CampbellReith consulting engineers

123 Broadhurst Gardens, London NW6 3BJ

Basement Impact Assessment Audit

For

London Borough of Camden

Project Number: 12727-20 Revision: F1

May 2018

Campbell Reith Hill LLP Friars Bridge Court 41-45 Blackfriars Road London SE1 8NZ

T:+44 (0)20 7340 1700 E:london@campbellreith.com W:www.campbellreith.com

Document History and Status

Revision	Date	Purpose/Status	File Ref	Author	Check	Review
D1	December 2017	Comment	RMam-12727- 20-181217- 123 Broadhurst Gardens- D1.doc	A Morocs	R Morley	R Morley
D2	February 2018	Planning	RMam-12727- 20-310118- 123 Broadhurst Gardens- D2.doc	A Morocs	R Morley	R Morley
F1	May 2018	Final Issue	RMam-12727- 20-030518- 123 Broadhurst Gardens- F1.doc	A Morocs	R Morley	R Morley

This document has been prepared in accordance with the scope of Campbell Reith Hill LLP's (CampbellReith) appointment with its client and is subject to the terms of the appointment. It is addressed to and for the sole use and reliance of CampbellReith's client. CampbellReith accepts no liability for any use of this document other than by its client and only for the purposes, stated in the document, for which it was prepared and provided. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of Campbell Reith Hill LLP. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the document as a whole. The contents of this document are not to be construed as providing legal, business or tax advice or opinion.

© Campbell Reith Hill LLP 2015

Document Details

Last saved	03/05/2018 16:39
Path	RMam-12727-20-030518-123 Broadhurst Gardens-F1.doc
Author	A Morcos MSC CEng MICE
Project Partner	E M Brown, BSc MSc CGeol FGS
Project Number	12727-20
Project Name	123 Broadhurst Gardens, London, NW63BJ
Planning Reference	2017/4684/P

Contents

1.0	Non-technical summary	. 1
2.0	Introduction	3
3.0	Basement Impact Assessment Audit Check List	.7
4.0	Discussion	. 10
5.0	Conclusions	13

Appendix

Appendix 1: Residents	' Consultation Comments
-----------------------	-------------------------

- Appendix 2: Audit Query Tracker Appendix 3: Supplementary Supporting Documents

1.0 NON-TECHNICAL SUMMARY

- 1.1. CampbellReith was instructed by London Borough of Camden, (LBC) to carry out an audit on the Basement Impact Assessment submitted as part of the Planning Submission documentation for 123 Broadhurst Gardens, London, NW6 3BJ (planning reference 2017/4684/P). The basement is considered to fall within Category B as defined by the Terms of Reference.
- 1.2. The Audit reviewed the Basement Impact Assessment for potential impact on land stability and local ground and surface water conditions arising from basement development in accordance with LBC's policies and technical procedures.
- 1.3. CampbellReith was able to access LBC's Planning Portal and gain access to the latest revision of submitted documentation and reviewed it against an agreed audit check list.
- 1.4. The individuals concerned in the production of the BIA and other submitted information have suitable qualifications.
- 1.5. Relevant information screening and scoping as defined and required in the LBC Planning Guidance document 'Basement and Lightwells (CPG4)' has been provided.
- 1.6. It is proposed to demolish an existing rear garden extension to the five storey dwelling to allow for the construction of two story extension and a 1st floor level terrace to the back of the property, formation of a basement by lowering the existing lower ground floor, formation of two lighwells to the front and one to the back of the property.
- 1.7. The basement is proposed to be formed by constructing using common construction techniques and methodology.
- 1.8. The BIA states that most of the properties in the neighbourhood have existing lighwells to the front of the property.
- 1.9. The BIA has confirmed that the proposed basement will be founded directly within London Clay.
- 1.10. Further clarification is required as to whether the surface water drainage will be adversely impacted by the proposed development due to the introduction of two front light wells. This to be provided via post planning conditioning.
- 1.11. It is accepted that the excavation level is unlikely to be below groundwater level or impact on groundwater flows. However further groundwater monitoring is advised to investigate perched water levels.

- 1.12. Preliminary design calculations for the reinforced concrete retaining structure have been submitted as part of the additional information provided.
- 1.13. It is accepted that the surrounding slopes to the development site are stable.
- 1.14. It is accepted that the development will not impact on the wider hydrogeology of the area and is not in an area subject to flooding.
- 1.15. A schedule of queries for further information is summarised in Appendix 2 of this audit, which have now been closed out, or to be provided via post planning conditioning.

2.0 INTRODUCTION

- 2.1. CampbellReith was instructed by London Borough of Camden (LBC) 4th of December to carry out a Category B Audit on the Basement Impact Assessment (BIA) submitted as part of the Planning Submission documentation for 123 Broadhurst Gardens, London, NW6 3BJ (planning reference 2017/4684/P).
- 2.2. The Audit was carried out in accordance with the Terms of Reference set by LBC. It reviewed the Basement Impact Assessment for potential impact on land stability and local ground and surface water conditions arising from basement development.
- 2.3. A BIA is required for all planning applications with basements in Camden in general accordance with policies and technical procedures contained within
 - Guidance for Subterranean Development (GSD). Issue 01. November 2010. Ove Arup & Partners.
 - Camden Planning Guidance (CPG) 4: Basements and Lightwells.
 - Camden Development Policy (DP) 27: Basements and Lightwells.
 - Camden Development Policy (DP) 23: Water.
 - Local Plan Policy A5 Basements.
- 2.4. The BIA should demonstrate that schemes:
 - a) maintain the structural stability of the building and neighbouring properties;
 - avoid adversely affecting drainage and run off or causing other damage to the water environment;
 - avoid cumulative impacts upon structural stability or the water environment in the local area, and;

evaluate the impacts of the proposed basement considering the issues of hydrology, hydrogeology and land stability via the process described by the GSD and to make recommendations for the detailed design.

2.5. LBC's Audit Instruction described the planning proposal as "Erection of a two storey rear extension with terrace at 1st floor level following the demolition of the existing rear extension and erection of a rear dormer window, lowering of the existing lower ground floor, the creation of two lightwells to the front and one at the rear with associated landscaping, and the relocation of the side access door on the west elevation. "

- 2.6. The Audit Instruction also confirmed 123 Broadhurst Gardens was not, or was a neighbour to listed buildings.
- 2.7. CampbellReith accessed LBC's Planning Portal on 5th of December 2017 and gained access to the following relevant documents for audit purposes:
 - Basement Impact Assessment prepared by PADDOCK GEO ENGINEERING, Mr M Lencher, ref. P17-071BIA, August 2017
 - Structural Methodology Statement & Ground Investigation Report (ref. P17-071gi_v2) by Sinclair Johnson & Partners Ltd Consulting Civil and Structural Engineers, August 2017
 - Construction Management Plan by Marek Wojciechowski Architects Ltd, 11th of August 2017
 - Design and Access Statement by Marek Wojciechowski Architects Ltd, August 2017, ref. 16009
 - Tree Report by John Cromar's Arboricultural Company Limited, 1st September 2017, ref. 1-38-4346
 - Planning Application Drawings (by Marek Wojciechowski Architects Ltd) consisting of
 - E_00 Location Plan Rev.- (11.08.17)
 - Existing Plans Section & Elevations consisting of:
 - $\circ~$ E_01 Existing Ground Floor Plan Rev.- (11.08.17)
 - E_02 Existing Lower Ground Floor Plan Rev.- (11.08.17)
 - E_07 Existing North Street Elevation Rev.- (May 2017)
 - E_08 Existing North Elevation Rev.- (11.08.17)
 - E_09 Existing South Elevation Rev.- (11.08.17)
 - E_10 Existing West Elevation Rev.- (11.08.17)
 - E_11 Existing Section A-A Rev.- (11.08.17)
 - E_12 Existing Section B-B Rev.- (11.08.17)
 - Proposed Plans Sections & Elevations consisting of:
 - P_01 Proposed Ground Floor Plan Rev.- (11.08.17)
 - P_02 Proposed Lower Ground Floor Plan Rev.- (11.08.17)
 - P_08 Proposed North Elevation Rev.- (11.08.17)
 - P_09 Proposed South Elevation Rev.- (11.08.17)

- P_10 Proposed West Elevation rev. (11.08.17)
- P_11 Proposed Section A-A Rev.- (11.08.17)
- P_12 Proposed Section B-B Rev.- (11.08.17)
- P_15 Proposed Section E-E Rev.- (11.08.17)
- Amended P_01 Proposed Ground Floor Plan rev.A (27.10.17)
- Amended P_02 Proposed Lower-Ground Floor Plan Rev.A (27.10.17)
- Amended P_11 Proposed Section A-A Rev.A (27.10.17)
- Amended P_15 Proposed Section E-E Rev.A (27.10.17)
- Amended P_09 Proposed South Elevation Rev.A (27.10.17)
- Amended P_10 Proposed West Elevation Rev.A (27.10.17)
- Planning Comments and Response:
 - Consented Drawings Demolition consisting of:
 - o D_01 Demolition Ground Floor Plan Rev.B (04.05.17) consented on 25.07.17
 - $_{\odot}$ D_02 Demolition Lower Ground Floor Plan Rev.- (19.07.16) consented on 06.01.17
 - o D_07 Demolition North Elevation Rev.- (19.07-16) consented on 06.01.17
 - D_09 Demolition South Elevation Rev.A (04.05.17) consented on 25.07.17
 - D10 Demolition West Elevation Rev.- (19.07.16) consented on 06.01.17
 - o D_11 Demolition Section A-A Rev.- (19.07.16) consented on 06.01.17
 - D_12 Demolition Section B-B Rev.- (19.07.16) consented on 06.01.17
 - Consented Drawings_Proposed_Part1(2) consisting of:
 - o P_01 Proposed Ground Floor Plan rev.C (04.05.17) consented on 25.07.17
 - $_{\odot}\,$ P_02 Proposed Lower-Ground Floor Plan Rev.- (21.03.17) consented on 03.05.17
 - $_{\odot}\,$ P_07 Proposed North Elevation Rev. (19.07.17) consented on 06.01.17
 - P_09 Proposed South Elevation Rev.A (04.05.17) consented on 25.07.17
 - $_{\odot}\,$ Approved Plans Elevation drawings consisting of:

- $_{\odot}\,$ P_10 Proposed West Elevation Rev.A (21.03.17) consented on 03.05.17
- P_11 Proposed Section A-A Rev.A (12.01.17) consented on 08.03.17
- P_12 Proposed Section B-B Rev.B (12.01.17) consented on 08.03.17
- 2.8. Following the D1 issue of this audit report the following additional information was received from the applicant which has been included in Appendix 3:
 - Clarification email, mw-a, 03/01/18
 - 8726 Dec17 Retaining Wall Design.

3.0 BASEMENT IMPACT ASSESSMENT AUDIT CHECK LIST

Item	Yes/No/NA	Comment
Are BIA Author(s) credentials satisfactory?	Yes	
Is data required by Cl.233 of the GSD presented?	Yes	
Does the description of the proposed development include all aspects of temporary and permanent works which might impact upon geology, hydrogeology and hydrology?	Yes	
Are suitable plan/maps included?	Yes	Responded to screening question adequately.
Do the plans/maps show the whole of the relevant area of study and do they show it in sufficient detail?	Yes	
Land Stability Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	A justification statement is generally provided for 'no' answer.
Hydrogeology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	A justification statement is generally provided for 'no' answer.
Hydrology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	A justification statement is generally provided for 'no' answer.
Is a conceptual model presented?	Yes	
Land Stability Scoping Provided? Is scoping consistent with screening outcome?	Yes	
Hydrogeology Scoping Provided? Is scoping consistent with screening outcome?	No	All Hydrology Screening answers were No and justification has been provided.
Hydrology Scoping Provided? Is scoping consistent with screening outcome?	No	All Hydrology Screening answers were No and justification has been provided.
Is factual ground investigation data provided?	Yes	Data provided within Structural Methodology & Ground Investigation Report.

Item	Yes/No/NA	Comment
Is monitoring data presented?	Yes	
Is the ground investigation informed by a desk study?	Yes	
Has a site walkover been undertaken?	Yes	
Is the presence/absence of adjacent or nearby basements confirmed?	Yes	
Is a geotechnical interpretation presented?	Yes	
Does the geotechnical interpretation include information on retaining wall design?	Yes	Soil Shear Strength versus Depth diagram provided within Structural Methodology & Ground Investigation Report document, no retaining wall design included (page 226) Section 10.5.
Are reports on other investigations required by screening and scoping presented?	Yes	Additional investigations have been identified but not as the result of scoping: Ground Movement Assessment, Contamination Risk Screening, UXO Desk Study and Arboricultural Report.
Are the baseline conditions described, based on the GSD?	Yes	
Do the base line conditions consider adjacent or nearby basements?	Yes	Nearby and adjacent basement is mentioned in point 6.0, potential Impact 13.
Is an Impact Assessment provided?	Yes	Basement construction sequence drawing is attached to the Structural Methodology Statement Appendix.
Are estimates of ground movement and structural impact presented?	Yes	Interpretation of modelling has been described in point 5.7.1 and supported with the result data in the Structural Methodology Statement (page 229-230) for 121 Broadhurst Gardens semi- detached property. No estimates of ground movement have been provided to 125-139 Broadhurst Gardens block of flats.
Is the Impact Assessment appropriate to the matters identified by screen and scoping?	Yes	
Has the need for mitigation been considered and are appropriate mitigation methods incorporated in the scheme?	Yes	The need for mitigation has been considered in BIA Section 5.0, but no mitigation methods have been identified as expected damage to party

-

Item	Yes/No/NA	Comment
		wall has demonstrated Burland Scale Damage Category 1.
Has the need for monitoring during construction been considered?	Yes	The need for monitoring by a Contractor has been identified in Section 5.9 and 5.10 of the 'Structural Methodology Statement'.
Have the residual (after mitigation) impacts been clearly identified?	No	Residual impacts have not been identified
Has the scheme demonstrated that the structural stability of the building and neighbouring properties and infrastructure will be maintained?	Yes	Initial queries existed with respect to structural stability which have been subsequently provided.
Has the scheme avoided adversely affecting drainage and run-off or causing other damage to the water environment?	No	It is unclear if the surface water drainage is adversely impacted.
Has the scheme avoided cumulative impacts upon structural stability or the water environment in the local area?	Yes	
Does report state that damage to surrounding buildings will be no worse than Burland Category 1?	Yes	
Are non-technical summaries provided?	Yes	

4.0 DISCUSSION

- 4.1. The Basement Impact Assessment (BIA) and Site Investigation Report have been carried out by a firm of engineering consultants, Paddock Geo Engineering Limited (PGE) and the individuals concerned in its production have suitable qualifications as required by CPG4.
- 4.2. The Structural Design & Construction Statement, which forms part of the wider BIA has similarly been carried out by a firm of engineering consultants, Sinclair Johnson & Partners Ltd. and the authors is a chartered structural engineer.
- 4.3. The BIA submissions include land Stability, Hydrogeology and Hydrology screening and scoping, relevant site investigations and impact assessment as defined and required in the LBC Planning Guidance document 'Basement and Lightwells (CPG4).
- 4.4. The LBC Instruction to proceed with the audit identified that the basement proposal neither involved a listed building nor was adjacent to listed building.
- 4.5. The Design & Access Statement identified that 123 Broadhurst Gardens is located in the South Hampstead Conservation Area and basement conversions are common to the area. The existing property is of five stories and semi-detached and is arranged over lower ground floor, ground, first and second floor and converted loft with grounds to the front and rear. The site is bounded to the other side by block of flats 125-139 Broadhurst Gardens with an existing single story basement and the proposed basement is within three meters at the closest to the property. However, a basement impact assessment has not been discussed for the block of flats. The rear of the property shears private residential gardens.
- 4.6. The BIA has identified that front and back of the site differ in levels with a change of approximately 2.00 meters. The existing property has a lower ground floor founded at the formation of the rear garden.
- 4.7. The submitted proposal is a modification to the consented set of development proposal converting the property from two flats to a single family house, with a loft conversion to habitable floor and modification of internal structural walls. An existing rear extension is to be demolished to accommodate a new two storey extension, a first floor level terrace and lightwell within the perimeter of the old rear extension. In addition two front lightwells are proposed.
- 4.8. The proposed basement consists of a single storey construction formed by lowering an existing lower ground floor area under the entire footprint of the building and underneath the external rear garden stairs by 2.0 metres, and excavating the front portion of the site to the same level to form a lightwell.

Status: F1

- 4.9. A site specific investigation was conducted comprising two bore holes to a depth of 8mbgl within the front garden and 6.8mbgl in the rear garden, along with five trial pits within the perimeter of the existing lower ground floor on 27th of June 2017.
- 4.10. The front of the site is consists of 1.5 meter of Made Ground, overlaying the London Clay Formation. The London Clay consists of stiff orange brown silty sandy gravelly Clay to the depth of 2.5-2.6m in bore hole WS1 and 3.7-3.9m in bore hole WS2, overlaying moderately strong dark grey Claystone. The top of the Clay has been possibly identified as the Claygate member given its inclusion of granular material however it has been logged as London Clay. The London Clay Formation has been found at the surface of the rear garden. Therefore, the formation level of the proposed concrete floor basement is in the London Clay.
- 4.11. The site is not indicated to lie within a groundwater Source Protection Zone (SPZ) or within 500m of one. However, a now culverted headwater tributary of the former River Westbourne lays approximately 200 meters west of the site.
- 4.12. The site has a very low flooding risk from surface water and sewers, reservoirs and fluvial/tidal watercourses.
- 4.13. The GI identifies suspected perched water has been observed to rise to level 3.8 meters bgl. in one bore hole WS2 at the rear garden of the property. No standing groundwater was observed in the standpits within the boreholes during the observation period. However monitoring was carried out during the summer period and it is advised that additional monitoring should be carried out during wet periods, to monitor the perched water, particularly given the potential presence of the more permeable Claygate member overlaying the London clay due to its ground water bearing capacity.
- 4.14. The Ground Investigation indicated that the basement will be constructed within a perched water table and recommends water-proofing and tanking of the basement.
- 4.15. It is accepted that the excavation level is unlikely to be below groundwater level or impact on groundwater flows. However it would be prudent for dewatering to be prepared.
- 4.16. The hydrogeological screening states: "London Clay is not suitable for SUDS based soakways and the current drainage will be maintained". However it is not clear if the amount of surface water discharge will increase and it should be demonstrated that either surface water discharge is not increased or otherwise the use of SUDs investigated to attenuate surface water discharge.
- 4.17. The proposed method involves underpinning the existing internal and external walls from inside the existing lower ground floor level, constructing the reinforced concrete retaining walls to form lightwells and for the rear of the basement. The construction method is proposed as hit

11

and miss underpinning with maximum pin length of 900mm, with a raft basement foundation slab.

- 4.18. Preliminary design calculations for the reinforced concrete retaining walls have been submitted for the back garden and the neighbouring to 121 Broadhurst Gardens property and are attached to the Appendix 3.
- 4.19. It is accepted that the surface water drainage system will remain unchanged for the rear garden surface area; however further clarification is required in regards to increase in the impermeable surface area that drains to the sewer system at the front garden, as light wells are formed at the front of the property. The change in the surface area that drains to the sewer system needs to be confirmed, with the use of SUDs investigated should any increase be identified. This to be provided via post planning conditioning.
- 4.20. A need for movement monitoring is identified prior to construction of the underpin walls through to completion of the basement structure; however a monitoring strategy should be confirmed with the Party Wall Surveyor and should be updated with any updates to the structural design, damage impact assessment or temporary works proposals, following agreement of the construction strategy with the contractor.
- 4.21. A ground movement assessment has been produced by Paddock Geo Engineering Limited (PGE) which follows the method as described in CIRIA580. Vertical and horizontal ground movements have been calculated due to excavation with a damage category to neighbouring properties be no higher than category 1 on the Burland Scale calculated. While the method described in CIRIA760 is not strictly applicable to underpinning or L-shaped retaining walls, it is accepted that this would provide a conservative analogy when applied in this manner.
- 4.22. It is accepted that there are no slope stability concerns regarding the proposed development and it is not in an area prone to flooding.
- 4.23. A schedule of queries for further information is summarised in Appendix 2 of this audit, which have now been closed out, or to be provided via post planning conditioning.

5.0 CONCLUSIONS

- 5.1. The Basement Impact Assessment (BIA) has been carried out by Paddock Geo Engineering Limited (PGE), consultant engineers, by individuals who have suitable qualifications. An external chartered geologist consultant supported the hydrogeological assessment.
- 5.2. The BIA submissions include Land Stability, Hydrogeology and Hydrology screening and scoping, relevant site investigations and impact assessments as defined and required in the LBC Planning Guidance document 'Basement and Lightwells (CPG4)'.
- 5.3. The proposed basement consists of a single storey construction formed by lowering an existing lower ground floor area under all footprint of the existing building, and to the rear and front of the property.
- 5.4. The proposed basement is bordered by, 121 Broadhurst Gardens to the East with a shallow lower ground floor basement, 139 Broadhurst Gardens to the West with an existing single story basement and private gardens to the rear. The BIA states that most of the properties in the neighbourhood have existing lighwells to the front of the property.
- 5.5. A ground movement assessment has been produced for 121 Broadhurst Gardens that indicates a worst case damage category of 1 (very slight). 139 Broadhurst Gardens has an existing basement within an influence zone and has therefore not been considered within the GMA due to similar basement depth.
- 5.6. The BIA has confirmed that the proposed basement will be founded within London Clay.
- 5.7. It is accepted that the groundwater was not encountered during boring or within the standpipe during monitoring. However, monitoring was carried out during the summer period and it is advised that additional monitoring of perched water should be carried out during wet periods.
- 5.8. Preliminary design calculations for the reinforced concrete retaining structure were submitted.
- 5.9. Clarification is required in regards to increase in impermeable surface area that is drained to the sewer system as the front garden light wells are formed and the requirement of SUDs needs to be investigated. This to be provided via post planning conditioning.
- 5.10. It is accepted that the excavation level is unlikely to be below groundwater level or impact on groundwater flows.
- 5.11. The monitoring strategy should be confirmed with the Party Wall Surveyor and should be updated with any updates to the structural design, damage impact assessment or

Status: F1

temporary works proposals, following agreement of the construction strategy with the contractor.

- 5.12. It is accepted that the surrounding slopes to the development site are stable.
- 5.13. A schedule of queries for further information is summarised in Appendix 2 of this audit, which have now been closed out, or to be provided via post planning conditioning.

Status: F1

14

Appendix 1: Residents' Consultation Comments

Residents' Consultation Comments

Surname	Address	Date	Issue raised	Response
Mr. Onn Tammuz	121 Broadhurst Gardens London NW6 3BJ	27/09/2017	 Structural Risk to semi-detached property has been identified by the property owner concerning 2m deep basement excavations and the need to underpin 16m party wall. 	software which has demonstrated predicted damage category 1 to the
			 Water damage risk to the property as the result of the development. 	

Appendix 2: Audit Query Tracker

Audit Query Tracker

Query No	Subject	Query	Status	Date closed out
1	Hydrology	Details of existing surface water drainage to demonstrate change in discharge to the sewer system, with SUDs proposed if required.	Not applicable, to be provided via post planning conditioning	-
2	Construction	Preliminary design calculations for the reinforced concrete retaining structure should be submitted to demonstrate feasibility of proposal.	Closed	31/01/18

Appendix 3: Supplementary Supporting Documents

Appendix 3.1 email08 01 18 Appendix 3.2 8726 Dec17 Retaining Wall Design ----- Forwarded by Graham Kite/CRH on 08/01/2018 12:42 -----

From:"Hope, Obote" <Obote.Hope@camden.gov.uk>To:"GrahamKite@campbellreith.com" <GrahamKite@campbellreith.com>Date:08/01/2018 11:59Subject:FW: 123 Broadhurst Gardens (2017/4684/P) - BIA report

Hi Graham,

Please see the follow up enquiry in regards to retaining wall design for 123 Broadhurst Gardens.

Kind Regards,

Obote Hope Planner Regeneration and Planning Culture and Environment London Borough of Camden

Telephone: 020 7974 2555 Web: <u>camden.gov.uk</u> 2nd Floor 5 Pancras Square London N1C 4AG

From: Megan White [mailto:megan@mw-a.co.uk] Sent: 03 January 2018 10:38 To: Hope, Obote <Obote.Hope@camden.gov.uk> Cc: Robert Douge <robert@mw-a.co.uk>; Tori MacCabe <tori@mw-a.co.uk> Subject: RE: 123 Broadhurst Gardens (2017/4684/P) - BIA report

Good Morning Obote,

In regards to the outstanding Audit Queries from Campbell Reith below please forward the following responses:

Query 1: The surface water drainage system will remain unchanged as the area of impermeable surfaces will remain within the footprint of the previously consented planning application approved last year. Please refer to the plans of the consented scheme showing the consented works: rebuilding of the rear of the house and a paved terrace to the rear. The proposed basement only extends under the existing house footprint and consented rear paved terrace. The analysis made in the BIA remains accurate as the area of impermeable area is not increasing between the previously consented scheme (currently under construction) and the proposed scheme therefore the surface water impact remains unchanged.

Query 2: The design calculations for the reinforced concrete retaining structure are attached.

In the event that Campbell Reith would like to further discuss the queries following the responses above, please direct to:

Sian Hill Engineer – Sinclair Johnston & Partners D: 020 7593 1907 E: <u>shill@sinclairjohnston.co.uk</u> I would greatly appreciate, if you could confrim receipt and that the query responses have been issued to Campbell Reith. Kind Regards, Megan White

MAREK WOJCIECHOWSKI ARCHITECTS

www.mw-a.co.uk | t:020 7580 9336 | DD: 020 3617 5168

Registered in England Marek Wojciechowski Architects Limited No. 08217864 Registered office: 311 Ballards Lane, North Finchley, London, N12 8LY This email (and any of its attachments) are believed to be free frem viruses or other defects which may affect any IT system onto which it is installed or opened. It is, however, the responsibility of the recipient to ensure that this information is virus free. No responsibility is accepted by Marek Wojciechowski Architects Limited for any loss or damage arising in any way from receipt or use thereof.

This e-mail (and any of its attachments) may contain confidential and/or legally privileged information. It is intended solely for the exclusive use of the addressee. If you are not the intended addressee, please advise Marek Wojciechowski Architects Limited. Distribution, copying, use or disclosure of its contents to any other person is prohibited without prior consent.

From: Sexton, Gavin [mailto:gavin.sexton@camden.gov.uk] Sent: 19 December 2017 09:30 To: Megan White <<u>megan@mw-a.co.uk</u>> Cc: Tulloch, Rob <<u>Rob.Tulloch@camden.gov.uk</u>> Subject: 123 Broadhurst Gardens (2017/4684/P) - BIA report

Dear Megan White

The case officer for the above application (Rob Tulloch) is on leave until 27th Dec so I have been asked to notify you that Campbell Reith's Initial Report on their independent assessment of the Basement Impact Assessment submitted with the application is now available <u>online</u>.

Their report finds (appendix 2) that there are two outstanding issues which must be addressed by revisions/clarifications to the BIA.

I suggest you discuss the results with the author of the BIA and discuss with Rob when he returns.

regards

Gavin Sexton Principal Planner Regeneration and Planning Supporting Communities

London Borough of Camden

Telephone: 020 7974 3231 Web: <u>camden.gov.uk</u> 2nd Floor 5 Pancras Square 5 Pancras Square London N1C 4AG

<u>https://www.facebook.com/LBCamden</u> <u>https://www.linkedin.com/company/london-borough-of-</u> camden <u>https://twitter.com/camdentalkingcallto:tel:02079743231</u>

Please consider the environment before printing this email.

This e-mail may contain information which is confidential, legally privileged and/or copyright protected. This e- mail is intended for the addressee only. If you receive this in error, please contact the sender and delete the material from your computer.

Disclaimer

The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful.

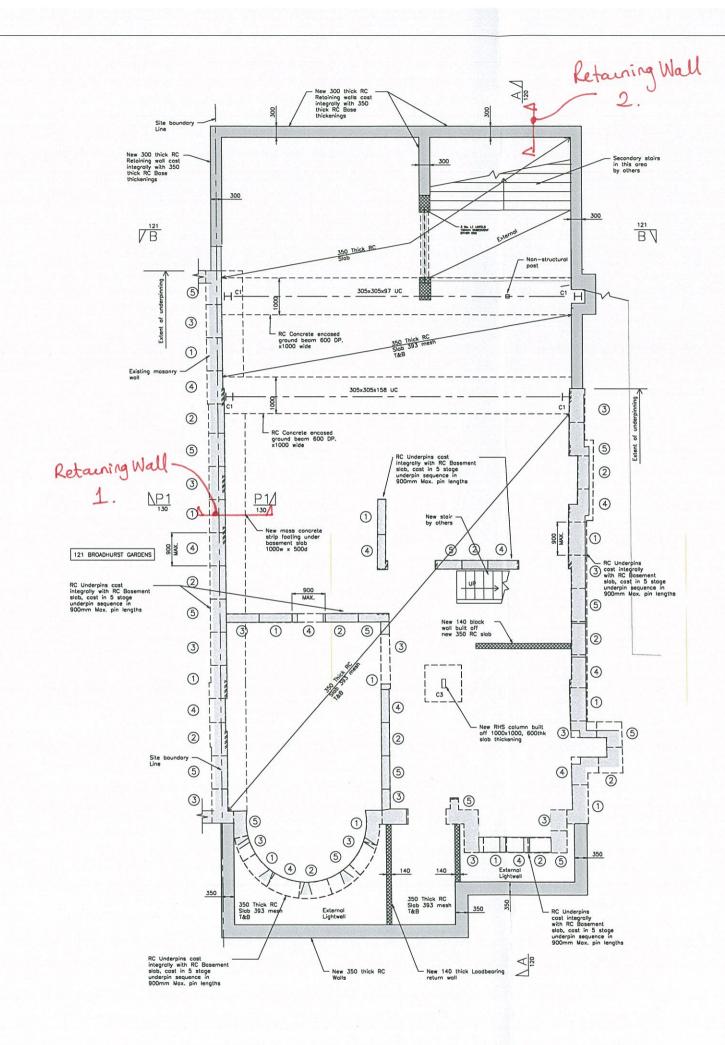
This email has been scanned for viruses and malware, and may have been automatically archived by Mimecast Ltd, an innovator in Software as a Service (SaaS) for business. Providing a safer and more useful place for your human generated data. Specializing in; Security, archiving and compliance. To find out more <u>Click Here</u>.

This e-mail may contain information which is confidential, legally privileged and/or copyright protected. This e- mail is intended for the addressee only. If you receive this in error, please contact the sender and delete the material from your computer.

Disclaimer

The information contained in this communication from the sender is confidential. It is intended solely for use by the recipient and others authorized to receive it. If you are not the recipient, you are hereby notified that any disclosure, copying, distribution or taking action in relation of the contents of this information is strictly prohibited and may be unlawful.

This email has been scanned for viruses and malware, and may have been automatically archived by Mimecast Ltd, an innovator in Software as a Service (SaaS) for business. Providing a safer and more useful place for your human generated data. Specializing in; Security, archiving and compliance. To find out more <u>Click Here</u>.


Click here to report this email as spam.

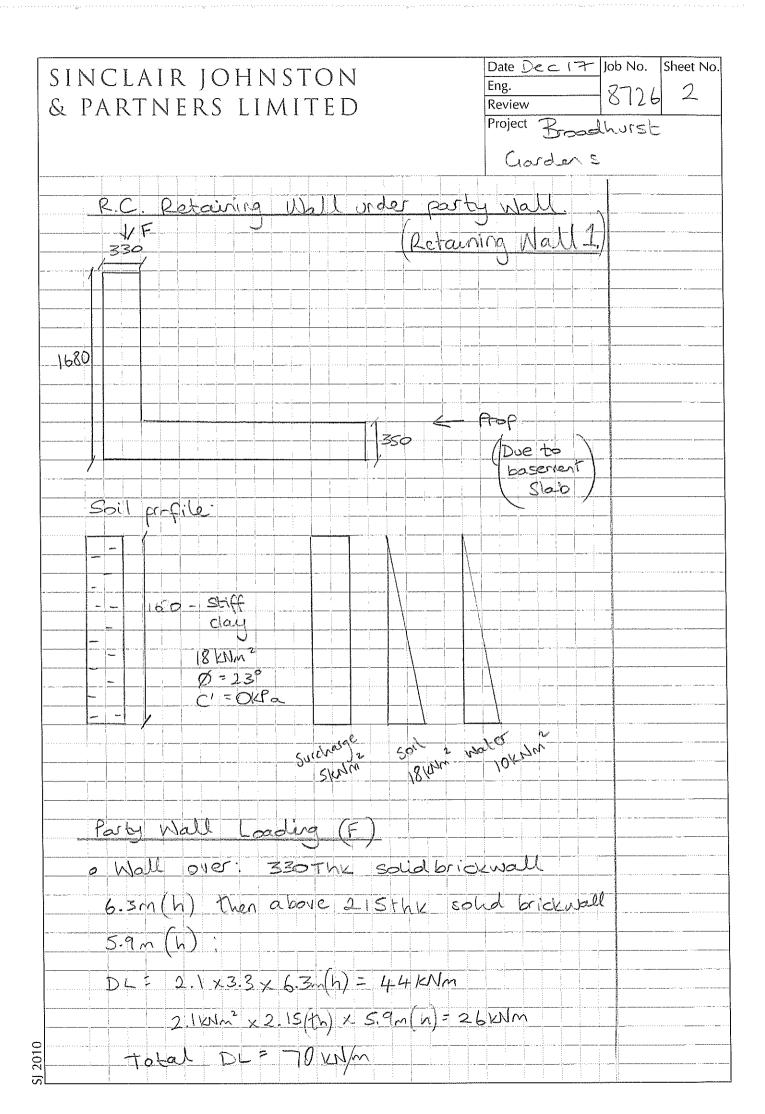
8726 Dec17 Retaining

Wall Design.pdf

SINCLAIR JOHNSTON	Date Dec 17 Job No. Sheet No.
& PARTNERS LIMITED	Eng. SH 8726 Review RA.
	Project Broadhurst
	Gardens
R.C. Retaining Wall design	
Floor Loads!	
Timber floors DL: 0.7KNM	
LL: 1.5 KNm ²	· · · · · · · · · · · · · · · · · · ·
Ground Floor RC Slab; DL. S. 11KN	<u>~~</u>
LUI I.SKN	
Poof (timber joists) i DL: 0.9ku/m²	
LL: D:6KNM	2
Salud load bearing well: 2.1KNm²	pes IDDM (W)
2010	
<u>S</u>	

NOTES:

- All structural engineering drawings are to be read with the specification and with all relevant Architect's and Service Engineer's drawings and specifications.


3. All dimensions are in millimetres and levels in metres

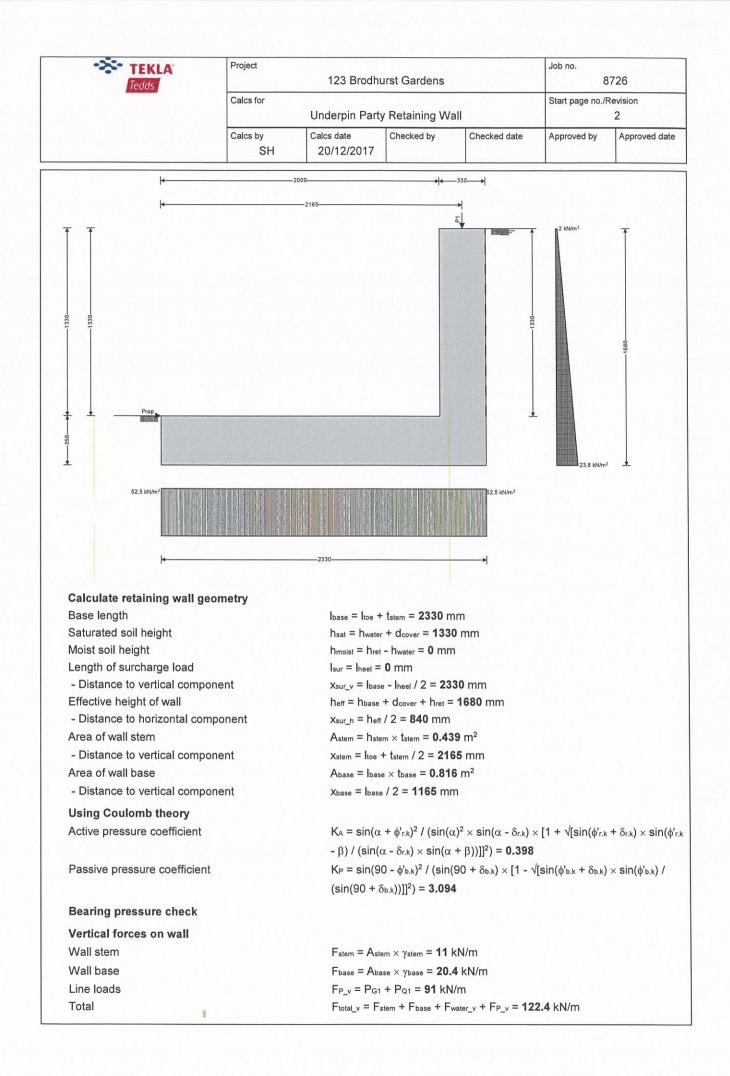
KEY:	
	New Reinforced concrete.
000000	Existing mosonry.
\overline{X}	New blockwork masonry.
===	Structure under.
	Structure demolished.
	New steel beam
2	Stage sequence of RC underpinning
L1.	100 x 215dp PRECAST CONCRETE LINTEL

C	COLUMN REFERENCE TABLE
REF.	SIZE
C1	203x203x46 UC
C2	100x100x10 SHS
C3	250x100x10 RHS

Stotu	JS	CO	NSTRUCTION
Rev	Dote	Issued	Amendment
-	03.08.17	DJP	Issued for Planning
A	11.08.17	DJP	Issued for Planning
В	30.08.17	SH	Issued for Tender
С	20.09.17	SH	Issued for Tender
D	28.09.17	SH	Issued for Construction

	IOHNSTON
	93 Great Suffolk Street London SE1 OBX T: 020 7593 1900 F: 020 7593 1910 www.sincloirjohnston.co.uk
<u>123</u> Broadhu <u>NW6</u>	rst Gardens
Proposed Basement Pl	an
Drawn D Phillips	Scole 1:50 ot A1
Project No./Drowing No.	Rev
8726/109	D

CINICIAID IOUNICTON	Date Dec 17. Job No. Sheet No.
SINCLAIR JOHNSTON	Eng. 8726 3
& PARTNERS LIMITED	Keview -
	Project Broadhurst
	Gasdens
R.C. Retaining Wall under Part	y Noll
Loading (F):	
o Ground Floor timber joists	
$DL = 0.716 M^2 \times 2.1 M = 1.516 M^2$	h h
LL - 1. SKNM × 2.1m = 3.2 KH	ĥ
· Ist Floor timber pists (as about	e)
DL = 1.5 KN/h $LL = 3.2 KN/h$	
o sectod Floor timber joists (as a	
DL = 1.5 KN/n $LL = 3.2 KN/n$	
0 2nd Floor 100thic wall:	
$DU = 2.1 \times NIm^2 \times 2.5 m(h) \times 2.1 m(w) =$	
o Brol Floor Timber pists	
$DL = 0.7 K M^2 \times 2.3 m = 1.6 K M m$	
$LL = 1.5 \times 10^{2} \times 2.3 \text{ m} = 3.5 \times 10^{10}$	
Total DL (SLS) = 78 KN/M	
LL(SLS) = 13.1 kN/m	
See Tedds output for RC details	2 Spec
5010	


TEKLA Tedds	Project	Job no. 8726				
	Calcs for	Underpin Party Retaining Wall (1.)			Start page no./Revision 1	
	Calcs by SH	Calcs date 20/12/2017	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.6.05

Retaining wall details	
Stem type	Cantilever
Stem height	h _{stem} = 1330 mm
Stem thickness	t _{stem} = 330 mm
Angle to rear face of stem	α = 90 deg
Stem density	$\gamma_{stem} = 25 \text{ kN/m}^3$
Toe length	I _{toe} = 2000 mm
Base thickness	t _{base} = 350 mm
Base density	$\gamma_{base} = 25 \text{ kN/m}^3$
Height of retained soil	h _{ret} = 1330 mm
Angle of soil surface	β = 0 deg
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = <mark>1330</mark> mm
Water density	γ _w = 9.8 kN/m³
Retained soil properties	
Soil type	Stiff clay
Moist density	γ _{mr} = 18 kN/m ³
Saturated density	γ _{sr} = 18 kN/m ³
Characteristic effective shear resistance angle	φ'r.k = 23 deg
Characteristic wall friction angle	δr.k = 11 deg
Base soil properties	
Soil type	Firm clay
Soil density	γ _b = 18 kN/m ³
Characteristic effective shear resistance angle	φ' _{b.k} = 23 deg
Characteristic wall friction angle	δ _{b,k} = 11 deg
Characteristic base friction angle	$\delta_{bb,k} = 12 \text{ deg}$
Presumed bearing capacity	$P_{\text{bearing}} = 100 \text{ kN/m}^2$
Loading details	
Variable surcharge load	Surchargeg = 5 kN/m ²
Vertical line load at 2165 mm	$P_{G1} = 78 \text{ kN/m}$
	Pg1 = 13 kN/m

TEKLA Tedds	Project	123 Brodh	urst Gardens		Job no.	3726		
	Calcs for Underpin Party Retaining Wall				Start page no./Revision 3			
	Calcs by SH			Approved by	Approved date			
Horizontal forces on wall								
Surcharge load		F _{sur_h} = K _A	$\times \cos(\delta_{r.d}) \times S$	urchargeq × heff =	3.3 kN/m			
Saturated retained soil		F _{sat_h} = K _A	$F_{sat_h} = K_A \times cos(\delta_{r,d}) \times (\gamma_{sr'} - \gamma_{w'}) \times (h_{sat} + h_{base})^2 / 2 = 4.5 \text{ kN/m}$					
Water		$F_{water_h} = \gamma_v$	v' × (h _{water} + d _{co}	$(bver + hbase)^2 / 2 = 1$	/ 2 = 13.8 kN/m			
Base soil		F _{pass_h} = -K	$X_{P} \times \cos(\delta_{b.d}) \times$	γb' × (dcover + hbas	_{se})² / 2 = -3.3 kN/m			
Total		F _{total_h} = F _s	at_h + Fmoist_h +	Fpass_h + Fwater_h +	+ F _{sur_h} = 18.3 kN/m			
Moments on wall								
Wall stem		M _{stem} = F _{ste}	$m \times X_{stem} = 23.$	8 kNm/m				
Wall base		Mbase = Fba	se × Xbase = 23.	8 kNm/m				
Surcharge load		M _{sur} = -F _{sur}	$M_{sur} = -F_{sur_h} \times x_{sur_h} = -2.8 \text{ kNm/m}$					
Line loads		M _P = (P _{G1}	$M_P = (P_{G1} + P_{Q1}) \times p_1 = 197 \text{ kNm/m}$					

Check bearing pressure	
Propping force	Fprop_base = Ftotal_h = 18.3 kN/m
Distance to reaction	x = I _{base} / 2 = 1165 mm
Eccentricity of reaction	$e = \overline{x} - I_{base} / 2 = 0 mm$
Loaded length of base	l _{load} = l _{base} = 2330 mm
Bearing pressure at toe	q _{toe} = F _{total_v} / I _{base} = 52.5 kN/m ²
Bearing pressure at heel	q _{heel} = F _{total_v} / I _{base} = 52.5 kN/m ²
Factor of safety	FoS _{bp} = P _{bearing} / max(q _{toe} , q _{heel}) = 1.904
	PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

Mwater = -Fwater_h × Xwater_h = -7.8 kNm/m

Mtotal = Mstem + Mbase + Msat + Mmoist + Mwater + Msur + MP = 231.5 kNm/m

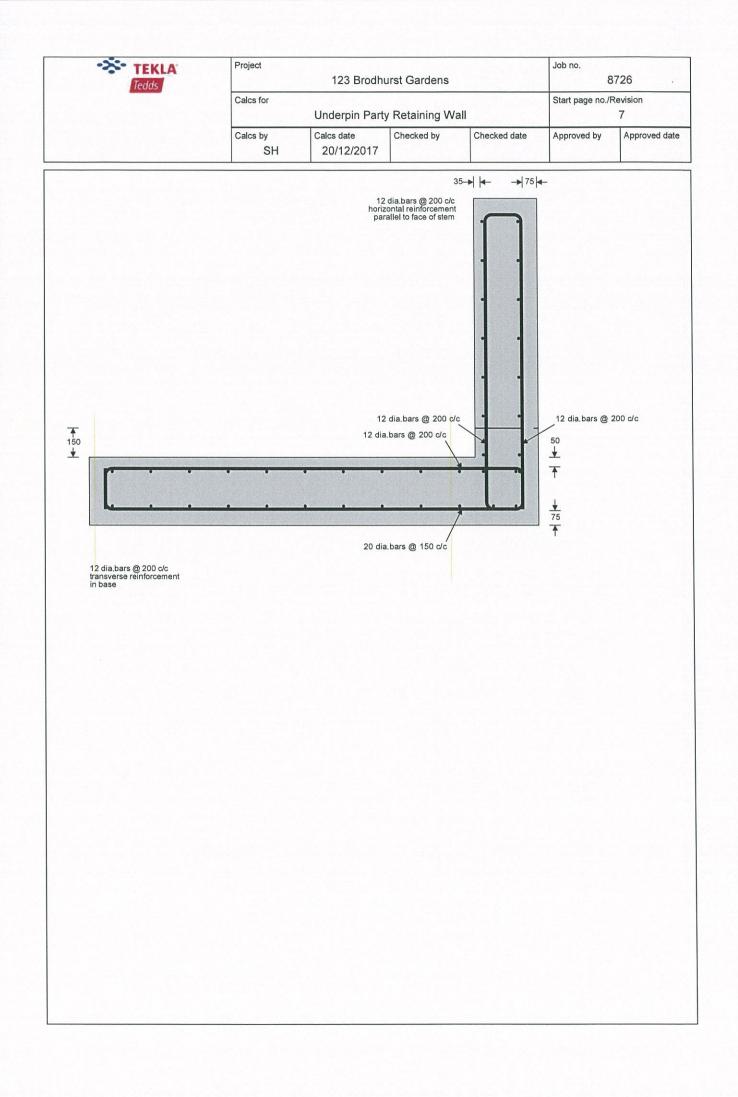
RETAINING WALL DESIGN

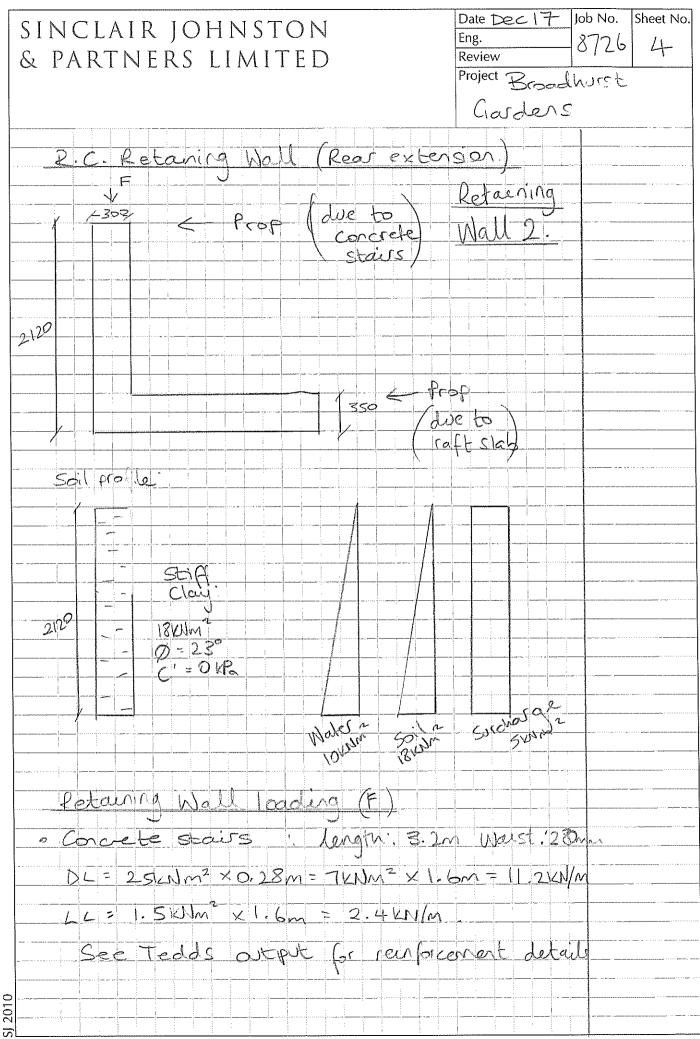
Water

Total

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.6.05


Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

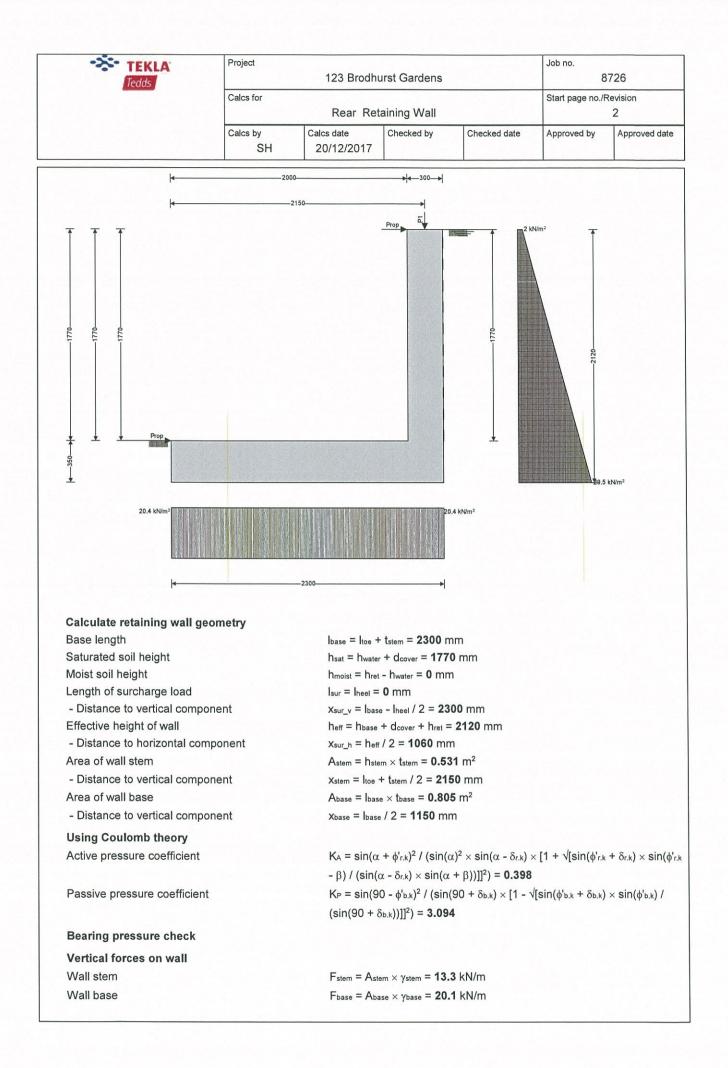

Concrete strength class	C32/40
Characteristic compressive cylinder strength	f _{ck} = 32 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 40 N/mm ²
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 40 \text{ N/mm}^2$
Mean value of axial tensile strength	$f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 3.0 \text{ N/mm}^2$
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.1 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	E_{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 33346 N/mm ²
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	αcc = 0.85
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 18.1 \text{ N/mm}^2$
Maximum aggregate size	h _{agg} = 20 mm
Reinforcement details	
Characteristic yield strength of reinforcement	f _{yk} = 500 N/mm ²
Modulus of elasticity of reinforcement	Es = 200000 N/mm ²
Partial factor for reinforcing steel - Table 2.1N	γs = 1.15
Design yield strength of reinforcement	f _{yd} = f _{yk} / γs = 435 N/mm ²

TEKLA Tedds	Project	123 Brodhu	urst Gardens		Job no. 8	726
	Calcs for	Underpin Party	y Retaining Wa	all	Start page no./F	Revision 4
	Calcs by SH	Calcs date 20/12/2017	Checked by	Checked date	Approved by	Approved o
Cover to reinforcement						
Front face of stem		c _{sf} = 35 mn	n			
Rear face of stem		csr = 75 mm	n			
Top face of base		c _{bt} = 50 mr	n			
Bottom face of base		Cbb = 75 mi	m			
Check stem design at base Depth of section	e of stem	h = 330 mr	n			
Rectangular section in flex	ure - Section 6.	1				
Design bending moment con		M = 9.5 kN	lm/m			
Depth to tension reinforceme			- φ _{sr} / 2 = 249 n	nm		
	19-4-12-12-12-12-12-12-12-12-12-12-12-12-12-		× fck) = 0.005			
		K' = 0.207	,			
			K'>K-	No compressio	on reinforceme	ent is requ
Lever arm		z = min(0.5	5 + 0.5 × (1 - 3	.53 × K) ^{0.5} , 0.95)	× d = 237 mm	
Depth of neutral axis		$x = 2.5 \times (0)$	(1 - z) = 31 mm			
Area of tension reinforcemer	nt required	Asr.reg = M	$(f_{yd} \times z) = 92$ r	mm²/m		
Tension reinforcement provid		and the second sec	s @ 200 c/c			
Area of tension reinforcemer	nt provided		$\times \phi_{sr}^2 / (4 \times S_{sr})$	= 565 mm ² /m		
Minimum area of reinforcem	ent - exp.9.1N			f _{yk} , 0.0013) × d =	392 mm²/m	
Maximum area of reinforcem			04 × h = 1320			
		,	, Asr.min) / Asr.pro			
	PASS - Area	of reinforcemen	t provided is	greater than are	ea of reinforce	ment requ
Deflection control - Section	n 7.4					
Reference reinforcement rat	io	$\rho_0 = \sqrt{f_{ck}}$	1 N/mm ²) / 100	00 = 0.006		
Required tension reinforcem	ent ratio	$\rho = A_{sr.req} /$	d = 0.000			
Required compression reinfo	prcement ratio		/ d ₂ = 0.000			
Structural system factor - Ta	ble 7.4N	K _b = 0.4				
Reinforcement factor - exp.7	.17	K₅ = min(5	500 N/mm ² / (fy	k × Asr.req / Asr.prov), 1.5) = 1.5	
Limiting span to depth ratio -		$K_s \times K_b \times [$	11 + 1.5 × √(for	1 N/mm<sup 2) × ρο	$1 \rho + 3.2 \times \sqrt{f_c}$	k / 1 N/mm
			^{3/2}] = 670.2			
Actual span to depth ratio		h _{stem} / d =				
		PASS	- Span to dej	oth ratio is less	than deflection	on control
Crack control - Section 7.3						
Limiting crack width		wmax = 0.3	mm			
Variable load factor - EN199	0 – Table A1.1	ψ2 = 0.3				
Serviceability bending mome	ent	MsIs = 5.6	kNm/m			
Tensile stress in reinforceme	ent	$\sigma_s = M_{sls}$ /	$(A_{sr.prov} \times z) = 4$	12 N/mm ²		
Load duration		Long term				
Load duration factor		kt = 0.4				
Effective area of concrete in	tension	A _{c.eff} = mir	n(2.5 × (h - d),	(h – x) / 3, h / 2)	= 99625 mm²/r	m
Mean value of concrete tens	sile strength	$f_{ct.eff} = f_{ctm}$	= 3.0 N/mm ²			
Reinforcement ratio		$\rho_{p.eff} = A_{sr,p}$	prov / Ac.eff = 0.0	06		
Modular ratio		$\alpha_e = E_s / E_s$	Ecm = 5.998			
Bond property coefficient		k1 = 0.8				
Strain distribution coefficien		k ₂ = 0.5				

TEKLA Tedds	Project	123 Brodhu	irst Gardens		Job no. 8	3726
	Calcs for	Underpin Party	Retaining Wa	Start page no./I	Revision 5	
	Calcs by SH	Calcs date 20/12/2017	Checked by	Checked date	Approved by	Approved date
		k3 = 3.4				
		k ₄ = 0.425				
Maximum crack spacing - exp				$k_4 \times \phi_{sr} / \rho_{p.eff} = 6$		
Maximum crack width - exp.7.	.8			$(f_{ct.eff} / \rho_{p.eff}) \times (1$	+ $\alpha_e \times \rho_{p.eff}$), 0	$.6 \times \sigma_s) / E_s$
		wk = 0.077				
		Wk / Wmax =				
		PASS	- Maximum ci	rack width is le	ss than limitii	ng crack wid
Rectangular section in shea	ar - Section 6.2					
Design shear force		V = 19.4 kM				
			3 / γc = 0.120			
			· √(200 mm / d			
Longitudinal reinforcement ra	tio					
		Vmin = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	$^{2} \times f_{ck}^{0.5} = 0.517$	N/mm ²	
Design shear resistance - exp	o.6.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd,c} \times k \times (10))$	$00 \text{ N}^2/\text{mm}^4 \times \rho_1 \times$	f_{ck}) ^{1/3} , Vmin) × C	1
		V _{Rd.c} = 128				
		$V / V_{Rd.c} = 0$				
				ear resistance	exceeds desi	gn shear for
Horizontal reinforcement pa						
Minimum area of reinforceme	nt - cl.9.6.3(1)	Asy reg = ma	V(1) 25 × Assess	$(1)(1)(1) \vee t_{1}(1) =$	$330 \text{ mm}^2/\text{m}$	
				v, 0.001 × t _{stem}) =	000 11111 /111	
Maximum spacing of reinforce	ement - cl.9.6.3(2) Ssx_max = 40	10 mm	v, 0.001 × tstem) -		
Maximum spacing of reinforce Transverse reinforcement pro	ement – cl.9.6.3(2 ovided) s _{sx_max} = 40 12 dia.bars	0 mm @ 200 c/c		1	
Maximum spacing of reinforce Transverse reinforcement pro	ement – cl.9.6.3(2 ovided nent provided) s _{sx_max} = 40 12 dia.bars A _{sx.prov} = π	<mark>)0</mark> mm s @ 200 c/c × φsx² / (4 × ssx)) = 565 mm²/m		montroquir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem	ement – cl.9.6.3(2 ovided) s _{sx_max} = 40 12 dia.bars A _{sx.prov} = π	<mark>)0</mark> mm s @ 200 c/c × φsx² / (4 × ssx)) = 565 mm²/m		ement requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe	ement – cl.9.6.3(2 ovided nent provided) s _{sx_max} = 40 12 dia.bars A _{sx.prov} = π f reinforcement	9 0 mm s @ 200 c/c × φ _{sx} ² / (4 × s _{sx}) t provided is g) = 565 mm²/m		ement requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe Depth of section	ement – cl.9.6.3(2 ovided nent provided PASS - Area o) s _{sx_max} = 40 12 dia.bars A _{sx.prov} = π	9 0 mm s @ 200 c/c × φ _{sx} ² / (4 × s _{sx}) t provided is g) = 565 mm²/m		ement requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe Depth of section Rectangular section in flexe	ement – cl.9.6.3(2 ovided hent provided PASS - Area o ure - Section 6.1) s _{sx_max} = 40 12 dia.bars Asx.prov = π f reinforcement h = 350 mr	0 <mark>0 mm</mark> s @ 200 c/c × ∳sx ² / (4 × ssx) <i>t provided is g</i> m) = 565 mm²/m		ement requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe Depth of section Rectangular section in flexe Design bending moment com	ement – cl.9.6.3(2 ovided PASS - Area o Ure - Section 6.1 abination 1) s _{sx_max} = 40 12 dia.bars A _{sx.prov} = π f <i>reinforcement</i> h = 350 mr M = 119.8	00 mm s @ 200 c/c × φsx ² / (4 × ssx) t <i>provided is g</i> m kNm/m) <mark>= 565 mm²/m</mark> greater than are		ement requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe Depth of section Rectangular section in flexe	ement – cl.9.6.3(2 ovided PASS - Area o Ure - Section 6.1 abination 1) s _{sx_max} = 40 12 dia.bars A _{sx.prov} = π f <i>reinforcement</i> h = 350 mr M = 119.8 d = h - cbb	90 mm s @ 200 c/c × ∳sx ² / (4 × ssx) t <i>provided is g</i> m kNm/m - ∳₅ь / 2 = 265 p) <mark>= 565 mm²/m</mark> greater than are		ement requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe Depth of section Rectangular section in flexe Design bending moment com	ement – cl.9.6.3(2 ovided PASS - Area o Ure - Section 6.1 abination 1) s _{sx_max} = 40 12 dia.bars Asx.prov = π f reinforcement h = 350 mr M = 119.8 d = h - сьь K = M / (d ²	00 mm s @ 200 c/c × φsx ² / (4 × ssx) t <i>provided is g</i> m kNm/m) <mark>= 565 mm²/m</mark> greater than are		ement requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe Depth of section Rectangular section in flexe Design bending moment com	ement – cl.9.6.3(2 ovided PASS - Area o Ure - Section 6.1 abination 1) s _{sx_max} = 40 12 dia.bars A _{sx.prov} = π f <i>reinforcement</i> h = 350 mr M = 119.8 d = h - cbb	90 mm s @ 200 c/c × φ _{sx} ² / (4 × s _{sx}) t provided is g m kNm/m - φ _{bb} / 2 = 265 g × f _{ck}) = 0.053) <mark>= 565 mm²/m</mark> greater than are	ea of reinforce	
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforceme	ement – cl.9.6.3(2 ovided PASS - Area o Ure - Section 6.1 abination 1) s _{sx_max} = 40 12 dia.bars A _{sx.prov} = π f reinforcement h = 350 mr M = 119.8 d = h - c _{bb} K = M / (d ² K' = 0.207	90 mm s @ 200 c/c × φsx ² / (4 × ssx) t provided is g m kNm/m - φьь / 2 = 265 m × fck) = 0.053 <i>K' > K -</i>) = 565 mm²/m greater than are mm No compressio	a of reinforce	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforceme	ement – cl.9.6.3(2 ovided PASS - Area o Ure - Section 6.1 abination 1) s _{sx_max} = 40 12 dia.bars Asx.prov = π f reinforcement h = 350 mr M = 119.8 d = h - сьь K = M / (d ² K' = 0.207 z = min(0.5	00 mm s @ 200 c/c × фsx ² / (4 × ssx) t provided is g m kNm/m - фьь / 2 = 265 m × fck) = 0.053 <i>K' > K</i> - 5 + 0.5 × (1 - 3) = 565 mm²/m greater than are mm <i>No compressio</i> .53 × K) ^{0.5} , 0.95)	a of reinforce	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforceme Lever arm Depth of neutral axis	ement – cl.9.6.3(2 ovided nent provided <i>PASS - Area o</i> ure - Section 6.1 abination 1 nt) s _{sx_max} = 40 12 dia.bars A _{sx,prov} = π f reinforcement h = 350 mr M = 119.8 d = h - cbb K = M / (d ² K' = 0.207 z = min(0.8 x = 2.5 × (d	90 mm s @ 200 c/c × ϕ_{sx}^2 / (4 × ssx) t provided is g m kNm/m - ϕ_{bb} / 2 = 265 m × fck) = 0.053 K' > K - 5 + 0.5 × (1 - 3) d - z) = 33 mm	9 = 565 mm ² /m greater than are mm No compressio .53 × K) ^{0.5} , 0.95)	a of reinforce	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcem Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforceme Lever arm Depth of neutral axis Area of tension reinforcemen	ement – cl.9.6.3(2 ovided pent provided PASS - Area o ure - Section 6.1 abination 1 nt) $s_{sx_max} = 40$ 12 dia.bars $A_{sx,prov} = \pi$ f reinforcements h = 350 mr M = 119.8 $d = h - c_{bb}$ $K = M / (d^2$ K' = 0.207 z = min(0.8 $x = 2.5 \times (d^2)$	90 mm s @ 200 c/c × фsx ² / (4 × ssx) f provided is g m kNm/m - фьь / 2 = 265 m × fck) = 0.053 <i>K' > K -</i> 5 + 0.5 × (1 - 3 d - z) = 33 mm / (fyd × z) = 105	9 = 565 mm ² /m greater than are mm No compressio .53 × K) ^{0.5} , 0.95)	a of reinforce	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcement Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforcement Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provide	ement – cl.9.6.3(2 ovided nent provided PASS - Area o ure - Section 6.1 obination 1 nt) s _{sx_max} = 40 12 dia.bars Asx.prov = π f reinforcement h = 350 mr M = 119.8 d = h - cbb K = M / (d ² K' = 0.207 z = min(0.5 x = 2.5 × (d Abb.req = M 20 dia.bars	90 mm 5 @ 200 c/c × ϕ_{sx}^2 / (4 × sx) t provided is g m kNm/m - ϕ_{bb} / 2 = 265 m × fck) = 0.053 K' > K - 5 + 0.5 × (1 - 3 d - z) = 33 mm / (fyd × z) = 105 s @ 150 c/c) = 565 mm ² /m greater than are mm .53 × K) ^{0.5} , 0.95) .55 mm ² /m	ea of reinforce on reinforcem × d = 252 mm	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcement Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforcement Depth of neutral axis Area of tension reinforcement Tension reinforcement provid Area of tension reinforcement	ement – cl.9.6.3(2 vided hent provided PASS - Area o ure - Section 6.1 abination 1 nt t required led t provided) $s_{sx_max} = 40$ 12 dia.bars $A_{sx,prov} = \pi$ f reinforcement h = 350 mr M = 119.8 $d = h - c_{bb}$ $K = M / (d^2$ K' = 0.207 z = min(0.8 $x = 2.5 \times (c$ $A_{bb,prov} = \pi$	$\begin{array}{l} \begin{array}{l} \begin{array}{l} 00 \text{ mm} \\ \text{s} @ 200 \text{ c/c} \\ \times \phi_{\text{sx}}^2 / (4 \times \text{sx}) \\ \text{t} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \begin{array}{l} \text{f} \end{tabular} \\ \begin{array}{l} \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \begin{array}{l} \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \begin{array}{l} \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \begin{array}{l} \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \begin{array}{l} \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \begin{array}{l} \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \begin{array}{l} \text{f} \end{tabular} \\ \begin{array}{l} \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \begin{array}{l} \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \text{f} \end{tabular} \\ \end{tabular} \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \end{tabular} \\ \end{tabular} \\ \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \end{tabular} \end{tabular} \\ \endt$) = 565 mm ² /m greater than are mm .53 × K) ^{0.5} , 0.95) .55 mm ² /m .5) = 2094 mm ² /m	ea of reinforce on reinforcem × d = 252 mm	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcement Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforcement Depth of neutral axis Area of tension reinforcement Tension reinforcement provid Area of tension reinforcement	ement – cl.9.6.3(2 vided nent provided PASS - Area of ure - Section 6.1 abination 1 nt t required led t provided ent - exp.9.1N) $s_{sx_max} = 40$ 12 dia.bars $A_{sx,prov} = \pi$ f reinforcements h = 350 mr M = 119.8 $d = h - c_{bb}$ $K = M / (d^2$ K' = 0.207 z = min(0.8 $x = 2.5 \times (d^2)$ $A_{bb,req} = M$ 20 dia.bars $A_{bb,prov} = \pi$ $A_{bb,prov} = \pi$	00 mm s @ 200 c/c × $φ_{sx}^2 / (4 × s_{sx})$ t provided is g m kNm/m - $φ_{bb} / 2 = 265 m$ × fck) = 0.053 <i>K' > K</i> - 5 + 0.5 × (1 - 3) d - z) = 33 mm / (fyd × z) = 109 s @ 150 c/c × $φ_{bb}^2 / (4 × s_{bb})^2$) = 565 mm ² /m greater than are mm No compression (53 × K) ^{0.5} , 0.95) (55 mm ² /m (5) = 2094 mm ² /m (fyk, 0.0013) × d	ea of reinforce on reinforcem × d = 252 mm	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcement Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforcement Depth of neutral axis Area of tension reinforcement Tension reinforcement provid Area of tension reinforcement	ement – cl.9.6.3(2 vided nent provided PASS - Area of ure - Section 6.1 abination 1 nt t required led t provided ent - exp.9.1N) $s_{sx_max} = 40$ 12 dia.bars $A_{sx,prov} = \pi$ f reinforcement h = 350 mm M = 119.8 d = h - cbb $K = M / (d^2$ K' = 0.207 z = min(0.5 $x = 2.5 \times (d^2)$ Abb.req = M 20 dia.bars $Abb.rov = \pi$ Abb.min = m Abb.max = 0.5	00 mm s @ 200 c/c × $φ_{sx}^2$ / (4 × sx) t provided is g m kNm/m - $φ_{bb}$ / 2 = 265 m × fck) = 0.053 K' > K - 5 + 0.5 × (1 - 3) d - z) = 33 mm / (fyd × z) = 109 s @ 150 c/c × $φ_{bb}^2$ / (4 × su ax(0.26 × fcm / .04 × h = 1400) = 565 mm ² /m greater than are mm <i>No compressio</i> .53 × K) ^{0.5} , 0.95) 95 mm ² /m 5) = 2094 mm ² /m fyk, 0.0013) × d = 0 mm ² /m	ea of reinforce on reinforcem × d = 252 mm	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcement Check base design at toe Depth of section Rectangular section in flexe Design bending moment come Depth to tension reinforcement Depth of neutral axis Area of tension reinforcement Tension reinforcement provid Area of tension reinforcement	ement – cl.9.6.3(2 vvided hent provided PASS - Area of ure - Section 6.1 ubination 1 nt t required led t provided ent - exp.9.1N ent - cl.9.2.1.1(3)) $s_{sx_max} = 40$ 12 dia.bars $A_{sx,prov} = \pi$ f reinforcement h = 350 mm M = 119.8 d = h - cbb $K = M / (d^2$ K' = 0.207 z = min(0.5 $x = 2.5 \times (c$ $Abb,prov = \pi$ Abb,min = m Abb,max = 0. max(Abb,rec	$\begin{array}{l} \begin{array}{l} \begin{array}{l} 00 \text{ mm} \\ \text{s} @ 200 \text{ c/c} \\ \times \phi_{\text{sx}}^2 / (4 \times \text{sx}) \\ \text{t} \ \textbf{provided is g} \\ \text{t} \ \textbf{provided is g} \\ \text{t} \ \textbf{provided is g} \\ \text{t} \ \textbf{m} \\ \text{kNm/m} \\ - \phi_{\text{bb}} / 2 = 265 \text{ m} \\ \times \text{fck}) = 0.053 \\ \hline \textbf{K' > K - } \\ \text{c} + 0.5 \times (1 - 3) \\ \text{c} + 0.5 \times (1 - 3) \\ \text{c} - z) = 33 \text{ mm} \\ / (f_{\text{yd}} \times z) = 108 \\ \text{s} @ 150 \text{ c/c} \\ \times \phi_{\text{bb}}^2 / (4 \times \text{su}) \\ \text{ax}(0.26 \times \text{fcm} / 04 \times \text{h} = 1400 \\ \text{o}_{\text{t}} \text{ Abb.min}) / \text{Abb.min} \end{pmatrix}$	$b = 565 \text{ mm}^2/\text{m}$ $c_{greater than are}$	ea of reinforce on reinforcem × d = 252 mm = 417 mm ² /m	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcement Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforcement Depth of neutral axis Area of tension reinforcement Tension reinforcement provid Area of tension reinforcement Minimum area of reinforcement	ement – cl.9.6.3(2 povided pent provided PASS - Area of ure - Section 6.1 abination 1 nt t required led t provided ent - exp.9.1N ent - cl.9.2.1.1(3) PASS - Area of PASS - Area) $s_{sx_max} = 40$ 12 dia.bars $A_{sx,prov} = \pi$ f reinforcement h = 350 mm M = 119.8 d = h - cbb $K = M / (d^2$ K' = 0.207 z = min(0.5 $x = 2.5 \times (c$ $Abb,prov = \pi$ Abb,min = m Abb,max = 0. max(Abb,rec	$\begin{array}{l} \begin{array}{l} \begin{array}{l} 00 \text{ mm} \\ \text{s} @ 200 \text{ c/c} \\ \times \phi_{\text{sx}}^2 / (4 \times \text{sx}) \\ \text{t} \ \textbf{provided is g} \\ \text{t} \ \textbf{provided is g} \\ \text{t} \ \textbf{provided is g} \\ \text{t} \ \textbf{m} \\ \text{kNm/m} \\ - \phi_{\text{bb}} / 2 = 265 \text{ m} \\ \times \text{fck}) = 0.053 \\ \hline \textbf{K' > K - } \\ \text{c} + 0.5 \times (1 - 3) \\ \text{c} + 0.5 \times (1 - 3) \\ \text{c} - z) = 33 \text{ mm} \\ / (f_{\text{yd}} \times z) = 108 \\ \text{s} @ 150 \text{ c/c} \\ \times \phi_{\text{bb}}^2 / (4 \times \text{su}) \\ \text{ax}(0.26 \times \text{fcm} / 04 \times \text{h} = 1400 \\ \text{o}_{\text{t}} \text{ Abb.min}) / \text{Abb.min} \end{pmatrix}$) = 565 mm ² /m greater than are mm <i>No compressio</i> .53 × K) ^{0.5} , 0.95) 95 mm ² /m 5) = 2094 mm ² /m fyk, 0.0013) × d = 0 mm ² /m	ea of reinforce on reinforcem × d = 252 mm = 417 mm ² /m	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcement Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforcement Depth of neutral axis Area of tension reinforcement Tension reinforcement provid Area of tension reinforcement Minimum area of reinforcement Maximum area of reinforcement	ement – cl.9.6.3(2 povided pent provided PASS - Area of ure - Section 6.1 abination 1 nt t required led t provided ent - exp.9.1N ent - cl.9.2.1.1(3) PASS - Area of PASS - Area) $s_{sx_max} = 40$ 12 dia.bars $A_{sx,prov} = \pi$ f reinforcement h = 350 mm M = 119.8 $d = h - c_{bb}$ $K = M / (d^2$ K' = 0.207 z = min(0.5 $x = 2.5 \times (c$ Abb.req = M 20 dia.bars $Abb.rov = \pi$ Abb.min = m Abb.max = 0. max(Abb.recommand the mask of the mask	$\begin{array}{c} 00 \text{ mm} \\ s @ 200 \text{ c/c} \\ \times \phi_{sx}^2 / (4 \times s_{sx}) \\ t \text{ provided is g} \\ t \text{ provided is g} \\ t \text{ provided is g} \\ \\ \mathbf{m} \\ \text{kNm/m} \\ - \phi_{bb} / 2 = 265 \text{ m} \\ \times f_{ck}) = 0.053 \\ \hline K' > K - \\ 5 + 0.5 \times (1 - 3) \\ c + 0.5 \times (1 - $	$b = 565 \text{ mm}^2/\text{m}$ $c_{greater than are}$	ea of reinforce on reinforcem × d = 252 mm = 417 mm ² /m	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcement Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforcement Depth of neutral axis Area of tension reinforcement Tension reinforcement provid Area of tension reinforcement Minimum area of reinforcement Maximum area of reinforcement Maximum area of reinforcement	ement – cl.9.6.3(2 povided nent provided PASS - Area of ure - Section 6.1 abination 1 nt t required led t provided ent - exp.9.1N ent - cl.9.2.1.1(3) PASS - Area of) $s_{sx_max} = 40$ 12 dia.bars $A_{sx,prov} = \pi$ f reinforcement h = 350 mr M = 119.8 d = h - cbb $K = M / (d^2$ K' = 0.207 z = min(0.8 $x = 2.5 \times (d^2)$ Abb.req = M 20 dia.bars $Abb.prov = \pi$ Abb.max = 0. max(Abb.rec	$\begin{array}{c} 00 \text{ mm} \\ s @ 200 \text{ c/c} \\ \times \phi_{sx}^2 / (4 \times s_{sx}) \\ t \text{ provided is g} \\ t \text{ provided is g} \\ t \text{ provided is g} \\ \\ \mathbf{m} \\ \text{kNm/m} \\ - \phi_{bb} / 2 = 265 \text{ m} \\ \times f_{ck}) = 0.053 \\ \hline K' > K - \\ 5 + 0.5 \times (1 - 3) \\ c + 0.5 \times (1 - $	$b = 565 \text{ mm}^2/\text{m}$ $c_{greater than are}$	ea of reinforce on reinforcem × d = 252 mm = 417 mm ² /m	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcement Check base design at toe Depth of section Rectangular section in flexe Design bending moment come Depth to tension reinforcemen Depth to tension reinforcemen Tension reinforcement provid Area of tension reinforcemen Minimum area of reinforcemen Maximum area of reinforcemen Maximum area of reinforcemen Maximum area of reinforcemen Maximum area of reinforcemen	ement – cl.9.6.3(2 povided pent provided PASS - Area of ure - Section 6.1 abination 1 nt t required led t provided ent - exp.9.1N ent - cl.9.2.1.1(3) PASS - Area of 0 - Table A1.1) $s_{sx_max} = 40$ 12 dia.bars $A_{sx,prov} = \pi$ f reinforcements h = 350 mm M = 119.8 $d = h - c_{bb}$ $K = M / (d^2$ K' = 0.207 z = min(0.8 $x = 2.5 \times (d^2)$ Abb,req = M 20 dia.bars $Abb,rev = \pi$ $Abb,rov = \pi$ Abb,min = m Abb,max = 0.3 $\psi_2 = 0.3$	$\begin{array}{l} 00 \text{ mm} \\ s @ 200 \text{ c/c} \\ \times \phi_{sx}^2 / (4 \times s_{sx}) \\ t \text{ provided is g} \\ t \text{ provided is g} \\ m \\ kNm/m \\ - \phi_{bb} / 2 = 265 \text{ m} \\ \times f_{ck}) = 0.053 \\ K' > K \\ - 5 + 0.5 \times (1 - 3) \\ d - z) = 33 \text{ mm} \\ / (f_{yd} \times z) = 103 \\ s @ 150 \text{ c/c} \\ \times \phi_{bb}^2 / (4 \times s_{bl}) \\ ax(0.26 \times f_{clm} / .04 \times h = 1400) \\ h, \text{ Abb.min}) / \text{ Abb.pi} \\ t \text{ provided is g} \\ mm \end{array}$	$b = 565 \text{ mm}^2/\text{m}$ $c_{greater than are}$	ea of reinforce on reinforcem × d = 252 mm = 417 mm ² /m	ent is requir
Maximum spacing of reinforce Transverse reinforcement pro Area of transverse reinforcement Check base design at toe Depth of section Rectangular section in flexe Design bending moment com Depth to tension reinforcement Depth of neutral axis Area of tension reinforcement Tension reinforcement provid Area of tension reinforcement Minimum area of reinforcement Maximum area of reinforcement Maximum area of reinforcement	ement – cl.9.6.3(2 povided pent provided PASS - Area of pass - Area of pass - Area of pass - Area of t required led t provided ent - exp.9.1N ent - cl.9.2.1.1(3) PASS - Area of 0 - Table A1.1 int) $s_{sx_max} = 40$ 12 dia.bars $A_{sx,prov} = \pi$ f reinforcement h = 350 mm M = 119.8 d = h - cbb $K = M / (d^2$ K' = 0.207 z = min(0.5 $x = 2.5 \times (d^2)$ Abb.req = M 20 dia.bars $Abb.rev = \pi$ Abb.min = m Abb.max = 0.5 max(Abb.rec) f reinforcement $W_{max} = 0.3$ $\psi_2 = 0.3$ $M_{sls} = 87.5$	$\begin{array}{l} 00 \text{ mm} \\ s @ 200 \text{ c/c} \\ \times \phi_{sx}^2 / (4 \times s_{sx}) \\ t \text{ provided is g} \\ t \text{ provided is g} \\ m \\ kNm/m \\ - \phi_{bb} / 2 = 265 \text{ m} \\ \times f_{ck}) = 0.053 \\ K' > K \\ - 5 + 0.5 \times (1 - 3) \\ d - z) = 33 \text{ mm} \\ / (f_{yd} \times z) = 103 \\ s @ 150 \text{ c/c} \\ \times \phi_{bb}^2 / (4 \times s_{bl}) \\ ax(0.26 \times f_{clm} / .04 \times h = 1400) \\ h, \text{ Abb.min}) / \text{ Abb.pi} \\ t \text{ provided is g} \\ mm \end{array}$	$b = 565 \text{ mm}^{2}/\text{m}$ $c = 565 \text{ mm}^{2}/\text{m}$ $c = 565 \text{ mm}^{2}/\text{m}$ $c = 53 \times \text{K})^{0.5}, 0.95)$ $c = 53 \times \text{K})^{0.5}, 0.95)$ $c = 553 \times \text{K})^{0.5}, 0.95)$ $c = 553 \times \text{K}^{2}/\text{m}$ $c = 5523$ $c = 5523$ $c = 5523$ $c = 5523$	ea of reinforce on reinforcem × d = 252 mm = 417 mm ² /m	ent is requir

TEKLA Tedds	Project	123 Brodhu	urst Gardens		Job no. 8	726		
	Calcs for	Underpin Part	y Retaining W	all	Start page no./Revision 6			
	Calcs by SH	Calcs date 20/12/2017	Checked by	Checked date	Approved by	Approved da		
Load duration factor		kt = 0.4						
Effective area of concrete in	n tension	Ac.eff = min	(2.5 × (h - d), ((h – x) / 3, h / 2) =	= 105625 mm²/	m		
Mean value of concrete ten	sile strength	f _{ct.eff} = f _{ctm} =	3.0 N/mm ²					
Reinforcement ratio		ρ _{p.eff} = A _{bb.p}	orov / Ac.eff = 0.0	20				
Modular ratio		$\alpha_e = E_s / E_s$	cm = 5.998					
Bond property coefficient	k1 = 0.8							
Strain distribution coefficier	k ₂ = 0.5	k ₂ = 0.5						
	k ₃ = 3.4							
		k4 = 0.425						
Maximum crack spacing - e	exp.7.11	sr.max = k3 >	$c_{bb} + k_1 \times k_2$	\times k4 \times ϕ bb / ρ p.eff =	426 mm			
Maximum crack width - exp	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$							
		w _k = 0.212	mm					
		Wk / Wmax =	0.708					
		PASS	S - Maximum o	crack width is le	ss than limitii	ng crack wid		
Rectangular section in sh	ear - Section 6.2							
Design shear force		V = 119.8	kN/m					
		$C_{Rd,c} = 0.1$	8 / γc = 0.120					
		k = min(1 ·	+ √(200 mm / o	d), 2) = 1.869				
Longitudinal reinforcement	ratio	ρι = min(Aι	ob.prov / d, 0.02)	= 0.008				
		Vmin = 0.03	5 N ^{1/2} /mm × k ²	$^{3/2} \times f_{ck}^{0.5} = 0.506$	N/mm ²			
Design shear resistance - e	exp.6.2a & 6.2b	V _{Rd.c} = ma	$x(C_{Rd.c} \times k \times (1))$	100 N²/mm ⁴ × ρι >	$(f_{ck})^{1/3}$, Vmin) × C	1		
		V _{Rd,c} = 174	I.4 kN/m					
		V / V _{Rd.c} =	0.687					
		PAS	SS - Design s	hear resistance	exceeds desi	gn shear fo		
Secondary transverse rei	nforcement to base	- Section 9.3						
Minimum area of reinforcer	nent – cl.9.3.1.1(2)	Abx.req = 0.1	$2 \times A_{bb,prov} = 4$	19 mm²/m				
Maximum spacing of reinfo	rcement - cl.9.3.1.1(3	3) Sbx_max = 4	50 mm					
Transverse reinforcement p	provided	12 dia.bar	s @ 200 c/c					
Area of transverse reinforce	ement provided	$A_{bx,prov} = \pi$	$\times \phi_{\text{bx}}^2$ / (4 \times St) = 565 mm ² /m				
	PASS - Area of	reinforcemen	t provided is	greater than an	ea of reinforce	ement requi		

 $\overline{\mathcal{O}}$


TEKLA Tedds	Project	Job no. 8726				
	Calcs for	Rear Ret	aining Wall	$(\widehat{2})$	Start page no./	Revision 1
	Calcs by SH	Calcs date 20/12/2017	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.6.05

Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 1770 mm
Prop height	h _{prop} = 1770 mm
Stem thickness	t _{stem} = 300 mm
Angle to rear face of stem	α = 90 deg
Stem density	γ _{stem} = 25 kN/m ³
Toe length	I _{toe} = 2000 mm
Base thickness	t _{base} = 350 mm
Base density	$\gamma_{base} = 25 \text{ kN/m}^3$
Height of retained soil	h _{ret} = 1770 mm
Angle of soil surface	β = 0 deg
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 1770 mm
Water density	γw = 9.8 kN/m³
Retained soil properties	
Soil type	Stiff clay
Moist density	γmr = 18 kN/m ³
Saturated density	γsr = 18 kN/m ³
Characteristic effective shear resistance angle	φ' _{r.k} = 23 deg
Characteristic wall friction angle	δr.k = 11 deg
Base soil properties	
Soil type	Firm clay
Soil density	$\gamma_{\rm b} = 18 \rm kN/m^3$
Characteristic effective shear resistance angle	$\phi'_{b.k} = 23 \text{ deg}$
Characteristic wall friction angle	$\delta_{b,k} = 11 \text{ deg}$
Characteristic base friction angle	$\delta_{bb,k} = 12 \text{ deg}$
Presumed bearing capacity	Pbearing = 100 kN/m ²
Loading details	······································
Variable surcharge load	Surchargeo = 5 kN/m ²
Vertical line load at 2150 mm	$P_{G1} = 11.2 \text{ kN/m}$
	$P_{Q1} = 2.4 \text{ kN/m}$

TEKLA Tedds	Project	Job no. 8726					
	Calcs for	Rear Ret	Start page no.//	Start page no./Revision 3			
	Calcs by SH	Calcs date 20/12/2017	Checked by	Checked date	Approved by	Approved da	
Line loads		$F_{P_v} = P_{G1}$	+ Pq1 = 13.6 kl	N/m			
Total		$F_{total_v} = F_{st}$	em + Fbase + Fw	ater_v + F _{P_v} = 47	kN/m		
Horizontal forces on wall							
Surcharge load		$F_{sur_h} = K_A$	$\times \cos(\delta_{r.d}) \times St$	urchargeq × heff =	4.1 kN/m		
Saturated retained soil		$F_{sat_h} = K_A$	$\times \cos(\delta_{r.d}) \times (\gamma_s)$	$r' - \gamma w') \times (h_{sat} + h)$	$(base)^2 / 2 = 7.2$	kN/m	
Water		F _{water_h} = γ _w	/ × (h _{water} + d _{co}	$(ver + h_{base})^2 / 2 = 2$	22 kN/m		
Base soil		F _{pass_h} = -K	$P \times COS(\delta b.d) \times$	$\gamma_b' \times (d_{cover} + h_{bas})$	e) ² / 2 = -3.3 kM	N/m	
Total	$F_{pass_h} = -K_P \times \cos(\delta_{b,d}) \times \gamma_b' \times (d_{cover} + h_{base})^2 / 2 = -3.3 \text{ kN/m}$ $F_{total_h} = F_{sat_h} + F_{moist_h} + F_{pass_h} + F_{water_h} + F_{sur_h} = 30 \text{ kN/m}$						
Moments on wall							
Wall stem		Mstem = Fste	m × Xstem = 28.	5 kNm/m			
Wall base	$M_{base} = F_{base} \times x_{base} = 23.1 \text{ kNm/m}$						
Surcharge load	M _{sur} = -F _{sur_h} × x _{sur_h} = - 4.4 kNm/m						
Line loads		M _P = (P _{G1} -	+ Pa1) × p1 = 2	9.2 kNm/m			
Saturated retained soil		Msat = -Fsat	$h \times X_{sat_h} = -5.'$	l kNm/m			
Water				= -15.6 kNm/m			
Total	Mitotal = Mstern + Mbase + Msat + Mmoist + Mwater + Msur + MP = 55.9 kNr					55.9 kNm/n	
Check bearing pressure							
Propping force to stem		F _{prop_stem} = kN/m	$\min((F_{total_v} \times I))$	base / 2 - Mtotal) / (h _{prop} + t _{base}), F _{to}	otal_h) = -0.9	
Propping force to base		F _{prop_base} =	Ftotal_h - Fprop_st	_{em} = 30.9 kN/m			
Moment from propping force		Mprop = Fpro	p_stem × (hprop +	t _{base}) = -1.8 kNn	n/m		
Distance to reaction		$\overline{x} = I_{base} / 1$	2 = 1150 mm				
Eccentricity of reaction		$e = \overline{x} - I_{bas}$	_{se} / 2 = 0 mm				
Loaded length of base		lload = lbase :	= 2300 mm				
Bearing pressure at toe		q _{toe} = F _{total}	v / Ibase = 20.4	kN/m²			
Bearing pressure at heel			I_v / Ibase = 20.4				
Factor of safety		FoSbp = Pb Allowable bearing		e, q _{heel}) = 4.894			

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.6.05

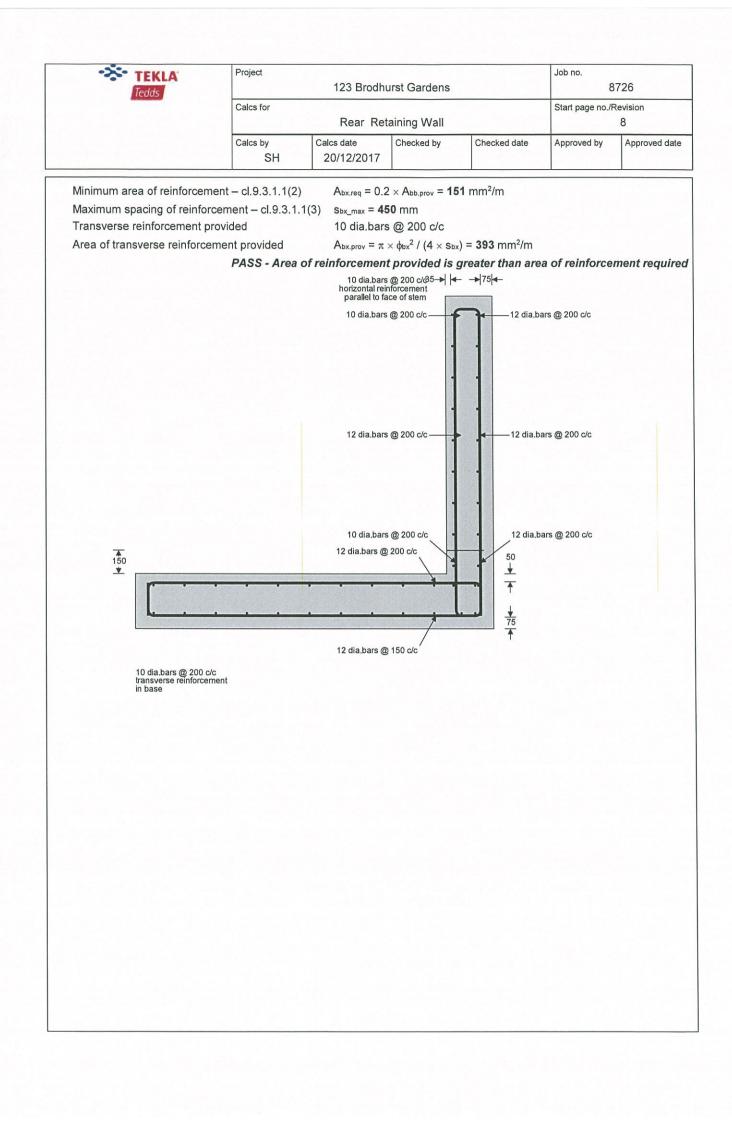
Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class	C32/40
Characteristic compressive cylinder strength	f _{ek} = 32 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 40 N/mm ²
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 N/mm^2 = 40 N/mm^2$
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f _{ck} / 1 N/mm ²) ^{2/3} = 3.0 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.1 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	$E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 33346 \text{ N/mm}^2$
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	αcc = 0.85
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 18.1 \text{ N/mm}^2$
Maximum aggregate size	h _{agg} = 20 mm

	Project	Project 123 Brodhurst Gardens						
	Calcs for	Calcs for Rear Retaining Wall				Start page no./Revision		
	Calcs by	Calcs date Checked by		Checked date	Approved by	4 Approved da		
	SH	20/12/2017						
Reinforcement details								
Characteristic yield strength	of reinforcement	f _{yk} = 500 N/	/mm ²					
Modulus of elasticity of reinf	orcement	Es = 20000	0 N/mm ²					
Partial factor for reinforcing	steel - Table 2.1N	γs = 1.15						
Design yield strength of rein	forcement	$f_{yd} = f_{yk} / \gamma_s$	= 435 N/mm ²					
Cover to reinforcement								
Front face of stem		Csf = 35 mn	n					
Rear face of stem		c _{sr} = 75 mm	n					
Top face of base		c _{bt} = 50 mm	n					
Bottom face of base		Cbb = 75 mr	m					
Check stem design at 826	mm							
Depth of section		h = 300 mr	n					
Rectangular section in fle	vure - Section 6.1							
Design bending moment col		M = 3.5 kN	m/m					
Depth to tension reinforcem								
		$K = M / (d^2 \times f_{ck}) = 0.002$						
		K' = 0.207	~ 10k) - 0.002					
			K' > K -	No compressio	n reinforcem	ent is requi		
Lever arm		z = min(0.5		$(.53 \times K)^{0.5}, 0.95)$				
Depth of neutral axis			1 – z) = 31 mm					
Area of tension reinforceme	nt required		$/(f_{yd} \times z) = 34$					
Tension reinforcement provi		Contraction of the second second	@ 200 c/c					
Area of tension reinforceme	nt provided			sfM) = 565 mm ² /m	1			
Minimum area of reinforcem		the second second second second second		/ fyk, 0.0013) × d =				
Maximum area of reinforcen			.04 × h = 1200					
			, AsfM.min) / Asf					
	PASS - Area o			greater than are	a of reinforce	ment requi		
Deflection control - Sectio								
Reference reinforcement rat	tio	$\rho_0 = \sqrt{f_{ck}}/2$	1 N/mm ²) / 10	00 = 0.006				
Required tension reinforcem			/ d = 0.000					
Required compression reinf			$d_{q}/d_{2} = 0.000$					
Structural system factor - Ta		K _b = 1	97 42 0.000					
Reinforcement factor - exp.7			00 N/mm ² / (fu	$_{\rm k} imes {\sf A}_{\rm sfM.req} / {\sf A}_{\rm sfM.pro}$	(15) = 15			
Limiting span to depth ratio				$(1 \text{ N/mm}^2) \times \rho_0$		1 N/mm^2		
	oxp.1.10.0		^{/2}] = 7414.8	(/ T ((///////) × p))	rp · 0.2 × v(ic	к7 т 19/11111)		
Actual span to depth ratio		$\frac{p_0}{p_{\text{rop}}} / d = 7$	-					
rotadi opan to dopti ratio				oth ratio is less	than deflectio	n control li		
Crack control - Section 7.3		, 400	opun to dep		anan denectio	, control II		
	•		-					
Limiting crack width Variable load factor - EN199	D Table Add	Wmax = 0.3	111111					
		$\psi_2 = 0.3$	Alum /ma					
Serviceability bending mom		$M_{sls} = 2.3 k$		47 N/m 2				
Tensile stress in reinforcem	ent	$\sigma_s = M_{sls} / ($	$A_{sfM.prov} \times z) =$	17 N/mm²				
Load duration		Long term						

kt = **0.4**

 $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 89625 \text{ mm}^2/\text{m}$


Load duration factor

Effective area of concrete in tension

TEKLA Tedds	Project	123 Brodh	Job no. 8726						
recus	Calcs for		Start page no./Revision						
		Rear Ret	aining Wall			5			
	Calcs by SH	Calcs date 20/12/2017	Checked by	Checked date	Approved by	Approved d			
Mean value of concrete tensil	e strength	f _{ct.eff} = f _{ctm} =	3.0 N/mm ²						
Reinforcement ratio		ρp.eff = AsfM.	prov / Ac.eff = 0.0	06					
Modular ratio		$\alpha_e = E_s / E_s$	m = 5.998						
Bond property coefficient		k1 = 0.8							
Strain distribution coefficient		k ₂ = 0.5							
		k ₃ = 3.4							
		k4 = 0.425							
Maximum crack spacing - exp	.7.11	sr.max = k3 >	$c_{sf} + k_1 \times k_2 \times k_2$	$k_4 \times \varphi_{sfM} \ / \ \rho_{p.eff} =$	442 mm				
Maximum crack width - exp.7.	8	Wk = Sr.max	$\times \max(\sigma_s - k_t \times$	(fct.eff / $\rho p.eff) \times (1$	+ $\alpha_e \times \rho_{p.eff}$), 0	$.6 imes \sigma_s) / E_s$			
		w _k = 0.023	mm						
		w _k / w _{max} =	0.075						
		PASS	- Maximum c	rack width is le	ss than limitir	ng crack wi			
Check stem design at base	of stem								
Depth of section		h = 300 mr	n						
Rectangular section in flexu	re - Section 6.1								
Design bending moment com	M = 7.6 kNm/m								
Depth to tension reinforcement	nt	d = h - c _{sr} - φ _{sr} / 2 = 219 mm							
		$K = M / (d^2)$	\times fck) = 0.005						
		K' = 0.207							
Lever arm		z = min(0.5)		No compressio .53 × K) ^{0.5} , 0.95)					
Depth of neutral axis			d – z) = 27 mm		A G LOO MIN				
Area of tension reinforcement	required		(f _{yd} × z) = 85 r						
Tension reinforcement provide			(1yd × 2) = 001 s @ 200 c/c						
Area of tension reinforcement			$\times \phi_{sr}^2 / (4 \times s_{sr})$	$= 565 \text{ mm}^2/\text{m}$					
Minimum area of reinforceme				f _{yk} , 0.0013) × d =	344 mm ² /m				
Maximum area of reinforceme			$04 \times h = 12000$		••••				
			Asr.min) / Asr.prov						
	PASS - Area	of reinforcemen	Construction of the state of the second		a of reinforce	ment reaui			
Deflection control - Section									
Reference reinforcement ratio		$o_0 = \sqrt{f_{ck}}$	1 N/mm ²) / 10(00 = 0 006					
Required tension reinforceme		$\rho_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000} = 0.006$ $\rho = A_{sr,reg} / d = 0.000$							
Required compression reinfor			$p' = A_{sr.2,reg} / d_2 = 0.000$						
Structural system factor - Tab		F = Asi.2.red K _b = 1	/ 42 - 0.000						
Reinforcement factor - exp.7.		$K_{s} = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr.reg} / A_{sr.prov}), 1.5) = 1.5$							
Limiting span to depth ratio -									
	oxp.1.10.u		^{/2}] = 1574.1	() i i i i i i i i i i i i i i i i i i i	7 p · 0.2 × 4(ic	к7 т м/нин <u>,</u>			
Actual span to depth ratio		$h_{prop} / d = 1$	3.1						
		PASS	- Span to dep	oth ratio is less	than deflection	on control I			
Crack control - Section 7.3									
Limiting crack width		w _{max} = 0.3	mm						
Variable load factor - EN1990	- Table A1.1	$\psi_2 = 0.3$							
	Serviceability bending moment			M _{sis} = 5 kNm/m					
Serviceability bending moment		IVIsis = 5 KIN	lm/m						
			Im/m (A _{sr.prov} × z) = 4	2.8 N/mm ²					

TEKLA Tedds	Project	123 Brodhu	ırst Gardens		Job no. 8	726		
	Calcs for Rear Retaining Wall			Start page no./Revision 6				
	Calcs by SH	Calcs date 20/12/2017	Checked by	Checked date	Approved by	Approved da		
Load duration factor		kt = 0.4						
Effective area of concrete in ten	sion	Ac.eff = min(2.5 × (h - d), (h	n – x) / 3, h / 2) =	90875 mm²/m	1		
Mean value of concrete tensile s	strength	f _{ct.eff} = f _{ctm} =	3.0 N/mm ²					
Reinforcement ratio		ρ _{p.eff} = A _{sr.pr}	ov / Ac.eff = 0.00	6				
Modular ratio		$\alpha_e = E_s / E_c$	m = 5.998					
Bond property coefficient		k1 = 0.8						
Strain distribution coefficient		k ₂ = 0.5						
		k3 = 3.4						
		k4 = 0.425						
Maximum crack spacing - exp.7	.11	sr.max = k3 ×	$c_{sr} + k_1 \times k_2 \times$	$k_4 \times \phi_{sr} / \rho_{p.eff} = 5$	583 mm			
Maximum crack width - exp.7.8		Wk = Sr.max >	a max(σs – kt ×	(fct.eff / $\rho_{p.eff}$) × (1	+ $\alpha_e \times \rho_{p.eff}$), 0	$.6 \times \sigma_s) / E_s$		
		wk = 0.075						
		wk / wmax =	0.25					
		PASS	- Maximum c	rack width is le	ss than limitir	ng crack wi		
Rectangular section in shear	- Section 6.2							
Design shear force		V = 25.3 kM	N/m					
		$C_{Rd,c} = 0.18$	3 / γc = 0.120					
			√(200 mm / d), 2) = 1.95 6				
Longitudinal reinforcement ratio			$p_{I} = \min(A_{sr,prov} / d, 0.02) = 0.003$					
				$^{2} \times f_{ck}^{0.5} = 0.541$	N/mm ²			
Design shear resistance - exp.6	22 & 6 2h			20 N²/mm ⁴ × ρι ×				
Design shear resistance - exp.o	.24 0 0.20	VRd.c = 118			ick) , vmin) ~ C			
		$V / V_{Rd.c} = 0$						
				ear resistance	exceeds desi	an shear fo		
Check stem design at prop								
Depth of section		h = 300 mr	n					
	Castian C.O.							
Rectangular section in shear	- Section 6.2	V = 7.5 kN	1					
Design shear force								
			3 / γc = 0.120					
Longituding Locioference to the			- √(200 mm / d					
Longitudinal reinforcement ratio			r1.prov / d, 0.02)					
				$^{2} \times f_{ck}^{0.5} = 0.541$				
Design shear resistance - exp.6	.2a & 6.2b			00 N ² /mm ⁴ × ρι ×	$(f_{ck})^{1/3}, V_{min}) \times ($	1		
		V _{Rd.c} = 118						
		$V / V_{Rd.c} =$						
Harizantal sainfascesset				near resistance	exceeds desi	gn shear fo		
Horizontal reinforcement para				0.001	- 200			
Minimum area of reinforcement				v, 0.001 × tstem) =	- 300 mm²/m			
Maximum spacing of reinforcem								
Transverse reinforcement			a @ 200 c/c	- 2022/				
Transverse reinforcement provi	n nrowidad	$A_{sx.prov} = \pi$) = 393 mm²/m	<u>\</u>			
Area of transverse reinforceme		f vainfare and	t menuided in	NHOOLON HE				
Area of transverse reinforceme	PASS - Area or	f reinforcemen	t provided is g	greater than are	ea of reinforce	ement requi		
Area of transverse reinforceme		f reinforcemen h = 350 m		greater than are	ea of reinforce	ement requi		

TEKLA Tedds	Project	123 Brodhu	urst Gardens		Job no. E	726		
	Calcs for	Rear Ret	Rear Retaining Wall			Start page no./Revision 7		
	Calcs by SH	Calcs date 20/12/2017	Checked by	Checked date	Approved by	Approved		
Rectangular section in flexe Design bending moment com		1 M = 31.9 kl	Nm/m					
Depth to tension reinforceme			- φ _{bb} / 2 = 269 r	nm				
Deptil to tension reinforceme	in a second s		\times f _{ck}) = 0.014	Inti				
		K' = 0.207	× Ick) - 0.014					
		K - 0.207	K'SK-	No compressio	n rainforcom	ont is roau		
Lever arm		$z = \min(0.5)$		$53 \times \text{K})^{0.5}$, 0.95)		in is requ		
Depth of neutral axis				55 × K) , 0.55)	× u – 230 mm			
			l – z) = 34 mm	21				
Area of tension reinforcement			$(f_{yd} \times z) = 287$	mm ² /m				
Tension reinforcement provid			@ 150 c/c					
Area of tension reinforcemen) = 754 mm ² /m				
Minimum area of reinforceme			$ax(0.26 \times f_{ctm}/1)$	f _{yk} , 0.0013) × d =	423 mm²/m			
Maximum area of reinforceme	ent - cl.9.2.1.1(3) $A_{bb.max} = 0.$	04 × h = 14000) mm²/m				
		max(Abb.req	, Abb.min) / Abb.pro	ov = 0.561				
	PASS - Area	of reinforcement	t provided is g	reater than are	a of rein <mark>f</mark> orce	ment requ		
Crack control - Section 7.3	_							
Limiting crack width		w _{max} = 0.3	mm					
Variable load factor - EN1990) – Table A1.1	$\psi_2 = 0.3$						
Serviceability bending mome	nt	M _{sls} = 23.4	kNm/m					
Tensile stress in reinforceme			$A_{bb,prov} \times z) = 1$	21.3 N/mm ²				
Load duration		Long term	(use provide)					
Load duration factor		kt = 0.4						
Effective area of concrete in t	tension		$(2.5 \times (h - d))$ (1	h – x) / 3, h / 2) =	= 105458 mm ²	/m		
Mean value of concrete tensi			= 3.0 N/mm ²	, , , , , , , , , , , , , , , , , , , ,	100100 11111			
Reinforcement ratio	le etteriger		orov / Ac.eff = 0.00	17				
Modular ratio		$\alpha_e = E_s / E_s$						
Bond property coefficient		$k_1 = 0.8$	cm - 3.330					
Strain distribution coefficient		$k_1 = 0.8$ $k_2 = 0.5$						
otrain distribution coefficient		$k_2 = 0.5$ $k_3 = 3.4$						
		k ₄ = 0.425						
Maximum crack spacing - exp	0711			kuy du la r=	540 mm			
Maximum crack width - exp.7			$\begin{aligned} \mathbf{s}_{r,\text{max}} &= \mathbf{k}_3 \times \mathbf{C}_{bb} + \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_4 \times \phi_{bb} / \rho_{p,\text{eff}} = 540 \text{ mm} \\ \mathbf{w}_k &= \mathbf{s}_{r,\text{max}} \times \max(\sigma_s - \mathbf{k}_t \times (\mathbf{f}_{ct,\text{eff}} / \rho_{p,\text{eff}}) \times (1 + \alpha_e \times \rho_{p,\text{eff}}), \ 0.6 \times \sigma_s) / \mathbf{E}_s \end{aligned}$					
Maximum crack width - exp.7	.0			(Ict.eff / pp.eff) × (I	+ $\alpha_e \times \rho_{p.eff}$, U	$1.0 \times \sigma_s$ / E		
		w _k = 0.197						
		Wk / Wmax =		rook width io lo	aa than limiti	na orock		
				rack width is le	ss uian iiniiu	ny crack i		
Rectangular section in she	ar - Section 6.2							
Design shear force		V = 31.9 k						
			8 / γc = 0.120					
			+ √(200 mm / d					
Longitudinal reinforcement ratio		$\rho_l = \min(A_l)$	ρι = min(A _{bb.prov} / d, 0.02) = 0.003					
		v _{min} = 0.03	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	$f^{2} \times f_{ck}^{0.5} = 0.503$	N/mm ²			
Design shear resistance - ex	p.6.2a & 6.2b	V _{Rd.c} = ma	$x(C_{Rd.c} \times k \times (1))$	00 N²/mm ⁴ × ρι ×	$(f_{ck})^{1/3}, V_{min}) \times ($	ł		
		V _{Rd.c} = 135						
		$V / V_{Rd.c} =$	0.235					
				near resistance				

London

Friars Bridge Court 41- 45 Blackfriars Road London, SE1 8NZ

T: +44 (0)20 7340 1700 E: london@campbellreith.com

Surrey

Raven House 29 Linkfield Lane, Redhill Surrey RH1 1SS

T: +44 (0)1737 784 500 E: surrey@campbellreith.com

Bristol

Wessex House Pixash Lane, Keynsham Bristol BS31 1TP

T: +44 (0)117 916 1066 E: bristol@campbellreith.com

Birmingham

Chantry House High Street, Coleshill Birmingham B46 3BP

T: +44 (0)1675 467 484 E: birmingham@campbellreith.com

Manchester

No. 1 Marsden Street Manchester M2 1HW

T: +44 (0)161 819 3060 E: manchester@campbellreith.com

UAE

Office 705, Warsan Building Hessa Street (East) PO Box 28064, Dubai, UAE

T: +971 4 453 4735 E: uae@campbellreith.com

Campbell Reith Hill LLP. Registered in England & Wales. Limited Liability Partnership No OC300082 A list of Members is available at our Registered Office at: Friars Bridge Court, 41- 45 Blackfriars Road, London SE1 8NZ VAT No 974 8892-43