018

Prepared by: Geosphere Environmental Ltd, Brightwell Barns, Ipswich Road, Brightwell,

Frederica Paul David

Suffolk, IP10 0BJ. Telephone (01603) 298 076. www.geosphere-environmental.co.uk

Confidentiality, Copyright and Reproduction

This document has been prepared by Geosphere Environmental Ltd in connection with a contract to supply goods and/or services and is submitted only on the basis of strict confidentiality. The contents must not be disclosed to third parties other than in accordance with the terms of the contract. Geosphere Environmental Ltd accepts no responsibility whatsoever to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.

REVISION RECORD

Revision	Date	Document	Prepared By:	Admin	
V1	20/06/2018	3163,GI,RS/FS,JD/20-06-2018/V1	FS,JD	CJ	
V2	29/06/2018	3163,GI,RS/FS,JD/29-06-2018/V2	JD	Cj	

AMENDMENT RECORD

Revision	Date	Amendments
V2	29/06/2018	Additional site development proposals considerations and recommendations

EXECUTIVE SUMMARY

Project Details	Geosphere Environmental Ltd was commissioned by Kier Construction Ltd - London to undertake an additional Phase 2 Site Investigation Report within the playground area of Maria Fidelis School, 34 Phoenix Road, London, NW1 1TA.
	It is understood that the site is to be developed into open hardstanding space for the school. This will include removal of the existing hardstanding / flexible surface layer(s) and replacement with a new playground surface (flexible surfacing or similar). This will involve a combination of import/removal of materials to increase/reduce elevations to create the required play area. In addition to which there are localised areas of proposed in-ground "planters" to be created.
Site Location / Description	The site is in the London Borough of Camden at Maria Fidelis School, 34 Phoenix Road, London, NW1 1TA. The surface of the site is made of hard black flexible paving. The subject area was roughly 0.5 hectares (ha). The site existed at an approximate elevation of 25mAOD and can be located with the grid reference (NGR) TQ 29685 82924.
	Parts of the site have not been investigated due to extant structures, which are due to be removed as part of the overall redevelopment; recommendations are provided where possible.
Geology	The geological records indicated the site to be underlain by the London Clay Formation. The site data indicates variable thicknesses of Made Ground overlying the London Clay.
Hydrogeology	The hydrogeological records indicated that the site was located upon unproductive strata and not located within source protection zone.
Hydrology	Within 500m of the site no surface water features or rivers are recorded.
Summary of Previous Investigation Data	The site was part of a previous investigation of the wider redevelopment scheme (report reference 1445,GI/SG,PD/15-01-16/V1) which encountered variable thicknesses of Made Ground between 0.95 to 2.90m bgl underlain by London Clay formation to depths of up to 26mbgl. The data included three investigation points within the subject site and the chemical analysis of the Made Ground included marginally to moderately elevated lead concentrations at two of these locations.
Basic Conceptual Model	These localised elevated concentrations of lead and potential for other poor quality Made Ground pose a potential risk to human health receptors of this part of the redevelopment scheme. However, it can be considered from the outset that the proposed surfacing for the school playground will create a pathway break between any poor quality soil materials and the end user receptors. Construction workers and the general public may be a potential risk from unsuitable soils. Proposal for areas with proposed planters are included herein.
Site Works	Site works were carried out on 31 May 2018 and comprised of the following works within the subject area, where access was possible:
	 Breaking out hardstanding ground, reinstating with coldlay;
	 Formation of five windowless sampling holes (WS1 to WS5) to depths of between depth of 2-3 mbgl;
	Undertaking environmental soil sampling and logging.

Laboratory Results	The chemical analyses were carried out on eight soil samples, in addition to the data for the area from the previous report, indicate that no further significantly elevated concentrations of analytes are present in the sampled Made Ground soils. No asbestos in the soils is reported within the samples.
Advanced Conceptual Model	Within the main play area of the site: a low risk exists to end user receptors due to the pathway break installation preventing exposure and in addition to which, there is a low risk to controlled waters. The localised elevated lead concentrations and Made Ground pose a potential moderate risk to construction workers and general public via various pathways including direct contact and dust creation respectively. Based upon this, in areas where planters are proposed, the risk to end users remains low (due to, in effect, a soil cover system of the planter); where no soil data exists in parts of the site, recommendations are included herein.
Recommendations	A Discovery Strategy and any other relevant control measures should be applied during the soil exposure period of works to retain the risk to construction workers (and general public) to low levels. No specific remedial or validation measures are necessary in the area to be re-surfaced, due to the pathway break installation preventing exposure to the end users.

This Executive Summary only provides a summary of the site data and its assessment. It does not provide a definitive engineering analysis and is for guidance only. It is recommended that the reader reviews the reporting in its entirety and any material referenced therein.

CONTENTS

		Page No.
DOCUM	MENT ISSUED RECORD	1
EXECUT	TIVE SUMMARY	2
1.	INTRODUCTION	6
1.1	Area of intrusive Investigation	6
1.2	Proposed Planted Zones	6
2.	SITE SETTINGS	7
2.1	Site Description	7
2.1.1	Existing School Play Area	7
2.1.2	Proposed Planted Zones	7
2.2	Previous Site Reports	8
3.	SITE WORKS	9
3.1	Methodology	9
3.2	Scope	9
3.2.1	Constraints to Working Area	9
3.3	Ground Conditions Encountered	9
3.4	Groundwater	10
3.5	Visual and Olfactory Evidence of Contamination	10
4.	LABORATORY TESTING	11
4.1	Methodology	11
4.2	Environmental Testing Suite	11
4.2.1	Quality Control	11
4.2.2	Environmental Testing Suite – Soils	11
5.	RISK ASSESSMENT	12
5.1	Risk to Human Health	12
5.1.1	Methodology	12
5.2	Site Specific Land Use Considerations	12
5.3	Soil Quality Data	12
5.3.1	Human Health Receptors	14
5.3.2	Asbestos	15
5.4	Risk to Controlled Waters	15
5.5	Risk to Plants	15
5.6	Waste Soil Classification Data	15
5.7	Proposed Planters Areas	15

CONTENTS

		Page No.
5.7.1	Soil Quality Data Consideration	16
5.7.2	Proposed Planter Details	16
5.7.3	Proposed Planter Areas: Risk Considerations and Recommendations	16
5.8	Conceptual Site Model	16
5.8.1	Discussion: Existing School Play Area	18
5.8.2	Discussion: Proposed Planter Areas	18
6.	CONCLUSIONS AND RECOMMENDATIONS	19
ADDITI	ONAL INFORMATION	20
Α.	CONSULTATION	20
В.	SHORT-TERM MITIGATION MEASURES	20
C.	DISCOVERY STRATEGY	21

APPENDICES

APPENDIX 1 - ACRONYMS AND ABBREVIATIONS

APPENDIX 2 - REPORT LIMITATIONS AND CONDITIONS

APPENDIX 3 - REFERENCES

APPENDIX 4 - EXPLORATORY HOLE LOGS

APPENDIX 5 - COMPARISON OF CONSEQUENCES AGAINST PROBABILITY

APPENDIX 6 - ENVIRONMENTAL LABORATORY TEST RESULTS

APPENDIX 7 - DRAWINGS

APPENDIX 8 – PHOTOGRAPHS

TABLES

Table 1 - Ground Conditions

9
Table 2 Summary of Soil Quality Data and Comparison with Screening Values

13
Table 3 - Conceptual Model

1. INTRODUCTION

Geosphere Environmental Ltd was commissioned by Kier Construction Ltd - London to undertake a Phase 2 Ground Investigation of a targetted area of the school (re)development at Maria Fidelis School, 34 Phoenix Road, London, NW1 1TA.

It is understood that the investigated, subject area of the premises is to be developed into a hard-standing open space or play area, updating the existing play or outdoor communal area, also currently comprising of flexible surfacing ("tarmac") at ground level. Within this subject area there are no new proposed areas of soft standing. This report also addresses other sections of the site that are subject to site clearance and emplacement of localised zones of "planters", referred to within this report as "proposed planted ones". Further discussion and recommendations are provided herein.

1.1 Area of intrusive Investigation

Previous site investigation at the premises focussed on the wider school and neighbouring properties and this phase of investigation targets the accessible area of the play/communal area as outlined in Figure 2.

The primary objectives of this ground investigation are to:

- Assess the ground conditions at the site;
- Assess the potential risk to human health and the environment;
- Develop any necessary remedial or mitigating strategy.

These are to be achieved by:

- Undertaking an intrusive investigation of the site, based upon the findings of previous site data and the proposed development layout and the scope agreed with the client;
- Logging and sampling the soils on the site and noting any visual or olfactory evidence of contamination;
- Undertaking laboratory chemical analysis of selected soil to assess the soil quality and suitability;
- Creating a / Updating the Conceptual Site Model for the specific area of the site and assessing suitable remedial/mitigating and verification actions.

1.2 Proposed Planted Zones

Localised areas of the site are due to have small-scale landscaping to be completed following further site clearance. These are indicated within the appended Drawings (references 1566_LL_105 and 1566/LD/503 and will be discussed in more detail within relevant sections of the report. Structures exist upon these areas of the site and there are other constraints to the ground-conditions data of these areas; relevant recommendations are provided accordingly.

2. SITE SETTINGS

2.1 Site Description

The subject site was situated in the London Borough of Camden, adjacent and to the east of Euston station, and is located at National Grid Reference, (NGR), TQ 29685 82924.

A Site Location Plan, Drawing ref. 3163,GI,RS,001/Rev 1 is included in Appendix 7, and in Figure 1 below:

Figure 1 – Site Location Plan

Figure 2 – Site Plan
Subject area as anticipated by the client.

2.1.1 Existing School Play Area

The investigated, subject area of the school is used as a school playground, thus is predominantly hard standing. A Site Plan, Drawing ref. 3163,GI,RS 002/Rev 0, is included in Appendix 7 and in Figure 2 above. The red line within Figure 2, indicates the area subject to intrusive investigation; see section 3.3 for further information.

The area was roughly irregular in shape and comprised of an area of 0.5 hectares (ha). The site existed at an approximate elevation of 25mAOD and no significant changes in topography were noted across the outlined site. At the time of the investigation the area was a hardstanding playground with localised trees, benches and a canopy near the centre.

To the north west of the site was the existing Maria Fidelis Catholic Schools buildings. Phoenix Road lay to the north just beyond the school, this of which was the main vehicular access point for the site. Euston Underground Station exists south east of the Maria Fidelis Catholic School just passed Eversholt Street.

2.1.2 Proposed Planted Zones

As illustrated by appended Drawings 1566_LL_105 and 1566/LD/503, including the annotated version, the areas of proposed planters are to a large extent underneath the extant school structures or the hardstanding

/ playground areas. As a result of which, a proportion of these areas cannot be investigated at this stage but outline assessments and recommendations are provided based upon the available data.

2.2 Previous Site Reports

The following report has previously been produced by Geosphere Environmental Limited for the wider redevelopment site which included the subject site:

 "Ground investigation report for a proposed school development at Maria Fidelis School, 34 Phoenix Rd, London, NW1 1TA and Metropolitan Police Depot, Drummond Crescent, London", -1445,GI/SG,PD/15-01-16/V1.

The previous ground investigation site works were undertaken during October 2015 and the report includes a number of soil samples within the areas of the subject site.

A summary of the analysis of soil samples within the subject site:

 Elevated lead concentrations of 479mg kg-1 in WS1 at 0.50m and 1250mg kg-1 in WS3 at 0.70m are reported.

See Report No. 1445,SI Drawing No. 006b / Rev 0 and appended Drawing 3163,GI,RS 004/ Rev 1 where the site locations are combined.

Where applicable this data within or in the proximity of the subject site is considered in the risk assessments below.

3. SITE WORKS

3.1 Methodology

This ground investigation was carried out on the basis of the practices set out in BS 10175: 2011+A1:2013, (ref. **R.3**) and BS 5930: 2015 (ref. **R.4**). The location of exploratory holes has been planned, where possible, in general accordance with CLR 4 and CLR11, (ref. **R.5**).

3.2 Scope

Site works were carried out on 31 May 2018 and comprised of the following:

- Excavation of five boreholes, (WS1 to WS5) and soil logging and sampling, extended to depths ranging from 2.0m to 3.0m using Windowless Sampler techniques;
- Breaking out and reinstating each position with "coldlay" flexible surfacing;
- Analysis of selected soil samples for a standard suite of analytes (see below).

This report does not assess the soil gas regime as this is addressed within the previous report.

3.2.1 Constraints to Working Area

During the site works part of the area for the targeted investigation was not accessible due to the ongoing site works including site cabins, structures or site school furniture, while also taking into consideration the extant buried services. As a result the area investigated is indicated within the appended drawings.

3.3 Ground Conditions Encountered

The sequence of the strata encountered during the investigation generally confirms the anticipated geology as interpreted from the British Geological Survey (BGS) digital mapping, at a scale of 1:50,000 and the previous site data. The sequence and indicative thickness of strata are provided in Table 1 below:

Table 1 - Ground Conditions							
GL I.	Depth Enco	untered (mgl)	Strata Thickness	O			
Strata	From To		(m)	Composition			
Made Ground	0.0	0.0 to > 0.10	0.07-0.10	Flexible surfacing / "tarmac" or similar.			
Made Ground (Granular)	0.07 to 0.10	0.50 to 0.57	0.40-0.47	Black/orange/yellow/brown/grey gravelly, fine to coarse SAND. Gravel is fine to coarse brick, flexible black paving, concrete, plastic, timber and flint.			

Table 1 - Ground Conditions								
	Depth Enco	untered (mgl)	Strata Thickness	Composition				
Strata	From	То	(m)					
Made Ground (Cohesive)	0.50 to 0.57	1.00 to 1.30	0.44-0.80	Soft to firm brown, slightly gravelly sandy CLAY. Gravel is brick, concrete, ash and flint.				
Clay (weathered London Clay)	1.00 to 1.30	2.00 to 3.00	>0.80-1.90 as encountered	Firm mottled grey and brown CLAY. Relict rootlets present.				

3.4 Groundwater

Groundwater was encountered as small inflows of seepages in WS4 at 1.9mbgl and in WS5 at 1.05mbgl during the ground investigation. Groundwater was not encountered in any of the other exploratory holes.

3.5 Visual and Olfactory Evidence of Contamination

Made Ground at all boreholes was encountered, this included brick, concrete, timber, ash and black flexible paving. No significant olfactory signs of contamination were noted.

4. LABORATORY TESTING

4.1 Methodology

Representative disturbed samples were taken at the depths shown on the exploratory hole records and despatched to the laboratory. The exploratory hole logs are included in Appendix 4.

Samples were collected for environmental purposes in amber glass jars and tubs then kept in a cool box with cooling aid. Twenty samples were collected during the investigation. The exploratory investigation comprised of targeted sampling of the overlying Made Ground at locations of potential contamination. Also samples were taken across the site to identify areas of potential contamination.

No field techniques were undertaken for the soil samples, all analyses of the soil samples took place in the laboratory.

4.2 **Environmental Testing Suite**

4.2.1 Quality Control

The environmental laboratory used (DETS Ltd) was an accredited laboratory by the United Kingdom Accreditation Service (UKAS), and at least 50% of individual parameters are from methods pending accreditation to the Environment Agency Monitoring Certification Scheme (MCERTS) for the range of analyses undertaken as part of this investigation. The MCERTS performance standard for the chemical testing of soil is an application of ISO 17025: 2005 specifically for the chemical testing of soil.

4.2.2 Environmental Testing Suite – Soils

The chemical analyses was carried out on eight samples of soil. The nature of the analyses is detailed below:

- Metals screen arsenic, cadmium, chromium, lead, mercury, selenium, boron (water soluble), beryllium, copper, nickel, vanadium and zinc;
- Organic screen total petroleum hydrocarbons (TPH) with specific carbon banding; benzene, toluene, ethylbenzene and xylenes (BTEX); polyaromatic hydrocarbons (PAH) – USEPA 16 suite; monohydric phenols;
- Inorganics screen cyanide (total), sulphate (water soluble);
- Others pH, organic matter, asbestos screen.

A copy of the laboratory test results data for this phase of works is included in Appendix 6, as report reference 18-76148. In addition to which, for reference, the soil dataset from the previous report is included (laboratory report reference 15-37171), however data for exploratory holes WS1, WS3 and TP1 should be considered for the subject area.

5. RISK ASSESSMENT

5.1 Risk to Human Health

5.1.1 Methodology

The current guidance requires that a conceptual model be formulated, based upon the findings of the research. The conceptual model is limited at this stage to the identification and assessment of potential 'hazards', identified or suspected from the results of the research; the potential 'receptors' that may be affected and the anticipated 'pathways' to those receptors. The findings are summarised in the following subsections.

The guidance proposes a four-stage approach for the assessment of contamination and the associated risks. The four stages are listed below:

- Hazard Identification;
- Hazard Assessment;
- Risk Estimation:
- Risk Evaluation.

5.2 Site Specific Land Use Considerations

The subject site was previously the school recreation / play area, with flexible surfacing (acting as a pathway break to any poor quality soils) and will return to this use following completion of replacement / renewal of a flexible surfacing material.

It is understood that the proposal for the subject area is to remove the existing hard surfacing, amend final elevations slightly and re-surface the area, thus re-instating a "pathway break" between the Made Ground soils and the end users. These receptors are still considered herein but, to a large extent, can be considered at low risk from any elevated concentrations within the soils due to the pathway break.

Drawing ref. 3163,RS,VA 003/Rev 0 is included at Appendix 7, to indicate the propose redevelopment / reinstatement for the subject area. Following removal of the existing surface covers, a combination of soil removal and import will be undertaken to achieve the proposed finished levels and as outlined above, the subject area will be capped by flexible surfacing or similar to create the playground and pathway break.

As a conservative consideration the land use scenario considered here is Residential without Plant Uptake; this takes into account the remaining human Receptors of Construction Workers and the general public, during the construction period (plus any future maintenance of the area).

5.3 Soil Quality Data

The results of the soil analyses have been compared to soil quality screening values where deemed applicable, such as:

- The LQM/CIEH S4ULs for Human Health Risk Assessment, (ref. **R.15**);
- Defra/CL:AIRE Final C4SLs, (ref. R.14);
- The LQM/CIEH, EIC/AGS/CL:AIRE Generic Assessment Criteria (GAC), (ref.R.10).

Where the concentrations determined on site are at or below the respective screening concentrations, they are considered not to pose a risk and are removed from further consideration, unless otherwise stated. The determinant groups are assessed in Table 2 below:

Table 2 Summary of Soil Quality Data and Comparison with Screening Values							
Analyte	Analyte Concentrat (mg/kg)	tion Range	Screening Value (mg/kg) for Land Use	No. of	Location of Samples with		
	Minimum Maximum		Residential without plant uptake (1%SOM assumed)	Elevated Concentrations	Elevated Concentrations (in mg/kg)		
Arsenic	3	14	40	0	None elevated		
Cadmium	<0.2	<0.2	85	0	None elevated		
Chromium III	6	23	910	0	None elevated		
Chromium VI	<2	<2	6	0	None elevated		
Copper	5	75	7100	0	None elevated		
Lead	20	330 (Δ1250)	130-330	2	WS1Δ - 0.5m (479) WS3Δ - 0.7m (1250)		
Mercury	<1	3.4	40	0	None elevated		
Nickel	3	23	180	0	None elevated		
Selenium	<3	<3	430	0	None elevated		
Vanadium	10	56	1200	0	None elevated		
Zinc	45	93	40000	0	None elevated		
Total PAHs	<0.1	35.4	Nominal value of 5mg/kg*	1	WS4 (see individual indicator PAHs)		
Benzo(a)pyrene	<0.1 2.82		3.2	0	None elevated		
Dibenzo(a,h)anthracene	<0.1	0.34	0.31	1	WS4 0.17m (0.34)		
Naphthalene	<0.1	<0.1	2.3	0	None elevated		
EPH or TPH	<0.01 97		Nominal value of 100mg/kg*	0	None elevated		
Asbestos	Not detected		n/a	0	None elevated		

Cyanides <2		<2	Nominal value of 5mg/kg	0	None elevated			
chain group screening va	*Where total values exceed the nominal threshold, individual congener, compound or equivalent carbon chain group screening values are assessed further where necessary. Δ previous site investigation data points.							

It can be noted that within report reference 18-37171 a number of lead concentrations are within the C4SL (lead) range for this land use but do not exceed the upper bound. With the factors considered, these are considered to not pose an elevated risk to end users. Construction workers are considered below.

5.3.1 Human Health Receptors

Risks to humans include construction workers and end users of the site. Theoretically, exposure to contaminants can take the form of direct contact with the skin, or the inhalation of contaminants through wind-blown soils or vapours.

To reduce the risks of exposure and transfer of contaminants during construction, short term mitigation measures specified in the Additional Information (B) section of this report should be adhered to and, where applicable, incorporated into the development Construction Phase Health and Safety Plan or similar document.

Based upon the assumption that there will be hard surfacing/ a pathway break between the Made Ground and end users, the risk to end users from the identified poor soils quality is likely to be low to negligible however, the current risk to construction workers is moderate to high.

End Users:

As outlined above and within Table 3 below, considering the results of chemical analysis of shallow soils and proposed development plans, including a pathway break formation in the form of re-surfacing of the subject area, it is assessed that a low to negligible risk to end user human receptors (pupils, school staff) exists.

Therefore the site may be developed without the need for any measures classed as "remediation"; the mitigating measure (pathway break) is concomitant or concurrent with the redevelopment scheme.

Construction workers and General Public

In order to reduce or mitigate the risk to these receptors, the following actions should be undertaken:

- All site workers and visitors, until the ground is sealed by the final surfacing or similar, should be made
 aware of the Made Ground and the potential for contact with detectable but not significantly elevated
 concentrations. This applies in particular to all groundworkers, piling operators, utilities installation
 personnel etc., in contact with the soils and groundwater.
- Appropriate PPE should be work by those personnel in contact with the soils and groundwater; in addition to which, appropriate gloves being worn, good practice such as maintaining a good hygiene regime should be in place (to prevent soil particle ingestion during breaks/mealtimes).
- Dust production at and from the site should be minimised and prevented throughout the construction
 phase; this can include damping down of large areas of bare soil, covering of any soil stockpiles (as
 applicable or if likely to produce dust), control of mud/dust transfer to the highway via vehicles, in
 particular during the excavation phase. This is standard practice and is likely to be applied to the scheme
 methods already.

5.3.2 Asbestos

No asbestos was detected in any of the analysed soil samples from this phase or the previous phase of soil sampling. As a result of which, the risk to end users and other human health receptors from asbestos in soils is assessed to be low to very low.

However, due to the variable nature of Made Ground the presence of asbestos in soils cannot be fully discounted. It is recommended that, as standard practice, a Discovery Strategy (outlined within the Additional Information section of this report) is applied by the team exposing and disturbing soils, and/or those (predominantly groundworkers) in potential contact with the soils, so that in the event of any suspected ACMs being encountered, works can be halted and the materials and potential risks assessed by a suitably qualified person.

5.4 Risk to Controlled Waters

The risks to Controlled Waters have been assessed with respect to the available soil quality data contamination only as groundwater analysis was outside the scope of this investigation.

The risk to Controlled Waters from the concentrations of analytes within the analysed soil has been assessed on a qualitative basis utilising the available data and the hydrogeological seting*.

5.5 Risk to Plants

It is understood that there are no proposed areas of planting however, a review of the commonly occurring phytotoxic chemicals boron, copper, nickel and zinc, has been undertaken based upon the now superseded ICRCL guidance. Although the ICRCL trigger threshold levels have been withdrawn, there are no equivalent guidance values for phytotoxicity.

Concentrations of metals were recorded at concentrations below the thresholds considered to have phytotoxic effects; the risk to plants from phytotoxic chemicals is low

5.6 Waste Soil Classification Data

The results of the waste classification data, specifically the WAC data within laboratory report 18-76148, indicate that the soils due to be removed are inert waste classification; this is with the exception of some of the samples that are indicated to have leachable concentrations of antimony or sulphate marginally exceeding the inert screening threshold. These analytes are commonly exceeded within Made Ground soils of this region and it may be possible for the receiving destinations for the soil to assess the data in detail and retain the classification of the soils as inert if not, the soils at locations WS3 and WS4 would be classifiable as non-hazardous. In addition to which, the elevated concentration of lead at WS3 from the previous phase of site investigation (lab report 15-31717, 1250mg/kg) may also result in soil at that location to be classified as non—hazardous.

5.7 Proposed Planters Areas

As outlined in Sections 1.2 and 2.1.2 there are proposed areas of the site redevelopment to comprise of constructed, in-ground planted areas, these will line the north-eastern site boundary and bound the proposed MUGA to the north of the subject site. No intrusive works have been undertaken underneath the extant school structures.

5.7.1 Soil Quality Data Consideration

Some of the available site data can be considered to indicate the soil quality at the southern end of the MUGA (locations WS1 of this phase if intrusive works, WS2 and TP1 of the previous phase of investigation.) The soil quality data for these locations indicates no elevated soil concentrations for a land use scenario of residential without plant uptake other than an elevated concentration of lead at WS1.

5.7.2 Proposed Planter Details

The appended Drawing 1566/LD/503 indicates the creation of a 450mm deep planter (see drawing section "External Sports Pitch, Retaining Kerbs, Planting, PCC Edging and Pedestrian Asphalt") in the subject areas. Where the soil quality data is indicated i.e. WS1 location, this creation of a planter and soil cover layer will provide sufficient pathway break or mitigation.

It can be noted that the land-use scenario applied incorporates conservative factors reducing the risk to the receptors, further the exposure periods for the end users are likely to be very short to negligible. The planters are not proposed to be used as science gardens or similar where the pupils or staff will have reason to be in contact with the soils, imported or original.

5.7.3 Proposed Planter Areas: Risk Considerations and Recommendations

With the design of the planters in consideration this will provide sufficient mitigating factors to reduce the risk to end users to low to negligible.

Where there is no available site soil quality data (due to extant structures) the following consideration and factors can be emplaced:

- Soil sampling when access to the ground is available (post demolition) will assist waste disposal cost assessments and confirm (or enable re-assessment of) the suitability of the other recommendations.
- In addition, or alternatively, a Watching Brief and / or Discovery Strategy can be applied during slab removal and removal of Made Ground.
- The removal of Made Ground in these areas as part of the creation of the 450mm soil cover system is likely to provide sufficient risk reduction, in the event of poor quality soil being encountered in these areas.
- The considerations for Construction Workers and general public detailed in the sections above and the CSM below should be applied when the Made Ground is exposed.
- Validation of the narrow strips of planter / soil cover system may be required by the local authority or building warranty provider. However, in reality the localised nature of these areas may not warrant validation.

This part of the site can be assessed within a separate report and CSM as necessary.

5.8 Conceptual Site Model

Following the findings of the ground investigation the Conceptual Model for the site has been reviewed and the conclusions are presented in Table 3 below:

Table 3 – Updated Conceptual Site Model													
	PATHWAYS:					RECEPTORS:							
Sources	Root Uptake	Direct Contact	Ingestion	Respiration	Gas Accumulation	Plants	End Users	Structures (Concrete)	Services/Utilities	Construction Workers	Controlled Waters (GW)	Risk Rating	Comments
Made Ground 1 (contact with Construction Workers)	U	L	U	L		n/a	n/a	N	N	Mi	N	LR- MR	See below
Made Ground 2 (contact with end users)	N	U	U	U	-	N	Мо	N	N	n/a	N	LR	See below
Legend:-	Probability: Negligible (N) Unlikely (U) Likely (L) Highly Likely (HL)			Consequence (Severity): Negligible (N) Mild (Mi) Moderate (Mo) Severe (S)							mparison of Consequence Against Probability within lix 5 for Key to Legend.		

5.8.1 Discussion: Existing School Play Area

Some areas of the subject site were not accessible to the soil sampling works, however, for the purposes of this assessment and the proposed works it is assessed that the data for the site is sufficient to assess the risks to the relevant receptors, along with application of the Discovery Strategy applied during soil exposure and disturbance.

The risk to end user receptors is low to negligible based upon the available data, due to the absence of widespread and significantly elevated concentrations of analytes plus the pathway break that will be installed in order to complete the project.

The risk to Construction Workers and General public during the works (from various pathways including direct contact and potential fugitive dust emissions) can be retained as low if the actions described above are applied where necessary.

5.8.2 Discussion: Proposed Planter Areas

The recommendations provided above should be taken into consideration but, in terms of risk to End User receptors, in the event of unsuitable quality soils remaining underneath the planter areas, there will be limited exposure and a pathway break in place. An additional measure which can be considered would be a geotextile membrane at the base of the planter construction to prevent long term soil mixing and potential exposure.

6. CONCLUSIONS AND RECOMMENDATIONS

The school play area of the Maria Fidelis School is being redeveloped/ re-surfaced as part of wider redevelopment of the site. Following removal of the extant playground surfacing materials, these works will include a combination of soil removal and import to achieve the required final elevations. In general, however, the Made Ground will be exposed to facilitate the above.

The site was part of a previous investigation of the wider redevelopment scheme (report reference 1445,GI/SG,PD/15-01-16/V1) that encountered variable thicknesses of Made Ground underlain by London Clay Formation. The data included three investigation points within the subject site and the chemical analysis of the Made Ground included marginally to moderately elevated lead concentrations at two of these locations.

This investigation forms a localised part of the school site redevelopment. Some access restrictions to the subject area of the site but it can be considered that sufficient data is obtained, in combination with mitigating or risk-control considerations.

Sampling and analysis of near-surface soils (Made Ground) within this phase of investigation, considered with the relevant data from the previous phase of investigation, indicate localised evidence of poor quality soils with localised elevated concentrations of lead. No asbestos was identified within the sampled soils but the presence of this cannot be fully discounted.

These do not pose a significant risk to end user receptors because of the pathway break that will be created with the re-surfacing of the playground. However construction workers will be exposed to the poor quality soils during a limited period. A Discovery Strategy and any other relevant control measures should be applied during the soil exposure period of works to retain the risk to construction workers (and general public) to low levels. Controlled waters are considered to be a low risk from the identified soils concentrations.

No specific remedial or validation measures are necessary within the areas of proposed hard surfacing, re-instatement due to the pathway break installation preventing exposure to the end users.

In areas of proposed planters, the design of the planter (resulting in a 450mm deep soil cover system over any remaining Made Ground) will provide sufficient risk reduction or mitigation measures to provide a low risk to end users. Recommendations or mitigating measures for other receptors are provided above.

However, in areas where no soil data exists to data due to extant structures, it would be prudent to undertake soil sampling when access to the ground is available (post demolition). This will assist waste disposal cost and risk assessments and may confirm that the planter soil cover system will provide sufficient protection to end users.

ADDITIONAL INFORMATION

A. CONSULTATION

During the development of a contaminated site, consultation may be required for a number of reasons with a number of Regulatory Authorities. The following provides an indication as to the most likely Authorities with which consultation may be required. The remediation strategy would have to be agreed with the following:

- Local Authority. Consultation is likely to be required with a designated Contaminated Land Officer within
 the Environmental Health Department, as part of the planning process. The Local Authority is generally
 concerned with human health risks. Some Authorities now require 'Completion Certificates' to be signed
 off following remediation works.
- Environment Agency. Where a site is within a groundwater protection zone or has been designated as a special site, the Environment Agency is likely to be involved to ensure that controlled waters are protected.

In addition to which, the following may also be involved in the consultation process: National House Building Council, NHBC. Section 4.1 of the NHBC Standards requires land management to be addressed.

 Water Authorities. They are likely to impose constraints on the nature of water supply pipes that are to be laid in contaminated land. Guidance on the selection of materials for water pipes is provided by the Water Regulations Advisory Scheme (ref. R.12).

Based upon the results of any consultation, there may be specific remediation requirements imposed by one or more of the aforementioned Authorities.

B. SHORT-TERM MITIGATION MEASURES

During site preparatory works of any potential development/construction works, some short-term mitigation measures will be required to protect the site workers, neighbouring sites users and the environment from the potential effects of exposure to potentially contaminated materials and soils. The majority of the proposed measures represent good practice for the construction industry and include:

- Briefing all of the site workers of the identified contamination on site, and ensuring they are aware of the potential health effects from exposure.
- Where appropriate, workers who are at potentially risk due to their working in areas of identified contamination will be provided with suitable PPE.
- Ensuring good hygiene is enforced on site and washing facilities are maintained on the site. Workers are
 discouraged from smoking, eating or drinking without washing their hands first.
- Ensuring site personnel report any unusual complaints, such as skin rashes, nausea, light-headedness etc. which may be attributable to the contamination on the site.

- Ensuring that dust suppression measures are put into practice where contamination is becoming airborne.
- Site drainage should be prevented from entering the adjacent watercourse.
- Where necessary contamination will be prevented from dirtying adjacent highways, a wheel-wash or other method for cleaning vehicles may be required.

Where contaminated materials are being removed from the site they should be disposed of at a suitably licensed landfill, with a 'duty of care' system in place and maintained throughout the disposal operations. The classification of contaminated soils for disposal is dependent upon the individual landfill operator, which is in term dependent upon the operator's license.

C. DISCOVERY STRATEGY

There is the possibility that other sources of contamination may be present on the site which were not detected during the investigation. Should such contamination be identified or suspected during the site clearance or ground works, these should be dealt with accordingly. A number of options are available for handling this material, which include:

- The removal from site and disposal to a suitably licensed tip of all material suspected of being contaminated.
- Short-term storage of the suspected material while undertaking verification testing for suspected contamination. The storage area should be a contained area to ensure that contamination does not migrate and affect other areas of the site. Depending upon the amounts of material under consideration, this could be either a skip or a lined area.
- Treatment of the identified contamination in accordance with the site-specific Remediation Method Statement.
- Having a suitably experienced Environmental Engineer either on-call or with a watching brief for the visual and olfactory assessment of the material, and sampling for verification purposes.

Should any anomalous materials be identified within the soils, the Regulatory Authorities should be informed and where necessary the remedial strategy agreed.

APPENDICES

APPENDIX 1 - ACRONYMS AND ABBREVIATIONS

Acronym /	Definition
Abbreviation	
ACM	Asbestos containing material
ADE	Average daily exposure
ASPT	Average score per Taxon
BOD	Biochemical oxygen demand
ВН	Borehole
BRE	Building Research Establishment
BS	British Standard
ВТЕХ	Benzene, Toluene, Ethyl benzene and Xylenes
CIRIA	Construction Industry Research and Information Association
CLEA	Contaminated Land Exposure Assessment
CLR	Contaminated Land Research reports
DEFRA	Department of the Environment, Food and Rural Affairs (formerly the DoE and DETR)
DETR	Department of the Environment, Transport and the Regions (formerly the DoE and now Defra)
DO	Dissolved oxygen
DoE	Department of the Environment (then DETR and later Defra)
DQRA	Detailed quantitative risk assessment (Tier 2)
EA	Environment Agency
ЕРН	Extractable petroleum hydrocarbons
EQI	Environmental Quality Index
EQS	Environmental Quality Standards
GQRA	Generic quantitative risk assessment (Tier 1)
mAOD	Metres above ordnance datum
mbgl	Metres below ground level
NGR	National grid reference
NHBC	National House Building Council
NRA	National Rivers Authority (now the Environment Agency)
PACM	Potentially asbestos containing material

APPENDIX 2 – REPORT LIMITATIONS AND CONDITIONS

This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of future changes in the condition of the site.

The comments given in this report, and the opinions expressed herein, are based upon the readily available information collated for the report and an assessment based upon the current UK guidance, primarily the Contaminated Land Research (CLR) Reports including CLR11 (ref.R.6).

This report has been prepared for the sole use of the Client for the purposes described and no extended duty of care to any third party is implied or offered. Third parties using any information contained within this report do so at their own risk.

This report is prepared and written for the use stated herein; it should not be used for any other purposes without reference to Geosphere Environmental Limited. The report has been prepared in relation to the proposed end-use should another end-use been intended a further re-assessment may be required. It is likely that over time practises will improve and the relevant guidance and legislation be amended or superseded, which may necessitate a re-assessment of the site.

The report is limited to those aspects of land contamination specifically reported on and is necessarily qualified accordingly, no liability shall be accepted for other aspects which may be the result of gradual or sudden pollution incidents, past or present unrecorded land uses both on and off site and the potential for associated contaminant migration. The opinions expressed cannot be absolute due to the limitations of time and resources imposed by the agreed brief.

The accuracy of any map extracts cannot be guaranteed. It is possible that different conditions existed on site, between and subsequent to the various map surveys appended.

Whilst the report may express an opinion on possible configurations of strata between or beyond exploratory holes discussed or on the possible presence of features based upon visual, verbal or published evidence, this is for guidance only and no liability can be accepted for its accuracy.

The conceptual model is based on the information available at the time of conducting this assessment and is an interpretative assessment of the conditions at the site. It should be noted that the redevelopment and/or further investigation of the site may reveal additional information and therefore alter the conceptual model and the conclusion of this report.

APPENDIX 3 – REFERENCES

- **R.1.** The Environmental Protection Act, Part IIA, Section 78, 1990.
- **R.2.** Environment Act 1995, Section 57, DoE 1995.
- **R.3.** British Standards Institute: BS 10175 'Code of practice for the investigation of potentially contaminated sites', BSI 2011+A1:2013.
- **R.4.** British Standards Institute: BS 5930 'Code of practice for ground investigations', 2015.
- **R.5.** CLR 4, 'Sampling strategies for contaminated land'. Report by The Centre for Research into the Built Environment, the Nottingham Trent University, DoE, 1994.
- **R.6.** CLR 11, 'Model procedures for the management of contaminated land: Risk assessment procedure', DoE 2011.
- **R.7.** Methods for the determination of hazardous substances (MDHS) "100 Surveying, sampling and assessment of asbestos-containing materials" HSE, July 2001.
- **R.8.** Building Research Establishment, Special Digest 1, 'Concrete in Aggressive Ground', 2001.
- **R.9.** Land Quality Management/Chartered Institute of Environmental Health Generic Assessment Criteria for Human Health Risk Assessment (2nd edition). Land Quality Press, Beeston, Nottingham, UK, 2009.
- **R.10.** EIC/AGS/CL:AIRE. Soil Generic Assessment Criteria for Human Health Risk Assessment. Contaminated Land: Applications in Real Environments, London, UK, 2009.
- **R.11.** BRE Digest 465, 'Cover Systems for Land Regeneration Thickness Cover Systems for Contaminated Land', 2004.
- **R.12.** Water Regulations Advisory Scheme, Information and Guidance Note, October 2002, 'The Selection of Materials for Water Supply Pipes to be Laid in Contaminated Land'.
- **R.13.** BRE Special Digest 1, 'Concrete in Aggressive Ground, 2005.
- **R.14.** SP1010 Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination, Final Project Report (Revision 2), Contaminated Land: Applications in Real Environments (CL:AIRE) September 2014.
- **R.15.** Land Quality Press, The LQM/CIEH S4ULs for Human Health Risk Assessment.

APPENDIX 4 – EXPLORATORY HOLE LOGS

Windowless Sample Hole Logs (WS1 to WS5)

LIENT	: Kier (Constructi	ion l	London	PROJECT:	Maria	Fidel	is Schoo	Core						GRO	UND	LEVEL	m						HOLE No. WS1
OGGED I				CHECKED BY:	EXCAVATION	METHOD		Window							Coor	dinate	es: 52	967	7, 18	32927	7			SHEET 1 OF 1
	RK BY: GI E REF: GI	EL EL AGS BH BE	TA	DATE:				Uncased	το 2.1	m					DATE	ES 31/	05/20)18 -	31/0	05/20	018			PROJECT NO. 3163,GI,RS
	Depth							Strata		Graph	ical Repr	esentation	Sa	$\overline{}$		u Testing	_		_	_		esting		Additional Tests and Notes
and epth	of Casing	Depth*		Descriptio	n of Strata		Leg	Reduced Level	Depth		SPT 'N' V		Depths	Туре	No.	Blows	SPT N	<425 %	wc %	PL %	LL %	r Mg/m³	Cu kN/m²	
-	=	-	· ~	EXIBLE SURFACING				1	0.00			40	0	1										Groundwater not encountered during dr
			l fir	Iulticoloured gravelly fine t ne to coarse sub-angular to	sub-rounded fragi	ments	\bowtie		0.07	· · · · · · · · · · · ·			0.15]]	1									
				f flexible surfacing, brick, c MADE GROUND)	oncrete, timber and	d plastic /		3	0.50				0.60	1,	2									
			Br su	rown slightly gravelly sand ub-angular to sub-rounded	CLAY. Gravel is fin	ne . Sand	\bowtie						1	-										
Ī	_		is	fine to medium grained (N	IADE GROUND)			3	_	1			Į.	Ţ	3									-
				rown slightly sandy CLAY w ne grained.	ith inactive roots. S	and is		1	1.30					1										
			'''	ne granicu.			<u> </u>	1					1.60	J	4									
4	_						<u> </u>		_				2]										_
									2.10					1										Borehole completed at 2.10m bgl
														-										
										:::::	::: :::::]										
+	-								-			 	3	1										-
											::: :::::	<u> </u>												
]										
														1										
†	-								-	ļ			4	1										-
]										
													5	1										
	_												J											
														1										
4	_								_				6]										-
										:::::	::: :::::			1										
													ł	1										
										:::::	::: :::::	<u> </u>		-										
+	-								_	 	 		7	1										-
													İ	1										
										 		 		-										
													İ	1										
ATER	- ▼ Star	nding water le	+ -	PIEZOMETER DD Uppe	er seal SAMP		⊢ — Small	disturbed s	Eample '	S Standa	rd peneti	ation test B	lows SPT	blows	for eac	ch 75mm	nincrem	ll nent			_		<u> </u>	<u> </u>
,,,,		ter strikes		Resp	onse zone AND er seal TEST KEY	B U P	Bulk o Undis Pistor	disturbed sa sturbed sam sample rbed jar san	ample (C Cone p	enetratio	n test	(35) PTN N = N*1) Undis SPT N L20 = T	turbed value (l	sample blows af ows/pen	blow co	ount ing)		D)	Ge	eosph	ere Env	vironmental WS1.
				DEPTH All depths, level a	nd thicknesses in m			onmental so r Sample	oil sample			<	425 San	nple %	passing	g 425 mi	cron sie	ve						•

LIENT	: Kier	Constructi	on L	ondon		PROJ	IECT: M	laria I		s Schoo		۰.						GRO	UND	LEVEL	m						HOLE No. WS2
OGGED E				CHECKED BY:		EXCAV	ATION MI	ETHOD	:	Window	•							Coor	dinate	es: 52	29684	4, 18	32930	0			SHEET 1 OF 1
	RK BY: G E REF: G	EL EL AGS BH BE		DATE:					(Jncased	10 2.0	rn						DATE	ES 31/	05/20)18 -	31/0	05/2	018			PROJECT NO. 3163,GI,RS
	Depth				·					Strata		Gra	phical	Repre	entation	Sa	mpling/		u Testing				borat		esting		Additional Tests and Notes
and epth	of Casing	Depth* of Water		Desc	cription of	Strata			Leg	Reduced Level	Depth	0 1		'N' Va	ue) 40	Depths	Туре	No.	Blows	SPT N	<425 %	wc %	PL %	LL %	r Mg/m³	Cu kN/m²	
+	_		\sim	XIBLE SURFACING							0.00					0 -	1										Groundwater not encountered during d
			fine	Iticoloured gravelly to coarse sub-ang gments of brick, fle I timber (MADE GR	gular to su exible surfa	b-round	ed flint an	d			0.08					0.16 0.55]	2									
+	-		Mu	Iticoloured gravelly arse sub-angular to acrete fragments. S	y sandy CL sub-roun	ded flint	and brick	and /			0.60				::::::::::::::::::::::::::::::::::::::	0.90 1]	3									-
			Mu	ADE GROUND) Iticoloured slightly to medium sub-arker and concrete f	ngular to s	ub-roun	ided brick	. 1			1.10																
1	_	grained (MADE GROUND) Brorwn sandy CLAY with in	NĎ)						2.00					1.70 2]]	4									– Borehole completed at 2.0m bgl		
																											boremore completed at 2.0111 ugi
	_											:::::			:::::	3	1										
															:::::	3											
												:::::			:::::												
Ī	_										_				:::::	4 ·											-
1	-										-					5											-
+	-										-					6											-
+	-										_					7	-										
/ATES		dia a verter i							Corr = 11	diatori '	-			L	tion toot. [8	<u> </u>	fa	ala 75	- lm							
		nding water le ter strikes	vei Pi	IEZOMETER	Upper se Respons Lower se	e zone	SAMPLE AND TEST KEY	B U P	Bulk d Undis Piston	disturbed isturbed s turbed sar sample bed jar sai	ample nple	S Star C Con K Peri	e pene	etration		(35) PTN N = N*1	Undist SPT N v	urbed value (b otal blo	sample blows af ows/pen	blow co	ount ting)		D.	G	eosph	ere En	vironmental WS2 No.
			D	EPTH All depths, I	level and t	hickness	es in met	ES	Enviro	nmental s					<	425 Sam				cron sie	ve	7					9

LIENT	: Kier (Constructi	on L	ondon	PROJECT: Maria	Fide	lis Schoo	Corre					GRO	UND	LEVEL	m						HOLE No. WS3
OGGED I				CHECKED BY:	EXCAVATION METHOD):	Window						Coor	dinate	es: 52	29690	0, 18	2919	1			SHEET 1 OF 1
	RK BY: GI E REF: GI	EL EL AGS BH BET		DATE:			Uncased	10 3.0	Ш				DATE	ES 31/	05/20)18 -	31/0	05/20)18			PROJECT NO. 3163,GI,RS
e/Time	Depth	Depth* ½					Strata		Graphical R	epresentation	Sa		/In-Situ	u Testing	3		La	borato	ry Te	esting		Additional Tests and Notes
and epth	of Casing	Depth* 3 id Water		Description	n of Strata	Leg	Reduced Level	Depth		N' Value 30 40	Depths	Туре	No.	Blows	SPT N	<425 %		PL %	LL %	r Mg/m³ I	Cu kN/m²	
-	-		\sim	XIBLE SURFACING			{	0.00	 	30 40	0	1.										Groundwater not encountered during dr
			fine	Iticoloured gravelly fine t e to medium sub-angular acrete and flexible surfaci	coarse SAND. Gravel is	\otimes		0.10	· · · · · · · · · · · · · · · · · · ·		0.15] ,	1									
			0.40	O Timber fragments prese	nt`		*	0.57	1		0.70	}	2									
+	-		me	Iticoloured gravelly sandy dium sub-angular to sub- ncrete fragments. Sand is	rounded brick and	\bowtie		- 0.95			1 1],	3									-
			\(MA	ADE GROUND)		Fi-	1	1.10	l:::::l:::::l:	:::::	1.00] '	3									
			\ CLA	NWN grey and orange mot NY with inactive rootlets. D-angular to sub-rounded	led slightly gravelly sandy Gravel is fine to medium brick and clinker	/ - -	1		 			1										
			frag	gments. Sand is fine grain							-	1										
†	-			ined	suriay CLAT. Salia is lille			_	-		1.90 2	- 1	4									-
											2.40	1,	5									
							:					1										
4	-					<u> </u>	4	3.00			3	-										Borehole completed at 3.0m bgl
									::::: ::::: :]										boi enoie completed at 3.011 bgi
											-]										
												1										
1	=							-			4	1										-
												1										
										:::::		1										
+	-							-			5	-										-
										:::::::::::::::::::::::::::::::::::::::		1										
											-											
									ļh			-										
1	-								1		6]										-
										 	<u> </u>	1										
									ļh		‡	1										
+	_							-	 :		7	-										-
											‡	1										
									 :		<u> </u>	1										
	_		L			.L_						1										_
/ATER			vel Pl							netration test [7			> ± 1 + 2
	¥ Wat	ter strikes			r seal TEST U	Undis	disturbed san		Cone penet Permeability	ration test r test	PTN N=	SPT N	value (b		ter seat	ing)		M	C	oonho:	ro En	wironmental WS3.
					j	Distu	n sample rbed jar sar				inc	luding s	eating					7	GE	eospner	ie ⊏i)\	Vironmental No 1
			D	EPTH All depths, level ar	E: nd thicknesses in metres W		onmental s r Sample	oil sample		•	425 Sar	nple %	passing	g 425 mi	cron sie	ve		71				•

LIENT	: Kier (Constructi	on Lo	ondon		PROJ	JECT: Maria	Fide	is Schoo	l Carari	~ -						GRO	UND	LEVEL	m						HOLE No. WS4	
OGGED E				CHECKED BY:		EXCAV	ATION METHO	D:	Window								Coor	dinate	es: 52	9683	3, 18	3291 ⁻	7			SHEET 1 OF 1	
	RK BY: GI E REF: GI	EL EL AGS BH BE		DATE:					Uncased	10 2.0	m						DATE	ES 31/	05/20)18 -	31/0	05/2	018			PROJECT NO. 3163,GI,RS	
	Depth					!			Strata		Gra	phical	Repres	sentation	Sa	mpling,		u Testing	_			borat		esting		Additional Tests and Notes	
and Depth	of Casing	Depth* 39 Nater		I	Description o	of Strata		Leg	Reduced Level	Depth	0 10		'N' Val	lue) 40	Depths	Type	No.	Blows	SPT N	<425 %		PL %	LL %	r Mg/m³	Cu kN/m²		
-	-		FLEX	(IBLE SURFACI	NG — — —			XX	8	0.00					0 -	1										-	
			fine	to coarse sub- crete, plastic a	angular to su	ub-round	ND. Gravel is led brick, ragments			0.09					İ]]	1										
				DE GROUND)	white grave	Ilv sandy	CLAY. Gravel is	/₩		0.56	1				0.60]]	2										
+	-		fine	to medium bri crete fragment se grained (Ma	ick sub-angulats and angula	lar to sub ar flint. Sa	-rounded		4	1.00					0.90 1	J	3									_	
			Brov	wn and orange	mottled slig	htly grave	elly sandy	<u> / </u>								1											
1/05	7	7 1.90	AM)	DE GROUND)		fine to m	rounded brick nedium grained	岸				:::::			1.50	J	4										
+	-		Brov	wn mottled gre	ey CLAY			┼	1	2.00					2 -	1										Seepage inflow of water at 1.9m Borehole completed at 2.0m bgl	
											1																
											1]											
+	-									-					3 -	-									-	_	
											1					1											
											1																
+	-									-					4 -											_	
																}											
															l I												
											1				5 -]											
Ī															3.												
]											
												:::::			İ												
+	-									-					6 -	1										_	
															<u>.</u>												
1	_										1				7 -	1											
															,												
																1											
																1											
		ding water leter strikes	vel PIE	EZOMETER		seal sea zone	AND B		disturbed s disturbed s		S Stan C Cone			ition test E				ch 75mm sample							<u> </u>	§#	1 °
					Lowers		TEST L	Undis Pisto	sturbed san n sample rbed jar san	nple	K Pern				PTN N= N*1	SPT N : .20 = To	value (l	blows af ows/pen	ter seat	ing)		D	G	eosph	ere Env	vironmental VS4 EN	1 OF 1
			רי	EDTU Alldocal	he lovel and	thicknoss		S Envir	onmental s					<	425 Sam				cron sie	ve	7					•	

LIENT	: Kier	Cons	truction	on Lo	ndon				PROJ	ECT	: Mar	<u>ia Fid</u>	<u>elis</u>	Schoo	Carair	o r						GRO	UND	LEVEL	. m						HOLE No. WS5	
OGGED I					HECKED	BY:		E	EXCAV	OITA	N METH	OD:			Sampl							Coor	rdinate	es: 52	2968	5, 18	3292	2			SHEET 1 OF 1	
	RK BY: G E REF: G		S BH BET		ATE:								U	icased	to 2.0	Ш						DAT	ES 31/	05/20)18 -	31/0	05/2	018			PROJECT NO. 3163,GI,RS	
		Dep	th* Jes.											Strata		Gra	phica	l Repre	sentation	Sa	$\overline{}$	g/In-Sit	u Testing	3		La	borat	ory Te	esting		Additional Tests and Notes	
and epth	of Casing	Wa	f			De	scriptio	n of St	trata			Le	eg F	Reduced Level	Depth			T 'N' Va	lue 0 40	Depths	Туре	No.	Blows	SPT N	<425 %	WC %	PL %	LL %	r Mg/m³	Cu kN/m²		
-	_		-	FLEX	BLE SUR	FACING	-						\boxtimes		0.00		·	Ţ		0 10	-	1									-	
				fine t	coloured o coarse	sub-an	ngular to	o sub-i	rounde	ed bri	ck,	\otimes	\otimes		0.10					0.10] '	1										
				flexib	le surfac E GROU	ing, co	ncrete	and cli	nker fi	ragme	ents		$\stackrel{\leftrightarrow}{\boxtimes}$		0.50					0.60	1	2										
	,			Black	brown a	ind ora	nge slig	htly gr	ravelly	sand	y CLAY.	$^{-}$ \otimes	\otimes							0.00] '	-										
1/05		1.0	5	brick	and con	crete fr						Æ	<u>×</u>		1.10						1.	2								Ī	Seepage inflow of water at 1.05m	
				Brow	n slightly	sandy	CLAY w	vith ina	active i	rootle	ts. San	╗	-			1	1	1	: : : : : : : : : : : : : : : : : : : :	1.15]]	3										
				is fine	grained							F]											
												<u> </u>	\Box			:::::		:::::	: : : : : : : : : : : : : : : : : : : :	2	‡											
	_														2.00]										Borehole completed at 2.0m bgl	
																			: : : : : : : : : : : : : : : : : : : :	İ	1											
1	_														_					3	1										=	
																		:::::			†											
]	1											
																				1	1											
4	_														_					4	-										-	
																				<u> </u>	1											
																				-	‡											
]											
4	-														-					5	-										-	
																:::::		:::::	: : : : : : : : : : : : : : : :]											
																				1	1											
																:::::			: : : : : : : : : : : : : : : : : : : :		1											
+	-														-			 		6	-									-	-	
																		:::::	: : : : : : : : : : : : : : : : : : : :		1											
																				1]											
																				1	‡											
+	_														-				 	7	-									}	-	
																				1	1											
																				†	1											
																				1	1											
 /ATER			water le	el PIE	ZOMETE			er seal	<u> </u>			D Sm	— ∤ all di	sturbed s	ample	S Star	ndard	penetr	ation test	lows SP	⊢ F blows	for ea	ch 75mn	n incren	l nent						- < T	ט בן
	<u>∇</u> Wa	ter str	ikes				Resp Low	onse : er seal		TES	Γ	U Un	distu	turbed sa rbed sam		C Con K Per				PTN N=	SPT N	value (l sample blows at	ter seat	ting)			K		_	wironmental WS5 E	SHEET 1 OF 1
							-			KEY		P Pist		ample ed jar san	nple					N*	120 = T	otal blo	ows/pen	etràtion	n		<u></u>	Ge	eosph	ere Env	vironmental	<u> </u>
						depths,									il sample					425 Sar				cron sie	eve	1					9	

APPENDIX 5 – COMPARISON OF CONSEQUENCES AGAINST PROBABILITY

			Consequence (Sev	erity of Linkage)	
		Severe (S)	Moderate (Mo)	Mild (Mi)	Negligible (N)
poor (I	Highly Likely	Very High Risk	High Risk	Moderate Risk	Moderate/Low Risk
	(HL)	(VH)	(HR)	(MR)	(MR-LR)
(Likelihood	Likely	High Risk	Moderate Risk	Moderate/Low Risk	Low Risk
ge from)	(L)	(HR)	(MR)	(MR-LR)	(LR)
	Unlikely	Moderate Risk	Moderate/Low Risk	Low Risk	Negligible Risk
	(U)	(MR)	(MR-LR)	(LR)	(NR)
Probability	Negligible	Moderate/Low Risk	Low Risk	Negligible Risk	Negligible Risk
of linkag	(N)	(MR-LR)	(LR)	(NR)	(NR)

This Table is to provide reference information in conjunction with the GEL Conceptual Model attached within the Hazard Risk Assessment section of this report, Table 3 – Conceptual Model.

Very High Risk (VH)

- There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is happening currently.
- Urgent investigation and remediation are likely to be required and advised.

High Risk (HR)

- Harm is likely to arise to a designated receptor from an identified hazard.
- o Urgent investigation is required and remedial works are likely necessary in both the short to long term.

Moderate Risk (MR)

- It is possible that harm could arise to a designated receptor from an identified hazard. However, it is
 either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more
 likely that the harm would be relatively mild.
- o Investigation is required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.

Low Risk (LR)

o It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild. Limited investigation recommended.

Negligible Risk (NR)

• There is a minimal possibility that harm could arise to a receptor. In the event of such harm being realised it is high likely to not be severe. Investigation not deemed necessary.

APPENDIX 6 – ENVIRONMENTAL LABORATORY TEST RESULTS

Stephen Gilchrist Geosphere Environmental Ltd Brightwell Barns Ipswich Road Brightwell Suffolk IP10 0BJ

QTS Environmental Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN

t: 01622 850410 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 15-37171

Site Reference: Maria Fidelis

Project / Job Ref: 1445, SI

Order No: 1445,SI

Sample Receipt Date: 30/10/2015

Sample Scheduled Date: 30/10/2015

Report Issue Number: 1

Reporting Date: 04/11/2015

Authorised by:

Russell Jarvis Director

On behalf of QTS Environmental Ltd

Authorised by:

Kevin Old Director

On behalf of QTS Environmental Ltd

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate					
QTS Environmental Report No: 15-37171	Date Sampled	28/10/15	28/10/15	28/10/15	
Geosphere Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Maria Fidelis	TP / BH No	WS1/J1	WS1/J2	WS3/J2	
Project / Job Ref: 1445, SI	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: 1445,SI	Depth (m)	0.20	0.50	0.70	
Reporting Date: 04/11/2015	QTSE Sample No	175416	175417	175418	

Determinand	Unit	RL	Accreditation				
рН	pH Units			9.3	7.7	7.4	
Total Cyanide	· · · · · · · · · · · · · · · · · · ·	< 2	NONE	< 2	< 2	< 2	
W/S Sulphate as SO ₄ (2:1)		< 10	MCERTS	823	244	340	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.82	0.24	0.34	
Total Organic Carbon (TOC)	%	< 0.1	MCERTS	0.3	1.4	1.8	
Arsenic (As)	mg/kg	< 2	MCERTS	11	14	20	
Beryllium (Be)	mg/kg	< 0.5	NONE	< 0.5	1	0.9	
W/S Boron	mg/kg	< 1	NONE	1.1	1.1	2.1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	
Chromium (Cr)	mg/kg	< 2	MCERTS	20	24	24	
Copper (Cu)	mg/kg	< 4	MCERTS	10	56	83	
Lead (Pb)	mg/kg	< 3	MCERTS	36	479	1250	
Mercury (Hg)	mg/kg	< 1	NONE	< 1	2.7	2.9	
Nickel (Ni)	mg/kg	< 3	MCERTS	13	17	17	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	
Vanadium (V)	mg/kg	< 2	NONE	31	51	47	
Zinc (Zn)	mg/kg	< 3	MCERTS	61	81	303	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2	< 2	
EPH (C10 - C40)	mg/kg	< 6	MCERTS	67	< 6	16	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30° C Analysis carried out on the dried sample is corrected for the stone content

Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs											
QTS Environmental Report No: 15-37171	Date Sampled	28/10/15	28/10/15	28/10/15							
Geosphere Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied							
Site Reference: Maria Fidelis	TP / BH No	WS1/J1	WS1/J2	WS3/J2							
Project / Job Ref: 1445, SI	Additional Refs	None Supplied	None Supplied	None Supplied							
Order No: 1445,SI	Depth (m)	0.20	0.50	0.70							
Reporting Date: 04/11/2015	QTSE Sample No	175416	175417	175418							

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	0.60	< 0.1	0.17	
Anthracene	mg/kg	< 0.1	MCERTS	0.18	< 0.1	< 0.1	
Fluoranthene	mg/kg	< 0.1	MCERTS	1.39	< 0.1	0.51	
Pyrene	mg/kg	< 0.1	MCERTS	1.15	< 0.1	0.42	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.64	< 0.1	0.21	
Chrysene	mg/kg	< 0.1	MCERTS	0.61	< 0.1	0.24	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.68	< 0.1	0.27	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.32	< 0.1	0.13	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.60	< 0.1	0.18	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.34	< 0.1	0.13	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.32	< 0.1	0.12	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	6.8	< 1.6	2.4	

Soil Analysis Certificate - Sample Descriptions

QTS Environmental Report No: 15-37171

Geosphere Environmental Ltd

Site Reference: Maria Fidelis

Project / Job Ref: 1445, SI

Order No: 1445,SI

Reporting Date: 04/11/2015

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
175416	WS1/J1	None Supplied	0.20	10.4	Grey sand with concrete and brick
175417	WS1/J2	None Supplied	0.50	15.8	Grey sandy clay with brick
175418	WS3/J2	None Supplied	0.70	18.7	Black sandy clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm U/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

QTS Environmental Report No: 15-37171

Geosphere Environmental Ltd

Site Reference: Maria Fidelis

Project / Job Ref: 1445, SI

Order No: 1445,SI

Reporting Date: 04/11/2015

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
Soil	AR	Cyanide - Compley	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	,	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by	E022
Soil	AR	,	electrometric measurement Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with notassium dichromate followed by	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR D		Moisture content; determined gravimetrically	E003 E009
Soil Soil	D	Organic Matter	Determination of nitrate by extraction with water & analysed by ion chromatography Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	•	Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	, , , ,	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OFS	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried AR As Received

Flora Sutherland
Geosphere Environmental Ltd
Brightwell Barns
Ipswich Road
Brightwell
Suffolk
IP10 0BJ

DETS Ltd

Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath

Kent ME17 2JN **t:** 01622 850410

russell.jarvis@qtsenvironmental.com

DETS Report No: 18-76148

Site Reference: Maria Fidelis School Site, Pheonix Road, London, NW1 1TA

Project / Job Ref: 3163, GI, RS

Order No: 3163,GI

Sample Receipt Date: 04/06/2018

Sample Scheduled Date: 04/06/2018

Report Issue Number: 1

Reporting Date: 08/06/2018

Authorised by:

Russell Jarvis

Associate Director of Client Services

Authorised by:

Dave Ashworth Deputy Quality Manager

Soil Analysis Certificate						
DETS Report No: 18-76148	Date Sampled	01/06/18	01/06/18	01/06/18	01/06/18	01/06/18
Geosphere Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Maria Fidelis School Site, Pheonix	TP / BH No	WS1	WS1	WS1	WS2	WS3
Road, London, NW1 1TA						
Project / Job Ref: 3163, GI, RS	Additional Refs	J1	J2	J3	J2	J1
Order No: 3163,GI	Depth (m)	0.15	0.60	1.00	0.55	0.15
Reporting Date: 08/06/2018	QTSE Sample No	337757	337758	337759	337760	337761

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected
рН	pH Units	N/a	MCERTS	9.3	7.6	7.7	7.7	9.6
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Complex Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Free Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	403	1740	492	399
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	0.40	1.74	0.49	0.40
Organic Matter	%	< 0.1	MCERTS	0.4	2.6	2.7	1.8	1.2
Arsenic (As)	mg/kg	< 2	MCERTS	3	14	14	14	8
Barium (Ba)	mg/kg	< 5	NONE	22	126	114	67	61
Beryllium (Be)	mg/kg	< 0.5	NONE	< 0.5	0.9	1	1	0.5
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	6	20	23	23	20
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	5	65	59	44	16
Lead (Pb)	mg/kg	< 3	MCERTS	20	296	180	165	101
Mercury (Hg)	mg/kg	< 1	NONE	< 1	2.4	2.3	1.2	< 1
Molybdenum (Mo)	mg/kg	< 1	NONE	< 1	1.4	1.6	1.1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	3	17	19	23	12
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	< 3	< 3
Vanadium (V)	mg/kg	< 2	NONE	10	47	56	49	26
Zinc (Zn)	mg/kg	< 3	MCERTS	93	85	73	58	45
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2		< 2	< 2
EPH (C10 - C40)	mg/kg	< 6	MCERTS			< 6		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C Subcontracted analysis (S)

Subcontracted analysis (S)

Soil Analysis Certificate					
DETS Report No: 18-76148	Date Sampled	01/06/18	01/06/18	01/06/18	
Geosphere Environmental Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: Maria Fidelis School Site, Pheonix Road, London, NW1 1TA	TP / BH No	WS3	WS4	WS4	
Project / Job Ref: 3163, GI, RS	Additional Refs	J2	J1	J2	
Order No: 3163,GI	Depth (m)	0.70	0.17	0.60	
Reporting Date: 08/06/2018	QTSE Sample No	337762	337763	337764	

Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	
рН	pH Units	N/a	MCERTS	8.0	10.0	8.1	
Total Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	
Complex Cyanide	mg/kg	< 2	NONE	< 2	< 2	< 2	
Free Cyanide	5, 5	< 2	NONE	< 2	< 2	< 2	
W/S Sulphate as SO ₄ (2:1)		< 10	MCERTS	272	386	121	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.27	0.39	0.12	
Organic Matter	%	< 0.1	MCERTS	2.9	1.4	2.6	
Arsenic (As)	mg/kg	< 2	MCERTS	14	12	13	
Barium (Ba)	mg/kg	< 5	NONE	106	82	108	
Beryllium (Be)	mg/kg	< 0.5	NONE	0.9	0.7	0.9	
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	< 0.2	
Chromium (Cr)	mg/kg	< 2	MCERTS	19	14	19	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	75	48	75	
Lead (Pb)	mg/kg	< 3	MCERTS	303	330	322	
Mercury (Hg)	mg/kg	< 1	NONE	3.4	1.9	2.6	
Molybdenum (Mo)	mg/kg	< 1	NONE	< 1	< 1	1.4	
Nickel (Ni)	mg/kg	< 3	MCERTS	16	12	16	
Selenium (Se)	mg/kg	< 3	NONE	< 3	< 3	< 3	
Vanadium (V)	mg/kg	< 2	NONE	45	32	47	
Zinc (Zn)	mg/kg	< 3	MCERTS	81	54	75	
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	< 2		
EPH (C10 - C40)	mg/kg	< 6	MCERTS			< 6	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C Subcontracted analysis (S)

Tel: 01622 850410

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 18-76148	Date Sampled	01/06/18	01/06/18	01/06/18	01/06/18	01/06/18
Geosphere Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Maria Fidelis School Site,	TP / BH No	WS1	WS1	WS1	WS2	WS3
Pheonix Road, London, NW1 1TA						
Project / Job Ref: 3163, GI, RS	Additional Refs	J1	J2	J3	J2	J1
Order No: 3163,GI	Depth (m)	0.15	0.60	1.00	0.55	0.15
Reporting Date: 08/06/2018	QTSE Sample No	337757	337758	337759	337760	337761

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	0.40
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.16	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.14	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.13	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6

Soil Analysis Certificate - Speciated PAHs DETS Report No: 18-76148 **Date Sampled** 01/06/18 01/06/18 01/06/18 **Geosphere Environmental Ltd Time Sampled** None Supplied None Supplied None Supplied Site Reference: Maria Fidelis School Site, TP / BH No WS4 WS4 WS3 Pheonix Road, London, NW1 1TA Project / Job Ref: 3163, GI, RS **Additional Refs** J1 J2 Order No: 3163,GI Depth (m) 0.70 0.17 0.60 Reporting Date: 08/06/2018 **QTSE Sample No** 337762 337763 337764

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	0.27	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	0.22	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	2.70	< 0.1	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	0.79	< 0.1	
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	7.31	< 0.1	
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	6.51	< 0.1	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	3.34	< 0.1	
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	3.01	< 0.1	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	3.64	< 0.1	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	1.49	< 0.1	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	2.82	< 0.1	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	1.54	< 0.1	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	0.34	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	1.45	< 0.1	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	35.4	< 1.6	

Soil Analysis Certificate - TPH CWG Bande	Soil Analysis Certificate - TPH CWG Banded											
DETS Report No: 18-76148	Date Sampled	01/06/18	01/06/18	01/06/18	01/06/18	01/06/18						
Geosphere Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied						
Site Reference: Maria Fidelis School Site, Pheonix Road, London, NW1 1TA	TP / BH No	WS1	WS1	WS2	WS3	WS3						
Project / Job Ref: 3163, GI, RS	Additional Refs	J1	J2	J2	J1	J2						
Order No: 3163,GI	Depth (m)	0.15	0.60	0.55	0.15	0.70						
Reporting Date: 08/06/2018	QTSE Sample No	337757	337758	337760	337761	337762						

Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21
Total >C5 - C35	mg/kg	< 42	NONE	< 42	< 42	< 42	< 42	< 42

Soil Analysis Certificate - TPH CWG Bande	d			
DETS Report No: 18-76148	Date Sampled	01/06/18		
Geosphere Environmental Ltd	Time Sampled	None Supplied		
Site Reference: Maria Fidelis School Site, Pheonix Road, London, NW1 1TA	TP / BH No	WS4		
Project / Job Ref: 3163, GI, RS	Additional Refs	J1		
Order No: 3163,GI	Depth (m)	0.17		
Reporting Date: 08/06/2018	QTSE Sample No	337763		

Determinand	Unit	RL	Accreditation			
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01		
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10		
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21		
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2		
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	25		
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	72		
Aromatic (C5 - C35)	mg/kg	< 21	NONE	97		
Total >C5 - C35	mg/kg	< 42	NONE	97		

Tel: 01622 850410

Soil Analysis Certificate - BTEX / MTBE						
DETS Report No: 18-76148	Date Sampled	01/06/18	01/06/18	01/06/18	01/06/18	01/06/18
Geosphere Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: Maria Fidelis School Site, Pheonix Road, London, NW1 1TA	TP / BH No	WS1	WS1	WS2	WS3	WS3
Project / Job Ref: 3163, GI, RS	Additional Refs	J1	J2	J2	J1	J2
Order No: 3163,GI	Depth (m)	0.15	0.60	0.55	0.15	0.70
Reporting Date: 08/06/2018	QTSE Sample No	337757	337758	337760	337761	337762

Determinand	Unit	RL	Accreditation					
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Tel: 01622 850410

Soil Analysis Certificate - BTEX / MTBE				
DETS Report No: 18-76148	Date Sampled	01/06/18		
Geosphere Environmental Ltd	Time Sampled	None Supplied		
Site Reference: Maria Fidelis School Site, Pheonix Road, London, NW1 1TA	TP / BH No	WS4		
Project / Job Ref: 3163, GI, RS	Additional Refs	J1		
Order No: 3163,GI	Depth (m)	0.17		
Reporting Date: 08/06/2018	QTSE Sample No	337763		

Determinand	Unit	RL	Accreditation	
Benzene	ug/kg	< 2	MCERTS	< 2
Toluene	ug/kg	< 5	MCERTS	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2
MTBE	ug/kg	< 5	MCERTS	< 5

Tel: 01622 850410

DETS Report No: 18-76148		Date Sampled	01/06/18	Landfill Wast	e Acceptance (Criteria Limit
Geosphere Environmental Ltd	l	Time Sampled	None Supplied			
Site Reference: Maria Fidelis Pheonix Road, London, NW1	,	TP / BH No	WS1		Stable Non-	
Project / Job Ref: 3163, GI, RS Order No: 3163,GI Reporting Date: 08/06/2018		Additional Refs	J1	Inert Waste		Hazardous Waste
		Depth (m)	0.15	Landfill	waste in non- hazardous Landfill	Landfill
		QTSE Sample No	337757		Landini	
Determinand	Unit					
TOC ^{MU}	%		0.3	3%	5%	6%
Loss on Ignition	%		1.12			10%
BTEX ^{MU}	mg/kg		< 0.05	6		
Sum of PCBs	mg/kg		< 0.1	1		
Mineral Oil ^{MU}	mg/kg		< 10	500		
Total PAH ^{MU} pH ^{MU}	mg/kg pH Units		< 1.7 9.3	100	>6	
					To be	To be
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	2.4		evaluated	evaluated
			10:1	Cumulative Limit values	for compliance	leaching te
Eluate Analysis				_	N 12457-3 at I	./S 10 l/kg
	•		mg/l	mg/kg	(mg/kg)	
Arsenic ^U	4		< 0.01	< 0.1 0.5	2	25
Barium ^U	4		< 0.02	< 0.2 20	100	300
Cadmium ^U	4		< 0.0005	< 0.005 0.04	1	5
Chromium ^U	4		< 0.005	< 0.05 0.5	10	70
Copper ^U	4		< 0.01	< 0.1 2	50	100
Mercury ^U	4		< 0.0005	< 0.01 0.01 0.03 0.5	0.2 10	30
Molybdenum ^u Nickel ^u	┨		0.003 < 0.007	0.03 0.5 < 0.07 0.4	10	40
Nickei ^s Lead ^U	┨		< 0.007	< 0.07 0.4	10	
Lead* Antimony ^U	┨		0.005	0.05 0.06	0.7	5
Selenium ^U	┪		< 0.005	< 0.05 0.06	0.7	<u>5</u> 7
Zinc ^U	┪		< 0.005	< 0.05 4	50	200
Chloride ^U	1		5	54 800	15000	25000
Fluoride ^U	1		< 0.5	< 5 10	150	500
Sulphate ^U	7		18	176 1000	20000	50000
TDS	1		116	1160 4000	60000	100000
Phenol Index			< 0.01	< 0.1 1		
DOC			6.6	66.2 500	800	1000
Leach Test Information						
Canada Mara (L.)			0.00	 		
Sample Mass (kg)			0.09	 		
Dry Matter (%)			97.1	- 		
Moisture (%)			3	- 		
Stage 1 Volume Eluate L10 (litres)			0.90	 		
VINITIO ETTATA LITTITACI			0.90			
voidine Lidate L10 (litres)						
volume cluate cro (litres)						

Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation
M Denotes MCERTS accredited test

Tel: 01622 850410

DETS Report No: 18-76148		Date Sampled	01/06/18	Landf	fIII Wasto	e Acceptance C	criteria Limit
Geosphere Environmental Ltd	l	Time Sampled	None Supplied				
Site Reference: Maria Fidelis Pheonix Road, London, NW1	•	TP / BH No	WS1			Stable Non-	
Project / Job Ref: 3163, GI, RS Order No: 3163,GI Reporting Date: 08/06/2018		Additional Refs	J2			reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste
		Depth (m)	0.60	Lar	ndfill		Landfill
		QTSE Sample No	337758			Lanum	
Determinand	Unit	MDL					
TOC ^{MU}	%		1.5	3	3%	5%	6%
Loss on Ignition	%		6.20				10%
BTEX ^{MU}	mg/kg		< 0.05		6		
Sum of PCBs	mg/kg	< 0.1	< 0.1		1		
Mineral Oil ^{MU}	mg/kg		< 10		500		
Total PAH ^{MU}	mg/kg		< 1.7		100		
pH ^{MU}	pH Units	·	7.6			>6 To be	To be
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	1.5			evaluated	evaluated
		-	10:1	Cumulative Limit		or compliance	leaching tes
Eluate Analysis			10:1	10:1 usi	ing BS El	N 12457-3 at L	/S 10 l/kg
			mg/l	mg/kg		(mg/kg)	
Arsenic ^U			< 0.01		0.5	2	25
Barium ^U			< 0.02		20	100	300
Cadmium ^U			< 0.0005		.04	1	5
<u>Chromium^U</u>			< 0.005		0.5	10	70
Copper ^U			0.01		2	50	100
Mercury ^U			< 0.0005		.01	0.2	2
Molybdenum ^U			0.017		0.5	10	30
Nickel ^U Lead ^U			< 0.007		0.4	10	40
			< 0.005 < 0.005		0.5 0.06	10 0.7	50
Antimony ^u Selenium ^u			< 0.005		0.1	0.7	5 7
Zinc ^U			< 0.005		4	50	200
Zinc ^s Chloride ^U	┨		6		300	15000	25000
Chloride Fluoride ^U	┨		< 0.5		10	15000	500
Sulphate ^U	1		34		000	20000	50000
TDS	1		154		000	60000	100000
Phenol Index	1		< 0.01		1	-	-
DOC	1		10.7		500	800	1000
Leach Test Information						•	
Sample Mass (kg)			0.10				
Dry Matter (%)			88.5				
Moisture (%)			13				
Stage 1			2.25				
Volume Eluate L10 (litres)			0.89				
volatile Eladic E10 (iid e5)							
volume Litate LTO (inces)							

Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation
M Denotes MCERTS accredited test

Tel: 01622 850410

DETS Report No: 18-76148		Date Sampled	01/06/18		Landfill Was	te Acceptance (Criteria Limit
Geosphere Environmental Ltd		Time Sampled	None Supplied				
Site Reference: Maria Fidelis Pheonix Road, London, NW1 1	•	TP / BH No	WS2			Stable Non-	
Project / Job Ref: 3163, GI, F		Additional Refs	J2		Inert Waste	reactive HAZARDOUS waste in non-	Hazardous Waste
Order No: 3163,GI Reporting Date: 08/06/2018		Depth (m)	0.55		Landfill	hazardous Landfill	Landfill
		QTSE Sample No	337760				
Determinand	Unit	MDL					
TOC ^{MU}	%		1		3%	5%	6%
Loss on Ignition	%		4.20				10%
BTEX ^{MU}	mg/kg		< 0.05		6		
Sum of PCBs	mg/kg		< 0.1		1		
Mineral Oil ^{MU}	mg/kg		< 10		500		
Total PAH ^{MU}	mg/kg		< 1.7		100		
pH ^{MU}	pH Units	N/a	7.7			>6	To be
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	1.9	12		To be evaluated	To be evaluated
Eluado Analysis			10:1	Cumulativ		for compliance	
Eluate Analysis				10:1	using BS E	N 12457-3 at l	./S 10 I/kg
A t - U	I		mg/l	mg/kg	0.5	(mg/kg)	25
Arsenic ^U	-		< 0.01	< 0.1	0.5	2	25
Barium ^U	-		< 0.02	< 0.2	20	100	300
Cadmium ^U	\dashv		< 0.0005	< 0.005	0.04	1 10	5 70
Chromium ^U	-		< 0.005 < 0.01	< 0.05 < 0.1	0.5 2	50	100
Copper ^u Mercury ^u	-		< 0.005	< 0.1	0.01	0.2	2
Mercury Molybdenum Mol	-		0.008	0.08	0.01	10	30
Nickel ^U	1		< 0.007	< 0.08	0.4	10	40
Nickei Lead ^U	1		< 0.007	< 0.05	0.5	10	
Antimony ^U	1		< 0.005	< 0.05	0.06	0.7	5
Selenium ^u	1		< 0.005	< 0.05	0.00	0.7	<u></u>
Zinc ^U	1		< 0.005	< 0.05	4	50	200
Chloride ^U	1		5	53	800	15000	25000
Fluoride ^U	1		0.5	5	10	150	500
Sulphate ^U	1		25	248	1000	20000	50000
TDS	1		146	1460	4000	60000	100000
Phenol Index	1		< 0.01	< 0.1	1	-	-
DOC	1		4.7	47.2	500	800	1000
Leach Test Information			,	1712	200		1000
	-	-					
Sample Mass (kg)			0.10				
			87.3				
Dry Matter (%)			14.6				
Dry Matter (%) Moisture (%)			17.0				
Moisture (%) Stage 1			14.0				
Moisture (%)			0.89				
Moisture (%) Stage 1							

Results are expressed on a dry weight basis, after correction for moisture content where applicable

Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test

Tel: 01622 850410

DETS Report No: 18-76148		Date Sampled	01/06/18	Landfill Wa		te Acceptance	Criteria Limit
Geosphere Environmental Ltd		Time Sampled	None Supplied				
Site Reference: Maria Fidelis Pheonix Road, London, NW1	•	TP / BH No	WS3			Stable Non-	
Project / Job Ref: 3163, GI, RS Order No: 3163,GI Reporting Date: 08/06/2018		Additional Refs	J1	Inert Wast Landfill			Hazardous Waste
		Depth (m)	0.15	Landilli		waste in non- hazardous Landfill	Landfill
		QTSE Sample No	337761				
Determinand	Unit						
[™]	%		0.7	3%		5%	6%
oss on Ignition	%		3				10%
BTEX ^{MU}	mg/kg		< 0.05	6			
Sum of PCBs	mg/kg		< 0.1	1			
Mineral Oil ^{MU}	mg/kg		< 10	500			
Total PAH ^{MU}	mg/kg		< 1.7	100			
oH ^{MU}	pH Units	N/a	9.6			>6	To be
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	2.4			To be evaluated	To be evaluated
			10:1	lative Limit value			leaching te
Eluate Analysis					10:1	EN 12457-3 at	L/S 10 l/kg
	_		mg/l		mg/kg	(mg/kg)	
Arsenic ^U	4		< 0.01		< 0.1	2	25
Barium ^U			< 0.02		< 0.2	100	300
<u>Cadmium^U</u>	4		< 0.0005		< 0.005	1	5
Chromium ^U	-		0.017		0.17	10	70
Copper ^U	-1		< 0.01		< 0.1	50	100
Mercury ^U	-		< 0.0005		< 0.01	0.2	2
Molybdenum ^U	-1		0.009		0.09	10	30
Nickel ^U	-1		< 0.007		< 0.07	10	40
Lead ^U	-		< 0.005		< 0.05	10	50
Antimony ^U	-1		0.006		0.06	0.7	5
Selenium ^U	-1		< 0.005		< 0.05	0.5	7
Zinc ^U	-		< 0.005		< 0.05	50	200
Chloride ^U	-1		4		44	15000	25000
Fluoride ^U	-		< 0.5		< 5	150	500
Sulphate ^U	-		143		1431	20000	50000
TDS	-		256		2559	60000	100000
Phenol Index	┨		< 0.01 5.9		< 0.1	800	1000
DOC Leach Test Information			5.9	.7 500	58.7	800	1000
-each rest information	1						
	1				 		
	1						
Sample Mass (kg)			0.10				
Ory Matter (%)			90.2		- 		
			11		 		
Moieture (06)			11				
Moisture (%) Stage 1 Volume Fluste I 10 (litres)			0 8 U				
Stage 1			0.89				
			0.89				

Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation
M Denotes MCERTS accredited test

Tel: 01622 850410

DETS Report No: 18-76148		Date Sampled	01/06/18		Landfill Was	te Acceptance	Criteria Limi
Geosphere Environmental Ltd	d	Time Sampled	None Supplied				
Site Reference: Maria Fidelis Pheonix Road, London, NW1		TP / BH No	WS3			Stable Non-	
Project / Job Ref: 3163, GI,	RS	Additional Refs	J2		Inert Waste Landfill	reactive HAZARDOUS waste in non-	Hazardous Waste
Order No: 3163,GI Reporting Date: 08/06/2018		Depth (m)	0.70		Landini	hazardous Landfill	Landfill
		QTSE Sample No	337762				
Determinand	Unit	MDL					
TOC ^{MU}	%		1.7		3%	5%	6%
Loss on Ignition	%		8.60				10%
BTEX ^{MU}	mg/kg		< 0.05		6		
Sum of PCBs	mg/kg		< 0.1		1		
Mineral Oil ^{MU}	mg/kg		< 10		500		
Total PAH ^{MU}	mg/kg		< 1.7		100		
pH ^{MU}	pH Units	N/a	8.0			>6	To be
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	1.2			To be evaluated	To be evaluated
Phone Annalous			10:1	Cumulativ		for compliance	
Eluate Analysis			ma/l	10:1	using BS E	N 12457-3 at	L/S 10 I/Kg
A : -U			mg/l < 0.01	mg/kg < 0.1	0.5	(mg/kg)	25
Arsenic ^u Barium ^u	-		< 0.01	< 0.1	20	100	300
Cadmium ^U	-		< 0.02	< 0.20	0.04	100	5
Chromium ^U	-		< 0.005	< 0.05	0.5	10	70
Copper ^U	_		< 0.003	< 0.1	2	50	100
Mercury ^U			< 0.0005	< 0.01	0.01	0.2	2
Molybdenum ^U			0.007	0.07	0.5	10	30
Nickel ^U			< 0.007	< 0.07	0.4	10	40
Lead ^U			< 0.005	< 0.05	0.5	10	50
Antimony ^U			< 0.005	< 0.05	0.06	0.7	5
Selenium ^U			< 0.005	< 0.05	0.1	0.5	7
Zinc ^U			< 0.005	< 0.05	4	50	200
Chloride ^U	_]		2	21	800	15000	25000
Fluoride ^U	_		0.5	5	10	150	500
Sulphate ^U	_		35	352	1000	20000	50000
TDS	4		146	1460	4000	60000	100000
Phenol Index	_		< 0.01	< 0.1	1	-	-
DOC			4.9	48.7	500	800	1000
Leach Test Information					-		
					7		
Sample Mass (kg)			0.10		-		
Dry Matter (%)			86.3	 	┪		
Moisture (%)			16	 	7		
Stage 1				 	7		
Volume Eluate L10 (litres)			0.89		_		
· · · · · · · · · · · · · · · · · · ·							

Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation
M Denotes MCERTS accredited test

Tel: 01622 850410

DETS Report No: 18-76148		Date Sampled	01/06/18		Landfill Wast	LandfIII Waste Acceptance Criteria Lim		
Geosphere Environmental Ltd Time San			None Supplied					
Order No: 3163,GI Depth (m)		TP / BH No	WS4			Stable Non-	Hazardous Waste Landfill	
		Additional Refs			Inert Waste Landfill	reactive HAZARDOUS waste in non-		
		Depth (m)	0.17			hazardous Landfill		
		QTSE Sample No	337763					
Determinand	Unit							
LOC _{Mn}	%		0.8		3%	5%	6%	
Loss on Ignition	%		3.30				10%	
BTEX ^{MU}	mg/kg	< 0.05	< 0.05		6			
Sum of PCBs	mg/kg	< 0.1	< 0.1		1			
Mineral Oil ^{MU}	mg/kg	< 10	< 10		500			
Total PAH ^{MU}	mg/kg	< 1.7	35.4		100			
oH ^{MU}	pH Units	N/a	10.0			>6		
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	2.5			To be evaluated	To be evaluated	
			10:1	Cumulative		for compliance		
Eluate Analysis			(1	10:1	using BS E	N 12457-3 at l	./S 10 I/kg	
			mg/l	mg/kg	0.5	(mg/kg)	25	
Arsenic ^U			< 0.01	< 0.1	0.5	2	25	
Barium ^U			< 0.02	< 0.2	20	100	300	
Cadmium ^U			< 0.0005	< 0.005	0.04	1	5	
Chromium ^U			< 0.005	< 0.05	0.5	10	70	
Copper ^U			0.02	0.2	2	50	100	
Mercury ^U			< 0.0005	< 0.01	0.01	0.2	2	
Molybdenum ^U			0.008	0.08	0.5	10	30	
Nickel ^U			< 0.007	< 0.07	0.4	10	40	
_ead ^U			< 0.005	< 0.05	0.5	10	50	
Antimony ^U			0.011	0.11	0.06	0.7	5	
Selenium ^U			< 0.005	< 0.05	0.1	0.5	7	
Zinc ^U			< 0.005	< 0.05	4	50	200	
Chloride ^U			2	21	800	15000	25000	
Fluoride ^U			< 0.5	< 5	10	150	500	
Sulphate ^U			56	556	1000	20000	50000	
TDS			160	1600	4000	60000	100000	
Phenol Index		ŀ	< 0.01	< 0.1	1	-	-	
DOC		ŀ	13.3	133	500	800	1000	
Leach Test Information			13.3	155	300	000	1000	
					4			
					_			
Sample Mass (kg)			0.10		_			
Dry Matter (%)			88.1					
Moisture (%)			13.6					
Stage 1								
			0.00		7			
Volume Eluate L10 (litres)			0.89					
Volume Eluate L10 (litres)			0.89					

Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test

Soil Analysis Certificate - Sample Descriptions

DETS Report No: 18-76148

Geosphere Environmental Ltd

Site Reference: Maria Fidelis School Site, Pheonix Road, London, NW1 1TA

Project / Job Ref: 3163, GI, RS

Order No: 3163,GI

Reporting Date: 08/06/2018

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
337757	WS1	J1	0.15	2.9	Brown sandy clay with stones and concrete
337758	WS1	J2	0.60	11.5	Brown sandy clay with stones and brick
337759	WS1	J3	1.00	13.1	Brown sandy clay with brick
337760	WS2	J2	0.55	12.7	Brown sandy clay with chalk
337761	WS3	J1	0.15	9.8	Brown sandy clay with stones and concrete
337762	WS3	J2	0.70	13.7	Brown sandy clay with brick and concrete
337763	WS4	J1	0.17	11.9	Brown sandy clay with stones and brick
337764	WS4	J2	0.60	13.9	Brown sandy clay with brick and concrete

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample ^{I/S} Unsuitable Sample ^{U/S}

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 18-76148

Geosphere Environmental Ltd

Site Reference: Maria Fidelis School Site, Pheonix Road, London, NW1 1TA

Project / Job Ref: 3163, GI, RS

Order No: 3163,GI

Reporting Date: 08/06/2018

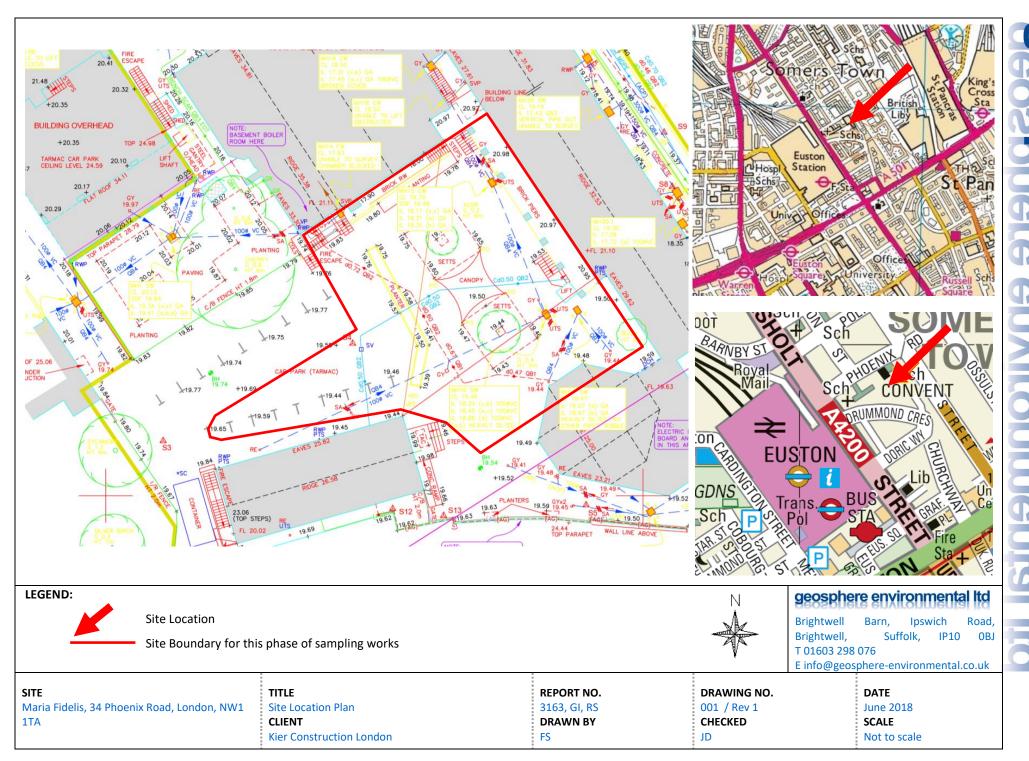
Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	,	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D		Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with notassium dichromate followed by titration with iron	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and became followed by GC-MS with the	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	, ,	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OFS	F024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with notassium dichromate followed by titration with iron	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

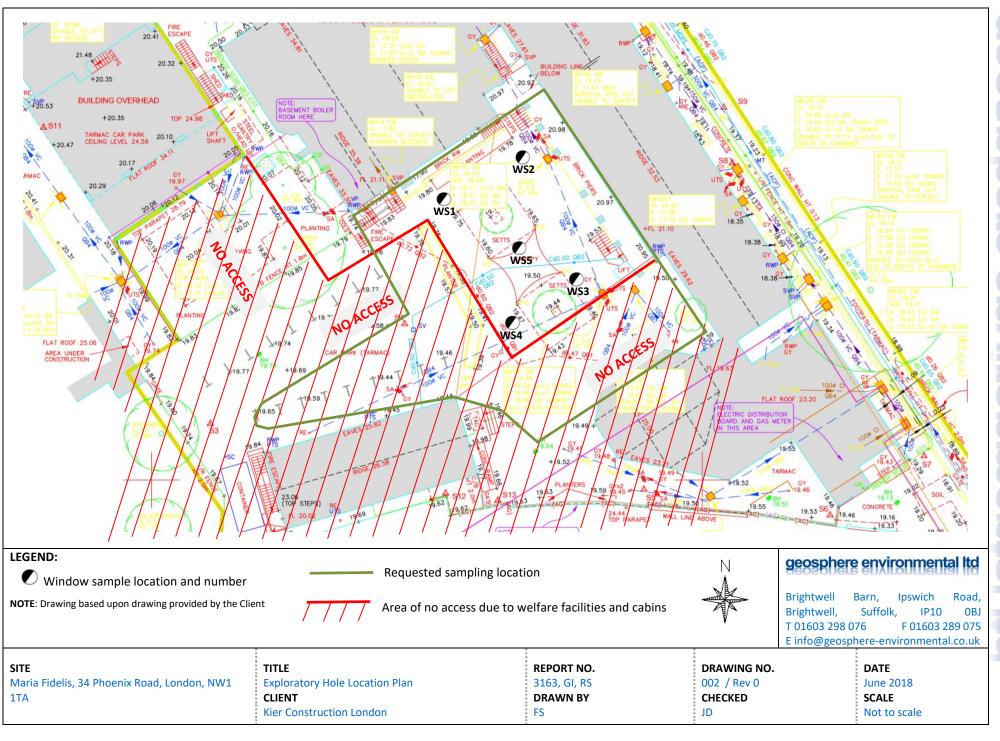
D Dried AR As Received

APPENDIX 7 - DRAWINGS

Site Location Plan – Drawing ref. 3163,GI,RS,001/Rev 0

Exploratory Hole Location Plan - Drawing ref. 3163,GI,RS,002/Rev/0


Description of proposed site redevelopment. Elevation variations – Drawing ref. 3163,GI 003/Rev 0


Combined Exploratory Hole Location Plan- Drawing ref. 3163,GI 004/Rev 1

Proposed Development (Landscape Levels Plan East) (Wynne Williams Associates drawing reference)

1566_LL_105

Proposed Development (Landscape Levels Plan East) (Wynne Williams Associates drawing reference) 1566/LD/503

