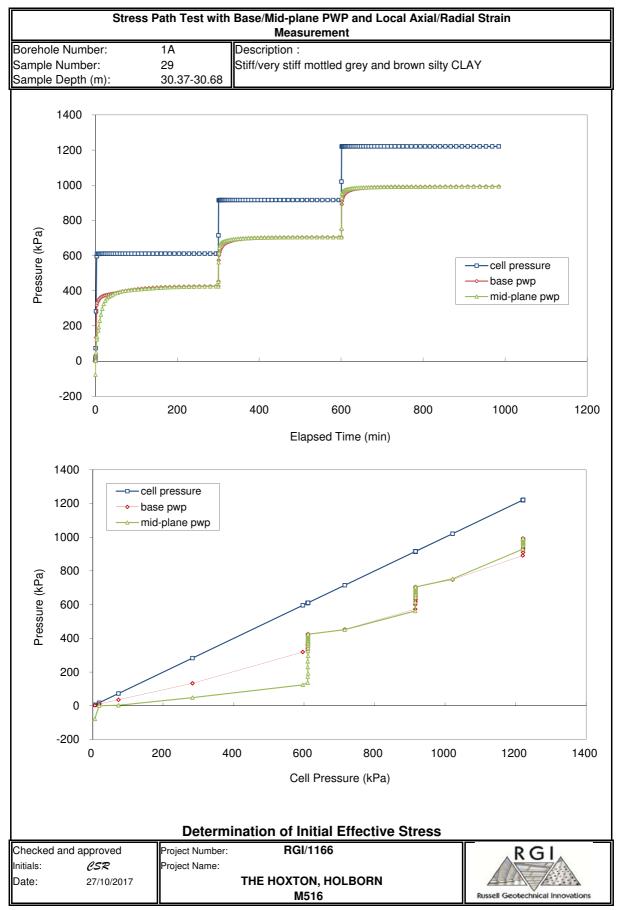
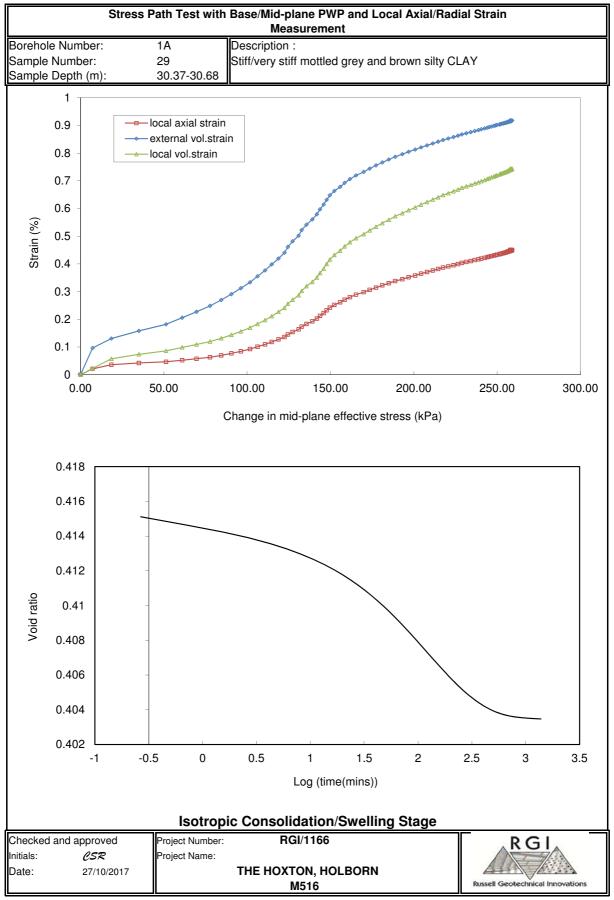
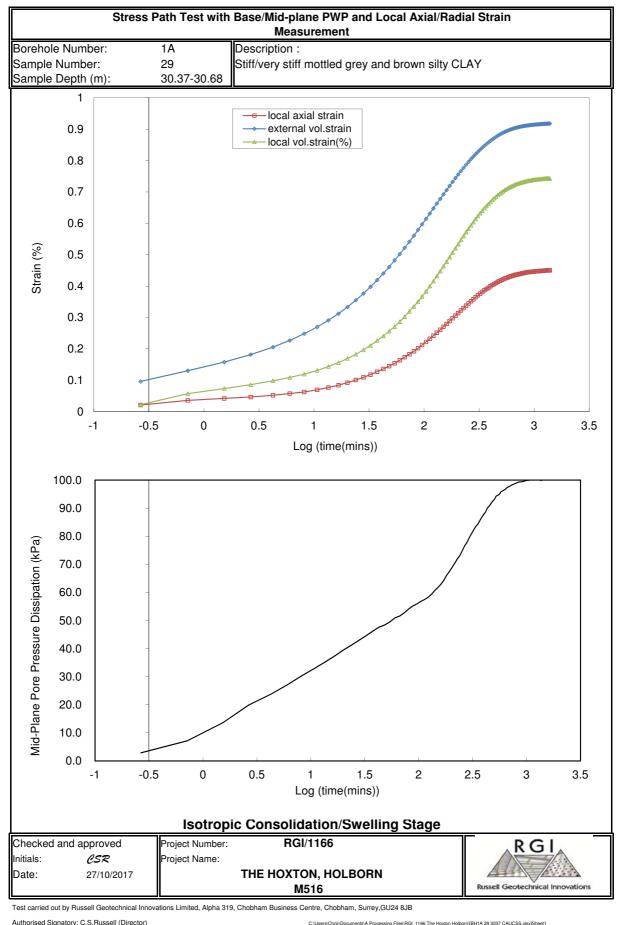
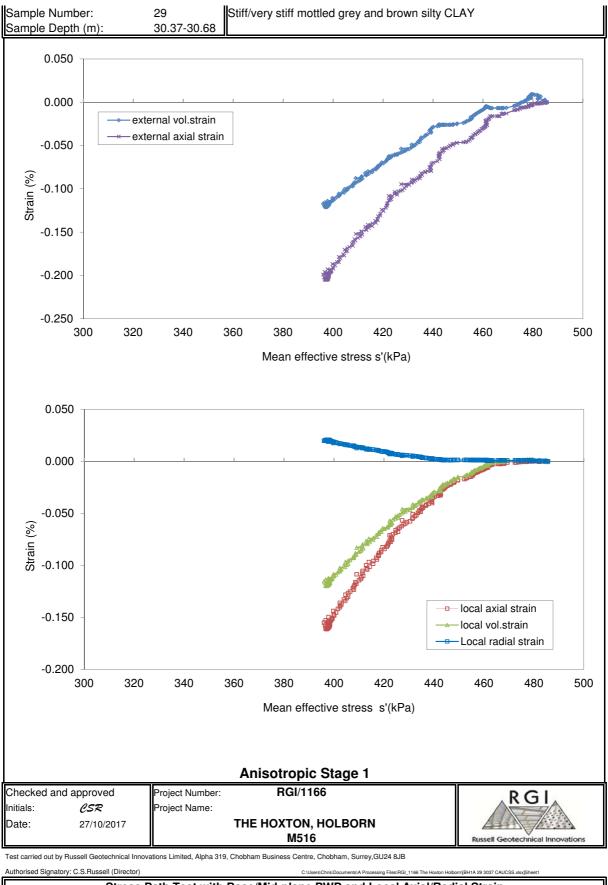

Stress P	ath Test with	•	ane PWP and L surement	_ocal Axial/Rad	dial Strain	(CAUC)
Borehole Number:	1A	Description ((0,00)
Sample Number:	29		mottled grey ar	nd brown silty C		
Sample Depth (m):	30.37-30.68	Still/Very Still	mottled grey a			
SPECIMEN DETAILS	20.07 00.00	1				
SI LOIWILIN DETAILS	Initial Values		Final Values			
Height :	201.6	mm	i inal values			
Diameter :	201.6 96.9	mm				
Moisture content :	90.9 16.31	%	16.61	%		
Bulk density :	2.22	∕∘ Mg/m³		⁷⁰ ed at end of fina	l choar ctago)	
-		-	(Sample leake		ai shear staye)	
Dry density :	1.91	Mg/m ³ Mg/m ³				
Particle density (assumed) Initial voids ratio (e _o)	2.70	Mg/m³				
	0.4165			_		
Test Duration:			11	Days		
INITIAL MEASUREMENT O	F EFFECTIVE					
Stage		#1	#2	#3		
Cell pressure (kPa):		611	916	1221		
Base pwp (kPa):		425.7	704.6	993.1		
Mid-plane pwp (kPa):		424.7	704.6	993.3		
Base B values :		0.70	0.91	0.95		
Mid-plane B values :		0.83	0.92	0.95		
Initial effective stress (mid-pl			226.9	kPa		
ISOTROPIC CONSOLIDATI	ION/SWELLIN					
Final cell pressure (kPa):	1221	Final back Pr	essure (kPa):	735		
SHEAR STAGE						
Effective stress, po', at start				445.1	(kPa)	
$\Delta e/e_o$				-0.0034		
Stiffnesses:						
Stiffness at 0.	01% axial stra	in		659	(MPa)	
- normalised	with respect	to po'		1480	-	
	with respect			1566		
Stiffness at 0.				214	(MPa)	
	with respect			480	. ,	
	with respect			508		
Degree of nor	•			0.324		
At failure:	, , , , ,	J				
Local axial str	ain			1.91	(%)	
External axial				2.15	(%)	
Peak deviator				841	(kPa)	
Undrained she				421	(kPa)	
Mid plane por	•			938	(kPa)	
Base pore pre	•			964	(kPa)	
Horizontal effe				298	(kPa)	
Vertical effecti				1140	(kPa)	
				0411		
Note: In all notation po' is me	aan offoctivo s	tress: n'- (as'	+(2ar'))/3			
		(0u)				
Alexies 1 - 1	6		14400		<u> </u>	
	Project Number:	RG	I/1166		R	GI
Initials: CSR	Project Number: Project Name:				R	GI
	-	THE HOXT	I/1166 ON, HOLBORN 1516	ı		

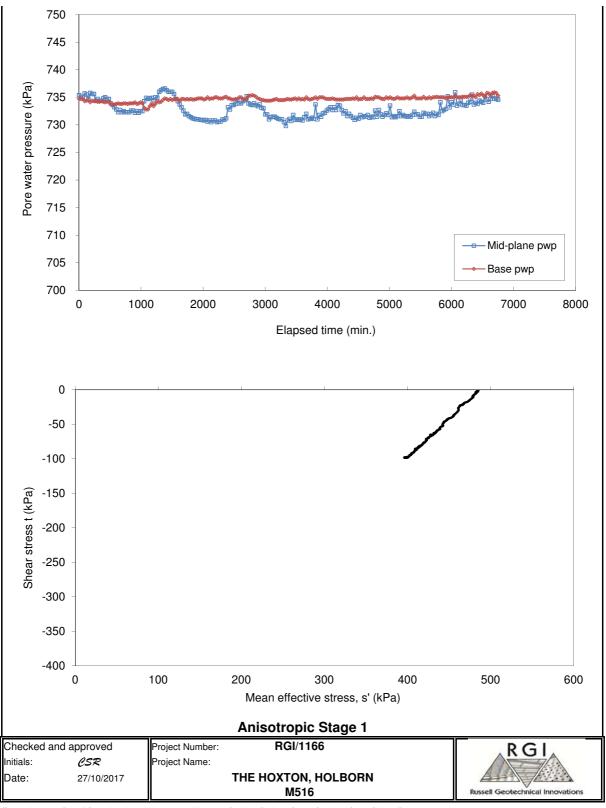

Authorised Signatory: C.S.Russell (Director) C:Users/Chris/Documents/A Processing Files/Rol_1166 The Hoxton Holtom/(BH1A 29 3037 CAUCISS.xtex[Sheet]

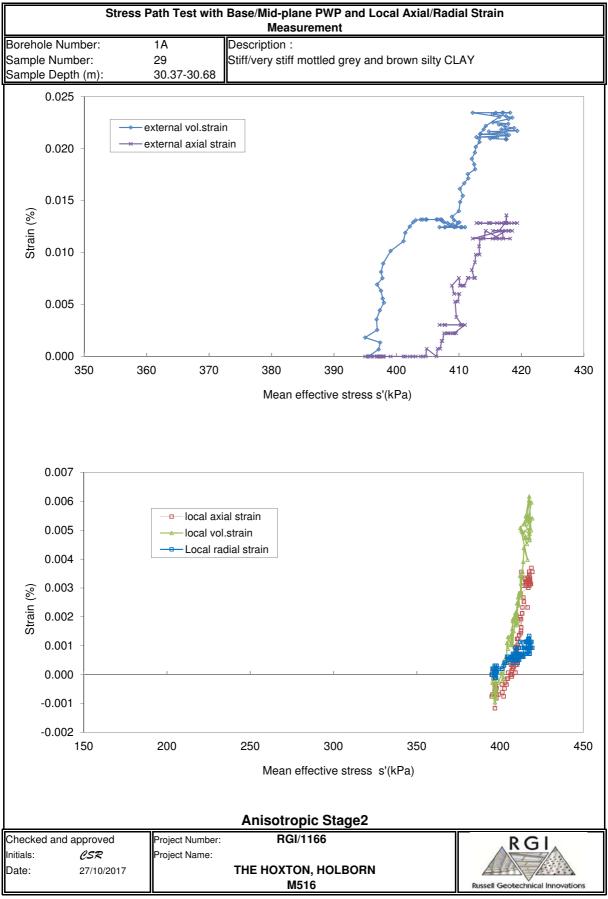

Authorised Signatory: C.S.Russell (Director)

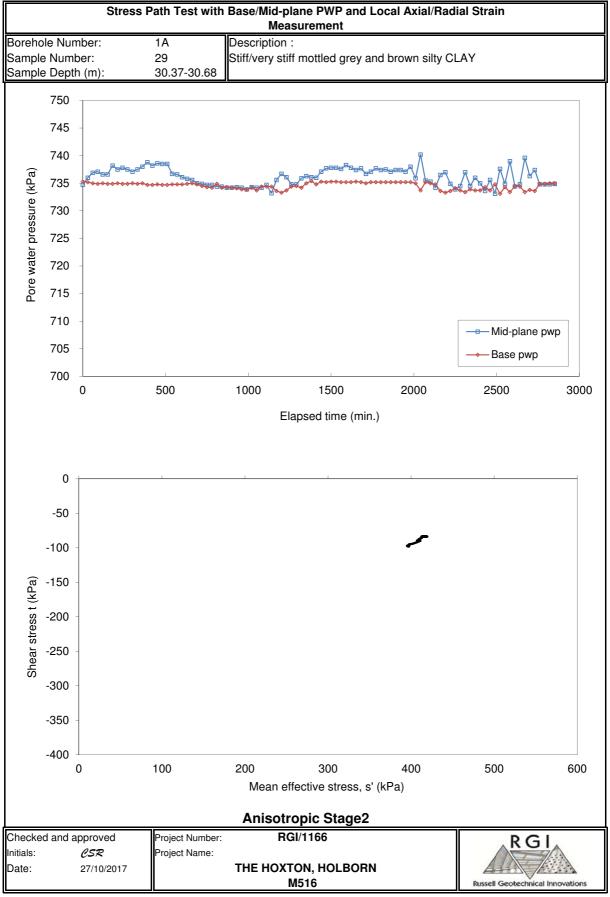
Stress P	ath Test with		ne PWP and Lo	ocal Axial/Radi	al Strain			
Borehole Number:	1A	Description :						
Sample Number:	29		nottled arev an	d brown silty CL	AY			
Sample Depth (m): 30.37-30.68								
		STRESS PA	TH STAGES					
ISOTROPIC (CONSOLIDAT	ION/SWELLIN			•			
		Initial Values		Final Values				
Cell Press. (k	Pa)	1220		1221				
Mid pwp (kPa		993.1		735.4				
Base pwp (kP	a)	992.9		734.7				
s' (kPa)		226.9		485.6				
t (kPa)		0.0		0.0				
Voids ratio (e)		0.4165		0.4035				
Creep (%/min				4.48E-06				
ANISOTROP	USTAGE 1	Initial Values		Final Values				
Cell Press. (k	Pa)	1221		1230				
Mid pwp (kPa	,	735.4		734.7				
Base pwp (kP		733.4		735.3				
s' (kPa)	~/	485.6		397.2				
t (kPa)		0.0		-98.1				
Voids ratio (e))	0.4035		0.4052				
Creep (%/min				-2.25E-06				
ANISOTROP								
		Initial Values		Final Values				
Cell Press. (k	Pa)	1230		1236				
Mid pwp (kPa		734.7		735.2				
Base pwp (kP	a)	735.3		734.9				
s' (kPa)		397.2		417.3				
t (kPa)		-98.1		-83.5				
Voids ratio (e)		0.4052		0.4179				
Creep (%/min)			-4.50E-06				
Checked and approved Initials: <i>CSR</i> Date: 27/10/2017	Project Number: Project Name:	THE HOXTO	1166 N, HOLBORN		RGI			
		M5	516		Russell Geotechnical Innovations			

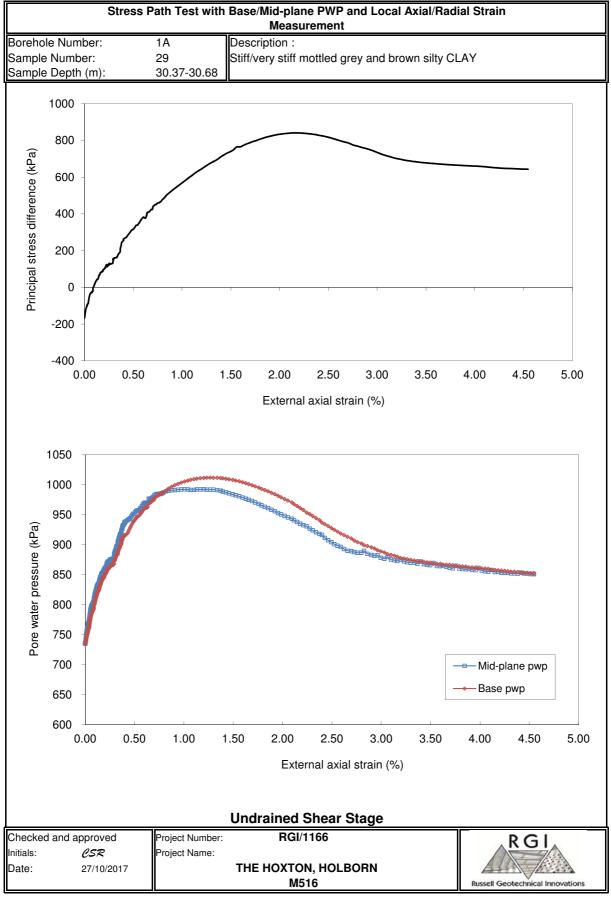

Authorised Signatory: C.S.Russell (Director)

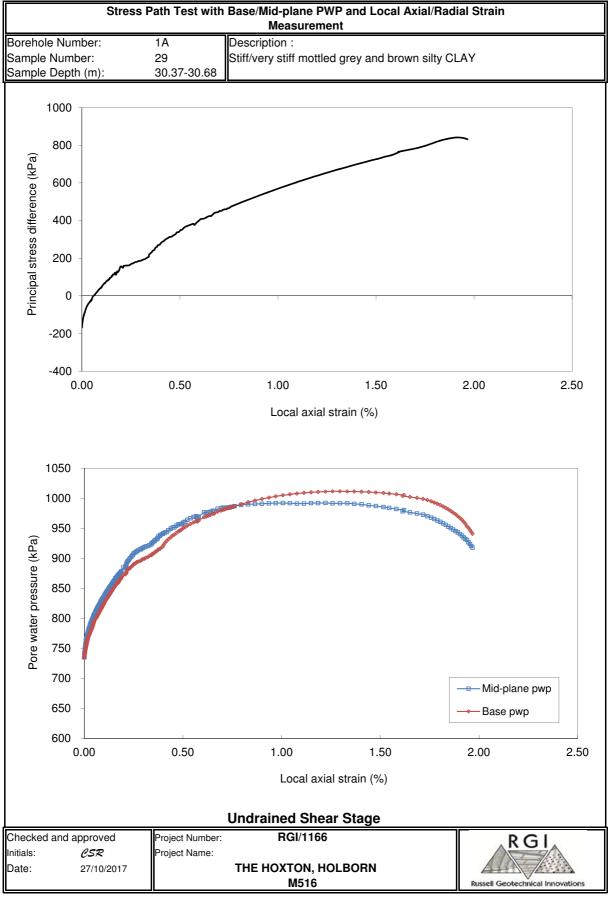

Authorised Signatory: C.S.Russell (Director)

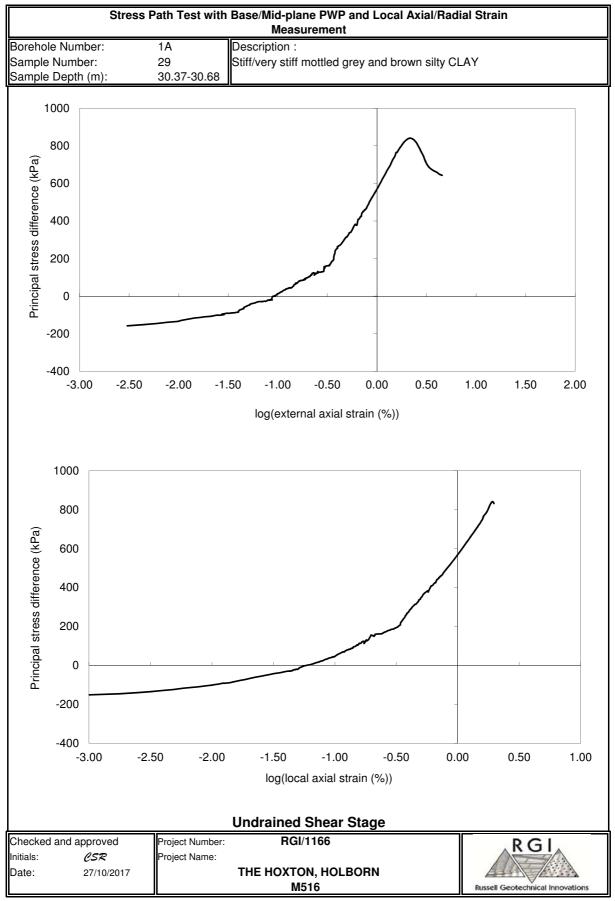

Authorised Signatory: C.S.Russell (Director)

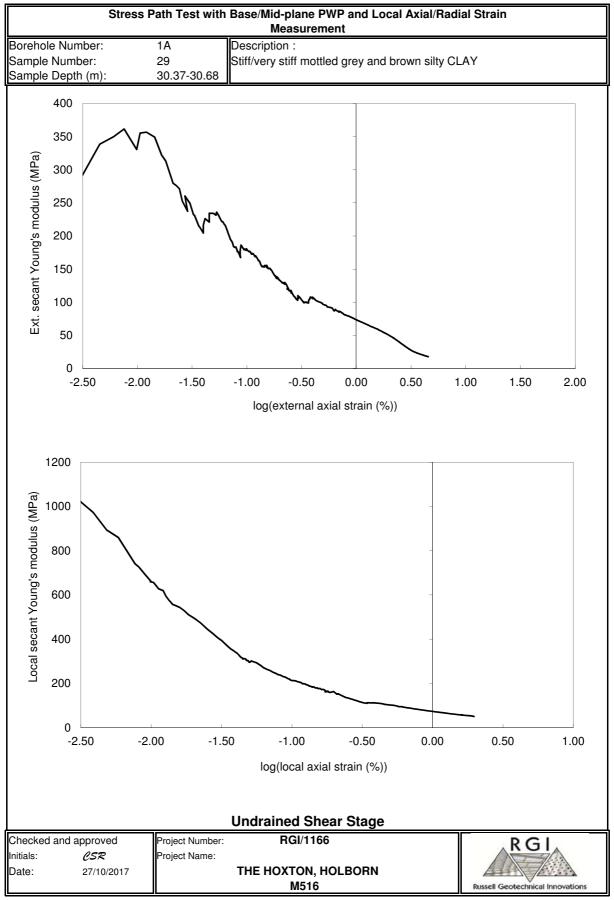

		with Base/Mid-plane PWP and Local Axial/Radial Strain Measurement
Borehole Number:	1A	Description :

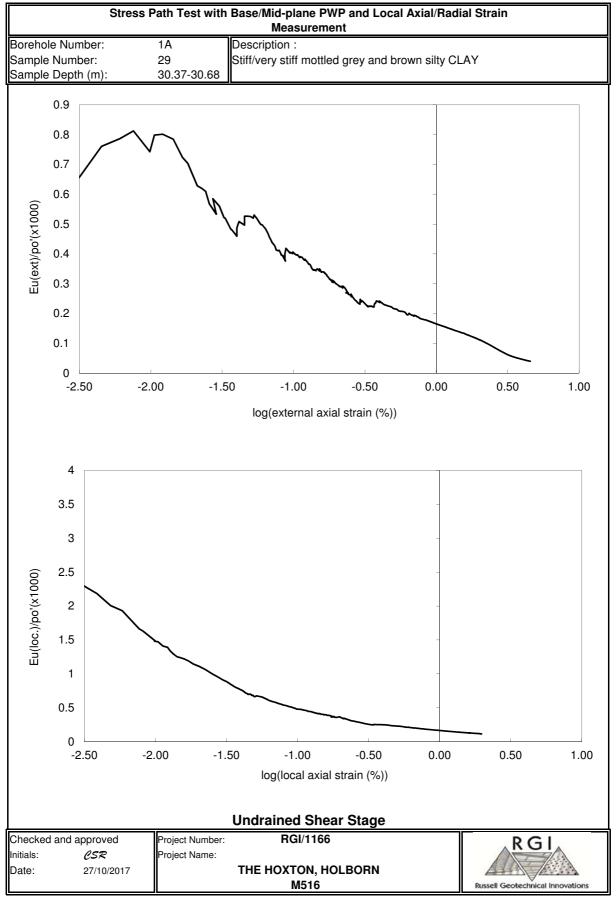

St	Stress Path Test with Base/Mid-plane PWP and Local Axial/Radial Strain								
	Measurement								
Borehole Number:	1A	Description :							
Sample Number:	29	Stiff/very stiff mottled grey and brown silty CLAY							
Sample Depth (m):	30.37-30.68								

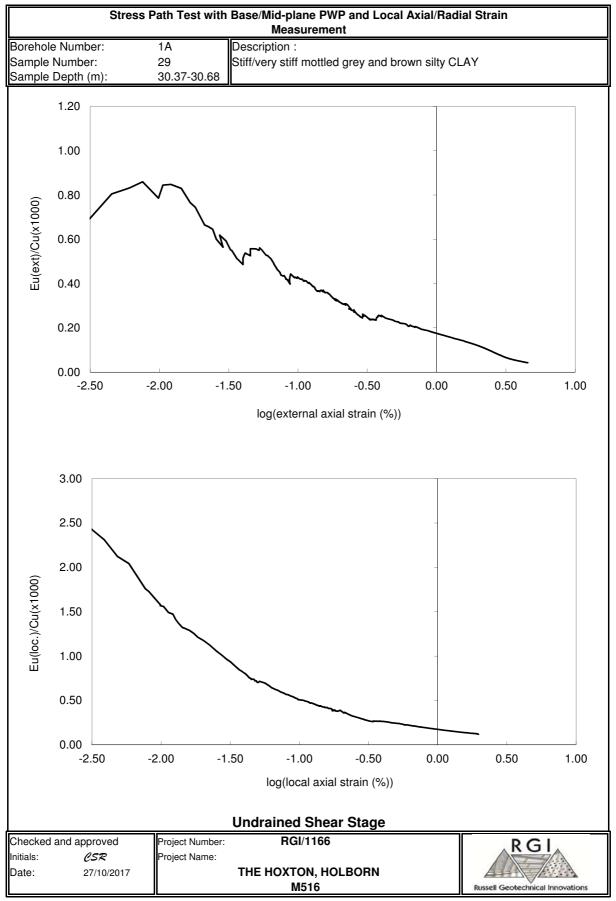

Authorised Signatory: C.S.Russell (Director)

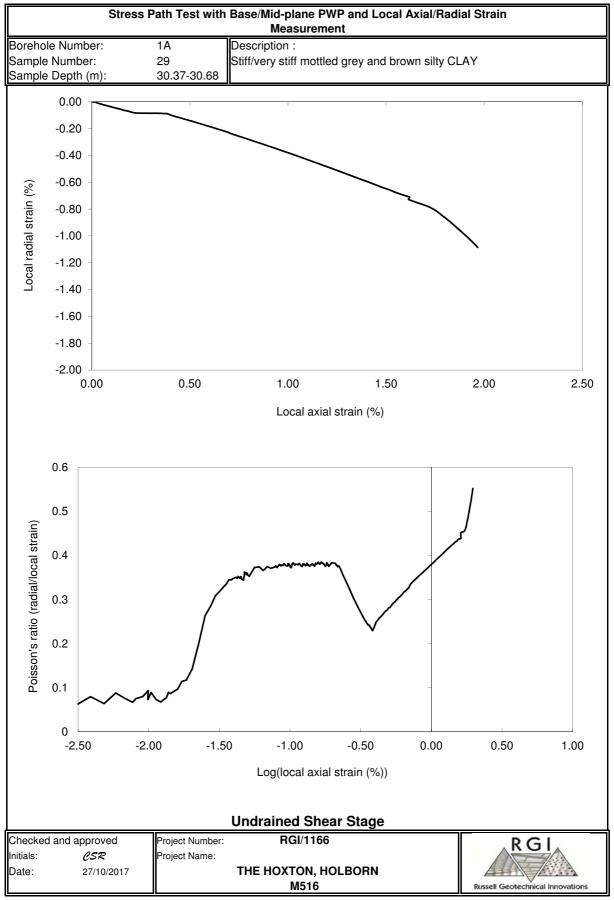

Authorised Signatory: C.S.Russell (Director)

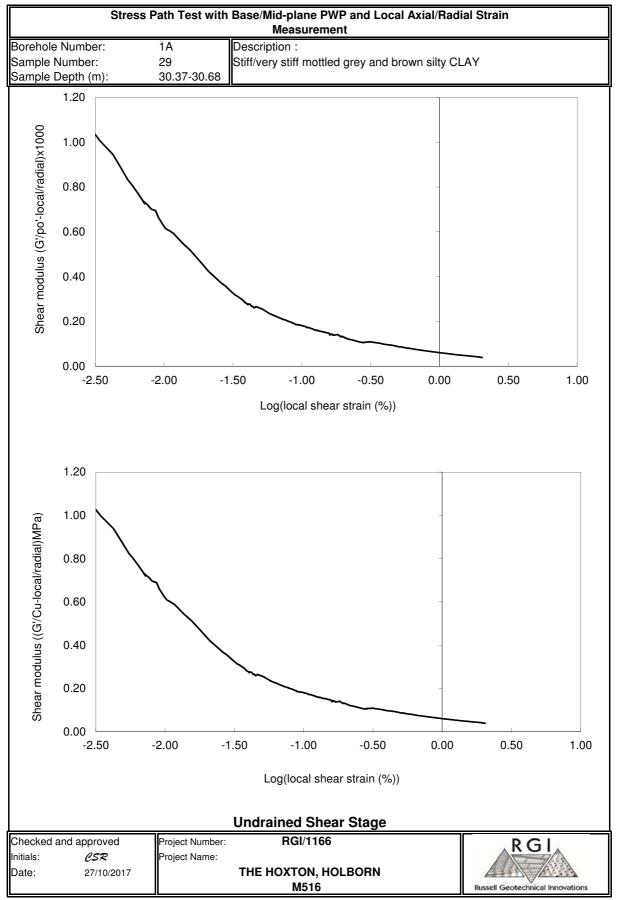

Authorised Signatory: C.S.Russell (Director)

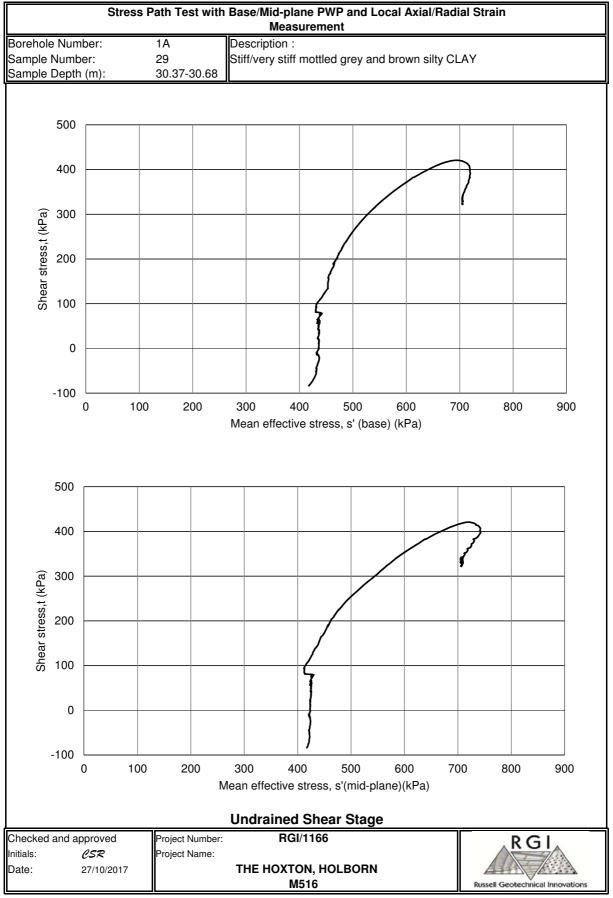

Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)

Authorised Signatory: C.S.Russell (Director)

Authorised Signatory: C.S.Russell (Director)

Authorised Signatory: C.S.Russell (Director)

APPENDIX E

Chemical Laboratory Results

Certificate Number 17-09026

Client Dunelm Geotechnical & Environmental Ltd 1 The Old Shippon Sandlow Green Farm Holmes Chapel Road Holmes Chapel CW4 8AS

- Our Reference 17-09026
- Client Reference DM514
 - Order No (not supplied)
 - Contract Title Hoxton Hotel
 - Description 5 Soil samples, 4 Leachate samples.
 - Date Received 30-Aug-17
- Date Started 30-Aug-17
- Date Completed 05-Sep-17
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

05-Sep-17

Summary of Chemical Analysis Soil Samples

Our Ref 17-09026 Client Ref DM514 Contract Title Hoxton Hotel

			-			
			Lab No	1223460	1223462	1223464
		Sa	ample ID	BH1A	DCS2A	DCS3
			Depth	0.50	0.50	2.00
			Other ID			
			ple Type	SOIL	SOIL	SOIL
		-	ing Date	22/08/17	23/08/17	23/08/17
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Preparation					1	
Moisture Content	DETSC 1004	0.1	%	15	16	7.2
Metals					1	
Arsenic	DETSC 2301#	0.2	mg/kg	12	29	9.4
Cadmium	DETSC 2301#	0.1	mg/kg	< 0.1	0.2	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	27	16	12
Copper	DETSC 2301#	0.2	mg/kg	27	3000	44
Lead	DETSC 2301#	0.3	mg/kg	20	340	150
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05	14	0.42
Nickel	DETSC 2301#	1	mg/kg	33	17	13
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	62	660	34
Inorganics						
рН	DETSC 2008#			7.8	8.2	8.5
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	0.2	0.2
Sulphide	DETSC 2024*	10	mg/kg	12	53	< 10
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.03	1.7	0.36
Petroleum Hydrocarbons						
ЕРН (С6-С8)	DETSC 3321*	0.1	mg/kg	< 0.1	< 0.1	< 0.1
EPH (C8-C10)	DETSC 3321*	0.1	mg/kg	< 0.1	< 0.1	< 0.1
EPH (C10-C12)	DETSC 3311	10	mg/kg	< 10	< 10	< 10
EPH (C12-C16)	DETSC 3311	10	mg/kg	< 10	< 10	< 10
EPH (C16-C21)	DETSC 3311	10	mg/kg	< 10	< 10	< 10
EPH (C21-C40)	DETSC 3311	10	mg/kg	< 10	< 10	< 10
PAHs						
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	0.1	0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	0.1	0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6	< 1.6

Summary of Chemical Analysis Soil Samples

Our Ref 17-09026 Client Ref DM514 Contract Title Hoxton Hotel

			Lab No	1223460	1223462	1223464
		Sa	ample ID	BH1A	DCS2A	DCS3
			Depth	0.50	0.50	2.00
		(Other ID			
		Sam	ple Type	SOIL	SOIL	SOIL
		Sampl	ing Date	22/08/17	23/08/17	23/08/17
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Phenols						
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	< 0.3	< 0.3

i DETS

Summary of Asbestos Analysis Soil Samples

Our Ref 17-09026 Client Ref DM514 Contract Title Hoxton Hotel

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
1223460	BH1A 0.50	SOIL	NAD	none	Jeff Cruddas
1223462	DCS2A 0.50	SOIL	NAD	none	Jeff Cruddas
1223464	DCS3 2.00	SOIL	NAD	none	Jeff Cruddas

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 17-09026 Client Ref DM514 Contract Title Hoxton Hotel Sample Id BH1A 1.00

Sample Numbers 1223461 1223465 1223466 Date Analysed 04/09/2017

Test Results On Waste	W	AC Limit Va	lues			
Test Results OII Waste		Inert	SNRHW	Hazardous		
Determinand and Method Reference	Units	Result		Waste	SINULIAN	Waste
DETSC 2084* Total Organic Carbon	%	0.2		3	5	6
DETSC 2003# Loss On Ignition	%	1.3		n/a	n/a	10
DETSC 3321# BTEX	mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# TPH (C10 - C40)	mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs	mg/kg	< 1.6		100	n/a	n/a
DETSC2008# pH	pH Units			n/a	>6	n/a
DETS073* Acid Neutralisation Capacity (pH4)	mol/kg			n/a	TBE	TBE
DETS073* Acid Neutralisation Capacity (pH7)	mol/kg			n/a	TBE	TBE
Tast Basulta On Lasshata				W	AC Limit Va	lues

Test Results On Leachate

Test Results On Leachate						
Conc in E	luato ug/l	Amount Los	schod mg/kg		lues for LST	Hazardous
					SNRHW	Waste
					2	25
2.4		< 0.02	< 0.1	20	100	300
< 0.03	< 0.03	< 0.004	< 0.02	0.04	1	5
1.1	0.34	< 0.02	< 0.1	0.5	10	70
1.2	0.8	< 0.004	< 0.02	2	50	100
0.04	0.05	< 0.0004	< 0.002	0.01	0.2	2
1.3	< 1.1	< 0.02	< 0.1	0.5	10	30
< 0.5	< 0.5	< 0.02	< 0.1	0.4	10	40
0.4	0.48	< 0.01	< 0.05	0.5	10	50
0.34	< 0.17	< 0.01	< 0.05	0.06	0.7	5
2.5	1.8	< 0.006	< 0.03	0.1	0.5	7
< 1.3	< 1.3	< 0.002	< 0.01	4	50	200
3500	1200	< 20	< 100	800	15,000	25,000
130	< 100	0.26	0.2	10	150	500
13000	2100	26	< 100	1000	20,000	50,000
62000	24000	124	299.5	4000	60,000	100,000
< 100	< 100	< 0.2	< 1	1	n/a	n/a
4800	< 2000	< 10	< 50	500	800	1000
				TBE -	To Be Evalua	ated
7.7	7.6	1		SNRHW -	Stable Non-	Reactive
89	34				Hazardous \	Vaste
20	20					
0.130	1					
0.116						
	_					
0.219						
0.182						
	-					
0.931						
0.88						
	2:1 1.5 2.4 < 0.03 1.1 1.2 0.04 1.3 < 0.5 0.4 0.34 2.5 < 1.3 3500 1300 62000 < 100 4800 7.7 89 20 0.130 0.116 0.219 0.182	1.5 0.94 2.4 1.6 < 0.03 < 0.03 1.1 0.34 1.2 0.8 0.04 0.05 1.3 < 1.1 < 0.5 < 0.5 0.4 0.48 0.34 < 0.17 2.5 1.8 < 1.3 < 1.3 3500 1200 130 < 100 13000 2100 62000 24000 < 100 < 100 4800 < 2000 7.7 7.6 89 34 20 20 0.130 219 0.182 0.931	2:1 $8:1$ $LS2$ 1.5 0.94 0.003 2.4 1.6 < 0.02 < 0.03 < 0.03 < 0.004 1.1 0.34 < 0.02 1.2 0.8 < 0.004 0.04 0.05 < 0.0004 1.3 < 1.1 < 0.02 < 0.5 < 0.5 < 0.02 0.4 0.48 < 0.01 0.34 < 0.17 < 0.01 2.5 1.8 < 0.006 < 1.3 < 1.3 < 0.002 3500 1200 < 20 130 < 100 0.26 13000 2100 26 62000 24000 124 < 100 < 100 < 0.2 4800 < 2000 < 10 7.7 7.6 89 34 20 20 0.130 0.116 0.219 0.182 0.931 0.931	2:18:1LS2LS10 1.5 0.94 0.003 0.01 2.4 1.6 < 0.02 < 0.1 < 0.03 < 0.03 < 0.004 < 0.02 1.1 0.34 < 0.02 < 0.1 1.2 0.8 < 0.004 < 0.02 0.04 0.05 < 0.0004 < 0.002 0.3 < 1.1 < 0.02 < 0.1 < 0.5 < 0.5 < 0.02 < 0.1 < 0.5 < 0.5 < 0.02 < 0.1 0.4 0.48 < 0.01 < 0.05 0.34 < 0.17 < 0.01 < 0.05 2.5 1.8 < 0.006 < 0.03 < 1.3 < 1.3 < 0.002 < 0.01 3500 1200 < 20 < 100 130 < 100 0.26 0.2 13000 2100 26 < 100 62000 24000 124 299.5 < 100 < 100 < 0.2 < 1 4800 < 2000 < 10 < 50 0.130 0.116 < 100 < 50 0.219 0.182 < 103 < 103 0.931 < 103 < 103	Conc in Eluate ug/l Amount Leached mg/kg Inert 2:1 8:1 LS2 LS10 0.5 1.5 0.94 0.003 0.01 0.5 2.4 1.6 < 0.02	2:1 8:1 LS2 LS10 Waste SNRHW 1.5 0.94 0.003 0.01 0.5 2 2.4 1.6 <0.02

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

WASTE ACCEPTANCE CRITERIA TESTING **ANALYTICAL REPORT**

Our Ref 17-09026 Client Ref DM514 Contract Title Hoxton Hotel Sample Id DCS2A 1.00

Sample Numbers 1223463 1223467 1223468 Date Analysed 04/09/2017

Tast Dasulta On Masta	W	AC Limit Va	lues			
Test Results On Waste		Inert	SNRHW	Hazardous		
Determinand and Method Reference	Units	Result		Waste	SINKITIV	Waste
DETSC 2084* Total Organic Carbon	%	0.8		3	5	6
DETSC 2003# Loss On Ignition	%	3.4		n/a	n/a	10
DETSC 3321# BTEX	mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)	mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# TPH (C10 - C40)	mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs	mg/kg	< 1.6		100	n/a	n/a
DETSC2008# pH	pH Units			n/a	>6	n/a
DETS073* Acid Neutralisation Capacity (pH4)	mol/kg			n/a	TBE	TBE
DETS073* Acid Neutralisation Capacity (pH7)	mol/kg			n/a	TBE	TBE
Tost Bosulta On Looshata	· · ·			W	AC Limit Va	lues

Test Results On Leachate

Test Results On Leachate					Limit va	lues for LS1	0 Leachate
Determinand and Method Reference	Conc in E	luate ug/l	Amount Lea	ached mg/kg	Inert	SNRHW	Hazardous
Determinand and Method Reference	2:1	8:1	LS2	LS10	Waste	SINKHW	Waste
DETSC 2306 Arsenic as As	5	3.8	0.01	0.04	0.5	2	25
DETSC 2306 Barium as Ba	22	17	0.04	0.18	20	100	300
DETSC 2306 Cadmium as Cd	0.03	< 0.03	< 0.004	< 0.02	0.04	1	5
DETSC 2306 Chromium as Cr	0.67	< 0.25	< 0.02	< 0.1	0.5	10	70
DETSC 2306 Copper as Cu	4.3	2.4	0.009	0.027	2	50	100
DETSC 2306 Mercury as Hg	0.07	0.1	< 0.0004	< 0.002	0.01	0.2	2
DETSC 2306 Molybdenum as Mo	3.8	1.5	< 0.02	< 0.1	0.5	10	30
DETSC 2306 Nickel as Ni	0.8	< 0.5	< 0.02	< 0.1	0.4	10	40
DETSC 2306 Lead as Pb	< 0.09	< 0.09	< 0.01	< 0.05	0.5	10	50
DETSC 2306 Antimony as Sb	1.3	0.62	< 0.01	< 0.05	0.06	0.7	5
DETSC 2306 Selenium as Se	7	3.4	0.014	0.039	0.1	0.5	7
DETSC 2306 Zinc as Zn	6.4	1.9	0.013	0.025	4	50	200
DETSC 2055 Chloride as Cl	7000	1500	< 20	< 100	800	15,000	25,000
DETSC 2055* Fluoride as F	< 100	< 100	< 0.02	< 0.1	10	150	500
DETSC 2055 Sulphate as SO4	1400000	570000	2800	6898.3	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	1500000	760000	3000	8668.4	4000	60,000	100,000
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1	1	n/a	n/a
* Dissolved Organic Carbon	3400	< 2000	< 10	< 50	500	800	1000
Additional Information					TBE	- To Be Evalua	ated
DETSC 2008 pH	7.3	7.3			SNRHW	- Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	2080	1080				Hazardous V	Waste
* Temperature*	20	20					
Mass of Sample Kg	0.140						
Mass of dry Sample Kg	0.115						
Stage 1	·						
Volume of Leachant L2	0.205						
Volume of Eluate VE1	0.166						
Stage 2		-					
Volume of Leachant L8	0.92						
Volume of Eluate VE2	0.86						

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

Inappropriate

Information in Support of the Analytical Results

Our Ref 17-09026 *Client Ref* DM514 *Contract* Hoxton Hotel

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1223460	BH1A 0.50 SOIL	22/08/17	GJ 60ml x2	pH + Conductivity (7 days)	
1223461	BH1A 1.00 SOIL	22/08/17	GJ 60ml x2		
1223462	DCS2A 0.50 SOIL	23/08/17	GJ 250ml x2, GJ 60ml x2, PT 1L		
1223463	DCS2A 1.00 SOIL	23/08/17	GJ 250ml x2, GJ 60ml x2, PT 1L		
1223464	DCS3 2.00 SOIL	23/08/17	GJ 250ml x2, GJ 60ml x2, PT 1L		
1223465	BH1A 1.00 LEACHATE	22/08/17	GJ 60ml x2		
1223466	BH1A 1.00 LEACHATE	22/08/17	GJ 60ml x2		
1223467	DCS2A 1.00 LEACHATE	23/08/17	GJ 250ml x2, GJ 60ml x2, PT 1L		
1223468	DCS2A 1.00 LEACHATE	23/08/17	GJ 250ml x2, GJ 60ml x2, PT 1L		

Key: G-Glass J-Jar P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

APPENDIX F

Monitoring Results

Contract Name Contract Name Houte <th colspan="14">GAS MONITORING SHEET</th>	GAS MONITORING SHEET																												
Contract Name Contract Name Contract Name Contract Name 	Contract Number	•																											
Imaginary Barbonomic Subservice Service S																													
Image data famining is in the line of the line	Date	a 12.09.2017																											
Operate initial 30 During Under State: Operate initial 30 Operate initial 30 <th>Time (start & finish)</th> <th colspan="15">) 12:15 to 14:15 Visit No. 1 of 4</th> <th></th>	Time (start & finish)) 12:15 to 14:15 Visit No. 1 of 4																											
Original of the product of the pro	Weather	Showers										1	Dunoln	n Gootoc	hnical 8	. Enviror	montal I td												
Operator Initial B Operator Initian B Operato	Ground Conditions	Dry										1	Dunen	Il Geolec	micard														
<table-container>Animical constraint of the series of the</table-container>	Operator Initials	JB										1																	
ImageImageImageImageImageImageImageImageAlf comparingStart			% v/v)	20.8		0.1																							
<table-container>Alt congregationImage: Image: Im</table-container>			art:		1007	•	Fir	nish:		1007		Region	al Trend:																
Lat Calibraio Lat Calibraio Lat Calibraio Value Park Park State Park Park State Park Park State <th <="" colspan="12" th=""><th>Air temperature °C</th><th>Si</th><th></th><th></th><th>17</th><th></th><th>Fir</th><th>nish:</th><th></th><th>17</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	<th>Air temperature °C</th> <th>Si</th> <th></th> <th></th> <th>17</th> <th></th> <th>Fir</th> <th>nish:</th> <th></th> <th>17</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>												Air temperature °C	Si			17		Fir	nish:		17							
Intrometric line in the serie is the serie in the serie in the serie is the serie in the seri																													
Last Calibration IV/ Peak Steady																													
Prove betw Steady pressure pressur																													
BH No. Flow Restrict Relative mbar Ch. (WrV) CO. (WrV) Q. (WrV) PID (pr) H_2 (pp) CO. (pp) SWL ND Base (n pb) Remarks Pb DC31 0.0 0.0 0.0 0.0 ND ND 0.1 0.1 207 NR NR ND ND 3.37 5.65 No Bung DC31 0.0 0.0 0.0 ND ND 0.1 0.1 207 207 NR NR ND 3.37 5.48 No Bung BH 1/U 0.0 0.0 0.0 NO ND 0.1 0.1 207 207 NR NR ND 3.37 5.48 No Bung BH 1/L 0.0 0.0 0.0 ND ND 0.1 0.1 208 208 NR NR ND ND 3.37 5.48 No Bung BH 1/L 0.0 0.0 0.0 1.0 1.0 1.0 2.0 2.0 NR	Last Calibration	N/A																											
BH No.Flow manPressure<		Peak	Steady		Peak	Steady	Peak	Steady	Peak	Steady	Peak	Low	Range	Range															
DCS20.00.00.0NDND0.10.10.202.09NRNRNDND0.100.40NDBH1_U0.00.00.00.0NDND0.10.12.012.02NRNRNDND5.011.44NBungBH1_U0.00.00.00.0NDNDND0.10.12.012.02NRNRNDND5.011.44NBungBH1_U0.00.00.00.0NDND0.10.12.012.02NRNRNDND5.011.44NBungBH1_U0.00.00.00.0NDNDND5.011.44NBung1.44NBungBH1_U0.00.00.00.0NDNDNDND1.521.55	BH No.	BH No.		pressure CH ₄ (%v/v)		CO₂ (%v/v)		O ₂ (%v/v)		PID (ppm) H ₂ S (ppm)		CO (ppm)		pipe (m Remarks bgl)	Remarks													
BH1_U0.00.00.00.0NDND0.10.1207207NRNRNDND5.2414.44NBurgBH1_L0.00.00.0NDNDNDND12.414.44NBurgBH1_L0.00.00.0NDNDND12.414.44NBurgBH1_L0.00.00.0NDND12.414.44NBurgBH1_L0.00.00.0NDND12.414.44NBurgBH1_L0.00.00.0ND10.4ND12.4NDND39.2739.65NBurgBH1_L0.00.00.00.0ND12.4 <t< td=""><th>DCS1</th><td>0.0</td><td>0.0</td><td>0</td><td>ND</td><td>ND</td><td>0.1</td><td>0.1</td><td>20.7</td><td>20.7</td><td></td><td>NR</td><td></td><td></td><td>3.87</td><td>5.05</td><td>No Bung</td></t<>	DCS1	0.0	0.0	0	ND	ND	0.1	0.1	20.7	20.7		NR			3.87	5.05	No Bung												
BHIL0.00.0NDNDND0.10.120.820.8NRNRNDND39.7739.65No BurgImage: Strain of the	DCS2	0.0	0.0	0	ND	ND	0.1	0.1	20.9	20.9	NR	NR	ND	ND	3.37	5.48	No Bung												
Image: Constraint of the straint of		0.0	0.0	0		ND	0.1	0.1	20.7	20.7	NR	NR	ND	ND		14.44	No Bung												
	BH1_L	0.0	0.0	0	ND	ND	0.1	0.1	20.8	20.8	NR	NR	ND	ND	39.27	39.65	No Bung												
	-																												
Image: Constraint of the second of the se		Details of g	roundwater p	ourging & sar	npling inc. v	olume samp	led																						
Image: Constraint of the second of the se	-																												
Notes:																													
Notes:																													
Notes:																													
Notes:																													
Notes:																													
Notes:																													
Notes:																													
Notes:																													
	Notes:																												

GAS MONITORING SHEET																
Contract Number																
Contract Name																
Date	2 25.09.2017															
Time (start & finish)	13:00 to 14:15 Visit No. 2 of 4															
Weather	Showers											Dunoln	n Gootoc	hnical 8	. Enviror	mental Ltd
Ground Conditions	Dry											Dunen	Il Geolec	inncare		
Operator Initials	JB															
Ambient Readings		% v/v)	20.8	CO ₂ (% v/v)	0.1											
Atmospheric Pressure (mbar)		tart:		1018		Fir	nish:		1018		Region	al Trend:				
Air temperature °C	St	tart:		16		Fir	nish:		17							
	Iment Details GM10556/07															
Last Calibration																
Instrument Details																
Last Calibration	N/A															
	Peak	Steady		Peak	Steady	Peak	Steady	Peak	Steady	Peak	Low	Range	Range		_	
BH No.		ate (I/hr)	Relative pressure mbar	CH₄ (%v/v)		CO ₂ (%v/v)		O ₂ (%v/v)		PID (ppm) H ₂ S (ppm)		CO (ppm)	SWL (m bgl)	Base of pipe (m bgl)	Remarks
DCS1	0.0	0.0	0	ND	ND	0.1	0.1	20.2	20.2	NR	NR	ND	ND	3.96	4.98	No Bung
DCS2	0.0	0.0	0	ND	ND	0.1	0.1	20.8	20.8	NR	NR	ND	ND	3.55	5.48	No Bung
BH1_U	0.0	0.0	0	0.1	0.1	0.1	0.1	21.0	21.0	NR	NR	ND	ND	4.31	14.44	No Bung
BH1 L	0.0	0.0	0	ND	ND	0.1	0.1	20.8	20.8	NR	NR	ND	ND	39.22	39.75	No Bung
			-													i to Bung
-																
-																
		1					1		1							
	1	1				1		1				1				
	1		•		•		1					•				1
	Details of o	roundwater p	ourging & sar	npling inc. v	olume samp	led										
	1															
	1															
	1															
	1															
	1															
Notes:																
110100.																

						G	AS MON	ITORIN	G SHEET							
Contract Number	•															
Contract Name											1					
Date	11.10.2017										1					
Time (start & finish)	12:15 - 12:3	5					Visit No.	3	of	4	1					
Weather	Cloudy						•	4			1	Dunelr	n Geotec	hnical 8	Enviror	mental Ltd
Ground Conditions	Dry										1	Dunien		innour c		
Operator Initials											1					
Ambient Readings		% v/v)	20.8	CO ₂ (% v/v)	0.1											
Atmospheric Pressure (mbar)		art:		1009		Fir	nish:		1009		Region	al Trend:				
Air temperature °C		art:		15		Fir	nish:		15							
	rument Details GM10556/07															
Last Calibration	22/08/2017															
Instrument Details																
Last Calibration	N/A Peak	Steady		Peak	Steady	Peak	Steady	Peak	Steady	Peak	Low	Range	Range			
	Feak	Steady	Relative	Feak	Steady	Feak	Steady	Feak	Steady	Fean	LOW	Range	Range	SWL	Base of	
BH No.	BH No. Flow Rate (I/hr)		pressure mbar CH ₄ (%v/v)		CO ₂ (%v/v)		O ₂ (%v/v)			ppm)	H₂S (ppm)	CO (ppm)	(m bgl)	pipe (m bgl)	Remarks	
DCS1	0.0	0.0	0	ND	ND	0.1	0.1	20.4	204.0	NR	NR	ND	1	3.93	4.99	No Bung
DCS2	0.0	0.0	0	ND	ND	0.1	0.1	20.7	20.7	NR	NR	ND	ND	3.54	5.37	No Bung
BH1_U	0.0	0.0	0	ND	ND	0.1	0.1	20.7	20.7	NR	NR	1	1	4.36	14.44	No Bung
BH1_L	0.0	0.0	0	ND	ND	0.1	0.1	20.3	20.3	NR	NR	1	1	39.27	39.80	No Bung
					I											
	Dotails of a	roundwater p	ourging & co	moling inc. y	olumo camo	lod										
	Details of g	i ounuwater p	purging a sai	inpling inc. v	olume samp											
	<u> </u>															
<u> </u>																
<u> </u>																
Notes:																
1003.																

						G	AS MON	ITORIN	G SHEET	I.						
Contract Number																
Contract Name											1					
Date	26/10/2017										1					
Time (start & finish)	13:00 - 14:2	5					Visit No.	4	of	4	1					
Weather	Light breeze	, overcast					•	4		1	1	Duneln	n Geotec	hnical 8	Enviror	mental Ltd
Ground Conditions	Dry	,									1	Dunien		innour c		
Operator Initials											1					
Ambient Readings		% v/v)	20.8	CO ₂ (% v/v)	0.1											
Atmospheric Pressure (mbar)		art:		1025	•	Fir	nish:		1025		Region	al Trend:				
Air temperature °C		art:		16		Fir	nish:		19							
	ument Details GM10556/07															
Last Calibration	22/08/2017															
Instrument Details	Dip Tape															
Last Calibration			1													
	Peak	Steady	Relative	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Low	Range	Range		Base of	
BH No.	BH No. Flow Rate (I/hr)		pressure mbar CH ₄ (%v/v)		CO ₂ (%v/v)		O ₂ (%v/v)			ppm)	H ₂ S (ppm)	CO (ppm)	SWL (m bgl)	pipe (m bgl)	Remarks	
DCS1	0.0	0.0	0	ND	ND	0.1	0.1	20.8	20.8	NR	NR	ND	1	4.05	4.98	No Bung
DCS2	0.0	0.0	0	ND	ND	0.1	0.1	20.8	20.8	NR	NR	ND	ND	3.67	5.34	No Bung
BH1_U	0.0	0.0	0	ND	ND	0.1	0.1	20.7	20.7	NR	NR	ND	1	4.56	14.44	No Bung
BH1_L	0.0	0.0	0	ND	ND	0.1	0.1	20.8	20.8	NR	NR	ND	1	39.27	39.80	No Bung
													ļ			
	Details of g	roundwater p	ourging & sai	mpling inc. v	olume samp	led										
-																
Notes:																

APPENDIX G

Dunelm Standard Conditions & Notes On Limitations

Dunelm Conditions of Offer, Notes on Limitations & Basis for Contract

These conditions accompany our tender and supercede any previous conditions issued. The firm will prepare a report solely for the use of the Client (the party invoiced) and its agent(s). No reliance should be placed on the contents of this report, in whole or in part by 3rd parties. The report, its content and format and associated data are copyright, and the property of the firm. Photocopying of part or all of the contents, transfer or reproduction of any kind is forbidden without written permission from the firm. A charge may be levied against such approval, the same to be made at the discretion of the firm.

Site investigation is a process of sampling. The scope and size of an investigation may be considered proportional to levels of confidence regarding the ground and groundwater conditions. The exploratory holes undertaken investigate only a small volume of the ground in relation to the overall size of the site, and can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions as encountered within each of the exploratory holes. There may be different ground conditions elsewhere on the site which have not been identified by this investigation and which therefore have not been taken into account in this report. Reports are generally subject to the comments of the local authority and Environment Agency. The comments made on groundwater conditions are based on observations made at the time that site work was carried out. It should be noted that mobile contamination, soil gas levels and groundwater levels may vary owing to seasonal, tidal and/or weather related effects. Unrecorded ancient mining may occur anywhere where seams that have been worked and influence the rock and soil above. Dissolution cavities can occur where gypsum or chalk is present. Rotary drilling is the recommended technique to prove the integrity of the rock.

Where the scope of the investigation is limited via access to information, time constraints, equipment limitations, testing, interpretation or by the client or his agents budgetary constraints, elements not set out in the proposal and excluded from the report are deemed to be omitted from the scope of the investigation.

The firm cannot be held liable and do not warrant, or otherwise guarantee the validity of information provided by third parties and subsequently used in our reports. The firm are not responsible for the action negligent or otherwise of subcontractors or third parties.

Desk studies are generally prepared in accordance with RICS guidelines. Environmental site investigations are generally undertaken as 'exploratory investigations' in accordance with the definitions provided in paragraph 5.4 of BS 10175:2001 in order to confirm the conceptual assumptions. You are advised to familiarize yourself with the typical scope of such an investigation. No pumping of water will be undertaken unless a licence or facilities/equipment have been arranged by others.

Where the type, number or/and depth of exploratory hole is specified by others, the firm cannot and will not be responsible for any subsequent shortfall or inadequacy in data, and any consequent shortfall in interpretation of environmental and geotechnical aspects which may be required at a later date in order to facilitate the design of permanent or temporary works.

All information acquired by the firm in the course of investigation is the property of the firm, and, only also becomes the joint property of the Client only on the complete settlement of all invoices relating to the project. The firm reserves the right to use the information in commercial tendering and marketing, unless the Client expressly wishes otherwise in writing. The quoted rates do not include VAT, and payment terms are 30 days from dispatch of invoice from our offices. Quotes are subject to a site visit.

We have allowed for 1 mobilisation and normal working hours unless otherwise stated. The scope of the investigation may be reviewed following the desk study and/or fieldwork. We have not allowed for acquiring services information, and cannot be responsible for damage to underground services or pipes not shown to us or not clearly shown on plans. Costs incurred will be passed on to you, and in commissioning the firm, you understand and accept that you/your agent have a contractual relationship with the firm & you accept this. Our rates assume unobstructed, reasonably level and firm access to the exploratory positions and adequate clear working areas and headroom. We have priced on the basis that you or your client have the necessary permissions, wayleaves and approvals to access land. All boreholes and pits are backfilled with arisings except where gas monitoring pipes are installed with stopcock covers. Dunelm are not responsible for any uneven surfaces as a result of siteworks and rutting and backfilled excavations may require re-levelling and/or making good by others after fieldwork is complete. Dunelm have not allowed for subsequent reinstatement as a result of settlement. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested f

We reserve the right to pursue full payment of the invoice prior to release of any information including reports. We advise you/your client that we may elect to pursue our statutory rights under late payment legislation, and will apply 8% to the base rate for unreasonably late payments. We will also apply the right to claim any associated legal costs incurred with recovery of late payments. The firm is exempt from the CIS Scheme. The firm offer to undertake work <u>only</u> in strict accordance with conditions covered by our current insurances, which are available for inspection. The company are not responsible for acts, negligent or otherwise of subcontractors and as a matter of policy cannot indemnify any other parties. Professional indemnity Insurance is limited to ten times the invoice net total except where stated otherwise by the firm, and we give notice that consequential loss as a direct or indirect result of the firm's activities or omission of the same are excluded.

London

Friars Bridge Court 41- 45 Blackfriars Road London, SE1 8NZ

T: +44 (0)20 7340 1700 E: london@campbellreith.com

Surrey

Raven House 29 Linkfield Lane, Redhill Surrey RH1 1SS

T: +44 (0)1737 784 500 E: surrey@campbellreith.com

Bristol

Wessex House Pixash Lane, Keynsham Bristol BS31 1TP

T: +44 (0)117 916 1066 E: bristol@campbellreith.com

Birmingham

Chantry House High Street, Coleshill Birmingham B46 3BP

T: +44 (0)1675 467 484 E: birmingham@campbellreith.com

Manchester

No. 1 Marsden Street Manchester M2 1HW

T: +44 (0)161 819 3060 E: manchester@campbellreith.com

UAE

Office 705, Warsan Building Hessa Street (East) PO Box 28064, Dubai, UAE

T: +971 4 453 4735 E: uae@campbellreith.com

Campbell Reith Hill LLP. Registered in England & Wales. Limited Liability Partnership No OC300082 A list of Members is available at our Registered Office at: Friars Bridge Court, 41- 45 Blackfriars Road, London SE1 8NZ VAT No 974 8892.43