

GREAT ORMOND STREET HOSPITAL P22 IMRI SUITE, LONDON

VOLUME 2

FACTUAL AND INTERPRETATIVE REPORT ON GROUND INVESTIGATION

Report No E8013-18-2

March 2018

Carried out for: Kier Construction Ltd 2 Langston Road, Loughton, Essex, IG10 3SD

Engineer: Thomasons Limited 86 Epsom Road, Guildford, Surrey, GU1 2 BX

SOCOTEC UK Ltd

Unit 4, Gainsborough Trading Estate, Leamington Road, Southam, Warwickshire, CV47 1RB Tel: +44 (0) 1926 819300 email: geo.southam@socotec.com

Report No E8013-18-2

March 2018

Issue Date	Status	Prepared by	Checked by	Approved by
1 March	Final report	NAME and QUALIFICATIONS James Collins, BSC, FGS Factual report SIGNATURE J. Collins NAME and QUALIFICATIONS Melody Wareing BSc FGS Geotechnical Assessment SIGNATURE	NAME and QUALIFICATIONS Melody Wareing BSC FGS Factual Review SIGNATURE NAME and QUALIFICATIONS Larry Brown MSc, CEng, MICE Geotechnical Review SIGNATURE	NAME and QUALIFICATIONS Mark Hamill BSc, MSc, MIEnvSc SIGNATURE NAME and QUALIFICATIONS Mark Hamill BSc, MSc, MIEnvSc
2018		NAME and QUALIFICATIONS Lucy Hayes Environmental Assessment SIGNATURE J. Hallon	NAME and QUALIFICATIONS Chris Evans Environmental Assessment SIGNATURE SIGNATURE	NAME and QUALIFICATIONS Mark Hamill BSc, MSc, MIEnvSc SIGNATURE

This Report has been prepared by SOCOTEC UK Limited ("SUKL") with all reasonable skill and care, within the terms and conditions of the contract between SUKL and the Client ("Contract") and within the limitations of the resources devoted to it by agreement with the Client. Any reliance upon the Report is subject to the Contract terms and conditions.

This Report is confidential between the Client and SUKL. SUKL accepts no responsibility whatsoever to third parties to whom this document, or any part thereof, is made known. Any such party relies upon the Report at their own risk. The Contracts (Rights of Third Parties) Act 1999 does not apply to this Report nor the Contract and the provisions of the said Act are hereby excluded.

This Report shall not be used for engineering or contractual purposes unless signed above by the author, checker and the approver for and on behalf of SUKL and unless the Report status is 'Final'.

Unless specifically assigned or transferred within the terms and conditions of the Contract, SUKL asserts and retains all Copyright and other Intellectual Property Rights in and over the Report and its contents. The Report may not be copied or reproduced, in whole or in part, without the written authorisation from SUKL. SUKL shall not be liable for any use of the Report for any purpose other than that for which it was originally prepared.

Whilst every effort has been made to ensure the accuracy of the data supplied and any analysis interpretation derived from it, the possibility exists of variations in the ground and groundwater conditions around and between the exploratory positions. No liability can be accepted for any such variations in these conditions. Furthermore, any recommendations are specific to the development as detailed in this Report and no liability will be accepted should they be used for the design of alternative schemes without prior consultant with SUKL

REPORT STRUCTURE

VOLUME NO.	TITLE	REPORT NO.
1	DESK STUDY	E8013-18-1
2	INTERPRETATIVE REPORT	E8013-18-2

CONTENTS

1	INT	RODUCTION	.2
2	SITE	SETTING	.2
	2.1	Location and Description	.2
	2.2	Published Geology and Previous Ground Investigations	.3
	2.2.1	Published Geological Information	.3
	2.2.2	Previous Investigations	.4
3	FIEL	_DWORK	.4
	3.1	Exploratory Holes	.4
	3.2	Groundwater and Gas Monitoring	.5
	3.3	Onsite Volatile Head Space Testing	.5
4	LAB	ORATORY TESTING	.6
	4.1	Geotechnical Testing	.6
	4.2	Geoenvironmental Testing	
5	GRO	DUND CONDITIONS AND GROUNDWATER	.7
	5.1	Strata Encountered	.7
	5.2	Made Ground	.7
	5.3	Lynch Hill Gravel	.8
	5.4	London Clay	.8
	5.5	Lambeth Group	
	5.6	Groundwater	
6		POSED WORKS1	
7	GEC	DTECHNICAL ENGINEERING ASSESSMENT1	1
	7.1	General	11
	7.2	Piled Foundations	1
	7.3	Temporary Works	
	7.3.1	=	
	7.3.2	5 5 5 5	
	7.4	Chemical Considerations for Buried Concrete	
8		DENVIRONMENTAL assessment1	
	8.1	Human Health Risk Assessment	
	8.1.1	Technical Approach	
	8.1.2	<u> </u>	
	8.2	Ground Gas Risk Assessment	
	8.2	Waste Classification of Blacktop	
_	8.2	Waste Classification of Made Ground Materials	
R	EFERE	INCES	2

APPENDIX A FIGURES AND DRAWINGS
APPENDIX B EXPLORATORY HOLE RECORDS
APPENDIX C INSTRUMENTATION AND MONITORING
APPENDIX D GEOTECHNICAL LABORATORY TEST RESULTS
APPENDIX E GEOENVIRONMENTAL LABORATORY TEST RESULTS
APPENDIX F PHOTOGRAPHS
APPENDIX G WASTE CLASSIFICATION REPORT

1 INTRODUCTION

In January 2018 SOCOTEC UK Limited (SOCOTEC) was commissioned by KIER Construction Ltd. (KIER) with the designer Thomasons Limited to carry out a ground investigation at Great Ormond Street Hospital, London. The investigation was required to obtain geotechnical and geoenvironmental information for a proposed new 3 storey building to provide healthcare space for Great Ormond Street Hospital.

The scope of the investigation was specified by KIER and Thomasons Limited and comprised cable percussion and window sampling boreholes, in situ testing, laboratory testing, topographic survey and a CCTV survey of the existing drainage services. Due to the sensitive nature of the equipment located in the surrounding buildings, a vibration monitor was installed near the equipment to confirm no disruption to the hospital during the works. The results from the vibration monitor and the CCTV investigation are reported separately. The investigation was performed in accordance with the agreed specification, and the general requirements of BS 5930:2015, BS EN 1997-2 (2007), BS EN ISO 22475-1 (2006) and other relevant related standards identified below. The fieldwork took place between 29 January and 8 February 2018.

This report (Volume 2) presents the factual records of the fieldwork and laboratory testing, along with a geotechnical and geoenvironmental assessment in relation to the proposed development works detailed in Section 6. The information is also presented separately as digital data as defined in AGS (2017). A desk study report is presented separately as Volume 1.

2 SITE SETTING

2.1 Location and Description

The P22 iMRI project is within an area of land known as the Southwood Courtyard, within the confines of Great Ormond Street Hospital for Children; and has an approximate centre at National Grid reference TQ 305 820, and a postal address as follows:

Southwood Courtyard, off Powis Place,

Great Ormond Street Children's Hospital,

Camden,

London

WC1N 3JH

Great Ormond Street Hospital is located in the Bloomsbury area within the London Borough of Camden and is located just over 1km south east of Euston Train Station at. A Site Location Plan is included within Appendix A.

The site is roughly rectangular in shape, with approximate dimensions of 30m by 25m, and is generally flat lying with an elevation of approximately 23m AOD. The site's surface is composed of hardstanding concrete and macadam, with four drainage gulleys present. Three 2.80m deep light wells are present running alongside the site's perimeter on three sides for the existing Southwood Building, indicating the presence of basement floors.

The courtyard is accessed through Powis Place, off Great Ormond Street and is bounded by the Southwood Building of Great Ormond Street Hospital on three sides, the Variety Club Building to the east and the hospital chapel to the south.

The Southwood Courtyard lies within the great Ormond Street Hospital estate, which itself is within a predominantly commercial and residential area of Camden, including further healthcare facilities, and with some areas of public open space.

2.2 Published Geology and Previous Ground Investigations

2.2.1 Published Geological Information

The published geological map for the area, BGS Sheet 256 (2006), the BGS Geology of Britain Viewer (2018) and Geo Insight report shows the superficial geology to be comprised of fluvial sand and gravel deposits of the Lynch Hill Gravel Member, with superficial deposits being recorded as absent approximately 150m northeast of the site.

The Lynch Hill Gravel Member deposits are sedimentary superficial deposits formed during the Wolstonian Stage of the Quaternary period; they generally consist of sand and gravel, locally with lenses of silt, clay or peat. BGS records indicate that this stratum may directly overlie bedrock; which comprises the London Clay Formation. London Clay mainly comprises bioturbated or poorly laminated, blue-grey or grey-brown, slightly calcareous, silty clay.

2.2.2 Previous Investigations

Local borehole records held by the BGS (approximately 20m north of the site), indicate that the superficial deposits have been removed (or were absent), and show Made Ground directly overlying firm to stiff CLAY. This is further evidenced on site, by the Ground Conditions Report (Thomasons, 2017). The report summarised the findings of a 2013 intrusive trial pit investigation for the installation of a tower crane within the Southwood Courtyard area, and made the following key observations, verbatim:

- The ground encountered was loose fines made ground, with brick rubble plus suspected asbestos sheeting. This was to a depth of approximately 2- 2.7m below ground level, where the brick masonry floor of a previous basement could be observed.
- Additional vertical masonry walls were also observed, which indicated that a previous basement of a building, existed under part of the yard.
- The full extent of the basement walls could not be observed as the made ground was so loose, it posed a stability problem to the adjacent temporary building and temporary underground train (now since removed).

3 FIELDWORK

The fieldwork was carried out in general accordance with BS 5930:2015, BS EN 1997-2 (2007) and BS EN ISO 22475-1 (2006).

The exploratory hole and in-situ testing locations and in-situ testing were selected by Thomasons Limited. The locations were set out from local features and reference to a site plan provided by KIER. The co-ordinates and reduced levels were surveyed by Midland Surveys to National Grid and Ordnance Datum in conjunction with the topographic survey. The exploratory hole and in-situ testing locations are shown on the Site Plan in Appendix A.

3.1 Exploratory Holes

The exploratory holes are listed in the following table.

TABLE 1: SUMMARY OF EXPLORATORY HOLES

TYPE	QUANTITY	DEPTH RANGE (m)	REMARKS
Cable Percussion Boring	2	15.45 and 30.00	BH01 and BH02
Dynamic Sampling	6	5.45 to 6.45	WS01 to WS06
Dynamic Probing	7	3.10 to 10.00	BHDP01, WSDP01 to WSDP06

The exploratory holes had all locations pre cored to allow boring and sampling below the macadam and concrete at surface. Dynamic probing was conducted within the same inspection pit as the boreholes prior to drilling/sampling.

The exploratory hole logs are presented in Appendix B. These provide information including the equipment and methods used, samples taken, tests carried out, water observations and descriptions of the strata encountered. Explanation of the terms and abbreviations used on the logs is given in the Key to Exploratory Hole Records in Appendix B, together with other explanatory information. The logging of soil and rock materials is in accordance with BS 5930:2015.

Standard penetration tests (SPT) in the boreholes were carried out in accordance with BS EN ISO 22476-3+A1 (2011) and the SPT hammer energy ratio certificates are included in Appendix B. The SPT results are presented on the logs as uncorrected N values.

Photographs of the dynamic sampling liners are presented in Appendix F.

On completion of the fieldwork geotechnical samples were transported to the Southam office of SOCOTEC for temporary retention, with those required for testing being transferred to the laboratory at Doncaster. Geo-environmental samples were transported from site directly to the laboratory at Bretby (Burton-on-Trent).

3.2 Groundwater and Gas Monitoring

Two monitoring wells installed in borehole BH02 for groundwater and gas monitoring are shown on the log and summarised in Appendix C. Records of monitoring carried out by SOCOTEC who monitored the installations after the fieldwork period are presented in Appendix C. Groundwater sampling was carried out on the second monitoring visit and the results are presented in Appendix E.

3.3 Onsite Volatile Head Space Testing

Onsite Volatile Head Space testing was conducted on all environmental samples collected during the fieldwork. This testing was conducted using a Mini Rae Lite photo ionisation detector on separate sealable sample bags and the results of these tests are presented on the exploratory hole records in Appendix B.

March 2018 Issue 1

4 LABORATORY TESTING

4.1 Geotechnical Testing

Geotechnical laboratory testing was scheduled by SOCOTEC and was carried out in accordance with BS 1377 (1990) unless otherwise stated. The testing is summarised below and the results are presented in Appendix D.

TABLE 3: SUMMARY OF GEOTECHNICAL LABORATORY TESTING

TYPE	REMARKS
Water Content Determination	15 Samples
Atterberg Limit Determination	10 Samples
	11 Samples
pH, Total Sulphur, Acid and Water Soluble Sulphate Content of Soils	Test methods are BS 1377 or others recognised in BRE Special Digest 1 (2005); they are indicated on the results report sheets.
Unconsolidated Undrained Triaxial Compression Testing	10 Samples
Oedometer Consolidation	3 Samples

4.2 Geoenvironmental Testing

Geoenvironmental laboratory testing was scheduled by SOCOTEC on the soil samples recovered during the fieldwork and groundwater samples taken from the installations during monitoring. The testing was carried out by the laboratory at Burton on Trent. The results are presented in Appendix E.

TABLE 4: SUMMARY OF GEOENVIRONMENTAL LABORATORY TESTING

TYPE	QTY. SOIL ANALYSIS	QTY. WATER ANALYSIS
"BLACKTOP SUITE TPH by GCFID, (C8-C40), 16PAHs "	1	
COMPREHENSIVE SUITE: As, B, Cd, Cr, Cu, Pb, Hg, Ni, Se, Zn, PAH (USEPA 16), pH, Phenol Index, CN (total), sulphate, NH3, organic matter and TPH carbon banding by GCFID	20	1
BTEX	20	1
PCB	20	-
VOC	20	1

ТҮРЕ	QTY. SOIL ANALYSIS	QTY. WATER ANALYSIS
SVOC	20	1
Asbestos Stage 1	20	-
"INERT WAC SUITE (Total and leachate)"	6	-

5 GROUND CONDITIONS AND GROUNDWATER

5.1 Strata Encountered

Descriptions of the strata encountered are given on the exploratory hole records in Appendix B. The downward succession encountered is broadly uniform across the site and is summarised below. The downward succession of strata is shown on a cross-section presented as Section 1 in Appendix A with Figures 1 to 5 based on the ground conditions assessment.

TABLE 5: SUMMARY OF GROUND CONDITIONS

STRATUM ENCOUNTERED	RANGE OF THICKNESSES (m)	REMARKS
MADE GROUND Macadam onto concrete ground surfacing overlying granular then cohesive material	3.30 to 4.90	Encountered in all exploratory holes
LYNCH HILL GRAVEL Yellow brownish slightly gravelly SAND	0.90	Encountered in WS05 only
LONDON CLAY CLAY locally laminated and/or fissured, slightly sandy	0.85 to 15.60	Encountered in all exploratory holes, base proven in BH01 at 2.51mOD
LAMBETH GROUP CLAY, locally fissured, friable, slightly sandy	9.50	Encountered in BH01, base not proven

5.2 Made Ground

The ground surfacing comprised macadam overlying concrete. Below the concrete was a general sequence of granular Made Ground (gravelly sand) overlying cohesive Made Ground layers (sandy gravelly clay/gravelly clay and sandy gravelly silt). Cobbles of concrete and brick were encountered throughout the Made Ground.

The Made Ground is not considered to be of engineering significance and no further assessment has been made.

5.3 Lynch Hill Gravel

The Lynch Hill Gravel comprised a band of slightly gravelly sand less than 1m in thickness. One Standard Penetration Test (SPT) carried out within the sand recorded an SPT 'N' value of 21, see Figure 1. This indicates a relative density of medium dense.

5.4 London Clay

The London Clay comprised a clay locally fissured and occasionally slightly sandy.

Twenty one SPT carried out within the London Clay recorded SPT 'N' values of between 4 and 31 blows, with an indication of an increase in blow count with depth. One further test recorded 50 blows without achieving the full 300mm test drive (ie refusal), see Figure 1, however this was within a granular material encountered at the base of WS06 (5.00m) and may relate to an isolated variation within the ground, such as a Terrace Deposit or disturbed London Clay. Published correlations between SPT 'N' values and strength suggests approximate undrained shear strength of 18 to 139 kPa (very low to high strength) with an increase in strength with depth, see Figure 2.

Quick undrained triaxial tests carried out on seven samples revealed undrained shear strengths of between 50 and 149 kPa indicating a medium to high strength, with an increase in strength with depth, see Figure 2.

Five Atterberg limit determinations measured liquid limits of between 53 and 89 % and plastic limits of between 22 and 35 %, These tests indicate the clay is generally of high to very high plasticity, see Plasticity Chart Figure 3. Moisture contents typically ranged from 18 to 32 %, excluding a single extreme value of 9.5 % at 6.80 m (BH02 gravel band). The moisture contents initially fall close to the plastic limits, see Moisture Content and Atterberg Limit Profile Figure 4. The modified plasticity indices range from 25% to 54%, indicating a medium to high volume change potential throughout the cohesive materials encountered. In order to adopt a precautionary design approach, it is therefore recommended that all clays on site are considered to be of a high volume change potential.

Two one dimensional oedometer consolidation tests were carried out on this material across the site. The tests results in the form of void ratio (e) against log effective pressure curves are presented in Appendix C with in addition, assessed values of coefficient of volume compressibility

 (m_{ν}) for the various pressure ranges tested. It should be appreciated that values of m_{ν} presented are laboratory values.

The strength indicators above are in general agreement with the consistency assessed from sample inspection indicating that there is a general increase in strength with depth, with little variation across the site.

5.5 Lambeth Group

The Lambeth Group comprised a clay locally friable and occasionally slightly sandy within BH01 only.

Two SPT carried out within the Lambeth Group recorded SPT 'N' values of 43 blows and 50 blows without achieving the full 300mm test drive (ie refusal), see Figure 1. Published correlations between SPT 'N' values and strength suggests approximate undrained shear strength of 194 to >225 kPa (very high strength), see Figure 2.

Quick undrained triaxial tests carried out on three samples revealed undrained shear strengths of between 147 and 412 kPa indicating a high to very high strength, with the highest value indicating a strength similar to bedrock, see Figure 2.

Three Atterberg limit determinations measured liquid limits of between 76 and 65 % and plastic limits of between 27 and 31 %, These tests indicate the clay is generally of high to very high plasticity, see Plasticity Chart Figure 3. Moisture contents typically ranged from 21 to 27 %. The moisture contents initially fall close to the plastic limits, however, these gradually fall below the corresponding plastic limit, see Moisture Content and Atterberg Limit Profile Figure 4. The modified plasticity indices range from 38% to 48%, indicating a medium to high volume change potential throughout the cohesive materials encountered. In order to adopt a precautionary design approach, it is therefore recommended that all clays on site are considered to be of a high volume change potential.

A single one dimensional oedometer consolidation test was carried out on this material across the site. The tests results in the form of void ratio (e) against log effective pressure curves are presented in Appendix C with in addition, assessed values of coefficient of volume compressibility (m_v) for the various pressure ranges tested. It should be appreciated that values of m_v presented are laboratory values.

The strength indicators above are in general agreement with the consistency assessed from sample inspection indicating that there is a general increase in strength with depth, with little variation across the site.

5.6 Groundwater

Groundwater seepages were encountered in three of the exploratory holes and are summarised in Table 6. These observations do not necessarily indicate equilibrium conditions due to the short time frame over which the exploratory holes are open. To determine equilibrium conditions standpipe levels are more appropriate. Monitoring wells were installed in two of the boreholes and the details are presented in Table 3 along with the groundwater levels recorded to date in March 2018.

TABLE 6: SUMMARY OF GROUNDWATER DATA

HOLE ID	GROUNDWATER STRIKES (m bgl)	GROUND CONDITIONS	GROUNDWATER MONITORING RESULTS (m bgl)	GROUND CONDITIONS
BH01	6.50	London Clay	N/A	N/A
BH01	15.00	London Clay	N/A	N/A
BH02	N/A	N/A	3.42 and 3.61 Response zone = 1.00 to 4.00m	Made Ground
BH02	6.50	London Clay	3.26 and 4.27 Response zone = 5.00 to 10.00m	London Clay
WS05	5.00	Lynch Hill Gravel	N/A	N/A

Groundwater was generally encountered within the London Clay as seepages, though the two monitoring wells indicated over the monitoring period that the groundwater level was at a shallow level. Further monitoring is to be carried out. It is be appreciated that seasonal fluctuations in groundwater level occur. Other effects such as investigation and constructional excavation may also change groundwater levels.

6 PROPOSED WORKS

It is understood that the proposed development will comprise a new three storey building to provide healthcare space for Great Ormond Street Hospital. The facilities will include physiotherapy and rehabilitation facilities, an iMRI suite and operating theatre. Works include a stair link at second floor level to the Southwood Building, a two storey link to the Variety Club Building, entrance ramps and stairs, a green roof, cycle parking, artificial lighting, plant equipment and associated works. The development is proposed to link to existing services in the area, including drainage.

Information provided by KIER indicates the preferred foundation solution to be 300mm diameter CFA piles. Proposed development plans are included in Appendix A.

7 GEOTECHNICAL ENGINEERING ASSESSMENT

7.1 General

As discussed in Section 6 the foundation solution indicated by KIER is to be 300mm diameter CFA piles, as such this report is limited to this foundation option.

7.2 Piled Foundations

The carrying capacity of a pile is dependant not only on the ground conditions but also on the type of pile and its method of installation. It is therefore considered essential that the advice of specialist piling contractors is sought regarding the suitability of their various proprietary systems giving due consideration to the ground conditions present on the site. The piling contractor will be able to provide a pile design and confirm the pile lengths and diameters required to maintain settlements within the specified tolerances under the applied loads for their piling systems.

When evaluating the type of pile to be used on this site the following issues should be considered:

 Any access constraints for piling plant and equipment gaining access onto the site and manoeuvring around the site. The site is relatively small and is situated in an urban inner city environment.

- The effects of noise, vibrations and ground disturbance on any nearby infrastructure including structures, roads and buried services. In particular the site is within an existing hospital environment where more stringent noise and vibration limits may be imposed on construction work.
- Manmade obstructions may be present such as basements, old foundations and sub structures. These may require breaking out or pre-boring prior to the main piling works.
- Potential obstructions in the form of claystone nodules may be present in the London Clay. These can be up to cobble, and occasionally boulder size, and could cause a pile to terminate prematurely or deviate from a vertical alignment. No such features were encountered in the two deep ground investigation boreholes but this does not necessarily preclude the possibility of such features being present elsewhere beneath the site. The chosen piling system should be capable of dealing with any such obstructions if encountered.
- Some ground water was observed locally in the exploratory holes during the investigation. Therefore water within the more permeable materials may enter pile holes e.g. perched water from within the Made Ground and drift deposits or water ingress from sand lenses or layers in the London Clay and Lambeth Group.
- Traditional bored piles would require temporary support through potentially unstable materials such as the Made Ground and superficial deposits.
- Should the Made Ground settle relative to the piles this could generate additional negative skin friction forces on the pile shaft. The pile design and construction should consider these potential effects.

If continuous flight auger (CFA) bored piles are used then temporary casing will probably not be required to support the pile holes and the effects of noise and vibrations will be reduced. However, the piling contractor will need to confirm the suitability of their particular methods to manage the specific geotechnical risks on the development site.

7.3 Temporary Works

7.3.1 Excavations

Shallow excavations will be required for the construction of pile caps and ground beams. Site observations indicated that such excavations should be feasible in the near surface soils with conventional backhoe excavators; however, the possible presence of old buried infrastructure (slabs, foundations, former basement walls etc) should not be discounted. Excavations in the

Made Ground may be unstable and should either be battered back to a safe slope where working space permits or a system of close sheeting and shoring adopted for areas where working space is restricted. Careful consideration to excavation stability needs to be given due to the close proximity of adjacent structures.

7.3.2 Dewatering

Localised seepages into shallow excavations may occur but they should be able to be controlled through pumping from internal sumps.

7.4 Chemical Considerations for Buried Concrete

A total of 11 samples, between 0.50 and 18.00 m, were tested for pH, total sulphur, water and acid soluble sulphate, in accordance with BRE Special Digest 1 (2005). The site has been classified as Brownfield with pyrite and a mobile groundwater situation and the results are summarised in Table 7. The recommendations in the digest should be followed for the design of subsurface concrete.

TABLE 7: SUMMARY OF CHEMICAL TEST RESULTS

	RANGE OF VALUES			CALCULATIONS					
STRATUM	Acid Soluble Sulphate (mg/kg)	Total Sulphur (%)	рН	Water Soluble Sulphate (mg/l)	Total Potential Sulphate (TPS % S04)	Oxidisable Sulphides (OS % SO4)	Pyrite Probably Present	DESIGN SULPHATE CLASS	ACEC CLASS
Made Ground 5 results	1180 to 4340	0.07 to 0.14	8.0 to 11.6	173 to 451	0.39	0.12	No	DS-2	AC-2
London Clay 6 results	532 to 1150	0.04 to 0.58	7.8 to 8.8	129 to 462	1.61	1.53	Yes	DS-4	AC-4

The presence of pyrite may result in an increased risk of sulphate attack of buried concrete where the ground is disturbed during construction. In accordance with recommendations given in BRE Special Digest 1, the assessed Design Sulphate Class for materials in which pyrite is likely to be present, and where ground may be disturbed, should be based on TPS and pH values, as indicated in the table above. However, for concrete that will be placed against material that will not be disturbed during construction (e.g. cast in-situ piles), then the Design Sulphate Class may be based on water soluble sulphate and pH values.

8 GEOENVIRONMENTAL ASSESSMENT

8.1 Human Health Risk Assessment

Laboratory testing has been undertaken on 20 no. soil samples collected from 2 no. boreholes and 6 no. window samples during the ground investigation during the January 2018 ground investigation undertaken by SOCOTEC.

8.1.1 Technical Approach

In accordance with Environment Agency guidance CLR 11, Model Procedures for the Management of Land Contamination, (EA, 2004), human health risk assessment follows a tiered approach. The first tier comprises a Preliminary Risk Assessment, which was completed in Volume 1 of this report. Further tiers include Generic Quantitative Risk Assessment (GQRA) and Detailed Quantitative Risk Assessment (DQRA), which use data derived from the ground investigation undertaken previously to assess risks to identified receptors. The assessment included in this report comprises a GQRA, which is undertaken by comparing soil contaminant concentrations with conservative Generic Assessment Criteria (GAC).

Generic Assessment Criteria (GAC) for various land use and exposure scenarios have been selected from the following sources:

- CL:AIRE Category 4 Screening Levels (C4SL);
- LQM Suitable for Use Levels (S4UL)¹; and
- CL:AIRE/EIC/AGS GAC

The GAC have been derived using the Environment Agency Contaminated Land Exposure Assessment (CLEA) model, for a range of land uses and exposure scenarios, including:

- Residential with the consumption of homegrown produce;
- Residential without the consumption of homegrown produce;
- Commercial;
- Allotments;
- Public Open Space near residential housing (POS_{resi}); and
- Public Open Space public park scenario (POS_{park})

Great Ormond Street is a specialist children's hospital and is it therefore acknowledged that children are a sensitive human health receptor for the development; however given that no areas of soft landscaping are proposed, and this assessment and is intended for chronic long term exposure from contaminants present over a prolonged period of years, it is considered appropriate to adopt GACs for a Commercial end use scenario, (which are based upon a 16 to 59 year old)

Provisional C4SL values for a total of six priority substances (arsenic, benzene, benzo(a)pyrene, cadmium, hexavalent chromium and lead) were produced by CL:AIRE, and published in December 2013. A policy companion document was published by DEFRA in March 2014, which confirmed the final C4SL for these determinands.

The final C4SL values are considered to represent 'relevant technical tools', as per paragraph 4.21(c) of the Contaminated Land Part IIA Statutory Guidance. Their purpose is to identify land that falls within Category 4 (Human Health) as defined by the Statutory Guidance, i.e. land that is definitely not Contaminated Land as defined by the Part IIA legislation.

It should be noted that the C4SLs have been derived using toxicological criteria that are presented as posing a 'low level of toxicological concern'. This is in comparison with previous Soil Guidelines Values (SGVs) and LQM GAC, which were derived using toxicological criteria that represent a 'minimal risk' to human health.

The LQM Suitable for Use Levels (S4ULs) have been derived in accordance with the changes in exposure modelling presented within the C4SL framework, whilst still using a set of toxicological criteria that are set within the 'minimal risk' range. The S4ULs were published to offer a set of collated information on the toxicity and transport properties for a number of common contaminants, and should be seen as suitable for use in planning and change of use assessments, as well as Part IIA assessments.

The CL:AIRE/EIC/AGC Generic Assessment Criteria were published in December 2009. Assessment criteria were produced using the CLEA model for a total of 35 No. less common contaminants, in accordance with the CLEA guidance. The GAC were intended to compliment the SGVs produced by the Environment Agency, and the LQM GAC that were current at the time. These have been used in the assessment for contaminants where S4ULs and C4SLs are not available.

March 2018 Report No E8013-18 Page 15 of 22

The SOCOTEC approach to human health risk assessment in planning and development risk assessments is to use the various assessment criteria in the following order of preference: S4UL > EIC GAC > C4SLs. Note that for some contaminants this will not be possible, for example lead has a C4SL but not an S4UL or a EIC GAC.

Where contaminants fail the initial screen against S4UL or EIC GAC, a further assessment may be possible by screening against C4SLs. Where this is undertaken it should be clearly understood that the C4SLs represent 'low risk' rather than 'minimal risk' GAC.

8.1.2 Human Health Risk Assessment Screening

All of the 20 no. soil samples collected from the site during the most recent site investigation have been screened against the GAC for a commercial development as described above. The maximum contaminant concentrations are summarised along with the relevant GAC in Table 8 below. The relevant laboratory reports (EFS/183175 (Ver. 1) and EFS/183180 (Ver. 1) are presented in Appendix E.

Table 8: Comparison of Maximum Measured Soil Concentrations with Commercial GACs

Determinand	Maximum Measured Concentration (mg/kg)	GAC Value (mg/kg)	No. of results exceeding GAC (total tests)	
Metals and Semi-Metals				
Arsenic	25.1	640	0 (20)	
Boron	2.7	240000	0 (20)	
Cadmium	0.24	190	0 (20)	
Chromium (III)	87.4	8600	0 (20)	
Hexavalent Chromium	0.3	33	0 (20)	
Copper	103.1	68000	0 (20)	
Lead ¹	4218	2330	1 (20)	
Mercury ²	2.56	1100	0 (20)	
Nickel	62.5	980	0 (20)	
Selenium	1.1	12000	0 (20)	
Zinc	171.7	730000	0 (20)	
Polycyclic Aromatic Hydr	ocarbons			
Acenaphthene	0.26	84000	0 (20)	
Acenaphthylene	0.14	83000	0 (20)	
Anthracene	0.91	520000	0 (20)	
Benzo(a)anthracene	1.65	170	0 (20)	
Benzo(a)pyrene	1.16	35	0 (20)	

Determinand	Maximum Measured Concentration (mg/kg)	GAC Value (mg/kg)	No. of results exceeding GAC (total tests)
Benzo(b)fluoranthene	1.22	44	0 (20)
Benzo(ghi)perylene	0.55	3900	0 (20)
Benzo(k)fluoranthene	0.45	1200	0 (20)
Chrysene	1.15	350	0 (20)
Dibenzo(ah)anthracene	0.15	3.5	0 (20)
Fluoranthene	3.86	23000	0 (20)
Fluorene	0.4	63000	0 (20)
Indeno(123cd)pyrene	0.76	500	0 (20)
Naphthalene	0.29	190	0 (20)
Phenanthrene	2.78	220000	0 (20)
Pyrene	3.02	54000	0 (20)
Total Petroleum Hydrocar	bons and BTEX Compounds		
TPH - > C08-C10 ³	<2	2000	0 (20)
TPH - >C10-C12 ³	<2	9700	0 (20)
TPH - >C12-C16 ³	8.91	36000	0 (20)
TPH - >C16-C21 ³	73.4	28000	0 (20)
TPH ->C21-C35 ³	367	28000	0 (20)
Benzene	<0.010	27	0 (20)
Toluene	<0.010	56000	0 (20)
Ethylbenzene	<0.010	5700	0 (20)
Xylene-m / p	<0.020	5900	0 (20)
Xylene-o	<0.010	5900	0 (20)
Other Compounds (includ	ling VOCs and SVOCs greater	than LOD)	
Asbestos	None Detected	presence of fibres	0 (20)
Cyanide (free)	e (free) <0.5		0 (20)
Phenol (total)	<0.5	760	0 (20)
Polychlorinated Biphenyls (PCBs) – EC7	<0.062	9.0	0 (20)
VOCs (exc. PAHs)	All less than detection limits	Various	0 (20)
SVOCs (exc. PAHs)	All less than detection limits. Except dibenzofuran, where max = 1.0 mg/kg	Various	0 (20)

During the quantitative screening of the maximum concentrations against the commercial GACs, there was only one exceedance for lead for BH01 ES4 at 0.5 m bgl. The concentrations of VOCs and SVOCs were generally below their respective limits of detection. The maximum concentration

¹C4SL
²GAC for Inorganic Mercury used
³Most conservative aliphatic/aromatic carbon band GAC used.
GAC assumed 1 % Soil Organic Matter where relevant

of VOC detected was naphthalene (0.031 mg/kg) in WS05 ES 1 0.25 m. The maximum concentration of SVOC was fluoranthene detected at 19.2 mg/kg in WS04 ES 4 0.50.

The potential risk posed by elevated lead concentration encountered within BH04 at 0.50m bgl will be mitigated due to the proposed hardstanding covering on site, effectively removing any effective pathways to end users of the site.

It is therefore concluded that it is unlikely that the soils will present a significant contamination risk to the site's end users, and the proposed site is considered suitable for development without any special remedial or mitigation measures taking place.

8.2 Ground Gas Risk Assessment

A ground gas risk assessment has been carried out using the guidance presented in BS8485:2015 Code of practice for the characterization and remediation from ground gas in affected developments. Gas monitoring data was obtained from BH02, which had both a 50 mm (1 – 4 m response zone targeting the Made Ground) and 19 mm installation (5 – 10 m response zone targeting the underlying natural soils and aquifer). Monitoring took place on two visits, conducted on 05 March 2018 and 19 March 2018, and it should be noted that during the first monitoring visit the atmospheric pressure was <1000 mbars.

The concentrations of carbon dioxide ranged from <0.1% to 0.2 % volume and methane was not detected (less than 0.1%). During the monitoring visits a Photoionization Detector (PID) was used to monitor the volatiles in the ground gases, the results show that no volatiles were present. Groundwater analysis undertaken on a sample obtained from the shallow 50mm pipe within BH02 (installed within the Made Ground) provided further supporting evidence, showing levels of volatile contaminants to be below laboratory detection limits in all cases.

In accordance with BS8454:2015, a worst case condition has been calculated for each hazardous permanent gas. This is calculated by multiplying the maximum recorded flow in any standpipe by the with the maximum gas concentration. The worst case carbon dioxide Qhg is 0.002 litres / hour, and the worst case methane Qhg is <0.0001 litres / hour, which correspond to a characteristic situation of CS1 (very low risk), and indicates that no gas protection measures are required.

March 2018 Report No E8013-18 Issue 1 Page 18 of 22

It should be acknowledged that the proposed build is considered to be a sensitive end use, and adverse ground gas conditions may exist on site, which have not been encountered during the site investigation. Consideration should therefore be given to installing basic gas protection measures in line with CS-2 conditions for a Type C build as a precaution, with a gas protection score of 2.5.

8.2 Waste Classification of Blacktop

Road surfacings/blacktop can contain coal tars in concentrations which render the material hazardous and this largely depends on the age of the surface. Coal tar was used until the mid-1980s and therefore surfacings laid after this date are likely to be non-hazardous. Once a surface is excavated it becomes a waste and in order for this waste to be handled in accordance with the Duty of Care, it should be determined whether it is hazardous or non-hazardous.

Coal tar is made up of a number of organic chemicals, but in the particular case of road surfacings, the Environment Agency has determined that it is the concentration of benzo(a)pyrene that should be used to determine whether those materials should be classified as hazardous or non-hazardous.

The results of the laboratory testing are summarised in Table 9 below.

TABLE 9: BLACKTOP TESTING SUMMARY

Sample ID	Total PAH (mg/kg)	Benzo(a)pyrene (mg/kg)	Classification
WS04	3500	190	Hazardous

As shown in Table 9, the sample would be classified as hazardous waste. The List of Waste (LoW) coding for the material is therefore considered to be '17 03 01* bituminous mixtures containing coal tar' i.e. hazardous waste.

It should be noted that all blacktop, whether classified as hazardous or non-hazardous waste, can potentially be reused, although blacktop classified as hazardous waste may only be reused in cold lay surfacing.

If disposal is selected rather than reuse, then it is recommended that the proposed receiver site be contacted to confirm whether the testing to date is sufficient for their purposes.

SOCOTEC

All wastes removed from site should be consigned, transported and disposed of in full accordance

with all relevant UK legislation.

8.2 Waste Classification of Made Ground Materials

The HazWasteOnline toolkit was used to undertake a Hazard Assessment Screen, to establish

whether the sampled soils should be considered as representative of either hazardous or non-

hazardous waste. This classification process is in accordance with technical guidance document

WM3, Guidance on the classification and assessment of waste (WM3, 2015).

The HazWasteOnline assessment has been ran on two sample populations, based upon the

material types encountered during the ground investigation: Granular Made Ground and Cohesive

Made Ground. The maximum recorded concentrations have been used for each group and the

output sheets are presented in Appendix G.

The assessment of the two populations are summarised below; however it should be noted that it

is the ultimate responsibility of landfill operators to satisfy themselves that accepted wastes meet

their permit conditions. It is therefore recommended that the results are presented to the relevant

landfill operator to confirm this acceptance.

5.6.1 Granular Made Ground

Analysis of eight granular Made Ground samples has indicated no elevated concentrations of

metals, PAH or TPH were encountered in terms of hazardous waste classification; with the

exception of lead. Two high levels of lead were observed which led the material to be classified as

hazardous waste, based upon the following properties:

Hazard properties

HP7: Carcinogenic;

HP10: Toxic for reproduction; and,

HP14: Ecotoxic

Category:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

LoW/EWC Code:

17 05 03* - Soil and stones containing hazardous substances', i.e. hazardous waste.

March 2018
Issue 1

Report No E8013-18
Page 20 of 22

Materials classified as hazardous may be disposed of at a hazardous landfill without treatment subject to meeting hazardous waste acceptance criteria (WAC) thresholds. The WAC results are presented in Appendix E and confirm that the materials fall within hazardous WAC limits, and therefore can be accepted at a Hazardous Waste Landfill site.

Due to the inherent limitations of a site investigation, at this stage it has to be assumed that all Granular Made Ground soils encountered during the excavation works on site should be disposed of as hazardous waste. However, further subpopulations may become evident upon commencing excavation and enabling works and additional sampling within these materials could be undertaken to obtain a more representative data set and potentially determine materials of non-hazardous and hazardous wastes types.

It is also considered possible that further testing may allow the use of statistics to demonstrate that the elevated lead concentrations was an outlier or localised hotspot, and that only a small volume of material will be classified as hazardous waste, or allow a down-grading of the material to nonhazardous.

5.6.2 Cohesive Made Ground

Analysis of eleven samples of Cohesive Made Ground at the site has indicated that there are no elevated concentrations of contaminants in terms of hazardous waste classification. The waste classification summary sheet therefore gives a chemical waste classification for the samples as non-hazardous. The List of Waste (LoW) code for the Made Ground materials is therefore considered to be:

'17 05 04 (Soil and stones other than those mentioned in 17 05 03)' i.e. non-hazardous waste.

Materials classified as non-hazardous may be disposed of at an inert landfill subject to meeting inert waste acceptance criteria (WAC) values. Alternatively the materials may be disposed of at a non-hazardous landfill, which do not have set numerical WAC values.

WAC analysis undertaken on two Cohesive Made Ground samples indicate that the materials exceed the Inert WAC limits due to elevated arsenic and lead concentrations, and therefore any cohesive waste deposits should be disposed of at a non-hazardous waste landfill site.

March 2018 Report No E8013-18 Page 21 of 22

REFERENCES

AGS: 2017: Electronic transfer of geotechnical and geoenvironmental data (Edition 4.0.4). Association of Geotechnical and Geoenvironmental Specialists.

BGS England and Wales Sheet 256: 2006: North London. 1:50000 geological map (Bedrock and Superficials). British Geological Survey.

BGS Geology of Britain Viewer: 2018. www.bgs.ac.uk. British Geological Survey.

BRE Special Digest 1: 2005: Concrete in aggressive ground. Building Research Establishment.

BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.

BS 5930 : 2015 : Code of practice for ground investigations. British Standards Institution.

BS EN 1997-2 : 2007 : Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.

BS EN ISO 22475-1 : 2006 : Geotechnical investigation and testing – Sampling methods and groundwater measurements - Part 1 Technical principles for execution. British Standards Institution.

BS EN ISO 22476-2:2005+A1 : 2011 : Geotechnical investigation and testing - Field testing - Part 2 Dynamic probing. British Standards Institution.

BS EN ISO 22476-3:2005+A1 : 2011 : Geotechnical investigation and testing - Field testing - Part 3 Standard penetration test. British Standards Institution.

Technical Guidance WM3: Waste Classification - Guidance on the classification and assessment of waste (1st edition 2015). Environment Agency

APPENDIX A FIGURES AND DRAWINGS

Site Location Plan	A1
Site Plan	U00944
SPT N Depth Profile	Figure 1
Undrained Strength Depth Profile	Figure 2
Plasticity Chart	Figure 3
Moisture Content and Atterberg Limits Profile	Figure 4
Summary of Dynamic Probe Blow Counts	Figure 5
Cross Section	Section 1
DEVELOPMENT PLANS – The Proposals	Pages 45 to 49 of Design and Access Statement
DEVELOPMENT PLANS – Isometric Views	G22191-AA-XX-S-0301

Site Location Plan

Reproduced from the 2018 Ordnance Survey 1:50 000 scale on Grid Reference Finder by permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office, © Crown copyright, SOCOTEC UK Limited. All rights reserved. Licence Number 100006060.

Notes: Not to scale Project No.

Great Ormond Street Hospital P22 iMRI Project

Project No. E8013-18 Carried out for Kier Figure

A1

SPT N Depth Profile

Undrained Shear Strength Profile

Plasticity Chart

- Made Ground
- London Clay
- Lambeth Group

Moisture Content and Atterberg Limits Profile

Summary of Dynamic Probe Blow Counts

23 23 29 49 81.91 --8:00--- 26.00 -28.40 20.50 -3.00 4.00 4.90 10.62 22.96 5.50 0.04 0.10 0.20 1.65 2.30 - 5.00 -6.80 - 966 8.50 15.45 23.01 2.41 11.42 70SW 23.00 3.00 3.75 4.20 5.25 5.45 3.15 16.52 89.2 23.03 Horizontal Scale: 1:112 Engineer: Craig Curtis Vertical Scale: 1:238 Title: Section line 2 0.08 0.21 0.45 1.20 2.60 3.10 4.70 5.60 16.2 96.22 Project Title: GREAT ORMOND STREET HOSPITAL P22 IMRI PROJECT 00.0 Elevation (mAOD) Client: Kier Construction Chainage (m) Project Id: E8013-18 Lambeth Group Gravelly CLAY Offset (m) Geology Code Key Glacial Deposit Made Ground Sandy CLAY Sandy SILT London Clay Gravelly SAND CLAY egend Key -ocation:

The Proposals

This section of the Statement sets out the proposal, particularly in relation to how it addresses the existing site, whilst meeting the Trust's brief and clinical needs.

The Design Proposal

The final proposal seeks to provide a design solution which responds to the context of the site and the clinical needs of Hospital.

The Use and Amount

As mentioned previously, the Masterplan 2015 envisages provision of an iMRI facility in the Phase 4 building, expected to open in 2023. However, in order for the service to keep pace with other centres and to provide the best outcomes for children, GOSH needs to establish an iMRI facility in advance of Phase 4 opening.

The proposed use of the Southwood Courtyard Building is consistent with the rest of the Hospital that is Use Class C2. The building will provide a total GEA of 998 square metres of floorspace. The use of the proposal is in line with the prevailing land use, and sits within the context of the Hospital's buildings.

The building will accommodate: the Physiotherapy and Rehabilitation Facilities and Services at Level 2; an iMRI Suite, which includes a room for the machine itself, a theatre room and associated preparation rooms at Level 3 connecting to existing theatres in the Variety Club Building; Plant and equipment required to serve the new building, at Level 4. The plant floor would be enclosed and insulated. A green roof is proposed at roof level. This arrangement is shown in the Drawing Package, and reproduced as Figures 42 to 46.

Figure 42: Proposed floor plan at Level 2 (Ground Floor)

Level 3

Figure 43 to the right shows the proposed layout of the iMRI Suite and associated facilities at Level 3.

Connection to the Variety Club Building will be made via a connecting corridor to the existing operating theatres and recovery area, shown in pink.

The Proposals

Level 4

Figure 44 to the right shows the proposed layout of the plant and equipment required to serve the new building.

A total of two chiller units is provided in a recessed area to the south.

Southwood Building

Figure 44: Proposed floor plan at Level 4 (Second Floor)

Southwood Courtyard Building | Design and Access Statement 47

Figure 45: Section showing details at roof level

Figure 46: Proposed floor plan at Level 5 (Third)

The Proposals

All departmental designs are based on detailed clinical briefs, which have been produced with room-by-room schedules for each department. These have been informed by NHS guidance in Health Building Notes (HBNs) and Health Technical Memorandum (HTMs) providing recommendations for room sizes, room adjacencies and environmental requirements as well as details of specialised requirements such as air change rates, shielding and acoustic performance. The Trust and the design team have developed a detailed brief.

Although the theatre and the MRI room sizes exceed the minimum recommendations other room sizes are designed to meet the minimum recommended size due to the shortage of overall space. The lifetime of the new building will be reviewed when Phase 4 is designed in detail.

A draft programme for the construction of the Southwood Courtyard Building is provided in the draft Construction Management Plan (CMP) showing an indicative timescale for development and the key stages and interrelationships of the development.

In order to take account of the construction impact of the proposal and protect the amenity of surrounding occupiers, the draft CMP details the methods that will be employed by the Main Contractor to minimise the potential negative impacts associated with construction.

Once the Phase 4 Building opens, it is envisaged that the Physiotherapy and Rehabilitation Facilities and Services and the iMRI Suite and its associated rooms, plant and equipment will transfer into the Phase 4 Building.

Figure 47: Proposed Southwood Courtyard Building showing north-south section through the building

49

APPENDIX B EXPLORATORY HOLE RECORDS

Key to Exploratory Hole Records Key

Hammer Energy Ratio Reports AR803 and COM116

Borehole Logs BH01 and 02

Dynamic Sampler Hole Logs WS01 to 06

Dynamic Probe Logs BH01, WSDP01 to 06

Key to Exploratory Hole Records

SAMPLES

Undisturbed

Driven tube sample

nominally 100 mm diameter and full recovery unless otherwise stated LIT Driven thin wall tube sample TW Pushed thin wall tube sample

Pushed piston sample

Liner sample from dynamic (windowless) sampling. Full recovery unless otherwise stated

CBR CBR mould sample BLK Block sample

Core sample (from rotary core) taken for laboratory testing. C/CS

AMAL Amalgamated sample

Disturbed

Small sample D В Bulk sample LB Large bulk sample

Other

Water sample G Gas sample

Environmental chemistry samples (in more than one container where appropriate)

ES FW Water sample

Sample reference numbers are assigned to every sample taken. A sample reference of 'NR' indicates that, while an Comments

attempt was made to take a tube sample, there was no recovery.

Samples taken from borehole installations (ie water or gas) after hole construction are not shown on the exploratory

Specimens for point load testing undertaken on site (or other non-lab location) are not shown on the log.

IN SITU TESTS

SPT S or SPT C Standard Penetration Test, open shoe (S) or solid cone (C)

The Standard Penetration Test is defined in BS EN ISO 22476-3:2005+A1:2011.

The incremental blow counts are given in the Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self-weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is presented as N = ** in the Test column. Where the test drive blows reach 50 the

total blow count beyond the seating drive is given (without the N = prefix).

IV in situ vane shear strength, peak (p) and remoulded (r) ΗV Hand vane shear strength, peak (p) and remoulded (r) Pocket penetrometer test, converted to shear strength

KFH, KRH, KPI Permeability tests (KFH = falling head, KRH = rising head; KPI = packer inflow);

results provided in Field Records column (one value per stage for packer tests)

DRILLING RECORDS

The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930:2015

TCR Total Core Recovery, % SCR Solid Core Recovery, % **RQD** Rock Quality Designation, %

Fracture spacing, mm. Minimum, typical and maximum spacing measurements are presented.

NI The term non-intact (NI) is used where the core is fragmented.

Used where a measurement is not applicable (eg. If, SCR and RQD in non-rock materials). NA

Flush returns, estimated percentage with colour where relevant, are given in the Records column

CRF Core recovered (length in m) in the following run

AZCL Assessed zone of core loss

GROUNDWATER

Groundwater entry

Depth to groundwater after standing period

LOGGING

(p)ACM (potential) Asbestos containing material

Notes: Great Ormond Street Hospital P22 IMRI Project Project

See report text for full references of standards Project No. Carried out for Updated October 2017

Kier Construction

Key

Key to Exploratory Hole Records

INSTALLATION

Details of standpipe/piezometer installations are given on the Record. Legend column shows installed instrument depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill.

Standpipe/ piezometer

The type of instrument installed is indicated by a code in the Legend column at the depth of the response zone:

Standpipe

SP SPIE PPIE **EPIE**

Standpipe piezometer Pneumatic piezometer Electronic piezometer

Plain

Pipe

Slotted

Piezometer qiT

Inclinometer or Slip Indicator

The installation of vertical profiling instruments is indicated on the Record. The base of tubing is shown in the Legend

ICE ICM The type of instrument installed is indicated by a code in the Legend column at the base of the tubing: Biaxial inclinometer

Inclinometer tubing for use with probe

SLIP

Settlement Points or **Pressure Cells** The installation of single point instruments is indicated on the Record. The location of the measuring device is shown in the

Legend column.

Slip indicator

The type of instrument installed is indicated by a code in the Legend column: Electronic settlement cell/gauge

ESET ETM Magnetic extensometer settlement point **EPCE** Electronic embedment pressure cell **PPCE** Electronic push in pressure cell

INSTALLATION / BACKFILL LEGENDS

A legend describing the installation is shown in the rightmost column. Legend symbols used to describe the backfill materials are indicated below.

Topsoil

STRATUM **LEGENDS**

The legend symbols used for graphical representation of soils, rocks and other materials on the borehole logs are shown below. For soils with significant proportions of secondary soil types, a combination of two or more symbols may be used.

Macadam
簽
Clay
Mudstone

Concrete

Made Ground / Fill

Void or No Information

Siltstone Igneous

Igneous

Metamorphic

Tuff

Notes:

See report text for full references of standards.

Updated October 2017

Project

Great Ormond Street Hospital P22 IMRI Project

Project No. Carried out for **Kier Construction** Key

Sheet 2 of 3

Key to Exploratory Hole Records

	SOCOTEC
NOTES	
1	Soils and rocks are described in accordance with BS EN ISO 14688-1:2002+A1:2013 and 14689-1:2003 respectively as amplified by BS 5930:2015.
2	For fine soils, consistency determined during description is reported for those strata where undisturbed samples are available. Where the logger considers that the sample may not be representative of the condition in situ, for whatever reason, the reported consistency is given in brackets. The reliability of the sample is indicated by Probably or Possibly as appropriate. Hence (Probably firm) indicates the logger is reasonably confident of the assessment, but (Possibly firm) means less certainty. Where the samples available are too disturbed to allow a reasonable assessment of the in situ condition, no consistency is given.
3	Evidence of the occurrence of very coarse particles (cobbles and boulders) is presented on the logs. However, because of their size in relation to the exploratory hole these records may not be fully representative of their size and frequency in the ground mass.
4	The declination of bedding and joints is given with respect to the normal to the core axis. Thus in a vertical borehole this will be the dip.
5	The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures.
6	Observations of discernible groundwater entries during the advancement of the exploratory hole are given at the foot of the log and in the Legend column. The absence of a recorded groundwater entry should not, however, be interpreted as a groundwater level below the base of the borehole. Under certain conditions groundwater entry may not be observed, for instance, drilling with water flush or overwater, or boring at a rate faster than water can accumulate in the borehole. Similarly, where water entry observations do exist, groundwater may also be present at higher elevations in the ground than where recorded in the borehole. In addition, where appropriate, water levels in the hole at the time of recovering individual samples or carrying out in situ tests and at shift changes are given in the Records column.
7	The borehole logs present the results of Standard Penetration Tests recorded in the field without correction or interpretation. However, in certain ground conditions (eg high hydraulic head or where very coarse particles are present) some judgement may be necessary in considering whether the results are representative of in situ mass conditions.
REFERENCES	
1	BS EN ISO 14688-1:2002+A1: 2013: Geotechnical investigation and testing - Identification and classification of soil. Part 1 Identification and description. British Standards Institution
2	BS EN ISO 14689-1 : 2003 : Geotechnical investigation and testing - Identification and classification of rock. Part 1 Identification and description. British Standards Institution
3	BS EN ISO 22476-3:2005+A1 : 2011 : Geotechnical investigation and testing - Field testing. Part 3 Standard penetration test. British Standards Institution

BS 5930 : 2015 : Code of practice for ground investigations. British Standards Institution

Notes:
See report text for full references of standards.
Updated October 2017

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

SPT Hammer Ref: AR803

Test Date:

03/03/2017

Report Date:

03/03/2017

File Name:

AR803.spt

Test Operator:

RCP

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

7.4

Assumed Modulus E_a (GPa): 208

9603

Accelerometer No.1: Accelerometer No.2:

9786

SPT Hammer Information

Hammer Mass m (kg): 64.0

Falling Height h (mm): 760

SPT String Length L (m): 16.5

Comments / Location

D4000

Calculations

Area of Rod A (mm2):

1083

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas}

321

Energy Ratio E_r (%):

68

The recommended calibration interval is 12 months

Signed: Issuur

Title:

SMALL RIGS PRODUCT NUAWAGER.

Hammer Energy Report

Date of test: 01/02/2017 Hammer ID: COM116

Instrumented rod:Hammer mass (m)63.5 kgTypeBWFall height (h)0.75 mTest type:DPSH-B

Cross-sectional area (Aa) 11.30 cm² Manufacturer: Archway

Young's modulus (Ea) 207000 MPa **Model:** Free fall drop weight **Length** 0.60 m

Rig: Archway Competitor

Test rod type: 1½" Whitworth WS Rig ID: SN 116

Type: Dynamic Sampler

Foreman: S Walsh

Remarks:

Data obtained from test carried out in BH1, located in ESG Doncaster yard. Test carried out at depth of 5.53mbgl, with a blow count of 25. Energy determined from every blow.

Theoretical energy (E_{theor}) = $m \times g \times h$ =

0.467 kN-m (467 J)

Measured energy (E_{meas}) average of 38 blows =

0.346 kN-m

Energy ratio = $\frac{E_{meas}}{E_{theor}}$ = 74 %

Test carried out by: John Holt

Test carried out in accordance with BS EN ISO 22476-3:2005

Signed for issue:

Equipment used: SPT Analyzer Serial No. 4032T

Boroholo I og

ogged JC checked MH pproved MW	05/02/2018 End 06/02/2018	Equipment, Methods and R Dando 4000 Concrete coring to 0.24m. Se boring to 30.00m.			ug to 1.20m. Cable percussion (m) (m) 0.00 3.00 3.00	meter (mm) (m) (m) 200 3.00 150 6.00	Ground Le Coordinate National G	es (m)		23.01 mOD E 530454.93 N 182069.38
Samples and	Type & No	. Records	Date	Time	Strata Description Main	Detail	Depth, L	evel	Legend	Backfil
Бериг	Type a No	·	05/02/18	Water 0800	MADE GROUND: Black MACADAM	- Detail	(Thickness)	+22.97 +22.89	******	۰.۵. (
0.25 0.25	ES 1	PID=0.0 ppmv			MADE GROUND: Black medium strong CONCRETE with macadam.	/ =	0.04 (8:88) 0.12 (0.12) 0.24	+22.77		
. 0.30 0.30 - 0.50	D 2 B 3	-			MADE GROUND: Strong light grey CONCRETE. MADE GROUND: Light yellowish brown slightly	ή Ξ				
0.50 0.50	ES 4	PID=0.0 ppmv			gravelly medium to coarse SAND with low cobble content of white brick and tile. Gravel is	=	-	8		
0.50 - 1.00 - 0.70 1.00	B 6 D 5	PID=0.0 ppmv			subangular to subrounded medium to coarse of tile and and cement.		(1.76)			
1.00 1.20 - 1.65	ES 7 SPTC	N=1 (1,0/0,0,1,0)		Dry		1.20-2.00 Becoming - slightly silty -	(1.70)			
1.20	B 8	-				-				
						=				
- 2.00 2.00	ES 9	PID=0.0 ppmv	2.10	Dry	MADE GROUND: Soft to firm brown slightly		2.00	+21.01		
2.10 - 2.55 2.10	SPTC B 10	N=2 (1,0/1,1,0,0)	20	5.,	gravelly sandy SILT with low cobble content of whole brick. Sand is fine to coarse. Gravel is	=				
-					subangular to subrounded fine to coarse of flint, brick, tile, quartzite and macadam.	2.40-2.50 Isolated - soft brown clay - pocket surrounding -	(1.00)	8		
						gravel.	-			
- 3.00 - 3.45 3.00	SPTC	N=5 (2,2/1,2,1,1) PID=0.0 ppmv	3.00	Dry	MADE GROUND: Soft to firm dark brown slightly	-	3.00	+20.01		1/
3.00 3.00 3.00	ES 11 B 12	-10-0.0 ррппу			gravelly CLAY with low cobble content of red brick. Gravel is subangular to subrounded fine to	=				
=					coarse of brick, macadam, flint, quartz and rare chalk.	_	(1.00)	Į.		1/
						=		8		
4.00 - 4.45	SPTS	N=8 (3,1/1,1,3,3)	3.00	Dry	POSSIBLE MADE GROUND: Soft to firm brown		4.00	+19.01		
4.00 4.00 4.00	ES 13 D 14	PID=0.0 ppmv			mottled grey slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of					
4.00 - 4.40	B 15	-			predominately flint and quartzite with rare chalk and traces of brick.		(0.90)			
					a.ia 12300 0. 2.io.i.					
- 5.00 - 5.45	SPTS	N=11 (1,2/2,3,3,3)	4.50	Dry	Firm becoming stiff very closely to indistinctly	† _=	4.90	+18.11	*******	
5.00 5.00 5.00	ES 16 D 17	PID=0.0 ppmv			fissured brown mottled grey CLAY with occasional fine grained sized crystals of selenite. (LONDON CLAY)					
5.00 - 5.40	B 18				(LUNDON CLAY)					
- 6.00	D 19	-					_			
								F		
6.50 - 6.90	UT 20	55 blows 78% rec	6.00	Dry		_	(3.10)		,	ı 🗷 🦯
6.90	D 21	-				6.90-7.50 Fossil -		F		
						with orangish brown lenses of firm clay.				
- 7.50	D 22	_] =		F		
						=		F		
- 8.00 - 8.45	SPTS	N=15 (1,3/3,3,4,5)	6.00	Dry		_=	8.00	+15.01		
8.00 8.00 - 8.40	D 23 B 23A	-			Stiff very closely to indistinctly fissured grey CLAY with occasional fine grained size crystals of	=				
-					selenite. (LONDON CLAY)] =				
						=	-			
- 9.00	D 24									
-							1			
- 9.50 - 9.90	UT 25	70 blows 82% rec				_				\mathbb{Y}
			05/02/18	1600		=	1			
9.90	D 26	-	6.00 06/02/18	Dry 0800						
			6.00	Dry						
Groundwater Entries No. Depth Strike			Depth Seal	led (m)	Depth Related Remarks Depths (m) Remarks		Hard Borin Depths (m	-	ration (min	s) Tools use
1 6.50	Seepage			• •	0.00 - 30.00 SPT Hammer ID: AR803 ER=68%				•	
otee: For evalence:	of eumbols as -	ahhreviations	nct .	CBS	AT OPMOND STREET HOSPITAL DOG MADE DRO IFOT		Borobele			
otes: For explanation e Key to Exploratory duced levels in metr	y Hole Records. A	All depths and ness given in	sul	GRE	AT ORMOND STREET HOSPITAL P22 IMRI PROJECT		Borehole	_	1104	
ackets in depth colu		Proj	ect No.	E80	13-18			t	3H01	

	Chart	Familianiant 88-41-				Damet for	4.0	Dia	C	Cuerran		20.01 -
rilled DJ		Equipment, Methods and Re Dando 4000	marks			Depth from (m)	to (m)	(mm)	Casing Depti (m)	Ground Level		23.01 mC
gged JC ecked MH	05/02/2018 End	Concrete coring to 0.24m. Ser boring to 30.00m.	vice inspection	pit hand d	ug to 1.20m. Cable percussion	(m) 0.00 3.00	3.00 30.00	200 150	(m) 3.00 6.00	Coordinates (m) National Grid	,	E 530454. N 182069.
proved MW	06/02/2018	oomig to outourn.								INALIONAL GITO		IN 10∠009.
amples and					Strata Description	 1				1		
Depth	Type & No	. Records	Date	Time		ain			Detail	Depth, Level	Legend	Back
Берин	Type a ne	. Records	Casing	Water	Stiff very closely to indisti		rev CLA	_	Detail	(Thickness)	+	
					with occasional fine grain selenite.	ed size crystal	s of]		
		_			(LONDON CLAY)							
										=		
11.00 - 11.45 11.00	SPTS D 28	N=23 (3,3/4,5,6,8)	6.00	Dry					-	=	<u> </u>	
11.00 - 11.40	B 29											
										(7.00)		
										=		
12.00	D 30	-							-			
												_ //
										_	F	- Y /
										=	F	
. 13.00 13.40	UT 31	70 blows 949/	6.00	Domo]	F_=_=	
13.00 - 13.40	0131	70 blows 84% rec	6.00	Damp					_	_	F_=_=	
13.40	D 32	-								_	<u> </u>	
										=		- Y /
14.00	D 33	-							-			
										_		
										=	<u> </u>	
- 15.00 - 15.45	SPTS	N=28 (3,4/6,6,8,8)	6.00	Damp					_	15.00 +8.0	, []	2 🗷
15.00	D 34	-			grey CLAY with occasion	al fine grained	crystals o	of		1	<u> </u>	-
15.40	B 35	-			selenite with rare traces of crystals.	of elongated se	lenite			=	<u> </u>	- Ľ /
					(LONDON CLAY)						<u> </u>	
										=		
- 16.00	D 36	-							=	=		
										=		- ľ/
- 17.00 - 17.45	UT 37	70 blows 98% rec	6.00	Dry					=			- Y /
17.45	D 38	-										
										(5.50)	F	
18.00	D 39								_] ` ′	F	
10.00												
										=	F_=_	
									•		F_=_	
										_	F_=_	
19.00 - 19.45 19.00	SPTS D 40	N=31 (3,5/7,7,8,9)	6.00	Dry					-			
19.00 - 19.40	B 41	-										
										_		
										7	<u> </u>	
											<u> </u>	
roundwater Entries			Danét: 0	alod (=c)	Depth Related Remarks					Hard Boring	Duretie - /- '	no) To-!-
o. Depth Strike (2 15.00	(m) Remarks Seepage		Depth Sea	neu (M)	Depths (m) Remarks					Depths (m)	Duration (mi	າສ) 100IS ເ
es: For evolunation	of symbols and	ahhreviations Drain	rt	CPT	EAT ORMOND STREET HOSPI	TAI P22 IMDI P	O IECT			Boreholo		
tes: For explanation e Key to Exploratory uced levels in metre	/ Hole Records. A	All depths and	L	GRE	ENT OKMOND STREET HOSPI	IAL PZZ IMKI PF	(UJEU I			Borehole	D. 1.5.4	
ckets in depth colur	oo. onatuili tiliCK	Proje	ct No.	F80	13-18					I	BH01	

								S	COTE
	Start	Equipment, Methods and Ren	arks		(m) (m)	iameter Casing Depth (mm) (m)			23.01 mO
gged JC ecked MH	05/02/2018 End	Dando 4000 Concrete coring to 0.24m. Servi boring to 30.00m.	ce inspection	pit hand d	ug to 1.20m. Cable percussion 3.00 3.00 3.00	200 3.00 150 6.00	Coordinates (m National Grid	•	E 530454.9 N 182069.3
proved MW	06/02/2018	borning to 30.00m.					National Griu		N 102009.
amples and					Strata Description		1		
Depth	Type & No	o. Records	Date	Time	Main	Detail	Depth, Level	Legend	Back
	3,75		Casing	Water	Very stiff very closely to indistinctly fissured dark grey CLAY with occasional fine grained crystals of selenite with rare traces of elongated selenite	-	(Thickness)		
					crystals. (LONDON CLAY) Very stiff indistinctly fissured reddish brown mottled grey and light brown CLAY with traces of fine grained gravel size rounded ammonite fossils.	-	20.50 +2.5	i1	
21.00 - 21.30 21.30	UT 44 D 45	70 blows 47% rec	6.00	Dry	(LAMBETH GROUP)	-	-		
21.00	3 .0					- - -	-		
22.00	D 46								
23.00 - 23.36	SPTS	50 (6,11/15,18,17 for	6.00	Dry		23.00 White			
23.00	D 47	65mm)	0.00	5.,		speckling of white sand size crystals.	(5.50)		
		-				= = = = = = = = = = = = = = = = = = = =	-		
25.00 - 25.35	UT 50	70 blows 67% rec	6.00	Dry		- - - -			
25.35	D 51	-				- - - -			
26.00	B 52				Very stiff indistinctly fissured greenish grey slightly sandy CLAY. (LAMBETH GROUP)	- - - - -	26.00 -2.9	9	
27.00 - 27.45 27.00 27.00 - 27.40	SPTS D 53 B 54	N=43 (4,5/8,10,11,14)	6.00	Dry		- - - -	(2.40)		
		-				-			
		-			Stiff friable dark grey slightly sandy SILT. Sand is fine to medium. (LAMBETH GROUP)	_ _ _ _	28.40 -5.3 (0.60)	:	
29.00 - 29.45	UT 57	70 blows 93% rec	6.00	Dry	Very stiff very closely fissured dark grey mottled greenish grey CLAY with rare traces of fine gravel size rounded ammonite fossil.		29.00 -5.9	9	
29.45	D 58		06/02/18	1600	(LAMBETH GROUP)	20.00.20.00	(1.00)		
			6.00	Dry	END OF EXPLORATORY HOLE	29.80-30.00 - Becomes slightly - mottled brown.	30.00 -6.9	<u></u>	<u>K</u>
undwater Entries Depth Strike (n	n) Remarks	!	Depth Sea	led (m)	Depth Related Remarks Depths (m) Remarks		Hard Boring Depths (m)	Duration (mins)	Tools
es: For explanation of Key to Exploratory I ced levels in metres	Hole Records.	All depths and	:	GRE	AT ORMOND STREET HOSPITAL P22 IMRI PROJECT		Borehole	DU64	
kets in depth colum	n.	C UK Limited C Carried		E80 Kier	3-18			BH01	

ed DJ ged JC cked MH roved MW	06/02/2018 [[]	Equipment, Methods and Re Dando 4000 Concrete coring to 0.25m. Ser soring to 15.50m.			ug to 1.20m. Cable percussion (m) (m) 0.00 3.00 3.00 15.45	Diameter (mm) (m) (m) 200 3.00 150 5.50	Ground Level Coordinates (m) National Grid		23.01 mO E 530452.9 N 182074.2
mples and		T	Date	Time	Strata Description		Depth, Level	Legend	Backf
0.25 0.25 0.50 0.50 0.50 - 0.70 0.90 - 1.10 1.00 1.00	ES 1 ES 3 B 2 B 4 ES 5 SPTC	PID=0.0 ppmv PID=0.0 ppmv PID=0.0 ppmv PID=0.1 ppmv N=5 (1,1/2,1,1,1)	Casing 06/02/18	0800	Main MADE GROUND: Black MACADAM. MADE GROUND: Medium strong black mottled greyish CONCRETE with macadam. MADE GROUND: Strong light grey CONCRETE. MADE GROUND: Yellowish brown gravelly medium to coarse SAND. Gravel is subangular to subrounded fine to coarse macadam, brick, tile, flint and concrete.	Detail	(Thickness) 0.04 (10.88) +22.8 0.12 (0.13) +22.8 0.25 (0.13) +22.7 (1.25)		
1.20 2.00 - 2.45 2.00 2.00 2.00	SPTC ES 7 B 8	N=10 (5,3/2,3,3,2) PID=0.0 ppmv	1.50	Dry	MADE GROUND: Loose dark reddish brown very gravelly medium to coarse SAND. Gravel is subangular to subrounded fine to coarse of predominately brick with concrete flint and macadam.	cobble content of	1.50 +21.5 (1.50)	1	
3.00 - 3.45 3.00 3.00 3.00	SPTC ES 10 B 9	N=11 (6,4/4,3,2,2) PID=0.0 ppmv	3.00	Dry	MADE GROUND: Soft to firm dark brown slightly sandy gravelly CLAY with low cobble content of half brick. Sand is medium to coarse. Gravel is subangular to subrounded fine to coarse of predominately brick with macadam, flint quartzite.		3.00 +20.0	1	
3.70 - 4.00 4.00 - 4.45 4.00 4.00 4.00 4.00 4.00 - 4.40	B 11 SPTS ES 12 D 13 B 14	N=7 (1,2/2,1,2,2) PID=0.0 ppmv	3.00	Dry	Soft to firm greenish grey mottled black slightly sandy slightly gravelly slightly organic with plant remnants CLAY with slight organic humic odour. Gravel is subangular fine to medium of shell fragments. (LONDON CLAY)	-	3.70 +19.3 (1.30)	1	
5.00 - 5.45 5.00 5.00 5.00 5.00 5.00 - 5.40	SPTS ES 15 D 16 B 17	N=8 (1,1/1,2,2,3) PID=0.0 ppmv	4.50 06/02/18 5.50 07/02/18	Dry 1600 Dry 0800	Firm becoming stiff indistinctly fissured light brown mottled greenish grey CLAY. (LONDON CLAY)	- - - - - - - - - -	5.00 +18.0	1 2 2 3 6 7 1 2	//0000
6.50 - 6.80 6.80	UT 19 D 20	70 blows 62% rec	5.50	Dry	Firm to stiff fissured greenish grey CLAY. (LONDON CLAY)	6.80 Greenish grey slightly clayey gravel band.	(1.80) 6.80 +16.2	1	1 2 0 0
7.90 8.00 - 8.45 8.00 - 8.40	D 22 SPTS B 24	N=14 (1,2/3,3,4,4)	5.50	Dry	Stiff very closely fissured to indistinctly fissured greyish brown CLAY with occasional fine sand	-	(1.70) 8.50 +14.5	1	0 0 0
9.00	D 25				size crystals of selenite. (LONDON CLAY)	=======================================	(1.45)		0
9.50 - 9.95	UT 26	70 blows 100% rec	5.50	Dry		- - - -			0000
9.95 undwater Entrie Depth Strike 6.50			Depth Seal	led (m)	Depth Related Remarks Depths (m) Remarks 0.00 - 15.40 SPT Hammer ID: AR803 ER=68%		9.95 +13.0 Hard Boring Depths (m)	Duration (min	
Key to Exploratory ced levels in metro kets in depth colu	n of symbols and a / Hole Records. A es. Stratum thicknown. mn.	Il depths and ness given in	ct ct No.		EAT ORMOND STREET HOSPITAL P22 IMRI PROJECT		Borehole	BH02	

Sheet 2 of 2

Casing Depth (m) 3.00 5.50 Drilled Start DJ quipment, Methods and Remarks Depth from Ground Level to (m) 3.00 15.45 (mm) 200 150 Dando 4000 Concrete coring to 0.25m. Service inspection pit hand dug to 1.20m. Cable percussion poring to 15.50m. JC 06/02/2018 coordinates (m) E 530452.97 National Grid Checked MH N 182074.20 End Approved MW 07/02/2018 Samples and Tests Strata Description Depth, Level (Thickness) Backfill Legend Records Detail Casing Wate Stiff becoming very stiff fissured dark grey slightly sandy CLAY with occasional fine grained sand size crystals of selenite. Fissures are very closely spaced. (LONDON CLAY) 10.50 D 28 N=20 (3,3/4,5,5,6) 5.50 (5.50)13.00 - 13.45 UT 32 70 blows 82% rec 5.50 Dry 13.45 D 33 14.00 D 34 15.00 - 15.45 15.00 N=27 (3,5/5,6,7,9) 5.50 Drv 07/02/18 5.50 1600 Dry 15.45 +7.56 END OF EXPLORATORY HOLE Groundwater Entries Depth Related Remarks Hard Boring No. Depth Strike (m) Remarks Depth Sealed (m) Depths (m) Depths (m) Duration (mins) Tools used Notes: For explanation of symbols and abbreviations see Key to Exploratory Hole Records. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column.

© Copyright SOCOTEC UK Limited
Scale 1:50

23/03/2018 11:57:33 GREAT ORMOND STREET HOSPITAL P22 IMRI PROJECT Borehole Project **BH02** Project No. E8013-18

Carried out for

Kier Construction

								50	COTEC
rilled LW	Start	Equipment, Methods and Ren	narks		(m) (m) (m	meter Casing Depth nm) (m)			22.96 mOD
gged JC	01/02/2018	Archway Competitor Concrete coring to 0.20m. Servi	ce inspection p	it hand d	ug to 1.20m. Dynamic 2.00 3.00	87 75	Coordinates (m)		E 530456.56
ecked MH	End	(windowless) sampling to 6.00m	i. No groundwa	iter encol	4.00 5.00	65 55 45	National Grid		N 182070.0
proved MW	01/02/2018					45	4		
amples and			Date	Time	Strata Description		Depth, Level	Lamand	Backfil
Depth	TCR SCR RQD	If Records/Samples	Casing	Water	Main	Detail	(Thickness)	Legend	Dackiii
			01/02/18	0800	MADE GROUND: Black MACADAM. MADE GROUND: Black medium strong	-	- 0:10 (0:06) +22:86 - 0:20 (0:10) +22:76		
0.25 0.25	ES 1	PID=0.0 ppmv			CONCRETE.	-	0.20 1 +22.76		Y/
0.30 0.30 - 0.50	D 2 B 3	-			MADE GROUND: Strong light grey CONCRETE. / MADE GROUND: Loose yellowish brown slightly	_	7		1//
0.50 0.50	ES 4	PID=0.0 ppmv			gravelly medium to coarse SAND with low cobble content content of whole brick. Gravel is	-			
0.50 - 0.90 0.70	B 6 D 5	-			subangular to subrounded fine to coarse of	_	(1.45)		
1.00 1.00	ES 7	PID=0.0 ppmv		Dry	concrete and tile.	-			1/
1.20 - 1.65	SPTS	N=5 (1,1/1,1,2,1)		Diy		-			1//
1.20 - 1.65 1.20 - 1.70	D 8 B 9	4000/				_			
1.20 - 2.00 1.70	L .	100% rec, diameter 87mm PID=0.0 ppmv			MADE GROUND: Soft to firm brown mottled black	=	1.65 +21.31		
1.70 2.00 - 2.45	ES 10 SPTS	N=6 (1,1/1,1,2,2)		Dry	slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of brick, macadam and	_	(0.65)		1/
2.00 - 2.45 2.00 - 2.70	D 11 B 12	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		,	concrete.		1		
2.00 - 3.00	L	90% rec, diameter 75mm			MADE GROUND: Firm brown mottled black	-	2.30 +20.66		//
					slightly gravelly CLAY. Gravel is subangular to subrounded medium to coarse of brick, concrete	_ -	1		- / .
2.70 2.70	ES 13	PID=0.0 ppmv			and macadam.	-	1		1/
3.00 - 3.45	SPTS	N=9 (2,2/2,2,2,3)		Dry		3.00-4.00 Poor—			Y/
3.00 - 3.45 3.00 - 4.00	D 14 D 15	-				recovery.			//
3.00 - 4.00	L	50% rec, diameter 65mm				-	1		//,
						-	(2.50)		-
						-			\mathbb{Z}
4.00 - 4.45	SPTS	N=4 (2,1/1,1,1,1)		Dry		_	1		//
4.00 - 4.45 4.00 - 4.50	D 16 B 17					- -			
4.00 - 5.00	L	90% rec, diameter 55mm				- -			
4.50 4.50	ES 18	PID=0.0 ppmv				-	-		//
					Firm to stiff dark grey slightly gravelly CLAY with	-	4.80 +18.16		1//
5.00 - 5.45	SPTS	N=8 (2,2/2,2,2,2)		Dry	relic rootlets.	_			
5.00 - 6.00 5.00 - 6.00	B 19 L	No recovery			(LONDON CLAY)	-	(0.70)		
		80% rec, diameter 45mm				_	5.50 +17.46		1/
					Firm grey mottled brown CLAY with relic rootlets. (LONDON CLAY)	-		<u> </u>	$\mathbb{Y}_{\mathbb{Z}}$
			01/02/18	1600	(======================================	-	(0.50)		//
					END OF EXPLORATORY HOLE	-	6.00 +16.96		
						-			
						-			
						-			
						-			
						_	1		
						-	1		
						_	1		
						-	1		
						-	-		
							7		
							3		
							1		
						- - -			
						-			
						-	1		
						-			
						-			
						-			
			1						
oundwater Entries					Depth Related Remarks		Chiselling Details	5	_
o. Depth Strike	e Remarks		Depth Sea	aled	Depths (m) Remarks 0.00 - 5.45 SPT Hammer ID: COM116 ER: 74%		Depths (m)	Ouration (mins)	Tools use
					5.55 5.45 SEL MAIIINELID. COMITIO EK. 74%				
es: For explanation Key to Exploratory			t	GRE	AT ORMOND STREET HOSPITAL P22 IMRI PROJECT		Borehole		
iced levels in metre	es. Stratum thic		t No.	Eau	13-18		,	WS01	
kets in depth colun © Cop	yright SOCOTE	EC UK Limited AGS Carried	d out for		Construction				
ale 1:50	23	/03/2018 11:58:56		- Niel				Sheet 1 of 1	

Doici	. • . •	5						SOCOTEC
Drilled LW	Start	Equipment, Methods and Rem	arks				h Ground Level	23.00 mOD
Logged JC	31/01/2018	Archway Competitor Concrete coring to 0.24m. Service	e inspection nit have	I dug to 1.20m Dynamic	(m) (m) 0.00 2.00 2.00 3.00	(mm) (m) 102	Coordinates (m)	E 530454.78
Checked MH	End	(windowless) sampling to 6.45m.	No groundwater en	countered.	3.00 3.00 4.00 4.00 5.00	87 75 65	National Grid	N 182075.26
Approved MW	01/02/2018				5.00 6.00	53		
Samples and	Tests			Strata Descriptio	n			
Depth	TCR SCR RQD	If Records/Samples	Date Tim Casing Wat		lain	Detail	Depth, Level Leg (Thickness)	gend Backfill
_	i.qo	0.00-0.50 No ES sample collected due to surface	31/01/18 08	00 MADE GROUND: Black			- 0.02 (0.08) +22.96 - 0.10 (0.08) +22.90	°. A. O
- - 0.35	D 1	cross contamination		MADE GROUND: Black CONCRETE with macac		Л	0.24 (0.14) +22.76	
0.40 - 0.60 0.50	B 3	hydrocarbon from concrete core flush.		MADE GROUND: Strong	g light grey CONCRETE. n slightly gravelly medium	7/	0.40 (0.13) +22.60	
_ 0.50 _ 0.50 _ 0.50	ES 2 D 4	515.00		to coarse SAND. Gravel	is subangular to	· /	∃ 💥	
- 0.70 - 0.90	B 5	PID=0.0 ppmv	31/01/18 16		yellowish brown slightly		7 🐰	
- 1.00 - 1.00	ES 6	515.00	51/01/16	gravelly medium to coan	se SAND with low cobble gular to subrounded fine	:	(1.25)	XX
- 1.20 - 1.65 - 1.20 - 1.65 - 1.20 - 1.70	SPTS D7 B8	PID=0.0 ppmv	01/02/18 08		d concrete. Cobbles are		∃	
1.20 - 2.00	L	N=6 (1,0/0,0,3,3)		Subangular to Subround	ed of whole brick.		∃.a	
– 1.70 –	-	81% rec, diameter 102mm		MADE GROUND: Soft of slightly gravelly CLAY. G			1.65 +21.35	
_ 	SPTS	PID=0.0 ppmv		subrounded fine to coars	se of macadam, brick, tile		(0.75)	
- 2.00 - 2.45 - 2.00 - 2.70	D 10 B 11	N=4 (1,1/1,1,1,1)		and flint.			i ()	XX
2.00 - 3.00	L	84% rec, diameter 87mm		MADE GROUND: Firm t	o stiff brown slightly		2.40 +20.60	
F				gravelly CLAY. Gravel is	subangular to		7 💥	
_ _ 2.80	-	PID=0.0 ppmv		subrounded medium to	coarse of brick.]	
- - - 3.00 - 3.45 - 3.00 - 3.45	SPTS D 13	N=4 (1,1/1,1,1,1)		ry		3.00-4.00 Poor recovery.	∃	
- 3.00 - 4.00	D 14					recovery.	∃	
- 3.00 - 4.00 -	L	45% rec, diameter 75mm					(2.10)	XX
<u>-</u>							╡	
_							╡	
4.00 - 4.45 - 4.00	SPTS	N=8 (2,2/2,2,2,2) PID=0.0 ppmv		ry			╡	****
- 4.00 - 4.45 - 4.00 - 5.00	D 15 L	75% rec, diameter 65mm					∃	
_		-		Firm grey mottled brown	CLAY with relic rootlets.		4.50 +18.50	
_ - 4.80	D 17			(LONDON CLAY)			(0.50)	
	SPTS	N=22 (5,5/5,5,6,6)		rv			5.00 +18.00	딜 [//
- 5.00 - 6.00	L	No recovery 0% rec, diameter 55mm		NO RECOVERY.				
<u>-</u>		o /o roo, diamotor comm					_	
_							_	
_							(1.45)	
6.00 - 6.45	SPTS	N=18 (5,5/4,4,5,5)		ry			-	
_		No recovery	01/02/18 16	00]	- Y/,
E				END OF EVDI	ODATODY HOLE		6.45 +16.55	/_/
_				END OF EXPL	ORATORY HOLE		_	
_							_	
_						-	_	
_							1	
_								
E]	
							_	
_							∃	
<u></u>							╡	
- -							╡	
=								
_							-	
-]	
Ē]	
_							_	
_							∃	
0				Double Date 15			Latin a : ::	
Groundwater Entries No. Depth Strike			Depth Sealed		ple collected due to surface confrom concrete core flush.	ross contamination	Chiselling Details Depths (m) Durati	ion (mins) Tools used
Notes: For explanation see Key to Exploratory reduced levels in metre brackets in depth colum	Hole Records. es. Stratum thick nn.	All depths and kness given in Project		REAT ORMOND STREET HOSP	ITAL P22 IMRI PROJECT		Borehole	S02
Scale 1:50 © Cop	yright SOCOTE 23	C UK Limited AGS Carried	out for K	ier Construction			Shee	t 1 of 1
	23		-				•	

				_							2	OCOTE
led LW	Start	Equipment, Methods and Rem	arks			Depth from (m)	to (m)	Diameter (mm)	Casing Depth (m)	Ground Level		23.03 mO
ged JC	31/01/2018	Archway Competitor Concrete coring to 0.30m. Service	e inspection i	nit hand d	ig to 1.20m. Dynamic	0.00	2.00	102	(111)	Coordinates (m)		E 530452.9
cked MH	End	(windowless) sampling to 6.45m.	No groundwa	ater encou	intered.	2.00 3.00	3.00 4.00	87 75		National Grid		N 182078.0
roved MW	01/02/2018					4.00 5.00	5.00 6.00	65 55				
mples and	Tests				Strata Description	n				1		
•	TCR SCR		Date	Time						Depth, Level	Legend	Backfi
Depth	SCR RQD	If Records/Samples	Casing	Water		ain			Detail	(Thickness)		
0.20 - 0.50	B 3		31/01/18	0800	MADE GROUND: MACA		th	-1	-	0.04 \(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\	1	۵.
0.25	-	PID=0.0 ppmv			CONCRETE.			_//		0.22 (0.10) 0.30 (0.08) +22.8 +22.7	3	- Y /
0.25 0.30	ES 1 D 2				MADE GROUND: Light of MADE GROUND: Dark of			/	_			
0.50 0.50	ES 4	PID=0.0 ppmv			slightly silty medium to co	oarse SAND.	Gravel is	/		(0.90)		
0.60 - 0.90	B 6				subangular to subrounde flint and concrete.	ed medium to	coarse of	//	-	(0.90)		- ľ /
0.70 1.00	D 5	PID=0.0 ppmv	31/01/18	1600	MADE GROUND: Yellow				_	_		
1.00 1.00 - 1.20	ES 7 B 8		01/02/18	Dry 0800	gravelly medium to coars content. Gravel is angula			le	-	1.20 +21.8	3	
1.20 - 1.65 1.20 - 1.65	SPTS D 9	N=1 (1,1/1,0,0,0)	01/02/16	0000	coarse of brick, tile, maca	adam, concre	ete and	/				_ [/
1.20 - 1.80	B 10				ceramic. Cobbles are and whole brick and concrete		ngular of	/	-	1		
1.20 - 2.00 1.80	L	100% rec, diameter 102mm PID=0.0 ppmv			MADE GROUND: Soft to		lightly sand	yt	-			
1.80 2.00 - 2.45	ES 11 SPTS	N=6 (1,1/1,2,2,1)		Dry	gravelly CLAY with low or medium to coarse. Grave	obble content	t. Sand is		_	(1.45)		
2.00 - 2.45 2.00 - 2.80	D 12 B 13	- (1,,2,2,1)		Í	subrounded fine to coars			nt				
2.00 - 2.00	L	75% rec, diameter 87mm			and concrete. Cobbles a	re subangula	r to			_		
					subrounded of red brick.				-	}		
		DID 0 -			MADE GROUND: Light of	grey medium	to coarse	\dashv	-	2.65 (0.10) +20.3 2.75 (0.10) +20.2	8	$ ^{\prime}$ $^{\prime}$
2.80 2.80	ES 14	PID=0.0 ppmv			SAND.	•		_/	-	1		-V .
3.00 - 3.45 3.00 - 3.45	SPTS D 15	N=4 (1,1/1,1,1,1)		Dry	MADE GROUND: Firm b CLAY with rootlets. Grave	el is subangu	lar to		_	(0.55)		-1/
3.00 - 3.80	B 16	95% roo diameter 75mm			subrounded medium to c			k	-	3.30 +19.7	3	- Y /
3.00 - 4.00	L	95% rec, diameter 75mm			and flint. Firm brown slightly grave			_/	-	1		-V ,
					Gravel is subangular to s medium flint.				-	(0.70)		
3.80	F6 17	PID=0.0 ppmv			(LONDON CLAY)				-	-		- ľ /
3.80 4.00 - 4.45	ES 17 SPTS	N=4 (0,1/1,1,1,1)		Dry	Firm grey mottled brown	CLAY with ro	otlets with	\dashv	_	4.00 +19.0	3	
4.00 - 5.00 4.00 - 5.00	B 18 L	No recovery			traces of subangular to s				-			
	-	80% rec, diameter 65mm			medium flint gravel. (LONDON CLAY)				-			1/
					(LONDON OLAT)				-			$-V_{\geq}$
										1	F	
5.00 - 5.45	SPTS	N=12 (2,1/2,3,3,4)		Dry					_	1	<u> </u>]	
5.00 - 5.45	D 19	14-12 (2, 112,0,0,4)		اy ا <i>ن</i>					_	<u>,,</u>	<u> </u>	- K /
5.00 - 6.00 5.00 - 6.00	B 20 L	65% rec, diameter 55mm							-	(2.45)	<u> </u>]	- 1/ .
									-	1		- /
										1		- ľ /
									-	1	[]	
6.00 - 6.45 6.00 - 6.45	SPTS D 21	N=20 (3,5/4,4,6,6)		Dry					_	1		- /
5.00 0.40	52.		01/02/18	1600					-	1	F_= 1	- ľ /
				Dry	EVID OF THE	DATOR	01.5			6.45 +16.5	8	_/_
					END OF EXPLO	DRATORY H	OLE		-	-		
									-			
									_			
									-			
									-	-		
									-	1		
									-	-		
									-	-		
									_	1		
										1		
									_	1		
									-	1		
									-	-		
									_	7		
									-	1		
									-	1		
									=	1		
									-	1		
						-						
ndwater Entrice					Denth Related Pemarks					Chisalling Data	ile	
ndwater Entries Depth Strike			Depth Se	aled	Depth Related Remarks Depths (m) Remarks					Chiselling Deta Depths (m)	IIS Duration (mins	s) Tools u
•						er ID: COM116 I	ER: 74%				,	-
For explanation				GRE	AT ORMOND STREET HOSPI	ITAL P22 IMRI	PROJECT			Borehole		
ey to Exploratory ed levels in metre	es. Stratum thic	kness given in	N 1-		10.40						WS03	
ets in depth colun	nn.	EC UK Limited AGS	No.		13-18						44203	
e 1:50		Carried Carried	out for	Kier	Construction						Sheet 1 of 1	

		+	_						_	_		3	OCOTE
rilled LW	Start	Equipment, Methods and Re	marks					meter mm)	Casing Depth (m)				22.96 mOI
ogged JC	30/01/2018	Archway Competitor Concrete coring to 0.20m. Ser	vice inspection pit	hand di	ug to 1.20m. Dynamic	0.00 2	2.00 3.00	102 87	` ,	Coordinates	(m)		E 530452.9
hecked MH	End	(windowless) sampling to 6.45	m. No groundwate	er encou	ntered.	3.00 4	4.00 5.00	75		National Gri	d		N 182082.5
oproved MW	31/01/2018						6.00	65 55					
amples and	Tests				Strata Descriptio	n							
Depth	TCR SCR RQD	If Records/Samples	Date Casing	Time Water	N	<i>l</i> lain			Detail	Depth, Le (Thickness)	vel l	Legend	Backfil
0.05	RQD	PID=0.9 ppmv	30/01/18	0800	MADE GROUND: Black					` '	+22.88	******	٠.۵. (
0.25	-	PID=0.0 ppmv			MADE GROUND: Light	grey strong CONC	CRETE.	1	-	0.08 (0.08) - 0.20 (0.12)	+22.76		
0.25 0.25 - 0.50	ES 1 B 3	-			gravelly medium to coars	se SAND with low	to .		_	_			
0.30 0.50	D 2	PID=0.0 ppmv			medium cobble content. subrounded medium to d				-	(0.80)			1/
0.50 0.50 - 0.90	ES 4 B 6	РІБ-0.0 рріпі			with rare metal. Cobble a				-	-			- K /
- 0.70	D 5		30/01/18	1600	and whole brick. MADE GROUND: Brown	n slightly sandy gr	avelly	-	_		+21.96		
1.00 1.00	ES 7	PID=0.0 ppmv		Dry	CLAY. Sand is medium t	to coarse. Gravel is	is	,	-	1.20 (0.20)	+21.76		
1.00 - 1.20 1.20 - 1.65	B 8 SPTS	0 (for 0mm for 0mm/ for	31/01/18	0800	angular to subrounded n macadam, concrete and		of brick,	1					- ľ /
1.20 - 1.65 1.20 - 1.70	D 10 B 11	0mm) SW=450			MADE GROUND: Soft to	o firm brown slight			-				
1.20 - 2.00	L	000/	_		gravelly sandy CLAY wit Sand is fine to coarse. G				-	1			
- 2.00 - 2.45	SPTS	63% rec, diameter 102mr PID=0.0 ppmv	n	Dry	subrounded medium to	coarse of brick, co	oncrete		_				1/
2.00 - 2.45 2.00 - 2.80	D 13 B 14	N=2 (2,0/1,1,0,0)		,	and macadam. Cobble i	is subangular of re	ed brick.		-	(1.80)			
2.00 - 3.00	L	-							-	-	₿		
		60% rec, diameter 87mm							-				-1/
2.80		PID=0.0 ppmv							-	1			- K /
	SPTS								-	3.00	.40.00		
- 3.00 - 3.45 3.00 - 3.45	D 16	N=8 (2,2/2,2,2,2)		Dry	MADE GROUND: Concr	rete COBBLE.		1	_	(0.20)	+19.96		
3.00 - 3.70 3.00 - 4.00	B 17 L	100% rec, diameter 75mr	n		MADE GROUND: Firm b			1	-	3.20	+19.76		1/
		,,	.		CLAY. Gravel is subangu coarse of flint, rare brick		d fine to		_				- K 2
3.70	_	PID=0.0 ppmv			,	4			-	(1.10)			
									-	(1.10)			
- 4.00 - 4.45 4.00 - 4.45	SPTS D 19	N=9 (2,2/2,2,2,3)		Dry					_	-			- Y /
4.00 - 4.60	B 20	000/							-	4.30	+18.66		
4.00 - 5.00	L	60% rec, diameter 65mm			Firm grey mottled brown Gravel is subangular to				-	4.50	10.00		
4.60	-	PID=0.0 ppmv			medium of flint.	subrourided line to	O		-	(0.70)			- ľ /
					(LONDON CLAY)				-	1 ` ′			
- 5.00 - 5.45	SPTS	N=11 (3,3/2,2,3,4)		Dry	Firm brown mottled grey	, slightly gravelly C	71 AV	-	_	5.00	+17.96		
5.00 - 5.45 5.00 - 6.00	D 22 D 23	-			Gravel is subangular to				-	1			1/
5.00 - 6.00	L	65% rec, diameter 55mm			coarse flint. (LONDON CLAY)				-	1			- K /
					(LONDON OLAT)				-				
									-	(1.45)			-1/
- 6.00 - 6.45	SPTS	N=13 (3,2/2,3,3,5)		Dry					_	_			- Y /
6.00 - 6.45	D 24	11 10 (0,2/2,0,0,0)							-	1			
			31/01/18	1600 Dry					-	_			
					END OF EXPLO	ORATORY HOLE	E			6.45	+16.51		
									-				
									-	1			
=									_	1			
									-				
									_				
									-				
									-	1			
-									_	1			
										1			
									-	-			
									-	-			
									-	7			
									_	1			
										1			
									-	1			
									-	1			
									-	1			
Froundwater Entries					Depth Related Remarks					Chiselling D	Details	_	_
No. Depth Strike			Depth Seal	ed	Depths (m) Remarks					Depths (m)		ration (mins) Tools us
					0.00 - 6.45 SPT Hamme	er ID: COM116 ER: 7	74%						
otes: For explanation	of symbols an	d abbreviations Proje	ct	GRF	AT ORMOND STREET HOSP	PITAL P22 IMRI PRO	JECT			Borehole			
e Key to Exploratory duced levels in metre	Hole Records	. All depths and									1.6	1004	
ckets in depth colum	nn.	EC UK Limited AGS	ct No.	E80	13-18						۷۱	/ S04	
Scale 1:50		3/03/2018 11:58:57	ed out for	Kier	Construction						Sh	neet 1 of 1	

ed LW	Start	Equipment, Methods and Rem	en na		Depth from to (m) (m)	Diameter (mm)	(m)	Ground Level		22.90 mO
ged JC	30/01/2018	Archway Competitor Concrete coring to 0.20m. Service		oit hand di	ug to 1.20m. Dynamic 0.00 2.00 3.00	87 75	•	Coordinates (m)		E 530458.2
cked MH	End	(windowless) sampling to 6.45m			3.00 4.00 4.00 5.00	65 55		National Grid		N 182081.7
roved MW	31/01/2018				5.00 6.00	45]		
mples and	l Tests				Strata Description					
Depth	TCR SCR RQD	If Records/Samples	Date Casing	Time Water	Main		Detail	Depth, Level (Thickness)	Legend	Backfi
			30/01/18	0800	MADE GROUND: Black MACADAM		-	(0.08)		· A.
0.25	E0.4	PID=0.0 ppmv			MADE GROUND: Light grey strong CONCRETE MADE GROUND: Dark brown slightly sandy	-	-	0.08 (0.03) +22.82 0.21 (0.13) +22.69 (0.24)		1
0.25 0.25 - 0.45	ES 1 B 3	-			gravelly CLAY. Sand is medium to coarse. Grave	el	_	0.45 +22.45		V.
0.30 0.50	D 2	PID=0.0 ppmv			is angular to subrounded fine to coarse of brick, concrete, metal, flint and quartzite.	/	-	1		-
0.50 0.50	ES 4 D 5	-			MADE GROUND: Yellowish brown slightly gravelly medium to coarse SAND with low cobble	_	-	(0.75)		1/
0.50 - 0.90 1.00	B 6	PID=0.0 ppmv	30/01/18	1600	gravelly medium to coarse SAND with low cobbic content of subangular whole brick.	=	_	1		1//
1.00 1.00 - 1.20	ES 7 B 8	г в ото ррин	31/01/18	Dry 0800	MADE GROUND: Soft to firm dark brown slightly	,	-	1.20 +21.70		
1.20 - 1.65	SPTS	N=4 (1,0/1,1,1,1)	0010	0000	sandy slightly gravelly CLAY. Sand is medium to coarse. Gravel is angular to subangular fine to		_			
1.20 - 1.65 1.20 - 1.80	D 9 B 10	750/			coarse of brick, macadam, flint and tile.		-	1		$\mathbb{Y}_{\mathbb{Z}}$
1.20 - 2.00 1.80	L -	75% rec, diameter 87mm PID=0.0 ppmv					=	(1.40)		-V
2.00 - 2.45 2.00 - 2.45	SPTS D 12	N=5 (1,1/1,1,1,2)		Dry			_	(,0)		
2.00 - 2.60	B 13						-	1		1/
2.00 - 3.00	L	50% rec, diameter 75mm					-	1		Y_{\prime}
2.70		PID=0.0 ppmv			MADE GROUND: Orangish brown slightly grave	lly	-	2.60 +20.30		V.
2.70		FID=0.0 ppmv			slightly clayey medium to coarse SAND. Gravel i		-	(0.50)		-
3.00 - 3.45	SPTS	N=5 (1,1/1,1,1,2)		Dry	subangular to subrounded medium to coarse of brick, macadam and flint.		_	1		1/
3.00 - 3.45 3.00 - 3.70	D 15 B 16	000/ -: "			Firm grey and brown mottled orangish and black slightly gravelly slightly organic CLAY with slight		-	3.10 +19.80		V,
3.00 - 4.00	L	80% rec, diameter 65mm			organic (humic) odour and traces of rootlets.		-	1		
2.70		DID=0.0			Gravel is subangular to subrounded medium to coarse of flint.		-	-		- Z
3.70		PID=0.0 ppmv			(POSSIBLE MADE GROUND)		-	(4.00)		1//
4.00 - 4.45	SPTS	N=8 (1,1/2,2,2,2)		Dry			_	(1.60)		V,
4.00 - 4.45 4.00 - 5.00	D 18 L	75% rec, diameter 55mm					-	1		
4.20 - 4.70	B 19						-	1		
							-	1		1//
4.70	D 20	-			Medium dense yellow brownish slightly gravelly		-	4.70 +18.20		V.
5.00 - 5.45	SPTS	N=21 (8,8/8,7,3,3)		Dry	medium to coarse SAND. Gravel is subangular to subrounded medium to coarse of flint.	0	_	1	1	 □ /
5.00 - 5.45 5.00 - 5.60	D 21 D 22				(LYNCH HILL GRAVEL)		-	(0.90)		1/
5.00 - 6.00	L	90% rec, diameter 45mm					-	1		\mathbb{Y}_{2}
5.60 - 6.00	D 23	-			Firm grov slightly grovally CLAV Croval is		-	5.60 +17.30		V.
					Firm grey slightly gravelly CLAY. Gravel is subangular medium to coarse of flint.		-	1	<u> </u>	- /
6.00 - 6.45	SPTS	N=16 (4,5/4,4,4,4)			(LONDON CLAY)		_	(0.85)		1/
6.00 - 6.45	D 24	- '	31/01/18	1600			-	(3.30)		$ Y\rangle$
			31/01/18	1000				6.45		
					END OF EXPLORATORY HOLE			6.45 +16.45	•	7
							-	1		
							_	1		
							-	1		
								1		
							-	1		
							-	1		
							_	1		
								1		
								1		
							_	1		
							-	1		
							-	}		
							_	1		
							-	}		
							_	1		
							-	}		
	<u>L</u>							<u> </u>		
						,				-
ndwater Entries			1		Denth Related Remarks			Chiselling Details		
ndwater Entries Depth Strik			Depth Se	aled	Depth Related Remarks Depths (m) Remarks				s Duration (mins)	Tools u
5.00			•		0.00 - 6.45 SPT Hammer ID: COM116 ER: 74%				,	
For explanation				GRE	AT ORMOND STREET HOSPITAL P22 IMRI PROJECT			Borehole		
	Hole Records.	All depths and								
ed levels in metro	es. Stratum thick	rness given in Project			13-18				WS05	

										S	OCOTEC
Orilled LW	Т	Start	Equ	uipment, Methods and Rema	rks			meter Casing Depth	Ground Level		22.91 mOD
.ogged JC		30/01/2018		hway Competitor ncrete coring to 0.20m. Service	e inspection r	oit hand d	0.00 2.00	102 87	Coordinates (m)		E 530458.71
hecked MH	- 1	End	(wir	ndowless) sampled to 5.45m. I	No groundwa	ter encou	ntered. 3.00 4.00 4.00 5.00	75 65	National Grid		N 182077.39
pproved MW		30/01/2018									
Samples	and				Date	Time	Strata Description	T .		T .	
Depth	ı	TCR SCR RQD	If	Records/Samples	Casing	Water	Main	Detail	Depth, Level (Thickness)	Legend	Backfill
0.00.0	45	D.0			30/01/18	0800	MADE GROUND: MACADAM MADE GROUND: Light grey strong CONCRETE.	=	0.08 (0.08) 0.20 (0.12) +22.83 +22.71		
0.20 - 0. 0.25		B 3		PID=0.0 ppmv			MADE GROUND: Yellowish brown slightly	0.40-0.50 Becoming -	0.20 (0.12) +22.71		\mathbb{Z}
0.25 0.30		ES 1 D 2		515.00			gravelly medium to coarse SAND with low to medium cobble content of whole red brick. Gravel	slightly silty.	0.50 +22.41		
0.50 0.50		ES 4		PID=0.0 ppmv			is subangular to subrounded fine to coarse of tile and brick.	=			///
0.50 0.60		B 6 D 5		-			MADE GROUND: Brown gravelly sandy SILT.	<u> </u>	(0.70)		
1.00 1.00		ES 7		PID=5.5 ppmv		Dry	Sand is medium to coarse. Gravel is angular to subrounded fine to coarse of brick, macadam and	_	1.20 +21.71		
1.00 - 1. 1.20 - 1.		B 8 SPTS		N=1 (1,0/0,0,0,1)		Diy	concrete, low to medium cobble content of brick and macadam hydrocarbon odour present.	_	1.20 .21.71		-V/
1.20 - 1. 1.20 - 1.		D 9 B 10		-			MADE GROUND: Soft to firm becoming firm	_			//
1.20 - 2. 1.80		L		100% rec, diameter 102mm PID=0.0 ppmv			brown slightly sandy gravelly CLAY. Sand is medium to coarse. Gravel is subangular to	1.70-1.75 Small — band of macadam. —			-
1.80 - 2.00 - 2		ES 11 SPTS		N=6 (1,1/2,2,1,1)		Dry	subrounded fine to coarse of brick, tile, quartzite and flint.	_			1/.
2.00 - 2. 2.00 - 2.	.45	D 12 B 13				,	and lillit.	=	(1.80)		\mathbb{Z}
2.00 - 3		L		90% rec, diameter 87mm				=			//
								_			-1//
								=			-[/]
- 3.00 - 3.		SPTS		N=7 (2,1/1,1,3,2)		Dry	MADE COOLIND, Firm brown clightly grouply		3.00 +19.91		+//
3.00 3.00		ES 14		PID=0.0 ppmv			MADE GROUND: Firm brown slightly gravelly CLAY. Gravel is angular to subrounded medium to	=			
3.00 - 3. 3.00 - 3.		D 20 B 15		-			coarse of brick and concrete.	=	(0.75)		
3.00 - 4.	.00	L		100% rec, diameter 75mm							-[$/$]
3.70 3.70		ES 16		PID=0.0 ppmv			Firm dark grey slightly gravelly slightly organic	=	3.75 +19.16	********	Y/
- 4.00 - 4.		SPTS		N=8 (1,1/2,2,2,2)		Dry	with plant remnants CLAY with slight organic (humic) odour. Gravel is subrounded medium of	_	(0.45)		V/
4.00 - 4. 4.00 - 5.	.00	D 17 B 18					quartz.	=	4.20 +18.71		
4.00 - 5	.00	L		80% rec, diameter 65mm			\(\(\text{(DISTURBED LONDON CLAY)}\) Firm to stiff dark grey slightly gravelly CLAY.	=			
							Gravel is subrounded medium to coarse of flint and quartzite.	=	(4.05)		
							(DISTURBED LONDON CLAY)	_	(1.05)		\mathbb{Z}
- 5.00 - 5. 5.00 - 5.		SPTS D 19		50 (8,17/25,25 for 70mm)		Dry		_			//
0.00	.00	2 .0			30/01/18	1600	Light brown and blackish subangular to	 	5.25 +17.66		1//
-						Dry	subrounded medium to coarse GRAVEL of flint.		(0.20) 5.45 +17.46		
							\(\(\text{(DISTURBED LONDON CLAY)}\) END OF EXPLORATORY HOLE	=			
								=			
_											
								=			
								_			
								=			
_								_			
								_			
								_			
								_			
								=			
_								_			
								=			
								=			
								_			
								_ _			
-											
								=			
] =			
								_			
								=			
				1						I	
roundwater	Entries h Strike	Remarks			Depth Se	aled	Depth Related Remarks Depths (m) Remarks		Chiselling Detail Depths (m)	s Duration (mins)	Tools use
то. Бора					200		0.00 - 5.45 SPT Hammer ID: COM116 ER: 74%		2001	zaracion (mino)	, 100.0 4000
otes: For expl	anation o	of symbols an	nd abh	reviations Project		GRE	AT ORMOND STREET HOSPITAL P22 IMRI PROJECT		Borehole		
ee Key to Expl duced levels i	loratory F in metres	Hole Records s. Stratum this	. All de	epths and s given in						WS06	
ackets in dep	© Copy	n. right SOCOT	EC U	K Limited AGS			3-18				
Scale 1:50	-			Carried	out ior	Kier	Construction			Sheet 1 of 1	

A	Operator	LW	Probe Type	DPSH-B	Co	ne Diameter	(mm)		Cone	tip abandoned	I Gro	ound Level		23.03 mOD
Section 19 To 19 T	Logged by	JC	Rod Diameter (mm)	35	Hai	nmer Mass	(kg)	64.0	at (m)		Co	ordinates (m)	E	530452.91
The property of the part of th	Checked by	MH	Rod Mass (kg/m)		Fal	l Height (mn	n)	750	Date o	of Test	31/01/2018 Na	tional Grid	1	N 182078.07
The Process of a discovering of process and addiscovering or any angular companing (\$7.75%) in the Process of t	Approved	MW	Rig Reference		Hai	nmer Energ	y Ratio (%)							
The Process of a discovering of process and addiscovering or any angular companing (\$7.75%) in the Process of t	Level	Depth (m)	Blows per 100mm		5	10	15 2	0	25	Torque	Descr	iption	Legend	Backfill/
PORTOR STREET HOSPITAL F22 MRI PROJECT ORGAN CORROLDS STREET HOSPITAL F23 MRI PROJECT ORGAN CORROLDS STREET HOSPITAL F23 MRI	+13.23		4							(14111)	END OF PRO	BING HOLE		mstruments
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	_ +13.13									E				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									-				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									F				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	_									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									F				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									F				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									F				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	_									F				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_ _				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-			ļ						Ė				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									Ė				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									Ė				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									-				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									L				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	_									_ _				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	_									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-													
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-													
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	_													
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									-				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									F				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									<u> </u>				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									-				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									_				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									 				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									Ė				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									Ė				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for Micropostruction	-									Ė				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	-									F				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	-									<u> </u>				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	_									L				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	_									Ė				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	_									L				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	_									E				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	_									E				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	_									L				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	_									E				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	-									F				
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03	_									F			-	1
Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 WSDP03 Carried out for the Archway Competitor Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. WSDP03				<u>L</u>						<u> </u>			<u></u>	
es: For explanation of symbols and abbreviations Key to Exploratory Hole Records. All depths and uced levels in metres. © Copyright SOCOTEC UK Limited Project No. E8013-18 Carried out within inspection pit at WS03 prior to dynamic sampling. Dynamic super heavy probing (DPSH) to 10.00m. Borehole WSDP03 Carried out for Microparticition	Remarks							Equipm	ent, Method	s and Comme	nts			
rikey to Exploratory Hole Records. All depths and ucced levels in metres. © Copyright SOCOTEC UK Limited Project No. E8013-18 Carried out for Wign Construction	SPT Hamn	ner ID: COM116 E	R= 74%					Carried	out within ins	pection pit at W	/S03 prior to dynamic sam	pling. Dynamic super he	avy probing (DPSH) to
rikey to Exploratory Hole Records. All depths and ucced levels in metres. © Copyright SOCOTEC UK Limited Project No. E8013-18 Carried out for Wign Construction	Votes: For a	volanation of our	ols and abbreviations	niect		REAT OD!	OND STREE	T HUGBIT	Al Doo IMD	PRO IECT		Borehole		
© Copyright SOCOTEC UK Limited AGS Project No. E8013-18	ee Key to E	xploratory Hole Re	ecords. All depths and	yeu.	(MEAI UKM	ONDSIKEE	. nuspii	SE FZZ IWKI	r NOJEU I				
cale 1:50	eaucea leve	© Copyright SC	OCOTEC UK Limited Pro	ject No.	E	8013-18						l WS	DP03	
	Scale 1:	50	23/03/2018 11:58:34 AGS	rried out for	ŀ	lier Constru	ction					She	et 2 of 2	

Level	Depth (m)			Hammer Energ	n) y Ratio (%)	750	Date	of Test	31/01/2018 National Grid		N 182082.58
		Blows per 100mm		5 10	15 20	25		Torque (Nm)	Description	Legend	Backfill/ Instrumen
+21.76 +21.66 +21.66 +21.46 +21.36 +21.26 +21.16 +21.20 +20.26 +20.46 +20.46 +20.26 +20.46 +20.36 +20.26 +20.40 +20.36 +20.40 +20.36 +20.40 +20.36 +20.40 +2	1.50 2.00 2.50 3.00		0 1						MADE GROUND: Black MACADAM MADE GROUND: Light grey strong CONCRETE. MADE GROUND: Yellowish brown slightly gravelly medium to coarse SAND with low to medium cobble content. Gravel is angular to subrounded medium to coarse of tile and brick with rare metal. Cobble are subangular of half and whole brick. MADE GROUND: Brown slightly sandy gravelly CLAY. Sand is medium to coarse. Gravel is angular to subrounded medium to coarse of brick, macadam, concrete and tile. MADE GROUND: Soft to firm brown slightly gravelly sandy CLAY with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded medium to coarse of brick, concrete and macadam. Cobble is subangular of red brick. MADE GROUND: Concrete COBBLE. END OF PROBING HOLE		
Remarks						Equipment	t, Method	s and Comme	nts		
	er ID: COM116 E 3.1 Possible brid						within ins	pection pit of W n concrete cobb	VS04 prior to dynamic samling. Dynamic super he ole.	avy probing ([DPSH) to
e Key to Exp	ploratory Hole Re	ols and abbreviations ecords. All depths and	Project	GREAT ORM	OND STREET	T HOSPITAL	P22 IMRI	PROJECT	Borehole		
uced levels	s in metres.	DCOTEC UK Limited AGS	Project No.	E8013-18					WS	DP04	Ļ

APPENDIX C INSTRUMENTATION AND MONITORING

Installation Details	C1
Groundwater Monitoring	C2
Gas Monitoring	C3

Installation Details

	1	1	1	ı		ı	r	
Instrument Reference	Instrument Type (See Notes)	Installation Date, dd/mm/yyyy	Pipe Diameter, mm	Instrument Base, mbgl	Response Zone Range, mbgl	Pipe Top Details	Headworks	Remarks
BH02 (1)	SP	07/02/2018	50	4.00	1.00 to 4.00	Gas tap	Flush cover	
BH02 (2)	SPIE	07/02/2018	19	10.00	5.00 to 10.00	Gas tap	Flush cover	

Groundwater Monitoring

Instrument Reference	Instrument Type	Instrument Base, mbgl	Date Time dd/mm/yyyy hh:mm:ss	Groundwater depth, mbgl	Comments
BH02 (1)	SP	4.00	05/03/2018 13:24:00	3.61	
BH02 (1)	SP	4.00	19/03/2018 12:13:00	3.42	
BH02 (1)	SP	4.00	28/03/2018 11:18:00	3.48	
BH02 (2)	SPIE	10.00	05/03/2018 13:29:00	4.27	
BH02 (2)	SPIE	10.00	19/03/2018 12:18:00	3.26	
BH02 (2)	SPIE	10.00	28/03/2018 11:33:00	4.19	

E8013-18

Kier Construction

Gas Monitoring

	T		ı	ı	1	ı	Gas C	oncenti	ations	1		1	•
Instrument Reference	Instrument Base, mbgl	Date Time dd/mm/yyyy hh:mm:ss	Air Temperature, oC	Barometric Pressure, mbar	Gas Differential Pressure, Pa	Gas Flow Rate, I/hr	Carbon Dioxide, %vol	Carbon Monoxide, ppm	Hydrogen Sulphide, ppm	Metnane Lower Explosive Limit, %I FL	Methane, %vol	Nitrogen, %vol	Oxygen, %vol
BH02 (1)	4.00	05/03/2018 13:21:00	10.0	988	0.0	0.0	0.2	ND	ND	ND	ND	78.1	20.9
BH02 (1)	4.00	05/03/2018 13:21:30			0.0	0.0	ND	ND	ND	ND	ND	78.4	21.5
BH02 (1)	4.00	05/03/2018 13:22:00			0.0	0.0	ND	ND	ND	ND	ND	78.4	21.5
BH02 (1)	4.00	05/03/2018 13:22:30			0.0	0.0	ND	ND	ND	ND	ND	78.4	21.5
BH02 (1)	4.00	05/03/2018 13:23:00			0.0	0.0	ND	ND	ND	ND	ND	78.4	21.5
BH02 (1)	4.00	05/03/2018 13:23:30			0.0	0.0	ND	ND	ND	ND	ND	78.4	21.5
BH02 (1)	4.00	05/03/2018 13:24:00			0.0	0.0	ND	ND	ND	ND	ND	78.4	21.5
BH02 (1)	4.00	19/03/2018 12:10:00	1.0	1003	0.0	0.1	ND	ND	ND	ND	ND	79.0	20.9
BH02 (1)	4.00	19/03/2018 12:10:30			0.0	0.1	ND	ND	ND	ND	ND	78.1	21.8
BH02 (1)	4.00	19/03/2018 12:11:00			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	19/03/2018 12:11:30			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	19/03/2018 12:12:00			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	19/03/2018 12:12:30			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	19/03/2018 12:13:00			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	28/03/2018 11:15:00	3.0	1003	0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	28/03/2018 11:15:30			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	28/03/2018 11:16:00			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	28/03/2018 11:16:30			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	28/03/2018 11:17:00			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	28/03/2018 11:17:30			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (1)	4.00	28/03/2018 11:18:00			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7

Notes: ND - not detected	Project	GREAT ORMOND STREET HOSPITAL P22 IMRI PROJECT	Figure
	Project No. Carried out for	E8013-18 Kier Construction	C3

Gas Monitoring

							Gas C	oncenti	ations				
Instrument Reference	Instrument Base, mbgl	Date Time dd/mm/yyyy hh:mm:ss	Air Temperature, oC	Barometric Pressure, mbar	Gas Differential Pressure, Pa	Gas Flow Rate, //hr	Carbon Dioxide, %vol	Carbon Monoxide, ppm	Hydrogen Sulphide, ppm	ivietnane Lower Explosive Limit, %I FI	Methane, %vol	Nitrogen, %vol	Oxygen, %vol
BH02 (2)	10.00	05/03/2018 13:26:00	10.0	988	0.0	0.1	0.1	ND	ND	ND	ND	78.1	20.9
BH02 (2)	10.00	05/03/2018 13:26:30			0.0	0.0	ND	ND	ND	ND	ND	78.4	21.4
BH02 (2)	10.00	05/03/2018 13:27:00			0.0	0.0	ND	ND	ND	ND	ND	78.5	21.4
BH02 (2)	10.00	05/03/2018 13:27:30			0.0	0.0	ND	ND	ND	ND	ND	78.5	21.4
BH02 (2)	10.00	05/03/2018 13:28:00			0.0	0.0	ND	ND	ND	ND	ND	78.5	21.4
BH02 (2)	10.00	05/03/2018 13:28:30			0.0	0.0	ND	ND	ND	ND	ND	78.5	21.4
BH02 (2)	10.00	05/03/2018 13:29:00			0.0	0.0	ND	ND	ND	ND	ND	78.5	21.4
BH02 (2)	10.00	19/03/2018 12:15:00	1.0	1002	0.0	0.1	ND	ND	ND	ND	ND	78.1	21.8
BH02 (2)	10.00	19/03/2018 12:15:30			0.0	0.0	ND	ND	ND	ND	ND	78.1	21.8
BH02 (2)	10.00	19/03/2018 12:16:00			0.0	0.0	ND	ND	ND	ND	ND	78.3	21.6
BH02 (2)	10.00	19/03/2018 12:16:30			0.0	0.0	ND	ND	ND	ND	ND	78.3	21.6
BH02 (2)	10.00	19/03/2018 12:17:00			0.0	0.0	ND	ND	ND	ND	ND	78.3	21.6
BH02 (2)	10.00	19/03/2018 12:17:30			0.0	0.0	ND	ND	ND	ND	ND	78.3	21.6
BH02 (2)	10.00	19/03/2018 12:18:00			0.0	0.0	ND	ND	ND	ND	ND	78.3	21.6
BH02 (2)	10.00	28/03/2018 11:30:00	3.0	1002	0.0	0.0	ND	ND	ND	ND	ND	77.9	22.0
BH02 (2)	10.00	28/03/2018 11:30:30			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (2)	10.00	28/03/2018 11:31:00			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (2)	10.00	28/03/2018 11:31:30			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (2)	10.00	28/03/2018 11:32:00			0.0	0.0	ND	ND	ND	ND	ND	78.2	21.7
BH02 (2)	10.00	28/03/2018 11:32:30			0.0	0.0	ND	ND	ND	ND	ND	78.3	21.6
BH02 (2)	10.00	28/03/2018 11:33:00			0.0	0.0	ND	ND	ND	ND	ND	78.3	21.6

Notes: ND - not detected	Project	GREAT ORMOND STREET HOSPITAL P22 IMRI PROJECT	Figure
	Project No. Carried out for	E8013-18 Kier Construction	С3

APPENDIX D GEOTECHNICAL LABORATORY TEST RESULTS

Index Properties – Summary of Results

Unconsolidated Undrained Triaxial Compression Tests –
Summary of Results

UUSUM

One Dimensional Consolidation Test

OED

Chemical Tests - BRE

EFS/183327
EFS/183378

INDEX PROPERTIES - SUMMARY OF RESULTS

Hole No.		Sample Depth (m)			Soil Description	р	p_{d}	W	< 425 μm	W_L	W _P	ŀ	ps	Remarks
11010 140.	No.	from	to	type		Ma	/m3	%	sieve %	%	%		Mg/m3	remano
BH01	23	8.00		D	Brown slightly sandy CLAY			27		7.5	7.5		- g-mc	
BH01	28	11.00		D	Brown slightly sandy CLAY			25						
BH01	34	15.00		D	Brown slightly sandy CLAY			21						
BH01	38	17.45		D	Brown slightly sandy CLAY			24	82	53 a	22	31		
BH01	45	21.30		D	Brown mottled grey slightly sandy CLAY			21	100	65 a	27	38		
BH01	51	25.35		D	Brown slightly sandy CLAY			22	100	72 a	31	41		
BH01	58	29.45		D	Grey slightly sandy CLAY.			27	100	76 a	28	48		
BH02	13	4.00		D	Dark brown slightly sandy slightly gravelly CLAY			18						
BH02	19	6.50	6.80	UT	Stiff laminated brown mottled grey slightly sandy slightly gravelly CLAY. Gravel is mudstone.				100	89 a	35	54		
BH02	20	6.80		D	Light grey slightly clayey GRAVEL			9.5						
BH02	27	9.95		D	Brown slightly sandy CLAY			29	100	77 a	30	47		
BH02	33	13.45		D	Brown slightly sandy CLAY			25	100	74 a	31	43		
WS02	13	3.00		D	Light brown mottled dark brown slightly sandy slightly gravelly CLAY			17						
WS04	22	5.00		D	Brown mottled grey slightly sandy slightly gravelly CLAY			32	93	73 a	26	47		
WS05	18	4.00		D	Brown slightly sandy slightly gravelly CLAY			25	72	47 a	24	23		
WS06	12	2.00		D	Brown slightly sandy slightly gravelly CLAY			14	47	33 a	17	16		
General notes:	All above	tasts carrie	ad out to F	3\$1377	· 1990 unless annotated otherwise. See Remarks	o for furth	per detai	ile						

General notes: All above tests carried out to BS1377 : 1990 unless annotated otherwise. See Remarks for further details

Key: p bulk density, linear

WL Liquid limit

WP Plastic limit

<425um preparation

ps particle density

pd dry density

a 4 point cone test

NP non - plastic

n from natural soil

-g = gas jar

w moisture content

b 1 point cone test

IP Plasticity Index

s sieved specimen

-p = small pyknometer

* test carried out to BS EN ISO 17892-1 2014

QA Ref SLR 1 Rev 2.91 Mar 17

Project No E8013-18

Project Name

GREAT ORMOND STREET HOSPITAL P22 IMRI PROJECT

Figure

INDX

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2017 SOCOTEC UK Limited

Printed: 09/03/2018 11:10

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TESTS WITHOUT MEASUREMENT OF PORE PRESSURE - SUMMARY OF RESULTS

		Sample				Density w		w Test	Dia.	ó3	At failure / end of stage		tage	iviembrane												
Hole No.	No.	Dept	h (m)	type	Soil Description	bulk	dry	type					ó1 - óî	си	M O	Thickness	Remarks									
	110.	from	to	type		Mg	Mg/m3 %		Mg/m3 %		Mg/m3 %		Mg/m3 %		Mg/m3 %		Mg/m3 %		mm	kPa	%	kPa	kPa	D E	mm	
BH01	20	6.50	6.90	UT	Very stiff laminated greyish brown slightly sandy CLAY.	1.9	1.43	33	UU	102.2	140	5.5	194	97	В	0.2										
BH01	25	9.50	9.90	UT	Very stiff laminated greyish brown slightly sandy CLAY.	1.96	1.52	29	UU	103.1	200	5.5	274	137	В	0.2										
BH01	31	13.00	13.40	UT	Stiff laminated greyish brown slightly sandy CLAY.	2.04	1.65	24	UU	102.9	270	3.5	202	101	В	0.2										
BH01	37	17.00	17.45	UT	Stiff very laminated greyish brown slightly sandy slightly silty CLAY.	2	1.58	27	UU	103.4	350	6.5	298	149	В	0.2										
BH01	44	21.00	21.30	UT	Very stiff laminated multicoloured slightly sandy CLAY.	2.14	1.76	22	UU	103.3	430	13.4	295	147	В	0.2										
BH01	50	25.00	25.35	UT	Very stiff brown mottled grey slightly sandy CLAY.	2.07	1.67	24	UU	103.5	510	19.9	483	241	В	0.2										
BH01	57	29.00	29.45	UT	Very stiff laminated brownish grey slightly sandy slightly gravelly CLAY.	2.09	1.71	23	UU	103.5	590	5	824	412	В	0.2										
BH02	19	6.50	6.80	UT	Stiff laminated brown mottled grey slightly sandy slightly gravelly CLAY gravel is mudstone.	1.88	1.43	32	UU	103.7	140	11.1	99	50	В	0.2										
BH02	26	9.50	9.95	UT	Very stiff laminated greyish brown slightly sandy CLAY.	1.99	1.55	29	UU	103.2	200	4.5	275	138	В	0.2										
BH02	32	13.00	13.45	UT	Very stiff laminated greyish brown slightly sandy CLAY.	2	1.56	28	UU	103.5	270	3.5	270	135	В	0.2										

General notes: Tests carried out in accordance with BS1377: Part 7: 1990, clause 8 for single stage, clause 9 for multistage tests. Specimens nominally 2:1 height diameter ratio and tested

at a rate of strain of 2%/minute, unless annotated otherwise. Latex rubber membrane used and membrane correction applied in accordance with BS1377-7 8.5.1.4 unless stated.

 Legend
 UU - single stage test (may be in sets of specimens)
 63
 cell pressure
 Mode of failure
 P
 plastic

 UUM - multistage test on a single specimen
 61 - 63
 deviator stress
 B
 brittle

 suffix R - remoulded or recompacted
 CU
 undrained shear strength
 C
 compound

QA Ref SLR 2 Rev 2.7 Apr 15

Project No E8013-18

Project Name GREAT ORMOND STREET HOSPITAL

P22 IMRI PROJECT

Figure

UUSUM

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. © Copyright 2015 SOCOTEC UK Limited

Printed: 09/03/2018 11:12

ONE DIMENSIONAL CONSOLIDATION TEST

BH01 Hole No SAMPLE ID: Sample Depth (m BGL) 17.00 - 17.45 Sample Details: UT37 Sample Type and No E8013-1820180209110045 Specimen Ref

Soil description

Preparation

Index properties

(if available)

Specimen details Particle density Diameter Height Voids ratio Moisture content Bulk density Dry density

Saturation Average temperature for test
Swelling pressure

Notes:

Stiff very laminated greyish brown slightly sandy slightly silty CLAY.							
Undisturbed							
Liquid limit %		Plastic limit %					

Initial	Final	
2.65	assumed	Mg/m3
75	.08	mm
18.86	17.06	mm
0.703	0.541	
25	21	%
1.94	2.09	Mg/m3
1.56	1.72	Mg/m3
94	105	%
2	0	оС

not measured

Specimen taken	30	mm from base of sample

	-
QA Ref	
SLR 5.3	
Rev 2.16	

Nov 16

SOCOTEC

Project No	E8013-18
i iojectivo	L0013-10

Project Name

GREAT ORMOND STREET HOSPITAL P22 IMRI PROJECT

Figure

CV

(t50, log)

m2/year

23

0.72

0.51

0.31

CV

(t90, root)

m2/year

0.81

0.54 0.33

OED

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. \circledcirc Copyright 2016 SOCOTEC UK Limited

Applied

Pressure

kPa

0

200

400

800

1600

800

400

Voids

ratio

0.7035

0.6632

0.6215

0.5660

0.5032

0.5194

0.5414

m2/MN

0.118

0.125

0.086

0.050

0.014

0.036

Printed: 09/03/2018 11:11

ONE DIMENSIONAL CONSOLIDATION TEST

Soil description

Very stiff laminated brownish grey slightly sandy slightly gravelly CLAY.

Plastic limit %

Preparation

Index properties

(if available)

Specimen details Particle density Diameter Height Voids ratio Moisture content Bulk density Dry density Saturation Average temperature for

Swelling pressure

	Initial	Final	J
	2.65	assumed	Mg/m3
	75	.05	mm
	19.00	17.37	mm
	0.544	0.412]
	21	16	%
	2.07	2.18	Mg/m3
	1.72	1.88	Mg/m3
	100	105	%
or test	2	0	οС

not measured

Specimen taken	20	mm from base of sample

Undisturbed

Liquid limit %

Applied Pressure	Voids	mv	cv (t50, log)	cv (t90, root)	
kPa	ratio	m2/MN	m2/year	m2/year	
0	0.5442				
400	0.5085	0.058	2.9	3.7	
800	0.4755	0.055	0.4	0.43	
1600	0.4303	0.038	0.24	0.26	
3200	0.3786	0.023	0.21	0.22	
1600	0.3915	0.006	-	-	
800	0.4121	0.018	-	-	

QA Ref **SLR 5.3** Rev 2.16 Nov 16

Notes:

in bacc of campic
SOCOTEC

Project No	E8013-18
Project No	E8013-18

GREAT ORMOND STREET HOSPITAL Project Name P22 IMRI PROJECT

Applied

OED

Figure

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. \circledcirc Copyright 2016 SOCOTEC UK Limited

Printed: 09/03/2018 11:11

ONE DIMENSIONAL CONSOLIDATION TEST

 SAMPLE ID:
 Hole No
 BH02

 Sample Depth (m BGL)
 9.50 - 9.95

 Sample Type and No
 UT26

 Specimen Ref
 UT26

Soil description

Preparation

Index properties

(if available)

Specimen details
Particle density
Diameter
Height
Voids ratio
Moisture content
Bulk density
Dry density
Saturation
Average temperature for test

Swelling pressure

/erv stiff laminate	d arevish bro	own slightly sandy (CLAY.
,	- 3 ,		
Jndisturbed			
Liquid limit %		Plastic limit %	

Initial	Final				
2.65	assumed	Mg/m3			
75	.04	mm			
18.79	17.76	mm			
0.645	0.556				
24	22	%			
2.00	2.08	Mg/m3			
1.61	1.70	Mg/m3			
100	105	%			
2	20	оС			
		•			

74

Notes :			

Applied Pressure	Voids	mv	cv (t50, log)	cv (t90, root)	
kPa	ratio	m2/MN	m2/year	m2/year	
74	0.6453				
100	0.6393	0.141	0.75	0.8	
200	0.6108	0.174	0.84	0.88	
400	0.5660	0.139	0.58	0.63	
800	0.5146	0.082	0.55	0.57	
400	0.5315	0.028	-	-	
200	0.5558	0.079	-	-	

Specimen taken 20 mm from base of sample

QA Ref SLR 5.3 Rev 2.16 Nov 16

Project No	E8013-18

Project Name GREAT ORMOND STREET HOSPITAL P22 IMRI PROJECT

Figure

OED

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. \circledcirc Copyright 2016 SOCOTEC UK Limited

Printed: 09/03/2018 11:11

TEST REPORT

Report No. EFS/183327 (Ver. 1)

SOCOTEC UK Limited Deeside Unit 18 Drome Road Deeside Industrial Park Deeside Flintshire CH5 2NY

Site: E8013 - G.O.S.H

The 7 samples described in this report were registered for analysis by SOCOTEC UK Limited on 20-Feb-2018. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 27-Feb-2018

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes

Operations Director Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 27-Feb-2018

																	nalysis		27-Feb-2018	EFS/183327	1
																	Sample Analysis		Date Printed	Report Number	Table Number
																	SOCOTEC UK Limited Deeside				
pH Units WSLM50		No	pH (BS1377)	8.8	8.3	7.8	8.0	8.2	8.8	11.6							TEC UK L	nill		E 2 7 2	
	0.005	No	Total Sulphur.	0.105	0.068	0.125	0.100	0.042	0.141	0.122							Socol	Mark Hamill			
- R		Yes	SO4 (H2O sol) mg/l	451	353	\$ 328 §	383	129 §	217	173							Client Name	ıct			
: mg/kg : ICPACIDS	50	: Yes	SO4 (acid sol)	3150	1510	3 1150 §	1180	532 §	4340	3260							Client	Contact			
Units hod Codes	ting Limits	Accredited	Sample Date	06-Feb-18	06-Feb-18	06-Feb-18	01-Feb-18	31-Jan-18	30-Jan-18	30-Jan-18											
Units:	Method Report	UKAS,	Glient Sample Description	BH02 ES 3 0.50	BH02 ES 10 3.00	BH02 ES 12 4.00	WS03 ES 11 1.80	WS04 ES 21 4.60	WS05 ES 4 0.50	WS06 ES 4 0.50							SOCOTEC (Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400
			LAB ID Number CL/	1894789	1894790	1894791	1894792	1894793	1894794	1894795							<u> </u>		_	_	

Sample Analysis

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S72389

SOCOTEC UK Limited Deeside

Customer Site

E8013 - G.O.S.H

S183327

Report No

Date Logged 20-Feb-2018

In-House Report Due 27-Feb-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

WSLM50	pH (BS1377)								
TSBRE1	Total Sulphur.								
KoneNO3	Nitrate (BRE 2:1): mg/l								
KONECL	Chloride:(2:1)								
ICPWSS	SO4 (H2O sol) mg/l	1							
ICPBRE	Magnesium (BRE)								
ICPACIDS	SO4 (acid sol)	1							
	DO NO3 if pH<5.5								
	DO Mg if SO4(W)>3000								
Dep.Opt	DO CI if pH<5.5								
CustServ	REPORT A								
MethodID	Sampled		06/02/18	06/02/18	06/02/18	01/02/18	31/01/18	30/01/18	30/01/18
	Description		BH02 0.50	BH02 3.00	BH02 4.00	WS03 1.80	WS04 4.60	WS05 0.50	WS06 0.50
	ID Number		CL/1894789	CL/1894790	CL/1894791	CL/1894792	CL/1894793	CL/1894794	CL/1894795

The sample was received without the correct preservation for this analysis The sample was received in an inappropriate container for this analysis Deviating Sample Key ote: We will endeavour to prioritise samples to complete analysis withir olding time; however any delay could result in samples becoming

Headspace present in the sample container

The sampling date was not supplied so holding time may be compromised - applicable to all analysis

sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to

leviant whilst being processed in the laboratory.

provide missing information in order to reinstate accreditation.

Analysis dependant upon trigger result - Note: due date may be affected if triggered Sample processing did not commence within the appropriate handling time Sample processing did not commence within the appropriate holding time No analysis scheduled Requested Analysis Key Analysis Required ОШц

Analysis Subcontracted - Note: due date may vary

Where individual results are flagged see report notes for status.

Page 3 of 5 The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

EFS/183327 Ver. 1

Report Number: EFS/183327

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite

TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/183327 Ver. 1

Sample Descriptions

Client : SOCOTEC UK Limited Deeside

 $\begin{tabular}{lll} \textbf{Site:} & E8013 - G.O.S.H \\ \textbf{Report Number:} & S18_3327 \\ \end{tabular}$

Note: major constituent in upper case

Lab ID Number	Client ID	Note: major constituent in upper case Description
CL/1894789	BH02 ES 3 0.50	SAND
CL/1894789	BH02 ES 3 0.50	SAND
CL/1894790	BH02 ES 10 3.00	CLAY
CL/1894791	BH02 ES 12 4.00	PEAT
CL/1894792	WS03 ES 11 1.80	CLAY OTHER
CL/1894793 CL/1894794	WS04 ES 21 4.60	OTHER
CL/1894794	WS05 ES 4 0.50	SAND
CL/1894795	WS06 ES 4 0.50	SILT

Appendix A Page 1 of 1 27/02/2018EFS/183327 Ver. 1

TEST REPORT

Report No. EFS/183378 (Ver. 1)

SOCOTEC UK Limited Deeside Unit 18 Drome Road Deeside Industrial Park Deeside Flintshire CH5 2NY

Site: E8013 G.O.S.H

The 4 samples described in this report were registered for analysis by SOCOTEC UK Limited on 21-Feb-2018. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 28-Feb-2018

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2)
Analytical and Deviating Sample Overview (Page 3)
Table of Method Descriptions (Page 4)
Table of Report Notes (Page 5)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes

Operations Director Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 28-Feb-2018

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

SOCOTEC UK Limited Deeside Customer

Sample Analysis

E8013 G.O.S.H Site

Date Logged 21-Feb-2018

Consignment No S72696

In-House Report Due 28-Feb-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days. S183378 Report No

WSLM50	pH (BS1377)					
TSBRE1	Total Sulphur.					
ICPWSS	SO4 (H2O sol) mg/l	1				
ICPACIDS	SO4 (acid sol)	A				
CustServ	REPORT A					
MethodID	Sampled		05/02/18	06/02/18	07/02/18	07/02/18
	Description		BH01 6.90	BH01 18.00	BH02 10.50	BH02 14.00
	ID Number		1894947	1894948	1894949	1894950

olding time; however any delay could result in samples becoming eviant whilst being processed in the laboratory.

f sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to rovide missing information in order to reinstate accreditation.

The sample was received without the correct preservation for this analysis The sample was received in an inappropriate container for this analysis Deviating Sample Key

Headspace present in the sample container

The sampling date was not supplied so holding time may be compromised - applicable to all analysis Sample processing did not commence within the appropriate holding time

Sample processing did not commence within the appropriate handling time

Analysis dependant upon trigger result - Note: due date may be affected if triggered No analysis scheduled Requested Analysis Key Analysis Required

Analysis Subcontracted - Note: due date may vary

Where individual results are flagged see report notes for status.

Page 3 of 5 The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

EFS/183378 Ver. 1

Report Number: EFS/183378

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPWSS	Oven Dried	Determination of Water Soluble Sulphate in soil samples by water
		@ < 35°C	extraction followed by ICPOES detection
Soil	TSBRE1	Oven Dried	Determination of Total Carbon and/or Total Sulphur in solid
		@ < 35°C	samples by high temperature combustion/infrared detection
Soil	WSLM50	Oven Dried	Determination of pH of 2.5:1 deionised water to soil extracts using
		@ < 35°C	pH probe.

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite

TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **Þ** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 5 of 5 EFS/183378 Ver. 1

Sample Descriptions

Client : SOCOTEC UK Limited Deeside

 Site :
 E8013 G.O.S.H

 Report Number :
 S18_3378

Note: major constituent in upper case

Lab ID **	011	Note: major constituent in upper case
Lab ID Number	Client ID	Description
CL/1894947 CL/1894948 CL/1894949 CL/1894950	BH01 D 21 6.90 BH01 D 39 18.00	CLAY
CI /1894948	BH01 D 39 18 00	CLAY CLAY
CL/1904040	BH02 D 28 10.50	CLAY
CL/1094949	DH02 D 24 44 00	CLAY
CL/1894950	BH02 D 34 14.00	CLAT
		1

Appendix A Page 1 of 1 28/02/2018EFS/183378 Ver. 1

APPENDIX E GEOENVIRONMENTAL LABORATORY TEST RESULTS

Test Reports - soil EFS/183175

EFS/183180

Test Report - water EXR/259655

TEST REPORT

Report No. EFS/183175 (Ver. 1)

SOCOTEC UK Limited Deeside Unit 18 Drome Road Deeside Industrial Park Deeside Flintshire CH5 2NY

Site: E8013 - G.O.S.H

The 17 samples described in this report were registered for analysis by SOCOTEC UK Limited on 15-Feb-2018. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 27-Feb-2018

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 13)
Table of TPH Texas banding (std) (Page 14)
Table of WAC Analysis Results (Pages 15 to 19)
Subcontracted Analysis Reports (Pages 20 to 21)
The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.
Analytical and Deviating Sample Overview (Pages 22 to 25)
Table of Additional Report Notes (Page 26)
Table of Method Descriptions (Pages 27 to 28)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes

Operations Director Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 27-Feb-2018

Method Reporting Limits	Ces (SW) (SW) (Color of the color of the col	CPMSS ICPMSS ICPMSS O.5 O.1 Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves Ves	CPMSS CPM CSW CSW CPM CSW CPM CSW CS	CPMSS 3 4 5 1 1 1 1 1 1 1 1 1	PAHMSUS PCBECD 0.08 Yes Ves Ves Nabhthaleue > 0.08 > 0.08 > 0.08 > 0.08 > 0.08 > 0.08	PCBECD PCB	PCBECD 5
Method Reporting Limits: 0.5 20 0.5 0.5 0.1 0.5	Caqwinm (NS) Co.1	Ves Yes Yes 136.9 Label 136.9 Label 136.9 Label 142.18 Label 142.9 Label 142.3 Label 143.9		Ziuc (WS) Sign 2 4 2 9 1 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SS PCB	Yes
Client Sample Description application Client Sample Description application	Cadminm (W2) Cadminm (V2) Co.1 Co	Yes Yes 128		Ziuc (WS) Sinc (WS) Zinc (MS) Sinc (MS)		SS → PCB	Yes
Client Sample Description Application Client Sample Description Client Sample	Cadminm (W2) Cadminm (W2) Co.1 Co	73.6 73.6 73.6 73.6 74.2 159.9 128.9 128.9 128.3 1 128.9 128.3 1 128.3		Ziuc (W2) 5.16 6.5 8 7.1 6.6 6 7.2 8 7.7 6.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7		РСВ	
Client Sample Description April 1998 Client Sample Description Client Sample Descrip	Caquinm (W2) 6.0.1 6.0.1 6.0.1 6.0.1 6.0.1 6.0.1 7.0 6.0.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0	73.6 (SW) Pear 136.9 178.7 178.7 178.7 159.9 124.3 124.3 138.1 188.7 188.7 188.7 188.7 198.8 189		Ziuc (W2) 106.6 1 2 2 4 2.9 2 4 8 1.2 2 2 4 2.9 2 2 4 2.9 2 2 4 2.9 2 2 4 2.9 2 2 4 2 5 2 5		РСВ	
BHOT ES 4 0.50 0sFeb-18 <0.5	0.16 <0.1 <0.1 <0.1 <0.1 <0.1 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.13 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <0.15 <	4218 136.9 73.6 223.1 178.7 159.9 425 1082 124.3		106.6 51.6 42.9 34.8 85.1		118	PCB 138
BH01 ES 9 2.00 os-feb-18 0.6 3490 1.1 9.6 <0.1	 <0.1 <0.1 <0.1 <0.1 <0.14 <0.13 <0.15 <0.13 <0.13 <0.13 <0.13 <0.13 <0.00 <0.0	136.9 73.6 223.1 178.7 159.9 425 1082 124.3		51.6 42.9 34.8 85.1	0.08	< 5.00	< 5.00
BH01 ES 11 3.00 G6Feb-18 <0,5 1390 1.4 11.2 <0.1 20 BH02 ES 5 1.00 G6Feb-18 <0.5	 <0.1 <0.1 <0.1 <0.13 <0.12 <0.12 <0.13 <0.14 <0.15 	73.6 223.1 178.7 159.9 425 1082 124.3		34.8		< 5.00	< 5.00
BH02 ES 5 1.00 06-Feb-18 < 0.5 3430 1.6 10 < 0.1 184 WS01 ES 1 0.25 01-Feb-18 < 0.5	 <0.1 <0.16 0.24 0.13 <0.13 <0.15 0.15 0.13 0.13 0.13 0.12 	223.1 178.7 159.9 425 1082 124.3		34.8	< 0.08 < 5.00	< 5.00	< 5.00
WS01ES 1 0.25 01-Feb-18 < 0.5 3460 2.2 10.2 < 0.1 22.7 WS01ES 18 4.50 01-Feb-18 24.3 1920 2.7 13.3 0.16 30.5 WS02ES 9 1.70 01-Feb-18 < 0.5	0.16 0.24 0.13 0.13 0.15 0.15 0.13 0.12	178.7 159.9 425 1082 124.3		85.1	< 0.08 < 5.00	< 5.00	< 5.00
WS01ES 18 4,50 01-Feb-18 24.3 1920 2.7 13.3 0.16 30.5 WS02ES 91,70 01-Feb-18 <0.5	0.16 0.24 0.13 0.13 0.15 0.13 0.13 0.23	159.9 425 1082 124.3 938.1		/ 634	< 0.08 < 5.00	< 5.00	< 5.00
WS02 ES 9 1.70 01-Feb-18 < 0.5 1680 2 15.9 0.24 20.9 WS03 ES 4 0.50 31-Jan-18 < 0.5	0.13 <0.13 <0.14 <0.15 0.13 0.13 0.12 0.23	425 1082 124.3		> 7.67	< 0.08 < 5.00	< 5.00	< 5.00
WS03 ES 4 0.50 31-Jan-18 < 0.5 4960 1.2 9.4 0.13 17.9 WS04 ES 4 0.50 30-Jan-18 < 0.5	0.13 <0.1 0.15 0.13 0.13 0.12 0.12	124.3		.5 119 <	< 0.08 < 5.00	< 5.00	< 5.00
WS04 ES 14 2.80 01-8b-18 <0.5 554 1.6 15.1 <0.1 23 WS04 ES 9 0.05 30-Jan-18 <0.5	0.15 0.13 0.13 0.12 0.12	124.3		136.7	< 0.08 < 5.00	< 5.00	< 5.00
WS04 ES 9 0.05 30-Jan-18 <0.5 5200 1 18.8 0.15 24.2 WS04 ES 12 1.70 31-Jan-18 <0.5	0.15 0.13 0.13 0.12 0.17	938.1	19.9 <0.5	52	< 0.08 < 5.00	< 5.00	< 5.00
WS04 ES 4 0.50 30-Jan-18 < 0.5 5200 1 18.8 0.15 24.2 WS04 ES 12 1.70 31-Jan-18 < 0.5	0.13 0.13 0.12 0.17 0.23	938.1		7.1	7.00 §		
WS04 ES 12 1.70 31-Jan-18 < 0.5 588 1.5 13.6 0.13 18 WS04 ES 18 3.70 31-Jan-18 0.6 774 2.6 13.7 0.13 25.3 WS05 ES 1 0.25 30-Jan-18 < 0.5	0.13 0.13 0.12 0.12 0.23		20.8 <0.5	.5 136.2 < 0	< 0.08 < 5.00	< 5.00	< 5.00
WS04 ES 18 3.70 31-Jan-18 0.6 774 2.6 13.7 0.13 25.3 WS05 ES 1 0.25 30-Jan-18 <0.5	0.13	39.3 322.9 1.47	20.7 0.6	> 75.7 <	< 0.08 < 5.00	< 5.00	< 5.00
WS05 ES 1 0.25 30-Jan-18 <0.5 794 2.2 13.9 0.12 20.8 WS05 ES 7 1.00 30-Jan-18 <0.5	0.12	36 159 0.92	23.4 1.1	70.2	< 0.08 < 5.00	< 5.00	< 5.00
WS05 ES 71.00 31-Jan-18 <0.5 2810 1.4 12.3 0.17 20.4 WS05 ES 11 1.80 31-Jan-18 <0.5 1780 1.4 25.1 0.23 24.6 WS05 ES 14 2.70 31-Jan-18 <0.5 158 0.7 9.1 <0.1 28	0.17	62.8 413.8 1.34	21.2 <0.5	76.2	< 0.08 < 5.00	< 5.00	< 5.00
WS05 ES 11 1.80 31-Jan-18 <0.5 1730 1.4 25.1 0.23 24.6 WS05 ES 14 2.70 31-Jan-18 <0.5 158 0.7 9.1 <0.1 28	0.23	31.2 277.4 0.76	17.3 <0.5	104.3	0.29 < 5.00	< 5.00	< 5.00
WS05 ES 14 2.70 31-Jan-18 < 0.5 158 0.7 9.1 < 0.1 28		56.3 341.4 1.08	30.4	171.7 < (< 0.08 < 5.00	< 5.00	< 5.00
	<0.1	13.6 34.7 0.19	23.3 <0.5	5 25 <(: 0.08 < 5.00	< 5.00	< 5.00
SOCOTEC Client Name SOCOTEC UK Limited Deeside	р		Sa	Sample Analysis	sis		
Contact Mark Hamill							
Bretby Business Park, Ashby Road			Date Printed		27-Feb-2018		
			Report Number	۲.	EFS/183175		
Tel +44 (0) 1283 554400	ı		Table Number		1		
Fax +44 (0) 1283 554422							

		: Units :	hg/kg PCBECD	µg/kg	pg/kg	µg/kg	pH Units	mg/kg	mg/kg	CONTRACTOR	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Method Repo	Method Reporting Limits :	5	_	5	5		0.5	0.5		_	+	+	+	+	_	_	0.1
	UKAS	UKAS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
		5	3	3	3	3		3	3	3	3	3	3	3	3	3	3	3
LAB ID Number CL/	Client Sample Description	Sample Date	PCB 153	PCB 180	PCB 28	PCB 52	pH units (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID (Stage 1)	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol
1894166	BH01 ES 4 0.50	05-Feb-18	< 5.00	< 5.00	< 5.00	< 5.00	8.4	<0.5	<0.5	NAIIS	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
1894167	BH01 ES 9 2.00	05-Feb-18	< 5.00	< 5.00	< 5.00	32.0	6	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894168	BH01 ES 11 3.00	05-Feb-18	< 5.00	< 5.00	< 5.00	21.7	8.8	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894169	BH02 ES 5 1.00	06-Feb-18	< 5.00	< 5.00	< 5.00	31.6	9.4	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894170	WS01 ES 1 0.25	01-Feb-18	< 5.00	< 5.00	< 5.00	< 5.00	9.2	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894171	WS01 ES 18 4.50	01-Feb-18	< 5.00	< 5.00	< 5.00	< 5.00	7.8	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894172	WS02 ES 9 1.70	01-Feb-18	< 5.00	< 5.00	< 5.00	< 5.00	6	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894173	WS03 ES 4 0.50	31-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	9.1	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894174	WS03 ES 14 2.80	01-Feb-18	< 5.00	< 5.00	< 5.00	< 5.00	8.3	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	0.103	< 0.100	< 0.100	< 0.100	< 0.100
1894175	WS04 ES 9 0.05	30-Jan-18																
1894176	WS04 ES 4 0.50	30-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	9.2	<0.5	<0.5	NAIIS	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
1894177	WS04 ES 12 1.70	31-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	8.9	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894178	WS04 ES 18 3.70	31-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	8.6	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894179	WS05 ES 1 0.25	30-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	8.7	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894180	WS05 ES 7 1.00	30-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	9.2	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894181	WS05 ES 11 1.80	31-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	8.7	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894182	WS05 ES 14 2.70	31-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	6	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
<i>v</i> s	SOCOTEC		Client Name	ame	SOCOT	SOCOTEC UK Limite	Ø	Deeside					Samp	Sample Analysis	lysis			
			Contact		Mark Hamill	=												
- B	Bretby Business Park, Ashby Road											Date Printed	ted		27	27-Feb-2018		
- B	Burton-on-Trent, Staffordshire, DE15 0YZ					E0042					,	Report Number	umber		EF	EFS/183175		
-	Tel +44 (0) 1283 554400						•	E-0.0.0				Table Number	mber			_		
_	Fax +44 (0) 1283 554422																	

		Units:		mg/kg	_		mg/kg	mg/kg	mg/kg	-	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	: Wethod Codes :	od Codes:	(O)	SVOCSW	SVOCSW	S	SVOCSW	SVOCSW	SVOCSW	SVOCSW	_	SVOCSW	SVOCSW	SVOCSW	SVOCSW	SVOCSW	SVOCSW	SVOCSW
	Method Reporti	ng Limits:	0.2	0.2	_	0.2	0.5	0.1	0.1			0.2	0.2	0.1	0.5	0.1	0.1	0.1
	UKAS A	UKAS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Number CL/	Client Sample Description	Sample Date	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Benzyl alcohol	Biphenyl	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	Butylbenzylphthalate	Chrysene	Dibenzo(ah)anthracene	Dibenzofuran	Diethylphthalate	Dimethylphthalate
1894166	BH01 ES 4 0.50	05-Feb-18	< 1.000	< 1.000	< 2.50	< 1.000	< 2.50	< 0.500	< 0.500	< 0.500	< 2.50	< 1.000	< 1.000	< 0.500	< 2.50	< 0.500	< 0.500	< 0.500
1894167	BH01 ES 9 2.00	05-Feb-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
1894168	BH01 ES 11 3.00	05-Feb-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
1894169	BH02 ES 5 1.00	06-Feb-18	0.652	0.942	< 0.500	0.367	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	0.812	< 0.500	0.182	< 0.100	< 0.100
1894170	WS01 ES 1 0.25	01-Feb-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
1894171	WS01 ES 18 4.50	01-Feb-18	0.235	0.321	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	0.281	< 0.500	< 0.100	< 0.100	< 0.100
1894172	WS02 ES 9 1.70	01-Feb-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
1894173	WS03 ES 4 0.50	31-Jan-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
1894174	WS03 ES 14 2.80	01-Feb-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
1894175	WS04 ES 9 0.05	30-Jan-18																
1894176	WS04 ES 4 0.50	30-Jan-18	5.42	7.54	< 2.50	3.20	< 2.50	< 0.500	< 0.500	< 0.500	< 2.50	< 1.000	< 1.000	6.82	< 2.50	0.998	< 0.500	< 0.500
1894177	WS04 ES 12 1.70	31-Jan-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
1894178	WS04 ES 18 3.70	31-Jan-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
1894179	WS05 ES 1 0.25	30-Jan-18	0.335	0.455	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	0.356	< 0.500	0.115	< 0.100	< 0.100
1894180	WS05 ES 7 1.00	30-Jan-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
1894181	WS05 ES 11 1.80	31-Jan-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
1894182	WS05 ES 14 2.70	31-Jan-18	< 0.200	< 0.200	< 0.500	< 0.200	< 0.500	< 0.100	< 0.100	< 0.100	< 0.500	< 0.200	< 0.200	< 0.100	< 0.500	< 0.100	< 0.100	< 0.100
	SOCOTEC (Client Name	lame	socol	SOCOTEC UK Limited		Deeside					Samp	Sample Analysis	lysis			
			Contact		Mark Hamill	llin												
	Bretby Business Park, Ashby Road											Date Printed	ıted		27	27-Feb-2018		
	Burton-on-Trent, Staffordshire, DE15 0YZ					E0042	C					Report Number	umber		EF	EFS/183175		
	Tel +44 (0) 1283 554400						ָ י	D.0.				Table Number	mber			_		
	Fax +44 (0) 1283 554422																	

	Meth	Units:	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW	mg/kg SVOCSW		mg/kg TPHFIDUS	mg/kg TPHFIDUS
	Method Reporting Limits :	ing Limits:					_	_	-		_	_		0.1	0.2	0.1	10	10
	UKAS A	UKAS Accredited:		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Number CL/	Client Sample Description	Sample Date	Di-n-butylphthalate	Di-n-octylphthalate	Diphenyl Ether	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachloroethane	Indeno(123-cd)pyrene	Naphthalene	Nitrobenzene	Phenanthrene	Phenol	Pyrene	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)
1894166	BH01 ES 4 0.50	05-Feb-18	< 0.500	< 1.000	< 0.500	< 1.000	< 1.000	< 0.500	< 0.500	< 2.50	< 0.500	< 2.50	< 0.500	< 0.500	< 1.000	14.9	218	219
1894167	BH01 ES 9 2.00	05-Feb-18	< 0.100	< 0.200	< 0.100	0.234	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	0.151	< 0.100	0.202			91.3
1894168	BH01 ES 11 3.00	05-Feb-18	< 0.100	< 0.200	< 0.100	0.223	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	0.226	< 0.100	0.202			69.3
1894169	BH02 ES 5 1.00	06-Feb-18	< 0.100	< 0.200	< 0.100	2.47	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	1.85	< 0.100	1.97			158
1894170	WS01 ES 1 0.25	01-Feb-18	< 0.100	< 0.200	< 0.100	0.351	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	0.152	< 0.100	0.291			104
1894171	WS01 ES 18 4.50	01-Feb-18	< 0.100	< 0.200	< 0.100	0.845	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	0.621	< 0.100	0.671			136
1894172	WS02 ES 9 1.70	01-Feb-18	< 0.100	< 0.200	< 0.100	< 0.200	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	< 0.100	< 0.100	< 0.200	13.9	178	179
1894173	WS03 ES 4 0.50	31-Jan-18	< 0.100	< 0.200	< 0.100	< 0.200	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	< 0.100	< 0.100	< 0.200	16.0	186	187
1894174	WS03 ES 14 2.80	01-Feb-18	< 0.100	< 0.200	< 0.100	< 0.200	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	0.136	< 0.100	< 0.200			53.2
1894175	WS04 ES 9 0.05	30-Jan-18																13800 §
1894176	WS04 ES 4 0.50	30-Jan-18	< 0.500	< 1.000	< 0.500	19.2	< 1.000	< 0.500	< 0.500	3.16	< 0.500	< 2.50	9.72	< 0.500	16.6	18.0	492	493
1894177	WS04 ES 12 1.70	31-Jan-18	< 0.100	< 0.200	< 0.100	< 0.200	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	< 0.100	< 0.100	< 0.200			134
1894178	WS04 ES 18 3.70	31-Jan-18	< 0.100	< 0.200	< 0.100	< 0.200	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	< 0.100	< 0.100	< 0.200			66.2
1894179	WS05 ES 1 0.25	30-Jan-18	< 0.100	< 0.200	< 0.100	1.04	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	0.802	< 0.100	0.844			200
1894180	WS05 ES 7 1.00	30-Jan-18	< 0.100	< 0.200	< 0.100	0.292	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	0.249	< 0.100	0.228			174
1894181	WS05 ES 11 1.80	31-Jan-18	< 0.100	< 0.200	< 0.100	< 0.200	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	< 0.100	< 0.100	< 0.200	18.9	76.0	77.0
1894182	WS05 ES 14 2.70	31-Jan-18	< 0.100	< 0.200	< 0.100	0.310	< 0.200	< 0.100	< 0.100	< 0.500	< 0.100	< 0.500	0.213	< 0.100	0.263			54.0
	SOCOTEC (Client Name	ame	SOCOT	SOCOTEC UK Limite	p	Deeside					Sam	Sample Analysis	lysis			
			Contact		Mark Hamill	≡												
	Bretby Business Park, Ashby Road											Date Printed	ited		27	27-Feb-2018		
	Burton-on-Trent, Staffordshire, DE15 0YZ				_	T001						Report Number	umber		EF	EFS/183175		
	Tel +44 (0) 1283 554400							E.0.0.5				Table Number	mber			1		
	Fax +44 (0) 1283 554422																	

		Units:		µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	_	_	_		hg/kg	µg/kg	_		µg/kg	µg/kg
	: Method Reporting Limits	nod Codes :	TPHFIDUS 10	VOCHSAS		VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS 1	VOCHSAS	VOCHSAS 1	VOCHSAS		VOCHSAS	VOCHSAS 1	VOCHSAS		VOCHSAS
	A SVAII	IKAS Accredited .		- \	- \	- >	- >	- \	- \	202	- 8	- \	- \	- \	- >	- 50	- \	- \
	UKAS A	Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Num	Client Sample Description	Sample	TPH Carbon	1,1,1,2-Tetrach	1,1,1-Trichlo	1,1,2-Trichlo	1,1-Dichlor	1,1-Dichlor	1,1-Dichloro	1,2,3-Trichlor	1,2,3-Trichlor	1,2,4-Trimeth	1,2-Dibrom	1,2-Dichloro	1,2-Dichlor	1,2-Dichloro	1,3,5-Trimeth	1,3-Dichloro
ber CL/		Date	Banding.	nloroethane	roethane	roethane	oethane	oethene	propene	obenzene	opropane	ylbenzene	oethane	benzene	oethane	propane	ylbenzene	benzene
1894166	BH01 ES 4 0.50	05-Feb-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894167	BH01 ES 9 2.00	05-Feb-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894168	BH01 ES 11 3.00	05-Feb-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894169	BH02 ES 5 1.00	06-Feb-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894170	WS01 ES 1 0.25	01-Feb-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894171	WS01 ES 18 4.50	01-Feb-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894172	WS02 ES 9 1.70	01-Feb-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894173	WS03 ES 4 0.50	31-Jan-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894174	WS03 ES 14 2.80	01-Feb-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894175	WS04 ES 9 0.05	30-Jan-18																
1894176	WS04 ES 4 0.50	30-Jan-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894177	WS04 ES 12 1.70	31-Jan-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894178	WS04 ES 18 3.70	31-Jan-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894179	WS05 ES 1 0.25	30-Jan-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894180	WS05 ES 7 1.00	30-Jan-18	Req	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894181	WS05 ES 11 1.80	31-Jan-18	Red	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894182	WS05 ES 14 2.70	31-Jan-18	Red	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 3.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	SOCOTEC		Client Name	ame	SOCOT	SOCOTEC UK Limit	eq	Deeside					Samp	Sample Analysis	lysis			
			Contact		Mark Hamill	II.												
	Bretby Business Park, Ashby Road											Date Printed	ted		27-	27-Feb-2018		
	Burton-on-Trent, Staffordshire, DE15 0YZ					L						Report Number	umber		EF	EFS/183175		
	Tel +44 (0) 1283 554400					E8013	ı	G.O.O.D			•	Table Number	mber			-		
	Fax +44 (0) 1283 554422										1							

		Units:		µg/kg	-		µg/kg	hg/kg	\rightarrow	\rightarrow	_		µg∕kg	µg/kg	_		hg/kg	µg/kg
	: Method Benering Limits :	od Codes :	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS		VOCHSAS 1	VOCHSAS 1	VOCHSAS 1	VOCHSAS		VOCHSAS	VOCHSAS 1	VOCHSAS	VOCHSAS	VOCHSAS
	UKAS Ac	UKAS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
			3	2	3	3	3	3	2	3	3	2	3	3	2	3	2	2
LAB ID Number CL/	Client Sample Description	Sample Date	1,3-Dichloropropane	1,4-Dichlorobenzene	2,2-Dichloropropane	2-Chlorotoluene	4-Chlorotoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane
1894166	BH01 ES 4 0.50	05-Feb-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894167	BH01 ES 9 2.00	05-Feb-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894168	BH01 ES 11 3.00	05-Feb-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894169	BH02 ES 5 1.00	06-Feb-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894170	WS01 ES 1 0.25	01-Feb-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894171	WS01 ES 18 4.50	01-Feb-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894172	WS02 ES 9 1.70	01-Feb-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894173	WS03 ES 4 0.50	31-Jan-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894174	WS03 ES 14 2.80	01-Feb-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894175	WS04 ES 9 0.05	30-Jan-18																
1894176	WS04 ES 4 0.50	30-Jan-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894177	WS04 ES 12 1.70	31-Jan-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894178	WS04 ES 18 3.70	31-Jan-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894179	WS05 ES 1 0.25	30-Jan-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894180	WS05 ES 7 1.00	30-Jan-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894181	WS05 ES 11 1.80	31-Jan-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
1894182	WS05 ES 14 2.70	31-Jan-18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 3.0*
											ľ							
	SOCOTEC		Client Name	ame	SOCOT	SOCOTEC UK Limit	eq	Deeside					Samp	Sample Analysis	lysis			
			Contact		Mark Hamill	≡												
	Bretby Business Park, Ashby Road	•										Date Printed	ted		27-	27-Feb-2018		
	Burton-on-Trent, Staffordshire, DE15 0YZ										ı	Report Number	umber		EF	EFS/183175		
	Tel +44 (0) 1283 554400				_ -	2 DOU	•	E.0.0.5			ı	Table Number	mber			-		
	Fax +44 (0) 1283 554422																	

	Units: Method Codes: Method Reporting Limits	Units: lod Codes:	hg/kg VOCHSAS	µg/kg VOCHSAS	µg/kg VOCHSAS	ug/kg VOCHSAS	pg/kg pg/kg vocHsAs v	µg/kg /OCHSAS	yochsas 4	ug/kg VOCHSAS	ug/kg VOCHSAS	ug/kg VOCHSAS	Lg/kg VOCHSAS	µg/kg VOCHSAS	ug/kg VOCHSAS	µg/kg VOCHSAS	ug/kg VOCHSAS	µg/kg VOCHSAS
	UKAS A	UKAS Accredited :	_	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Number CL/	ple Descrip	Sample Date	cis 1,2-Dichloroethene	cis 1,3-Dichloropropene	Dibromochloromethane	Dibromomethane	Ethylbenzene	iso-Propylbenzene	m and p-Xylene	МТВЕ	Naphthalene	n-Butylbenzene	o-Xylene	p-Isopropyltoluene	Propylbenzene	sec-Butylbenzene	Styrene	tert-Butylbenzene
1894166	BH01 ES 4 0.50	05-Feb-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894167	BH01 ES 9 2.00	05-Feb-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	13.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894168	BH01 ES 11 3.00	05-Feb-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894169	BH02 ES 5 1.00	06-Feb-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894170	WS01 ES 1 0.25	01-Feb-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894171	WS01 ES 18 4.50	01-Feb-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894172	WS02 ES 9 1.70	01-Feb-18	< 5.0	0.1 >	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894173	WS03 ES 4 0.50	31-Jan-18	< 5.0	0.1 >	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894174	WS03 ES 14 2.80	01-Feb-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894175	WS04 ES 9 0.05	30-Jan-18																
1894176	WS04 ES 4 0.50	30-Jan-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894177	WS04 ES 12 1.70	31-Jan-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894178	WS04 ES 18 3.70	31-Jan-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894179	WS05 ES 1 0.25	30-Jan-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	31.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894180	WS05 ES 7 1.00	30-Jan-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894181	WS05 ES 11 1.80	31-Jan-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1894182	WS05 ES 14 2.70	31-Jan-18	< 5.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 4.0	< 1.0	< 5.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
S	SOCOTEC		Client Name	ame	SOCOT	SOCOTEC UK Limit	imited Deeside	eside					Samp	Sample Analysis	lysis			
			Contact		Mark Hamill	≡												
B	Bretby Business Park, Ashby Road											Date Printed	ted		27.	27-Feb-2018		
Bu	Burton-on-Trent, Staffordshire, DE15 0YZ					E8042						Report Number	umber		EF	EFS/183175		
F 1	Tel +44 (0) 1283 554400					, 100 100 100		5				Table Number	mber			-		
	Fax +44 (U) 1263 554422																	

		Units:	_	hg/kg	pg/kg pg/kg pg/kg pg/kg	hg/kg	hg/kg	hg/kg	hg/kg	M/M %	mg/kg	**************************************	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Method Reporting Limits:	Metriod Codes :	_	VOCT3A3	VOCTOAS	VOCHSAS	VOCHSAS	VOCH3A3	1	0.02	0.1	0.1 0.1	9vOC3w	_	_		_	0.5 0.5
	A SANII	ng mind .		200	- \	- >	- 20	- >	- \	20.0	2	- 2	- 2	2 2	0.2	2 2	i	0.2
	UKAS A	UKAS Accredited:	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	ON	No	ON	No	ON No	ON	No
LAB ID Number CL/	Client Sample Description	Sample Date	Tetrachloroethene	Toluene	trans 1,2-Dichloroethene	trans 1,3-Dichloropropene	Trichloroethene	Trichlorofluoromethane	Vinyl Chloride	Total Organic Carbon	Chromium vi:	Organic Matter %	1,2,4-Trichlorobenzene	2,4-Dinitrophenol	2-Nitroaniline	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Chloroaniline
1894166	BH01 ES 4 0.50	05-Feb-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.27	0.3	9.0	< 0.500	< 2.50	< 2.50	< 72.5	< 1.000	< 2.50
1894167	BH01 ES 9 2.00	05-Feb-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		<0.1	8.0	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894168	BH01 ES 11 3.00	05-Feb-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		<0.1	1.7	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894169	BH02 ES 5 1.00	06-Feb-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		0.3	1.2	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894170	WS01 ES 1 0.25	01-Feb-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		0.2	1.4	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894171	WS01 ES 18 4.50	01-Feb-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		<0.1	5.9	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894172	WS02 ES 9 1.70	01-Feb-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.62	<0.1	2.9	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894173	WS03 ES 4 0.50	31-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.41	0.2	1.7	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894174	WS03 ES 14 2.80	01-Feb-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		<0.1	3.5	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894175	WS04 ES 9 0.05	30-Jan-18																
1894176	WS04 ES 4 0.50	30-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.92	0.1	2.3	< 0.500	< 2.50	< 2.50	< 72.5	< 1.000	< 2.50
1894177	WS04 ES 12 1.70	31-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		<0.1	3.0	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894178	WS04 ES 18 3.70	31-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		<0.1	3.0	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894179	WS05 ES 1 0.25	30-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		<0.1	3.7	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894180	WS05 ES 7 1.00	30-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		0.2	2.5	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894181	WS05 ES 11 1.80	31-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.03	<0.1	4.0	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894182	WS05 ES 14 2.70	31-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		<0.1	1.6	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
V)	SOCOTEC		Client Name	ame	SOCOT	SOCOTEC UK Limite	ō	Deeside					Sam	Sample Analysis	lysis			
			Contact		Mark Hamill	lir												
ai ——	Bretby Business Park, Ashby Road											Date Printed	ted		27.	27-Feb-2018		
œ	Burton-on-Trent, Staffordshire, DE15 0YZ										1	Report Number	umber		田	EFS/183175		
	Tel +44 (0) 1283 554400					C 000		E.0.0.5			1	Table Number	mber			-		
_	Fax +44 (0) 1283 554422	1																

		: Units :	: mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	hg/kg	hg/kg	hg/kg	hg/kg	hg/kg	µg/kg RTEXHSA
	Met	Method Reporting Limits:			_	_	_	_	+	-	-				-	-	2	10
		UKAS Accredited :		No	No	9	No	N _o	No	No	No	No	No	No	9	No	No	Yes
LAB II		Sa	4-N	4-N	Ве	C	Hexacl	Hexachlor	Is	N-Nitroso	N-Nitros	Penta	1,1,2,2-T	1,2,4-Tr	1,2-Dibrom	Dichloro	Hexacl	١
Number CL/	Client Sample Description	imple Date	Vitroaniline	litrophenol	nzoic Acid	Coronene	nlorobutadiene	rocyclopentadiene	ophorone	-di-n-propylamine	odiphenylamine	chlorophenol	etrachloroethane	ichlorobenzene	no-3-chloropropane	difluoromethane	nlorobutadiene	Benzene
1894166	BH01 ES 4 0.50	50 05-Feb-18	< 3.00	< 2.50	< 2.50	< 1.50	< 0.500	< 0.500	< 0.500	< 4.50	< 0.500	< 2.50	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894167	BH01 ES 9 2.00	00 05-Feb-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894168	BH01 ES 11 3.00	.00 05-Feb-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894169	BH02 ES 5 1.00	00 06-Feb-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894170	WS01 ES 1 0.25	.25 01-Feb-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894171	WS01 ES 18 4.50	.50 01-Feb-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894172	WS02 ES 9 1.70	.70 01-Feb-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894173	WS03 ES 4 0.50	.50 31-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894174	WS03 ES 14 2.80	80 01-Feb-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894175	WS04 ES 9 0.05	.05 30-Jan-18																
1894176	WS04 ES 4 0.50	.50 30-Jan-18	< 3.00	< 2.50	< 2.50	< 1.50	< 0.500	< 0.500	< 0.500	< 4.50	< 0.500	< 2.50	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894177	WS04 ES 12 1.70	.70 31-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894178	WS04 ES 18 3.70	.70 31-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894179	WS05 ES 1 0.25	30-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894180	WS05 ES 7 1.00	.00 30-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894181	WS05 ES 11 1.	1.80 31-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
1894182	WS05 ES 14 2.	2.70 31-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0	< 2.0	<10
v)	SOCOTEC		Client Name	lame	SOCOT	SOCOTEC UK Limite	ō	Deeside					Samp	Sample Analysis	lysis			
			Contact		Mark Hamill	≣												
ā	Bretby Business Park, Ashby Road	Pi										Date Printed	ted		-72	27-Feb-2018		
Ĭ	Burton-on-Trent, Staffordshire, DE15 0YZ	E15 0YZ				E0012						Report Number	umber		EFS	EFS/183175		
•	Tel +44 (0) 1283 554400						•	E.0.0.				Table Number	mber			_		
	Fax +44 (0) 1283 554422																	

23.0 §

0.15

< 0.08 < 0.08 < 0.08

0.12

< 0.08 < 0.08 < 0.08 < 0.08 < 0.08

Dibenzo(ah)anthracene

< 0.08

< 0.08 < 0.08 < 0.08

0.08

< 0.08

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

SOCOTEC UK Limited Deeside: E8013 - G.O.S.H **Customer and Site Details:** Job Number:

s18_3175

QC Batch Number:

Directory: Method:

D:\TES\DATA\2018\022018\022018\022018 2018-02-20 10-35-25\F-057-74-CL1894182.D Ultra Sonic

15-Feb-18 19-Feb-18 Date Booked in: Date Extracted:

Soil

Matrix:

20-Feb-18, 21:47:37 Date Analysed:

* Sample data with an asterisk are not UKAS accredited.

as wet weight Concentration (mg/kg).

			Concenti	Concentration, (mg/kg) - as wet weight	wet weight	
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35
CL1894166	BH01 ES 4 0.50	<2	<2	92.8	36.2	161
CL1894167	BH01 ES 9 2.00	<2	<2	2.84	12.4	7.1.7
CL1894168	BH01 ES 11 3.00	<2	<2	3.15	11	52.1
CL1894169	BH02 ES 5 1.00	<2	<2	3.84	27.4	122
CL1894170	WS01 ES 1 0.25	<2	<2	2.71	20	78.3
CL1894171	WS01 ES 18 4.50	<2	<2	8.25	24.5	66
CL1894172	WS02 ES 9 1.70	<2	<2	3.24	36.8	136
CL1894173	WS03 ES 4 0.50	<2	<2	2.26	28.4	147
CL1894174	WS03 ES 14 2.80	<2	<2	5.27	12.1	33.1
CL1894176	WS04 ES 4 0.50	<2	<2	8.91	73.4	367
CL1894177	WS04 ES 12 1.70	<2	<2	5.89	21.5	75.3
CL1894178	WS04 ES 18 3.70	<2	<2	66'9	12.9	38.4
CL1894179	WS05 ES 1 0.25	<2	<2	5.45	26.2	147
CL1894180	WS05 ES 7 1.00	<2	<2	8.09	36.3	119
CL1894181	WS05 ES 11 1.80	<2	<2	6.87	15.9	46.4
CL1894182	WS05 ES 14 2.70	<2	<2	4.28	10.4	31.1

Client	SOCOTEC UK Limited D	oooido			Leaching Data	
Cilent	SOCOTEC OK LITTILEG D	eeside			Weight of sample (kg)	0.259
Contact	Mark Hamill				Moisture content @ 105°C (% of Wet Weight)	14.9
Contact	IVIAIK HAITIIII				Equivalent Weight based on drying at 105°C (kg)	0.225
Site	E8013 - G.O.S.H				Volume of water required to carry out 2:1 stage (litres)	0.416
Site	E6013 - G.O.S.R			Fraction of sample above 4 mm %	64.500	
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
DU	01 ES 4 0.50	s18 3175	CL/1894166	27-Feb-18	Volume to undertake analysis (2:1 Stage) (litres)	0.300
ВП	U1 E3 4 U.3U	810_31/5	CL/1094100	21-Feb-18	Weight of Deionised water to carry out 8:1 stage (kg)	1.650

Note: The >4mm	fraction	is crushed	l using a disc mill	

_	4			Landfill Was	te Acceptance Cri	eria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.28	3	5	6
	LOI450	Loss on Ignition (%)				10
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.042	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	256	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.08	100		
U	PHSOIL	pH (pH units)	8.4		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Value BSEN 12457/3 @ L/S 10 litre kg-1 mg/kg (dry weight)) litre kg-1		
				ccept ^{oo}	mg/kg (d	ry weight)					
U	WSLM3	pH (pH units) °°	9.9	10.2	Calculated data no	t UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) °°	1080	408	Calculated data ne	or or Accidated					
U	ICPMSW	Arsenic	0.009	0.005	0.018	0.06	0.5	2	25		
U	ICPWATVAR	Barium	0.01	<0.01	0.02	<0.1	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5		
U	ICPMSW	Chromium	0.057	0.02	0.114	0.25	0.5	10	70		
U	ICPMSW	Copper	0.006	0.002	0.012	0.03	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.0001	<0.0002	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.024	0.004	0.048	0.07	0.5	10	30		
U	ICPMSW	Nickel	0.004	0.001	0.008	0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.001	<0.002	<0.01	0.5	10	50		
U	ICPMSW	Antimony	0.003	0.002	0.006	0.02	0.06	0.7	5		
U	ICPMSW	Selenium	0.003	<0.001	0.006	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	<0.002	<0.002	<0.004	<0.02	4	50	200		
U	KONENS	Chloride	29	5	58	82	800	15000	25000		
U	ISEF	Fluoride	0.1	0.2	0.2	2	10	150	500		
U	ICPWATVAR	Sulphate as SO4	448	124	896	1672	1000	20000	50000		
N	WSLM27	Total Dissolved Solids	842	318	1684	3879	4000	60000	100000		
U	SFAPI	Phenol Index	<0.05	<0.05	<0.1	<0.5	1				
N	WSLM13	Dissolved Organic Carbon	14	2.9	28	44	500	800	1000		

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	SOCOTEC UK Limited D	oooido			Leaching Data		
Cilent	SOCOTEC OK LITTILEG D	eeside			Weight of sample (kg)	0.259	
Contact	Mark Hamill				Moisture content @ 105°C (% of Wet Weight)	13.9	
Contact	IVIAIK HAITIIII			Equivalent Weight based on drying at 105°C (kg)	0.225		
Site	E8013 - G.O.S.H		Volume of water required to carry out 2:1 stage (litres)				
Site	E6013 - G.O.S.H			Fraction of sample above 4 mm %	28.100		
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
WC	W000 F0 0 4 70		-10 247F CL/1004172		Volume to undertake analysis (2:1 Stage) (litres)	0.300	
WS02 ES 9 1.70		s18_3175	CL/1894172	27-Feb-18	Weight of Deionised water to carry out 8:1 stage (kg)	1.650	

Note: The >4mm	fraction	is crushed	l using a disc mill	

	4			Landfill Was	te Acceptance Crit	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	1.65	3	5	6
	LOI450	Loss on Ignition (%)				10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.06	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.042	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	207	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.59	100		
U	PHSOIL	pH (pH units)	9		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Value BSEN 12457/3 @ L/S 10 litre kg-1 mg/kg (dry weight)) litre kg-1		
				ccept ^{oo}	mg/kg (dı	ry weight)					
U	WSLM3	pH (pH units) °°	8.5	8.7	Calculated data no	t UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) °°	691	211	Calculated data no	t ONAO Acciculted					
U	ICPMSW	Arsenic	0.05	0.057	0.1	0.56	0.5	2	25		
U	ICPWATVAR	Barium	<0.01	0.02	<0.02	<0.2	20	100	300		
U	ICPMSW	Cadmium	<0.0001	0.0001	<0.0002	<0.001	0.04	1	5		
U	ICPMSW	Chromium	0.004	0.003	0.008	0.03	0.5	10	70		
U	ICPMSW	Copper	0.007	0.027	0.014	0.24	2	50	100		
U	ICPMSW	Mercury	0.0002	0.0004	0.0004	0.004	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.033	0.005	0.066	0.09	0.5	10	30		
U	ICPMSW	Nickel	0.001	0.003	0.002	0.03	0.4	10	40		
U	ICPMSW	Lead	0.005	0.124	0.01	1.08	0.5	10	50		
U	ICPMSW	Antimony	0.006	0.003	0.012	0.03	0.06	0.7	5		
U	ICPMSW	Selenium	0.008	0.001	0.016	0.02	0.1	0.5	7		
U	ICPMSW	Zinc	0.003	0.037	0.006	0.32	4	50	200		
U	KONENS	Chloride	22	8	44	99	800	15000	25000		
U	ISEF	Fluoride	1.8	0.9	3.6	10	10	150	500		
U	ICPWATVAR	Sulphate as SO4	199	20	398	439	1000	20000	50000		
N	WSLM27	Total Dissolved Solids	539	164	1078	2140	4000	60000	100000		
U	SFAPI	Phenol Index	< 0.05	<0.05	<0.1	<0.5	1				
N	WSLM13	Dissolved Organic Carbon	6.1	9.9	12.2	94	500	800	1000		

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	SOCOTEC UK Limited D	oosido			Leaching Data		
Cilent	SOCOTEC OK LITTILEG D	eeside			Weight of sample (kg)	0.262	
Contact	Mark Hamill				Moisture content @ 105°C (% of Wet Weight)		
Contact	IVIAIK HAITIIII			Equivalent Weight based on drying at 105°C (kg)	0.225		
Site		Y		Volume of water required to carry out 2:1 stage (litres)	0.413		
Site	E8013 - G.O.S.H			Fraction of sample above 4 mm %	52.000		
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
WC	03 55 4 0 50	-10 247F CL/1904472		27_⊢≙h_18	Volume to undertake analysis (2:1 Stage) (litres)	0.300	
WS03 ES 4 0.50		s18_3175	CL/1894173		Weight of Deionised water to carry out 8:1 stage (kg)	1.650	

Note: The >4mm	fraction	is crushed	l using a disc mill	

	4			Landfill Was	te Acceptance Cri	eria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.42	3	5	6
	LOI450	Loss on Ignition (%)				10
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.07	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.042	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	221	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.15	100		
U	PHSOIL	pH (pH units)	9.1		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values BSEN 12457/3 @ L/S 10 litre kg-1 mg/kg (dry weight)) litre kg-1		
¥			mg/l ex	cept ^{oo}	mg/kg (dı	ry weight)					
U	WSLM3	pH (pH units) °°	10.1	10.3	Calculated data no	t UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) °°	1270	377	Calculated data no	or or Accidated					
U	ICPMSW	Arsenic	0.003	0.002	0.006	0.02	0.5	2	25		
U	ICPWATVAR	Barium	0.01	<0.01	0.02	<0.1	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5		
U	ICPMSW	Chromium	0.057	0.013	0.114	0.19	0.5	10	70		
U	ICPMSW	Copper	0.011	0.003	0.022	0.04	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.0001	<0.0002	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.013	0.002	0.026	0.03	0.5	10	30		
U	ICPMSW	Nickel	0.002	<0.001	0.004	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.001	<0.002	<0.01	0.5	10	50		
U	ICPMSW	Antimony	0.007	0.006	0.014	0.06	0.06	0.7	5		
U	ICPMSW	Selenium	0.002	<0.001	0.004	<0.01	0.1	0.5	7		
U	ICPMSW	Zinc	0.009	<0.002	0.018	< 0.03	4	50	200		
U	KONENS	Chloride	42	7	84	117	800	15000	25000		
U	ISEF	Fluoride	0.2	0.2	0.4	2	10	150	500		
U	ICPWATVAR	Sulphate as SO4	527	94	1054	1517	1000	20000	50000		
Ν	WSLM27	Total Dissolved Solids	991	294	1982	3869	4000	60000	100000		
U	SFAPI	Phenol Index	< 0.05	<0.05	<0.1	<0.5	1				
N	WSLM13	Dissolved Organic Carbon	11	2.1	22	33	500	800	1000		

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	SOCOTEC UK Limited D	oosido			Leaching Data		
Cilent	SOCOTEC OK LITTILEG D	eeside			Weight of sample (kg)	0.265	
Contact	Mark Hamill				Moisture content @ 105°C (% of Wet Weight)		
Contact	IVIAIK HAITIIII			Equivalent Weight based on drying at 105°C (kg)	0.225		
Site	E8013 - G.O.S.H		Volume of water required to carry out 2:1 stage (litres)				
Site	E6013 - G.O.S.H			Fraction of sample above 4 mm %	83.900		
Samp	le Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
WC	W004 F0 4 0 F0		-40 247E CL/400447C		Volume to undertake analysis (2:1 Stage) (litres)	0.300	
WS04 ES 4 0.50		s18_3175	CL/1894176	27-Feb-18	Weight of Deionised water to carry out 8:1 stage (kg)	1.650	

Note: The >4mm	fraction	is crushed	l using a disc mill	

	4			Landfill Was	te Acceptance Crit	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	0.93	3	5	6
	LOI450	Loss on Ignition (%)				10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.07	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.042	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	586	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<22.13	100		
U	PHSOIL	pH (pH units)	9.2		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values BSEN 12457/3 @ L/S 10 litre kg-1 mg/kg (dry weight)) litre kg-1
			mg/l ex	ccept ^{oo}	mg/kg (dı	ry weight)			
U	WSLM3	pH (pH units) °°	11.3	11.2	Calculated data no	t UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) °°	1020	531	Calculated data no	or or Accidated			
U	ICPMSW	Arsenic	0.015	0.005	0.03	0.06	0.5	2	25
U	ICPWATVAR	Barium	0.02	0.01	0.04	0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
U	ICPMSW	Chromium	0.026	0.011	0.052	0.13	0.5	10	70
U	ICPMSW	Copper	0.014	0.004	0.028	0.05	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.0001	<0.0002	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.02	0.004	0.04	0.06	0.5	10	30
U	ICPMSW	Nickel	0.002	<0.001	0.004	<0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.001	<0.002	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.003	0.003	0.006	0.03	0.06	0.7	5
U	ICPMSW	Selenium	0.001	<0.001	0.002	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	<0.002	<0.002	<0.004	<0.02	4	50	200
U	KONENS	Chloride	52	10	104	156	800	15000	25000
U	ISEF	Fluoride	0.1	0.2	0.2	2	10	150	500
U	ICPWATVAR	Sulphate as SO4	62	34	124	377	1000	20000	50000
N	WSLM27	Total Dissolved Solids	793	414	1586	4645	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.05	<0.1	<0.5	1		
N	WSLM13	Dissolved Organic Carbon	9.9	2.7	19.8	37	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	SOCOTEC UK Limited Deeside			Leaching Data			
Client SOCOTEC ON Limited Deeside				Weight of sample (kg) 0.2			
Contact Mark Hamill				Moisture content @ 105°C (% of Wet Weight) 18.9			
Contact	IVIAIK HAITIIII			Equivalent Weight based on drying at 105°C (kg) 0.225			
Site	E8013 - G.O.S.H				Volume of water required to carry out 2:1 stage (litres) 0.41		
Site	E6013 - G.O.S.H			Fraction of sample above 4 mm % #VAI			
Sample Description		Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000	
WS05 ES 11 1.80		s18 3175 CL/1894181		27-Feb-18	Volume to undertake analysis (2:1 Stage) (litres)	0.300	
		s18_3175	CL/1094101	27-560-10	Weight of Deionised water to carry out 8:1 stage (kg)	1.650	

Note: The >4mm	fraction	is crushed	l using a disc mill	

_				Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	1.07	3	5	6
	LOI450	Loss on Ignition (%)				10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.07	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.042	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	93.7	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.69	100		
U	PHSOIL	pH (pH units)	8.7		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values BSEN 12457/3 @ L/S 10 litre kg-1 mg/kg (dry weight)) litre kg-1
Ă				ccept ^{oo}	mg/kg (dı	ry weight)			
U	WSLM3	pH (pH units) °°	9.8	9.8	Calculated data no	t UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) °°	529	239	Calculated data no	or or Accidated			
U	ICPMSW	Arsenic	0.021	0.021	0.042	0.21	0.5	2	25
U	ICPWATVAR	Barium	0.01	<0.01	0.02	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
U	ICPMSW	Chromium	0.005	0.002	0.01	0.02	0.5	10	70
U	ICPMSW	Copper	0.015	0.005	0.03	0.06	2	50	100
U	ICPMSW	Mercury	0.0001	<0.0001	0.0002	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.038	0.006	0.076	0.1	0.5	10	30
U	ICPMSW	Nickel	0.003	<0.001	0.006	<0.01	0.4	10	40
U	ICPMSW	Lead	0.007	0.005	0.014	0.05	0.5	10	50
U	ICPMSW	Antimony	0.005	0.003	0.01	0.03	0.06	0.7	5
U	ICPMSW	Selenium	0.008	0.002	0.016	0.03	0.1	0.5	7
U	ICPMSW	Zinc	0.005	0.004	0.01	0.04	4	50	200
U	KONENS	Chloride	15	4	30	55	800	15000	25000
U	ISEF	Fluoride	0.3	0.2	0.6	2	10	150	500
U	ICPWATVAR	Sulphate as SO4	177	25	354	453	1000	20000	50000
N	WSLM27	Total Dissolved Solids	412	186	824	2161	4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.05	<0.1	<0.5	1		
N	WSLM13	Dissolved Organic Carbon	14	3.3	28	47	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

CERTIFICATE OF ANALYSIS

ANALYSIS REQUESTED BY:

SOCOTEC UK Ltd

CONTRACT NO: 57187-1

Environmental Chemistry

PROJECT NO: 610

PO Box 100 **Burton upon Trent** Staffordshire

DATE OF ISSUE: 27.02.18

DE15 0XD

DATE SAMPLES RECEIVED: 19.02.18

DATE SAMPLES ANALYSED: 26,02,18

SAMPLE DESCRIPTION: Sixteen soil/loose aggregate samples.

ANALYSIS REQUESTED: Qualitative analysis of samples for determination of presence/type of asbestos.

METHODS:

Our method involves initial examination of entire samples followed by detailed analysis of representative sub-samples. The sub-samples are analysed qualitatively for asbestos by polarised light and dispersion staining as described by the Health and Safety Executive in HSG 248.

RESULTS:

Initial Screening

No asbestos was detected in any of the soil samples by stereo-binocular and polarised light microscopy.

A summary of the results is given in Table 1.

Tel: 0131 449 8000

CONTRACT NO: 57187-1 PROJECT NO: 610 DATE OF ISSUE: 27.02.18

RESULTS: (cont.)

Table 1: Qualitative Results

SOCOTEC Job I.D: S183175

IOM sample number	Client sample number	ACM type detected	PLM result
S54127	S1894166 BH01 0.50	-	No Asbestos Detected
S54128	S1894167 BH01 2.00	-	No Asbestos Detected
S54129	S1894168 BH01 3.00	-	No Asbestos Detected
S54130	S1894169 BH02 1.00	-	No Asbestos Detected
S54131	S1894170 WS01 0.25	-	No Asbestos Detected
S54132	S1894171 WS01 4.50	-	No Asbestos Detected
S54133	S1894172 WS02 1.70	-	No Asbestos Detected
S54134	S1894173 WS03 0.50	-	No Asbestos Detected
S54135	S1894174 WS03 2.80	-	No Asbestos Detected
S54136	S1894176 WS04 0.50	-	No Asbestos Detected
S54137	S1894177 WS04 1.70	-	No Asbestos Detected
S54138	S1894178 WS04 3.70	-	No Asbestos Detected
S54139	S1894179 WS05 0.25	-	No Asbestos Detected
S54140	S1894180 WS05 1.00	-	No Asbestos Detected
S54141	S1894181 WS05 1.80	-	No Asbestos Detected
S54142	S1894182 WS05 2.70	-	No Asbestos Detected

Our detection limit for this method is 0.001%.

COMMENTS:

IOM Consulting cannot accept responsibility for samples that have been incorrectly collected or despatched by external clients.

Any opinions and interpretations expressed herein are outwith the scope of our UKAS accreditation.

AUTHORISED BY:

D Third Scientific Technician

20401

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S72259

SOCOTEC UK Limited Deeside

Customer

E8013 - G.O.S.H

S183175

Report No

Date Logged 15-Feb-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days. In-House Report Due 22-Feb-2018

Cyanide(Total) (AR) SFAPI ш ш ш ш ш pH units (AR) PHSOII ш ш ш ш ш ш ш Ш ш ш PCB-7 Congeners Analysis PCBECE PAH (17) by GCMS PAH (16) by GCMS **Organic Matter %** Chromium vi: KONECI Zinc (MS) Selenium (MS) Nickel (MS) Mercury (MS) Lead (MS) Copper (MS) Chromium (MS) Cadmium (MS) Arsenic (MS) ICPBOR Boron (H20 Soluble) ICPACID SO4-- (acid sol) **REPORT A** CEN Leac(P)2 CEN Leac(P)1 ш ш ш ш **MTBE** (µg/kg) ш ш ш ш ш ш ш **BTEX-HSA Analysis** ш ш BTEX-HSA + MTBE analysis Ш ш BTEXHS **Exchange.Ammonium AR** AMMA 06/02/18 01/02/18 01/02/18 31/01/18 01/02/18 30/01/18 01/02/18 30/01/18 30/01/18 31/01/18 30/01/18 31/01/18 Sampled MethodID Description WS03 0.50 VS04 1.70 WS02 1.70 VS03 2.80 WS04 0.05 WS04 3.70 WS05 0.25 WS01 0.25 VS01 4.50 WS04 0.50 WS05 1.00 BH01 0.50 BH01 2.00 BH01 3.00 BH02 1.00 **ID Number** 1894174 CL/1894175 CL/1894176 1894168 /1894172 CL/1894173 /1894179 CL/1894166 CL/1894167 /1894169 L/1894170 1894171 1894177 /1894178

ote: We will endeavour to prioritise samples to complete analysis within olding time; however any delay could result in samples becoming eviant whilst being processed in the laboratory

sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to rovide missing information in order to reinstate accreditation.

The sampling date was not supplied so holding time may be compromised - applicable to all analysis The sample was received without the correct preservation for this analysis Headspace present in the sample container и ш О О ш и

Deviating Sample Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered Sample processing did not commence within the appropriate handling time Sample processing did not commence within the appropriate holding time Requested Analysis Key Analysis Required

Analysis Subcontracted - Note: due date may vary

No analysis scheduled

Where individual results are flagged see report notes for status.

Page 22 of 24he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

SOCOTEC UK Limited Deeside

Customer Site

E8013 - G.O.S.H

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S72259

Date Logged 15-Feb-2018

In-House Report Due 22-Feb-2018

Please note the results for any subcontracted analysis (identified with a ''') is likely to take up to an additional five working days. S183175 Report No

WSLM59	Total Organic Carbon																
OCHSAS	VOC HSA-GCMS	>	Ш	Е	Ш		Е	Е	Е	Е	Е		Е	Е	Е	Е	Е
	TPH Carbon Banding.	^	ш	В	Ξ		Ш	В	Ξ	В	В		В	Ξ	Ξ	Ξ	Ш
	TPH by GCFID (AR)	^	ш	Е	ш		Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Ш
TPHFIDUS	TPH Band (>C10-C40)	^	ш						Ξ	В			В				
TMSS	Tot.Moisture @ 105C	^															
svocsw	SVOC (AR)	^	ш	Ε	Э	В	Ш	Е	Ξ	Ε	Ε		Ε	Ξ	Ξ	Ξ	Ш
Sub020	^Asbestos ID (Stage 1)	^															
SFAPI	Phenol Index.(AR)	^															
MethodID	Sampled		05/02/18	05/02/18	05/02/18	06/02/18	01/02/18	01/02/18	01/02/18	31/01/18	01/02/18	30/01/18	30/01/18	31/01/18	31/01/18	30/01/18	30/01/18
	Description		BH01 0.50	BH01 2.00	BH01 3.00	BH02 1.00	WS01 0.25	WS01 4.50	WS02 1.70	WS03 0.50	WS03 2.80	WS04 0.05	WS04 0.50	WS04 1.70	WS04 3.70	WS05 0.25	WS05 1.00
	ID Number		CL/1894166	CL/1894167	CL/1894168	CL/1894169	CL/1894170	CL/1894171	CL/1894172	CL/1894173	CL/1894174	CL/1894175	CL/1894176	CL/1894177	CL/1894178	CL/1894179	CL/1894180

ote: We will endeavour to prioritise samples to complete analysis within olding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

f sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

∢	The sample was received in an inappropriate container for this analysis
Ω	The sample was received without the correct preservation for this analysis
ပ	Headspace present in the sample container
	The sampling date was not supplied so holding time may be compromised - applicable to all analysis
Ш	Sample processing did not commence within the appropriate holding time
ш	Sample processing did not commence within the appropriate handling time

Deviating Sample Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered Analysis Subcontracted - Note: due date may vary No analysis scheduled Analysis Required

Requested Analysis Key

Where individual results are flagged see report notes for status.

Page 23 of 25 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S72259

SOCOTEC UK Limited Deeside

Customer

Site

E8013 - G.O.S.H

S183175

Report No

Date Logged 15-Feb-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days. In-House Report Due 22-Feb-2018

SFAPI	Cyanide(Total) (AR)	>		
PHSOIL	pH units (AR)	>	ш	ш
PCBECD	PCB-7 Congeners Analysis	>	ш	ш
	PAH (17) by GCMS	>		
PAHMSUS	PAH (16) by GCMS	>		
ORGMAT	Organic Matter %			
KONECR	Chromium vi:	>		
	Zinc (MS)	>		
	Selenium (MS)	>		
	Nickel (MS)	>		
	Mercury (MS)	>		
	Lead (MS)	>		
	Copper (MS)	>		
	Chromium (MS)	>		
	Cadmium (MS)			
ICPMSS	Arsenic (MS)			
ICPBOR	Boron (H20 Soluble)	>		
ICPACIDS	SO4 (acid sol)	>		
CustServ	REPORT A			
	CEN Leac(P)2	>		
CEN Leachate	CEN Leac(P)1	>		
	MTBE (μg/kg)		Ш	
	BTEX-HSA Analysis		В	ш
BTEXHSA	BTEX-HSA + MTBE analysis	>	Е	Ш
AMMAR	Exchange.Ammonium AR	>		
QIP	pel		31/01/18	31/01/18
MethodID	Sampled		31/0	31/0
	<u> </u>		L	
	ion			
	Description			
	Des		1.80	2.70
			WS05 1.80	WS05 2.70
			×	×
	ber		_	ر.
	ID Number		CL/1894181	CL/1894182
	□		3 <u>L</u> /18	31/18
		_		_

ote: We will endeavour to prioritise samples to complete analysis withir olding time; however any delay could result in samples becoming leviant whilst being processed in the laboratory.

Deviating Sample Key

f sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Redn	Requested Analysis Key
	Analysis Required
	Analysis dependant upon trigger result - Note: due d
	No analysis scheduled
<	Analysis Subcontracted - Note: due date may vary

Note: due date may be affected if triggered

Where individual results are flagged see report notes for status.

Page 24 of 24 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S72259

SOCOTEC UK Limited Deeside

Customer

E8013 - G.O.S.H

Site

Date Logged 15-Feb-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days. In-House Report Due 22-Feb-2018 S183175 Report No

and working or					
	WSLM59	Total Organic Carbon	>		
to all additional	VOCHSAS	VOC HSA-GCMS	^	ш	В
5		TPH Carbon Banding.	^	ш	Ε
		TPH by GCFID (AR)	^	ш	В
ים במונים שף	TPHFIDUS	TPH Band (>C10-C40)	^	ш	
	TMSS	Tot.Moisture @ 105C			
	svocsw	SVOC (AR)	^	ш	Ξ
,	Sub020	^Asbestos ID (Stage 1)	^		
	SFAPI	Phenol Index.(AR)	^		
(1901)	MethodID	Sampled		31/01/18	31/01/18
search and season acted and for fractions and		Description		WS05 1.80	WS05 2.70
Commence of the commence of th		ID Number		CL/1894181	CL/1894182

The sample was received without the correct preservation for this analysis The sample was received in an inappropriate container for this analysis Deviating Sample Key

ote: We will endeavour to prioritise samples to complete analysis withi

olding time; however any delay could result in samples becoming

leviant whilst being processed in the laboratory.

sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to

provide missing information in order to reinstate accreditation.

Headspace present in the sample container

The sampling date was not supplied so holding time may be compromised - applicable to all analysis

Sample processing did not commence within the appropriate handling time

Sample processing did not commence within the appropriate holding time

Analysis dependant upon trigger result - Note: due date may be affected if triggered Analysis Subcontracted - Note: due date may vary No analysis scheduled Analysis Required

Requested Analysis Key

Where individual results are flagged see report notes for status.

Page 25 of 25he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
PAHMSUS	CL1894175	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted to improve the signal to noise ratio but in doing so, the detection limit for this test has been elevated.
SVOCSW	CL1894166 CL1894176	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted to improve the signal to noise ratio but in doing so, the detection limit for this test has been elevated.
VOCHSAS		The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Chloromethane) . These circumstances should be taken into consideration when utilising the data.
VOCHSAS	CL1894167 TO CL1894174 CL1894176 TO CL1894182	Due to matrix interference, the Internal Standard recovery for this Test is below the required QMS specification. This has been confirmed by historic data. All other Laboratory Process Controls meet the requirements of the QMS unless otherwise stated. These circumstances should be taken into consideration when utilising the data.
BTEXHSA	CL1894176	Due to matrix interference, the Internal Standard recovery for this Test is below the required QMS specification. This has been confirmed by repeating the analysis. All other Laboratory Process Controls meet the requirements of the QMS unless otherwise stated. These circumstances should be taken into consideration when utilising the data.

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	AMMAR	As Received	Determination of Exchangeable Ammonium in Soil using potassium
			chloride extraction, discrete colorimetric detection
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes
			(BTEX) by Headspace GCFID
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPBOR	Oven Dried	Determination of Boron in soil samples by hot water extraction
		@ < 35°C	followed by ICPOES detection
Soil	ICPMSS	Oven Dried	Determination of Metals in Marine Sediments and Soil samples by
		@ < 35°C	aqua regia digestion followed by ICPMS detection
Soil	KONECR	Oven Dried	Determination of Chromium vi in soil samples by water extraction
		@ < 35°C	followed by colorimetric detection
Soil	ORGMAT	Oven Dried	Acid Dichromate oxidation of the sample followed by colorimetric
		@ < 35°C	analysis of the extract
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB)
			congeners/aroclors by hexane/acetone extraction followed by
			GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	SVOCSW	As Received	Determination of Semi-Volatile Organic Compounds by
			dichloromethane/acetone extraction followed by GCMS detection
			, , , , , , , , , , , , , , , , , , , ,
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
			oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection.
Soil	VOCHSAS	As Received	Determination of Volatile Organic Compounds (VOC) by
			Headspace GCMS
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
		1.5 1.655.764	ICPOES
			10.00

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective
			Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non-
			dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite

TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 29 of 29 EFS/183175 Ver. 1

Sample Descriptions

Client : SOCOTEC UK Limited Deeside

 Site :
 E8013 - G.O.S.H

 Report Number :
 S18_3175

Note: major constituent in upper case

CL/1894166 BH01 ES 4 0.50 Brow CL/1894167 BH01 ES 9 2.00 S CL/1894168 BH01 ES 11 3.00 C CL/1894169 BH02 ES 5 1.00 S CL/1894170 WS01 ES 1 0.25 S CL/1894171 WS01 ES 18 4.50 C CL/1894172 WS02 ES 9 1.70 Brow CL/1894173 WS03 ES 4 0.50 Brow	scription vn SAND SAND CLAY GAND
CL/1894166 BH01 ES 4 0.50 Brow CL/1894167 BH01 ES 9 2.00 S CL/1894168 BH01 ES 11 3.00 C CL/1894169 BH02 ES 5 1.00 S CL/1894170 WS01 ES 1 0.25 S CL/1894171 WS01 ES 18 4.50 C CL/1894172 WS02 ES 9 1.70 Brow CL/1894173 WS03 ES 4 0.50 Brow	vn SAND SAND CLAY SAND
CL/1894167 BH01 ES 9 2.00 S CL/1894168 BH01 ES 11 3.00 C CL/1894169 BH02 ES 5 1.00 S CL/1894170 WS01 ES 1 0.25 S CL/1894171 WS01 ES 18 4.50 C CL/1894172 WS02 ES 9 1.70 Brow CL/1894173 WS03 ES 4 0.50 Brow	SAND CLAY SAND
CL/1894168 BH01 ES 11 3.00 C CL/1894169 BH02 ES 5 1.00 S CL/1894170 WS01 ES 1 0.25 S CL/1894171 WS01 ES 18 4.50 C CL/1894172 WS02 ES 9 1.70 Brow CL/1894173 WS03 ES 4 0.50 Brow	CLAY SAND
CL/1894169 BH02 ES 5 1.00 S CL/1894170 WS01 ES 1 0.25 S CL/1894171 WS01 ES 18 4.50 C CL/1894172 WS02 ES 9 1.70 Brow CL/1894173 WS03 ES 4 0.50 Brow	SAND
CL/1894169 BH02 ES 5 1.00 S CL/1894170 WS01 ES 1 0.25 S CL/1894171 WS01 ES 18 4.50 C CL/1894172 WS02 ES 9 1.70 Brow CL/1894173 WS03 ES 4 0.50 Brow	SAND
CL/1894170 WS01 ES 1 0.25 S CL/1894171 WS01 ES 18 4.50 C CL/1894172 WS02 ES 9 1.70 Brow CL/1894173 WS03 ES 4 0.50 Brow	
CL/1894171 WS01 ES 18 4.50 C CL/1894172 WS02 ES 9 1.70 Brow CL/1894173 WS03 ES 4 0.50 Brow	SAND
CL/1894172 WS02 ES 9 1.70 Brow CL/1894173 WS03 ES 4 0.50 Brow	CLAY
CL/1894173 WS03 ES 4 0.50 Brow	DLAT
	vn CLAY
CL/1894174 WS03 ES 14 2.80 Brow	vn SAND
	vn CLAY
CL/1894175 WS04 ES 9 0.05 O	THER
	vn SAND
CL/1894176 WS04 ES 4 0.50 Brow	WI SAND
CL/1894177 WS04 ES 12 1.70	CLAY
	CLAY
	CLAY
CL/1894180 WS05 ES 7 1.00 S	SAND
CL/1894181 WS05 ES 11 1.80 Brow	vn CLAY
CL/1894182 WS05 ES 14 2.70 S	SAND
CL/1094102 WS05 ES 14 2.70	DAIND

Appendix A Page 1 of 1 27/02/2018EFS/183175 Ver. 1

TEST REPORT

Report No. EFS/183180 (Ver. 1)

SOCOTEC UK Limited Deeside Unit 18 Drome Road Deeside Industrial Park Deeside Flintshire CH5 2NY

Site: E8013 - G.O.S.H

The 4 samples described in this report were registered for analysis by SOCOTEC UK Limited on 15-Feb-2018. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 27-Feb-2018

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 13)
Table of TPH Texas banding (std) (Page 14)
Table of WAC Analysis Results (Page 15)
Subcontracted Analysis Reports (Pages 16 to 17)
The accreditation status of subcontracted analysis is displayed on the appended subcontracted analysis reports.
Analytical and Deviating Sample Overview (Pages 18 to 19)
Table of Additional Report Notes (Page 20)
Table of Method Descriptions (Pages 21 to 22)
Table of Report Notes (Page 23)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes

es Operations Director Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected. SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 27-Feb-2018

		Units:		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg	µg/kg	µg/kg
	: Mothod Boosting I imits	od Codes :	₹	ICPACIDS	ICPBOR	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS	ICPMSS			+	+	PCBECD
	memod report	ocroditod .	6.0	07	0.0 SeX	0.0 Sec. 2	- N	6.0	6.0	6.0	- o	6.0 Sec. V	C.O.	د ۲	0.00		200	20
	A CANO	ccredited :		S D	r as	T CES	£	S D L	Sub	S D	S C C	S U	S D L	S D L	S D	S	S D	N D
LAB ID Number CL/	Client Sample Description	Sample Date	Exchange.Ammonium AR	SO4 (acid sol)	Boron (H20 Soluble)	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	Naphthalene	PCB 101	PCB 118	PCB 138
1894231	WS06 ES 4 0.50	30-Jan-18	<0.5	1580	1.7	12.5	0.15	25.1	37.6	224.2	0.95	19.9	<0.5	6.08	< 0.08	< 5.00	< 5.00	< 5.00
1894232	WS06 ES 7 1.00	30-Jan-18	<0.5	1150	4.1	16.4	0.16	19.2	33.7	931.4	1.39	20.3	<0.5	127	< 0.08	< 5.00	< 5.00	< 5.00
1894233	WS06 ES 11 1.80	30-Jan-18	<0.5	901	1.2	16.4	0.18	22.8	47.7	576.2	2.56	22.6	<0.5	93	< 0.08	< 5.00	< 5.00	< 5.00
1894234	WS06 ES 16 3.70	30-Jan-18	79.8	693	2.4	8.2	0.11	87.4	23.4	46.9	0.3	62.5	<0.5	42.5	< 0.08	< 5.00	< 5.00	< 5.00
41	SOCOTEC		Client Name	ame	SOCOT	SOCOTEC UK Limited Deeside	mited De	eside					Samp	Sample Analysis	ysis			
			Contact		Mark Hamill	II.												
ш	Bretby Business Park, Ashby Road											Date Printed	ted		-72	27-Feb-2018		
ш	Burton-on-Trent, Staffordshire, DE15 0YZ											Report Number	nmper		EF	EFS/183180		
	Tel +44 (0) 1283 554400					E8013 -		E.0.0.5			1.	Table Number	nber			-		
	Fax +44 (0) 1283 554422																	

		Units:	ug/kg	ua/ka	ua/ka	ua/ka	pH Units	mg/kg	ma/ka		-	_	_	_	_	_		ma/ka
	Meth	Method Codes:	Ъ	PCBECD	PCBECD	PCBECD	PHSOIL	SFAPI	SFAPI	Sub020	NS.	SW	SW.	SW.	SW.	SW	SW.	SVOCSW
	Method Reporting Limits:	ing Limits:	5	2	5	2		0.5	0.5		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	UKAS A	Accredited:		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LAB ID Number CL/	Client Sample Description	Sample Date	PCB 153	PCB 180	PCB 28	PCB 52	pH units (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID (Stage 1)	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol
1894231	WS06 ES 4 0.50	30-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	8.9	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894232	WS06 ES 7 1.00	30-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	8.9	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894233	WS06 ES 11 1.80	30-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	8.4	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
1894234	WS06 ES 16 3.70	30-Jan-18	< 5.00	< 5.00	< 5.00	< 5.00	8.2	<0.5	<0.5	NAIIS	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100
	SOCOTEC		Client Name	ame	SOCOT	EC UK L	SOCOTEC UK Limited Deeside	eside					Samp	Sample Analysis	ysis			
			Contact		Mark Hamill	III												
ш	Bretby Business Park, Ashby Road											Date Printed	pe		27-	27-Feb-2018		
	Burton-on-Trent, Staffordshire, DE15 0YZ					7007					<u> </u>	Report Number	ımber		EF	EFS/183180		
	Tel +44 (0) 1283 554400					E8013	r	G.O.V.H			1-	Table Number	nber			-		
	E>> +44 (0) 4283 654422										1							
	FAX 144 (U) 1500 007726										1		1					

SOCOLEC		
	Contact	Mark Hamill
Bretby Business Park, Ashby Road		
Burton-on-Trent, Staffordshire, DE15 0YZ		
Tel +44 (0) 1283 554400		E0012 - G
Exx ±44 (0) 1080 664400		

 mg/kg
 mg/kg
 mg/kg
 mg/kg
 mg/kg
 mg/kg

 SVOCSW
 SVOCSW
 SVOCSW
 SVOCSW
 SVOCSW

 0.5
 0.1
 0.1
 0.1
 0.2

 Yes
 Yes
 Yes
 Yes
 Yes

 mg/kg
 NGCSW
 SVOCSW
 SVOCSW
 NGCSW
 <

Units:

Method Codes:

Method Reporting Limits:

UKAS Accredited:

< 0.200 < 0.200 < 0.200 < 0.200

0.102

< 0.100 < 0.100 < 0.100 < 0.100

< 0.100 < 0.100

< 0.500 < 0.500 < 0.500 < 0.500

< 0.100 < 0.100 < 0.100 < 0.100

< 0.100

< 0.100 < 0.100 < 0.100 < 0.100

< 0.100

< 0.100

< 0.100

< 0.100 < 0.100

< 0.500 < 0.500 < 0.500 < 0.500

< 0.200 < 0.200

30-Jan-18 30-Jan-18 30-Jan-18 30-Jan-18

< 0.100

< 0.100 < 0.100 < 0.100

< 0.100 < 0.100

< 0.100 < 0.100

> < 0.100 < 0.100

< 0.100

< 0.100

< 0.100

< 0.100 < 0.100 < 0.100

> < 0.100 < 0.100

> > < 0.100 < 0.100

< 0.100

< 0.200 < 0.200

WS06 ES 11 1.80 WS06 ES 16 3.70

1894233 1894234

1894231 1894232

WS06 ES 7 1.00 WS06 ES 4 0.50

< 0.100

< 0.100

< 0.100

< 0.100 < 0.100

< 0.100

Benzo(a)anthracene

Anthracene

Acenaphthylene

Acenaphthene

4-Chlorophenyl-phenylether

4-Chlorophenol

4-Chloro-3-methylphenol

4-Bromophenyl-phenylether

3- & 4-Methylphenol

2-Nitrophenol

2-Methylphenol

2-Methylnaphthalene

2-Chlorophenol

2-Chloronaphthalene

2,6-Dinitrotoluene

2,4-Dinitrotoluene

Sample Date

Client Sample Description

LAB ID Number CL/

mg/kg SVOCSW		Yes	Dimethylphthalate	< 0.100	< 0.100	< 0.100	< 0.100														
mg/kg SVOCSW	0.1	Yes	Diethylphthalate	< 0.100	< 0.100	< 0.100	< 0.100														
mg/kg SVOCSW	0.1	Yes	Dibenzofuran	< 0.100	< 0.100	< 0.100	< 0.100											27-Feb-2018	EFS/183180	-	
mg/kg SVOCSW	0.5	Yes	Dibenzo(ah)anthracene	< 0.500	< 0.500	< 0.500	< 0.500									lysis		27	Ė		
mg/kg SVOCSW	0.1	Yes	Chrysene	0.250	< 0.100	< 0.100	< 0.100									Sample Analysis					
mg/kg SVOCSW	0.2	Yes	Butylbenzylphthalate	< 0.200	< 0.200	< 0.200	< 0.200									Sam		nted	umber	mber	
mg/kg SVOCSW	0.2	Yes	bis(2-Ethylhexyl)phthalate	< 0.200	< 0.200	< 0.200	< 0.200											Date Printed	Report Number	Table Number	
mg/kg SVOCSW	0.5	Yes	bis(2-Chloroisopropyl)ether	< 0.500	< 0.500	< 0.500	< 0.500														
mg/kg SVOCSW	0.1	Yes	bis(2-Chloroethyl)ether	< 0.100	< 0.100	< 0.100	< 0.100														
mg/kg SVOCSW	0.1	Yes	bis(2-Chloroethoxy)methane	< 0.100	< 0.100	< 0.100	< 0.100														
mg/kg SVOCSW	0.1	Yes	Biphenyl	< 0.100	< 0.100	< 0.100	< 0.100									ted Deeside				G.O.V.R	
mg/kg SVOCSW	0.5	Yes	Benzyl alcohol	< 0.500	< 0.500	< 0.500	< 0.500									imited De				•	
mg/kg SVOCSW	0.2	Yes	Benzo(k)fluoranthene	< 0.200	< 0.200	< 0.200	< 0.200									SOCOTEC UK Limi	≡			E8013	
mg/kg SVOCSW	0.5	Yes	Benzo(ghi)perylene	< 0.500	< 0.500	< 0.500	< 0.500									SOCOT	Mark Hamill				
mg/kg SVOCSW	0.2	Yes	Benzo(b)fluoranthene	0.287	< 0.200	< 0.200	< 0.200									ame					
mg/kg SVOCSW			Benzo(a)pyrene	0.223	< 0.200	< 0.200	< 0.200									Client Name	Contact				
Units :	ing Limits:	UKAS Accredited:	Sample Date	30-Jan-18	30-Jan-18	30-Jan-18	30-Jan-18														
Units : Method Codes :	Method Reporti	UKAS A	Client Sample Description	WS06 ES 4 0.50	WS06 ES 7 1.00	WS06 ES 11 1.80	WS06 ES 16 3.70									SOCOTEC		Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400	Fax +44 (0) 1283 554422
			LAB ID Number CL/	1894231	1894232	1894233	1894234														

Report Number

Date Printed

Table Number

E8013 - G.O.S.H

Sample Analysis

mg/kg mg/kg
TPHFIDUS TPHFIDUS
10 10 Yes

TMSS 0.1 Yes

 mg/kg
 <th

Units:

Method Codes:

Method Reporting Limits:

UKAS Accredited:

15 9

< 0.200 < 0.200

< 0.100 < 0.100

< 0.200 0.532

> < 0.100 0.118 < 0.100

< 0.100

< 0.100 < 0.100

< 0.100 < 0.100 < 0.100

> < 0.100 < 0.100

< 0.200 < 0.200

> < 0.200 < 0.200

< 0.100

< 0.100

< 0.200

WS06 ES 16 3.70 WS06 ES 11 1.80 WS06 ES 7 1.00 WS06 ES 4 0.50

> 1894233 1894234

1894231 1894232

< 0.200 0.680

< 0.100

< 0.100

< 0.200

161 22

161

21.2

< 0.100 < 0.100

0.285

< 0.500 < 0.500 < 0.500 < 0.500

< 0.100

< 0.500 < 0.500 < 0.500 < 0.500

< 0.100

< 0.200

< 0.100 < 0.100

< 0.200 < 0.200 < 0.200

< 0.100 < 0.100 < 0.100 < 0.100

30-Jan-18 30-Jan-18 30-Jan-18 30-Jan-18

TPH by GCFID (AR)

TPH Band (>C10-C40)

Tot.Moisture @ 105C

Pyrene

Phenol

Phenanthrene

Nitrobenzene

Naphthalene

Indeno(123-cd)pyrene

Hexachloroethane

Hexachlorobenzene

Fluorene

Fluoranthene

Diphenyl Ether

Di-n-octylphthalate

Di-n-butylphthalate

Sample Date

Client Sample Description

LAB ID Number CL/

Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400
3retby Bus	3urton-on-	Tel +44 (

Fax +44 (0) 1283 554422

SOCOTEC UK Limited Deeside

Client Name

Mark Hamill

Contact

SOCOTEC

Bretby Burton

hg/kg hg/kg	1		1,3-Dichlorobenzene	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	1.0 < 1.0								-					
yochsas voc	-		1,2-Dichloropropane	> 1.0 >	> 1.0 >	< 1.0 <	> 1.0 >										27-Feb-2018	EFS/183180	,	
yochsas vo	-	Yes	1,2-Dichloroethane	< 1.0	< 1.0	< 1.0	< 1.0								ysis		27-Fe	EFS/		
µg/kg VOCHSAS	_	Yes	1,2-Dichlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0								Sample Analysis					_
LIG/Kg	1	Yes	1,2-Dibromoethane	< 1.0	< 1.0	< 1.0	< 1.0								Sam		nted	Number		2
µg/kg S VOCHSAS	-	Yes	1,2,4-Trimethylbenzene	< 1.0	< 1.0	< 1.0	< 1.0										Date Printed	Report Number	: :	2
hg/kg	-	Yes	1,2,3-Trichloropropane	< 1.0	< 1.0	< 1.0	< 1.0								-					
g µg/kg	က		1,2,3-Trichlorobenzene	> 3.0	< 3.0	< 3.0	< 3.0								-					
kg µg/kg	-		1,1-Dichloropropene	.0 < 1.0	.0 < 1.0	.0 < 1.0	1.0 < 1.0								a			=		
'kg µg/kg	_		1,1-Dichloroethane	1.0 < 1.0	1.0 < 1.0	1.0 < 1.0	1.0 < 1.								d Deesid				כיי	
yochsas yochsas	1	>	1,1-Dichloroethane	< 1.0 < 1	< 1.0 < 1	< 1.0	< 1.0 < 1								UK Limite				ı	
JHSAS VOC	_		1,1,1-Trichloroethane	< 1.0	< 1.0	< 1.0	< 1.0								SOCOTEC UK Limited Deeside	Mark Hamill		L		
hg/kg L	-		1,1,1,2-Tetrachloroethane	> 1.0	> 1.0	> 1.0	> 1.0									Mė				
mg/kg µg/kg µg/kg TPHFIDUS VOCHSAS VOCHSAS	10	Yes	TPH Carbon Banding.	Req	Req	Red	Req								Client Name	Contact				
		UKAS Accredited :	Sample Date	30-Jan-18	30-Jan-18	30-Jan-18	30-Jan-18													
Meth	Method Reporting Limits:	UKASA	UKAS A	WS06 ES 4 0.50	WS06 ES 7 1.00	WS06 ES 11 1.80	WS06 ES 16 3.70								SOCOTEC		Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ		FOL +44 /0\ 1083 EE4400
			LAB ID Number CL/	1894231	1894232	1894233	1894234								(V)		- E	ã		

y/kg HSAS	3	Yes	Chloromethane	3.0*	3.0*	3.0*	3.0*														
AS VOC		>		V	V	V	V														
hg/kg VOCHS,	-	Yes	Chloroform	< 1.0	< 1.0	< 1.0	< 1.0												ı		
NOC	2	Yes	Chloroethane	< 2.0	< 2.0	< 2.0	< 2.0											27-Feb-2018	EFS/183180	-	
µg/kg VOCHSAS	1	Yes	Chlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0									lysis		27	ä		
µg/kg VOCHSAS	-	Yes	Carbon Tetrachloride	< 1.0	< 1.0	< 1.0	< 1.0									Sample Analysis					
µg/kg VOCHSAS	1	Yes	Bromomethane	< 1.0	< 1.0	< 1.0	< 1.0									Samp		ted	umber	mber	
µg/kg VOCHSAS	1	Yes	Bromoform	< 1.0	< 1.0	< 1.0	< 1.0											Date Printed	Report Number	Table Number	
µg/kg µg/kg <th< th=""><th>-</th><th>Yes</th><th>Bromodichloromethane</th><th>< 1.0</th><th>< 1.0</th><th>< 1.0</th><th>< 1.0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	-	Yes	Bromodichloromethane	< 1.0	< 1.0	< 1.0	< 1.0														
µg/kg VOCHSAS	-	Yes	Bromochloromethane	< 1.0	< 1.0	< 1.0	< 1.0														
µg/kg VOCHSAS	-	Yes	Bromobenzene	< 1.0	< 1.0	< 1.0	< 1.0														
µg/kg VOCHSAS	-	Yes	Benzene	< 1.0	< 1.0	< 1.0	< 1.0									d Deeside				E.0.0.5	
μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg μg/kg VOCHSAS VOCHSAS VOCHSAS VOCHSAS VOCHSAS VOCHSAS	,	Yes	4-Chlorotoluene	< 1.0	< 1.0	< 1.0	< 1.0									imited De				•	
µg/kg VOCHSAS	,	Yes	2-Chlorotoluene	< 1.0	< 1.0	< 1.0	< 1.0									SOCOTEC UK Limite	llir				
µg/kg VOCHSAS	-	Yes	2,2-Dichloropropane	< 1.0	< 1.0	< 1.0	< 1.0									SOCOT	Mark Hamill				
µg/kg VOCHSAS	,	Yes	1,4-Dichlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0									ame					
		Yes	1,3-Dichloropropane	< 1.0	< 1.0	< 1.0	< 1.0									Client Name	Contact				
Units:	ing Limits:	UKAS Accredited:	Sample Date	30-Jan-18	30-Jan-18	30-Jan-18	30-Jan-18														
Units : Method Codes :	Method Report	UKAS A	Client Sample Description	WS06 ES 4 0.50	WS06 ES 7 1.00	WS06 ES 11 1.80	WS06 ES 16 3.70									SOCOTEC		Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400	Fax +44 (0) 1283 554422
			LAB ID Number CL/	1894231	1894232	1894233	1894234									V)		m .	Δ.	-	

Report Number

Date Printed

Table Number

Sample Analysis

	SOCOTEC UK Limited Deeside	Mark Hamill			E00.0:0:0	
	Client Name	Contact				
	SOCOTEC		Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400	Fax +44 (0) 1283 554422

 µg/kg
 <th

Units:

Method Codes:

Method Reporting Limits:

UKAS Accredited:

< 1.0 < 1.0 < 1.0

< 1.0 < 1.0 < 1.0

< 1.0

< 1.0

< 5.0

< 5.0 0.9

× 1.0

< 1.0 < 1.0 < 1.0 < 1.0

< 1.0 < 1.0

< 1.0 < 1.0 < 1.0 < 1.0

< 2.0

< 1.0 < 1.0 < 1.0 < 1.0

< 5.0

< 1.0 < 1.0 < 1.0 < 1.0

< 4.0 < 4.0 < 4.0 < 4.0

< 1.0 < 1.0 < 1.0 < 1.0

< 2.0

< 1.0 < 1.0 < 1.0 < 1.0

< 1.0 < 1.0 < 1.0 < 1.0

< 1.0 < 1.0 < 1.0 < 1.0

< 5.0 < 5.0

30-Jan-18 30-Jan-18 30-Jan-18 30-Jan-18

< 5.0

WS06 ES 11 1.80 WS06 ES 16 3.70 WS06 ES 7 1.00 WS06 ES 4 0.50

> 1894233 1894234

1894231 1894232 < 5.0

< 2.0 < 2.0 < 2.0

< 2.0 < 2.0 < 2.0

tert-Butylbenzene

Styrene

sec-Butylbenzene

Propylbenzene

p-Isopropyltoluene

o-Xylene

n-Butylbenzene

Naphthalene

MTBE

m and p-Xylene

iso-Propylbenzene

Ethylbenzene

Dibromomethane

Dibromochloromethane

cis 1,3-Dichloropropene

cis 1,2-Dichloroethene

Sample Date

Client Sample Description

LAB ID Number CL/

, Ashby Road	fordshire, DE15 0YZ	4400	4422	

	Units:	hg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg		mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Method Codes:		VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	29	-	Ι	_	-	_	SVOCSW	_	SVOCSW
	Method Reporting Limits:		2	-	1	1	1	-	0.02	0.1	0.1	0.1	0.5	0.5	14.5	0.2	0.5
	UKAS Accredited :	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	No	9 N	N _o	No	No	No
				tı	tr		1									4,	
LAB ID Number CL/	Client Sample Description	Tetrachloroethene	Toluene	rans 1,2-Dichloroethene	ans 1,3-Dichloropropene	Trichloroethene	Trichlorofluoromethane	Vinyl Chloride	Total Organic Carbon	Chromium vi:	Organic Matter %	1,2,4-Trichlorobenzene	2,4-Dinitrophenol	2-Nitroaniline	3-Nitroaniline	6-Dinitro-2-methylphenol	4-Chloroaniline
1894231	WS06 ES 4 0.50 30-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0*	1.08	<0.1	1.8	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894232	WS06 ES 7 1.00 30-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0*		<0.1	1.6	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894233	WS06 ES 11 1.80 30-Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0*		<0.1	1.8	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
1894234	WS06 ES 16 3.70 30Jan-18	< 3.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0*		<0.1	1.9	< 0.100	< 0.500	< 0.500	< 14.5	< 0.200	< 0.500
										T							
	SOCOTEC	Client Name	lame	SOCOT	SOCOTEC UK Limit	eq	Deeside					Samp	Sample Analysis	lysis			
)	Contact		Mark Hamill	III.												
	Bretby Business Park, Ashby Road									-	Date Printed	ted		27.	27-Feb-2018		
	Burton-on-Trent, Staffordshire, DE15 0YZ				E8012					-	Report Number	ımber		EF	EFS/183180		
	Tel +44 (0) 1283 554400						5.5				Table Number	nber			1		
	Fax +44 (0) 1283 554422																

	Units :	Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg
	Method	Codes:	SVOCSW	-	-	-	-	-	-	SVOCSW	-			VOCHSAS	VOCHSAS	VOCHSAS	VOCHSAS	BTEXHSA
	Method Reporting	Limits:		0.5	0.5	0.3	0.1	0.1	0.1	6.0	0.1	0.5	1	က	1	1	2	10
	UKAS Accr	edited:	8	No	No No	9	9V	No	S N	No	<u>8</u>	8	No No	No	8	No	No	Yes
LAB ID Number CL/	Client Sample Description	Sample Date	4-Nitroaniline	4-Nitrophenol	Benzoic Acid	Coronene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Isophorone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	1,1,2,2-Tetrachloroethane	1,2,4-Trichlorobenzene	1,2-Dibromo-3-chloropropane	Dichlorodifluoromethane	Hexachlorobutadiene	Benzene
1894231	WS06 ES 4 0.50 34	30-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0*	< 2.0	<10
1894232	WS06 ES 7 1.00	30-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0*	< 2.0	<10
1894233	WS06 ES 11 1.80	30-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0*	< 2.0	<10
1894234	WS06 ES 16 3.70	30-Jan-18	< 0.600	< 0.500	< 0.500	< 0.300	< 0.100	< 0.100	< 0.100	< 0.900	< 0.100	< 0.500	< 1.0	< 3.0	< 1.0	< 1.0*	< 2.0	<10
	SOCOTEC		Client Name	me	SOCOT	SOCOTEC UK Limited	mited De	Deeside	1			1	Samp	Sample Analysis	lysis			
			Contact		Mark Hamill	=												
	Bretby Business Park, Ashby Road	<u> </u>										Date Printed	ted		27-	27-Feb-2018		
	Burton-on-Trent, Staffordshire, DE15 0YZ											Report Number	umber		EF	EFS/183180		
	Tel +44 (0) 1283 554400				_			E.0.0.5			•	Table Number	mber			-		
	Fax +44 (0) 1283 554422																	

Report Number

Date Printed

Table Number

Sample Analysis

ark, Ashby Road Staffordshire, DE15 0YZ 3 554400 3 554422	

E8013 - G.O.S.H

SOCOTEC UK Limited Deeside

Client Name

Mark Hamill

Contact

Harring Harrin

Units:

Method Codes:

Method Reporting Limits:

UKAS Accredited:

< 0.08 < 0.08 < 0.08 < 0.08

< 0.08

< 0.08

0.39 0.13 0.14

< 0.08 0.13 0.29

< 0.08

0.08

< 0.08

< 0.08

< 0.08

<10 <10 <10 <10

<20 <20 <20 <20

<30 <30 <30 <30

<20

<10

<10

30-Jan-18 30-Jan-18 30-Jan-18 30-Jan-18

410 <10 410

<10 <10

<10

WS06 ES 16 3.70 WS06 ES 11 1.80 WS06 ES 7 1.00 WS06 ES 4 0.50

> 1894233 1894234

1894231 1894232

0.12 0.26

0.11 0.30

< 0.08 < 0.08 < 0.08

< 0.08

< 0.08 < 0.08 < 0.08

< 0.08 < 0.08

0.10 0.28

< 0.08 0.10 < 0.08

< 0.08

< 0.08

< 0.08

< 0.08

< 0.08

Dibenzo(ah)anthracene

Chrysene

Benzo(k)fluoranthene

Benzo(ghi)perylene

Benzo(b)fluoranthene

Benzo(a)pyrene

Benzo(a)anthracene

Anthracene

Acenaphthylene

Acenaphthene

o Xylene

m/p Xylenes

Xylenes

MTBE

Ethyl Benzene

Toluene

Sample Date

Client Sample Description

LAB ID Number CL/

Bretby Business F Burton-on-Trent, 8 Tel +44 (0) 128: Fax +44 (0) 128

																alysis		27-Feb-2018	EFS/183180	-	
																Sample Analysis		Date Printed	Report Number	Table Number	
																		۵	∝	F	
mg/kg	PAHMSUS	0.00	00	Coronene	0.13															_	
mg/kg	PAHMSUS 1 28	02.1	res	Total PAH (Sum of USEPA 16)	< 1.67	< 1.58	< 3.37	< 1.28								eeside			ייט ט ט	<u>-</u>	
mg/kg	PAHMSUS	0.00 Vos	res	Pyrene	0.10	0.12	0.48	< 0.08								SOCOTEC UK Limited Deeside			- 1	•	
mg/kg	PAHMSUS		Yes	Phenanthrene	0.09	0.08	0.30	< 0.08								TEC UK I	mill		E8012		
mg/kg	PAHMSUS	0.00 Voc	res	Indeno(123-cd)pyrene	0.08	60.0	0.16	< 0.08								.ooos	Mark Hamill				
mg/kg	PAHMSUS	0.00 Voc	res	Fluorene	< 0.08	< 0.08	< 0.08	< 0.08								ame					
mg/kg	PAHMSUS		res	Fluoranthene	0.13	0.13	0.57	< 0.08								Client Name	Contact				
Units:	od Codes :	ing Emilies .	ccredited :	Sample Date	30-Jan-18	30-Jan-18	30-Jan-18	30-Jan-18													
:	Mothod Boosting I mite:	Nodey politerii	UNAS	Client Sample Description	WS06 ES 4 0.50	WS06 ES 7 1.00	WS06 ES 11 1.80	WS06 ES 16 3.70								SOCOTEC		Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400	
				LAB ID Number CL/	1894231	1894232	1894233	1894234								VI		ш	ш		

Where individual results are flagged see report notes for status.

Page 14 of 23

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

SOCOTEC UK Limited Deeside: E8013 - G.O.S.H **Customer and Site Details:**

S18_3180

QC Batch Number:

Directory:

Job Number:

D:\TES\DATA\Y2018\021918TPH_GC17\021918 2018-02-19 15-15-04\B-047-90-CL1894234.D

15-Feb-18 19-Feb-18 20-Feb-18, 00:11:10 Date Booked in: Date Extracted: Date Analysed: Matrix:

* Sample data with an asterisk are not UKAS accredited.

								_					 	
	>C21 - C35	83	33.9	11.3	7.49									
wet weight	>C16 - C21	70.5	16	3.27	<2									
Concentration, (mg/kg) - as wet weight	>C12 - C16	6.94	<2	<2	<2									
Concentra	>C10 - C12	<2*	<2*	<2*	<2*									
	>C8 - C10	<2	<2	<2	<2									
	Client ID	WS06 ES 4 0.50	WS06 ES 7 1.00	WS06 ES 11 1.80	WS06 ES 16 3.70									
	Sample ID	CL1894231	CL1894232	CL1894233	CL1894234									

WASTE ACCEPTANCE CRITERIA TESTING BSEN 12457/3

Client	SOCOTEC LIK Limited F	Dogoido			Leaching Data	
Cilent	SOCOTEC UK Limited [Deeside			Weight of sample (kg)	0.271
Contact	Mark Hamill				Moisture content @ 105°C (% of Wet Weight)	21.2
Contact	IVIAIK HAITIIII		Equivalent Weight based on drying at 105°C (kg)	0.225		
Site	E8013 - G.O.S.H				Volume of water required to carry out 2:1 stage (litres)	0.404
Site	E6013 - G.O.S.H				Fraction of sample above 4 mm %	35.200
San	ple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	0.000
10	'S06 ES 4 0.50	s18 3180	CL/1894231	27-Feb-18	Volume to undertake analysis (2:1 Stage) (litres)	0.300
VV	300 E3 4 0.50	\$10_3100	GL/1094231	21-560-10	Weight of Deionised water to carry out 8:1 stage (kg)	1.650

Note:	ıne	>4mm	traction	is crusnea	using a	aisc mili	

				Landfill Was	te Acceptance Cri	teria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
U	WSLM59	Total Organic Carbon (% M/M)	1.18	3	5	6
	LOI450	Loss on Ignition (%)				10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.07	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.042	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	204	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.3	100		
U	PHSOIL	pH (pH units)	8.9		>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	@ 2:1	Calculated cumulative amount leached @ 10:1		e Acceptance Crite N 12457/3 @ L/S 1 mg/kg (dry weig	· ·
				cept °°	mg/kg (dı	mg/kg (dry weight)			
U		pH (pH units) °°	12	11.8	Calculated data no	t LIKAS Accredited			
U	WSLM2	Conductivity (µs/cm) °°	4560	2070	Calculated data no	culated data not organ Accredited			
U	ICPMSW	Arsenic	0.002	0.001	0.004	0.01	0.5	2	25
U	ICPWATVAR	Barium	0.06	0.02	0.12	0.3	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
U	ICPMSW	Chromium	0.033	0.043	0.066	0.066 0.42		10	70
U	ICPMSW	Copper	0.049	0.02	0.098	0.098 0.24		50	100
U	ICPMSW	Mercury	<0.0001	<0.0001	<0.0002	<0.0002 <0.001		0.2	2
U	ICPMSW	Molybdenum	0.007	0.005	0.014	0.05	0.5	10	30
U	ICPMSW	Nickel	0.003	0.001	0.006	0.01	0.4	10	40
U	ICPMSW	Lead	0.009	0.002	0.018	0.03	0.5	10	50
U	ICPMSW	Antimony	0.002	0.002	0.004	0.02	0.06	0.7	5
U	ICPMSW	Selenium	0.001	<0.001	0.002	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.002	<0.002	0.004	<0.02	4	50	200
U	KONENS	Chloride	19	7	38	86	800	15000	25000
U	ISEF	Fluoride	2.2	<0.1	4.4			150	500
U	ICPWATVAR	Sulphate as SO4	4	10	8	92	1000	20000	50000
N	WSLM27	Total Dissolved Solids		1610			4000	60000	100000
U	SFAPI	Phenol Index	<0.05	<0.05	<0.1	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	11	3.5	22	45	500	800	1000

Template Ver

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Tests where the accreditation is set to U are UKAS accredited, those where the accreditation is set to N are not UKAS accredited

CERTIFICATE OF ANALYSIS

ANALYSIS REQUESTED BY:

SOCOTEC UK Ltd

CONTRACT NO: 57187-2

Environmental Chemistry

PROJECT NO: 610

PO Box 100 Burton upon Trent

Staffordshire

DATE OF ISSUE: 27.02.18

DE15 0XD

DATE SAMPLES RECEIVED: 19.02.18

DATE SAMPLES ANALYSED: 26.02.18

SAMPLE DESCRIPTION: Four soil/loose aggregate samples.

ANALYSIS REQUESTED: Qualitative analysis of samples for determination of presence/type of asbestos.

METHODS:

Our method involves initial examination of entire samples followed by detailed analysis of representative sub-samples. The sub-samples are analysed qualitatively for asbestos by polarised light and dispersion staining as described by the Health and Safety Executive in HSG 248.

RESULTS:

Initial Screening

No asbestos was detected in any of the soil samples by stereo-binocular and polarised light microscopy.

A summary of the results is given in Table 1.

CONTRACT NO: 57187-2
PROJECT NO: 610
DATE OF ISSUE: 27.02.18

RESULTS: (cont.)

Table 1: Qualitative Results

SOCOTEC Job I.D: S183180

IOM sample number	Client sample number	ACM type detected	PLM result
S54143	S1894231 WS06 0.50	-	No Asbestos Detected
S54144	S1894232 WS06 1.00	-	No Asbestos Detected
S54145	S1894233 WS06 1.80	-	No Asbestos Detected
S54146	S1894234 WS06 3.70	-	No Asbestos Detected

Our detection limit for this method is 0.001%.

COMMENTS:

IOM Consulting cannot accept responsibility for samples that have been incorrectly collected or despatched by external clients.

Any opinions and interpretations expressed herein are outwith the scope of our UKAS accreditation.

AUTHORISED BY:

D Third Scientific Technician

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Consignment No S72181

SOCOTEC UK Limited Deeside

Customer Site

E8013 - G.O.S.H

S183180

Report No

Date Logged 15-Feb-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days. In-House Report Due 27-Feb-2018

PHSOIL	pH units (AR)	>				
PCBECD	PCB-7 Congeners Analysis	>				
	PAH (17) by GCMS	>				
PAHMSUS	PAH (16) by GCMS	>				
ORGMAT	Organic Matter %					
KONECR	Chromium vi:					
	Zinc (MS)	>				
	Selenium (MS)	>				
	Nickel (MS)	>				
	Mercury (MS)	>				
	Lead (MS)	>				
	Copper (MS)	>				
	Chromium (MS)	>				
	Cadmium (MS)	>				
ICPMSS	Arsenic (MS)	>				
ICPBRE	Magnesium (BRE)					
ICPBOR	Boron (H20 Soluble)	>				
ICPACIDS	SO4 (acid sol)	>				
CustServ	REPORT A					
	CEN Leac(P)2					
CEN Leachate	CEN Leac(P)1					
	MTBE (μg/kg)	>	Ш			
	BTEX-HSA Analysis	>	Ξ	Ш	ш	Э
BTEXHSA	BTEX-HSA + MTBE analysis	>	Ш			
AMMAR	Exchange.Ammonium AR	>				
dlD	led		30/01/18	30/01/18	30/01/18	30/01/18
MethodID	Sampled		30/(30/(30/(30/(
,		ł				
	ţjou					
	Description					
,	De		0.50	1.00	1.80	3.70
			WS06 0.50	WS06 1.00	WS06 1.80	WS06 3.70
			≶	≥	≶	≶
	nber		31	32	က္က	7.
	ID Number		CL/1894231	CL/1894232	CL/1894233	CL/1894234
	=		CL/1	CL/1	CL/1	CL/1

ote: We will endeavour to prioritise samples to complete analysis withi olding time; however any delay could result in samples becoming leviant whilst being processed in the laboratory.

sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

The sampling date was not supplied so holding time may be compromised - applicable to all analysis Analysis dependant upon trigger result - Note: due date may be affected if triggered Sample processing did not commence within the appropriate handling time The sample was received without the correct preservation for this analysis Sample processing did not commence within the appropriate holding time The sample was received in an inappropriate container for this analysis Analysis Subcontracted - Note: due date may vary Headspace present in the sample container No analysis scheduled Requested Analysis Key Analysis Required Deviating Sample Key

Where individual results are flagged see report notes for status.

Page 18 of 23he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

EFS/183180 Ver. 1

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

SOCOTEC UK Limited Deeside Customer

Site

E8013 - G.O.S.H S183180 Report No

Date Logged 15-Feb-2018

Consignment No S72181

In-House Report Due 27-Feb-2018

Please note the res	Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.	sis (identified	with a	si ('^'	likely	to tak	e up	o an	additi	onal f	ive w	orking days.
		MethodID	SFAPI		Sub020	svocsw	TMSS	TPHFIDUS			WSLM59	
ID Number	Description	Sampled	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID (Stage 1)	SVOC (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	TPH Carbon Banding.	Total Organic Carbon	
			>	>	>	^	>	>	^	>	>	
CL/1894231	WS06 0.50	30/01/18						Е	Е	Е		
CL/1894232	WS06 1.00	30/01/18							Е	Ш		
CL/1894233	WS06 1.80	30/01/18							Е	Ш		
C1 /1804234	WS06 3 70	30/01/18			l			r	ш	ш		

The sample was received without the correct preservation for this analysis The sample was received in an inappropriate container for this analysis Deviating Sample Key

ote: We will endeavour to prioritise samples to complete analysis withi

olding time; however any delay could result in samples becoming

leviant whilst being processed in the laboratory.

sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to

provide missing information in order to reinstate accreditation.

The sampling date was not supplied so holding time may be compromised - applicable to all analysis ΩШ

Headspace present in the sample container

Analysis dependant upon trigger result - Note: due date may be affected if triggered Sample processing did not commence within the appropriate handling time Sample processing did not commence within the appropriate holding time Requested Analysis Key Analysis Required

Analysis Subcontracted - Note: due date may vary No analysis scheduled

EFS/183180 Ver. 1

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
VOCHSAS	CL1894231 TO CL1894234	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (Chloromethane, Dichlorodifluoromethane, Vinyl Chloride) . These circumstances should be taken into consideration when utilising the data.
VOCHSAS	CL1894231 TO CL1894234	Due to matrix interference, the Internal Standard recovery for this Test is below the required QMS specification. This has been confirmed by historic data. All other Laboratory Process Controls meet the requirements of the QMS unless otherwise stated. These circumstances should be taken into consideration when utilising the data.
TPHFIDUS	CL1894231 TO CL1894234	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation, where applicable, from the affected analytes (C10-C12) . These circumstances should be taken into consideration when utilising the data.

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	AMMAR	As Received	Determination of Exchangeable Ammonium in Soil using potassium
			chloride extraction, discrete colorimetric detection
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes
			(BTEX) by Headspace GCFID
Soil	ICPACIDS	Oven Dried	Determination of Total Sulphate in soil samples by Hydrochloric
		@ < 35°C	Acid extraction followed by ICPOES detection
Soil	ICPBOR	Oven Dried	Determination of Boron in soil samples by hot water extraction
		@ < 35°C	followed by ICPOES detection
Soil	ICPMSS	Oven Dried	Determination of Metals in Marine Sediments and Soil samples by
		@ < 35°C	aqua regia digestion followed by ICPMS detection
Soil	KONECR	Oven Dried	Determination of Chromium vi in soil samples by water extraction
		@ < 35°C	followed by colorimetric detection
Soil	ORGMAT	Oven Dried	Acid Dichromate oxidation of the sample followed by colorimetric
		@ < 35°C	analysis of the extract
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB)
			congeners/aroclors by hexane/acetone extraction followed by
			GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub-
			contractor.
Soil	SVOCSW	As Received	Determination of Semi-Volatile Organic Compounds by
			dichloromethane/acetone extraction followed by GCMS detection
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
			oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection.
Soil	VOCHSAS	As Received	Determination of Volatile Organic Compounds (VOC) by
			Headspace GCMS
Soil	WSLM59	Oven Dried	Determination of Organic Carbon in soil using sulphurous Acid
		@ < 35°C	digestion followed by high temperature combustion and IR
			detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective
			Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non-
			dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite

TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 23 of 23 EFS/183180 Ver. 1

Sample Descriptions

Client : SOCOTEC UK Limited Deeside

 Site :
 E8013 - G.O.S.H

 Report Number :
 S18_3180

Note: major constituent in upper case

Lui Di Number CU1984239 W506 ES 4 0.50 CU1984222 W506 ES 11.00 CL1784233 W506 ES 11.00 CL1784234 W506 ES 10.3.70 CL1784234 W506 ES 10.3.70 CLAY	Lab ID Normalis :	Olizant ID	Pagarintian
CL1964231 VISGE ES A 1.50 Brown SLT CL1964222 WISGE ES 11.00 SLT CL1964233 WISGE ES 11.80 CLAY CL1964234 WISGE ES 10.8.70 CLAY	Lad ID Number	Client ID	Description
CL19842323 WS06 ES 11-00 CLAY CL1984234 WS06 ES 10-3.70 CLAY CL1984244 CLAY CL1984254 CLAY CL1984254 CLAY CL1984254 CLAY CL1984255 CLAY CLAY CLAY CLAY CLAY CLAY CLAY CLAY	CL/1894231	WS06 ES 4 0.50	Brown SILT
CL/1984233 WS06 ES 11 1.80 CLAY CL/1984234 WS06 ES 16 3.70 CLAY	CL/1894232	WS06 FS 7 1 00	SILT
CL/1994234 WS00 ES 16 3 70 CLAY	CL/1004232	WOOD EC 11 1 90	CLAY
CU 1804224 W300 E3 10 4/0 CU 1804224 W300 E3 10 4/0 CU 1804224 C	CL/1694233	W300 E3 11 1.60	CLAY
	CL/1894234	WS06 ES 16 3.70	CLAY
			ı

Appendix A Page 1 of 1 27/02/2018EFS/183180 Ver. 1

TEST REPORT

Report No. EXR/259655 (Ver. 1)

SOCOTEC UK Limited Deeside Unit 18 Drome Road Deeside Industrial Park Deeside Flintshire CH5 2NY

Site: E8013 Great Ormond Street Hospital P22 IMRI Project

The 1 sample described in this report were registered for analysis by SOCOTEC UK Limited on 21-Mar-2018. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 28-Mar-2018

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 12)
Table of GRO Results (Page 13)
Table of TPH (Si) banding (0.01) (Page 14)
Analytical and Deviating Sample Overview (Pages 15 to 16)
Table of Method Descriptions (Page 17)
Table of Report Notes (Page 18)
Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of SOCOTEC UK Lim (

Tim Barnes

Operations Director Energy & Waste Services

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

Date of Issue: 28-Mar-2018

28-Mar-2018 EXR/259655

Report Number

Date Printed

Table Number

E8013 Great Ormond Street Hospital P22 IMRI Project

Sample Analysis

irk, Ashby Road	affordshire, DE15 0YZ	554400
Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400

SOCOTEC

SOCOTEC UK Limited Deeside

Client Name

Craig Curtis

Contact

 mg/l
 mg/l
 µg/l
 µg/l
 µg/l

 ICPWATVAR ICPWATVAR
 KONENS
 PAHMSW
 PAHMSW
 PAHMSW

 0.01
 3
 0.01
 0.01
 0.01
 0.01

mg/l ICPMSW 0.002

ICPMSW 0.001

ICPMSW 0.001

ICPMSW 0.0001

mg/l ICPMSW 0.001

ICPMSW 0.001

mg/l ICPMSW 0.001

ICPMSW 0.0001

mg/l ICPMSW 0.001

mg/l GROHSA 0.1

Units: Method Codes: Method Reporting Limits:

< 0.01

< 0.01

< 0.01

0.8

325

0.84

0.101

0.012

900.0

<0.0001

<0.001

0.005

<0.001

<0.0001

<0.001

Red

BH02 EW 36 3.42

1872932

Anthracene

Acenaphthylene

Acenaphthene

Ammoniacal Nitrogen as N

Total Sulphur as SO4 (Dissolved) a

Boron as B (Dissolved) a

Zinc as Zn (Dissolved)

Selenium as Se (Dissolved)

Nickel as Ni (Dissolved)

Mercury as Hg (Dissolved)

Lead as Pb (Dissolved)

Copper as Cu (Dissolved)

Chromium as Cr (Dissolved)

Cadmium as Cd (Dissolved)

Arsenic as As (Dissolved)

GRO-HSA (AA)

Sample Date

Client Sample Description

LAB ID Number EX/

Bretby E

Fax +44 (0) 1283 554422 Te.

(F	Units:	pg/l PAHMSW	WS	N.	pg/l PAHMSW	PAHMSW	WS.	NS.	NS.	WS	MS MS	N _S	payll PAHMSW F	pgľ PAHMSW F	NS.		pcBCONEC
Method Ke	sporting Limits :	10:0	0.0	0.0		0.0	0.01	0.01	0.0	0.01	0.01	0.02	10:0	0.01	0.17	0.01	10:0
Client Sample Description	Sample Date	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Benzo-a-Pyrene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH (Sum of USEPA 16)	PCB101	PCB118
1872932 BH02 EW 36 3.42	19-Mar-18	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01	< 0.01	< 0.02	< 0.01	0.04	< 0.2	< 0.04	< 0.04
SOCOTEC		Client Name Contact	ame	SOCOTE Craig Curtis	SOCOTEC UK Limited Craig Curtis	mited De	Deeside					Samp	Sample Analysis	ysis			
Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		E8013	Great	Ormo	E8013 Great Ormond Street Hospital P22 IMRI Project	eet Hc	spital	P22 IN	ARI Pr		Date Printed Report Number Table Number	ed Imber nber		28-I	28-Mar-2018 EXR/259655		

28-Mar-2018 EXR/259655

Report Number

Date Printed

Table Number

E8013 Great Ormond Street Hospital P22 IMRI Project

Sample Analysis

V	
EC	
6	
SOC	
S	

SOCOTEC UK Limited Deeside

Client Name

Craig Curtis

Contact

 mg/l
 <th

SFAPI 0.05

SFAPI 0.02

 μg/l
 μg/l
 μg/l
 μg/l

 PCBCONEC PCBCONEC PCBCONEC PCBCONEC
 0.01
 0.01
 0.01

Units: Method Codes: Method Reporting Limits:

< 0.020

< 0.020

< 0.020

< 0.020

< 0.002

< 0.005

< 0.005

< 0.005

< 0.005

<0.05

<0.02

< 0.04

< 0.04

< 0.04

< 0.04

< 0.04

BH02 EW 36 3.42

1872932

2,4-Dimethylphenol

2,4-Dichlorophenol

2,4,6 - Trichlorophenol

2,4,5-Trichlorophenol

1-Methylnaphthalene

1,4-Dichlorobenzene

1,3-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

Phenol Index as C6H5OH

Cyanide (Total) as CN

PCB52

PCB28

PCB180

PCB153

PCB138

Sample Date

Client Sample Description

LAB ID Number EX/

Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422

mg/l SVOCSW	0.02	4-Chlorophenol	< 0.020												
>	0.005	4-Chloroaniline	< 0.005												
S	0.005	4-Chloro-3-methylphenol	< 0.005										28-Mar-2018	EXR/259655	-
Ś	0.005	4-Bromophenyl-phenylether	< 0.005								alysis		28	E	
S	0.05	4,6-Dinitro-2-methylphenol	< 0.050								Sample Analysis				
S	0.005	3-Nitroaniline	< 0.005								Sam		nted	Number	umber
Ś	0.02	3+4-Methylphenol	< 0.020										Date Printed	Report Number	Table Number
S)	0.02	2-Nitrophenol	< 0.020											E8012 Great Ormand Street Hashital B22 IMBI Brainet	
Ś	0.005	2-Nitroaniline	< 0.005												
Ś	0.005	2-Methylphenol	< 0.005								_			ננם וי	77
Ś	0.002	2-Methylnaphthalene	< 0.002								Deeside			Joonit.	
mg/l SVOCSW	0.02	2-Chlorophenol	< 0.020								SOCOTEC UK Limited Deeside			4.004 L	
S	0.002	2-Chloronaphthalene	< 0.002								TEC UK	urtis		טעס	2
S	0.005	2,6 Dinitrotoluene	< 0.005								soco	Craig Curtis		÷.	5
S	0.005	2,4-Dinitrotoluene	< 0.005								Name	#		2	5
6	0.01	2,4-Dinitrophenol	< 0.010								Client Name	Contact			200
Units thod Codes	rting Limits	Sample Date	19-Mar-18								_				
Units:	Method Repo	Client Sample Description	BH02 EW 36 3.42								SOCOTEC		Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422
		LAB ID Number EX/	1872932												

svocsw 0.005	bis(2-Chloroethyl)ether	< 0.005												
mg/l SVOCSW 0.005	bis(2-Chloroethoxy)methane	< 0.005												
mg/l SVOCSW 0.002	Biphenyl	< 0.002										28-Mar-2018	EXR/259655	-
mg/l SVOCSW 0.005	Benzyl alcohol	< 0.005								lysis		28	Ä	
mg/l SVOCSW 0.1	Benzoic Acid	< 0.100								Sample Analysis				
svocsw 0.002	Benzo[k]fluoranthene	< 0.002								Sam		nted	lumber	ımber
mg/l SVOCSW 0.002	Benzo[g,h,i]perylene	< 0.002										Date Printed	Report Number	Table Number
mg/l SVOCSW 0.002	Benzo[b]fluoranthene	< 0.002											roject	
mg/l SVOCSW 0.002	Benzo[a]pyrene	< 0.002											MRIP	
mg/l SVOCSW 0.002	Benzo[a]anthracene	< 0.002											I P22	
mg/l SVOCSW 0.002	Anthracene	< 0.002								ted Deeside			ospita	
mg/l SVOCSW 0.002	Acenaphthylene	< 0.002								imited Do			reet H	
mg/l SVOCSW 0.002	Acenaphthene	< 0.002								SOCOTEC UK Limi	tis		E8013 Great Ormond Street Hospital P22 IMRI Project	
mg/l SVOCSW 0.05	4-Nitrophenol	< 0.050								SOCOI	Craig Curtis		Ormo	
mg/l SVOCSW 0.005	4-Nitroaniline	< 0.005								ame			Great	
mg/l SVOCSW 0.005	4-Chlorophenyl-phenylether	< 0.005								Client Name	Contact		E8013	
Units: od Codes: ng Limits:	Sample Date	19-Mar-18												
Units: Method Codes: Method Codes: Method Reporting Limits:	Client Sample Description	BH02 EW 36 3.42								SOCOTEC		Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422
	LAB ID Number EX/	1872932												

R	
	nby Road
) -	Bretby Business Park, Ashby Road
)	Business
))	Bretby

SOCOTEC

EXR/259655	٢		
Report Number	Table Number		
	Eou is Great Official Street Hospital P.22 IMAI Project		
Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400	Fax +44 (0) 1283 554422	

28-Mar-2018

Date Printed

Sample Analysis

SOCOTEC UK Limited Deeside

Client Name

Craig Curtis

Contact

 mg/l
 <th

Units:

Method Codes: (§

< 0.005

< 0.005

< 0.002

< 0.002

< 0.002

< 0.002

< 0.005

< 0.005

< 0.005

< 0.005

< 0.002

< 0.050

< 0.002

< 0.005

< 0.005

< 0.005

19-Mar-18

BH02 EW 36 3.42

1872932

Hexachlorobutadiene

Hexachlorobenzene

Fluorene

Fluoranthene

Diphenyl Ether

Di-n-octylphthalate

Di-n-butylphthalate

Dimethylphthalate

Diethylphthalate

Dibenzofuran

Dibenzo[a,h]anthracene

Coronene

Chrysene

Butylbenzylphthalate

bis(2-Ethylhexyl)phthalate

bis(2-Chloroisopropyl)ether

Sample Date

Client Sample Description

LAB ID Number EX/

µg/l CHSAW	-	1,1,2,2-Tetrachloroethane	< 1.0												
ug/l µg/l VOCHSAW VOCHSAW	-	1,1,1-Trichloroethane	< 1.0												
VOCHSAW VC	-	1,1,1,2-Tetrachloroethane	< 1.0										28-Mar-2018	EXR/259655	-
mg/l TPHFID-Si V(0.01	TPH by GC(Si) o	Red								/sis		28-№	EXR	
mg/l SVOCSW T		Pyrene	< 0.002								Sample Analysis				
mg/l SVOCSW 8		Phenol	< 0.020								Sampl		pa	mber	per
mg/l SVOCSW 8		Phenanthrene	< 0.002										Date Printed	Report Number	Table Number
svocsw s		Pentachlorophenol	< 0.050										_		
mg/l SVOCSW		n-Nitrosodiphenylamine	< 0.005											֭֓֞֞֜֝֞֜֜֝֓֓֓֓֓֓֓֓֓֓֡֟֝	ı nospitai rzz imri rroject
mg/l SVOCSW		N-Nitroso-di-n-propylamine	< 0.005											ביים	H 774
mg/l SVOCSW	0.005	Nitrobenzene	< 0.005								eside			101:00	วรุบแล
mg/l SVOCSW	0.002	Naphthalene	< 0.002								mited De) 100°	199
>		Isophorone	< 0.005								SOCOTEC UK Limited Deeside	<u>.s</u>		.,0	Fours Great Ormond Stree
mg/l SVOCSW	0.002	Indeno[1,2,3-cd]pyrene	< 0.002								SOCOT	Craig Curtis			2
>		Hexachloroethane	< 0.005								ame			ָּהָבָּי בַּי	GIGA
S	0.005	Hexachlorocyclopentadiene	< 0.005								Client Name	Contact			2 2 0 U
Units :	ng Limits :	Sample Date	19-Mar-18												
Meth	Method Reporting Limits:	Client Sample Description	BH02 EW 36 3.42								SOCOTEC (Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400
		LAB ID Number EX/	1872932								41		ш	ш	

SOCOTEC	Client Name	SOCOTEC UK Limited Deeside	
	Contact	Craig Curtis	
Bretby Business Park, Ashby Road			Ľ
Button-on-Trent, Staffordshire, DE15 0YZ	C 400 L		4
Tel +44 (0) 1283 554400	ESUIS Grea	E8013 Great Ormond Street Hospital PZZ liviki Project $^{-1}$	_
0000			L

28-Mar-2018 EXR/259655

Report Number

Date Printed

Table Number

Sample Analysis

 µg/l
 ug/l
 µg/l
 <th

Units:

Method Codes: V

< 1.0

< 1.0

< 5.0

< 1.0

< 5.0

< 1.0

< 5.0

< 1.0

< 1.0

19-Mar-18

BH02 EW 36 3.42

1872932

1,3-Dichloropropane

1,3-Dichlorobenzene

1,3,5-Trimethylbenzene

1,2-Dichloropropane

1,2-Dichloroethane

1,2-Dichlorobenzene

1,2-Dibromoethane

1,2-Dibromo-3-chloropropane

1,2,4-Trimethylbenzene

1,2,4-Trichlorobenzene

1,2,3-Trichloropropane

1,2,3-Trichlorobenzene

1,1-Dichloropropene

1,1-Dichloroethene

1,1-Dichloroethane

1,1,2-Trichloroethane

Sample Date

Client Sample Description

LAB ID Number EX/

Fax +44 (0) 1283 554422

Control Cont		Method Reporting Limits:	Codes : Limits :	VOCHSAW V	VOCHSAW VOCHSAW VOCHSAW	VOCHSAW 1	VOCHSAW 1	VOCHSAW V	VOCHSAW V	VOCHSAW 1	MAN	VOCHSAW	VOCHSAW 1	VOCHSAW	VOCHSAW 1	VOCHSAW VOCHSAW	OCHSAW V	1 1	VOCHSAW 1	
2		Client Sample Description	Sample Date	1,4-Dichlorobenzene	2- Chlorotoluene	2,2-Dichloropropane	4-Chlorotoluene	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	cis 1,3-Dichloropropene	
Client Name SOCOTEC UK Limited Deeside Contact			9-Mar-18	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Client Name SOCOTEC UK Limited Deeside Sontact Conjugarily Contact Con																				
Contact Contac																				
Client Name SOCOTEC UK Limited Desside Sample Analysis Contact Craig Ourlis Contact Craig Ourlis E8013 Great Ormond Street Hospital P22 IMRI Project Table Number Table Number																				
Client Name SOCOTEC UK Limited Deeside Sample Analysis Contact Caig Curtis Contact Caig Surfix Contact Caig Surfix E8013 Great Ormond Street Hospital P22 IMRI Project Table Number Interest Hospital P22 IMRI Project																				
Client Name SOCOTEC UK Limited Deside Souris Contact Craig Curtis Contact Craig Curtis Contact Craig Curtis E8013 Great Ormond Street Hospital P22 IMRI Project Table Number Table Number																				
Client Name SOCOTEC UK Limited Deeside Sontact Craig Curtis Contact Craig Curtis Contact Craig Curtis Contact Craig Curtis E8013 Great Ormond Street Hospital P22 IMRI Project Table Number Table N																				
Contact Contac																				
Client Name SOCOTEC UK Limited Deeside Sample Analysis Contact Craig Curtis Contact Craig Curtis E8013 Great Ormond Street Hospital P22 IMRI Project Table Number Table Number																				
Client Name SOCOTEC UK Limited Deeside Sample Analysis Contact Craig Curtis Contact Craig Curtis E8013 Great Ormond Street Hospital P22 IMRI Project Table Number Table Number																				
Client Name SOCOTEC UK Limited Deeside Sample Analysis Contact Craig Curtis Contact Craig Curtis E8013 Great Ormond Street Hospital P22 IMRI Project Table Number Table Number																				
Client Name SOCOTEC UK Limited Deeside Sontact Craig Curtis Contact Craig Curtis Contact Craig Curtis E8013 Great Ormond Street Hospital P22 IMRI Project Table Number Table Number																				
Client Name SOCOTEC UK Limited Deeside Sample Analysis Contact Craig Curtis Contact Craig Curtis E8013 Great Ormond Street Hospital P22 IMRI Project Table Number Table Number																				
Client Name SOCOTEC UK Limited Deeside Sample Analysis Contact Craig Curtis Contact Craig Curtis E8013 Great Ormond Street Hospital P22 IMRI Project Table Number																				
Client Name SOCOTEC UK Limited Deeside Sample Analysis Contact Craig Curtis Contact Craig Curtis E8013 Great Ormond Street Hospital P22 IMRI Project Table Number																				
Contact Craig Curtis Bate Printed Report Number Table Nu	u	COTO		Client Na	me	SOCOTI		ed	eside					Same	- Anal					
E8013 Great Ormond Street Hospital P22 IMRI Project	1	5		Contact		Crain Curti	ا ا	;)												
E8013 Great Ormond Street Hospital P22 IMRI Project	ń	other Distinged Dark Ashby Dood		00		5							0.40	400		1 00	0100 2010			
E8013 Great Ormond Street Hospital P22 IMRI Project	2 2	euy business rain, Asiny Noau ton-on-Trent, Staffordshire, DE15 0YZ			((:	:	! !		Report N	umber		EXR EXR	1/259655			
	ř	1 +44 (0) 1283 554400		E8013	Great	Ormo	nd Str	eet Ho	Spital	P22	MRI PI	roject	Table Nu	mber			-			
	ů.	ax +44 (0) 1283 554422																		

µg/I VOCHSAW	-	tert-Butylbenzene	< 1.0													
ug/l	-	Styrene	< 1.0													
ug/l ng/l		sec-Butylbenzene	< 1.0										-2018	9655	-	_
AW VOC		Sec-dutylbelizerie									40		28-Mar-2018	EXR/259655		
hg/l	-	Propylbenzene	< 1.0								alysis					
ug/l VOCHSAW	-	p-Isopropyltoluene	< 1.0								Sample Analysis					
hg/l hg/l	-	o-Xylene	< 1.0								Sam		nted	lumber	ımber	
µg/l VOCHSAW	-	n-Butylbenzene	< 1.0										Date Printed		Table Number	
ug/l µg/l ug/l vocHSAW VOCHSAW	2	Naphthalene	< 5.0											E8013 Great Ormand Streat Hospital B22 IMBI Braiact	וסלפרו	
hg/l VOCHSAW	-	m and p-Xylene	< 1.0													
ug/l VOCHSAW	-	Isopropylbenzene	< 1.0											1 000	77 .	
ug/l	ω	Hexachlorobutadiene	< 5.0								ed Deeside			ctico	ospita	
µg/l VOCHSAW	-	Ethylbenzene	< 1.0								imited D			1,002	פפר	
ug/l VOCHSAW	-	Dichlorodifluoromethane	< 1.0								SOCOTEC UK Limit	tis		לט קט		
VOCHSAW VOCHSAW VOCHSAW VOCHSAW	-	Dibromomethane	< 1.0								socoı	Craig Curtis		, m.		
ug/l VOCHSAW	-	Dibromochloromethane	< 1.0								ame			יינים אוניים אוניים אוניים אוניים	פופס	
ug/l VOCHSAW	-	Cis-1,2-dichloroethene	< 1.0								Client Name	Contact		E PO 4 2	, , ,	
Units :	ng Limits:	Sample Date	19-Mar-18													
Units:	Method Reporti	Client Sample Description	BH02 EW 36 3.42								SOCOTEC		Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400	Fax +44 (0) 1283 554422
		LAB ID Number EX/	1872932								V)		m	œ ·		•

													nalysis		28-Mar-2018	EXR/259655	7	
													Sample Analysis		Date Printed	Report Number	Table Number	
pH units		pH units w	7.6													E8013 Great Ormand Streat Hospital B22 IMBI Braiact		
hgu VOCHSAW	-	Vinyl Chloride	< 1.0													ו ניס ויי	ומו ר 22 ו	
ug/l pg/l ug/l pg/l ug/l pg/l pg/l pg/l pg/l pg/l yOCHSaW YOCHSaW YOCHSAW YOCHSAW		Trichlorofluoromethane Trichloroethene	: 1.0 < 1.0										SOCOTEC UK Limited Deeside			*	ideon 15	
hg/l	-	trans 1,3-Dichloropropene	> 1.0 <										EC UK Limi	is		C C		
ug/l		Trans 1,2 Dichloroethene	< 1.0										SOCOT	Craig Curtis		* O		
hg/l VOCHSAV	-	Toluene	< 1.0										Client Name	ct		2020	כ פופט	
: ug/l		Tetrachloroethene	< 1.0										Client	Contact			00	
Units	ting Limits	Sample Date	19-Mar-18															
Units:	Method Repor	Client Sample Description	BH02 EW 36 3.42										SOCOTEC		Bretby Business Park, Ashby Road	Burton-on-Trent, Staffordshire, DE15 0YZ	Tel +44 (0) 1283 554400	Fax +44 (0) 1283 554422
		LAB ID Number EX/	1872932															

EXR/259655 Ver. 1

Gasoline Range Organics

(BTEX and Aliphatic Carbon Ranges)

SOCOTEC UK Limited Deeside: E8013 Great Ormond Street Hospital P22 IMRI Project **Customer and Site Details:** Job Number:

D:\TES\DATA\2018\0323HSA_GC9\032318 2018-03-23 12-37-02\027F2701.D Headspace GCFID

Directory: Method:

23-Mar-18, 20:20:30 21-Mar-18 23-Mar-18 Water Date Booked in: Date extracted: Matrix:

Date Analysed:

* Sample data with an asterisk are not UKAS accredited.

 CO : CO :	- O. I																				
×0.1 ×0.1	0>																				
٥٠٠ حر	- N. I																				
+																					
3 ×																					
0-Aylene	c00.0>																				
	<0.00																				
cunyi benzene <0.005	<0.005																				
	c00.0>																				
<0.005	c00.0>																				
BH02 EW 36 3.42	BHUZ EVV 30 3.4Z																				
EX1872932	EA1872932																				
	CIECLE Delization Concerns Links and Concerns Co	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 < 0.005 < 0.005 < 0.005 < 0.005	BH02 EW 36 3.42 < 0.005 < 0.005 < 0.005 < 0.005	BH02 EW 36 3.42 < 0.005 < 0.005 < 0.005 < 0.005	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.00	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	BH02 EW 36 3.42 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.00	BH02 EW 36 3.42 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.00

Each BTEX compound is deducted from the appropriate band to give the aliphatic fractions, however aromatic compounds may still be contributing to these fractions Note: Benzene elutes between C6 and C7, toluene elutes between C7 and C8, ethyl benzene and the xylenes elute between C8 and C9.

ALIPHATIC / AROMATIC FRACTION BY GC/FID

SOCOTEC UK Limited Deeside : E8013 Great Ormond Street Hospital P22 IMRI Project W25_9655

Separation: Silica gel 180198

Eluents: Hexane, DCM
D:/TES\DATA\2018\032318\032318 2018-03-23 15-27-16\B-015-63-EX1872932ARO.D

Bottle Customer and Site Details: Job Number: QC Batch Number: Directory: Method:

Matrix: Water
Date Booked ir 21-Mar-18
Date Extracted 23-Mar-18
Date Analysed 23-Mar-18, 18:20:41

	>C8 - C40	Aromatics	<0.01										
	*C8	Aliphatics	0.027										
	- C35	Aromatics	<0.01										
	>C21 - C35	Aliphatics	0.016										
	- C21	Aromatics	<0.01										
	>C16 - C21	Aliphatics	<0.01										
tion, (mg/l)	- C16	Aromatics	<0.01										
Concentration, (mg/l)	>C12 - C16	Aliphatics	<0.01										
		Aromatics	<0.01										
	>C10 - C12	Aliphatics	<0.01										
	.C10	Aromatics	<0.01										
	>C8 - C10	Aliphatics	<0.01										
	NS accredited.	Client ID	BH02 EW 36 3.42										
	* This sample data is not UKAS accredited.	Sample ID	EX1872932										
	*		*										

Sample Analysis

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

SOCOTEC UK Limited Deeside

E8013 Great Ormond Street Hospital P22 IMRI Project

W259655

Report No

Customer

Date Logged 21-Mar-2018

Consignment No W134876

n-House Report Due 28-Mar-2018

В SFAP Cyanide (Total) as CN SFA PCB - 7 Congeners **PAH GC-MS (16)** KONEN Ammoniacal Nitrogen (Kone) Boron as B (Dissolved) VAR Total Sulphur as SO4 (Diss) VAR Selenium as Se MS (Dissolved) Mercury as Hg MS (Dissolved) Arsenic as As MS (Dissolved) Zinc as Zn MS (Dissolved) Please note the results for any subcontracted analysis (identified with a 'w') is likely to take up to an additional five working days. Lead as Pb MS (Dissolved) Copper as Cu MS (Dissolved) Cadmium as Cd MS (Dissolved) Chromium as Cr MS (Dissolved) Nickel as Ni MS (Dissolved) **GRO-HSA GCFID (AA)** Report A 19/03/18 Sampled MethodID Matrix Type Unclassified Description BH02 3.42 ID Number EX/1872932

Phenol Index SFA

The sample was received without the correct preservation for this analysis The sample was received in an inappropriate container for this analysis Headspace present in the sample container owever any delay could result in samples becoming deviant whilst being processed in the

Deviating Sample Key

ote: We will endeavour to prioritise samples to complete analysis within holding time

aboratory.

The sampling date was not supplied so holding time may be compromised - applicable to all analysis

Sample processing did not commence within the appropriate handling time

Sample processing did not commence within the appropriate holding time

iccredited. Please contact us as soon as possible to provide missing information in order to f sampling dates are missing or matrices unclassified then results will not be ISO 17025 einstate accreditation.

Analysis dependant upon trigger result - Note: due date may be affected if triggered Analysis Subcontracted - Note: due date may vary No analysis scheduled Requested Analysis Key Analysis Required

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Where individual results are flagged see report notes for status.

EXR/259655 Ver. 1

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

E8013 Great Ormond Street Hospital P22 IMRI Project SOCOTEC UK Limited Deeside Customer

Sample Analysis

W259655

Report No

Consignment No W134876

In-House Report Due 28-Mar-2018 Date Logged 21-Mar-2018

Please note the results for any subcontracted analysis (identified with a ''') is likely to take up to an additional five working days.

WSLM3	pH units	>	
VOCHSAW	VOC HSA-GCMS	>	
TPHFID-Si	TPH by GC(Si)	>	
svocsw	svoc		
MethodID	Sampled		19/03/18
	Matrix Type		Unclassified
	Description		BH02 3.42
	ID Number		EX/1872932

De	Deviating Sample Key
⋖	The sample was received in an inappropriate container for this analysis
М	The sample was received without the correct preservation for this analysis
ပ	Headspace present in the sample container
Ω	The sampling date was not supplied so holding time may be compromised - applicable to all analysis
Ш	Sample processing did not commence within the appropriate holding time
ш	Sample processing did not commence within the appropriate handling time
Rec	Requested Analysis Key

Analysis dependant upon trigger result - Note: due date may be affected if triggered

Analysis Required

No analysis scheduled Analysis Subcontracted - **Note: due date may vary**

accredited. Please contact us as soon as possible to provide missing information in order to lowever any delay could result in samples becoming deviant whilst being processed in the f sampling dates are missing or matrices unclassified then results will not be ISO 17025 einstate accreditation. aboratory.

ote: We will endeavour to prioritise samples to complete analysis within holding time

The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Where individual results are flagged see report notes for status.

EXR/259655 Ver. 1

Report Number: W/EXR/259655

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons
			(GRO) by Headspace FID
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	PAHMSW	As Received	Determination of PolyAromatic Hydrocarbons in water by pentane
			extraction GCMS quantitation
Water	PCBCONEC	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners by
			pentane extraction followed by GCECD detection
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	SVOCSW	As Received	Determination of Semi Volatile Organic Compounds (SVOC) by
			DCM extraction followed by GCMS detection
Water	TPHFID-Si	As Received	Determination of speciated pentane extractable hydrocarbons in
			water by GCFID
Water	VOCHSAW	As Received	Determination of Volatile Organics Compounds by Headspace
			GCMS
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result
- § accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 18 of 18 EXR/259655 Ver. 1

Sample Descriptions

Client : SOCOTEC UK Limited Deeside

Site: E8013 Great Ormond Street Hospital P22 IMRI Project

Report Number: W25_9655

Lab ID Number	Client ID	Description
EX/1872932	BH02 EW 36 3.42	Unclassified
EN/10/2932	BH02 EVV 30 3.42	Unclassified

Appendix A Page 1 of 1 28/03/2018EXR/259655 Ver. 1

APPENDIX F PHOTOGRAPHS

Dynamic Sampling Liners

F1 to F6

WS01 Concrete core

WS01 Dynamic Sample liners

Notes: Project Great Ormond Street Hospital P22 IMRI Project

Proiect No. E8013-18
Carried out for Kier Construction

Plate

F1

WS02 Dynamic Sample liners

WS03 Concrete Core

Project Great Ormond Street Hospital P22 IMRI Project

Proiect No. E8013-18
Carried out for Kier Construction

WS04 Concrete core and spoil

Project Great Ormond Street Hospital P22 IMRI Project

Proiect No. E8013-18
Carried out for Kier Construction

WS04 Dynamic Sample liners

WS05 Concrete Core

Project Great Ormond Street Hospital P22 IMRI Project

Proiect No. E8013-18
Carried out for Kier Construction

WS05 Dynamic Sample liners

WS06 Concrete core

Great Ormond Street Hospital P22 IMRI Project Project

E8013-18 Project No. Carried out for Kier Construction Plate

F5

WS06 Dynamic Sample liners

APPENDIX G WASTE CLASSIFICATION REPORT

Waste Classification Report

ZYXA-K74FZ-KVJHL

Waste Classification Report

Job name

E8013-18 Great Ormond Street Hospital

Description/Comments

Project

E8013-18

Site

Great Ormond Street Hospital

Waste Stream Template

SOCOTEC Core Contaminated Land Waste Suite WM3

Classified by

Name:

Company: SOCOTEC UK Limited **Lucy Hayes** 18-19 Drome Road Date: 3/28/2018 2:24:57 PM UTC **Deeside Industrial Estate** Telephone: Deeside

01244 288200 CH5 2NY

Report

Created by: Lucy Hayes

Created date: 3/28/2018 14:24 UTC

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	Max Concentation of Cohesive Made Ground		Non Hazardous		2
2	Max Concentration of Granular Made Ground		Hazardous	HP 7, HP 10, HP 14	5

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	8
Appendix B: Rationale for selection of metal species	10
Appendix C: Version	10

Classification of sample: Max Concentation of Cohesive Made Ground

Non Hazardous Waste

Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:

LoW Code:

Max Concentation of Cohesive Made Ground

Chapter:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

Entry:

17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	*	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-33-5, 7637-07-2	-	2.7 mg/kg	13.43	36.261 mg/kg	0.00363 %		
2		arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		25.1 mg/kg	1.32	33.14 mg/kg	0.00331 %		
3	•	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	0.24 mg/kg	1.285	0.308 mg/kg	0.000024 %		
4	*	chromium in chromium(III) compounds { chromium(III) oxide }		87.4 mg/kg	1.462	127.74 mg/kg	0.0128 %		
5				62.8 mg/kg	1.126	70.706 mg/kg	0.00707 %		
6		lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) } 082-001-00-6	1	931.4 mg/kg		931.4 mg/kg	0.0931 %		
7		mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		2.56 mg/kg	1.353	3.465 mg/kg	0.000346 %		
8	•	nickel { nickel dihydroxide } 028-008-00-X		62.5 mg/kg	1.579	98.719 mg/kg	0.00987 %		
9	7	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		1.1 mg/kg	2.554	2.809 mg/kg	0.000281 %		
10	*			171.7 mg/kg	2.774	476.321 mg/kg	0.0476 %		
11	0	pH PH		9 pH		9 pH	9pH		

Page 2 of 11 7ZYXA-K74FZ-KVJHL www.hazwasteonline.com

HazWasteOnline[™]
Report created by Lucy Hayes on 3/28/2018

$\overline{}$								1 1		1			
#			Determinand		CLP Note	User entered	l data	Conv. Factor	Compound of	conc.	Classification value	Api	Conc. Not Used
		CLP index number	EC Number	CAS Number	CF.							MC	
12	4	exception of compl	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		0.5	mg/kg	1.884	0.942	mg/kg	0.0000942 %		
		phenol			+								
13		604-001-00-2	203-632-7	108-95-2		0.5	mg/kg		0.5	mg/kg	0.00005 %		
14	0	TPH (C6 to C40) p	etroleum group	TPH	-	200	mg/kg		200	mg/kg	0.02 %		
	ď	chromium in chrom	nium(VI) compounds		t								
15	~	oxide }	215-607-8	1333-82-0		0.1	mg/kg	1.923	0.192	mg/kg	0.0000192 %		
40		naphthalene	1	J.		0.00			0.00		0.000000.0/		
16		601-052-00-2	202-049-5	91-20-3	1	0.08	mg/kg		0.08	mg/kg	0.000008 %		
17	0	acenaphthylene	205-917-1	208-96-8	-	0.11	mg/kg		0.11	mg/kg	0.000011 %		
18	0	acenaphthene	1			0.11	ma/ka		0.11	ma/ka	0.000011 %		
10			201-469-6	83-32-9		0.11	mg/kg 		U.11	mg/kg	0.000011 70		
19	0	fluorene	201-695-5	86-73-7		0.12	mg/kg		0.12	mg/kg	0.000012 %		
20	0	phenanthrene	201-581-5	85-01-8		1.29	mg/kg		1.29	mg/kg	0.000129 %		
21	0	anthracene	204-371-1	120-12-7		0.39	mg/kg		0.39	mg/kg	0.000039 %		
22	0	fluoranthene	205-912-4	206-44-0		2.43	mg/kg		2.43	mg/kg	0.000243 %		
	_	pyrene	200 512 4	200 44 0	+								
23	0		204-927-3	129-00-0	\dashv	1.99	mg/kg		1.99	mg/kg	0.000199 %		
		benzo[a]anthracen			+						0.00==========	\forall	
24				56-55-3	\dashv	0.99	mg/kg		0.99	mg/kg	0.000099 %		
25		chrysene		218-01-9		0.94	mg/kg		0.94	mg/kg	0.000094 %		
26		benzo[b]fluoranthe			T	1.1	me/le-		4.4	me/les	0.00011.0/		
26				205-99-2	\dashv	1.1	mg/kg		1.1	mg/kg	0.00011 %		
27		benzo[k]fluoranthei	ne			0.45	mg/kg		0.45	mg/kg	0.000045 %		
		601-036-00-5	205-916-6	207-08-9		0.40	mg/kg		0.40	mg/kg	0.000040 /0		
28		benzo[a]pyrene; be				0.9	mg/kg		0.9	mg/kg	0.00009 %		
				50-32-8	\perp					59			
29	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		0.6	mg/kg		0.6	mg/kg	0.00006 %		
30		dibenz[a,h]anthrace 601-041-00-2		53-70-3		0.12	mg/kg		0.12	mg/kg	0.000012 %		
31	0	benzo[ghi]perylene	205-883-8	191-24-2	-	0.5	mg/kg		0.5	mg/kg	0.00005 %		
32		benzene 601-020-00-8	200-753-7	71-43-2		0.01	mg/kg		0.01	mg/kg	0.000001 %		
33		toluene	203-625-9	108-88-3		0.01	mg/kg		0.01	mg/kg	0.000001 %		
H	_	ethylbenzene	K-00-020-9	100-00-0	+							\forall	
34	9	601-023-00-4	202-849-4	100-41-4		0.01	mg/kg		0.01	mg/kg	0.000001 %		
35			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		0.03	mg/kg		0.03	mg/kg	0.000003 %		
36	9	215-535-7 [4] 1330-20-7 [4] polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3				0.0517	mg/kg		0.0517	mg/kg	0.00000517 %		
								<u> </u>	Total:	0.199 %	T		
Щ												Щ.	

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 2: Oxidizing "waste which may, generally by providing oxygen, cause or contribute to the combustion of other materials"

Force this Hazardous property to non hazardous because Concentration of Chromium VI is very low therefore has been discounted

Hazard Statements hit:

Ox. Sol. 1; H271 "May cause fire or explosion; strong oxidiser."

Because of determinand:

chromium(VI) oxide: (compound conc.: 0.00001%)

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because The hazard phase HP3(i) refers to flammable liquids however as the material is a solid this is not applicable and has been discounted

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 1.0e-06%) toluene: (conc.: 1.0e-06%) ethylbenzene: (conc.: 1.0e-06%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.02%)

xylene: (conc.: 3.0e-06%)

Page 4 of 11 7ZYXA-K74FZ-KVJHL www.hazwasteonline.com

Classification of sample: Max Concentration of Granular Made Ground

A Hazardous Waste

Classified as 17 05 03 * in the List of Waste

Sample details

LoW Code: Sample Name:

Max Concentration of Granular Made Ground Chapter:

> Entry: 17 05 03 * (Soil and stones containing hazardous substances)

from contaminated sites)

..........

17: Construction and Demolition Wastes (including excavated soil

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1A; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

lead compounds with the exception of those specified elsewhere in this Annex (worst case): (Note 1 conc.: 0.422%)

HP 10: Toxic for reproduction "waste which has adverse effects on sexual function and fertility in adult males and females, as well as developmental toxicity in the offspring"

Hazard Statements hit:

Repr. 1A; H360Df "May damage the unborn child. Suspected of damaging fertility."

Because of determinand:

lead compounds with the exception of those specified elsewhere in this Annex (worst case): (Note 1 conc.: 0.422%)

HP 14: Ecotoxic "waste which presents or may present immediate or delayed risks for one or more sectors of the environment"

Risk phrases hit:

R50/53 "Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment"

Because of determinand:

lead compounds with the exception of those specified elsewhere in this Annex (worst case): (Note 1 conc.: 0.422%)

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		CLP index number	Determinand LP index number		CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	boron { boron tri (combined) }	bromide/trichloride/			2.2 mg/kg	13.43	29.546 mg/kg			
2	_		rsenic { arsenic trioxide }			18.8 mg/kg	1.32	24.822 mg/kg	0.00248 %		
3	~	-	dmium {			0.17 mg/kg	1.285	0.218 mg/kg	0.000017 %		
4		oxide }	hromium in chromium(III) compounds { © chromium(III xide } 215-160-9 1308-38-9			28 mg/kg	1.462	40.924 mg/kg	0.00409 %		

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
5	4		er oxide; copper (I)	oxide }	0	103.1	mg/kg	1.126	116.079	mg/kg	0.0116 %	2	
6	4	lead { lead compospecified elsewhere			1	4218	mg/kg		4218	mg/kg	0.422 %		
	æ		dichloride }			0.70		4.050	4 000		0.000100.01		
7	~		231-299-8	7487-94-7	1	0.76	mg/kg	1.353	1.029	mg/kg	0.000103 %		
	æ	nickel { nickel dihyc	droxide }	,									
8	ľ		235-008-5 [1]	12054-48-7 [1]	1	23.3	mg/kg	1.579	36.802	mg/kg	0.00368 %		
_			234-348-1 [2]	11113-74-9 [2]	\perp				-				
9	4		n compounds with the lenide and those sp			0.5	mg/kg	2.554	1.277	mg/kg	0.000128 %		
\vdash		zinc { zinc chromat	<u> </u>		+							\vdash	
10	•	024-007-00-3	<u>~</u>		-	136.7	mg/kg	2.774	379.226	mg/kg	0.0379 %		
\vdash	0	pH	l		\vdash							\vdash	
11	9	r''		PH	+	9.4	pН		9.4	pН	9.4 pH		
12	4	cyanides { salts exception of compl ferricyanides and n specified elsewhere 006-007-00-5	ex cyanides such a nercuric oxycyanide	e with the s ferrocyanides,		0.5	mg/kg	1.884	0.942	mg/kg	0.0000942 %		
13		phenol	l.			0.5	m = // c=		0.5	ma/lea	0.00005.0/		
13		604-001-00-2	203-632-7	108-95-2	1	0.5	mg/kg		0.5	mg/kg	0.00005 %		
14	0	TPH (C6 to C40) p	etroleum group			493	mg/kg		493	mg/kg	0.0493 %		
Ľ		TPH				400	mg/kg			mg/ng	0.0430 70		
15	4	chromium in chromoxide }	nium(VI) compounds	s { chromium(VI)		0.3	mg/kg	1.923	0.577	mg/kg	0.0000577 %		
		naphthalene		1.000 02 0									
16		·	202-049-5	91-20-3	+	0.29	mg/kg		0.29	mg/kg	0.000029 %		
17	0	acenaphthylene				0.14	mg/kg		0.14	mg/kg	0.000014 %		
		1	205-917-1	208-96-8	+								
18	0		201-469-6	83-32-9		0.26	mg/kg		0.26	mg/kg	0.000026 %		
19	0	fluorene	201-695-5	86-73-7		0.4	mg/kg		0.4	mg/kg	0.00004 %		
20	0	phenanthrene	001 501 5	05 01 0		2.78	mg/kg		2.78	mg/kg	0.000278 %		
\vdash	-	anthracene	201-581-5	85-01-8	+							\vdash	
21	0		204-371-1	120-12-7		0.91	mg/kg		0.91	mg/kg	0.000091 %		
22	0	fluoranthene	205-912-4	206-44-0		3.86	mg/kg		3.86	mg/kg	0.000386 %		
23	0	pyrene	204-927-3	129-00-0		3.02	mg/kg		3.02	mg/kg	0.000302 %		
<u> </u>		benzo[a]anthracen		1.20 00 0	+							\vdash	
24			200-280-6	56-55-3	-	1.65	mg/kg		1.65	mg/kg	0.000165 %		
25		chrysene	205-923-4	218-01-9		1.15	mg/kg		1.15	mg/kg	0.000115 %		
26		benzo[b]fluoranthe	1	205-99-2		1.22	mg/kg		1.22	mg/kg	0.000122 %		
27	H	benzo[k]fluoranthe		<u> </u>	+	0.45	m = //-		0.45	ma/l··	0.000045.0/		
27			205-916-6	207-08-9		0.45	mg/kg		0.45	mg/kg	0.000045 %		
28		benzo[a]pyrene; be		E0 22 0		1.16	mg/kg		1.16	mg/kg	0.000116 %		
20	9	601-032-00-3 indeno[123-cd]pyre	200-028-5 ene	50-32-8		0.70	we = //		0.70	w /l	0.000070.07		
29			205-893-2	193-39-5	1	0.76	mg/kg		0.76	mg/kg	0.000076 %		
30		dibenz[a,h]anthrac	ene 200-181-8	53-70-3		0.15	mg/kg		0.15	mg/kg	0.000015 %		
_													

Page 6 of 11 7ZYXA-K74FZ-KVJHL www.hazwasteonline.com

#					CLP Note	User entered data		Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
31	0	haranta in the same of the sam				0.55	mg/kg		0.55	mg/kg	0.000055 %		
32		benzene 601-020-00-8	200-753-7	71-43-2		0.01	mg/kg		0.01	mg/kg	0.000001 %		
33		toluene 601-021-00-3	203-625-9	108-88-3		0.01	mg/kg		0.01	mg/kg	0.000001 %		
34	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		0.01	mg/kg		0.01	mg/kg	0.000001 %		
35			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		0.03	mg/kg		0.03	mg/kg	0.000003 %		
36	0	polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3				0.062	mg/kg		0.062	mg/kg	0.0000062 %		
Tota											0.536 %		

Key

User supplied data

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 2: Oxidizing "waste which may, generally by providing oxygen, cause or contribute to the combustion of other materials"

Force this Hazardous property to non hazardous because Concentration of Chromium VI is very low therefore has been discounted

Hazard Statements hit:

Ox. Sol. 1; H271 "May cause fire or explosion; strong oxidiser."

Because of determinand:

chromium(VI) oxide: (compound conc.: 0.00005%)

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because The hazard phase HP3(i) refers to flammable liquids however as the material is a solid this is not applicable and has been discounted

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 1.0e-06%) toluene: (conc.: 1.0e-06%) ethylbenzene: (conc.: 1.0e-06%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0493%)

xylene: (conc.: 3.0e-06%)

www.hazwasteonline.com 7ZYXA-K74FZ-KVJHL Page 7 of 11

Appendix A: Classifier defined and non CLP determinands

• boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43

Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron

trichloride and boron trifluoride

Data source: N/A

Data source date: 8/6/2015

Risk Phrases: C R35, C R34, T+ R26/28, R14

Hazard Statements: Skin Corr. 1B H314, Skin Corr. 1A H314, Acute Tox. 2 H300, Acute Tox. 2 H330, EUH014

chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 7/17/2015

Risk Phrases: R61, R60, R50/53, R43, R42, R38, R37, R36, R22, R20

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Repr. 1B H360FD, Skin Sens. 1 H317, Resp. Sens. 1 H334,

Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302, Acute Tox. 4 H332

" dicopper oxide; copper (I) oxide (EC Number: 215-270-7, CAS Number: 1317-39-1)

CLP index number: 029-002-00-X

Description/Comments: M-factor for long-term aquatic hazard not included as per paragraph (5), ATP9

Data source: Regulation (EU) 2016/1179 of 19 July 2016 (ATP9) Additional Risk Phrases: N R50/53 >= 0.25 %, N R50/53

Additional Hazard Statement(s): None.

Reason for additional Hazards Statement(s)/Risk Phrase(s):

10/10/2016 - N R50/53 >= 0.25 % risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

10/10/2016 - N R50/53 risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

CLP index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 1; Carcinogenic to humans; Lead REACH Consortium

considers some lead compounds Carcinogenic category 1A

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Risk Phrases: None.

Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s)/Risk Phrase(s):

6/3/2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium

www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 5/25/2015 Risk Phrases: None. Hazard Statements: None.

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cvanide

Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP1)

Additional Risk Phrases: None.

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s)/Risk Phrase(s):

12/14/2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 5/25/2015

Risk Phrases: R65 , R63 , R51/53 , R46 , R45 , R10

Hazard Statements: Aquatic Chronic 2 H411, Repr. 2 H361d, Carc. 1B H350, Muta. 1B H340, STOT RE 2 H373, Asp. Tox. 1 H304,

Flam. Liq. 3 H226

Page 8 of 11 7ZYXA-K74FZ-KVJHL www.hazwasteonline.com

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 7/17/2015

Risk Phrases: R38, R37, R36, R27, R26, R22

Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 7/17/2015

Risk Phrases: N R51/53, N R50/53, R38, R37, R36

Hazard Statements: Aquatic Chronic 2 H411, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Irrit. 2 H315, STOT SE 3 H335,

Eye Irrit. 2 H319

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 8/6/2015 Risk Phrases: N R50/53

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 8/6/2015

Risk Phrases: N R50/53, R43, R40, R38, R37, R36, R22

Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE 3

H335, Eye Irrit. 2 H319, Acute Tox. 4 H302

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 7/17/2015

Risk Phrases: N R50/53 , R43 , R38 , R37 , R36

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Skin Sens. 1 H317 , Skin Irrit. 2 H315 , STOT SE 3 H335 , Eye

Irrit. 2 H319

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

 ${\tt Data\ source:\ http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 8/21/2015 Risk Phrases: N R50/53 , Xn R22

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Acute Tox. 4 H302

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 8/21/2015

Risk Phrases: N R50/53, Xi R36/37/38

Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , STOT SE 3 H335 , Eye Irrit. 2 H319 , Skin Irrit. 2 H315

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 8/6/2015

Risk Phrases: R40

Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 7/23/2015 Risk Phrases: N R50/53

Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

www.hazwasteonline.com 7ZYXA-K74FZ-KVJHL Page 9 of 11

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 - 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008.

(ATP6)

Additional Risk Phrases: None.

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s)/Risk Phrase(s):

6/3/2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

CLP index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in

European standards EN 12766-1 and EN 12766-2 shall be applied.

Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP)

Additional Risk Phrases: None.

Additional Hazard Statement(s): Carc. 1A H350

Reason for additional Hazards Statement(s)/Risk Phrase(s):

9/29/2015 - Carc. 1A H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

Appendix B: Rationale for selection of metal species

boron {boron tribromide/trichloride/trifluoride (combined)}

Worst case species based on hazard statements

arsenic {arsenic trioxide}

Worst case species based on hazard statements

cadmium {cadmium sulfide}

Worst case species based on hazard statements

chromium in chromium(III) compounds {chromium(III) oxide}

Worst case species based on hazard statements

copper {dicopper oxide; copper (I) oxide}

Most likely common species

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Chromium VI concentration is low therefore species unlikely to be Lead Chromate

mercury {mercury dichloride}

Worst case species based on hazard statements

nickel {nickel dihydroxide}

Worst case species based on hazard statements

selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}

Worst case species based on hazard statements

zinc {zinc chromate}

Worst case species based on hazard statements

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Worst case species

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case species based on hazard statements

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition, May 2015

HazWasteOnline Classification Engine Version: 2018.78.3515.7179 (19 Mar 2018)

HazWasteOnline Database: 2018.78.3515.7179 (19 Mar 2018)

Page 10 of 11 7ZYXA-K74FZ-KVJHL www.hazwasteonline.com

This classification utilises the following guidance and legislation:

WM3 - Waste Classification - May 2015
CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013
Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004

1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010

2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

7ZYXA-K74FZ-KVJHL Page 11 of 11 www.hazwasteonline.com