APPENDIX C Fieldwork Logs

						Ground	Borehole N				
										Sheet 1 of	
	ect Na					oject N		Co-ords:	-	Hole Type	e
	pence				G	WPR24	459			WS	
LOC	ation:	Camde	n, Lor	ndon NW5 1AR				Level:	-	Scale 1:50	
Clie	nt:	Vincent	-					Dates:	07/02/2018	Logged By AT	y
Well	Water Strikes	Depth (m)	es & In Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum Description	on	
		Depth (m) 0.30 0.50 0.80 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50	Type D D D D D D D D D	Results	0.90 2.10 3.50 4.70	(m ĂOD)		Medium, sub-ang plasterboard, gla LONDON CLAY fine to coarse gra LONDON CLAY CLAY. Sand is fin	Dark brown/grey and clayey parse grained. Gravel is occa gular to angular flint, brick, co ss and plastic. FORMATION: Brown/dark or ained. FORMATION: Brown/dark br ne to coarse grained.	r gravelly silty sand. sional, fine to increte, ange sandy CLAY. Sand is own mottled silty sandy ish grey mottled silty sandy e selenite	-1
											9
Rem	arks:	No grour Roots no	Type ndwate oted to	Results er encountered. 1.50m bgl. Drill	ers not	ted roo	ts to 2.10)m bgl.		AG	

						Ground	l and Wat	er Ltd		Borehole N WS2	
Droi	ect Na	amo			Dr	oject N				Sheet 1 of Hole Type	
		arne r Rise				WPR24		Co-ords:	-	WS	Ĭ
	ation:		n, Lor	ndon NW5 1AR				Level:	-	Scale 1:50	
Clie	nt:	Vincent	-					Dates:	07/02/2018	Logged By AT	у
Well	Water Strikes	Sample Depth (m)	es & In Type	Situ Testing Results	Depth (m)	Level (m AOD)	Legend		Stratum Descriptio	n	
					0.12			Wooden Decking			-
		0.30 0.50	D D		0.40		×××××	to coarse grained sub-angular to su	Brown/dark brown sandy grad. Gravel is occasional, fine to ub-rounded flint, brick, concret noted throughout.	medium.	
1.15		0.80 1.00	D D					LONDON CLAY	FORMATION: Brown/dark ora	inge sandy CLAY. Sand is	-1
								fine to coarse gra	ained. Pockets of orange sand	throughout.	-
		1.50	D								
		2.00	D		2.10						-2
					2.10		× × ×	LONDON CLAY coarse grained.	FORMATION: Brown silty sar /ery fine selenite crystals note	dy CLAY. Sand is fine to determined throughout.]
		2.50	D							U	
							x <u> </u>				
445		3.00	D								-3
		3.50	D		3.50						<u> </u>
		3.30			0.00		××	CLAY. Sand is fir	FORMATION: Brown and blui ne to coarse grained. Very fine	sh grey mottled silty sandy	
		4.00	D				~×	crystals noted thr	oughout.		-4
							xx				
UUR.		4.50	D		4.50				End of Borehole at 4.50 m		-
											-5
											-
											-
											-6
											-
											-7
											-9
			Туре	Results							
Rem	arks:	No grour Traces c	ndwate of roots	er encountered. s at 1.00m bgl. D	rillers	noted r	oots to	2.10m bgl.		AG	s

APPPENDIX D Geotechnical Laboratory Test Results

1	
	SOILS
	COULD

Summary of Natural Moisture Content, Liquid Limit and Plastic Limit Results

C	Solls					······						
Job No.			Project	Name							amme	
24	4073		1 Spen	cer Ris	e, Camden, London				Samples r Schedule	eceived	16/02/2018 15/02/2018	
Project No.			Client							arted	19/02/2018	
	PR2459	9	Ground	& Wa	ter Ltd					arted	26/02/2018	
Hole No.		San	nple		Soil Description	NMC			PL	PI	Remarks	
	Ref	Top m	Base m	Туре		%	425µm %	%	%	%	Remains	
WS1	-	2.00	-	D	Brown silty CLAY with rare fine gravel	38	99	86	31	55		
WS1	-	3.00	-	D	Brown silty CLAY	30	100	76	29	47		
WS2	-	3.50	-	D	Brown silty CLAY	33	100	81	31	50		
WS2	-	4.50	-	D	Brown silty CLAY	35	100	83	33	50		
	Test N Natural Atterbe	lethods Moisture rg ∟imits:	: BS137 Content clause 4.	7: Par : clause 3 and 5	t 2: 1990: 3.2 Tes	t Report by Unit 8 Olds (Watford	K4 SOILS Close Old Herts WI	LABOR s Appro D18 9RU	ATORY ach	<u> </u>	Checked and Approved Initials J.P	
UKAS 105119	Appro	ved Sign	atories: I	K.Phau	re (Tech.Mgr) J.Phaure (Lab.Mgr)	Tel: (Email: Ja	01923 711 mes@k4s		n		Date: 27/02/2 MSF-5-R1(b)	

	4		Su			ults					mary of
V	2001				Tested in accordance with BS1377 :	Part 3 : 1	990, clai	use 5.3 a	ind clau	se 9	
Job No.			Project N	Name						Program	
24073			1 Spenc	er Rise, O	Camden, London				Samples r Schedule r		16/02/2018 15/02/2018
Project No	D.		Client						Project s		19/02/2018
GWPR24			Ground	& Water I	Ltd				Testing S	Started	21/02/2018
		Sa	ample			Dry Mass	SO3	SO4			
Hole No.	Ref	Тор	Base	Туре	Soil description	passing 2mm	Content	Content	pН	I F	Remarks
		m.	m			%	g/l	g/l			
WS1	-	2.00	-	D	Brown silty CLAY with rare fine gravel	99	0.33	0.39	8.20		
G)		•		Test Report by K4 SOILS LABORATOR	Y					ecked and
	2				Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU					A Initials	pproved J.P
	り				Tel: 01923 711 288					muais	J.F
U K J					Email: James@k4soils.com					Date:	27/02/2018
251	9			Approved	d Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab	.Mgr)				!	MSF-5-R29

Alice Tettmar Ground & Water Ltd 2 The Long Barn Norton Farm Selborne Road Alton Hampshire GU34 3NB

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN **t:** 01622 850410 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 18-70977

Site Reference:	1 Spencer Rise, Camden, London
Project / Job Ref:	GWPR2459
Order No:	None Supplied
Sample Receipt Date:	16/02/2018
Sample Scheduled Date:	16/02/2018
Report Issue Number:	1
Reporting Date:	22/02/2018

Authorised by:

Russell Jarvis Associate Director of Client Services

Authorised by:

Dave Ashworth Deputy Quality Manager

QTS Environmental is the trading name of DETS Ltd, company registration number 03705645

Soil Analysis Certificate					
QTS Environmental Report No: 18-70977	Date Sampled	07/02/18	07/02/18		
Ground & Water Ltd	Time Sampled	None Supplied	None Supplied		
Site Reference: 1 Spencer Rise, Camden, London	TP / BH No	WS1	WS2		
Project / Job Ref: GWPR2459	Additional Refs	None Supplied	None Supplied		
Order No: None Supplied	Depth (m)	2.50	3.00		
Reporting Date: 22/02/2018	QTSE Sample No	317485	317486		

Determinand	Unit	RL	Accreditation				
pH	pH Units	N/a	MCERTS	7.5	7.7		
Total Sulphate as SO ₄	mg/kg	< 200	NONE	3021	8191		
Total Sulphate as SO ₄	%	< 0.02	NONE	0.30	0.82		
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	222	2050		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.22	2.05		
Total Sulphur	%	< 0.02	NONE	0.10	0.57		
Ammonium as NH ₄	mg/kg	< 0.5	NONE	< 0.5	< 0.5		
Ammonium as NH ₄	mg/l	< 0.05	NONE	< 0.05	< 0.05		
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	31	29		
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	15.3	14.6		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	6	12		
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	2.9	5.8		
W/S Magnesium	mg/l	< 0.1	NONE	12	76		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC Subcontracted analysis (S)

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 18-70977	
Ground & Water Ltd	
Site Reference: 1 Spencer Rise, Camden, London	
Project / Job Ref: GWPR2459	
Order No: None Supplied	
Reporting Date: 22/02/2018	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
317485	WS1	None Supplied	2.50	16.5	Brown sandy clay
317486	WS2	None Supplied	3.00	21.5	Light brown clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample^{1/S}

Unsuitable Sample U/S

Soil Analysis Certificate - Methodology & Miscellaneous Information
QTS Environmental Report No: 18-70977
Ground & Water Ltd
Site Reference: 1 Spencer Rise, Camden, London
Project / Job Ref: GWPR2459
Order No: None Supplied
Reporting Date: 22/02/2018

Soil D Bron. Water Soluble Determination of PEX by headspace GC-MS Soil D Cations Determination of EXb by headspace GC-MS Soil D Chloride - Water Soluble (2:1) Determination of cations in soil by aqua-regis digestion followed by cohornetry Soil AR Chronium - Heavalent (1) Sighterphartabile (1) Sighterphartabile (1) Sighterphartabile (1) Soil AR Cyanide - Free Determination of treas opticative voltabilition followed by colorimetry Soil AR Cyanide - Free Determination of treas opticative voltabilition followed by colorimetry Soil AR Cyclohexane Extractable Harting (EP) Determination of treas opticative voltabilition followed by colorimetry Soil AR Diese Range Organic (EP) Determination of treas opticative extractabilition of solutability opticative voltability voltability opticative voltability opticative voltability voltability opticative voltability voltability opticative voltability voltabilit		Method No
Soil AR BTEX Determination of BTEX by headspace GC-MS Soil D Cations Determination of cations in soil by aqua-regia digestion followed by ICP- Soil D Chioride - Water Soluble (2:1) Determination of chioride by extraction with water & analysed by ICP- Soil AR Chromium - Heavalent L5 diphernylcarbaide by distillation followed by colorimetry Soil AR Cyanide - Free Determination of tree cyanide by distillation followed by colorimetry Soil AR Cyanide - Free Determination of tree cyanide by distillation followed by colorimetry Soil AR Dissel Range Organics (C10 - C24) Determination of thexanefactone extractable hydrocarbons by GC-FID Soil AR Diesel Range Organics (C10 - C24) Determination of electrical conductivity by addition of water followed by Soil AR Electrical Conductivity Determination of electrical conductivity by solvent extraction followed by GC Soil AR EPH TEXS (C6-G8, C8-C10, C10-C12) Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TeXUS (C6-G8, C8-C10, C10-C12) Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TeXUS (C6-G8, C8-C10, C10-C12) Determination of acetone/hexane extractable	owed by ICP-OES	E012
Soil D Cations Determination of cations in soil by aque-regia digestion followed by CDP. Soil D Chloride - Water Soluble (2:1) Determination of chloride by extraction with water & analysed by ion chross Soil AR Chronium - Hexavalent L5 diptenylcarbatide followed by colorimetry Soil AR Cyanide - Complex Determination of creative colorimetry Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry Soil AR Cyclohexane Extractable Matter (CEN) Gravimetrically determined to relax cyanide by distillation followed by colorimetry Soil AR Diesel Range Organics (C10 - C24) Determination of electrical conductivity by addition of saturated calcium Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by CG-Soil Soil AR Electrical Conductivity Determination of acetone/hexane extractable hydrocarbons by GC-FID followid Soil AR Electrical Conductivity Determination of acetone/hexane extractable hydrocarbons by GC-FID followid Soil AR Electrical Conductivity Determination of fuctor of acetone/hexane extractable hydrocorbons by GC-FID follocid by extraction with water		E001
Soil D Chloride - Water Soluble (2:1) Determination of charolate in thromium in soil by extraction in water the L5 diphenyicarbazide followed by colorimetry Soil AR Cyanide - Complex Determination of free cyanide by distillation followed by colorimetry Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry Soil AR Cyanide - Total Determination of free cyanide by distillation followed by colorimetry Soil AR Diesel Range Organics (CIO - C2A) Determination of electrical conductivity by addition of saturated calcium : electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by GC-FID Soil AR Electrical Conductivity Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH Poter DD Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH Poter DD Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH Poter DD Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil D Fluoroder Aset Soluble Determination of reacton of organic	OES	E002
Soil AR Chromium - Hexvalent Determination of hexavalent chromium in soil by extraction in water ther J.S diphenylcarbazide followed by colorimetry Soil AR Cyanide - Crapplet Optimization of complex cyanide by distillation followed by colorimetry Soil AR Cyanide - Trota Determination of total cyanide by distillation followed by colorimetry Soil AR Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extractable Mytocarbons by GC-FID Soil AR Diesel Range Organis (C10 - C40) Determination of hexane/actome extractable hytocarbons by GC-FID Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by GC Soil AR Electrical Conductivity Determination of electrical conductivity by addition for actore/hexane extractable hytorcarbons by GC-FID Soil AR EPH FOULD D Determination of actore/hexane extractable hytorcarbons by GC-FID Soil AR EPH FOULD D Determination of actore/hexane extractable hytorcarbons by GC-FID Soil AR EPH FOULD D Determination of actore/hexane extractable hytorcarbons by GC-FID for thexane/actore/hexane extra	comatography	E009
Soil AR Cyanide - Complex Distributivation of complex cyanide by distillation followed by colorimetry Soil AR Cyanide - Tree Determination of total cyanide by distillation followed by colorimetry Soil D Cyanide - Tree Determination of total cyanide by distillation followed by colorimetry Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determination of hexane/action with cyclohexane Soil AR Diesel Range Organis (C10 - C42) Determination of hexane/action extractable hydrocarbons by CG-FID Soil AR Electrical Conductivity Determination of actore/inexane extractable hydrocarbons by CG-FID Soil AR Electrical Conductivity Determination of actore/inexane extractable hydrocarbons by CG-FID Soil AR EPH TOKIO 10 Determination of actore/inexane extractable hydrocarbons by GC-FID Soil AR EPH TOKIO 10 Determination of actore/inexane extractable hydrocarbons by GC-FID for Soil D FPH TOKIO 10 Determination of fraction of organic carbon by oxiding with potassium. Soil D FPH TOKIO 01 Determination of fraction of organic carbon by oxiding with potassium. Soil D FPH TOKIO 04 Determination of fraction of organic carbon by oxidising with potassium. Soil	by acidification addition of	
Soil AR Cyanide - Tree Determination of tree cyanide by distillation followed by colorimetry Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane Soil AR Diesel Range Organics (CL0 - C24) Determination of hexane/acetone extractable hydrocarbons by GC-FID Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by Soil AR Electrical Conductivity Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR Electrical Conductivity Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH (C10 - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (GC-GS, GC-10, CL-C1, Determination of acetone/hexane extractable hydrocarbons by GC-FID for Soil D Fluoride - Water Soluble Determination of fluoride by extraction with water & analysed by ion chr Soil D Fluoride - Water Soluble Determination of fluoride by extraction with water & analysed by ion chr Soil D Magnesium - Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES Soil D Magnesium - Water		E016
Soil AR Cyanide - Total Operation of total cyanide by distillation followed by colorimetry. Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determination of rexane/acctone extractable hydrocarbons by GC-FID Soil AR Diesel Range Organics (C10 - C24) Determination of rexane/acctone extractable hydrocarbons by GC-FID Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by Colorimetry Soil AR Electrical Conductivity Determination of acctone/hexane extractable hydrocarbons by GC-FID Soil AR EPH (C10 - C40) Determination of acctone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (C6-C8, C8 - C10, C10 - C12, Determination of acctone/hexane extractable hydrocarbons by GC-FID for Soil D Fluoride - Water Soluble Determination of roganic carbon by voldising with potassium tratation with water & analysed by ion chro Soil D Fluoride - Water Soluble Determination of nexane/acctone watractable hydrocarbons by GC-FID fruction of gravine tractable hydrocarbons by GC-FID fruction with water Soluble magnesium by extraction with water followed by ICP-OES Soil D Magnesium - Water Soluble Determination of nexane/acctone extractable hydrocarbons by GC-FID fruction with water Soluble (C10 - C40)		E015
Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC-FID Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated calcum : Soil AR Electrical Conductivity Determination of electrical conductivity by addition of matter followed by CG Soil D Elemental Sulphur Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TOUL C10 - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID for Soil AR EPH TEXAS (C6-C8, C8 - C10, C10 - C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for Soil D Fluoride - Water Soluble Determination of fluoride by extraction with water & analysed by ion chr Soil D Fluoride - Water Soluble Determination of fluoride by extractable hydrocarbons by GC-FID for Soil D Loss on Ignition @ 450C Soil D Magnesium - Water Soluble Determination of fluoride by extraction with water followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of matals by aqua-regia diogestion follo		E015
Soil AR Diesel Range Organics (C10 - C24) Determination of hexane/acctone extractable hydrocarbons by GC-FID. Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated calcium : electrometric measurement. Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by GC Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by GC Soil AR EPH (C10 - C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (C6-68, C6-10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for Soil D Fluoride - Vater Soluble Determination of Fluoride by extraction with water & analysed by ion chr Soil D Icos on Ignition @ 450cc Determination of Ios on Ignition in soil by gravimetrically with the samp furmace Soil D Magnesium - Water Soluble Quetermination of hexane/acetone extractable hydrocarbons by GC-FID fr Soil AR Mineral Oil (C10 - C40) Determination of natae by aqua-regia digestion followed by ICP-QES Soil AR Mineral Oil (C10 - C40) Determination o		E015
Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated calcium : electrometric measurement Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by Soil Soil D Elemental Sulphur Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for C12-C16, C16-C21, C21-C40) headspace GC-MS Soil D FPH texAS (C6-C8, C8-C10, C10-C12, Determination of fruction of organic carbon by oxidising with potassium of tratation with iron (11) sulphate Soil D FOC (Fraction Organic Carbon) Determination of fruction of organic carbon by oxidising with potassium of tratation with iron (11) sulphate Soil D Magnesium - Water Soluble Soil D Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID france Soil AR Mineral Oil (C10 - C40) Determination of netals by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of organic matter by extraction with water followed by ion chost		E011
Soil AR Electrical Conductivity electronal Conductivity Soil AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by GC Soil AR Elemental Sulphur Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TCAC C400 Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (CG-CG, C1-C1, C1-C1) Determination of acetone/hexane extractable hydrocarbons by GC-FID ft Soil D Fluoride - Vater Soluble Determination of fraction organic carbon by oxidising with potassium Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxidising with potassium Soil D Loss on Ignition @ 450cc Determination of netas by aqua-regia digestion followed by ICP-OES Soil D Magnesium - Water Soluble Determination of netas by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of netas by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of netas by aqua-regia digestion followed by ICP-OES Soil <		E004
Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed by GC Soil AR EPH Product ID Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH Product ID Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TZAS (C6-C8, C3-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil D Fluoride - Water Soluble Determination of fraction or granic carbon by oxidising with potassium of traction of organic carbon by oxidising with potassium of traction with variant is solid provide - Water Soluble Determination of fluoride by extraction with water followed by ICP-OES Soil D Loss on Ignition @ 450oc Determination of netasls by aqua-regia digestion followed by ICP-OES Soil D Magnesium - Water Soluble Determination of netasls by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of netasls by aqua-regia digestion followed by ion chro Soil AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID fr Soil AR PAH - Speciated (EPA 16) Determination of organic matter by oxidising with potassium dichromate	sulphate followed by	E022
Soil AR EPH (C10 – C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID from C12-C16, C16-C21, C21-C40, headspace GC-MS Soil D Fluoride - Water Soluble Determination of fraction of organic carbon by oxidising with potassium of tration of fraction of organic carbon by oxidising with potassium of tration of fraction of organic carbon by oxidising with potassium of tration with water & analysed by ion chromatic carbon by extraction with water & analysed by ion chromatic carbon by oxidising with potassium of tration of floss on ignition in soil by gravimetrically with the samp furmace Soil D Magnesium - Water Soluble Determination of loss on ignition in soil by gravimetrically with the samp furmace Soil D Magnesium - Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of nutrate by extraction with water & analysed by ion chromate Soil D Nitrate - Water Soluble (21) Determination of nutrate by extraction with water & analysed by ion chromate Soil AR Moisture Content Moisture content, determined gravimetrically Soil D Nitrate - Water Soluble (21) Determination of rutrate by extraction with wate	electrometric measurement	E023
Soil AR EPH (C10 – C40) Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for Soil D Fluoride - Water Soluble Determination of acetone/hexane extractable hydrocarbons by GC-FID for Soil D Fluoride - Water Soluble Determination of fluoride by extraction with water & analysed by ion chr Soil D FOC (Fraction Organic Carbon) Determination of fluoride by extraction with water & analysed by ion chr Soil D Loss on Ignition @ 450cc Determination of loss on ignition in soil by gravimetrically with the samp furnace Soil D Magnesium - Water Soluble Determination of hexane/acetone extractable hydrocarbons by GC-FID fn Soil AR Mineral Oil (C10 - C40) Determination of netals by aqua-regia digestion followed by ICP-OES Soil AR Moisture Content Moisture content, determined gravimetrically Soil D Nitrate - Water Soluble (2:1) Determination of organic matter Determination of rule by extraction with water & analysed by ion chr Soil AR PAH - Speciated (EPA 16) Sec Determination of		E020
Soil AR EPH Product ID Determination of acetone/hexane extractable hydrocarbons by GC-FID Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID f Soil D Fluoride - Water Soluble Determination of acetone/hexane extractable hydrocarbons by GC-FID f Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxidising with potassium in tration with iron (II) sulphate Soil D Loss on Ignition @ 4500C Determination of metals by aqua-regia digestion followed by ICP-OES Soil D Magnesium - Water Soluble Determination of hexane/acetone extractable hydrocarbons by GC-FID f Soil D Magnesium - Water Soluble Determination of netals by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID fr Soil AR Moisture Content, determination of initate by extraction with water & analysed by ion chro Soil D Nitrate - Soluble (21) Determination of PAH compounds by extraction with acetone and hexane fuse Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane fuse of surrogate and internal s		E004
Soil AR EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID fc C12-C16, C12-C16, C21, C21-C40) headspace GC-MS Soil D Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by ion chr tration Soil D FOC (Fraction Organic Carbon) Determination of Fluoride by extraction with water & analysed by ion chr tration Soil D Loss on Ignition @ 4500C Determination of loss on ignition in soil by gravimetrically with the samp furnace Soil D Magnesium - Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of nexane/acetone extractable hydrocarbons by GC-FID fr Soil AR Mineral Oil (C10 - C40) Determination of metals by aqua-regia digestion followed by ICP-OES Soil AR Moisture Content Moisture content; determined gravimetrically Soil D Nitrate - Water Soluble (2:1) Determination of nexane/acetone extractable hydrocarbons by GC-FID fr Soil AR PAH - Speciated (EPA 16) Determination of relampton with water & analysed by ion chroup acetable hydrocarbons and prevention of organic matter by oxidising with potassium dichromate (us of a cana)		E004
Soil AR C12-C16, C16-C21, C21-C40) headspace GC-MS Soil D Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by ion chr brance Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxidising with potassium of tratation with iron (II) sulphate Soil D Loss on Ignition @ 4500c Determination of water soluble magnesium by extraction with water follo furnace Soil D Magnesium - Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID fr Soil AR Moisture Content Moisture Content Moisture content; determined gravimetrically Soil D Organic Matter Determination of OrAPA compounds by extraction with water & analysed by ion chronate (II) sulphate Soil AR PAH - Speciated (EPA 16) Determination of organic matter by oxidising with potassium dichromate (II) sulphate Soil AR PHenols - Total (monohydric) Determination of PAH compounds by extraction with acetone and hexane followed by soil are provided by contormetry. Soil AR	r C8 to C40 C6 to C8 by	
Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxidising with potassium of traino with iron (II) sulphate Soil D Loss on Ignition @ 4500C Petermination of loss on ignition in soil by gravimetrically with the samp furnace Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water foll Soil D Magnesium - Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of netals by extraction with water & analysed by ion chron of gravimetrically Soil D Nitrate - Water Soluble (2:1) Determination of organic matter by extraction with water & analysed by ion chron of suphrate and internal standards Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with acetone and hexane followed by Soil Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with petroleum ether Soil AR PAE - Z congeners Determination of pubs by distiliation followed by colorimetry Soil AR PAE - Z congeners Determination of pubs vartaction with water & analysed by ion (ascoil are pubs anacoin pubs by extraction with water		E004
Soli D POC (Fraction Organic Carbon) titration with iron (II) sulphate Soli D Loss on Ignition @ 450oc furnace Soli D Magnesium - Water Soluble Determination of loss on ignition in soli by gravimetrically with the samp furnace Soli D Magnesium - Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of metals by aqua-regia digestion followed by ICP-OES Soil AR Moisture Content Moisture content; determined gravimetrically Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chro Determination of PAH compounds by extraction in acetone and hexane followed by Soil D Organic Matter (II) sulphate Soil AR PAH - Speciated (EPA 16) Determination of PCB by extraction with acetone and hexane followed by Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with water & analysed by ion chro use of surrogate and internal standards Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry Soil D Phosphate - Water Soluble (2:1) Determination		E009
Soli D Loss on right on the source furnace Soii D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water folloc Soii AR Mineral Oii (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID fr Soii AR Moisture Content Moisture content; determined gravimetrically Soii D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chro Soii D Organic Matter Determination of PAH compounds by extraction in acetone and hexane followed by Soii AR PAH - Speciated (EPA 16) Determination of PCB by extraction with acetone and hexane followed by Soii AR PCB - 7 Congeners Determination of PCB by extraction with petroleum ether Soii AR PCB - 7 Congeners Determination of PAH compounds by extraction with petroleum ether Soii AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry Soii D Sulphate (as SO4) - Total Determination of total sulphate by extraction with water & analysed by ion ch Soiii D Sulphate (as SO4)	dichromate followed by	E010
Soil D Metals Determination of metals by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID fr Soil AR Moisture Content Moisture content; determined gravimetrically Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chro Soil D Organic Matter (II) sulphate Determination of organic matter by oxidising with potassium dichromate (II) sulphate Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by Soil AR PCB - 7 Congeners Determination of PAH compounds by extraction with acetone and hexane followed by Soil AR PCB - 7 Congeners Determination of pH by addition of water followed by colorimetry Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry Soil D Phosphate - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion of soil Soil D Sulphate (as SO4) - Total (monohydric) Determination of sulphate	le being ignited in a muffle	E019
Soil D Metals Determination of metals by aqua-regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID fr Soil AR Moisture Content Moisture content; determined gravimetrically Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chro Soil D Organic Matter (II) sulphate Determination of organic matter by oxidising with potassium dichromate (II) sulphate Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by Soil AR PCB - 7 Congeners Determination of PAH compounds by extraction with acetone and hexane followed by Soil AR PCB - 7 Congeners Determination of pH by addition of water followed by colorimetry Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry Soil D Phosphate - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion of soil Soil D Sulphate (as SO4) - Total (monohydric) Determination of sulphate	wed by ICP-OES	E025
Soil AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID fr Soil AR Moisture Content Moisture content; determination of nitrate gravimetrically Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chro Soil D Organic Matter Determination of organic matter by oxidising with potassium dichromate (II) sulphate Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by Soil AR PCB - 7 Congeners Determination of PCB by extraction with acetone and hexane followed by Soil AR PCB - 7 Congeners Determination of PCB by extraction with acetone and hexane followed by Soil AR PHeroleum Ether Extract (PEE) Gravimetrically determined through extraction with perforementic mease Soil AR Phenols - Total (monohydric) Determination of phosphate by extraction with water & analysed by ion chrosing Soil D Phenols - Total (monohydric) Determination of phosphate by extraction with acetone and hexane followed by Soil D Sulphate (as SO4) - Total Determination of sulphate by extraction		E002
SoilDNitrate - Water Soluble (2:1)Determination of nitrate by extraction with water & analysed by ion chroSoilDOrganic MatterDetermination of organic matter by oxidising with potassium dichromate (II) sulphateSoilARPAH - Speciated (EPA 16)Determination of PAH compounds by extraction in acetone and hexane for use of surrogate and internal standardsSoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by Soil DSoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by Soil DSoilARPhenols - Total (monohydric)Determination of pHopshate by extraction with water & analysed by ion of pather - Water Soluble (2:1)SoilDSulphate (as SO4) - TotalDetermination of sulphate by extraction with water & analysed by ion chro Soil DSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chro Soil DSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chro Soil DSoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by soluphur - TotalSoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by solupine for sulphide by distillation followed by colorimetrySoilARSulphate (as SCN)Determination of sulphate by extraction with aqua-regia followed by solupine for sulphide by extraction in	actionating with SPE cartridge	E004
SoilDNitrate - Water Soluble (2:1)Determination of nitrate by extraction with water & analysed by ion chroSoilDOrganic MatterDetermination of organic matter by oxidising with potassium dichromate (II) sulphateSoilARPAH - Speciated (EPA 16)Determination of PAH compounds by extraction in acetone and hexane for use of surrogate and internal standardsSoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by Soil DSoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by Soil DSoilARPhenols - Total (monohydric)Determination of pHopshate by extraction with water & analysed by ion of pather - Water Soluble (2:1)SoilDSulphate (as SO4) - TotalDetermination of sulphate by extraction with water & analysed by ion chro Soil DSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chro Soil DSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chro Soil DSoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by soluphur - TotalSoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by solupine for sulphide by distillation followed by colorimetrySoilARSulphate (as SCN)Determination of sulphate by extraction with aqua-regia followed by solupine for sulphide by extraction in		E003
SoilDOrganic MatterDetermination of organic matter by oxidising with potassium dichromate (II) sulphateSoilARPAH - Speciated (EPA 16)Determination of PAH compounds by extraction in acetone and hexane for use of surrogate and internal standardsSoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by Soil DSoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by Soil ARSoilARPetroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum ether PHSoilARPhenols - Total (monohydric) Determination of phenols by distillation followed by colorimetrySoilDPhosphate - Water Soluble (2:1) Determination of phosphate by extraction with 10% HCI followed by 100 cd Soil DSoilDSulphate (as SO4) - Total Soil DSoilDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with 10% HCI followed by 100 cd Soil DSoilDSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed Soil DSoilARSulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with aqua-regia followed by Soil DSoilARSulphate (as SO4) - Total Sulphur - TotalSoilDSulphate (as SCN) MSSoilARThiocyanate (as SCN) MSSoilARThiocyanate (as SCN) Total Organic Carbon (TOC UI)SoilDTotal Organic Carbon (TOC UI) </td <td>matography</td> <td>E009</td>	matography	E009
SoilARPAH - Speciated (EPA 16)Determination of PAH compounds by extraction in acetone and hexane for use of surrogate and internal standardsSoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by Soil DSoilDPetroleum Ether Extract (PEE)Gravimetrically determined through extraction with petroleum etherSoilARPhenols - Total (monohydric)Determination of pH by addition of water followed by colorimetrySoilDPhenols - Total (monohydric)Determination of phosphate by extraction with water & analysed by ion of Soil DSoilDSulphate (as SO4) - TotalDetermination of sulphate by extraction with number water soluble (2:1)SoilDSulphate (as SO4) - TotalDetermination of sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followed by Soil DSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by distillation followed by colorimetrySoilARSulphate Sulphide Determination of sulphate by extraction with water followed by soil DSoilARSulphate (as SO4) - Water Soluble (2:1)SoilARSulphate (as SO4) - Total Sulphur - TotalSoilARSulphate (as SCN)SoilARSulphate (as SCN)SoilARThiocyanate (as SCN)SoilARThiocyanate (as SCN)SoilDToluene Extractable Matter (TEM)SoilD		E010
SoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed bySoilDPetroleum Ether Extract (PEE)Gravimetrically determined through extraction with petroleum etherSoilARPhenols - Total (monohydric)Determination of pH by addition of water followed by electrometric measeSoilDPhenols - Total (monohydric)Determination of phenols by distillation followed by colorimetrySoilDPhosphate - Water Soluble (2:1)Determination of phosphate by extraction with water & analysed by ion ofSoilDSulphate (as SO4) - Total Determination of sulphate by extraction with 10% HCI followed by 1SoilDSulphate (as SO4) - Total Determination of sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followedSulphate (as SO4) - Water Soluble (2:1)SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphide by distillation followed by colorimetrySoilARSoilDSoilARSoilDSoilARSoilARSoilARSoilARSoilARSoilDThiocyanate (as SCN)SoilDDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDDTotal Organic Carbon (TOC)Determination of organic matter by oxidisin	ollowed by GC-MS with the	E005
SoilDPetroleum Ether Extract (PEE)Gravimetrically determined through extraction with petroleum etherSoilARpHDetermination of pH by addition of water followed by electrometric measeSoilARPhenols - Total (monohydric)Determination of phenols by distillation followed by colorimetrySoilDPhosphate - Water Soluble (2:1)Determination of phosphate by extraction with water & analysed by ion ofSoilDSulphate (as SO4) - Total Determination of total sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followedSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by distillation followed by colorimetrySoilARSoilARSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilDThiocyanate (as SCN)SoilDDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium d	GC-MS	E008
SoilARpHDetermination of pH by addition of water followed by electrometric measesSoilARPhenols - Total (monohydric)Determination of phenols by distillation followed by colorimetrySoilDPhosphate - Water Soluble (2:1)Determination of phosphate by extraction with water & analysed by ion ofSoilDSulphate (as SO4) - TotalDetermination of total sulphate by extraction with uater & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followedSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followedSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followedSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with aqua-regia followed bySoilDSulphur - TotalDetermination of semi-volatile organic compounds by extraction in acetoSoilARSVOCDetermination of thiocyanate by extraction in caustic soda followed by are addition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of o		E011
SoilARPhenols - Total (monohydric)Determination of phenols by distillation followed by colorimetrySoilDPhosphate - Water Soluble (2:1)Determination of phosphate by extraction with water & analysed by ion ofSoilDSulphate (as SO4) - TotalDetermination of sulphate by extraction with 10% HCl followed by 10SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followedSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water followedSoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with aqua-regia followed bySoilARSulphur - TotalDetermination of semi-volatile organic compounds by extraction in acetoSoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by addition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate (II) sulphate	surement	E007
Soil D Phosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by ion of Soil Soil D Sulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCl followed by 1 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion ch Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion ch Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion ch Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion ch Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion ch Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by distillation followed by colorimetry Soil AR Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by Soil AR Thiocyanate (as SCN) Determination of semi-volatile organic compounds by extraction in acetic soda followed by ad Soil D Toluene Extractable Matter (TEM) <td></td> <td>E021</td>		E021
SoilDSulphate (as SO4) - TotalDetermination of total sulphate by extraction with 10% HCl followed by 1SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of water soluble sulphate by extraction with water followedSoilARSulphate (as SO4) - Water Soluble (2:1)Determination of sulphide by distillation followed by colorimetrySoilARSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed by Determination of semi-volatile organic compounds by extraction in aceto MSSoilARSVOCDetermination of thiocyanate by extraction in caustic soda followed by addition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate (II) sulphate	chromatography	E009
SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chSoilDSulphate (as SO4) - Water Soluble (2:1)Determination of water soluble sulphate by extraction with water followedSoilARSulphideDetermination of sulphide by distillation followed by colorimetrySoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed bySoilARSVOCDetermination of semi-volatile organic compounds by extraction in aceto MSSoilARThiocyanate (as SCN)Determination of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate (II) sulphate		E013
SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of water soluble sulphate by extraction with water followedSoilARSulphideDetermination of sulphide by distillation followed by colorimetrySoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed bySoilARSVOCDetermination of semi-volatile organic compounds by extraction in acetoSoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by addition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate (II) sulphate		E019
SoilARSulphideDetermination of sulphide by distillation followed by colorimetrySoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed bySoilARSVOCDetermination of semi-volatile organic compounds by extraction in acetoSoilARThiocyanate (as SCN)Determination of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate (II) sulphate		E014
SoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed by Determination of semi-volatile organic compounds by extraction in aceto MSSoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by addition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate (II) sulphate		E014
SoilARSVOCDetermination of semi-volatile organic compounds by extraction in aceto MSSoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by a ddition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate (II) sulphate		E018
SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by addition of ferric nitrate followed by colorimetrySoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneSoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate	ne and hexane followed by GC-	E024
Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate (II) sulphate	cidification followed by	E017
Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate (II) sulphate		E011
Soli D Total Organic Carbon (TOC) (II) sulphate	followed by titration with iron	
TPH CWG (ali: C5- C6, C6-C8, C8-C10)		E010
SoilARC10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)Determination of hexane/acetone extractable hydrocarbons by GC-FID fr for C8 to C35. C5 to C8 by headspace GC-MS C12-C16, C16-C21, C21-C35)	actionating with SPE cartridge	E004
Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10 C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12- C16, C16-C21, C21-C35, C35-C44) Determination of hexane/acetone extractable hydrocarbons by GC-FID fr for C8 to C44. C5 to C8 by headspace GC-MS	actionating with SPE cartridge	E004
Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS		E001
Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by	GC-FID	E001

D Dried AR As Received

APPENDIX E Chemical Laboratory Test Results

Alice Tettmar Ground & Water Ltd 2 The Long Barn Norton Farm Selborne Road Alton Hampshire GU34 3NB

DETS Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410 russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 18-70974

Site Reference:	1 Spencer Rise, Camden, London
Project / Job Ref:	GWPR2459
Order No:	None Supplied
Sample Receipt Date:	16/02/2018
Sample Scheduled Date:	16/02/2018
Report Issue Number:	1
Reporting Date:	22/02/2018

Authorised by:

Russell Jarvis Associate Director of Client Services

Authorised by:

Dave Ashworth Deputy Quality Manager

QTS Environmental is the trading name of DETS Ltd, company registration number 03705645

Soil Analysis Certificate								
QTS Environmental Report No: 18-70974	Date Sampled	07/02/18						
Ground & Water Ltd	Time Sampled	None Supplied						
Site Reference: 1 Spencer Rise, Camden, London	TP / BH No	WS1						
Project / Job Ref: GWPR2459	Additional Refs	None Supplied						
Order No: None Supplied	Depth (m)	0.30						
Reporting Date: 22/02/2018	QTSE Sample No	317458						

Determinand	Unit	RL	Accreditation			
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected		
рН	pH Units	N/a	MCERTS	7.7		
Total Cyanide	mg/kg	< 2	NONE	< 2		
W/S Sulphate as SO_4 (2:1)	mg/l	< 10	MCERTS	1580		
W/S Sulphate as SO_4 (2:1)	g/l	< 0.01	MCERTS	1.58		
Organic Matter	%	< 0.1	MCERTS	2.7		
Total Organic Carbon (TOC)	%	< 0.1	MCERTS	1.6		
Arsenic (As)	mg/kg	< 2	MCERTS	13		
W/S Boron	mg/kg	< 1	NONE	< 1		
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.4		
Chromium (Cr)	mg/kg	< 2	MCERTS	21		
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		
Copper (Cu)	mg/kg	< 4	MCERTS	41		
Lead (Pb)	mg/kg	< 3	MCERTS	2580		
Mercury (Hg)	mg/kg	< 1	NONE	< 1		
Nickel (Ni)	mg/kg	< 3	MCERTS	14		
Selenium (Se)	mg/kg	< 3	NONE	< 3		
Vanadium (V)	mg/kg	< 2	NONE	40		
Zinc (Zn)	mg/kg	< 3	MCERTS	292		
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs									
QTS Environmental Report No: 18-70974	Date Sampled	07/02/18							
Ground & Water Ltd	Time Sampled	None Supplied							
Site Reference: 1 Spencer Rise, Camden,	TP / BH No	WS1							
London									
Project / Job Ref: GWPR2459	Additional Refs	None Supplied							
Order No: None Supplied	Depth (m)	0.30							
Reporting Date: 22/02/2018	QTSE Sample No	317458							

Determinand	Unit	RL	Accreditation			
Naphthalene	mg/kg	< 0.1	MCERTS	0.26		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	0.47		
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluoranthene	mg/kg	< 0.1	MCERTS	1.38		
Pyrene	mg/kg	< 0.1	MCERTS	1.25		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.78		
Chrysene	mg/kg	< 0.1	MCERTS	0.73		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.92		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	0.33		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	0.72		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	0.46		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	0.49		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	7.8		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - TPH CWG Banded								
QTS Environmental Report No: 18-70974	Date Sampled	07/02/18						
Ground & Water Ltd	Time Sampled	None Supplied						
Site Reference: 1 Spencer Rise, Camden,	TP / BH No	WS1						
London								
Project / Job Ref: GWPR2459	Additional Refs	None Supplied						
Order No: None Supplied	Depth (m)	0.30						
Reporting Date: 22/02/2018	QTSE Sample No	317458						

Determinand	Unit	RL	Accreditation			
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01		
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10		
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21		
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2		
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	3		
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	12		
Aromatic (C5 - C35)	mg/kg	< 21	NONE	< 21		
Total >C5 - C35	mg/kg	< 42	NONE	< 42		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30^oC

Soil Analysis Certificate - BTEX / MTBE								
QTS Environmental Report No: 18-70974	Date Sampled	07/02/18						
Ground & Water Ltd	Time Sampled	None Supplied						
Site Reference: 1 Spencer Rise, Camden,	TP / BH No	WS1						
London								
Project / Job Ref: GWPR2459	Additional Refs	None Supplied						
Order No: None Supplied	Depth (m)	0.30						
Reporting Date: 22/02/2018	QTSE Sample No	317458						

Determinand	Unit	RL	Accreditation	
Benzene	ug/kg	< 2	MCERTS	< 2
Toluene	ug/kg	< 5	MCERTS	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2
MTBE	ug/kg	< 5	MCERTS	< 5

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

QTS Environmental Report No	b: 18-70974	Date Sampled	07/02/18			Landflll Wast	e Acceptance (Criteria Limit
Ground & Water Ltd		Time Sampled	None Supplied					
Site Reference: 1 Spencer Ris London	se, Camden,	TP / BH No	WS2				Stable Non-	
Project / Job Ref: GWPR245	9	Additional Refs	None Supplied			Inert Waste Landfill	reactive HAZARDOUS waste in non-	Hazardous Waste
Order No: None Supplied		Depth (m)	0.30			Lanum	hazardous Landfill	Landfill
Reporting Date: 22/02/2018	1	QTSE Sample No	317459					
Determinand	Unit	MDL						
TOC ^{MU}	%		1.4			3%	5%	6%
Loss on Ignition	%		6.70					10%
BTEX ^{MU}	mg/kg		< 0.05			6		
Sum of PCBs	mg/kg		< 0.1			1		
Mineral Oil ^{MU}	mg/kg		< 10			500		
	mg/kg		< 1.7			100		
pH ^{MU}	pH Units	N/a	8.1				>6	 To bo
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1				To be evaluated	To be evaluated
	-	•	10:1		Cumulative	Limit values	for compliance	
Eluate Analysis			10:1		10:1	using BS E	N 12457-3 at l	./S 10 l/kg
			mg/l		mg/kg		(mg/kg)	
Arsenic ^u			< 0.01		< 0.1	0.5	2	25
Barium ^U	_		< 0.02		< 0.2	20	100	300
Cadmium ^U	_		< 0.0005		< 0.005	0.04	1	5
Chromium ^U	_		< 0.005		< 0.05	0.5	10	70
Copper ^U	_		< 0.01 < 0.0005		< 0.1 < 0.01	2 0.01	50 0.2	100 2
Mercury ^u Molybdenum ^u	_		0.012		0.12	0.01	10	30
Nickel ^u	_		< 0.012		< 0.07	0.3	10	40
Lead ^U	_		< 0.007		< 0.07	0.4	10	50
Antimony ^U	-		< 0.005		< 0.05	0.06	0.7	5
Selenium ^U	1		< 0.005		< 0.05	0.1	0.5	7
Zinc ^U	1		< 0.005		< 0.05	4	50	200
Chloride ^U	1		< 1		< 10	800	15000	25000
Fluoride ^U	1		< 0.5	1 1	< 5	10	150	500
Sulphate ^U	1		5		48	1000	20000	50000
TDS			67		670	4000	60000	100000
Phenol Index			< 0.01		< 0.1	1	-	-
DOC			12.7		127	500	800	1000
Leach Test Information								
	4							
Sample Mass (kg)			0.11					
Dry Matter (%)			81.7					
Moisture (%)			22.4					
Stage 1 Volume Eluate L10 (litres)			0.88					

Results are expressed on a dry weight basis, after correction for moisture content where applicable								
Stated limits are for guidance only and QTS Environmental cannot be held res	ponsible for any	discrepencies w	ith current legisla	ation				
M Denotes MCERTS accredited test								
U Denotes ISO17025 accredited test								

QTS Environmental Report No: 18-70974 Ground & Water Ltd Site Reference: 1 Spencer Rise, Camden, London Project / Job Ref: GWPR2459 Order No: None Supplied	Analysis Certificate - Sample Descriptions	
Site Reference: 1 Spencer Rise, Camden, London Project / Job Ref: GWPR2459 Order No: None Supplied	invironmental Report No: 18-70974	
Project / Job Ref: GWPR2459 Order No: None Supplied	nd & Water Ltd	
Order No: None Supplied	eference: 1 Spencer Rise, Camden, London	
	ct / Job Ref: GWPR2459	
Departing Date: 32/02/2018	No: None Supplied	
Reporting Date: 22/02/2018	rting Date: 22/02/2018	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
317458	WS1	None Supplied	0.30	17.6	Black sandy clay with stones and chalk
317459	WS2	None Supplied	0.30	26.1	Brown sandy clay with brick

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$

& samples received in inappropriate containers for hydrocarbon analysis

Soil Analysis Certificate - Methodology & Miscellaneous Information
QTS Environmental Report No: 18-70974
Ground & Water Ltd
Site Reference: 1 Spencer Rise, Camden, London
Project / Job Ref: GWPR2459
Order No: None Supplied
Reporting Date: 22/02/2018

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E012
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E001
	D			
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
- 3011			Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	
Soil	AR	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D		Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D		Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron	E010
Soil	AR	PAH - Speciated (FPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E021
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR		Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC- MS	E006
Soil	AR	I hiocyanate (as SCN)	addition of terric hitrate followed by colorimetry	E017
Soil	D	1 /	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
				-
Soil	AR		Determination of volatile organic compounds by headspace GC-MS Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried AR As Received

Appendix F Soil Assessment Criteria

Appendix D

Soil Guideline Values and Genera Assessment Criteria

D1 Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'.

D1.1 Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA Guidance comprises the following documents:

EA Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
 EA Science Report SC050021/SR3: Updated technical background to the CLEA model.
 EA CLEA Bulletin (2009).
 CLEA software version 1.06 (2009)
 Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

• do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures.

• do not cover risks to the environment, such as groundwater, ecosystems or buildings.

• do not provide a definitive test for telling when human health risks are significant.

• are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

D1.2 Land-use Scenarios

The CLEA model uses a range of standard land-use scenarios to develop conceptual exposure models as follows:

1 Residential (with home grown produce) (RwHP)

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur. (Residential without homegrown produce (RwoHP)).

2) Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

3) Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a three-storey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

D1.4 LQM/CIEH SUITABLE 4 USE LEVELS (S4UL)

For derivation of these S4UL reference must be made to:

Nathanial, P., McCaffrey, C., Gillet, A., Ogden, R., Nathanial, J.,. *The LQM/CIEH S4UL's for Human Health Risk Assessment*. Land Quality Press. 2015

The LQM/CIEH S4UL for a given land use is the concentration of the contaminant in soil at which the predicted daily exposure, as calculated by the CLEA software, equals the Health Criteria Value.

The final output for each contaminant represents a synthesis of new toxicological (and fate and transport) reviews published since the preparation of the 2^{nd} edition LQM/CIEH GAC's (Nathanial et al., 2009).

In the derivation of LQM/CIEH S4UL's the principles of 'minimal' or 'tolerable' risk enshrined in SR2, which has not been withdrawn, has been maintained.

S4UL's have been derived for the basic CLEA land-uses, as described above, and for two new land uses:

- Public Open Spaces near Residential Housing (POSresi)
- Public Park (POSpark).

Public Open Spaces near Residential Housing (POSresi)

Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930's – 1970's housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soils with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

Public Park (POSpark)

An area of open space, usually owned and maintained by the local authority, provided for recreational uses including family visists and picnics, children's play area, informal sporting activities (not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into places of residence will be negligible.

D1.5 Category 4 Screening Levels (C4SLs)

In the case of Lead, no SGV or GAC has been published to date. This is likely to be due to the toxicity review that is currently being undertaken by the Environment Agency. In the absence of updated toxicity information the SGV derived using CLEA 1.06 methodology and related toxicity will be used.

The overall objective of the C4SLs research project was to assist the provision of technical guidance in support of Defra's revised Statutory Guidance (SG) for Part 2A of the Environmental Protection Act 1990 (Part 2A) (Defra, 2012a). Specifically, the project aimed to deliver:

• A methodology for deriving C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space; and

• A demonstration of the methodology, via the derivation of C4SLs for six substances – arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.

To help achieve a more targeted approach to identifying and managing contaminated land in relation to the risk (or possibility) of harm to human health, the revised SG presented a new four category system for considering land under Part 2A, ranging from Category 4, where there is no risk that land poses a

significant possibility of significant harm (SPOSH), or the level of risk is low, to Category 1, where the risk that land poses a significant possibility of significant harm (SPOSH) is unacceptably high. More specific guidance on what type of land should be considered as Category 4 (Human Health) is provided in Paragraphs 4.21 and 4.22 of the revised SG, as follows:

"4.21 The local authority should consider that the following types of land should be placed into Category 4: Human Health:

(a) Land where no relevant contaminant linkage has been established.

(b) Land where there are only normal levels of contaminants in soil, as explained in Section 3 of this Guidance.

(c) Land that has been excluded from the need for further inspection and assessment because contaminant levels do not exceed relevant generic assessment criteria in accordance with Section 3 of this Guidance, or relevant technical tools or advice that may be developed in accordance with paragraph 3.30 of this Guidance.

(d) Land where estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure (e.g. in relation to average estimated national levels of exposure to substances commonly found in the environment, to which receptors are likely to be exposed in the normal course of their lives).

4.22 The local authority may consider that land other than the types described in paragraph 4.21 should be placed into Category 4: Human Health if following a detailed quantitative risk assessment it is satisfied that the level of risk posed is sufficiently low."

The C4SLs are intended as "relevant technical tools" (in relation to Paragraph 4.21(c)) to help local authorities and others when deciding to stop further assessment of a site, on the grounds that it falls within Category 4 (Human Health).

The Impact Assessment (IA), which accompanied the revised SG (Defra, 2012b) provides further information on the nature and potential role of the C4SLs. Paragraph 47(h) of the IA states that:

"The new statutory guidance will bring about a situation where the current SGVs/GACs are replaced with more pragmatic (but still strongly precautionary) Category 4 screening levels (C4SLs) which will provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land."

A key distinction between the Soil Guideline Values (SGVs) and the C4SLs is the level of risk that they describe. As described by the Environment Agency (2009a): "SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health."

The implication of Paragraph 47(h) of the IA is that minimal risk is well within Category 4 and that the C4SLs should describe a higher level of risk which, whilst not minimal, can still be considered low enough to allow a judgement to be made

that land containing substances at, or below, the C4SLs would typically fall within Category 4. This reflects Paragraph 4.20 of the revised SG, which states:

"4.20 The local authority should not assume that land poses a significant possibility of significant harm if it considers that there is no risk or that the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4: Human Health" case. The authority may decide that the land is a Category 4: Human Health case as soon as it considers it has evidence to this effect, and this may happen at any stage during risk assessment including the early stages."

C4SLs, therefore, should not be viewed as "SPOSH levels" and they should not be used as a legal trigger for the determination of land under Part 2A.

The generic screening values referred to before usually take the form of riskbased Soil Guideline Values (SGVs) or other Generic Assessment Criteria (GACs) that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) model, as described in the Environment Agency's SR2, SR3 and SR7 reports (EA, 2009b & c; EA, 2008). It is anticipated that C4SLs will be used in a similar manner; as generic screening criteria that can be used within a GQRA, albeit describing a higher level of risk than the SGVs.

The suggested approach to the development of C4SLs consists of the retention and use of the CLEA framework, modified according to considerations of the underlying science within the context of Defra's policy objectives relating to the revised SG. Within this context, it is suggested that the development of C4SLs may be achieved in one of three ways, namely:

• By modifying the toxicological parameters used within CLEA (while maintaining current exposure parameters);

• By modifying the exposure parameters embedded within CLEA (while maintaining current toxicological "minimal risk" interpretations); and

• By modifying both toxicological and exposure parameters.

There is also a suggested check on "other considerations" (e.g., background levels, epidemiological data, sources of uncertainty) within the approach, applicable to all three options.

It is suggested that a new term is defined for the toxicological guidance values associated with the derivation of C4SLs – a Low Level of Toxicological Concern (LLTC). A LLTC should represent an intake of low concern that remains suitably protective of health, and definitely does not approach an intake level that could be defined as SPOSH.

D1.6 CL:AIRE Generic Assessment Criteria (GAC)

For derivation of the CL:AIRE Generic Assessment Criteria (GAC) reference should be made to the following report:

CL:AIRE, *The Soil Generic Assessment Criteria for Human Health Risk Assessment*. **Contaminated Land: Applications in the Real Environment**. 2009.

Within this report CL:AIRE provided Generic Assessment Criteria (GAC's) in accordance with the CLEA software and the principles outlined above for a further 35 contaminants sometime encountered on land affected by contamination.

D1.7 Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of an S4UL/GAC/C4SL is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses then a DQRA may be undertaking to develop site specific values for relevant soil contaminants.

 \Rightarrow Establishing the plausibility that generic exposure pathways exist in practice by measurement and observation.

Developing more accurate parameters using site data.

D1.8 Phytotoxicity

 \Rightarrow

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

• ICRCL 70/90: Notes on the restoration and aftercare of metalliferous mining sites for pasture and grazing.

D1.9 Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95th percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

The DEFRA discussion paper Assessing risks from land contamination – a proportionate approach ('the way forward') (CLAN06/2006) aimed to increase understanding of the role that statistics can play in quantifying the uncertainty attached to the estimates of the mean concentration of contaminants in soil. In direct response CLAIRE/CIEH published a joint report, *Guidance in comparing soil contamination data with a critical concentration* (CLAIRE/CIEH 2008). A software implementation of the statistical techniques given in the report was published by ESI International (2008).

Treatment of Hot-Spots

 \Rightarrow A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.

 \Rightarrow Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hot-spot(s) may be excluded and the mean of the remaining data assessed.

D2 Ground and Water Limited Soil Assessment Criteria

The Soil Assessment Criteria used in the preparation of this report are tabulated in the following pages:

C4SL Low Level of Toxicological Concern

	C4SL Low Level of Toxicological Concern											
Contaminant	Contaminant RwHP RwoHP Allotment Commercial POSresi POSpark (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)											
Lead	<210	<330	<84	<6000	<760	<1400						

Phytotoxicity Recommendations

ICRCL 70/90 Restoration of metalliferous mining areas

Phyto	otoxicity (Harmful to Plants) Threshold Trigger Values									
Copper	250mg/kg									
Zinc	1000mg/kg									
Notes:										
Many cultivars and spec	Many cultivars and specifically grasses have a high tolerance and there will be no ill-effect at the threshold trigger values given for									
neutral or near neutral p	H. Site observation of plant vitality may give additional guidance.									

Cont'd from previous page: LQM CIEH Suitable 4 Use Levels (S4UL's)

LQI	LQM/CIEH Suitable 4 Use Levels – Metals and Semi-metals											
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)						
Metals:												
Arsenic	37	40	43	640	79	170						
Beryllium	1.7	1.7	35	12	2.2	63						
Boron	290	11000	45	240000	21000	46000						
Cadmium	11	85	1.9	190	120	532						
Chromium (III)	910	910	18000	8600	1500	33000						
Chromium (VI)	6	6	1.8	33	7.7	20						
Copper	2400	7100	520	68000	12000	44000						
Elemental Mercury	1.2	1.2	21	58	16	30						
Inorganic Mercury	40	56	19	1100	120	240						
Methylmercury	11	15	6	320	40	68						
Nickel	180	180	230	980	230	3400						
Selenium	250	430	88	12000	1100	1800						
Vanadium	410	1200	91	9000	2000	5000						
Zinc	3700	40000	620	730000	81000	170000						

	LQN	1/CIEH Suita	ble 4 Use	Levels – BTE	X Compounds	5	
Contaminant	Soil Organic Matter	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
	1.0% SOM	0.087	0.38	0.017	27	72	90
Benzene	2.5% SOM	0.170	0.70	0.034	47	72	100
	6.0% SOM	0.370	1.40	0.075	90	73	110
	1.0% SOM	130	880	22	56000	56000	87000
Toluene	2.5% SOM	290	1900	51	110000	56000	95000
	6.0% SOM	660	3900	120	180000	56000	100000
	1.0% SOM	47	83	16	5700	24000	17000
Ethylbenzene	2.5% SOM	110	190	39	13000	24000	22000
	6.0% SOM	260	440	91	27000	25000	27000
	1.0% SOM	60	88	28	6600	41000	17000
o-Xylene	2.5% SOM	140	210	67	15000	42000	24000
	6.0% SOM	330	480	160	33000	43000	33000
	1.0% SOM	59	82	31	6200	41000	17000
m-Xylene	2.5% SOM	140	190	74	14000	42000	24000
	6.0% SOM	320	450	170	31000	43000	33000
	1.0% SOM	56	79	29	5900	41000	17000
p-Xylene	2.5% SOM	130	180	69	14000	41000	23000
P-VAIELIE	6.0% SOM	310	430	<u> </u>	30000	43000	31000
					e is highlighted in bol		31000

Cont'd Overleaf:

GROUND AND WATER LIMITED

Cont'd from previous page:

	LQM/CIEH Suitable 4 Use Levels For TPH												
Alipl	hatic	RwHP (mg/kg)	_		Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)						
	1.0% SOM	42	42	730	3,200 (304) ^{sol}	570,000 (304) ^{sol}	95,000 (304) ^{sol}						
EC 5-6	2.5% SOM	78	78	1,700	5,900 (558) ^{sol}	590,000	130,000 (558) ^{sol}						
	6.0% SOM	160	160	3,900	12,000 (1150) ^{sol}	600,000 ¹	180,000 (1150) ^{sol}						
	1.0% SOM	100	100	2,300	7,800 (144) ^{sol}	600,000	150,000 (144) ^{sol}						
EC >6-8	2.5% SOM	230	230	5,600	17,000 (322) ^{sol}	610,000	220,000 (322) ^{sol}						
	6.0% SOM	530	530	13,000	40,000 (736) ^{sol}	620,000	320,000 (736) ^{sol}						
	1.0% SOM	27	27	320	2,000 (78) ^{sol}	13,000	14,000 (78) ^{sol}						
EC >8-10	2.5% SOM	65	65	770	4,800 (118) ^{vap}	13,000	18,000 (118) ^{vap}						
	6.0% SOM	150	150	1,700	11,000 (451) ^{vap}	13,000	21,000 (451) ^{vap}						
	1.0% SOM	130 (48) ^{vap}	130 (48) ^{vap}	2,200	9,700 (48) ^{sol}	13,000	21,000 (48) ^{sol}						
EC >10-12	2.5% SOM	330 (118) ^{vap}	330 (118) ^{vap}	4,400	23,000 (118) ^{vap}	13,000	23,000 (118) ^{vap}						
	6.0% SOM	760 (283) ^{vap}	770 (283) ^{vap}	7,300	47,000 (283) ^{vap}	13,000	24,000 (283) ^{vap}						
	1.0% SOM	1,100 (24) ^{sol}	1,100 (24) ^{sol}	11,000	59,000 (24) ^{sol}	13,000	25,000 (24) ^{sol}						
EC >12-16	2.5% SOM	2,400 (59) ^{sol}	2,400 (59) ^{sol}	13,000	82,000 (59) ^{sol}	13,000	25,000 (59) ^{sol}						
	6.0% SOM	4,300 (142) ^{sol}	4,400 (142) ^{sol}	13,000	90,000 (142) ^{sol}	13,000	26,000 (142) ^{sol}						
	1.0% SOM	65,000 (8.48) ^{sol}	65,000 (8.48) ^{sol}	260,000	1,600,000	250,000	450,000						
EC >16-35	2.5% SOM	92,000 (21) ^{sol}	92,000 (21) ^{sol}	270,000	1,700,000	250,000	480,000						
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000						
	1.0% 6014			200.000	1 600 000	250,000	450.000						
50.05.44	1.0% SOM	65,000 (8.48) ^{sol}	65,000 (8.48) ^{sol}	260,000	1,600,000	250,000	450,000						
EC >35-44	2.5% SOM	92,000 (21) ^{sol}	92,000 (21) ^{sol}	270,000	1,700,000	250,000	480,000						
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000						

E.

Cont'd from previous page:

		LQM	/CIEH Suitable	4 Use Leve	els For TPH		
Aroma	ntic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
5653	1.0% SOM	70	370	13	26,000 (1220) ^{sol}	56,000	76,000 (1220 ^{sol}
EC 5-7	2.5% SOM	140	690	27	46,000 (2260) ^{sol}	56,000	84,000 (2260) ^{sol}
(Benzene)	6.0% SOM	300	1,400	57	86,000 (4710) ^{sol}	56,000	92,000 (4710) ^{sol}
EC >7-8	1.0% SOM	130	860	22	56,000 (869) ^{vap}	56,000	87,000 (869) ^{sol}
(Toluene)	2.5% SOM	290	1,800	51	110,000 (1920) ^{sol}	56,000	95,000 (1920) ^{sol}
(Toldelle)	6.0% SOM	660	3,900	120	180,000 (4360) ^{vap}	56,000	100,000 (4360) ^{vap}
	1.00/ 6014					- 000	
	1.0% SOM	34	47	8.6	3,500 (613) vap	5,000	7,200 (613) ^{vap}
EC >8-10	2.5% SOM	83	110	21	8,100 (1500) ^{vap}	5,000	8,500 (1500) vap
	6.0% SOM	190	270	51	17,000 (3850) ^{vap}	5,000	9,300 (3580) ^{vap}
	1.0% SOM	74	250	13	16,000 (364) ^{sol}	5,000	9,200 (364) ^{sol}
EC >10-12	2.5% SOM	180	590	31	28,000 (899) ^{sol}	5,000	9,700 (889) ^{sol}
	6.0% SOM	380	1,200	74	34,000 (2150) ^{sol}	5.000	10,000
	1.0% SOM	140	1,800	23	36,000 (169) ^{sol}	5,100	10,000
EC >12-16	2.5% SOM	330	2,300 (419) ^{sol}	57	37,000	5,100	10,000
	6.0% SOM	660	2,500	130	38,000	5,000	10,000
	1.0% SOM	260	1,900	46	28,000	3,800	7,600
EC >16-21	2.5% SOM	540	1,900	110	28,000	3,800	7,700
	6.0% SOM	930	1,900	260	28,000	3,800	7,800
	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800
EC >21-35	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900
	1.00/ 0.011						
	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800
EC >35-44	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900
	1.0% SOM	1,600	1,900	1,200	28,000	3,800	7,800
EC >44-70	2.5% SOM	1,800	1,900	2,100	28,000	3,800	7,800
201 11 70	6.0% SOM	1,900	1,900	3,000	28,000	3,800	7,900

SOM = Soil Organic Matter Content (%)

Determinant	S	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
	1.0% SOM	210	3,000 (57.0) ^{sol}	34	84,000(57.0) ^{sol}	15,000	29,000
Acenapthene	2.5% SOM	510	4,700(141) ^{sol}	85	97,000(141) ^{sol}	15,000	30,000
	6.0% SOM	1100	6,000(336) ^{sol}	200	100,000	15,000	30,000
	1.0% SOM	170	2,900(86.1) ^{sol}	28	83,000(86.1) ^{sol}	15,000	29,000
Acenapthylene	2.5% SOM	420	4,600(212) ^{sol}	69	97,000(212) ^{sol}	15,000	30,000
	6.0% SOM	920	6,000(506) ^{sol}	160	100,000	15,000	30,000
	1.0% SOM	2,400	31,000(1.17) ^{vap}	380	520,000	74,000	150,000
Anthracene	2.5% SOM	5,400	35,000	950	540,000	74,000	150,000
	6.0% SOM	11,000	37,000	2,200	540,000	74,000	150,000
	1.0% SOM	7.20	11	2.90	170	29	49
Benzo(a)anthracene	2.5% SOM	11	14	6.50	170	29	56
	6.0% SOM	13	15	13	180	29	62
	1.0% SOM	2.20	3.20	0.97	35	5.70	11
Benzo(a)pyrene	2.5% SOM	2.70	3.20	2.00	35	5.70	12
	6.0% SOM	3.00	3.20	3.50	36	5.70	13
	1.0% SOM	2.60	3.90	0.99	44	7.10	13
Benzo(b)flouranthene	2.5% SOM	3.30	4.00	2.10	44	7.20	15
	6.0% SOM	3.70	4.00	3.90	45	7.20	16
	1.0% SOM	320	360	290	3,900	640	1,400
Benzo(ghi)perylene	2.5% SOM	340	360	470	4,000	640	1,500
	6.0% SOM	350	360	640	4,000	640	1,600
	1.0% SOM	77	110	37	1,200	190	370
Benzo(k)flouranthene	2.5% SOM	93	110	75	1,200	190	410
	6.0% SOM	100	110	130	1,200	190	440
	1.0% SOM	15	30	4.10	350	57	93
Chrysene	2.5% SOM	22	31	9.40	350	57	110
	6.0% SOM	27	32	19	350	57	120
	1.0% SOM	0.24	0.31	0.14	3.50	0.57	1.10
Dibenzo(ah)anthracene	2.5% SOM	0.28	0.32	0.27	3.60	0.57	1.30
	6.0% SOM	0.30	0.32	0.43	3.60	0.58	1.40

LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAH's)

LQM/CIE	H Suitab	le 4 Use Le	vels For Polyc	yclic Aroma	atic Hydroca	rbons (PAH	l's)
Determinan	its	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
	1.0% SOM	280	1,500	52	2,3000	3,100	6,300
Flouranthene	2.5% SOM	560	1,600	130	2,3000	3,100	6,300
	6.0% SOM	890	1,600	290	2,3000	3,100	6,300
	1.0% SOM	170	2,800 (30.9) ^{sol}	27	63,000(30.9) ^{sol}	9,900	20,000
Flourene	2.5% SOM	400	3,800(76.5) ^{sol}	67	68,000	9,900	20,000
	6.0% SOM	860	4,500(183) ^{sol}	160	71,000	9,900	20,000
	1.0% SOM	27	45	9.50	500	82	150
Indeno(123-cd)pyrene	2.5% SOM	36	46	21	510	82	170
	6.0% SOM	41	46	39	510	82	180
	1.0% SOM	2.30	2.6	4.10	190 [†] (76.4) ^{sol}	4,900 [†]	1,200 [†] (76.4)
Napthalene	2.5% SOM	5.60	5.6	10	460 ^f (183) ^{sol}	4,900 [†]	1,900 [†] (183)
-	6.0% SOM	13	13	24	1,100 [†] (432) ^{sol}	4,900 [†]	3,000
	1.0% SOM	95	1,300(183) ^{sol}	18	22,000	3,100	6,200
Phenanthrene	2.5% SOM	220	1,500	38	22,000	3,100	6,200
	6.0% SOM	440	1,500	90	23,000	3,100	6,300
	1.0% SOM	620	3,700	110	54,000	7,400	15,000
Pyrene	2.5% SOM	1200	3,800	270	54,000	7,400	15,000
	6.0% SOM	2000	3,800	620	54,000	7,400	15,000
Coal Tar	1.0% SOM	0.79	1.2	0.32	15	2.20	4.40
(Benzo(a)pyrene used	2.5% SOM	0.98	1.2	0.67	15	2.20	4.70
as marker compound	6.0% SOM	1.10	1.2	1.20	15	2.20	4.80

 $^{\mathsf{vap}}-\mathsf{GAC}$ presented exceeds the vapour saturation limit, which is presented in brackets.

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

Cont'd Overleaf:

Cont'd from previous page:

LQM/CIEH Suitable 4 Use Levels (cont.)

LQM CIEH Genera	al Assessm	ent Crite	ria: Volatile and	Semi-Volati	ile Organic	Compounds
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
Chloroalkanes & alkenes						
1,2 Dichloroethane						
1.0% SOM	0.0071	0.0092	0.0046	0.67	29	21
2.5% SOM	0.011	0.013	0.0083	0.97	29	24
6.0% SOM	0.019	0.023	0.016	1.70	29	28
1,1,2,2 Tetrachloroethane						
1.0% SOM	1.60	3.90	0.41	270	1,400	1,800
2.5% SOM	3.40	8.00	0.89	550	1,400	2,100
6.0% SOM	7.50	17	2.00	1,100	1,400	2,300
					· · ·	
1,1,1,2 Tetrachloroethane						
1.0% SOM	1.20	1.50	0.79	110	1,400	1,500
2.5% SOM	2.80	3.50	1.90	250	1,400	1,800
6.0% SOM	6.40	8.20	4.40	560	1,400	2,100
0.070 00111	0.10	0.20			_,	
Tetrachloroethene						
1.0% SOM	0.18	0.18	0.65	19	1,400	810 ^{sol} (424)
2.5% SOM	0.39	0.40	1.50	42	1,400	1,100 ^{sol} (951)
6.0% SOM	0.90	0.92	3.60	95	1,400	1,500
1,1,1 Trichloroethane						
1.0% SOM	8.80	9.00	48	660	140,000	57,000 ^{vap} (1425)
2.5% SOM	18	18	110	1,300	140,000	76,000 ^{vap} (2915)
				3,000	140,000	100,000
6.0% SOM	39	40	240			^{vap} (6392)
Tetrachloromethene						
1.0% SOM	0.026	0.026	0.45	2.90	890	190
2.5% SOM	0.056	0.056	1.00	6.30	920	270
6.0% SOM	0.130	0.130	2.40	14	950	400
Trichloroethene						
1.0% SOM	0.016	0.017	0.041	1.20	120	70
2.5% SOM	0.034	0.036	0.091	2.60	120	91
6.0% SOM	0.075	0.080	0.210	5.70	120	120
Trichloromethane						
1.0% SOM	0.91	1.20	0.42	99	2,500	2,600
2.5% SOM	1.70	2.10	0.83	170	2,500	2,800
6.0% SOM	3.40	4.20	1.70	350	2,500	3,100
Vinyl Chloride						
1.0% SOM	0.00064	0.00077	0.00055	0.059	3.50	4.80
2.5% SOM	0.00087	0.00100	0.00100	0.077	3.50	5.00
6.0% SOM	0.00014	0.00150	0.00180	0.120	3.50	5.40

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds							
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)	
Explosives							
2,4,6 Trinitrotoluene							
1.0% SOM	1.60	65	0.24	1,000	130	260	
2.5% SOM	3.70	66	0.58	1,000	130	270	
6.0% SOM	8.10	66	1.40	1,000	130	270	
RDX (Hexogen/Cyclonite/1,3,5- trinitro-1,3,5- triazacyclohexane)							
1.0% SOM	120	13,000	17	210,000	26,000	49,000(18.7) ^{sol}	
2.5% SOM	250	13,000	38	210,000	26,000	51,000	
6.0% SOM	540	13,000	85	210,000	27,000	53,000	
HMX (Octogen/1,3,5,7- tetrenitro-1,3,5,7- tetrazacyclo-octane)							
1.0% SOM	5.70	67,00	0.86	110,000	13,000	23,000(0.35) ^{vap}	
2.5% SOM	13	67,00	1.90	110,000	13,000	23,000(0.39) ^{vap}	
6.0% SOM	26	67,00	3.90	110,000	13,000	24,000(0.48) ^{vap}	
Atrazine							
1.0% SOM	3.30	610	0.50	9,300	1,200	2,300	
2.5% SOM	7.60	620	1.20	9,400	1,200	2,400	
6.0% SOM	17.40	620	2.70	9,400	1,200	2,400	
Pesticides							
Aldrin							
1.0% SOM	5.70	7.30	3.20	170	18	30	
2.5% SOM	6.60	7.40	6.10	170	18	31	
6.0% SOM	7.10	7.50	9.60	170	18	31	
Dieldrin							
1.0% SOM	0.97	7.00	0.17	170	18	30	
2.5% SOM	2.00	7.30	0.41	170	18	30	
6.0% SOM	3.50	7.40	0.96	170	18	31	
Dichlorvos							
1.0% SOM	0.032	6.40	0.0049	140	16	26	
2.5% SOM 6.0% SOM	0.066	6.50 6.60	0.0100	140 140	16 16	26 27	
Alpha - Endosulfan							
1.0% SOM	7.40	160(0.003) ^{vap}	1.20	5,600(0.003) ^{vap}	1,200	2,400	
2.5% SOM	<u>18</u> 41	280(0.007) ^{vap} 410(0.016) ^{vap}	2.90 6.80	7,400(0.007) ^{vap} 8,400(0.016) ^{vap}	1,200 1,200	2,400	
6.0% SOM							

Cont'd from previous page:

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds						
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
Pesticides						
Beta - Endosulfan						
1.0% SOM	7.00	190(0.00007) ^{vap}	1.10	6,300(0.00007) ^{vap}	1,200	2,400
2.5% SOM	17	320(0.0002) ^{vap}	2.70	7,800(0.0002) ^{vap}	1,200	2,400
6.0% SOM	39	440(0.0004) ^{vap}	6.40	8700	1,200	2,500
Alpha - Hexachlorocyclohexanes						
1.0% SOM	0.23	6.90	0.035	170	24	47
2.5% SOM	0.55	9.20	0.087	180	24	48
6.0% SOM	1.20	11	0.210	180	24	48
Beta - Hexachlorocyclohexanes						
1.0% SOM	0.085	3.70	0.013	65	8.10	15
2.5% SOM	0.200	3.80	0.032	65	8.10	15
6.0% SOM	0.460	3.80	0.077	65	8.10	16
Gamma - Hexachlorocyclohexanes						
1.0% SOM	0.06	2.90	0.0092	67	8.2	14
2.5% SOM	0.14	3.30	0.0230	69	8.2	15
6.0% SOM	0.33	3.50	0.0540	70	8.2	15
Chlorobenzenes						
Chlorobenzene						
1.0% SOM	0.46	0.46	5.90	56	11,000	1,300(675) ^{sol}
2.5% SOM	1.00	1.00	14	130	13,000	2,000(1520) ^{sol}
6.0% SOM	2.40	2.40	32	290	14,000	2,900
1,2-Dichlorobenzene						
1.0% SOM	23	24	94	2,000 (571) ^{sol}	90,000	24,000(571) ^{sol}
2.5% SOM	55	57	230	4,800 (1370) ^{sol}	95,000	36,000(1370 ^{)sol}
6.0% SOM	130	130	540	11,000 (3240) ^{sol}	98,000	51,000(3240) ^{sol}
1,3-Dichlorobenzene						
1.0% SOM	0.40	0.44	0.25	30	300	390
2.5% SOM	1.00	1.10	0.60	73	300	440
6.0% SOM	2.30	2.50	1.50	170	300	470
1,4-Dichlorobenzene						
1.0% SOM	61	61	15	4,400 (224) ^{vap}	17,000 ^g	36,000 (224) ^{vap}
2.5% SOM	150	150	37	10,000 (540) ^{vap}	17,000 ^g	36,000 (540) ^{vap}
6.0% SOM	350	350	88 ^g	25,000 (1280) ^{vap}	17,000 ^g	36,000 (1280) ^{val}
1,2,3,-Trichlorobenzene						han
1.0% SOM	1.50	1.50	4.70	102	1,800	770(134 ^{)vap}
2.5% SOM	3.60	3.70	12	250	1,800	1,100(330) ^{vap}
6.0% SOM	8.60	8.80	28	590	1,800	1,600(789) ^{vap}

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds							
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)	
Chlorobenzenes							
1,2,3,-							
Trichlorobenzene							
1.0% SOM	1.50	1.50	4.70	102	1,800	770(134) ^{vap}	
2.5% SOM	3.60	3.70	12	250	1,800	1,100(330 ^{)vap}	
6.0% SOM	8.60	8.80	28	590	1,800	1,600(789) ^{vap}	
1,2,4,- Trichlorobenzene							
1.0% SOM	2.60	2.60	55	220	15,000	1,700(318) ^{vap}	
2.5% SOM	6.40	6.40	140	530	17,000	2,600(786) ^{vap}	
6.0% SOM	15	15	320	1,300	19,000	4,000(1880) ^{vap}	
1,3,5,- Trichlorobenzene							
1.0% SOM	0.33	0.33	4.70	23	1,700	380(36.7) ^{vap}	
2.5% SOM	0.81	0.81	12	55	1,700	590(90.8) ^{vap}	
6.0% SOM	1.90	1.90	140	130	1,800	860(217) ^{vap}	
1,2,3,4,- Tetrachlorobenzene							
1.0% SOM	15	24	4.40	1,700(122 ^{)vap}	830	1,500(122) ^{vap}	
2.5% SOM	36	56	11	3,080(304) ^{vap}	830	1,600	
6.0% SOM	78	120	26	4,400(728) ^{vap}	830	1,600	
1,2,3,5,- Tetrachlobenzene							
1.0% SOM	0.66	0.75	0.38	49(39.4) ^{vap}	78	110(39) ^{vap}	
2.5% SOM	1.60	1.90	0.90	120(98.1) ^{vap}	79	120	
6.0% SOM	3.70	4.30	2.20	240(235) ^{vap}	79	130	
1,2,4, 5,- Tetrachlobenzene							
1.0% SOM	0.33	0.73	0.06	42(19.7) ^{sol}	13	25	
2.5% SOM	0.77	1.70	0.16	72(49.1) ^{sol}	13	26	
6.0% SOM	1.60	3.50	0.37	96	13	26	
Pentachlrobenzene							
1.0% SOM	5.80	19	1.20	640(43.0) ^{sol}	100	190	
2.5% SOM	12	30	3.10	770(107) ^{sol}	100	190	
6.0% SOM	22	38	7.00	830	100	190	
Hexachlorobenzene							
1.0% SOM	1.80(0.20) ^{vap}	4.10 (0.20) ^{vap}	0.47	110(0.20) ^{vap}	16	30	
2.5% SOM	3.30(0.50) ^{vap}	5.70 (0.50) ^{vap}	1.10	120	16	30	
6.0% SOM	4.90	6.70 (1.2) ^{vap}	2.50	120	16	30	

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds							
Contaminant	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)	
Phenols & Chlorophenols							
Phenols							
1.0% SOM	280	750	66	760 ^{dir} (31,000)	760 ^{dir} (11,000)	760 ^{dir} (8,600)	
2.5% SOM	550	1,300	140	1,500 ^{dir} (35,000)	1,500 ^{dir} (11,000)	1,500 ^{dir} (9,700)	
6.0% SOM	1100	2,300	280	3,200 ^{dir} (37,000)	3,200 ^{dir} (11,000)	3,200 ^{dir} (11,000)	
Chlorophenols (4 Congeners)							
1.0% SOM	0.87	94	0.13	3,500	620	1,100	
2.5% SOM	2.00	150	0.30	4,000	620	1,100	
6.0% SOM	4.50	210	0.70	4,300	620	1,100	
Pentachlorophenols							
1.0% SOM	0.22	27(16.4) ^{vap}	0.03	400	60	110	
2.5% SOM	0.52	29	0.08	400	60	120	
6.0% SOM	1.20	31	0.19	400	60	120	
Others							
Others							
Carbon Disulphide							
1.0% SOM	0.14	0.14	4.80	11	11,000	1,300	
2.5% SOM	0.29	0.29	10	22	11,000	1,900	
6.0% SOM	0.62	0.62	23	47	12,000	2,700	
Hexachloro-1,3- Butadiene							
1.0% SOM	0.29	0.32	0.25	31	25	48	
2.5% SOM	0.70	0.78	0.61	68	25	50	
6.0% SOM	1.60	1.80	1.40	120	25	51	

Г

Cont'd Overleaf:

CL:AIRE Soil Generic Assessment Criteria							
ContaminantResidential (mg/kg)Residential without plant uptake (mg/kg)Allotment (mg/kg)Commercial (mg/kg)							
Metals:							
Antimony	ND	550	ND	7500			
Barium	ND	1300	ND	22000			
Molybdenum	ND	670	ND	17000			

ND – Not Derived.

NA – Not Applicable

Cont'd Overleaf:

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds					
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	
1,1,2 Trichloroethane					
1.0% SOM	0.60	0.88	0.28	94	
2.5% SOM	1.20	1.8	0.61	190	
6.0% SOM	2.70	3.9	1.40	400	
1,1-Dichloroethane					
1.0% SOM	2.40	2.50	9.20	280	
2.5% SOM	3.90	4.10	17	450	
6.0% SOM	7.40	7.70	35	850	
1,1-Dichloroethene					
1.0% SOM	0.23	0.23	2.80	26	
2.5% SOM	0.40	0.41	5.60	46	
6.0% SOM	0.82	0.82	12	92	
1,2,4-Trimethylbenzene					
1.0% SOM	0.35	0.41	0.38	42	
2.5% SOM	0.85	0.99	0.93	99	
6.0% SOM	2.00	2.30	2.20	220	
1,2-Dichloropropane					
1.0% SOM	0.024	0.024	0.62	3.3	
2.5% SOM	0.042	0.042	1.20	5.9	
6.0% SOM	0.084	0.085	2.60	12	
2,4-Dimethylphenol					
1.0% SOM	19	210	3.10	16000*	
2.5% SOM	43	410	7.20	24000*	
6.0% SOM	97	730	17	30000*	
2,4-Dinitrotoluene					
1.0% SOM	1.50	170*	0.22	3700*	
2.5% SOM	3.20	170	0.49	3700*	
6.0% SOM	7.20	170	1.10	3800*	
2,6-Dinitrotoluene					
1.0% SOM	0.78	78	0.12	1900*	
2.5% SOM	1.70	84	0.27	1900*	
6.0% SOM	3.90	87	0.61	1900*	
2-Chloronapthalene					
1.0% SOM	3.70	3.80	40	390*	
2.5% SOM	9.20	9.30	98	960*	
6.0% SOM	22	22	230	2200*	

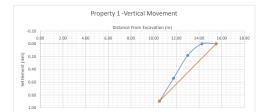
Cont'd Overleaf:

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds					
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	
Biphenyl					
1.0% SOM	66*	220*	14	18000*	
2.5% SOM	160	500*	35	33000*	
6.0% SOM	360	980*	83	48000*	
Bis (2-ethylhexyl) phthalate					
1.0% SOM	280*	2700*	47*	85000*	
2.5% SOM	610*	2800*	120*	86000*	
6.0% SOM	1100*	2800*	280*	86000*	
Bromobenzene					
1.0% SOM	0.87	0.91	3.2	97	
2.5% SOM	2.0	2.1	7.6	220	
6.0% SOM	4.7	4.9	18	520	
Bromodichloromethane					
1.0% SOM	0.016	0.019	0.016	2.1	
2.5% SOM	0.030	0.034	0.032	3.7	
6.0% SOM	0.061	0.070	0.068	7.6	
Bromoform					
1.0% SOM	2.8	5.2	0.95	760	
2.5% SOM	5.9	11	2.1	1500	
6.0% SOM	13	23	4.6	3100	
Butyl benzyl phthalate					
1.0% SOM	1400*	42000*	220*	940000*	
2.5% SOM	3300*	44000*	550*	940000*	
6.0% SOM	7200*	44000*	1300*	950000*	
Chloroethane					
1.0% SOM	8.3	8.4	110	960	
2.5% SOM	11	11	200	1300	
6.0% SOM	18	18	380	2100	
Chloromethane					
1.0% SOM	0.0083	0.0085	0.066	1.0	
2.5% SOM	0.0098	0.0099	0.13	1.2	
6.0% SOM	0.013	0.013	0.23	1.6	
<i>Cis</i> 1,2 Dichloroethene					
1.0% SOM	0.11	0.12	0.26	14	
2.5% SOM	0.19	0.20	0.50	24	
6.0% SOM	0.37	0.39	1.0	47	

Cont'd Overleaf:

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds						
Dichloromethane						
1.0% SOM	0.58	2.10	0.10	270		
2.5% SOM	0.98	2.80	0.19	360		
6.0% SOM	1.70	4.50	0.34	560		
Diethyl Phthalate						
1.0% SOM	120*	1800*	19*	150000*		
2.5% SOM	260*	3500*	41*	220000*		
6.0% SOM	570*	6300*	94*	290000*		
Di-n-butyl phthalate						
1.0% SOM	13*	450*	2.00	15000*		
2.5% SOM	31*	450*	5.00	15000*		
6.0% SOM	67*	450*	12	15000*		
Di-n-octyl phthalate						
1.0% SOM	2300*	3400*	940*	89000*		
2.5% SOM	2800*	3400*	2100*	89000*		
6.0% SOM	3100*	3400*	3900*	89000*		
Hexachloroethane						
1.0% SOM	0.20	0.22	0.27	22*		
2.5% SOM	0.48	0.54	0.67	53*		
6.0% SOM	1.10	1.30	1.60	120*		
Isopropylbenzene						
1.0% SOM	11	12	32	1400*		
2.5% SOM	27	28	79	3300*		
6.0% SOM	64	67	190	7700*		
Methyl tert-butyl ether						
1.0% SOM	49	73	23	7900		
2.5% SOM	84	120	44	13000		
6.0% SOM	160	220	90	24000		
Propylbenzene						
1.0% SOM	34	40	34	4100*		
2.5% SOM	82	97	83	9700*		
6.0% SOM	190	230	200	21000*		
Styrene						
1.0% SOM	8.10	35	1.60	3300*		
2.5% SOM	19	78	3.70	6500*		
6.0% SOM	43	170	8.70	11000*		

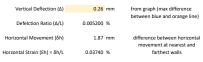
Cont'd Overleaf:


CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds					
Contaminant	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	
Total Cresols (2-, 3-, and 4- methylphenol)					
1.0% SOM	80	3700	12	160000	
2.5% SOM	180	5400	27	180000*	
6.0% SOM	400	6900	63	180000*	
Trans 1,2 Dichloroethene					
1.0% SOM	0.19	0.19	0.93	22	
2.5% SOM	0.34	0.35	1.90	40	
6.0% SOM	0.70	0.71	0.24	81	
Tributyl tin oxide					
1.0% SOM	0.25	1.40	0.042	130*	
2.5% SOM	0.59	3.10	0.100	180*	
6.0% SOM	1.30	5.70	0.240	200*	

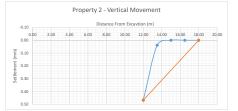
Notes: *Soil concentration above soil saturation limit

Appendix G Ground Movement Assessment Calculations

Potential Damage to Building



No. 1a Spencer Rise



Neighbouring Property 2

L H

L/H

No. 7 Spencer Rise

mm 6000 8000 m 6.00 8.00 0.75

0.02250 %

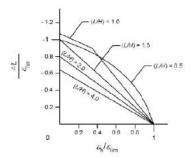
0.31 mm from graph (max difference between blue and orange line) 0.005167 % 1.35

Negligible

difference between horizontal movement at nearest and farthest walls

CATEGORY OF DAMAGE Damage category limits are given in Table 2.5 (below).

Method 1 - Prefferred method


Method 1... Pretiered method – Open up 'Damage Category Relationship Plots GMA' spreadsheet – Find relevant L/H graph (different graph on each each tab along the bottom of the spreadsheet) – Input calculated values for deflection ratio and horizontal strain – Point will plot on graph and show category of dameg

Method 2 - can be used to confirm category or is useful if U/H for property is between the given U/H graphs - Plot points calculated below on figure 2.18 for each damage category - Appropriate damage category will plot below U/H for property

L/H	0.49			L/H	0.75
Negligible damage limit (Elim)	0.05		Negligible damage limit (Elim)	0.05	
(Δ/L)/(Elim) (Eh)/(Elim)	0.104 0.748	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below	(Δ/L)/(Elim) (Eh)/(Elim)	0.103333333 0.45	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below
Very Slight damage limit (Elim)	0.075		Very Slight damage limit (Elim)	0.075	
(Δ/L)/(Elim) (Eh)/(Elim)	0.069333333 0.498666667	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below	(Δ/L)/(Elim) (Eh)/(Elim)	0.068888889 0.3	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below
Slight damage limit (Elim)	0.15		Slight damage limit (Elim)	0.15	
(Δ/L)/(Elim) (Eh)/(Elim)	0.034666667 0.249333333	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category - no need to plot points below	(Δ/L)/(Elim) (Eh)/(Elim)		Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category - no need to plot points below
Moderate damage limit (Elim)	0.3		Moderate damage limit (Elim)	0.3	
(Δ/L)/(Elim) (Eh)/(Elim)	0.017333333 0.124666667	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe'	(Δ/L)/(Elim) (Eh)/(Elim)	0.017222222 0.075	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe'

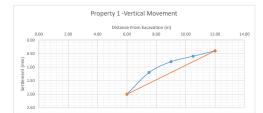
Calculated Category of Damage

Fig 2.18 (b)

Negligible

(b) Influence of horizontal strain on $\Delta\!\!/L$ / $\vec{v}_{\rm her}$ (after Burland, 2001)

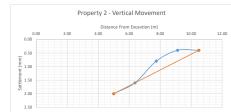
Calculated Category of Damage Table 2.5


Category of demage	Description of typical damage (error of regim is statestimed)	Appreciants cruck width (0000)		
0 Neglägible	Machine cracks of less than about 0.1 mm are classed as arglegible.	< 0.1	0.0-0.01	
1 Very slight	Time cracks that can easily be treated during normal descention. For how conluted slight finetwee in building. Conductin external buildings: while on inspection.	<1	8.05-0.975	
7 Sight	Checks easily filled, Redecursion probably regarded, Swerral sight functions showing mode of building. Check are within eventably and some reporting rate in any and extendity to ensure westher lightness. Drors and windows may nick slightly.	4 Ş.	0.075-0.15	
1 Mademie	The models require some opening up and can be patched by a summer, Remarkat cando can be marked by matched image, Repeating of reformal between and patched. Doors not or functional to be replaced. Doors not wandown structure. Service paper new therbars. Wenthersightness offen supported	i-ti ur s santor of cracks > 1	615-03	
+ Sevent	Extensive equit work anothing booking-out not exploring resident of walks, expending your deers and wanders, Walders word frame- titeoured, flow sleeping noticeshly Walls learning in bulgang anticeshly, some loss of fearing in beams. Service gives fitzerpied.	15-25 but size depends on sixeber of cracles	×0.5	
2 Auto inverse	This requires a major repair involving partial or complete relationage Beams love bearings, walls		5	

empire resident. Seens to even in with the dependence of with diviction. Danger of mobility codes

Potential Damage to Building

Neighbouring Property 2



No. 1b Spencer Rise

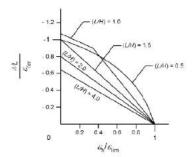
No. 5 Spencer Rise

L H

L/H

Vertical Deflection (Δ)	0.45	mm	from graph (max difference
			between blue and orange line)
Defelction Ratio (Δ/L)	0.008182	%	
Horizontal Movement (δ h)	2.07		difference between horizontal
			movement at nearest and
Horzontal Strain (Eh) = δh/L	0.03764	%	farthest walls

CATEGORY OF DAMAGE Damage category limits are given in Table 2.5 (below).

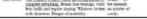

Method 1 - Prefferred method - Open up 'Damage Category Relationship Plots GMA' spreadsheet - Find relevant L/H graph (different graph on each each tab along the bottom of the spreadsheet) - Input calculated values for deflection ratio and horizontal strain - Point will plot on graph and show category of dameg

Method 2 - can be used to confirm category or is useful if U/H for property is between the given U/H graphs - Plot points calculated below on figure 2.18 for each damage category - Appropriate damage category will plot below U/H for property

L/H	0.75			L/H	0.75
Negligible damage limit (Elim)	0.05		Negligible damage limit (Elim)	0.05	
(Δ/L)/(Elim) (Eh)/(Elim)	0.133333333 0.75	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below	(Δ/L)/(Elim) (Eh)/(Elim)	0.163636364 0.752727273	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below
Very Slight damage limit (Elim)	0.075		Very Slight damage limit (Elim)	0.075	
(Δ/L)/(Elim) (Eh)/(Elim)	0.088888889 0.5	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below	(Δ/L)/(Elim) (Eh)/(Elim)	0.109090909 0.501818182	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below
Slight damage limit (Elim)	0.15		Slight damage limit (Elim)	0.15	
(Δ/L)/(Elim) (Eh)/(Elim)	0.044444444 0.25	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category - no need to plot points below	(Δ/L)/(Elim) (Eh)/(Elim)		Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category - no need to plot points below
Moderate damage limit (Elim)	0.3		Moderate damage limit (Elim)	0.3	
(Δ/L)/(Elim) (Eh)/(Elim)	0.022222222 0.125	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe'	(Δ/L)/(Elim) (Eh)/(Elim)	0.027272727 0.125454545	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe'

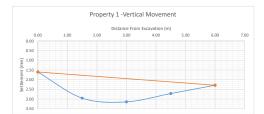
Calculated Category of Damage

Fig 2.18 (b)


Negligible

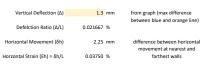
(b) Influence of horizontal strain on $\Delta\!\!/L$ / $\vec{v}_{\rm her}$ (after Burland, 2001)

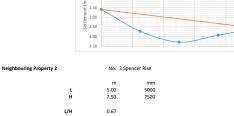
Calculated Category of Damage


Category of damage			Limiting tousils strain to (per rout)	
0 Neglägdne	Machine cracks of less than about 0.1 mm are classed as arglegible.	< 0.1	0.0-0.01	
1 Very slight	Fine cracks that can easily be neated during normal descention. For how coeleted slight factors in building. Circles in external Incidentic moder on supervisor.	<1	8.05-0.973	
2 Sight	Chieles easily filled, Redecuration probably trappingd, Switzel dight functions showing mode of building. Chiele are studied events for and score reporting rate in 200 particule events for the ensure weather tightness. Drors and windows may nick slightly.	< 5	0.075-0.15	
1 Maderate	The much a require some opening tip and can be pathed by a summer. Frammit much used by marked by matchic himage. Repeatings of referral tecknoit and possible a much memory of inclusation be replaced. Door and wardows attacking. Service pages new theraw. Westberrightness often supported	i-tours samper of ends > 1	6.15-0.3	
+ Seven	Exercise expair work anothing backing-out not exploring rections of works, expectably, nor deers and wanders, Washev and frame- theorem, from stepping notionship Walls learning in bulgang anticeably, some loss of fearing in beams. Service opten famotped.	also depends on anysher of	n 0.5	
3 Very severe	The requires a major repair involving partial or complete relativitian. Second lose bearings, walls	tota0y ~ 25 but depends		

Negligible

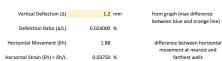
Potential Damage to Building





No. 1c Spencer Rise

Neighbouring Property 1



1.0

0.00 0.50 Ê 1.00

difference between horizontal movement at nearest and farthest walls

Property 2 - Vertical Movement

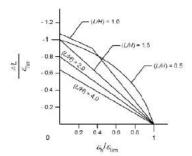
Distance From Excavtion (m)

5.00

6.00

CATEGORY OF DAMAGE Damage category limits are given in Table 2.5 (below).

Method 1 - Prefferred method


Method 1... Pretiered method – Open up 'Damage Category Relationship Plots GMA' spreadsheet – Find relevant L/H graph (different graph on each each tab along the bottom of the spreadsheet) – Input calculated values for deflection ratio and horizontal strain – Point will plot on graph and show category of dameg

Method 2 - can be used to confirm category or is useful if U/H for property is between the given U/H graphs - Plot points calculated below on figure 2.18 for each damage category - Appropriate damage category will plot below U/H for property

L/H	0.53			L/H	0.67
Negligible damage limit (Elim)	0.05		Negligible damage limit (Elim)	0.05	
(Δ/L)/(Elim) (Eh)/(Elim)	0.433333333 0.75	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below	(Δ/L)/(Elim) (Eh)/(Elim)	0.48 0.75	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below
Very Slight damage limit (Elim)	0.075		Very Slight damage limit (Elim)	0.075	
(Δ/L)/(Elim) (Eh)/(Elim)	0.288888889 0.5	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below	(Δ/L)/(Elim) (Eh)/(Elim)	0.32 0.5	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below
Slight damage limit (Elim)	0.15		Slight damage limit (Elim)	0.15	
(Δ/L)/(Elim) (Eh)/(Elim)	0.144444444 0.25	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category - no need to plot points below	(Δ/L)/(Elim) (Eh)/(Elim)		Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category - no need to plot points below
Moderate damage limit (Elim)	0.3		Moderate damage limit (Elim)	0.3	
(Δ/L)/(Elim) (Eh)/(Elim)	0.072222222 0.125	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe'	(∆/L)/(Elim) (Eh)/(Elim)	0.08 0.125	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe'

Very Slight Calculated Category of Damage

Fig 2.18 (b)

(b) Influence of horizontal strain on $\Delta\!\!/L$ / $\vec{v}_{\rm her}$ (after Burland, 2001)

Table 2.5

Calculated Category of Damage

Category of demage		Description of typical damage (error of regim is statestimed)	Appreciants cruck width (0000)			
0	Negläghte	Machine cracks of less than about 0.1 mm are classed as arglegible.	< 0.1	0.041.01		
1	Very slight	Fine cracks data can easily be tested during normal descention. For how two lated slight finetween basiding. Candia in extensi Indiversit worker on impection.	<1	8.05-0.975		
2	Sight	Checks easily filled, Redecursion probably regarded, Swerral sight functions showing mode of building. Check are within eventably and some reporting rate in any and extendity to ensure westher lightness. Drors and windows may nick slightly.	4 Ş.	0.075-0.15		
1	Madense	The much a require some opening top and can be pathed by a summer. Frammer much out by marked by matchin langue. Repeatings of referral heteroit, and possible a small summer of hird book and be replaced. Doors and variations at these replaced. Doors and variations at these replaced. Doors and variations at these replaced. Doors and workers at these summaries are the trave- Westberrightness offen supported.	i-to or a sampler of eracks > 3	6.15-0.3		
+	Seven	Exercise expair work avoiding backing-out and exploring review, cf wolds, especially, zone deers and workers. Workers and frames discoved, free deping noticeshly. Walls learning in beams, Service piper invested. Walls learning in beams, Service piper invested.	15-25 but size Sepends on anysher of craclos	0.5		
5	Vory severe	The requires a case repair serviting partial or complete releading. Second loce beings, with lean halfy and require storing. Windows brokes, with desterior. Darger of autobility	box depends	i.		

Very Slight

Appendix H Hazard Waste Assessment

Waste Classification Report

Job name	
GWPR2459	
Description/Comments	
Project	
GWPR2459	
Site	
1 Spencer Rise, Camden, London NW5 1AR	
Waste Stream Template	
Ground and Water V2 PA	
Classified by	
Name:	Company:
Alice Tettmar	Ground and Water
Date:	2 The Long Barn
03/04/2018 08:13:47 UTC	Norton Farm, Selborne Road
Telephone: 0333 600 1221	Alton GU34 3NB
0333 000 1221	GU34 JND
Report	
One stad have Alice Tellerer	

Created by: Alice Tettmar Created date: 03/04/2018 08:13 UTC

Job summary

# Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1 WS1	0.3	Hazardous	HP 14	2

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	5
Appendix B: Rationale for selection of metal species	7
Appendix C: Version	8

Classification of sample: WS1

🔺 Hazardous Waste	
Classified as 17 05 03 *	
in the List of Waste	

Sample details

Sample Name:	LoW Code:
WS1	Chapter: 17:
Sample Depth:	fron
0.3 m	Entry: 17 (

Construction and Demolition Wastes (including excavated soil m contaminated sites) 05 03 * (Soil and stones containing hazardous substances)

Hazard properties

HP 14: Ecotoxic "waste which presents or may present immediate or delayed risks for one or more sectors of the environment"

Risk phrases hit:

R50/53 "Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment"

Because of determinand:

lead compounds with the exception of those specified elsewhere in this Annex: (Note 1 conc.: 0.258%)

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Nu	ımber	CLP Note	User entere	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		-	7.7	pН		7.7	pН	7.7 pH		
2	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyani ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }	des,		<2	mg/kg	1.884	<3.768	mg/kg	<0.000377 %		<lod< td=""></lod<>
3	æ				13 mg/kg		1.32	17.164	mg/kg	0.00172 %		
Ľ		033-003-00-0 215-481-4 1327-53-3			10	iiig/itg	1.02		iiig/kg	0.000.1.2.70		
4	4	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33- 10294-34- 7637-07-2			<1	mg/kg	13.43	<13.43	mg/kg	<0.00134 %		<lod< td=""></lod<>
5	4	cadmium { cadmium sulfide }			0.4	ma/ka	1.285	0.514	mg/kg	0.00004 %		
Ľ		048-010-00-4 215-147-8 1306-23-6		1						0.00001.70		
6	8	Chromium (III) Sulphate 10101-53-8	3		21	mg/kg		21	mg/kg	0.0021 %		
7	4	chromium {			<2	mg/kg	1.923	<3.846	mg/kg	<0.000385 %		<lod< td=""></lod<>
8	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1			41	mg/kg	1.126	46.161	mg/kg	0.00462 %		
9	4	lead { I lead compounds with the exception of the specified elsewhere in this Annex } 082-001-00-6	ose	1	2580	mg/kg		2580	mg/kg	0.258 %		
10	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7			<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>

ground&water geotechnical and environmental consultants

HazWasteOnline[™] Report created by Alice Tettmar on 03/04/2018

	Determinand		e	<u>و</u>		0			Classifier	ied	Conc. N.		
#				040.04	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CL							MC	
11	4	nickel { nickel dihyd 028-008-00-X	<mark>Iroxide</mark>	12054-48-7 [1]		14	mg/kg	1.579	22.113	mg/kg	0.00221 %		
		selenium { <mark>seleniun</mark>	234-348-1 [2]	11113-74-9 [2]	-								
12	4	cadmium sulphosel				<3	mg/kg	2.554	<7.661	mg/kg	<0.000766 %		<lod< td=""></lod<>
		034-002-00-8			-								
13	4	vanadium {	<mark>dium pentaoxide; va</mark> 215-239-8	anadium pentoxide 1314-62-1		40	mg/kg	1.785	71.407	mg/kg	0.00714 %		
14	4	zinc { zinc chromate		10111021		292	mg/kg	2.774	810.051	mg/kg	0.081 %		
	-	024-007-00-3 phenol			-								
15		•	203-632-7	108-95-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
16		naphthalene 601-052-00-2	202-049-5	91-20-3		0.26	mg/kg		0.26	mg/kg	0.000026 %		
17	۲	acenaphthylene	205-917-1	208-96-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
18	•	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		fluorene	201-469-6	83-32-9	-								
19			201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	•	phenanthrene	201-581-5	85-01-8		0.47	mg/kg		0.47	mg/kg	0.000047 %		
21	۲	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	٥	fluoranthene		1		1.38	mg/kg		1.38	mg/kg	0.000138 %		
23		pyrene	205-912-4	206-44-0	┢	1.25	mg/kg		1.25	mg/kg	0.000125 %		
		benzo[a]anthracene	204-927-3 e	129-00-0	-								
24		601-033-00-9	200-280-6	56-55-3		0.78	mg/kg		0.78	mg/kg	0.000078 %		
25		chrysene 601-048-00-0	205-923-4	218-01-9	-	0.73	mg/kg		0.73	mg/kg	0.000073 %		
26		benzo[b]fluoranther 601-034-00-4	ne 205-911-9	205-99-2		0.92	mg/kg		0.92	mg/kg	0.000092 %		
07		benzo[k]fluoranther		200-33-2		0.00			0.00		0.00000.0/		
27		601-036-00-5	205-916-6	207-08-9	-	0.33	mg/kg		0.33	mg/kg	0.000033 %		
28		benzo[a]pyrene; be 601-032-00-3	200-028-5	50-32-8	-	0.72	mg/kg		0.72	mg/kg	0.000072 %		
29	۰	indeno[123-cd]pyre		193-39-5		0.46	mg/kg		0.46	mg/kg	0.000046 %		
30		dibenz[a,h]anthrace	ene		+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	601-041-00-2 benzo[ghi]perylene	200-181-8	53-70-3	+								
31			205-883-8	191-24-2		0.49	mg/kg		0.49	mg/kg	0.000049 %		
32		benzene 601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
33		toluene 601-021-00-3	203-625-9	108-88-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
34	0	ethylbenzene			T	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
	-	601-023-00-4 xylene	202-849-4	100-41-4	+							\mathbb{H}	
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
36		o-xylene; [1] p-xyle 601-022-00-9		1		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>

ground&water

geotechnical and environmental consultants

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User ente	red data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
37	8	diesel petroleum gr	oup	68334-30-5, 68476-34-6, 94114-59-7, 1159170-26-9		<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< th=""></lod<>
38	۵	TPH (C6 to C40) pe	etroleum group	ТРН		<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< th=""></lod<>
										Total:	0.371 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Hazardous result
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
8	Determinand defined by classifier (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Appendix A: Classifier defined and non CLP determinands

• pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: None. Hazard Statements: None.

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5 Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Risk Phrases: None. Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s)/Risk Phrase(s): 14/12/2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

• boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43 Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron trifluoride Data source: N/A Data source date: 06/08/2015 Risk Phrases: C R35, C R34, T+ R26/28, R14 Hazard Statements: Skin Corr. 1B H314, Skin Corr. 1A H314, Acute Tox. 2 H300, Acute Tox. 2 H330, EUH014

Chromium (III) Sulphate (CAS Number: 10101-53-8)

Description/Comments: Data source: 10101-53-8 Data source date: 24/06/2015 Risk Phrases: None. Hazard Statements: None.

[•] dicopper oxide; copper (I) oxide (EC Number: 215-270-7, CAS Number: 1317-39-1)

CLP index number: 029-002-00-X Description/Comments: M-factor for long-term aquatic hazard not included as per paragraph (5), ATP9 Data source: Regulation (EU) 2016/1179 of 19 July 2016 (ATP9) Additional Risk Phrases: N R50/53 >= 0.25 %, N R50/53 Additional Hazard Statement(s): None. Reason for additional Hazards Statement(s)/Risk Phrase(s): 10/10/2016 - N R50/53 >= 0.25 % risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases 10/10/2016 - N R50/53 risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

^e lead compounds with the exception of those specified elsewhere in this Annex

CLP index number: 082-001-00-6

Description/Comments: Least-worst case: Lead REACH Consortium considers some lead compounds Carcinogenic category 2B Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Risk Phrases: None. Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s)/Risk Phrase(s):

03/06/2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html. Review date 29/09/2015

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17/07/2015

Risk Phrases: R38, R37, R36, R27, R26, R22

Hazard Statements: Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye Irrit. 2 H319 , Acute Tox. 1 H310 , Acute Tox. 1 H330 , Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)
Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 17/07/2015
Risk Phrases: N R51/53, N R50/53, R38, R37, R36
Hazard Statements: Aquatic Chronic 2 H411 , Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Irrit. 2 H315 , STOT SE 3 H335 ,
Eye Irrit. 2 H319
Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 06/08/2015
Risk Phrases: N R50/53
Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400
• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)
Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 06/08/2015
Risk Phrases: N R50/53, R43, R40, R38, R37, R36, R22 Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE
Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE H335, Eye Irrit. 2 H319, Acute Tox. 4 H302
• anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)
Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015
Risk Phrases: N R50/53, R43, R38, R37, R36
Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Skin Irrit. 2 H315, STOT SE 3 H335, Eye
Irrit. 2 H319
• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)
Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 21/08/2015
Risk Phrases: N R50/53, Xn R22
Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Acute Tox. 4 H302
pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)
Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 21/08/2015
Risk Phrases: N R50/53, Xi R36/37/38
Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , STOT SE 3 H335 , Eye Irrit. 2 H319 , Skin Irrit. 2 H315
indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)
Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 06/08/2015
Risk Phrases: R40 Hazard Statements: Carc. 2 H351
Hazard Statements. Carc. 2 H351
• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)
Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 23/07/2015 Dick Decess N DE0/52
Risk Phrases: N R50/53 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Description/Comments: Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Risk Phrases: None. Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s)/Risk Phrase(s): 03/06/2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

^a diesel petroleum group (CAS Number: 68334-30-5, 68476-34-6, 94114-59-7, 1159170-26-9)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: R66, R65, R51/53, R40 Hazard Statements: Aquatic Chronic 2 H411, STOT RE 2 H373, Asp. Tox. 1 H304, Carc. 2 H351, Acute Tox. 4 H332, Skin Irrit. 2 H315, Flam. Liq. 3 H226

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: R65, R63, R51/53, R46, R45, R10 Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304, Flam. Liq. 3 H226

Appendix B: Rationale for selection of metal species

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Worst case species	
arsenic {arsenic trioxide}	
Worst case species based on risk phrases	
boron {boron tribromide/trichloride/trifluoride (combined)}	
Worst case species based on risk phrases	
cadmium {cadmium sulfide}	
Worst case species based on risk phrases	
chromium {chromium(VI) oxide}	
Worst case species based on risk phrases	
copper {dicopper oxide; copper (I) oxide}	
Most likely common species	
lead {lead compounds with the exception of those specified elsewhere in this Annex}	
Lead	
mercury {mercury dichloride}	
Worst case species based on risk phrases	
nickel {nickel dihydroxide}	
Worst case species based on risk phrases	
selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsew	here in this Annex}
Worst case species based on risk phrases	
vanadium {divanadium pentaoxide; vanadium pentoxide}	
most common form	
zinc {zinc chromate}	
Worst case species based on risk phrases	

Report created by Alice Tettmar on 03/04/2018

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition, May 2015 HazWasteOnline Classification Engine Version: 2018.88.3517.7191 (31 Mar 2018) HazWasteOnline Database: 2018.88.3517.7191 (31 Mar 2018) This classification utilises the following guidance and legislation: WM3 - Waste Classification - May 2015 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010