

Technical Report

Title: Product wind, water and impact resistance testing of a LineAL

aluminium rainscreen system supplied by Ash & Lacy

Report No: N950-18-17539

Technical Report

Title: Product wind, water and impact resistance testing of a LinAL aluminium

rainscreen system supplied by Ash & Lacy

Customer: Ash & Lacy

Bromford Lane, West Bromwich

West Midlands B70 7JJ

Issue date: 23 February 2018

VTC job no.: TR0091-3UL9

Author(s): D. Bennett - Technician

Checked by: N. McDonald – Principal Engineer

Authorised by: S. R. Moxon – Operations Director

Distribution: 1 copy to Ash & Lacy (confidential) 1 copy to project file

This report and the results shown and any recommendations or advice made herein is based upon the information, drawings, samples and tests referred to in the report. Where this report relates to a test for which VINCI Technology Centre UK Limited is UKAS accredited, the opinions and interpretations expressed herein are outside the scope of the UKAS accreditation. We confirm that we have exercised all reasonable skill and care in the preparation of this report within the terms of this commission with the client. This approach takes into account the level of resources, manpower, testing and investigations assigned to it as part of the client agreement. We disclaim any responsibility to the client and other parties in respect of any matters outside the scope of our instruction. This report is confidential and privileged to the client, his professional advisers and VINCI Technology Centre UK Limited and we do not accept any responsibility of any nature to third parties to whom the report, or any part thereof, is made known. No such third party may place reliance upon this report. Unless specifically assigned or transferred within the terms of the agreement, we assert and retain all copyright, and other Intellectual Property Rights, in and over the report and its contents.

WM9) add

0057

VINCI Technology Centre UK Limited, Stanbridge Road, Leighton Buzzard, Bedfordshire, LU7 4QH

Registered Office, Watford. Registered No. 05640885 England.

Tel. 01525 859000

email info@technology-centre.co.uk
web www.technology-centre.co.uk

© Technology Centre

CONTENTS

1	INTRODUCTION	4
2	SUMMARY AND CLASSIFICATION OF TEST RESULTS	5
3	DESCRIPTION OF TEST SAMPLE	6
4	TEST RIG GENERAL ARRANGEMENT	9
5	TEST SEQUENCE	10
6	WIND RESISTANCE TESTING	11
7	WATERTIGHTNESS TESTING	18
8	IMPACT TESTING	20
9	APPENDIX - DRAWINGS	28

1 INTRODUCTION

This report describes tests carried out at VINCI Technology Centre UK Limited at the request of Ash & Lacy.

The test sample consisted of a LineAL aluminium rainscreen system manufactured by Ash & Lacy.

The tests were carried out on 15 January 2018 and were to determine the wind, water and impact resistance of the test sample. The test methods were in accordance with the CWCT Standard Test Methods for building envelopes, 2005, for:

Wind resistance – serviceability & safety.

Watertightness – dynamic pressure.

Impact resistance.

The testing was carried out in accordance with Technology Centre Method Statement C6591/MS rev 0.

This test report relates only to the actual sample as tested and described herein.

The results are valid only for sample(s) tested and the conditions under which the tests were conducted.

The long-term durability of the façade system is not assessed by these test methods.

VINCI Technology Centre UK Limited is accredited to ISO/IEC 17025:2008 by the United Kingdom Accreditation Service as UKAS Testing Laboratory No. 0057.

VINCI Technology Centre UK Limited is Notified Body No. 1766.

VINCI Technology Centre UK Limited is certified for:

)	ISO 9001:2008 Quality Management System,
J	ISO 14001:2004 Environmental Management System,
J	BS OHSAS 18001:2007 Occupational Health and Safety Management System.

The tests were witnessed by Yisheng Tian of Ash & Lacy.

2 SUMMARY AND CLASSIFICATION OF TEST RESULTS

The following summarises the results of the tests carried out. For full details refer to Sections 6, 7 and 8.

2.1 SUMMARY OF TEST RESULTS

TABLE 1

Date	Test number	Test description	Result
15 January 2018	1	Wind resistance – serviceability	Pass
15 January 2018	2	Wind resistance – safety	Pass
15 January 2018	3	Watertightness – dynamic	Pass
15 January 2018	4	Impact resistance	Pass

2.2 CLASSIFICATION

TABLE 2

Test	Standard	Classification / Declared value
Wind resistance	CWCT	±2400 pascals – serviceability ±3600 pascals – safety
Watertightness - dynamic	CWCT	600 pascals
Impact resistance	CWCT	Class 1 serviceability Negligible risk - safety

3 DESCRIPTION OF TEST SAMPLE

3.1 GENERAL ARRANGEMENT

The sample was as shown in the photo below and the drawings included as an appendix to this report.

The test samples measured 5 m high and comprised LineAL rainscreen systems.

PHOTO 6734

TEST SAMPLE ELEVATION

3.2 CONTROLLED DISMANTLING

During the dismantling of the sample no water penetration or discrepancies from the drawings were found.

PHOTO 6670

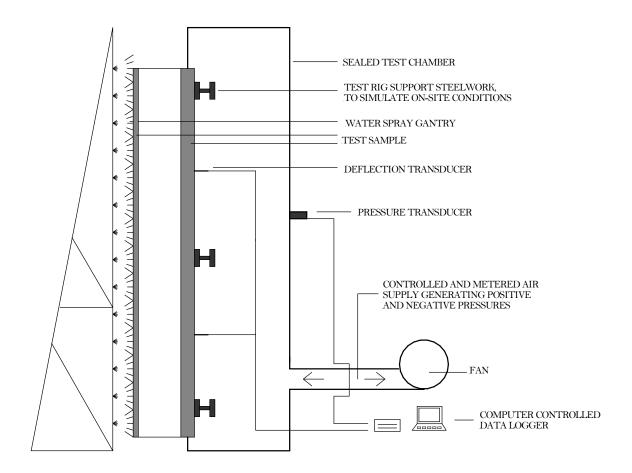
SUPPORT RAILS

PHOTO 6795

PLANKS REMOVED FROM TEST RIG

PHOTO 6797

SUPPORT FRAME REMOVED FROM TEST RIG



4 TEST RIG GENERAL ARRANGEMENT

The test sample was mounted on a rigid test rig with support steelwork designed to simulate the on-site/project conditions. The test rig comprised a well sealed chamber, fabricated from steel and plywood. A door was provided to allow access to the chamber. Representatives of Ash & Lacy installed the sample on the test rig. See Figure 1.

FIGURE 1

TEST RIG SCHEMATIC ARRANGEMENT

SECTION THROUGH TEST RIG

5 TEST SEQUENCE

The test sequence was as follows:

- (1) Wind resistance serviceability
- (2) Wind resistance safety
- (3) Watertightness dynamic
- (4) Impact resistance

.

6 WIND RESISTANCE TESTING

6.1 INSTRUMENTATION

6.1.1 Pressure

One static pressure tapping was provided to measure the chamber pressure and was located so that the readings were unaffected by the velocity of the air supply into or out of the chamber.

A pressure transducer, capable of measuring rapid changes in pressure to within 2% was used to measure the differential pressure across the sample.

6.1.2 Deflection

Displacement transducers were used to measure the deflection of principle framing members to an accuracy of 0.1 mm. The gauges were set normal to the sample framework at mid-span and as near to the supports of the members as possible and installed in such a way that the measurements were not influenced by the application of pressure or other loading to the sample. The gauges were located at the positions shown in Figure 2.

6.1.3 Temperature

Platinum resistance thermometers (PRT) were used to measure air temperatures to within 1 C.

6.1.4 General

Electronic instrument measurements were scanned by a computer controlled data logger, which also processed and stored the results.

All measuring instruments and relevant test equipment were calibrated and traceable to national standards.

6.2 FAN

The air supply system comprised a variable speed centrifugal fan and associated ducting and control valves to create positive and negative static pressure differentials. The fan provided essentially constant air flow at the fixed pressure for the period required by the tests and was capable of pressurising at a rate of approximately 600 pascals in one second.

6.3 PROCEDURE

6.3.1 Wind Resistance – serviceability

Three positive pressure differential pulses of 1200 pascals were applied to prepare the sample. The displacement transducers were then zeroed.

The sample was subjected to one positive pressure differential pulse from 0 to 2400 pascals to 0. The pressure was increased in four equal increments each maintained for 15 ±5 seconds. Displacement readings were taken at each increment. Residual deformations were measured on the pressure returning to zero.

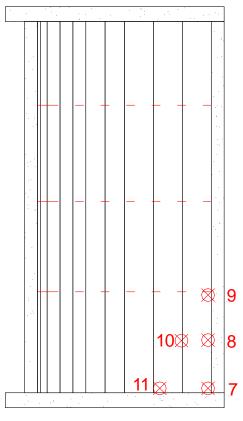
Any damage or functional defects were recorded.

The test was then repeated using a negative pressure of -2400 pascals.

6.3.2 Wind Resistance – safety

Three positive pressure differential pulses of 1200 pascals were applied to prepare the sample. The displacement transducers were then zeroed.

The sample was subjected to one positive pressure differential pulse from 0 to 3600 pascals to 0. The pressure was increased as rapidly as possible but not in less than 1 second and maintained for 15 ± 5 seconds. Displacement readings were taken at peak pressure. Residual deformations were measured on the pressure returning to zero.


Any damage or functional defects were recorded.

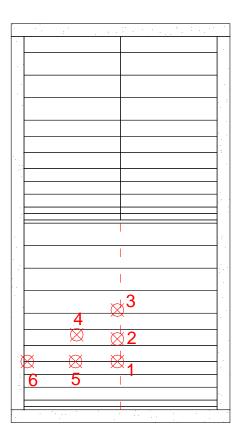

The test was then repeated using a negative pressure of –3600 pascals.

FIGURE 2

DEFLECTION GAUGE LOCATIONS

External View

6.4 PASS/FAIL CRITERIA

6.4.1 Calculation of permissible deflection

Gauge number	Member	Span (L) (mm)	Permissible deflection (mm)	Permissible residual deformation
2	Support rail	600	L/200 = 3.0	1 mm
4	Diagonal span	1386	L/360 = 3.8	1 mm
5	Horizontal span	1250	L/360 = 3.4	1 mm
8	Vertical span	1200	L/360 = 3.3	1 mm
10	Diagonal span	1341	L360 = 3.7	1 mm

6.5 RESULTS

Test 1 (serviceability) Date: 15 January 2018

The deflections measured during the wind resistance test, at the positions shown in Figure 2, are shown in Tables 3 and 4.

Summary Table:

Gauge number	Member	Pressure differential (Pa)	Measured deflection (mm)	Residual deformation (mm)
2	Support rail	2401 -2390	0.4 -0.7	0.0 0.1
4	Diagonal span	2401 -2390	1.7 -1.8	0.0 0.0
5	Horizontal span	2401 -2390	1.8 -1.2	0.1 -0.1
8	Vertical span	2401 -2390	3.0 -3.4	-0.1 0.1
10	Diagonal span	2401 -2390	2.9 -3.0	0.0 -0.1

No damage to the test sample was observed.

Ambient temperature = 9°C Chamber temperature = 10°C

Test 2 (safety) Date: 15 January 2018

The deflections measured during the structural safety test, at the positions shown in Figure 2, are shown in Table 5.

No damage to the sample was observed.

Ambient temperature = 9°C Chamber temperature = 11°C

TABLE 3

WIND RESISTANCE - POSITIVE SERVICEABILITY TEST RESULTS

Position	Pressure (pascals) / Deflection (mm)				
	597	1197	1794	2401	Residual
1	0.2	0.4	0.6	0.9	0.0
2	0.3	0.6	0.9	1.2	0.0
3	0.2	0.4	0.6	0.8	0.1
4	0.6	1.2	1.7	2.3	0.1
5	0.7	1.3	1.8	2.5	0.1
6	0.1	0.2	0.3	0.5	0.0
7	0.1	0.2	0.3	0.4	0.0
8	0.9	1.8	2.7	3.7	0.0
9	0.2	0.5	0.7	1.0	0.2
10	0.9	1.8	2.6	3.7	0.2
11	0.1	0.1	0.3	0.5	0.2
*2	0.1	0.2	0.3	0.4	0.0
*4	0.4	0.9	1.3	1.7	0.0
*5	0.5	0.9	1.3	1.8	0.1
*8	0.7	1.5	2.2	3.0	-0.1
*10	0.8	1.5	2.1	2.9	0.0

^{*}adjusted reading for movement at supports

TABLE 4

WIND RESISTANCE - NEGATIVE SERVICEABILITY TEST RESULTS

Position	Pressure (pascals) / Deflection (mm)				
	-619	-1195	-1803	-2405	Residual
1	-0.1	-0.3	-0.6	-0.9	-0.3
2	-0.3	-0.7	-1.0	-1.4	0.0
3	-0.2	-0.4	-0.5	-0.6	0.0
4	-0.5	-1.1	-1.7	-2.3	0.0
5	-0.3	-0.7	-1.2	-1.9	-0.2
6	-0.1	-0.1	-0.3	-0.4	0.0
7	-0.2	-0.2	-0.5	-1.0	-0.6
8	-0.9	-1.9	-3.2	-4.6	-0.4
9	-0.2	-0.5	-0.9	-1.3	-0.4
10	-0.8	-1.7	-2.9	-4.3	-0.7
11	-0.1	-0.1	-0.5	-1.2	-0.8
*2	-0.1	-0.3	-0.5	-0.7	0.1
*4	-0.4	-0.8	-1.3	-1.8	0.0
*5	-0.2	-0.5	-0.8	-1.2	-0.1
*8	-0.7	-1.5	-2.5	-3.4	0.1
*10	-0.6	-1.4	-2.2	-3.0	-0.1

^{*}adjusted reading for movement at supports

TABLE 5

WIND RESISTANCE - SAFETY TEST RESULTS

Position	Pressure (pascals) / Deflection (mm)					
	3604	Residual	-3603	Residual		
1	1.6	0.3	-1.6	-0.5		
2	1.8	0.1	-2.2	-0.1		
3	1.1	0.1	-0.7	0.0		
4	3.4	0.1	-3.4	-0.1		
5	3.9	0.3	-2.9	-0.4		
6	0.8	0.1	-0.7	-0.1		
7	1.1	0.5	-1.3	-0.7		
8	6.3	0.4	-6.7	-0.7		
9	2.0	0.5	-1.9	-0.6		
10	6.5	0.9	-6.2	-0.9		
11	1.5	0.8	-1.8	-0.9		
*2	0.5	-0.1	-1.1	0.2		
*4	2.5	0.0	-2.6	0.0		
*5	2.7	0.1	-1.8	-0.1		
*8	4.8	-0.1	-5.0	0.0		
*10	4.7	0.2	-4.4	-0.1		

^{*}adjusted reading for movement at supports

7 WATERTIGHTNESS TESTING

7.1 INSTRUMENTATION

7.1.1 Pressure

One static pressure tapping was provided to measure the chamber pressure and was located so that the readings were unaffected by the velocity of the air supply into or out of the chamber.

A pressure transducer, capable of measuring rapid changes in pressure to within 2% was used to measure the differential pressure across the sample.

7.1.2 Water Flow

An in-line water flow meter was used to measure water supplied to the spray gantry to within 5%.

7.1.3 Temperature

Platinum resistance thermometers (PRT) were used to measure air and water temperatures to within 1 C.

7.1.4 General

Electronic instrument measurements were scanned by a computer controlled data logger, which also processed and stored the results.

All measuring instruments and relevant test equipment were calibrated and traceable to national standards.

7.2 FAN

A wind generator was mounted adjacent to the external face of the sample and used to create positive pressure differentials during dynamic testing. The wind generator comprised a piston type aero-engine fitted with 4 m diameter contra-rotating propellers.

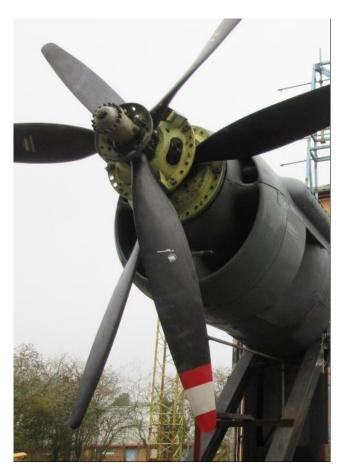
7.3 WATER SPRAY

The water spray system comprised nozzles spaced on a uniform grid not more than 700 mm apart and mounted approximately 400 mm from the face of the sample. The nozzles provided a full-cone pattern with a spray angle between 90° and 120°. The spray system delivered water uniformly against the exterior surface of the sample.

7.4 PROCEDURE

Water was sprayed onto the sample using the method described above at a flow rate of at least 3.4 litres/m²/minute.

The aero-engine was used to subject the sample to wind of sufficient velocity to produce average deflections in the principle framing members equal to those produced by a static pressure differential of 600 pascals. These conditions were maintained for 15 minutes. Throughout the test the inside of the sample was examined for water penetration.


7.5 PASS/FAIL CRITERIA

There shall be no water penetration to the internal face of the sample throughout testing. At the completion of the test there shall be no standing water in locations intended to remain dry.

PHOTO 6549

DYNAMIC WIND GENERATOR

7.6 RESULTS

Test 3 Date: 15 January 2018

No water leakage was observed through the sample.

Chamber temperature= 9°C

Ambient temperature = 8° C

Water temperature = 9° C

8 IMPACT TESTING

8.1 IMPACTOR

8.1.1 Soft body

The soft body impactor comprised a canvas spherical/conical bag 400 mm in diameter filled with 3 mm diameter glass spheres with a total mass of 50 kg suspended from a cord at least 3 m long.

PHOTO 6755

8.1.2 Hard body

The hard body impactor was a solid steel ball of 50 mm or 62.5 mm diameter and approximate mass of 0.5 kg or 1.0 kg.

PHOTO 6763

Page 20 of 28

8.2 PROCEDURE

8.2.1 Soft body

The impactor almost touched the face of the sample when at rest. It was swung in a pendular movement to hit the sample normal to its face. The test was performed at the locations shown in Figure 3. The impact energies were 120 Nm for serviceability and 350 Nm and 500 Nm for safety at each location.

8.2.2 Hard body

The impactor almost touched the face of the sample when at rest. It was swung in a pendular movement to hit the sample normal to its face. The test was performed at the locations shown in Figure 4. The impact energies were 3 Nm, 6 Nm and 10 Nm at each location.

8.3 PASS/FAIL CRITERIA

Note: Tables 1 to 2 are taken from CWCT TN76.

Table 1 - Classes for serviceability performance

Class	Definition	Explanation/Examples
1	No damage.	No damage visible from 1m, and Any damage visible from closer then 1m unlikely to lead to significant deterioration.
2	Surface damage of an aesthetic nature which is unlikely to require remedial action.	Dents or distortion of panels not visible from more than 5m (note visibility of damage will depend on surface finish and lighting conditions – damage will generally be more visible on reflective surfaces), and Any damage visible from closer than
		5m unlikely to lead to significant deterioration.
3	Damage that may require remedial action or replacement of components to maintain appearance or long term performance but does not require immediate action.	Dents or distortion of panels visible from more than 5m, or Spalling of edges of panels of brittle materials, or Damage to finishes that may lead to deterioration of the substrate.
4	Damage requiring immediate action to maintain appearance or performance.	Significant cracks in brittle materials e.g. cracks that may lead to parts of tile falling away subsequent to test, or
	Remedial action may include replacement of a panel but does not require dismantling or replacement of supporting structure.	Fracture of panels causing significant amounts of material to fall away during test.
5	Damage requiring more extensive replacement than 4.	Buckling of support rails.

Table 2 - Classes for safety performance

Class	Explanation/examples
Negligible risk	No material dislodged during test, and
	No damage likely to lead to materials falling subsequent to test, and
	No sharp edges produced that would be likely to cause severe injury to a person during impact, and
	Cladding not penetrated by impactor.
Low risk	Maximum mass of falling particle 50g, and
	Maximum mass of particle that may fall subsequent to impact 50g, and
	No sharp edges produced that would be likely to cause severe injury during impact.
Moderate risk	Maximum mass of falling particle less than 500g, and
	Maximum mass of particle that may fall subsequent to impact less than 500g, and
	Cladding not penetrated by impact, and
	No sharp edges produced that would be likely to cause severe injury during impact.
High risk	Maximum mass of falling particle greater than 500g, or
J	Cladding penetrated by impact, or
	Sharp edges produced that would be likely to cause severe injury during impact.

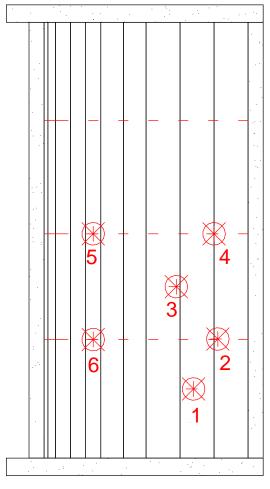
8.4 RESULTS

Test 4 Date: 15 January 2018

TABLE 6

IMPACT TEST RESULTS

Impact location	Impactor	Impact energy (Nm)	Observations	Class
1	Soft body	120 x3 350 500	No damage No damage 3 mm indentation	1 Negligible risk Negligible risk
2	Soft body	120 x3 350 500	No damage No damage No damage	1 Negligible risk Negligible risk
3	Soft body	120 x3 350 500	No damage No damage 2 mm indentation	1 Negligible risk Negligible risk
4	Soft body	120 x3 350 500	No damage No damage No damage	1 Negligible risk Negligible risk
5	Soft body	120 x3 350 500	No damage No damage No damage	1 Negligible risk Negligible risk
6	Soft body	120 x3 350 500	No damage No damage No damage	1 Negligible risk Negligible risk
7	Soft body	120 x3 350 500	No damage No damage 3 mm indentation	1 Negligible risk Negligible risk
8	Soft body	120 x3 350 500	No damage No damage No damage	1 Negligible risk Negligible risk
9	Soft body	120 x3 350 500	No damage No damage No damage	1 Negligible risk Negligible risk
10	Hard body	3 6 10	Minor indentation Minor indentation 1 mm indentation	1 2 3 Negligible risk
11	Hard body	3 6 10	Minor indentation Minor indentation 1 mm indentation	1 2 3 Negligible risk
12	Hard body	3 6 10	Minor indentation Minor indentation 1 mm indentation	1 2 3 Negligible risk



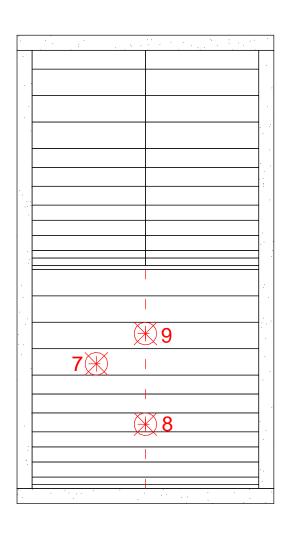

Ambient temperature = 6°C

FIGURE 3

SOFT BODY IMPACT TEST LOCATIONS

External View

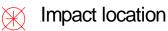
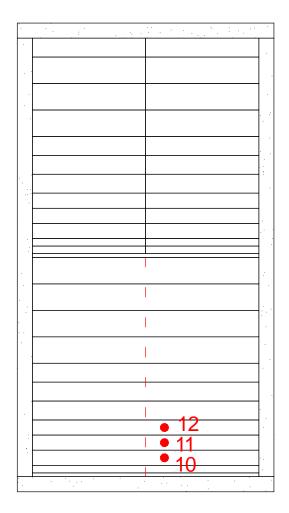
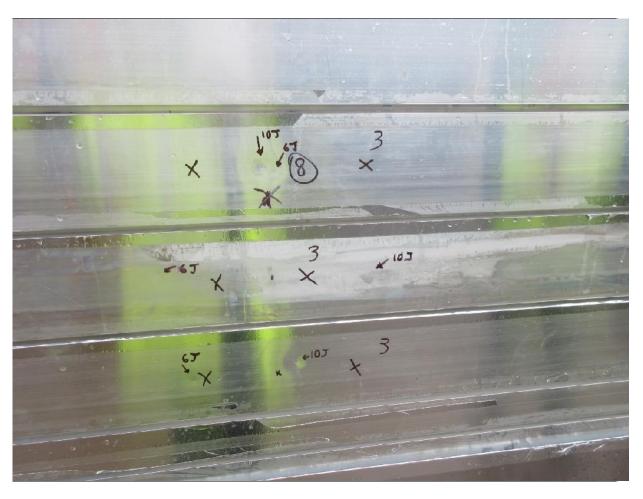



FIGURE 4

HARD BODY IMPACT TEST LOCATIONS

External View



Impact location

PHOTO 6764

HARD BODY IMPACTS

9 APPENDIX - DRAWINGS

The following	15	unnumbered	pages	are	copies	of As	sh &	Lacy	drawings	s numbe	ered:

ED-Façade-1707.03-01,

ED-Façade-1707.03-02A,

ED-Façade-1707.03-02B,

ED-Façade-1707.03-03,

ED-Façade-1707.03-04,

M14 rev B,

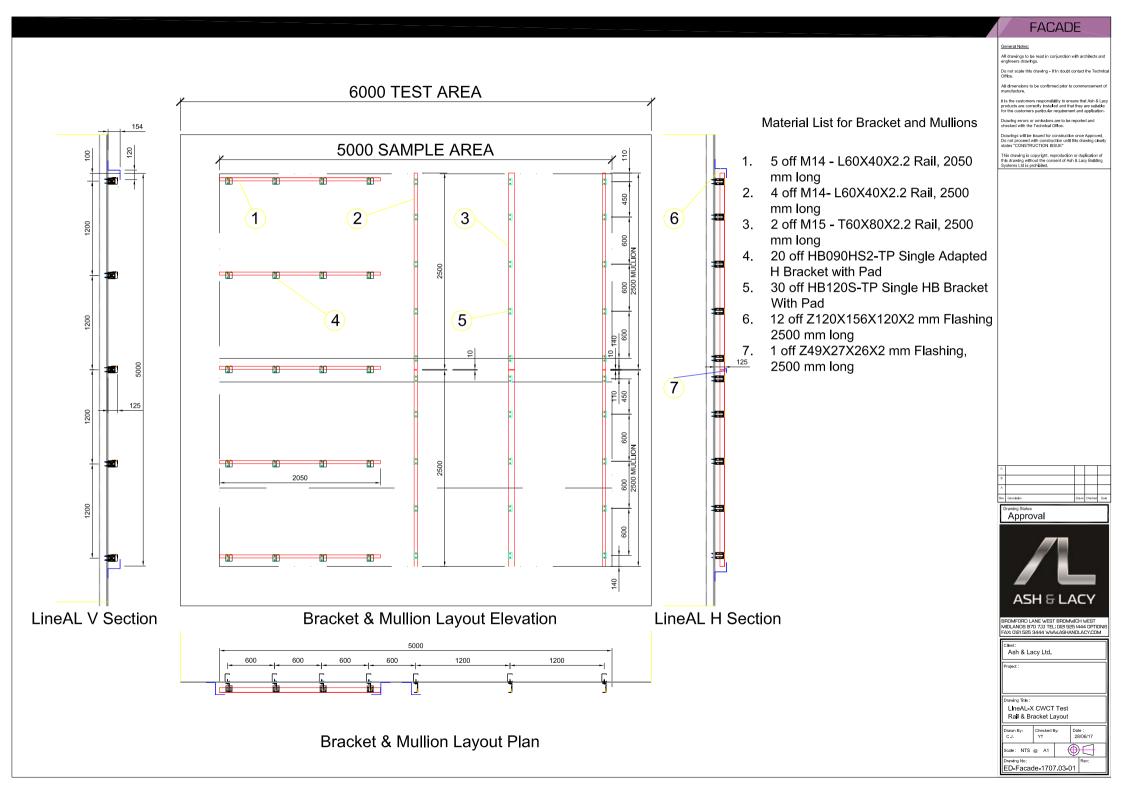
M15 rev B,

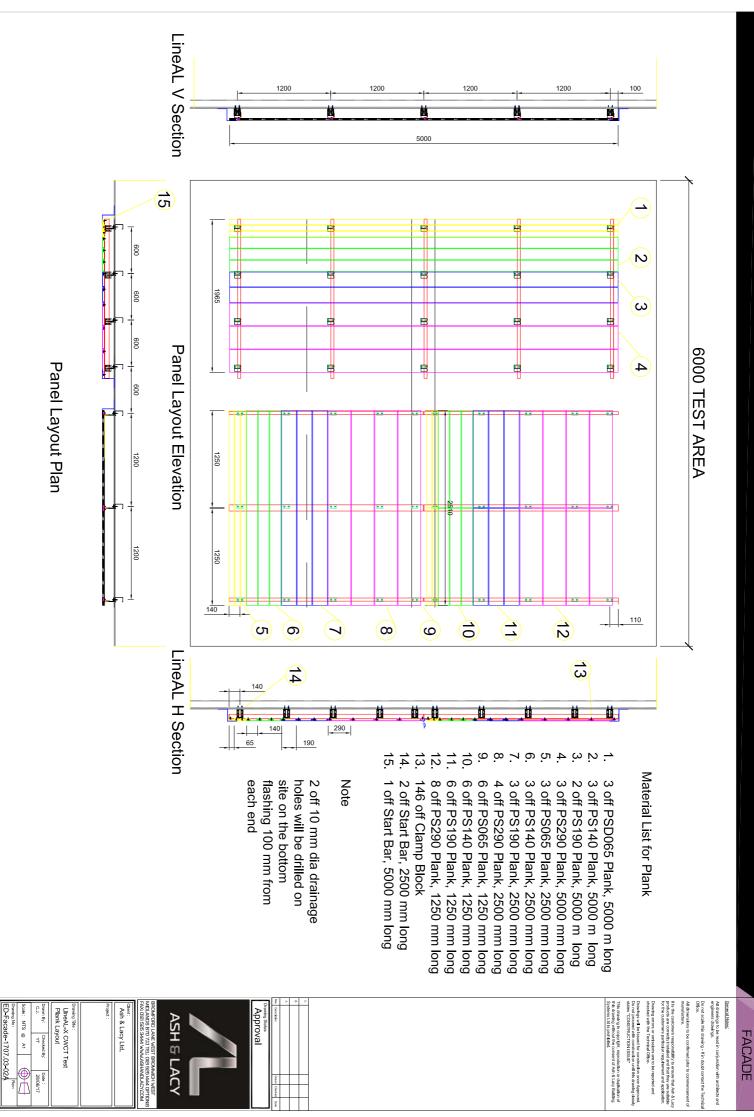
B42 rev B,

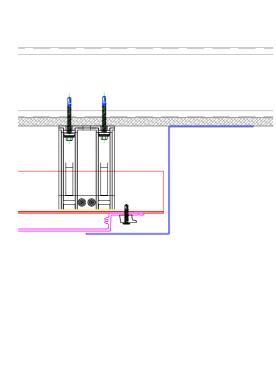
B46 rev B,

SD.LX.01 rev E,

SD.LX.02 rev E,

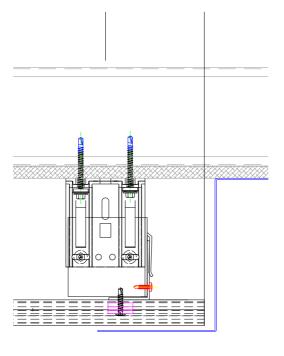

SD.LX.04 rev E,


SD.LX.05 rev A,


A35 rev C,

A38 rev D.

END OF REPORT


Head Detail of LineAL H Section

140

movement between two floors

accommodate the Use Flash to

65

Bottom Detail of LineAL H Section

Head Details of LineAL V Section

FACADE

All drawings to be read in conjunction with architect engineers drawings.

wing errors or omissions are to be reported and cked with the Technical Office.

This drawing is copyright, reproduction or duplication of this drawing without the consent of Ash & Lacy Building Systems Ltd is prohibited.

vings will be issued for construction once Approved, not proceed with construction until this drawing clearly so "CONSTRUCTION ISSUE"

ASH & LACY

Ash & Lacy Ltd.

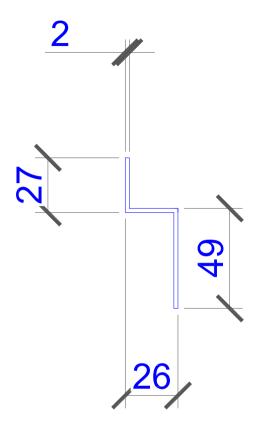
LineAL-X CWCT Test
Plank Layout

cale: NTS @ A1

120

Material: Alu 1050H14

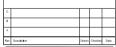
vaving Title:
LineAL-X CWCT Test
Z120X156X120X2 Flashing


Ash & Lacy Ltd.

ASH & LACY

cale: NTS @ A1

FACADE

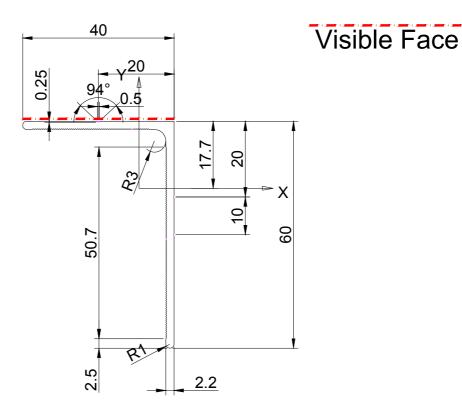

Material: Alu 1050H14

FACADE

General Notes:

products are correctly installed and that they are suitable for the customers particular requirement and application.

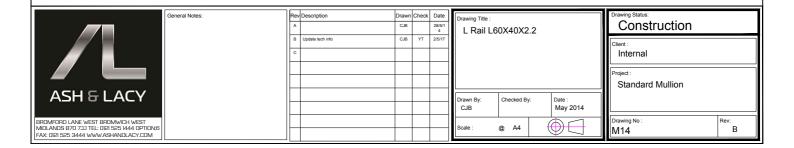
Do not proceed with construction until this drawing clearly states "CONSTRUCTION ISSUE"



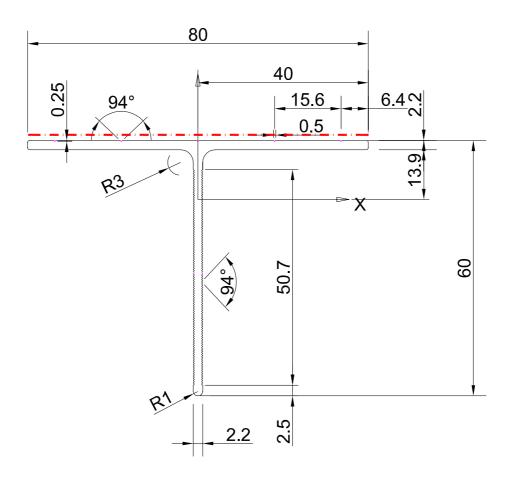
Ash & Lacy Ltd.	
Project :	
Drawing Title :	
LineAL-X CWCT Test	

Z49X27X26X2 FlashIng

Drawing No: ED-Facade-1707.03-04


Section Properties:

Area: 205.8 mm²
 Weight: 0.556 kg/m

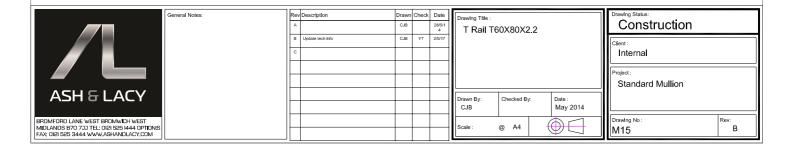

Moment of Inertia X: 78271.5 mm⁴
 Moment of Inertia Y: 28704.5 mm⁴

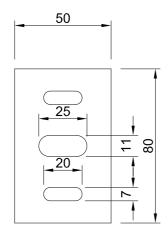
Tech Note:

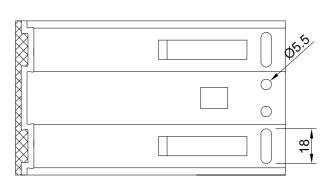
- 1. Material: Alum 6063T6 with mechanical properties applied to BS EN755-2:1997
- 2. Profile dimension tolerance applied to BS EN 755-9:2008 unless stated on the drawing
- 3. Standard extrusion length 3000 mm 4850 mm 6000 mm
- 4. Remove sharp corner with 0.5 mm R

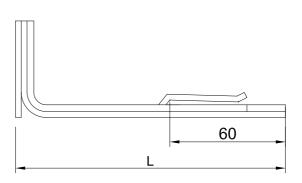
Visible Face

Section Properties:

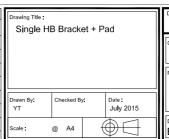

1. Area: 293.4 mm²

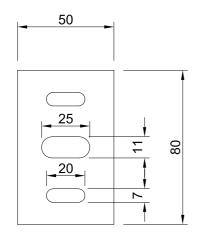

2. Weight: 0.792 kg/m

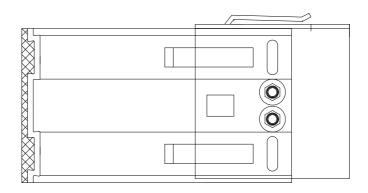

Moment of Inertia X: 94038.2 mm⁴
 Moment of Inertia Y: 93382.7 mm⁴

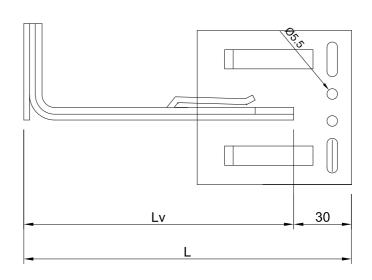

Tech Note:

- 1. Material: Alum 6063T6 with mechanical properties applied to BS EN755-2:1997
- 2. Profile dimension tolerance applied to BS EN 755-9:2008 unless stated on the drawing
- 3. Standard extrusion length 3000 mm 6000 mm
- 4. Remove sharp corner with 0.5 mm R

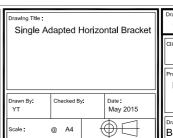



Bracket Ref	L (mm)	Components in Assembly
HB090S-TP	90	HB90S+TP80L
HB120S-TP	120	HB120S+TP80L
HB150S-TP	150	HB150S+TP80L
HB180S-TP	180	HB180S+TP80L
HB210S-TP	210	HB210S+TP80L
HB240S-TP	240	HB240S+TP80L
HB270S-TP	270	HB270S+TP80L
HB300S-TP	300	HB300S+TP80L



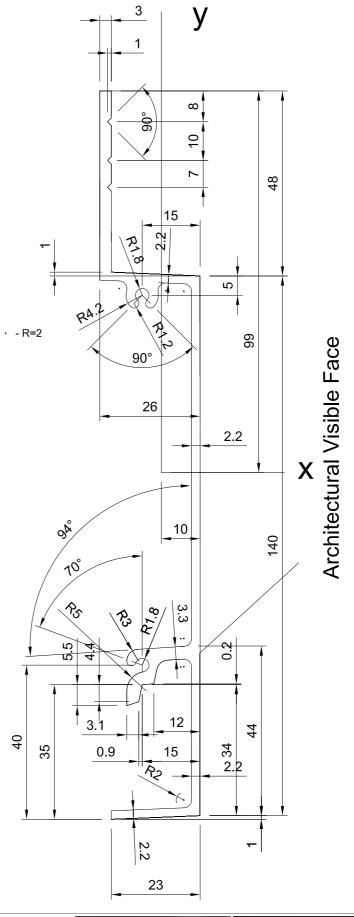

Rev	Description	Drawn	Check	Dat
Α	Development version	YT		09/0 201
В	Update Tech Info	YT		02/0 201
С				

Drawing Status: Construction	
Cilent: Internal	
Project: ED-Tech-1602	
Drawlng No: B42	Rev: B



Bracket Ref	Lv (mm)	L(mm)	Components in Assembly
HB090SH2-TP	90	120	HBD80+HB090S+TP80L+2 off BM-LS25
HB120SH2-TP	120	150	HBD80+HB120S+TP80L+2 off BM-LS25
HB150SH2-TP	150	180	HBD80+HB150S+TP80L+2 off BM-LS25
HB180SH2-TP	180	210	HBD80+HB180S+TP80L+2 off BM-LS25
HB210SH2-TP	210	240	HBD80+HB210S+TP80L+2off BM-LS25
HB240SH2-TP	240	270	HBD80+HB240S+TP80L+2 off BM-LS25
HB270SH2-TP	270	310	HBD80+HB270S+TP80L+2 off BM-LS25
HB300SH2-TP	300	330	HBD80+HB300S+TP80L+2 0ff BM-LS25

Drawing Status: Construction	
Cilent: Internal	
Project: ED-Tech-1602	
Drawing No:	Rev:


Section Properties

Area: 686.1 mm²
 Weight: 1.85 kg/m

3. Moment of inertia X: 2266565 mm⁴
4. Moment of inertia Y: 63226 mm⁴

Tech Note:

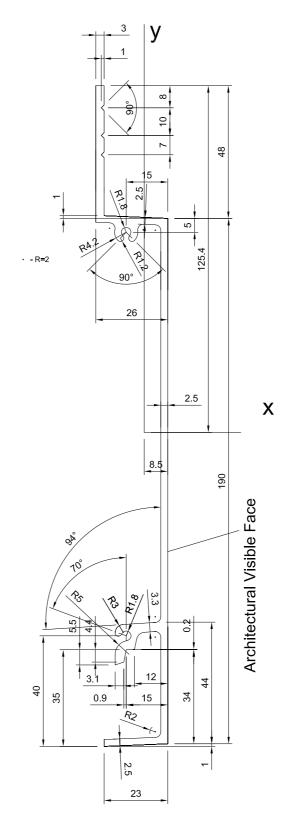
- 1. Material: Alum 6063T6 with mechanical properties applied to BS EN 755-2:1997
- 2. Profile dimension tolerance applied to BS EN 755-9:2008
- 3. Radius for all sharp corners are 0.4 mm
- 4. Overall dimension tolerance ±0.6 mm except stated on the drawing
- 5. Standard length: 6 m
- 6. The test criteria for architectural visible face needs to be agreed with the supplier prior to supply

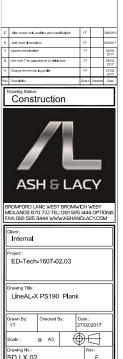
Rev	Description	Drawn	Check	Date
Α	Change the top leg profile	YT		27/02/ 7
В	Add not 7 for appearance of visible face	YT		28/02/ 2017
С	Update technical info	YT		24/4/1 7
D	Add more dimensions	YT		9/5/17
Е	Alter the screw hole position and overall height	YT		30/5/1 7

Construction	
Cllent: Internal	
Project: ED-Tech-1607-02.02	
Drawlng No: SD.LX.01	Rev:

Section Property

Area: 861.9 mm²
 Weight: 2.33 kg/m


3. Moment of inertia X: 4780806.6 mm⁴ 4. Moment of inertia Y: 73764.6 mm⁴


Tech Note:

1. Material: Alum 6063T6 with mechanical properties applied to BS EN 755-2:1997

2. Profile dimension tolerance applied to BS EN 755-9:2008

- 3. Radius for all sharp corners are 0.4 mm
- 4. Overall dimension tolerance ±0.6 mm except stated on the drawing
- 5. Standard length: 6 m
- 6. The test criteria for architectural visible face needs to be agreed with the supplier prior to supply

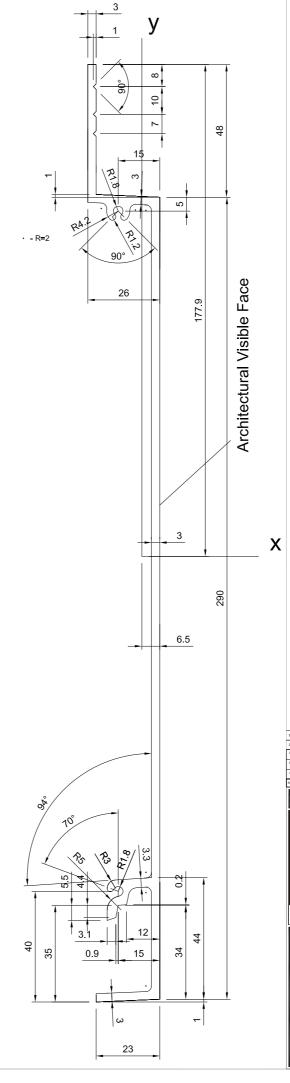
Section Property

1. Area: 1270.5 mm² 2. Weight: 3.43 kg/m

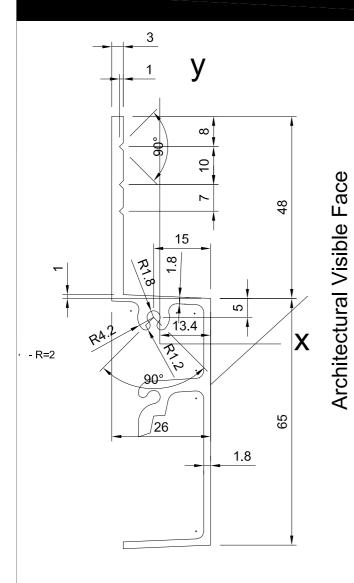
3. Moment of inertia X: 14290299.0 mm⁴ 4. Moment of inertia Y: 87753.9 mm⁴

Tech Note:

1. Material: Alum 6063T6 with mechanical properties applied to BS EN 755-2:1997

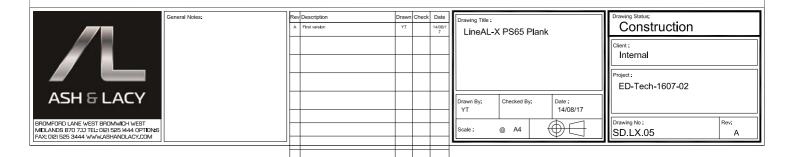

2. Profile dimension tolerance applied to BS EN 755-9:2008

3. Radius for all sharp corners are 0.4 mm


4. Overall dimension tolerance ±0.6 mm except stated on the drawing


5. Standard length: 6 m

6. The test criteria for architectural visible face needs to be agreed with the supplier prior to supply


Section Properties

1. Area: 482.6 mm² 2. Weight: 1.303 kg/m

3. Moment of inertia X: 437704.3 mm⁴ 4. Moment of inertia Y: 42208.9 mm⁴

Tech Note:

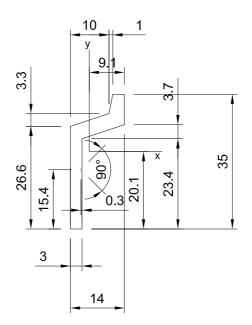
- 1. Material: Alum 6063T6 with mechanical properties applied to BS EN 755-2:1997
- 2. Profile dimension tolerance applied to BS EN 755-9:2008
- 3. Radius for all sharp corners are 0.4 mm
- 4. Overall dimension tolerance ±0.6 mm except stated on the drawing
- 5. Standard length: 6 m
- 6. The test criteria for architectural visible face needs to be agreed with the supplier prior to supply

Section Property

1. Area: 142.5 mm² 2. Weight: 0.39 kg/m

Moment of inertia X: 13397.5 mm⁴
 Moment of inertia Y: 2862.7 mm⁴

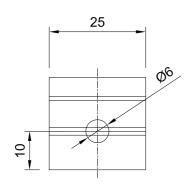
Tech Note:

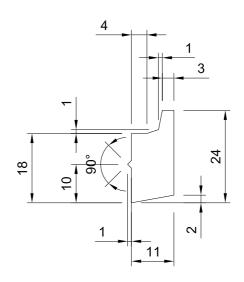

1. Material: Alum 6063T6 with mechanical properties applied to BS EN 755-2:1997

2. Profile dimension tolerance applied to BS EN 755-9:2008

3. Radius for all sharp corners are 0.4 mm

4. Overall dimension tolerance ±0.6 mm except stated on the drawing

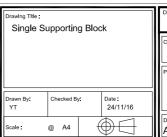

5. Standard length: 3 m



Construction	
Client: Internal	
Project: ED-Tech-1607-02.08	
Drawing No: A35	Rev:

Tech Note:

1. Material: Alum 6063T6 with mechanical properties applied to BS EN 755-2:1997


2. Profile dimension tolerance applied to BS EN 755-9:2008

3. Radius for all sharp corners are 0.4 mm

4. Overall dimension tolerance ±0.6 mm except stated on the drawing

5. Weight: 0.014 kg each

_		
		General Notes:
	ASH & LACY	
	BROMFORD LANE WEST BROMWICH WEST MIDLANDS B70 7JJ TEL: 0121 525 1444 OPTION 6 FAX: 0121 525 3444 WWW.ASHANDLACY.COM	

Drawing Status: Construction	
Cilent: Internal	
Project: ED-Tech-1607-02.10	
Drawing No :	Rev:
A38	D

VINCI Technology Centre UK Limited Stanbridge Road Leighton Buzzard Bedfordshire LU7 4QH UK

01525 859000

info@technology-centre.co.uk www.technology-centre.co.uk