

DUNELM SEQTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 22.50m to 24.00m

OUNELM SECTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 24.00 to 25.50m

QUNELW SECTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 25.50m to 27.00m

DUNELY SECTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 27.00m to 28.50m

DUNELM	Contract: Hoxton hotel, Holborn	Job No: M516
GEOTECHNICAL & ENVIRONMENTAL	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 28.50m to 30.00m

DUNELY SEPTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 30.00m to 31.50m

DUNELM SENTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 31.50m to 33.00m

DUNELM SECTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 33.00m to 34.50m

DUNELM SECTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 34.50m to 36.00m

DUNELY SECTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 36.00m to 37.50m

DUNELY SECTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 37.50m to 39.00m

DUNELM SENTECHNICAL & ENVIRONMENTAL	Contract: Hoxton hotel, Holborn	Job No: M516
	Client: Ennismore Capital	BH1A
Core Photographs	Date: September 2017	From 39.00m to 40.00m

APPENDIX D

Geotechnical Laboratory Results

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) (UU) Borehole Number: 1A Description (visual): Sample Number: U26 Stiff fissured mottled grey and brown silty CLAY 28.20-28.45 Sample Depth (m): SPECIMEN DETAILS Undisturbed Preparation: Initial Values Height: 201.9 mm Diameter: 96.2 mm Moisture content : 21.24 % Bulk density: 2.09 Mg/m³ Dry density: 1.72 Mg/m³ Particle density (assumed) 2.72 Mg/m³ Initial voids ratio (e_o) 0.5783 Rate of strain: 2% per minute Cell Pressure (kPa): 1128 At failure: External axial strain 10.27 (%) Peak deviator stress 355 (kPa) Undrained shear strength 177 (kPa) 400 350 Principal stress difference (kPa) 300 250 200 150 100 50

Checked and approved				
Initials:	CSR			
Date:	28/09/2017			

0.00

Project Number: RGI/1166
Project Name: THE HOXTON, HOLBORN
M516

10.00

External axial strain (%)

6
OLBORN

Russell Geotechnical Innova

20.00

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

5.00

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U26 2820m QUTXL.xlsx]Sheet

15.00

25.00

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) Borehole Number: 1A Description: Sample Number: U26 Stiff fissured mottled grey and brown silty CLAY 28.20-28.45 Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.9 mm Initial Diameter: 96.2 mm Elevation **Failure Sketch RGI/1166** RGIChecked and approved Project Number: THE HOXTON, HOLBORN Initials: CSRProject Name: M516 28/09/2017 Date: Russell Geotechnical Innovations

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U26 2820m QUTXL.xlsx]Sheet1

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) (UU) Borehole Number: 1A Description (visual): Sample Number: U27 Very stiff mottled grey and brown silty CLAY 29.30-29.55 Sample Depth (m): with organic black spots (sample appears dry) SPECIMEN DETAILS Preparation: Undisturbed Initial Values Height: 201.8 mm Diameter: 97.4 mm Moisture content : 13.38 % Bulk density: 2.25 Mg/m³ Dry density: 1.98 Mg/m³ Particle density (assumed) 2.72 Mg/m³ Initial voids ratio (e_o) 0.3737 Rate of strain: 2% per minute Cell Pressure (kPa): 1172 At failure: External axial strain 10.61 (%) Peak deviator stress 1029 (kPa) Undrained shear strength 515 (kPa) 1200 1000 Principal stress difference (kPa) 800 600 400 200 0 0.00 2.00 4.00 6.00 10.00 12.00 8.00 External axial strain (%)

Checked and approved Initials: *CSR*Date: 28/09/2017

Project Number: RGI/1166
Project Name: THE HOXTON, HOLBORN
M516

OLBORN

Russell Geotechnical Innovations

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U27 2930m QUTXL.xlsx]IES

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) Borehole Number: 1A Description: Sample Number: U27 Very stiff mottled grey and brown silty CLAY 29.30-29.55 with organic black spots (sample appears dry) Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.8 mm Initial Diameter: 97.4 mm Elevation **Failure Sketch RGI/1166** RGIChecked and approved Project Number: THE HOXTON, HOLBORN Initials: CSRProject Name: M516 28/09/2017 Date: Russell Geotechnical Innovations

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) (UU)					
Borehole Number:	1A	Description (visual)			(00)
Sample Number:	U31	Stiff fissured dark of			
Sample Depth (m):	34.10-34.46	with organic black			
PECIMEN DETAILS	Preparation:	Undisturbed			
	Initial Values				
leight:	201.5	mm			
Diameter :	99.1	mm			
Moisture content :	26.93	%			
Bulk density :	1.99	Mg/m³			
Ory density:	1.57	Mg/m³			
Particle density (assumed)	2.72	Mg/m³			
nitial voids ratio (e _o)	0.7336	· ·			
Rate of strain:	2% per minut	e			
Cell Pressure (kPa):	1364	ļ			
At failure:					
External axia			5.65	(%)	
Peak deviato			328	(kPa)	
Undrained sh	near strength		164	(kPa)	
350 300 - 30					
0.00	5.00	10.00	15.00	20.00	25.00
		External axia	al strain (%)		
Checked and approved itials: <i>CSR</i> late: 28/09/2017	Project Number: Project Name:	RGI/1166 THE HOXTON, HO M516		Russell Geot	RGI

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U31 3410m QUTXL.xlsx]Sheet1

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) Borehole Number: 1A Description: Sample Number: U31 Stiff fissured dark grey silty CLAY 34.10-34.46 with organic black spots Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.5 mm Initial Diameter: 99.1 mm Elevation **Failure Sketch** RGI/1166 RGIChecked and approved Project Number: THE HOXTON, HOLBORN Initials: CSRProject Name: 28/09/2017 M516 Date: Russell Geotechnical Innovations

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) (UU) Borehole Number: 1A Description (visual): Sample Number: U32 Stiff fissured dark grey silty CLAY with rare Sample Depth (m): 35.20-35.40 pyrite and shell fragments SPECIMEN DETAILS Preparation: Undisturbed Initial Values Height: 201.9 mm Diameter: 97.2 mm Moisture content : 20.19 % Bulk density: 2.02 Mg/m³ Dry density: 1.68 Mg/m³ Particle density (assumed) 2.72 Mg/m³ Initial voids ratio (e_o) 0.6171 Rate of strain: 2% per minute Cell Pressure (kPa): 1408 At failure: External axial strain 10.61 (%) Peak deviator stress 351 (kPa) Undrained shear strength 175 (kPa) 400 350 Principal stress difference (kPa) 300 250 200 150 100 50 0 0.00 2.00 4.00 6.00 10.00 16.00 8.00 12.00 14.00

Checked and approved
Initials: *CSR*Date: 28/09/2017

Project Number: RGI/1166
Project Name: THE HOXTON, HOLBORN
M516

External axial strain (%)

R G I

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U32 3520m QUTXL.xlsx]Sheet

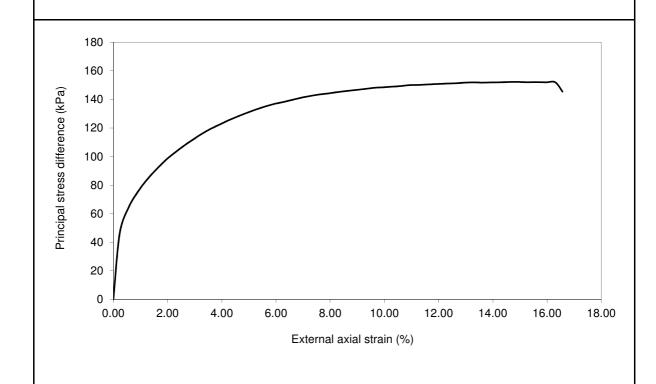
Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) Borehole Number: 1A Description: Sample Number: U32 Stiff fissured dark grey silty CLAY with rare 35.20-35.40 pyrite and shell fragments Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.9 mm Initial Diameter: 97.2 mm Elevation **Failure Sketch RGI/1166** RGIChecked and approved Project Number: THE HOXTON, HOLBORN Initials: CSRProject Name: M516 28/09/2017 Date: Russell Geotechnical Innovations

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U32 3520m QUTXL.xlsx]Sheet1

		nsolidated Undrained Triaxial Tecordance with BS1377:Part 7:1			(U	IU)
Borehole Number:	1A	Description (visual) :				
Sample Number:		Very stiff mottled grey and brown	silty CLA	1		
Sample Depth (m):	36.65-36.80	(sample lathed to achieve correct				
SPECIMEN DETAILS	Preparation:		<u> </u>			
	Initial Values					
Height:	172.7	mm				
Diameter :	85.6	mm				
Moisture content :	15.59	%				
Bulk density :	2.09	Mg/m³				
Dry density:	1.81	Mg/m³				
Particle density (assumed)	2.72	Mg/m³				
nitial voids ratio (e _o)	0.5058					
Rate of strain:	2% per minut	e				
Cell Pressure (kPa):	1466	;				
At failure:						
External axia	al strain		3.01	(%)		
Peak deviate			808	(kPa)		
	hear strength		404	(kPa)		
900 - 800 - 600 -						
0.00 2.00	4.00 6	6.00 8.00 10.00 12.00 External axial strain (%)	14.00	16.00	18.00	20.00
Checked and approved nitials: <i>CSR</i> Date: 28/09/2017	Project Number: Project Name:	RGI/1166 THE HOXTON, HOLBORN M516		A	R G I	


 $Test\ carried\ out\ by\ Russell\ Geotechnical\ Innovations\ Limited,\ Alpha\ 319,\ Chobham\ Business\ Centre,\ Chobham,\ Surrey,GU24\ 8JB$

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U34 3665m QUTXL.xlsx]Sheet1

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) Borehole Number: 1A Description: Sample Number: U34 Very stiff mottled grey and brown silty CLAY 36.65-36.80 (sample lathed to achieve correct H:D ratio) Sample Depth (m): SPECIMEN DETAILS Initial Height: 172.7 mm Initial Diameter: 85.6 mm Elevation **Failure Sketch RGI/1166** RGIChecked and approved Project Number: THE HOXTON, HOLBORN Initials: CSRProject Name: M516 28/09/2017 Date: Russell Geotechnical Innovations

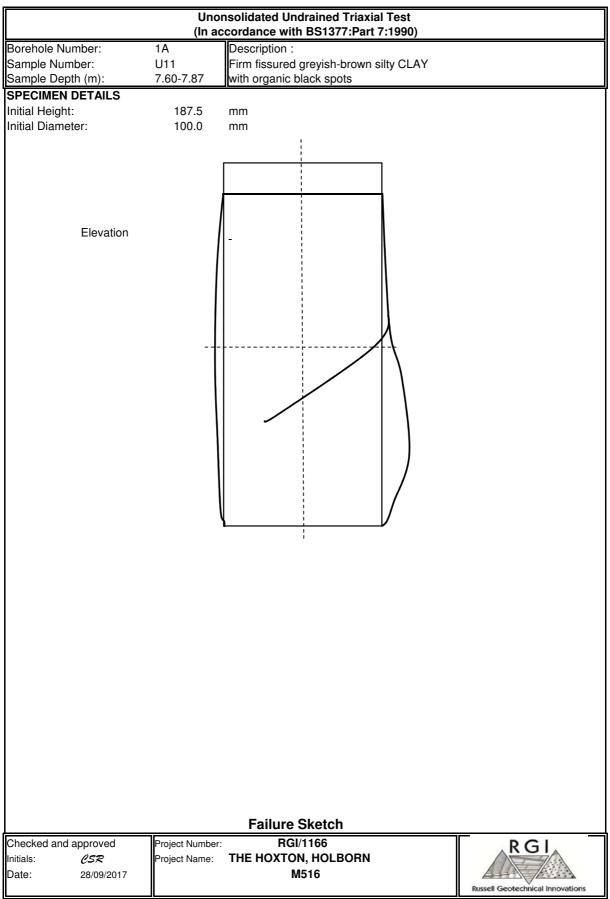
		nsolidated Undrained Triaxial Test cordance with BS1377:Part 7:1990)	(UU)
Borehole Number:	1A	Description (visual) :	
Sample Number:	U11	Firm fissured greyish-brown silty CLAY	
Sample Depth (m):	7.60-7.87	with organic black spots	
SPECIMEN DETAILS	Preparation:	Undisturbed	
	Initial Values		
Height:	187.5	mm	
Diameter:	100.0	mm	
Moisture content :	29.21	%	
Bulk density :	1.98	Mg/m³	
Dry density:	1.53	Mg/m³	
Particle density (assumed)	2.72	Mg/m³	
Initial voids ratio (e _o)	0.7748		
Rate of strain:	2% per minut	e	
Cell Pressure (kPa):	304		
At failure:			
External axia	l strain	14.93	(%)
Peak deviato	r stress	152	(kPa)
			 .

Checked and approved
Initials: *CSR*Date: 28/09/2017

Project Number: RGI/1166
Project Name: THE HOXTON, HOLBORN

M516

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB


Undrained shear strength

Authorised Signatory: C.S.Russell (Director)

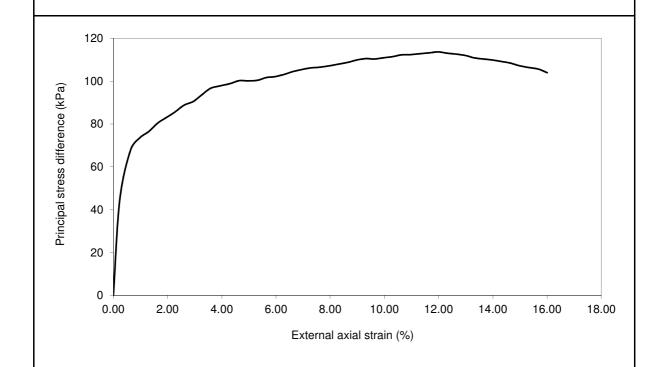
C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U11 0760m QUTXL.xlsx]Sheet1

76

(kPa)

Unonsolidated Undrained Triaxial Test				
(In accordance with BS1377:Part 7:1990) (UU)				
Borehole Number:	1A	Description (visual) :		
Sample Number:	U14	Firm fissured greyish-brown silty CLAY		
Sample Depth (m):	11.52-11.76	with organic black spots		
SPECIMEN DETAILS	Preparation:	Undisturbed		

Preparation: Undisturbed Initial Values


Height: 2015 mm

Height: 201.5 mm Diameter: 103.3 mm Moisture content : 29.18 % Bulk density: 1.91 Mg/m³ Dry density: 1.48 Mg/m³ Mg/m³ Particle density (assumed) 2.72 Initial voids ratio (e_o) 0.8387

Rate of strain: 2% per minute Cell Pressure (kPa): 461

At failure:

External axial strain11.99(%)Peak deviator stress114(kPa)Undrained shear strength57(kPa)

Checked and approved Initials: *CSR*Date: 28/09/2017

Project Number: RGI/1166
Project Name: THE HOXTON, HOLBORN
M516

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U14 1152m QUTXL.xlsx]Sheet

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) Borehole Number: 1A Description: Sample Number: U14 Firm fissured greyish-brown silty CLAY 11.52-11.76 with organic black spots Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.5 mm Initial Diameter: 103.3 mm Elevation **Failure Sketch** RGI/1166 RGIChecked and approved Project Number: THE HOXTON, HOLBORN Initials: CSRProject Name: M516 28/09/2017 Date: Russell Geotechnical Innovations

		nsolidated Undrain			(UU)
Borehole Number: Sample Number:	1A U17	Description (visual	<u> </u>	CLAY	(00)
Sample Depth (m):	16.60-16.85	with organic black			
SPECIMEN DETAILS	Preparation:		<u>'</u>		
	Initial Values				
Height:	201.7	mm			
Diameter :	96.7	mm			
Moisture content :	27.19	%			
Bulk density :	1.97	Mg/m³			
Dry density:	1.55	Mg/m³			
Particle density (assumed)	2.72	Mg/m³			
nitial voids ratio (e _o)	0.7601				
Rate of strain:	2% per minut				
Cell Pressure (kPa): At failure:	664	ļ			
External axia	al etrain		11.65	(9/.)	
Peak deviate			262	(%) (kPa)	
	hear strength		131	(kPa) (kPa)	
300 - 250 - 200 -					
0.00	5.00	10.00	15.00	20.00	25.00
		External axi	al strain (%)		
		External axi	al strain (%)		
Checked and approved nitials: <i>CSR</i> Date: 28/09/2017	Project Number: Project Name:	RGI/1166 THE HOXTON, HO M516			RGI

 $Test\ carried\ out\ by\ Russell\ Geotechnical\ Innovations\ Limited,\ Alpha\ 319,\ Chobham\ Business\ Centre,\ Chobham,\ Surrey,GU24\ 8JB$

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U17 1660m QUTXL.xlsx]Sheet

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) Borehole Number: 1A Description: Sample Number: U17 Firm/stiff fissured dark greyish-brown silty CLAY 16.60-16.85 with organic black spots Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.7 mm Initial Diameter: 96.7 mm Elevation **Failure Sketch**

RGI/1166

THE HOXTON, HOLBORN

M516

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Project Number:

Project Name:

Authorised Signatory: C.S.Russell (Director)

CSR

28/09/2017

Checked and approved

Initials:

Date:

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U17 1660m QUTXL.xlsx]Sheet1

RGI

Russell Geotechnical Innovations

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) (UU) Borehole Number: 1A Description (visual): Sample Number: U18 Firm/stiff fissured dark greyish-brown silty CLAY Sample Depth (m): 17.50-17.76 with organic black spots SPECIMEN DETAILS Preparation: Undisturbed Initial Values Height: 201.8 mm Diameter: 99.0 mm Moisture content : 28.19 % Bulk density: 1.98 Mg/m³ Dry density: 1.55 Mg/m³ Particle density (assumed) 2.72 Mg/m³ Initial voids ratio (e_o) 0.7578 Rate of strain: 2% per minute Cell Pressure (kPa): 700 At failure: External axial strain 14.62 (%) Peak deviator stress 221 (kPa) Undrained shear strength 110 (kPa) 250 Principal stress difference (kPa) 200 150 100 50 0 0.00 5.00 10.00 25.00 15.00 20.00 External axial strain (%) **RGI/1166** Checked and approved Project Number: RGI THE HOXTON, HOLBORN Initials: CSRProject Name: Date: 28/09/2017 M516

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U18 1750m QUTXL.xlsx]Sheet

Russell Geotechnical Innovations

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) Borehole Number: 1A Description: Sample Number: U18 Firm/stiff fissured dark greyish-brown silty CLAY 17.50-17.76 with organic black spots Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.8 mm Initial Diameter: 99.0 mm Elevation **Failure Sketch RGI/1166** RGIChecked and approved Project Number: THE HOXTON, HOLBORN Initials: CSRProject Name: M516 28/09/2017 Date: Russell Geotechnical Innovations

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U18 1750m QUTXL.xlsx]Sheet1

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) (UU) Borehole Number: 1A Description (visual): Sample Number: U22 Stiff fissured dark brown silty CLAY Sample Depth (m): 23.50-23.80 with organic black spots SPECIMEN DETAILS Preparation: Undisturbed Initial Values Height: 201.8 mm Diameter: 97.5 mm Moisture content : 25.94 % Bulk density: 2.05 Mg/m³ Dry density: 1.63 Mg/m³ Particle density (assumed) 2.72 Mg/m³ Initial voids ratio (e_o) 0.6736 Rate of strain: 2% per minute Cell Pressure (kPa): 940 At failure: External axial strain 3.57 (%) Peak deviator stress 305 (kPa) Undrained shear strength 153 (kPa) 350 300 Principal stress difference (kPa) 250 200 150 100 50 0 0.00 2.00 4.00 6.00 10.00 16.00 8.00 12.00 14.00 External axial strain (%)

Checked and approved Initials: *CSR*Date: 28/09/2017

Project Number: RGI/1166
Project Name: THE HOXTON, HOLBORN

M516

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U22 2350m QUTXL.xlsx]Sheet

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) Borehole Number: 1A Description: Sample Number: U22 Stiff fissured dark brown silty CLAY 23.50-23.80 with organic black spots Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.8 mm Initial Diameter: 97.5 mm Elevation **Failure Sketch RGI/1166** RGIChecked and approved Project Number: THE HOXTON, HOLBORN Initials: CSRProject Name: 28/09/2017 M516 Date:

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U22 2350m QUTXL.xlsx]Sheet1

Russell Geotechnical Innovations

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) (UU) Borehole Number: 1A Description (visual): Sample Number: U24 Stiff fissured dark grey silty CLAY Sample Depth (m): 26.10-26.35 with organic black spots SPECIMEN DETAILS Preparation: Undisturbed Initial Values Height: 201.5 mm 100.1 Diameter: mm Moisture content : 23.48 % Bulk density: 2.05 Mg/m³ Dry density: 1.66 Mg/m³ Particle density (assumed) 2.72 Mg/m³ Initial voids ratio (e_o) 0.6349 Rate of strain: 2% per minute Cell Pressure (kPa): 1044 At failure: External axial strain 4.64 (%) Peak deviator stress 281 (kPa) Undrained shear strength 141 (kPa) 300 250 Principal stress difference (kPa) 200 150 100 50 0 0.00 2.00 4.00 6.00 10.00 16.00 8.00 12.00 14.00 External axial strain (%) **RGI/1166** Checked and approved Project Number: RGI THE HOXTON, HOLBORN Initials: CSRProject Name: Date: 28/09/2017 M516

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U24 2610m QUTXL.xlsx]Sheet1

Russell Geotechnical Innovations

Unonsolidated Undrained Triaxial Test (In accordance with BS1377:Part 7:1990) Borehole Number: 1A Description: Sample Number: U24 Stiff fissured dark grey silty CLAY 26.10-26.35 with organic black spots Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.5 mm Initial Diameter: 100.1 mm Elevation **Failure Sketch RGI/1166** RGIChecked and approved Project Number: THE HOXTON, HOLBORN Initials: CSRProject Name: M516 28/09/2017 Date: Russell Geotechnical Innovations

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A U24 2610m QUTXL.xlsx]Sheet1

Laboratory Report Front Sheet

Site name Job number

The Hoxton, Holborn M516

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Client details:

Reference: M516

Name: Dunelm North West
Address: Dunelm Geotechnical &

Environmental Limited 1 The Old Shippon Sandlow Green Farm Holmes Chapel Road Holmes Chapel CW4 8AS

Telephone: 01477 668142

Email: sfishburne@dunelm.co.uk

FAO: S Fishburne

Date commenced: 25/09/2017

Date reported: 06/10/2017

Observations and interpretations are outside of the UKAS Accreditiation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Samples will be held at the laboratory for a period of 4 weeks after the report date. After the 06-11-2017 all samples will be disposed of. Should further testing be required then the office should be informed before the above date.

Signature:		Approved Signitories:		
	✓	K Watkin (Lab Manager)		
KWalkin		U Mazhar (Assistant Lab Manager)		
		I Nicholson (Technical Manager)		
	İ			

Summary of Classification Tests

Site name Job number

The Hoxton, Holborn M516

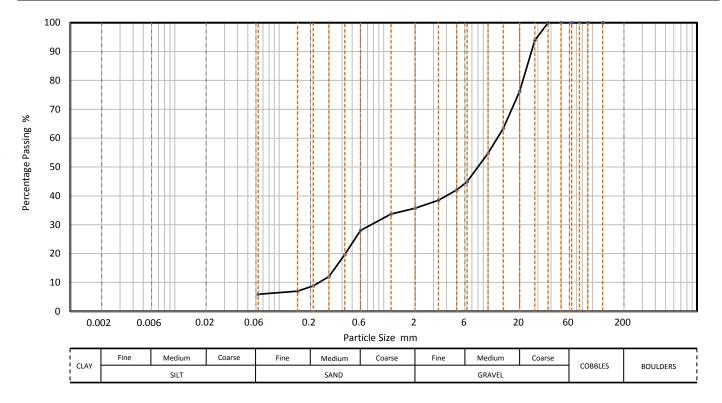
Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

	De	pth			Oven		_	-			, ID	**	Plasticity	Daniel de la constitució
Hole	Тор	Base	Туре	w	temp.	wa	Pa	Pr	wL	wP	IP	IL	class	Preparation method
	m	m		%	ос	%	%	%	%	%	%			
1A	35.20	35.40	U	20	105		100	0	41-f	23	18		CI	Tested after >425μm removed by hand
BH1A	6.00	6.45	D	28	105									
BH1A	9.00	9.45	D	34	105		87	13	69-s	27	42		СН	Tested after >425μm removed by hand
BH1A	15.00	15.45	D	26	105		100	0	70-s	24	46		CV	Tested in natural condition
BH1A	18.00	18.45	D	26	105		100	0	72-s	26	46		CV	Tested in natural condition
BH1A	24.00	24.45	D	27	105		100	0	62-s	23	39		СН	Tested after >425μm removed by hand
BH1A	27.00	27.45	D	17	105		100	0	58-s	20	38		СН	Tested in natural condition
BH1A	30.00	30.36	D	20	105		100	0	49-s	22	27		CI	Tested in natural condition
DCS2A	1.50		D	24	105									
DCS2A	2.70		D	23	105		93	7	46-s	20	26		CI	Tested after >425μm removed by hand
DCS2A	3.20	3.65	D	8.8	105									

All tests found in Solmek UKAS Schedule of Accreditation are tested to standard unless otherwise indicated

Key	Description		Category	BS Test Code
W	Moisture content			BS 1377:1990 Part 2 Clause 3.2
wa	Equivalent moistur sieve	re content passing 425μm		BS 1377:1990 Part 2 Clause 3.2
wL	Liquid limit	Single point	-S	BS 1377:1990 Part 2 Clause 4.4
WL	Liquia illilit	Four point	-f	BS 1377:1990 Part 2 Clause 4.3
wP	Plastic limit			BS 1377:1990 Part 2 Clause 5.2
Pa	Percentage passing 425um sieve			
Pr	Percentage retained 425um sieve			
IP	Plasticity index			BS 1377:1990 Part 2 Clause 5.4
IL	Liquidity index			BS 1377:1990 Part 2 Clause 5.4
	Suffix indicating te Accredited"	st is "Not UKAS	*	

KW
03/10/2017 13:24


Site name Job number

The Hoxton, Holborn M516

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Hole		BH1	Lab sample ID	SLMK2017092511
Depth (Top)	m	0.50	Test Method	BS 1377 - 2 : 1990 Clause 9.2
Depth (Base)	m	0.6	Soil Description	Brown, slightly clayey, slightly sandy
Sample type		В		GRAVEL

Sie	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	94		
20	76		
14	63		
10	55		
6.3	45		
5	42		
3.35	39		
2	36		
1.18	34		
0.6	28		
0.425	20		
0.3	12		
0.212	9]	
0.15	7	1	
0.063	6	1	

Dry Mass of sample, g	1257

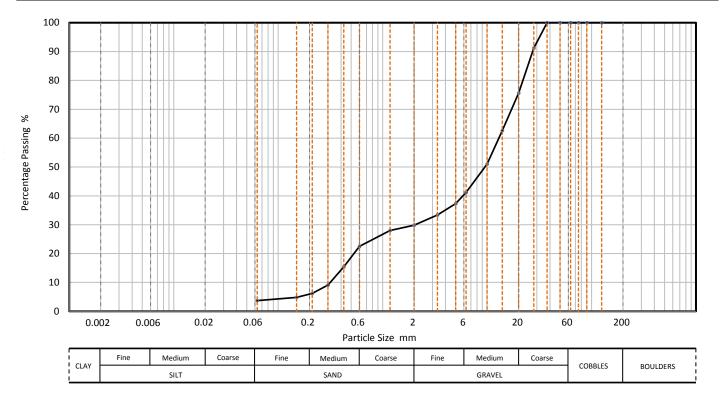
Sample Proportions	% dry mass		
Very coarse	0.0		
Gravel	64.3		
Sand	29.8		
Fines < 0.063mm	6.0		

Grading Analysis		
D100	mm	
D60	mm	12.3
D30	mm	0.763
D10	mm	0.242
Uniformity Coefficient	51	
Curvature Coefficient		0.2

Remarks	
Preparation and testing in accordance with test method unless noted below	

Accreditation status

Approved by	KW
Approval date	27/09/2017 15:38


Site name Job number

The Hoxton, Holborn M516

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Hole	BH1A	Lab sample ID	SLMK2017092512
Depth (Top)	0.25	Test Method	BS 1377 - 2 : 1990 Clause 9.2
Depth (Base)	0.35	Soil Description	Brown, slightly clayey, slightly sandy
Sample type	В		GRAVEL

Sie	ving	Sedimentation			
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				
90	100				
75	100				
63	100				
50	100				
37.5	100				
28	91				
20	76				
14	63				
10	51				
6.3	41				
5	37				
3.35	33				
2	30				
1.18	28				
0.6	23				
0.425	15				
0.3	9				
0.212	6				
0.15	5				
0.063	4				

Dry Mass of sample, g	2620

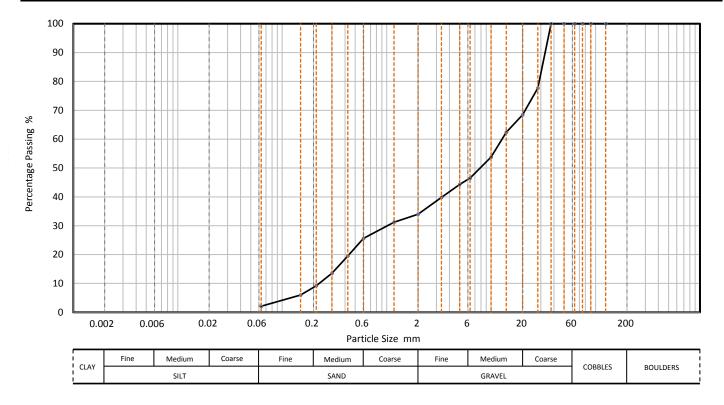
Sample Proportions	% dry mass
Very coarse	0.0
Gravel	70.2
Sand	26.2
Fines < 0.063mm	4.0

Grading Analysis		
D100	mm	
D60	mm	13
D30	mm	2.05
D10	mm	0.315
Uniformity Coefficient		41
Curvature Coefficient		1

Remarks	
Preparation and testing in accordance with test method unless noted below	

Accreditation status

Approved by	KW
Approval date	27/09/2017 16:00


Site name Job number

The Hoxton, Holborn M516

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Hole		BH1A	Lab sample ID	SLMK2017092513
Depth (Top)	m	1.00	Test Method	BS 1377 - 2 : 1990 Clause 9.2
Depth (Base)	m	1	Soil Description	Brown, slightly sandy GRAVEL
Sample type		В		

Siev	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	78		
20	68		
14	62		
10	54		
6.3	47		
5	44		
3.35	40		
2	34		
1.18	31		
0.6	26		
0.425	20		
0.3	14		_
0.212	9		
0.15	6		
0.063	2		

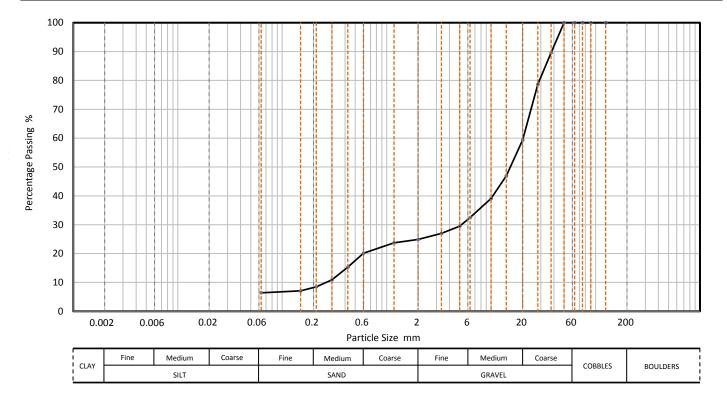
Sample Proportions	% dry mass
Very coarse	0.0
Gravel	66.0
Sand	31.9
Fines < 0.063mm	2.0

Grading Analysis		
D100	mm	
D60	mm	12.8
D30	mm	1.02
D10	mm	0.226
Uniformity Coefficient		56
Curvature Coefficient		0.36

Remarks	
Preparation and testing in accordance with test method unless noted below	

Accreditation status

Approved by	KW
Approval date	27/09/2017 15:14


Site name Job number

The Hoxton, Holborn M516

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Hole		DCS1A	Lab sample ID	SLMK2017092514
Depth (Top)	m	0.50	Test Method	BS 1377 - 2 : 1990 Clause 9.2
Depth (Base)	m	0.7	Soil Description	Brown, slightly clayey, sandy GRAVEL
Sample type		В		

Sieving		Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	90		
28	79		
20	59		
14	47		
10	39		
6.3	33		
5	30		
3.35	27		
2	25		
1.18	24		
0.6	20		
0.425	15		
0.3	11		
0.212	9]	
0.15	7	1	
0.063	6	1	

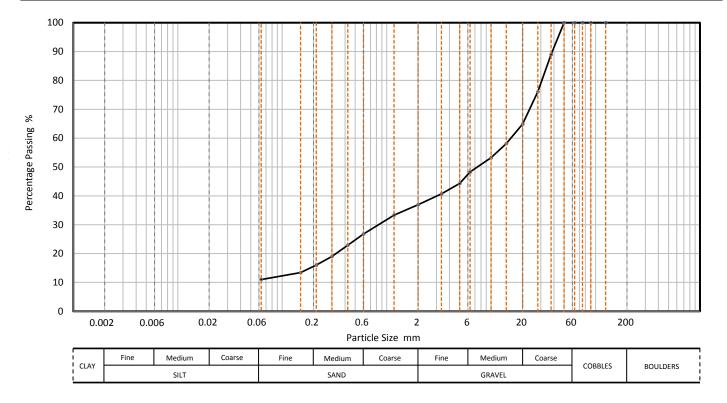
Sample Proportions	% dry mass
Very coarse	0.0
Gravel	75.1
Sand	18.5
Fines <0.063mm	6.0

Grading Analysis		
D100	mm	
D60	mm	20.3
D30	mm	5.19
D10	mm	0.265
Uniformity Coefficient		77
Curvature Coefficient		5

Remarks	
reparation and testing in accordance with test method unless noted below	

Accreditation status

Approved by	KW	
Approval date	27/09/2017 15:23	


Site name Job number

The Hoxton, Holborn M516

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Hole		DCS2B	Lab sample ID	SLMK2017092515
Depth (Top)	m	0.50	Test Method	BS 1377 - 2 : 1990 Clause 9.2
Depth (Base)	m	0.6	Soil Description	Brown, slightly clayey, sandy GRAVEL
Sample type		В		

Siev	ving	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	89		
28	76		
20	65		
14	58		
10	53		
6.3	48		
5	44		
3.35	41		
2	37		
1.18	33		
0.6	27		
0.425	23		
0.3	19		
0.212	16		
0.15	13		
0.063	11		

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	63.1
Sand	25.9
Fines < 0.063mm	11.0

Grading Analysis		
D100	mm	
D60	mm	15.5
D30	mm	0.838
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks	
Preparation and testing in accordance with test method unless noted below	

Accreditation status

Approved by	KW				
Approval date	27/09/2017 15:25				

ANALYTICAL TEST REPORT

Contract no: 67728

Contract name: The Hoxton, Holborn

Client reference: M516

Clients name: Solmek

Clients address: 12 Yarm Road

Stockton-on-Tees

TS18 3NA

Samples received: 06 October 2017

Analysis started: 06 October 2017

Analysis completed 12 October 2017

Report issued: 13 October 2017

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

Dave Bowerbank

Customer Services Co-ordinator

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are inclusive of stones.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
67728-1	DCS2A	3.20-3.65	Sandy Clay with Gravel	-	-	7.7

Lab number			67728-1
Sample id			DCS2A
Depth (m)			3.20-3.65
Date sampled			24/08/2017
Test	Method	Units	
Total Organic Carbon (TOC)	CE072 ^M	% w/w C	0.60
Estimate of OMC (calculated from TOC)	CE072 ^M	% w/w	1.03

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE072	Total Organic Carbon (TOC)	Removal of IC by acidification, Carbon Analyser	Dry	М	0.1	% w/w C
CE072	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry	М	0.1	% w/w

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

N No (not deviating sample)
Y Yes (deviating sample)
NSD Sampling date not provided

NST Sampling time not provided (waters only)

EHT Sample exceeded holding time(s)

IC Sample not received in appropriate containers HP Headspace present in sample container

NCF Sample not chemically fixed (where appropriate)

IT Sample not cooled OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
67728-1	DCS2A	3.20-3.65	N	

ANALYTICAL TEST REPORT

Contract no: 67913

Contract name: Hoxton

Client reference: M516

Clients name: Solmek

Clients address: 12 Yarm Road

Stockton-On-Tees

TS18 3NA

Samples received: 17 October 2017

Analysis started: 17 October 2017

Analysis completed 23 October 2017

Report issued: 23 October 2017

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

This report shall not be reproduced except in full, without prior written approval.

Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

James Spittle

Customer Services Team Leader

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30° C in a drying cabinet. Analytical results are inclusive of stones.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
67913-1	DCS20	1.50	Sandy Clay with Gravel, Roots & Brick	-	-	18.7

Lab number	67913-1		
Sample id	DCS20		
Depth (m)	1.50		
Date sampled	16/10/2017		
Test	Method	Units	
Total Organic Carbon (TOC)	CE072 ^M	% w/w C	0.90
Estimate of OMC (calculated from TOC)	CE072 ^M	% w/w	1.56

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE072	Hotal Organic Carbon (TOC)	Removal of IC by acidification, Carbon Analyser	Dry	М	0.1	% w/w C
CE072	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry	М	0.1	% w/w

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

N No (not deviating sample)Y Yes (deviating sample)NSD Sampling date not provided

NST Sampling time not provided (waters only)

EHT Sample exceeded holding time(s)

IC Sample not received in appropriate containers HP Headspace present in sample container

NCF Sample not chemically fixed (where appropriate)

IT Sample not cooled OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
67913-1	DCS20	1.50	N	

ANALYTICAL TEST REPORT

Contract no: 67460

Contract name: The Hoxton, Holborn

Client reference: M516

Clients name: Dunelm Geotechnical & Environmental

Clients address: Foundation House

St Johns Road, Meadowfield

Durham DH7 8TZ

Samples received: 25 September 2017

Analysis started: 25 September 2017

Analysis completed 28 September 2017

Report issued: 28 September 2017

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

This report shall not be reproduced except in full, without prior written approval.

Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

James Spittle

Customer Services Team Leader

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30° C in a drying cabinet. Analytical results are inclusive of stones.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
67460-1	BH1A	0.50	Sandy Clay with Gravel	-	-	3.3
67460-2	BH1A	1.00	Sandy Clay with Gravel	-	-	11.1
67460-3	BH1A	6.00-6.45	Clay with Gravel	-	-	7.8
67460-4	BH1A	9.00-9.45	Clay	-	-	20.0
67460-5	BH1A	15.00-15.45	Clay	-	-	15.7
67460-6	BH1A	18.00-18.45	Clay	-	-	17.9
67460-7	BH1A	24.00-24.45	Sandy Clay	-	-	17.0
67460-8	BH1A	30.00-30.45	Sandy Clay	-	-	10.4
67460-9	BH1A	36.00-36.45	Clay	-	-	14.6
67460-10	BH1A	39.00-39.45	Clay with Gravel	-	-	9.5
67460-11	DCS1	0.25	Sandy Clay with Gravel	-	-	8.7
67460-12	DCS1A	0.50	Sandy Clay with Gravel	-	-	7.5
67460-13	DCS1C	5.20-5.65	Clay	-	-	19.1
67460-14	DCS2A	0.50	Sandy Clay with Gravel	-	-	16.9
67460-15	DCS2B	1.00	Sandy Clay with Gravel	-	-	18.4

Lab number			67460-1	67460-2	67460-3	67460-4	67460-5	67460-6
Sample id			BH1A	BH1A	BH1A	BH1A	BH1A	BH1A
Depth (m)			0.50	1.00	6.00-6.45	9.00-9.45	15.00-15.45	18.00-18.45
Date sampled			19/09/2017	19/09/2017	19/09/2017	19/09/2017	19/09/2017	19/09/2017
Test	Method	Units						
рН	CE004 ^M	units	8.8	8.8	8.1	8.0	7.0	8.4
Sulphate (2:1 water soluble)	CE061 ^M	mg/I SO ₄	19	84	156	298	684	490

Lab number			67460-7	67460-8	67460-9	67460-10	67460-11	67460-12
Sample id			BH1A	BH1A	BH1A	BH1A	DCS1	DCS1A
Depth (m)			24.00-24.45	30.00-30.45	36.00-36.45	39.00-39.45	0.25	0.50
Date sampled			19/09/2017	19/09/2017	19/09/2017	19/09/2017	19/09/2017	19/09/2017
Test	Method	Units						
рН	CE004 ^M	units	7.7	9.6	9.8	9.2	8.8	8.1
Sulphate (2:1 water soluble)	CE061 ^M	mg/I SO ₄	405	41	23	22	20	16

Lab number	67460-13	67460-14	67460-15		
Sample id	DCS1C	DCS2A	DCS2B		
Depth (m)	5.20-5.65	0.50	1.00		
Date sampled			19/09/2017	19/09/2017	19/09/2017
Test	Method	Units			
рН	CE004 ^M	units	8.0	8.1	8.2
Sulphate (2:1 water soluble)	CE061 ^M	mg/I SO ₄	381	1720	1607

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE004	рН	Based on BS 1377, pH Meter	Wet	М	-	units
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	М	10	mg/I SO ₄

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

N No (not deviating sample)Y Yes (deviating sample)NSD Sampling date not provided

NST Sampling time not provided (waters only)

EHT Sample exceeded holding time(s)

IC Sample not received in appropriate containers HP Headspace present in sample container

NCF Sample not chemically fixed (where appropriate)

IT Sample not cooled OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
67460-1	BH1A	0.50	N	
67460-2	BH1A	1.00	N	
67460-3	BH1A	6.00-6.45	N	
67460-4	BH1A	9.00-9.45	N	
67460-5	BH1A	15.00-15.45	N	
67460-6	BH1A	18.00-18.45	N	
67460-7	BH1A	24.00-24.45	N	
67460-8	BH1A	30.00-30.45	N	
67460-9	BH1A	36.00-36.45	N	
67460-10	BH1A	39.00-39.45	N	
67460-11	DCS1	0.25	N	
67460-12	DCS1A	0.50	N	
67460-13	DCS1C	5.20-5.65	N	
67460-14	DCS2A	0.50	N	
67460-15	DCS2B	1.00	N	

Certificate Number 17-11223

27-Sep-17

Client Dunelm Geotechnical & Environmental Ltd

1 The Old Shippon Sandlow Green Farm Holmes Chapel Road Holmes Chapel CW4 8AS

Our Reference 17-11223

Client Reference M516

Order No (not supplied)

Contract Title The Hoxton, Holborn

Description 5 Soil samples.

Date Received 25-Sep-17

Date Started 25-Sep-17

Date Completed 27-Sep-17

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Soil Samples

Our Ref 17-11223
Client Ref M516
Contract Title The Hoxton, Holborn

Lab No	1234270	1234271	1234272	1234273	1234274
Sample ID	DCS2B	DCS1C	DCS2A	DCS3	DCS3
Depth	2.00	1.00	2.70	0.50	2.00
Other ID	10				
Sample Type	D	ES	ES	ES	ES
Sampling Date	06/09/17	30/08/17	23/08/17	23/08/17	23/08/17
Sampling Time	n/s	n/s	n/s	n/s	n/s

rest	ivietnoa	LOD	Units					
Inorganics								
рН	DETSC 2008#			8.7	10.5	7.7	9.8	10.5
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	1300	340	240	85	640
Sulphur as S, Total	DETSC 2320	0.01	%			0.02		
Sulphate as SO4, Total	DETSC 2321#	0.01	%			0.07		

Information in Support of the Analytical Results

Our Ref 17-11223 Client Ref M516

Contract The Hoxton, Holborn

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1234270	DCS2B 2.00 SOIL	06/09/17	GJ 250ml x2, GJ 60ml x2, PT 1L	pH + Conductivity (7 days)	
1234271	DCS1C 1.00 SOIL	30/08/17	GJ 500ml x2, GJ 60ml x2, PT 500ml	pH + Conductivity (7 days)	
1234272	DCS2A 2.70 SOIL	23/08/17	GJ 250ml x2, GJ 60ml x2, PT 1L	pH + Conductivity (7 days)	
1234273	DCS3 0.50 SOIL	23/08/17	GJ 250ml x2, GJ 60ml x2, PT 1L	pH + Conductivity (7 days)	
1234274	DCS3 2.00 SOIL	23/08/17	GJ 250ml x2, GJ 60ml x2, PT 1L	pH + Conductivity (7 days)	

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Certificate Number 17-11547

02-Oct-17

Client Dunelm Geotechnical & Environmental Ltd

1 The Old Shippon Sandlow Green Farm Holmes Chapel Road Holmes Chapel CW4 8AS

Our Reference 17-11547

Client Reference (not supplied)

Order No (not supplied)

Contract Title DGE Hoxton

Description 3 Water samples.

Date Received 28-Sep-17

Date Started 28-Sep-17

Date Completed 02-Oct-17

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Water Samples

Our Ref 17-11547 Client Ref Contract Title DGE Hoxton

Lab No	1235925	1235926	1235927
Sample ID	DCS1	DCS2	BH1-U
Depth	4.00	4.00	9.00
Other ID			
Sample Type	WATER	WATER	WATER
Sampling Date	25/09/17	25/09/17	25/09/17
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units			
Inorganics		•				
рН	DETSC 2008			7.6	7.4	7.6
Sulphate as SO4	DETSC 2055	0.1	mg/l	370	710	540

Key: n/s -not supplied. Page 2 of 3

Information in Support of the Analytical Results

Our Ref 17-11547

Client Ref

Contract DGE Hoxton

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID		Containers Received	tests	tests
1235925	DCS1 4.00 WATER	25/09/17	GB 1L x2, PB 1L x2		
1235926	DCS2 4.00 WATER	25/09/17	GB 1L x2, PB 1L x2		
1235927	BH1-U 9.00 WATER	25/09/17	GB 1L x2, PB 1L x2		

Key: G-Glass P-Plastic B-Bottle

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Certificate Number 17-13030

20-Oct-17

Client Dunelm Geotechnical & Environmental Ltd

Foundation House St. John's Road Meadowfield Durham DH7 8TZ

Our Reference 17-13030

Client Reference (not supplied)

Order No (not supplied)

Contract Title HOXTON

Description 3 Water samples.

Date Received 16-Oct-17

Date Started 16-Oct-17

Date Completed 20-Oct-17

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Water Samples

Our Ref 17-13030 Client Ref Contract Title HOXTON

_			
Lab No	1244056	1244057	1244058
Sample ID	BH1-U	DSC1	DSC2
Depth			
Other ID			
Sample Type	WATER	WATER	WATER
Sampling Date	11/10/17	11/10/17	11/10/17
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units			
Inorganics						
рН	DETSC 2008			7.2	7.5	7.2
Sulphate as SO4	DETSC 2055	0.1	mg/l	430	330	490

Key: n/s -not supplied. Page 2 of 3

Information in Support of the Analytical Results

Our Ref 17-13030

Client Ref

Contract HOXTON

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1244056	BH1-U WATER	11/10/17	GB 1L, GV, PB 1L		
1244057	DSC1 WATER	11/10/17	GB 1L, GV, PB 1L		
1244058	DSC2 WATER	11/10/17	GB 1L, GV, PB 1L		

Key: G-Glass P-Plastic B-Bottle V-Vial

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Stress I	Path Test with	•	lane PWP and I surement	Local Axial/Ra	idial Strain	(CAUC)
Borehole Number:	1A	Description				(CAUC)
Sample Number:	13	11	(visuai) . d dark greyish-b	orown eilty Cl Δ	V with rare	
Sample Number. Sample Depth (m):	9.15-9.40		and some organi	•	T WILLII LAIG	
SPECIMEN DETAILS	3.10-3.40	illie gravera	ilu some organi	ic black spots		
SPECIMEN DE I AILS	Initial Values		Final Values			
Halahtı	201.9		Filial values			
Height : Diameter :		mm				
	99.6	mm o/	20.67	0/		
Moisture content :	31.42	% Ma/m³	28.67	%		
Bulk density:	1.96	Mg/m³				
Dry density :	1.49	Mg/m³				
Particle density (assumed)	2.70	Mg/m³				
Initial voids ratio (e _o)	0.8115					
Test Duration:			13	3 Days		
INITIAL MEASUREMENT (OF EFFECTIVE		"0	"0	<i>!! A</i>	
Stage		#1	#2	#3	#4	
Cell pressure (kPa):		278	371	464	564	
Base pwp (kPa):		206.4	298.4	389.4	488.3	
Mid-plane pwp (kPa):		205.2	297.9	390.3	488.8	
Base B values :		0.77	0.99	0.98	0.99	
Mid-plane B values :	I \ -	1.03	1.00	0.99	0.99	
Initial effective stress (mid-p		::	75.3	kPa		
ISOTROPIC CONSOLIDAT) (kDa).	220		
Final cell pressure (kPa):	564	Finai dack P	Pressure (kPa):	330		
SHEAR STAGE	L			220.8	(LDa)	
Effective stress, po', at start				220.8 0.0026	(kPa)	
$\Delta e/e_o$				0.00∠6		
Ctiffnaaaa						
Stiffnesses:		. 1		100	(MDs)	
	.01% axial stra			123	(MPa)	
	d with respect			556		
	d with respect			1499	(140 -)	
	.1% axial strai			55	(MPa)	
	d with respect			249		
	d with respect			670		
	n-linearity (L) o	during snear		0.447		
At failure:				UNI/A	(2.1)	
Local axial st		#N/A	(%)			
External axia		10.00	(%)			
Dook dovicto		164 82	(kPa)			
Peak deviato	Undrained shear strength				(kPa)	
Undrained sh	Mid plane pore pressure				(kPa)	
Undrained sh Mid plane po	-				(I-D-)	
Undrained sh Mid plane po Base pore pr	essure			415	(kPa)	
Undrained sh Mid plane po	essure fective stress			415 160 324	(kPa) (kPa) (kPa)	

Note: In all notation po' is mean effective stress: $p' = (\sigma a' + (2\sigma r'))/3$

NOTE: on post-test examination sample may have had a pre-existing angular shear plane through sample.

Checked and approved
Initials: *CSR*Date: 27/10/2017

Project Number: RGI/1166

Project Name:

THE HOXTON, HOLBORN M516

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A 13 0915 CAUCSS.xlsx]Sheet1

Stress Path Test with Base/Mid-plane PWP and Local Axial/Radial Strain Measurement Borehole Number: 1A Description: Sample Number: 13 Firm fissured dark greyish-brown silty CLAY with rare 9.15-9.40 fine gravel and some organic black spots Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.9 mm Initial Diameter: 99.6 mm Elevation **Failure Sketch** RGI/1166 RGIChecked and approved Project Number: CSRInitials: Project Name: THE HOXTON, HOLBORN 27/10/2017 Date:

M516

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holbom\[BH1A 13 0915 CAUCSS.xlsx]Sheet

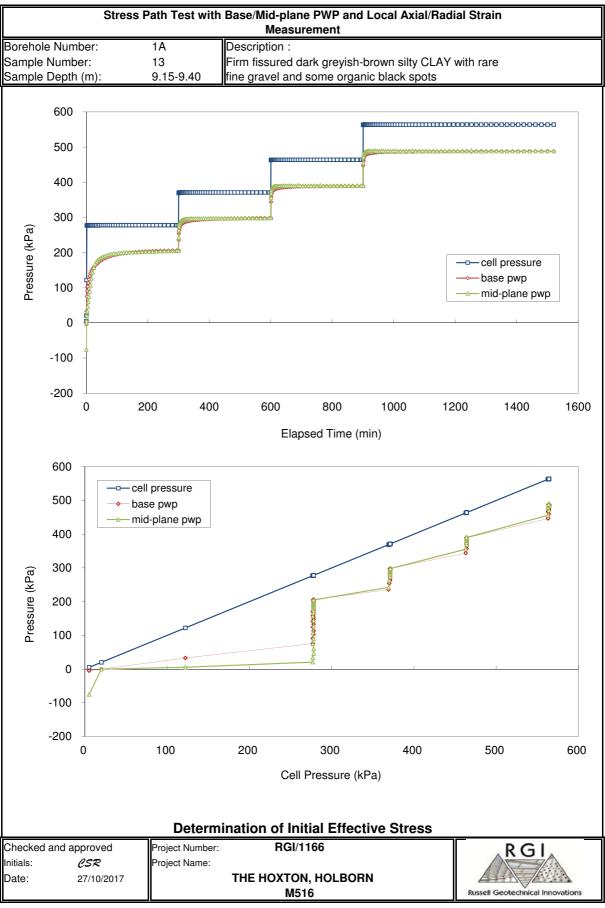
Russell Geotechnical Innovations

Stress Path Test with Base/Mid-plane PWP and Local Axial/Radial Strain							
Measurement							
Borehole Number: 1A	Description:						
Sample Number: 13	Firm fissured dark greyish-brown silty CLAY with rare						
Sample Depth (m): 9.15-9.40	fine gravel and some organic black spots						
		ATH STAGES					
ISOTROPIC CONSOLIDAT	ION/SWELLIN	G					
	Initial Values		Final Values				
Cell Press. (kPa)	564		564				
Mid pwp (kPa)	488.7		330.4				
Base pwp (kPa)	488.6		330.3				
s' (kPa)	75.3		233.6				
t (kPa)	0.0		0.0				
Voids ratio (e)	0.8115		0.7511				
Creep (%/min)			3.99E-06				
ANISOTROPIC STAGE 1	ANISOTROPIC STAGE 1						
	Initial Values		Final Values				
Cell Press. (kPa)	564		576				
Mid pwp (kPa)	330.4		331.3				
Base pwp (kPa)	330.3		330.5				
s' (kPa)	233.6		195.6				
t (kPa)	0.0		-49.1				
Voids ratio (e)	0.7511		0.7507				
Creep (%/min)			#N/A				
ANISOTROPIC STAGE 1	Initial Values	Ì	Cinal Malusa				
Coll Droop (IrDo)	Initial Values		Final Values 579				
Cell Press. (kPa) Mid pwp (kPa)	576 331.3		330.4				
Base pwp (kPa)	330.5		330.4				
s' (kPa)	195.6		206.9				
t (kPa)	-49.1		-41.7				
Voids ratio (e)	0.7507		0.8094				
Creep (%/min)	0.7307		0.00E+00				

Checked and approved Initials: CSRDate: 27/10/2017

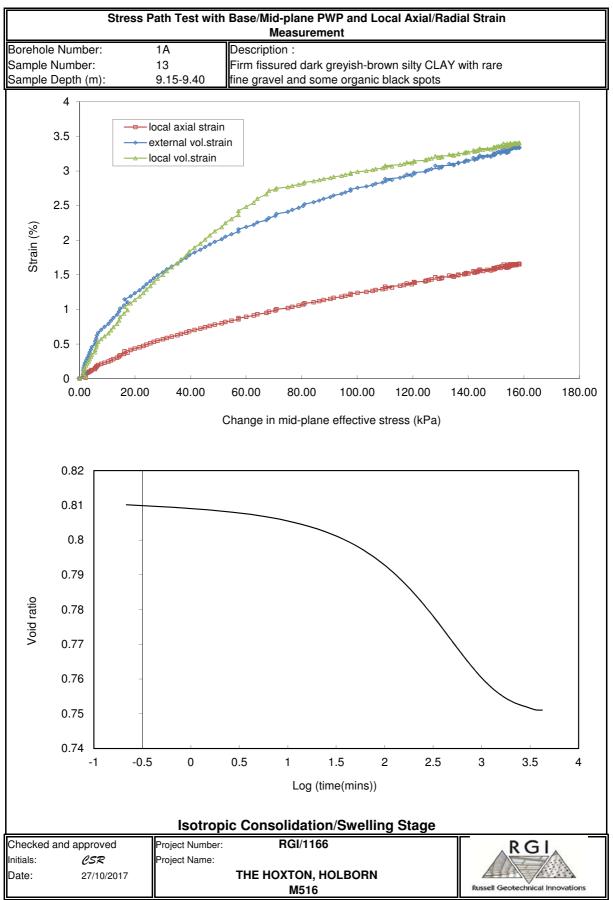
RGI/1166 Project Number:

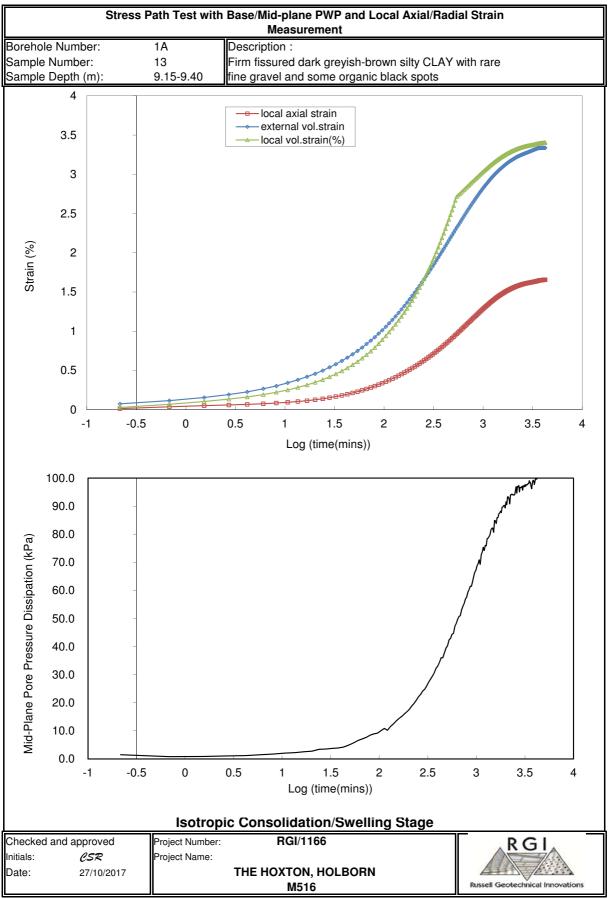
Project Name:


THE HOXTON, HOLBORN M516

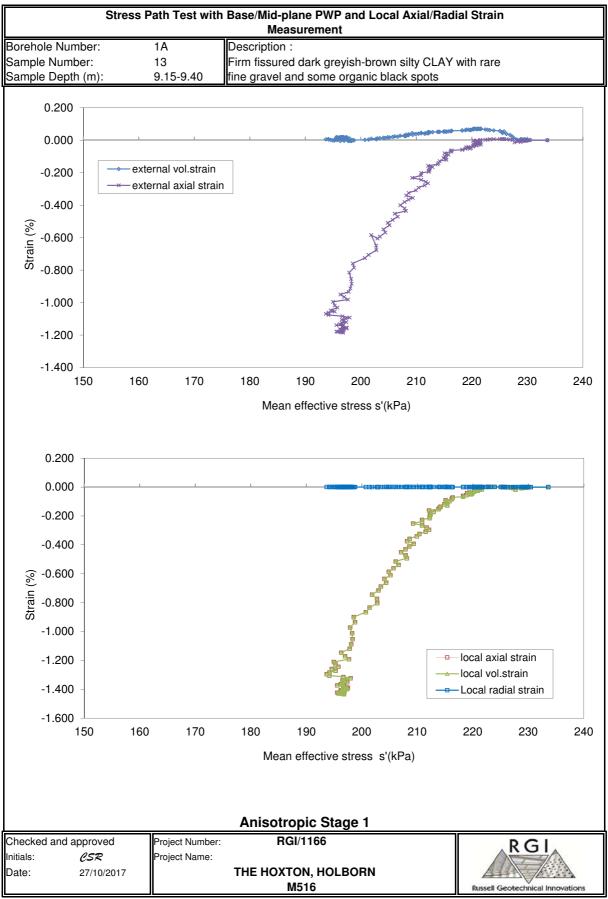
Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

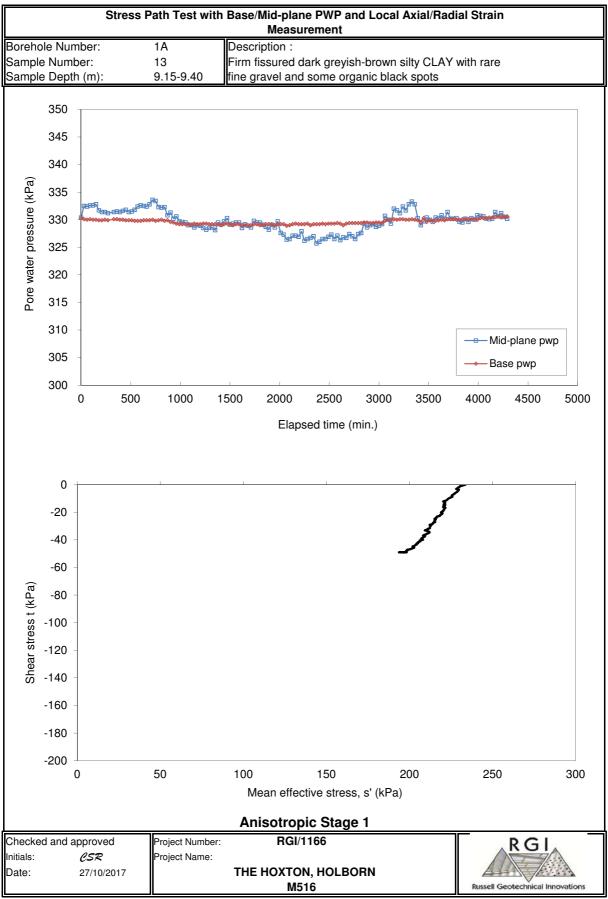
Authorised Signatory: C.S.Russell (Director)

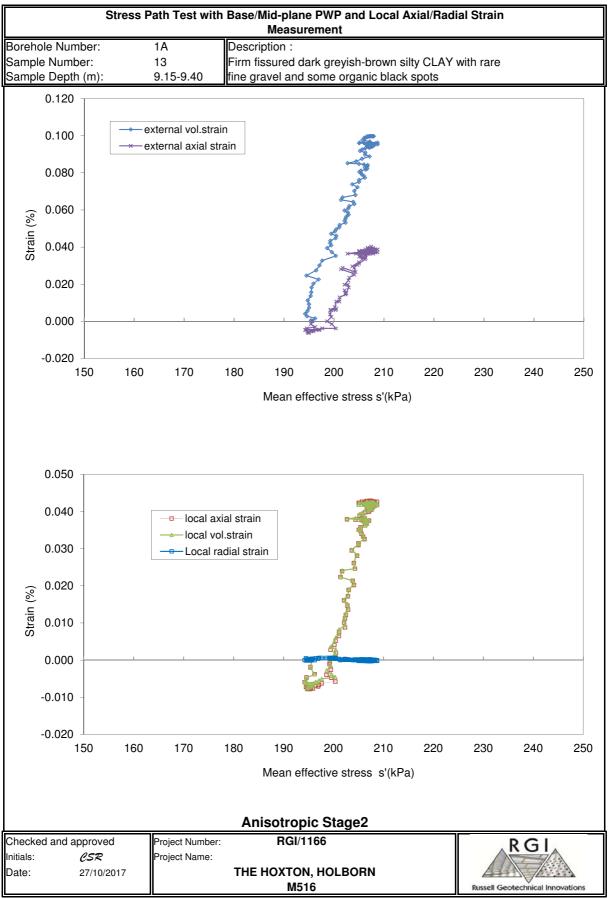

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A 13 0915 CAUCSS.xlsx]\Sheet1

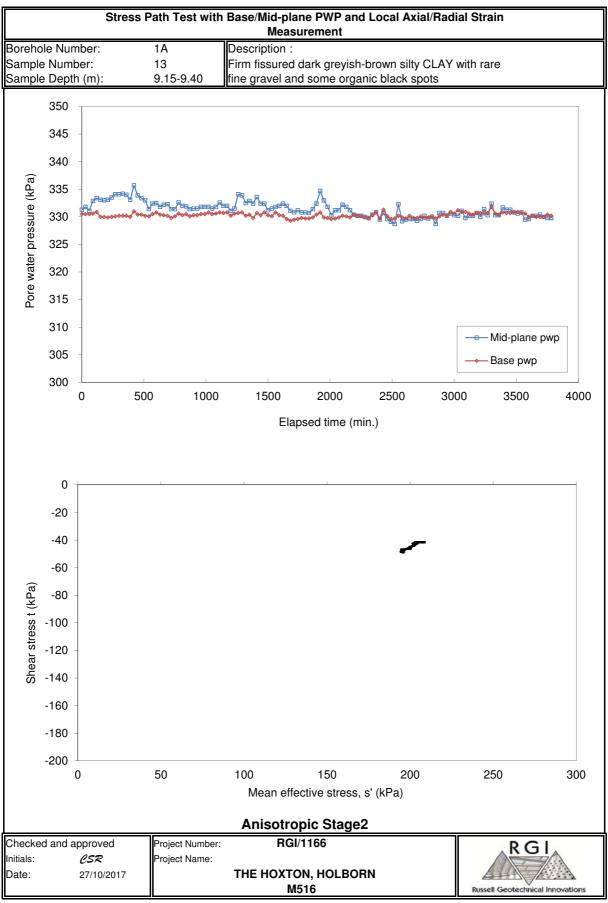

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

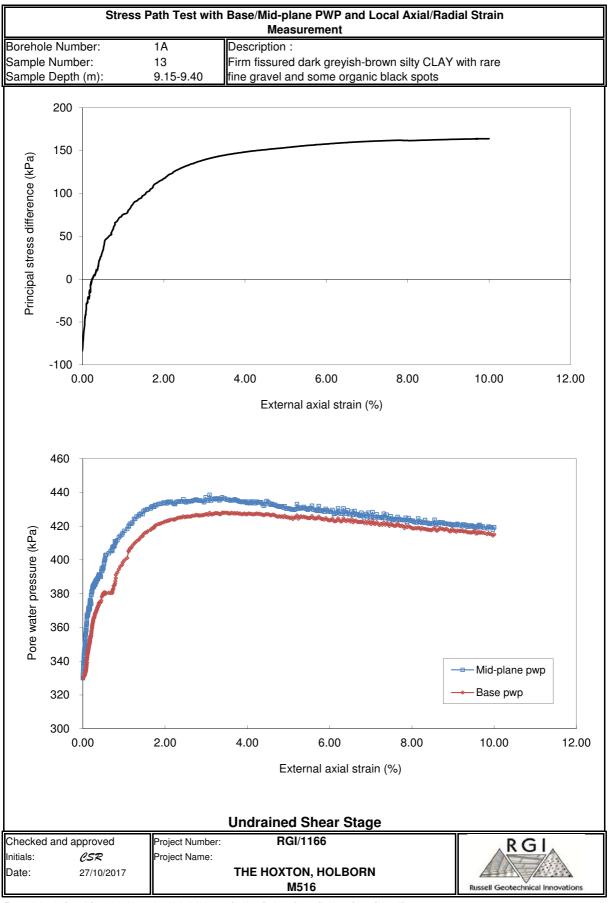
Authorised Signatory: C.S.Russell (Director)

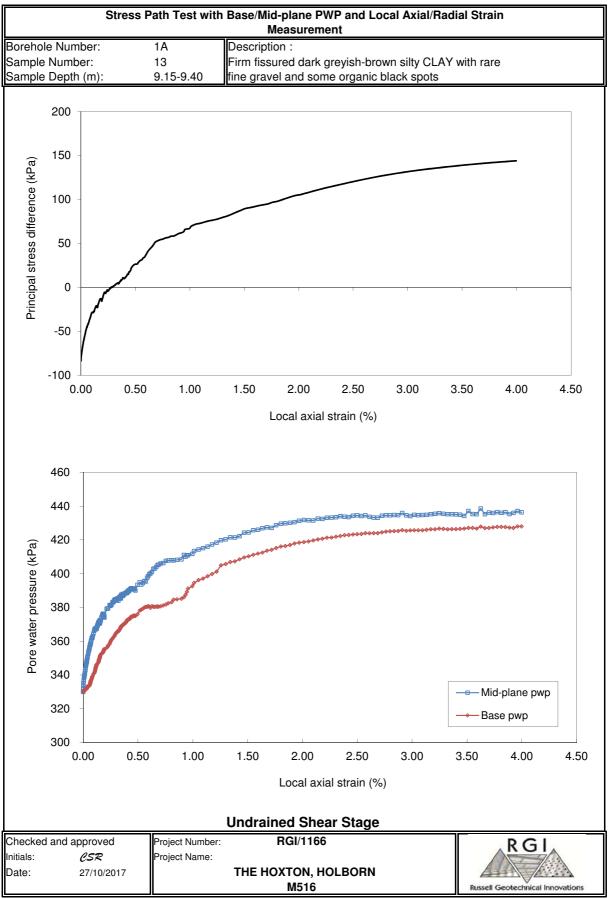

C:\Users\Chris\Documents\A Processing Files\RGI_1166 The Hoxton Holborn\[BH1A 13 0915 CAUCSS:xlsx]Sheet

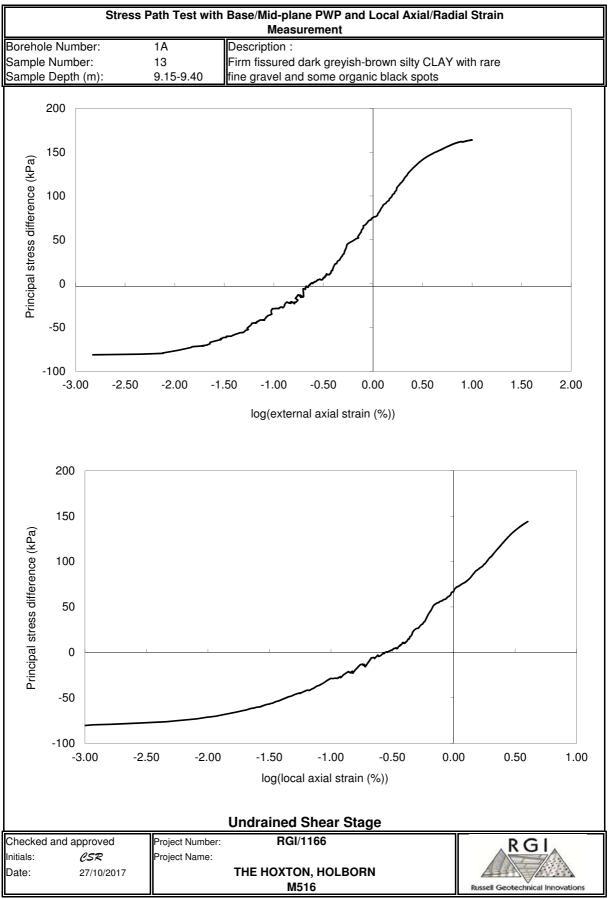

Authorised Signatory: C.S.Russell (Director)

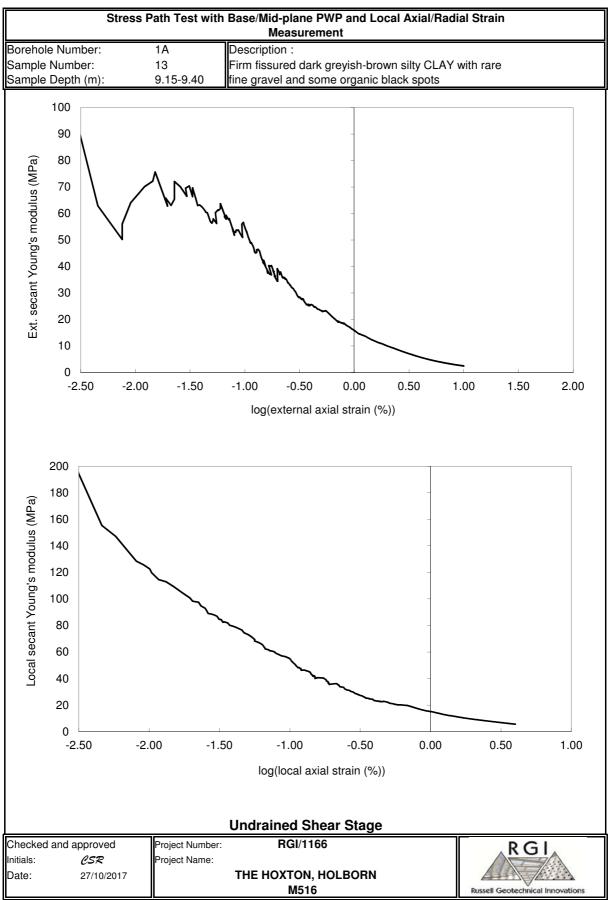

Authorised Signatory: C.S.Russell (Director)

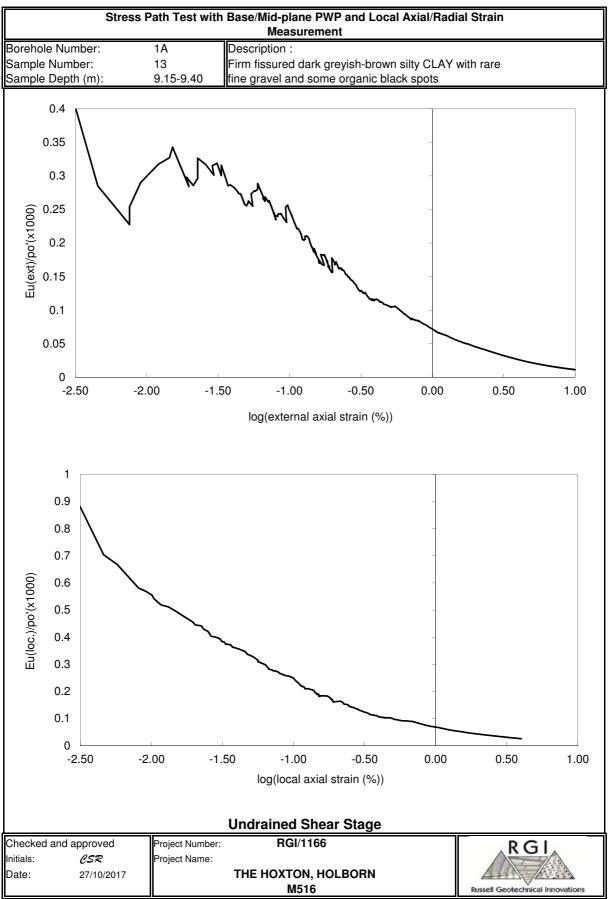

Authorised Signatory: C.S.Russell (Director)

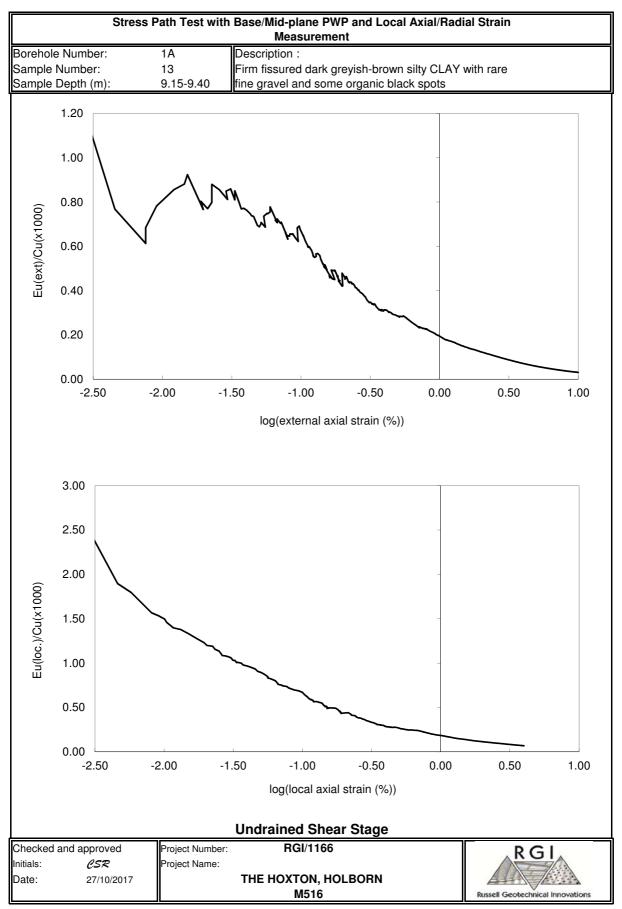

Authorised Signatory: C.S.Russell (Director)

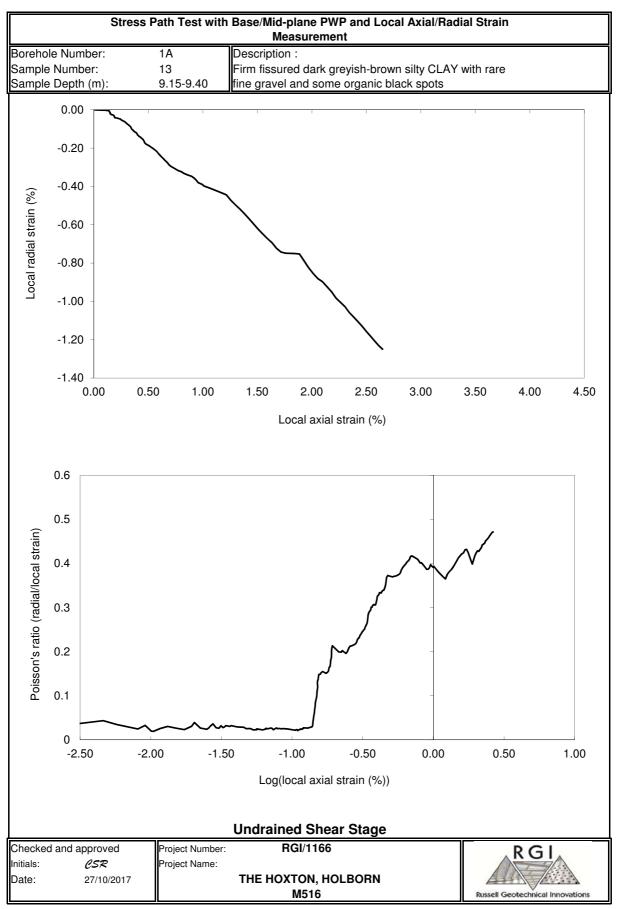

Authorised Signatory: C.S.Russell (Director)

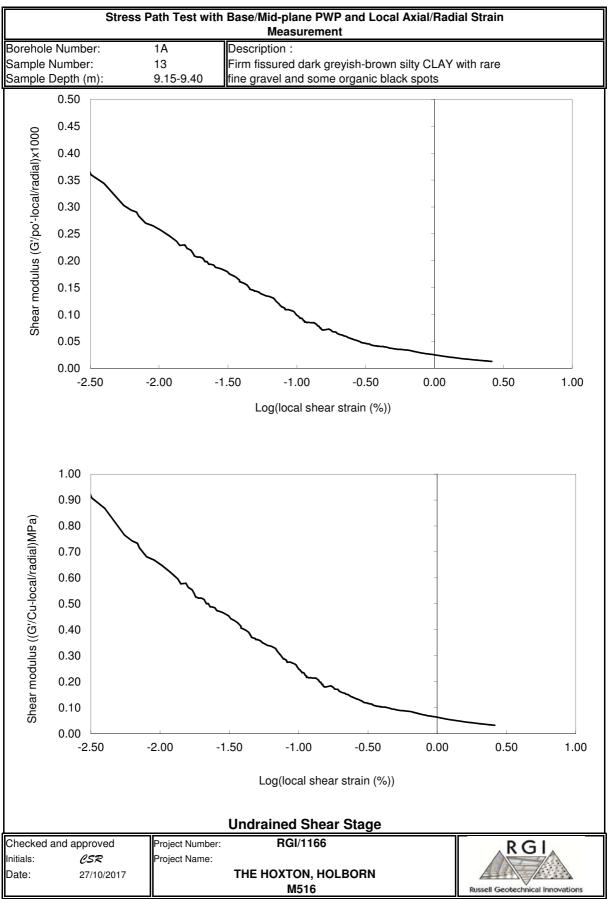

Authorised Signatory: C.S.Russell (Director)

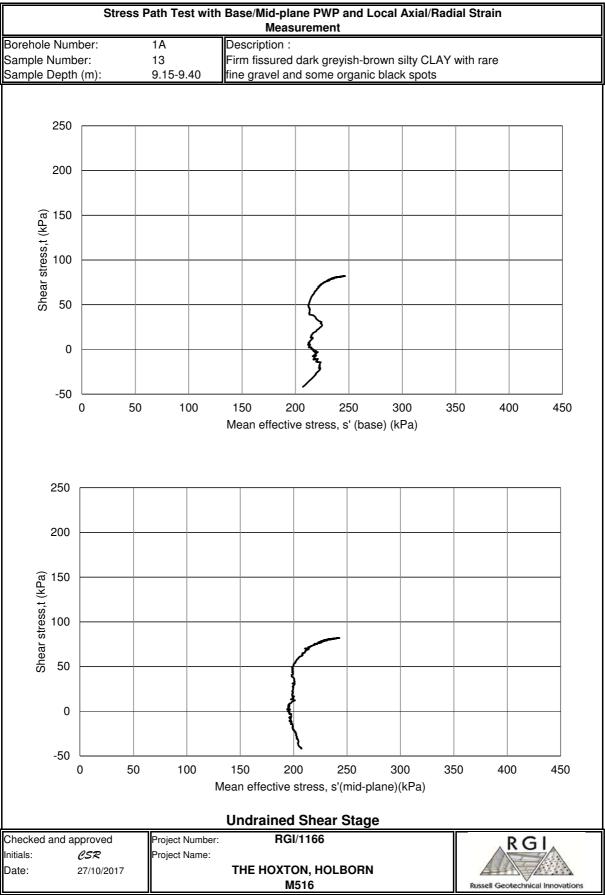

Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)

Authorised Signatory: C.S.Russell (Director)



Authorised Signatory: C.S.Russell (Director)

Authorised Signatory: C.S.Russell (Director)

0000	Path Test with	-	lane PWP and I surement	Local Axial/Ra	idial Strain	(CAUC)	
Borehole Number:	1A	Description				(CAUC)	
Sample Number:	20	Stiff fissured					
Sample Number: Sample Depth (m):	19.70-19.95	with organic					
SPECIMEN DETAILS	19.70-19.95	with Organic	Diack Spots				
SPECIMEN DE LAILS	Initial Values		Final Values				
Laight :	201.8	mm	Final Values				
Height : Diameter :		mm					
Moisture content :	98.0 26.18	mm %	27.45	%			
			40.45	%			
Bulk density:	1.94	Mg/m³					
Dry density (seemed)	1.54	Mg/m³					
Particle density (assumed)	2.70	Mg/m³					
Initial voids ratio (e _o)	0.7574		4.				
Test Duration:	\$= ====0 T N/I		11	1 Days			
INITIAL MEASUREMENT	OF EFFECTIVE		"0	"0			
Stage		#1	#2	#3			
Cell pressure (kPa):		397	595	793			
Base pwp (kPa):		256.7	443.3	631.8			
Mid-plane pwp (kPa):		244.7	439.6	630.8			
Base B values :		0.65	0.94	0.95			
Mid-plane B values :		0.80	0.98	0.97			
Initial effective stress (mid-			161.3	kPa			
ISOTROPIC CONSOLIDAT			(15.)	170			
Final cell pressure (kPa):	793	Final back P	ressure (kPa):	470			
SHEAR STAGE				200.7	(LD 5)		
Effective stress, po', at star	t			299.7	(kPa)		
Δ e/e _o				-0.0072			
Stiffnesses:		-		.=-	· \		
	0.01% axial stra			172	(MPa)		
	ed with respect	•		575			
	ed with respect			1098			
	0.1% axial strair			87	(MPa)		
	ed with respect			292			
	ed with respect			557			
Degree of no	on-linearity (L) c	luring shear		0.507			
•				#N/A			
At failure:	Local axial strain						
At failure:	train		External axial strain				
At failure: Local axial si				3.89	(%)		
At failure: Local axial si	al strain			3.89 314	(70) (kPa)		
At failure: Local axial si External axia Peak deviato	al strain						
At failure: Local axial si External axia Peak deviato	al strain or stress hear strength			314	(kPa)		
At failure: Local axial si External axia Peak deviato Undrained sh	al strain or stress hear strength ore pressure			314 157	(kPa) (kPa)		
At failure: Local axial si External axia Peak deviato Undrained sh Mid plane po Base pore pr	al strain or stress hear strength ore pressure			314 157 668	(kPa) (kPa) (kPa)		

Note: In all notation po' is mean effective stress: $p' = (\sigma a' + (2\sigma r'))/3$

NOTE: on post-test examination sample may have had a pre-existing angular shear plane at base of sample.

Checked and approved
Initials: *CSR*Date: 03/11/2017

Project Number: RGI/1166

Project Name:

THE HOXTON, HOLBORN M516

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

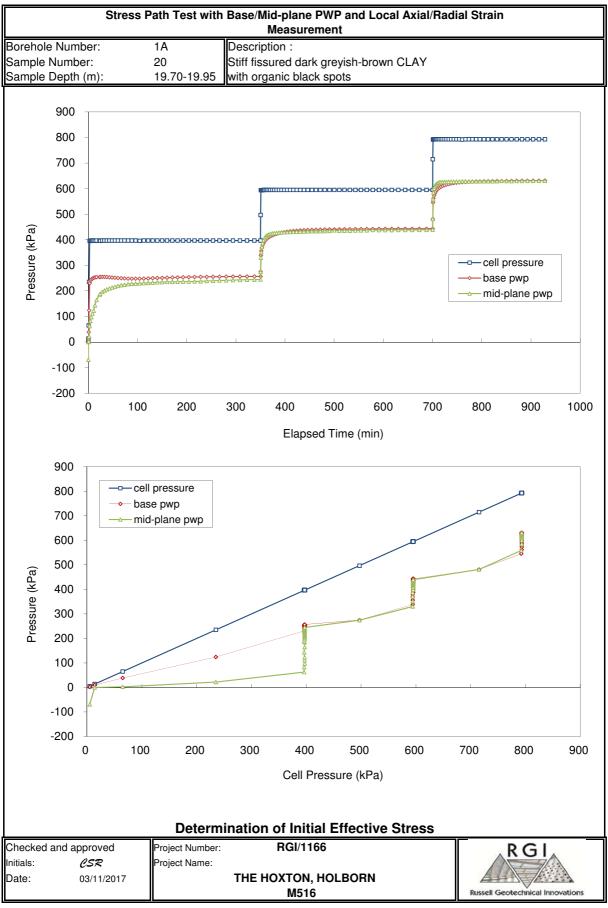
Authorised Signatory: C.S.Russell (Director)

Stress Path Test with Base/Mid-plane PWP and Local Axial/Radial Strain Measurement Borehole Number: 1A Description: Sample Number: 20 Stiff fissured dark greyish-brown CLAY 19.70-19.95 with organic black spots Sample Depth (m): SPECIMEN DETAILS Initial Height: 201.8 mm Initial Diameter: 98.0 mm Elevation **Failure Sketch** RGI/1166 RGI Checked and approved Project Number: Initials: CSRProject Name: THE HOXTON, HOLBORN 03/11/2017 Date: M516 Russell Geotechnical Innovations

Test carried out by Russell Geotechnical Innovations Limited, Alpha 319, Chobham Business Centre, Chobham, Surrey, GU24 8JB

Authorised Signatory: C.S.Russell (Director)

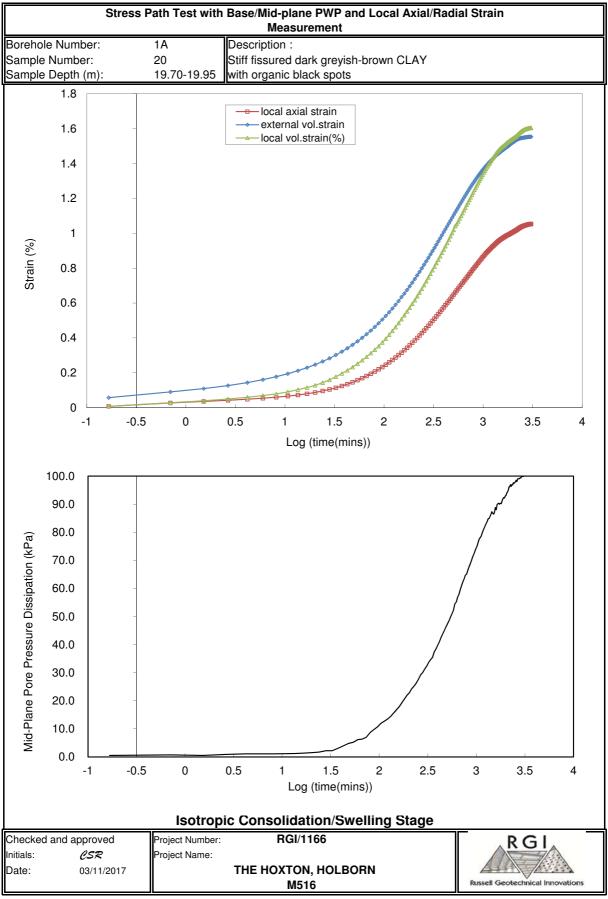
Stress Path Test with Base/Mid-plane PWP and Local Axial/Radial Strain Measurement									
									Borehole Number: 1A
Sample Number: 20		lark greyish-bro							
Sample Depth (m): 19.70-19.95	with organic b	lack spots							
STRESS PATH STAGES									
ISOTROPIC CONSOLIDAT									
	Initial Values		Final Values						
Cell Press. (kPa)	793		793						
Mid pwp (kPa)	631.7		470.1						
Base pwp (kPa)	631.8		470.4						
s' (kPa)	161.3		322.9						
t (kPa)	0.0		0.0						
Voids ratio (e)	0.7574		0.7301						
Creep (%/min)			3.14E-06						
ANISOTROPIC STAGE 1									
	Initial Values		Final Values						
Cell Press. (kPa)	793		803						
Mid pwp (kPa)	470.1		470.1						
Base pwp (kPa)	470.4		469.9						
s' (kPa)	322.9		267.0						
t (kPa)	0.0		-65.9						
Voids ratio (e)	0.7301		0.7364						
Creep (%/min) ANISOTROPIC STAGE 1			-5.14E-05						
ANISOTROPIC STAGE I									
Cell Press. (kPa)	Initial Values 803		Final Values 807						
Mid pwp (kPa)	470.1		470.1						
Base pwp (kPa)	469.9		469.9						
s' (kPa)	267.0		281.0						
t (kPa)	-65.9		-55.9						
Voids ratio (e)	0.7364		0.7629						
Creep (%/min)	0.7504		0.00E+00						

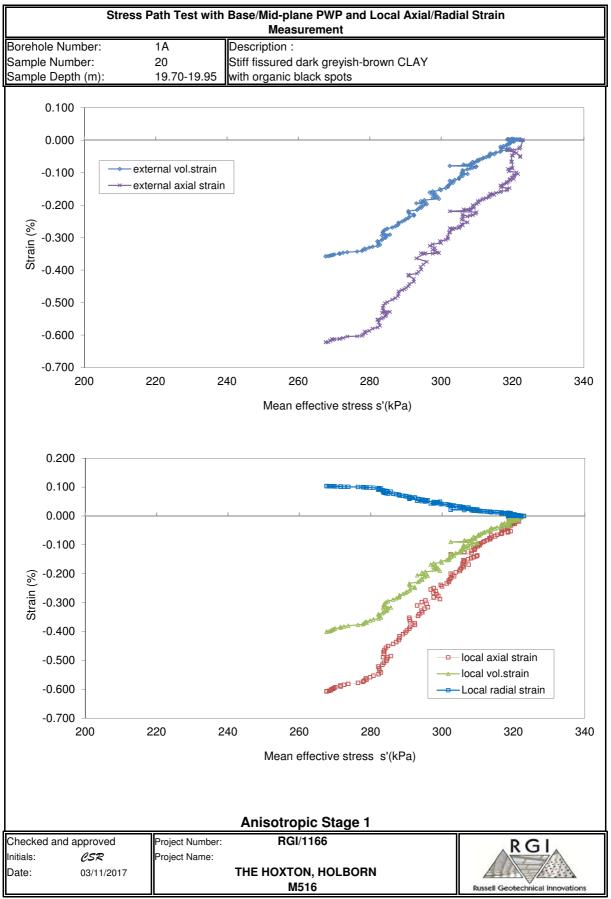

Checked and approved Initials: CSRDate: 03/11/2017

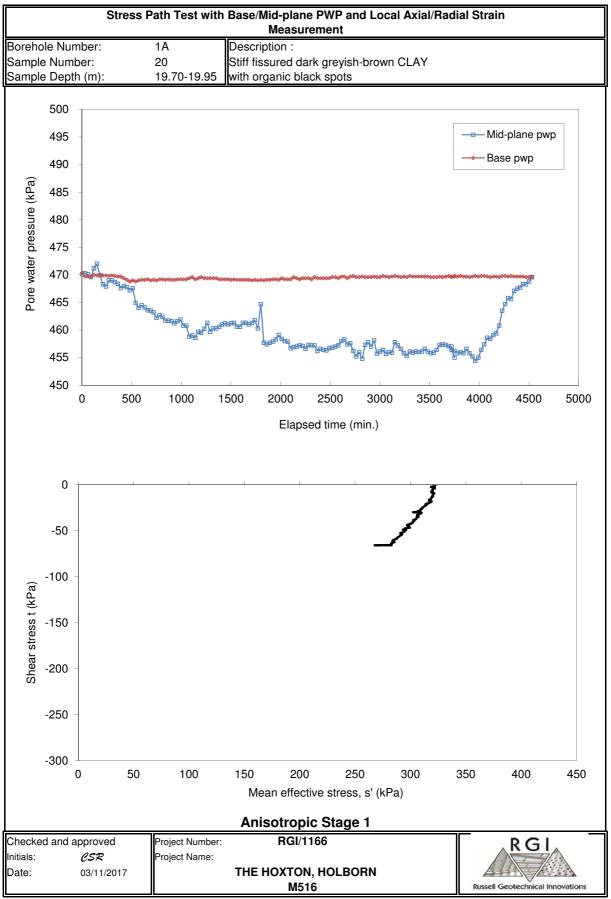
RGI/1166 Project Number:

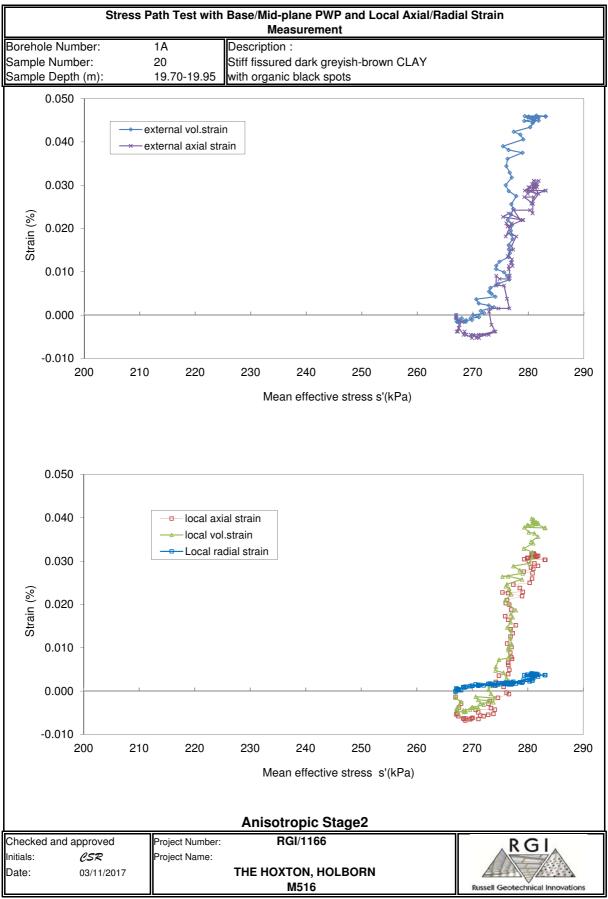
Project Name:

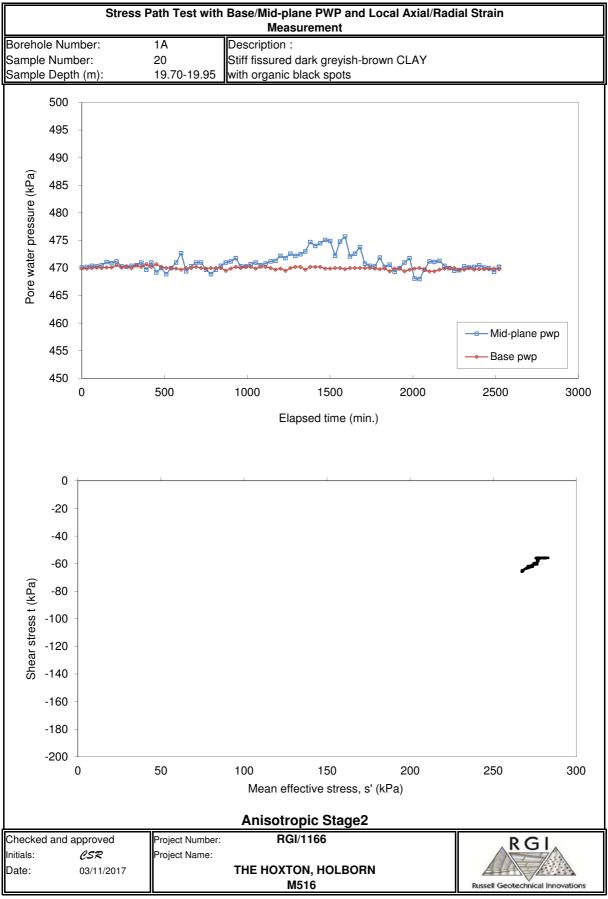
THE HOXTON, HOLBORN M516

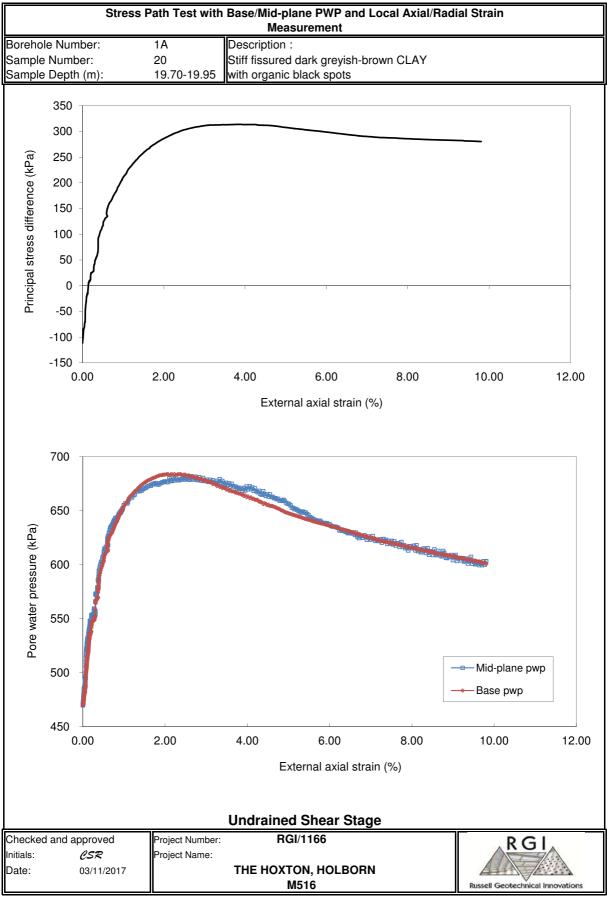


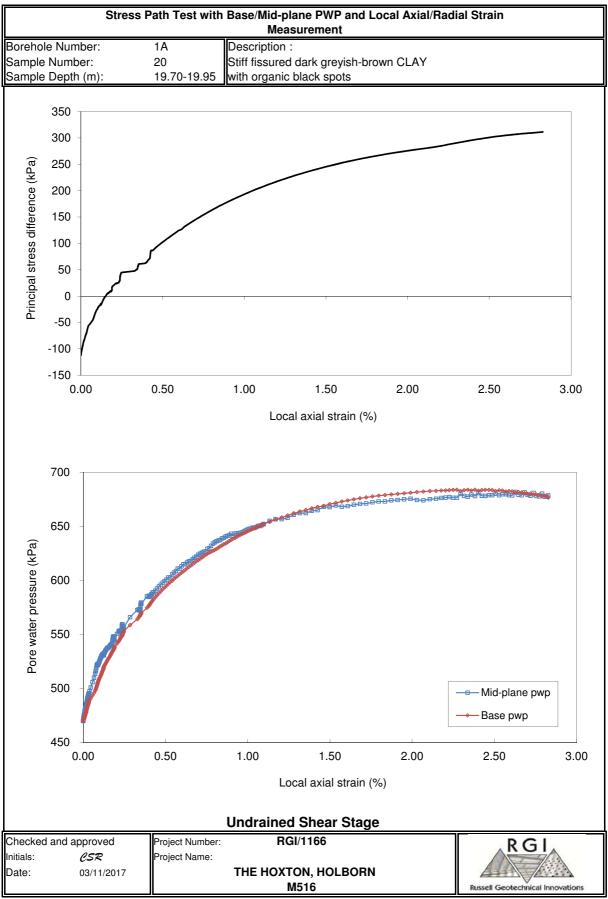

Authorised Signatory: C.S.Russell (Director)

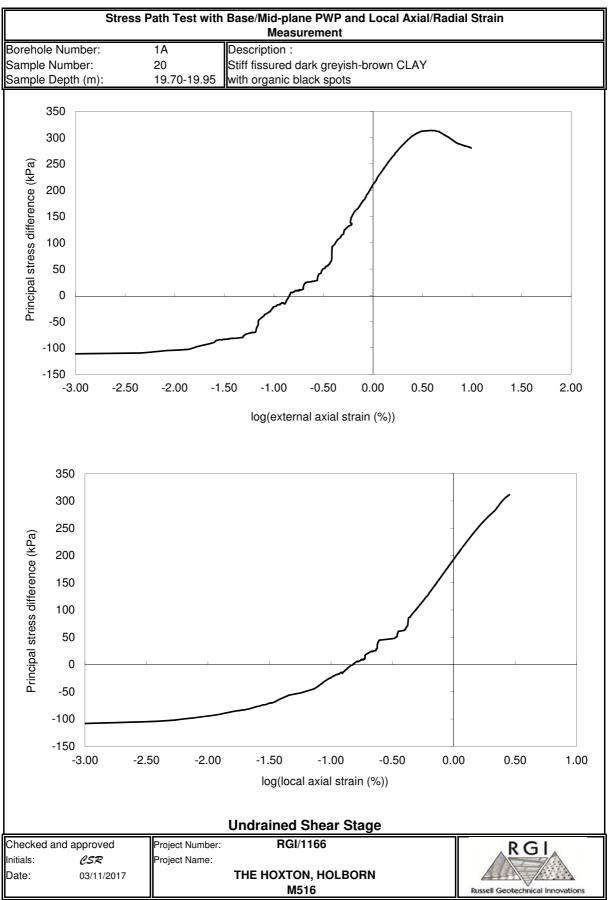

Authorised Signatory: C.S.Russell (Director)

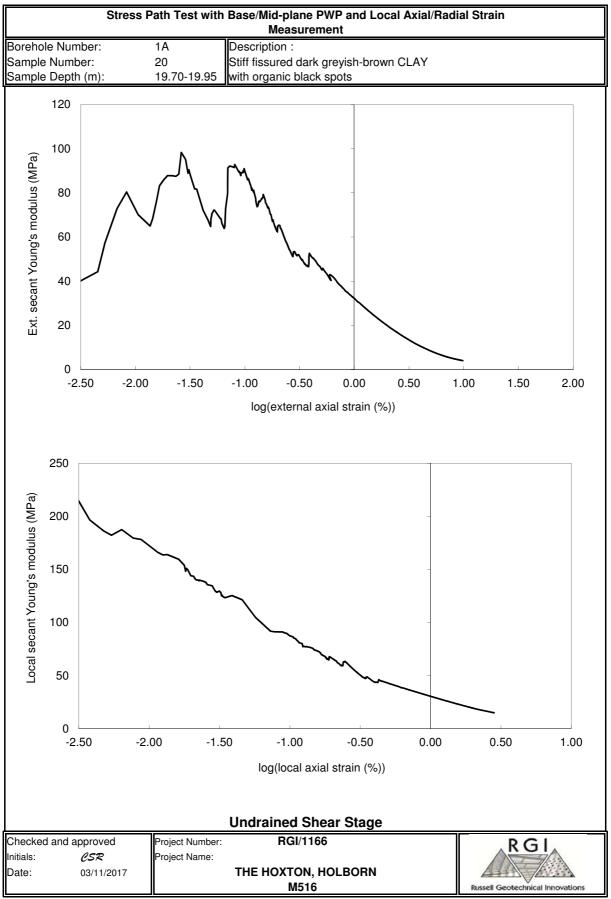

Authorised Signatory: C.S.Russell (Director)

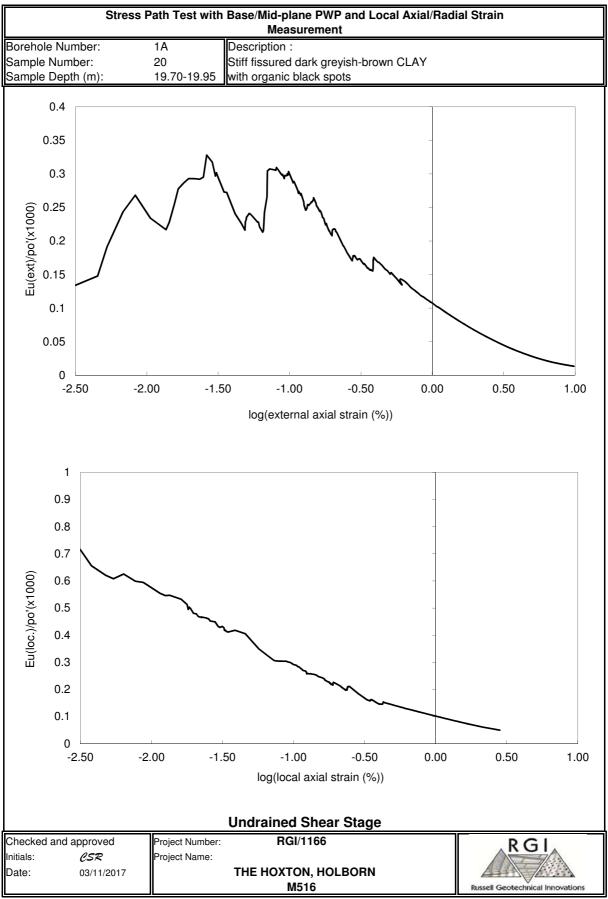

Authorised Signatory: C.S.Russell (Director)

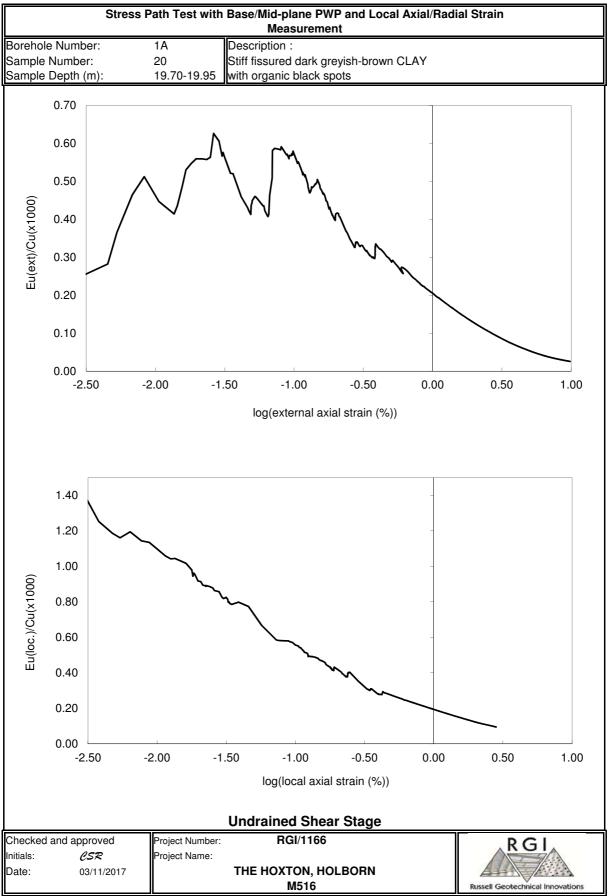

Authorised Signatory: C.S.Russell (Director)

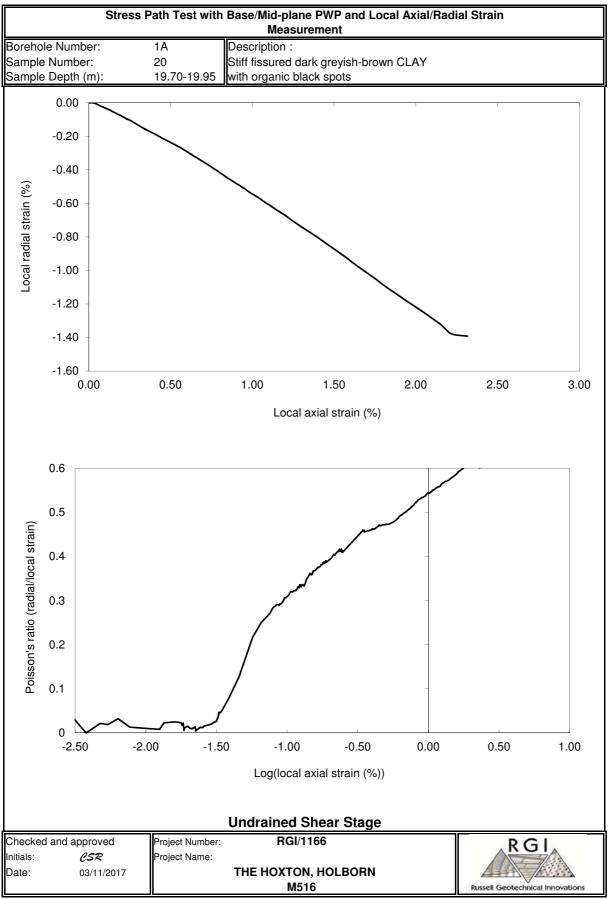

Authorised Signatory: C.S.Russell (Director)

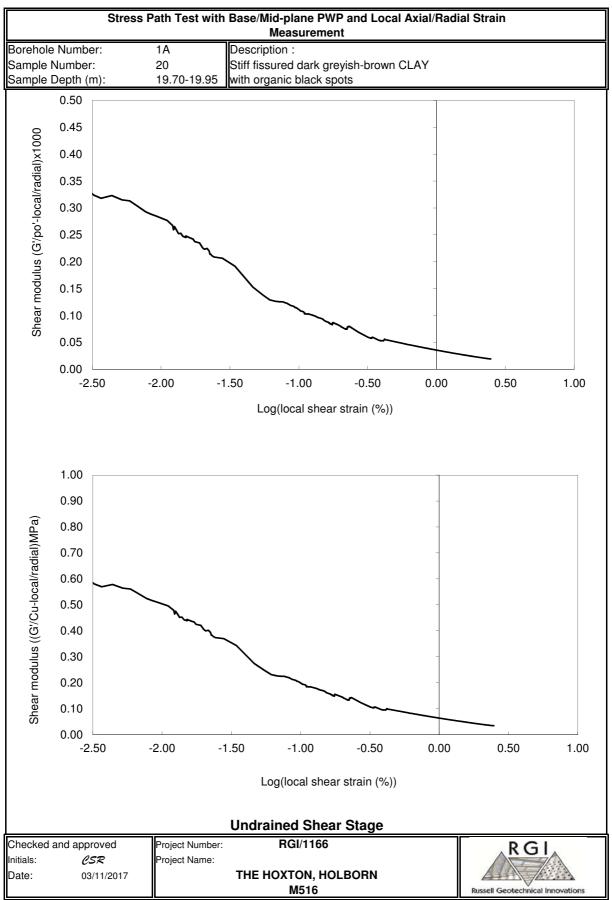

Authorised Signatory: C.S.Russell (Director)

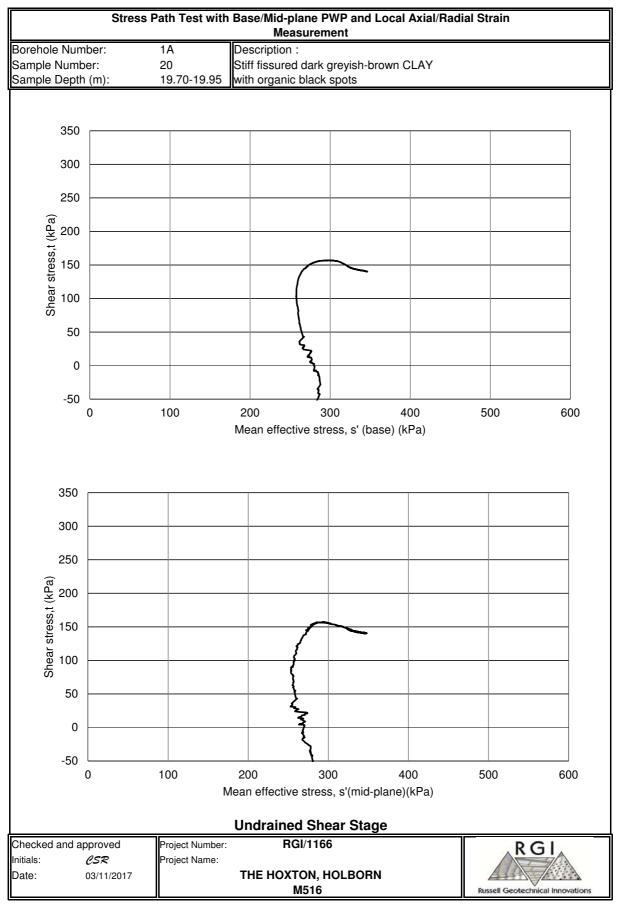

Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)


Authorised Signatory: C.S.Russell (Director)

Authorised Signatory: C.S.Russell (Director)

Authorised Signatory: C.S.Russell (Director)

Authorised Signatory: C.S.Russell (Director)

