307-309 Finchley Road

Produced by XCO2 for Carltone Group

March 2018

CONTENTS

EXECUTIVE SUMMARY	5
INTRODUCTION	7
PLANNING POLICIES	8
PROPOSED SUSTAINABILITY MEASURES	17
SUSTAINABILITY STANDARDS	22
ENERGY STRATEGY SUMMARY	29
BE LEAN – USE LESS ENERGY	33
BE GREEN – USE RENEWABLE ENERGY	36
CONCLUSIONS	44
APPENDIX A – OVERHEATING RISK ASSESSMENT	
APPENDIX B – SAP RESULTS	B
APPENDIX C – SBEM RESULTS	C
APPENDIX D – SURFACE WATER CALCULATIONS	D
ADDENDIY F _ THAMES WATED ASSET DI AN	F

Remarks	Draft			
Prepared by	TS/JC	TS/JC/SP		
Checked by	JC	SP		
Authorised by	SP	SP		
Date	22/08/2017	28/03/2018		
Project reference	8.996	8.996		

EXECUTIVE SUMMARY

The energy strategy for the development at 307-309 Finchley Road has been developed in line with the energy policies of the London Plan and of Camden's Local Plan. The three-step Energy Hierarchy has been implemented and the estimated regulated CO₂ savings on site are 26.6% for the new build domestic part, 64.7% for the domestic refurbishment, and 67.6% for the non-domestic part of the development, against against an existing building baseline for the refurbishment portion of the scheme, and a Part L 2013 Baseline for new build elements where relevant.

This report assesses the predicted energy performance and carbon dioxide emissions of the proposed development at 307-309 Finchley Road located in the London Borough of Camden.

The proposal comprises the redevelopment of 307-309 Finchley Road and 307 Lithos Road. The scheme will provide additional residential and commercial accommodation through a roof level extension and refurbishment of the Lithos Road frontage of the building.

This document is divided into three parts:

- Planning policies
- Proposed sustainability measures incorporated into the scheme
- Energy Strategy

The Planning Policy section provides an overview of the site and planning policies applicable to this development in accordance with the London Plan and the relevant Camden Council's planning policies.

The second section on proposed sustainability measures outlines the sustainability measures that have been adopted in the team's aim to maximise sustainability within the site and achieve a BREEAM Domestic Refurbishment 'Excellent' rating for the refurbished dwellings. A summary of the preassessment credits for the BREEAM assessment are provided at the end of the BREEAM section, demonstrating that the scheme could achieve a score of 73.34%, exceeding the minimum 70% for an 'Excellent' rating.

The third section describes the predicted energy performance and carbon dioxide emissions of the proposed development at 307-309 Finchley Road. For this, the development's extension and new-build part will be compared to a notional building constructed to Part L1A standards, whilst the refurbished parts of the scheme are compared to notional existing baseline building.

Figure 1 summarises the regulated CO_2 savings achieved by the proposed development in comparison to the baseline buildings at each stage of the energy hierarchy. In total, the development is expected to achieve regulated CO_2 savings of 63%. This reduction reflects regulated energy use only, as unregulated energy use (e.g. plug-in appliances) is not taken into account in Part L of the Building Regulations.

The development is expected to achieve regulated CO_2 savings of 63% (44.6% total) across the entire site; 26.6% for the new build domestic part of the development, 64.7% for the domestic refurbishment part of the development, and 67.6% for the commercial refurbishment part of the development.

The regulated CO_2 saving has been achieved by maximising fabric efficiency for both the refurbished and new build aspects. The team aims to improve the building fabric beyond Building Regulations Part L targets through the incorporation of an efficient fabric with low U values, a good air permeability rate and a thermal bridging y-value in line with the Accredited Construction Details for all the new build parts. The design team aims to improve the refurbished elements of the scheme by improving the fabric U values beyond Part L1B and L2B compliance levels and through improving the air tightness of the units as well as

upgrading the heating and hot water systems in the scheme.

In summary, the proposed development complies with the London Plan CO_2 savings target of 35% overall. In

line with GLA policy, carbon offset payment to zero carbon for the residential elements is not relevant for this scheme.

Total CO₂ Savings over Part L 2013 Buildings Regulations Baseline (for new build parts) and existing baselines (for refurbishment parts)

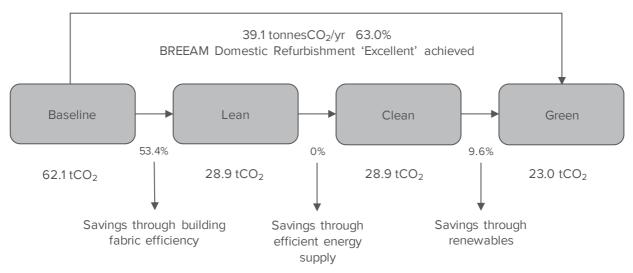


Figure 1: Energy Hierarchy

INTRODUCTION

This Chapter presents the description of the site and of the development proposal, the energy policy framework and the methodology employed for the energy assessment.

SITE & PROPOSAL

The proposal comprises the redevelopment of 307-309 Finchley Road and 307 Lithos Road extension. The proposed scheme will provide additional accommodation, both residential and office use. The proposal also seeks to extend and re-evaluate the late 20th century Lithos Road frontage of the building, in keeping with the wider context of the surrounding site. A new top floor, set back from the main building line is also proposed.

The scheme will generate additional floor space totalling approximately 2,260m², whilst current floor space is approximately 1,865m². There will be an overall increase in B1 and C3 uses, and retention of A2 use. A number of new residential units is proposed, ranging from studios to 3-bedroom family flats.

Figure 2: Location of the application site.

PLANNING POLICIES

The proposal will seek to respond to the energy and sustainability policies of the London Plan (2016), and of the policies within the London Borough of Camden's Local Plan (2017) and Planning Guidance 3 – Sustainability.

The most relevant applicable energy policies in the context of the proposed development are presented below.

THE LONDON PLAN

The London Plan (2016) is the overall strategic plan for London, setting out an integrated economic, environmental, transport and social framework for the development of London over the next 20–25 years.

The overarching energy policies of the London Plan are included in Chapter Five *London's Response to Climate Change* and include Policies 5.2 to 5.15:

- Policy 5.2: Minimising carbon dioxide emissions;
- Policy 5.3: Sustainable Design and Construction;
- Policy 5.4: Retrofitting;
- Policy 5.7: Renewable energy;
- Policy 5.9: Overheating and cooling; and
- Policy 5.15: Water Use and Supplies.

Extracts of Policies 5.2, 5.6, 5.7 and 5.9 are presented below as these are considered most relevant to the proposed scheme.

The London Plan also consists of a suite of guidance documents, most relevant of which are the Sustainable Design and Construction SPG (April 2014) & Energy Planning — GLA Guidance on preparing energy assessments (March 2016).

POLICY 5.2 MINIMISING CARBON DIOXIDE EMISSIONS

A. Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:

Be lean: use less energy

Be clean: supply energy efficiently

Be green: use renewable energy

B. The Mayor will work with boroughs and developers to ensure major developments meet the following targets for carbon dioxide emissions reduction in buildings. These targets are expressed as minimum improvements over the Target Emission Rate (TER) outlined in the national Building Regulations leading to zero carbon residential

buildings from 2016 and zero carbon non-domestic buildings from 2019.

Table 1: CO_2 emissions improvement targets against the current Building Regulations

Residential Buildings	
Year	Minimum improvement over Building Regulations 2013
2016 - 2031	Zero Carbon
Non-domestic Buildings	
Year	Minimum improvement over Building Regulations 2013
2016 - 2019	35%
2019 - 2031	Zero Carbon

POLICY 5.3 SUSTAINABLE DESIGN AND CONSTRUCTION

"Planning decisions:

- B. Development proposals should demonstrate that sustainable design standards are integral to the proposal, including its construction and operation, and ensure that they are considered at the beginning of the design process.
- C. Major development proposals should meet the minimum standards outlined in the Mayor's supplementary planning guidance and this should be clearly demonstrated within a design and access statement. The standards include measures to achieve other policies in this Plan and the following sustainable design principles:
- a. minimising carbon dioxide emissions across the site, including the building and services (such as heating and cooling systems)
- b. avoiding internal overheating and contributing to the urban heat island effect
- c. efficient use of natural resources (including water), including making the most of natural systems both within and around buildings
- d. minimising pollution (including noise, air and urban runoff)
- e. minimising the generation of waste and maximising reuse or recycling
- f. avoiding impacts from natural hazards (including flooding)

- g. ensuring developments are comfortable and secure for users, including avoiding the creation of adverse local climatic conditions
- h. securing sustainable procurement of materials, using local supplies where feasible, and
- i. promoting and protecting biodiversity and green infrastructure."

POLICY 5.4 RETROFITTING

The environmental impact of existing urban areas should be reduced through policies and programmes that bring existing buildings up to the Mayor's standards on sustainable design and construction. In particular, programmes should reduce carbon dioxide emissions, improve the efficiency of resource use (such as water) and minimise the generation of pollution and waste from existing building stock.

POLICY 5.7 RENEWABLE ENERGY

B. Within the framework of the energy hierarchy (see Policy 5.2), major proposals should provide a reduction in expected carbon dioxide emissions through the use of on-site renewable energy generation, where feasible.

D. All renewable energy systems should be located and designed to minimise any potential adverse impacts on biodiversity, the natural environment and historical assets, and to avoid any adverse impacts on air quality.

POLICY 5.9 OVERHEATING AND COOLING

B. Major development proposals should reduce potential overheating and reliance on air conditioning systems and demonstrate this in accordance with the following cooling hierarchy:

- 1. Minimise internal heat generation through energy efficient design
- 2. Reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls
- 3. Manage the heat within the building through exposed internal thermal mass and high ceilings

- Passive ventilation
 Mechanical ventilation
 Active cooling systems (ensuring they are the lowest carbon options).

POLICY 5.15 WATER USE AND SUPPLIES

"...setting an upper limit of daily domestic water consumption to 105 litres/head for residential developments (excluding a maximum allowance of 5 litres/head/day for external water consumption)."

GLA GUIDANCE ON PREPARING ENERGY ASSESSMENTS

This document (last updated in March 2016) provides guidance on preparing energy assessments to accompany strategic planning applications; it contains clarifications on Policy 5.2 carbon reduction targets in the context of zero carbon policy, as well as detailed guidelines on the content of the Energy Assessments undertaken for planning.

The guidance document specifies the emission reduction targets the GLA will apply to applications as follows:

Stage 1 schemes received by the Mayor on or after the f^t October 2016: Zero carbon for residential development and 35% below Part L 2013 for commercial development.

The definition of zero carbon homes is provided in section 5.3 of the guidance:

'Zero carbon' homes are homes forming part of major development applications where the residential element of the application achieves at least a 35 per cent reduction in regulated carbon dioxide emissions (beyond Part L 2013) on-site. The remaining regulated carbon dioxide emissions, to 100 per cent, are to be offset through a cash in lieu contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere.

The new guidance also includes changes to technical requirements relating to presenting carbon information separately for domestic and non-domestic elements of developments and the provision for cooling demand data where active cooling is required.

The structure of this report and the presentation of the carbon emission information for the development follows the guidance in this document.

ENERGY PLANNING
Greater London Authority guidance on preparing energy assessments (March 2016)

MAYOR OF LONDON

SUSTAINABLE DESIGN AND CONSTRUCTION SPG

The Sustainable Design and Construction SPG, adopted in April 2014, provides additional information and guidance to support the implementation of the Mayor's London Plan. The SPG does not set new policy, but explains how policies in the London Plan should be carried through into action.

It is applicable to all major developments and building uses so it is not technically applicable to this development, however in line with the developer's intention to implement the requirements of the London Plan it has been used to guide the design. It covers the following areas:

- Resource Management
- Adapting to Climate Change and Greening the City
- Pollution Management

This SPG provides a basis for sustainable design in London and is used as the overarching structure of this report. Where additional local policies are addressed by these areas this has also been indicated.

HOUSING SPG

This document provides guidance on the implementation of housing policies in the London Plan and it replaces the 2012 Housing SPG.

Part 2 covers housing quality and updates London housing standards to reflect the implementation of the government's new national technical standards through the Minor Alterations to the London Plan (2015-2016).

As design affects the quality of life, health & wellbeing, safety and security of users and neighbours, this guidance is integral to sustainable development and will be cross-referenced as relevant in the subsequent sections.

CAMDEN LOCAL PLAN -2017

The Camden Local Plan sets out the Council's planning policies and replaces the Core Strategy and Development Policies planning documents (adopted in 2010). The Local Plan in particular will help deliver the objectives of creating the conditions for harnessing the benefits of economic growth, reducing inequality and securing sustainable neighbourhoods.

The policies relevant to energy and sustainability are outline below:

Policy CC1 Climate change mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

- a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;
- b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;
- ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;
- d. support and encourage sensitive energy efficiency improvements to existing buildings;
- e. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and
- f. expect all developments to optimise resource efficiency.

For decentralised energy networks, we will promote decentralised energy by:

- g. working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;
- h. protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town)

- and safeguarding potential network routes; and
- i. requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network. To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

Camden Local Plan Adoption version June 2017

Policy CC2 Adapting to climate change

The Council will require development to be resilient to climate change.

All development should adopt appropriate climate change adaptation measures such as:

- a. the protection of existing green spaces and promoting new appropriate green infrastructure;
- b. not increasing, and wherever possible reducing, surface water runoff through increasing permeable surfaces and use of Sustainable Drainage Systems;
- c. incorporating bio-diverse roofs, combination green and blue roofs and green walls where appropriate; and

d. measures to reduce the impact of urban and dwelling overheating, including application of the cooling hierarchy.

Any development involving 5 or more residential units or 500 sqm or more of any additional floorspace is required to demonstrate the above in a Sustainability Statement.

Sustainable design and construction measures

The Council will promote and measure sustainable design and construction by:

- e. ensuring development schemes demonstrate how adaptation measures and sustainable development principles have been incorporated into the design and proposed implementation;
- f. encourage new build residential development to use the Home Quality Mark and Passivhaus design standards;
- g. encouraging conversions and extensions of 500 sqm of residential floorspace or above or five or more dwellings to achieve "excellent" in BREEAM domestic refurbishment; and
- h. expecting non-domestic developments of 500 sqm of floorspace or above to achieve "excellent" in BREEAM assessments and encouraging zero carbon in new development from 2019.

Policy CC3 Water and flooding

The Council will seek to ensure that development does not increase flood risk and reduces the risk of flooding where possible.

We will require development to:

- a. incorporate water efficiency measures;
- b. avoid harm to the water environment and improve water quality;
- c. consider the impact of development in areas at risk of flooding (including drainage);
- d. incorporate flood resilient measures in areas prone to flooding;
- e. utilise Sustainable Drainage Systems (SuDS) in line with the drainage hierarchy to achieve a greenfield run-off rate where feasible; and
- f. not locate vulnerable development in floodprone areas.

Where an assessment of flood risk is required, developments should consider surface water flooding in detail and groundwater flooding where applicable.

The Council will protect the borough's existing drinking water and foul water infrastructure, including the reservoirs at Barrow Hill, Hampstead Heath, Highgate and Kidderpore.

Policy CC4 Air quality

The Council will ensure that the impact of development on air quality is mitigated and ensure that exposure to poor air quality is reduced in the borough.

The Council will take into account the impact of air quality when assessing development proposals, through the consideration of both the exposure of occupants to air pollution and the effect of the development on air quality.

Consideration must be taken to the actions identified in the Council's Air Quality Action Plan.

Air Quality Assessments (AQAs) are required where development is likely to expose residents to high levels of air pollution. Where the AQA shows that

a. development would cause harm to air quality; the Council will not grant planning permission unless measures are adopted to mitigate the impact. Similarly, developments that introduce sensitive receptors (i.e. housing, schools) in locations of poor air quality will not be acceptable unless designed to mitigate the impact.

Development that involves significant demolition, construction or earthworks will also be required to assess the risk of dust and emissions impacts in an AQA and include appropriate mitigation measures to be secured in a Construction Management Plan.

Policy CC5 Waste

The Council will seek to make Camden a low waste borough.

We will:

a. aim to reduce the amount of waste produced in the borough and increase recycling and the reuse of materials to meet the London Plan targets of 50% of household waste

- recycled/composted by 2020 and aspiring to achieve 60% by 2031;
- b. deal with North London's waste by working with our partner boroughs in North London to produce a Waste Plan, which will ensure that sufficient land is allocated to manage the amount of waste apportioned to the area in the London Plan;
- c. safeguard Camden's existing waste site at Regis Road unless a suitable compensatory waste site is provided that replaces the maximum throughput achievable at the existing site; and
- d. make sure that developments include facilities for the storage and collection of waste and recycling.

CAMDEN PLANNING GUIDANCE -SUSTAINABILITY CPG3 - 2013

It is expected that this Guidance would be updated since the new Local Plan has been adopted in June 2017.

The Camden Planning Guidance support the policies set out in the Local Development Framework (LDF). While the Camden LDF contains policies relating to sustainability in their Core Strategy and Development Policies documents, the Council also has a separate planning guidance specific to sustainability. The sections that will be covered by the following sections of this Sustainability Statement are listed below:

The energy hierarchy

All new developments are to be designed to minimise carbon dioxide emissions by being as energy efficient as is feasible and viable.

Energy efficiency: new buildings

All new developments are to be designed to minimise carbon dioxide emissions by being as energy efficient as is feasible and viable.

Decentralised energy networks and combined heat and power

Development should follow the Energy Hierarchy

- 1. use less energy
- 2. supply energy efficiently
- 3. use renewable energy

Renewable Energy

All developments are to target at least a 20% reduction in carbon dioxide emissions through the installation of on-site renewable energy technologies. Special consideration will be given to heritage buildings and features to ensure that their historic and architectural features are preserved.

Water Efficiency

The Council expect all development to be designed to be water efficient by minimising water use and maximising the re-use of water. This includes new and existing buildings.

Sustainable use of materials

Major developments are anticipated to be able to achieve 15-20% of the total value of materials used to be derived from recycled and reused sources.

Sustainability assessment tools

Developments are anticipated to be able to achieve BREEAM 'Excellent' from 2013 onwards and at least 60% of Energy and Water credits and 40% of Materials credits.

Brown roofs, green roofs and green walls

The Council will expect all developments to incorporate brown roofs, green roofs and green walls unless it is demonstrated this is not possible or appropriate. This includes new and existing buildings. Special consideration will be given to historic buildings to ensure historic and architectural feature are preserved.

Flooding

Developments must not increase the risk of flooding, and are required to put in place mitigation measures where there is known to be a risk of flooding.

Adapting to climate change

All development is expected to consider the impact of climate change and be designed to cope with the anticipated conditions

PROPOSED SUSTAINABILITY MEASURES

The proposals incorporate a range of passive and active design measures that will reduce the energy demand for space conditioning, hot water and lighting. Sustainability measures will also include outline key sustainability items.

Due to the area of the non-domestic portion of the development being less than 500m², a BREEAM assessment is not required for this part of the development. The proposed sustainability measures for the non-domestic and new build portions of the scheme will be in line with Local Plan Policies CC1 to CC5, and the recommendations presented in Camden's Planning Guidance Part 3 on Sustainability. The domestic refurbishment portion of the development will be assessed under BREEAM Domestic Refurbishment, and a pre-assessment is presented later in the report.

The following subsections detail the sustainability measures that will be incorporated into the design of the development as a whole. The proceeding section furthers this, describing the specific measures required for the refurbished domestic portion of the development.

ENERGY

DWELLING AND BUILDING EMISSION RATE AND FABRIC ENERGY EFFICIENCY

The methodology set out by the Department of Energy and Climate Change (DECC) for assessing the energy use of dwellings is the Standard Assessment Procedure (SAP). The current version is SAP 2012. For non-domestic buildings, SBEM has been used.

Preliminary SAP and SBEM calculations were carried out to assess the potential CO_2 savings achieved through

- Energy efficiency measures
- The efficient supply of energy and
- Renewable systems

The preliminary calculations showed an improvement over baseline buildings and Part L Building Regulations

2013 where relevant, amounting to a 63% reduction in regulated CO_2 emissions for the scheme.

The energy demand of the development will be reduced by maximising fabric efficiency for both refurbished and new build portions of the development. This will be done by improving the building fabric beyond Building Regulations Part L through incorporation of high levels of insulation, accredited thermal bridging details and good levels of air tightness to improve the building's fabric efficiency. SAP and SBEM calculations were based on a building fabric with low U-values and an air permeability rate of 5m³/m².h at 50 Pa for new build and 10m³/m².h at 50 Pa for refurbished spaces.

DRYING SPACE

The proposed dwellings will include provisions for internal or external clothes drying where appropriate, thereby reducing the amount of electricity consumed through the use of tumble dryers.

ENERGY LABELLED WHITE GOODS

The dwellings will be supplied with an EU Energy Efficiency Labelling Scheme Leaflet to help the tenants choose energy efficient white goods or energy efficient white goods where the dwellings have been fitted out.

EXTERNAL LIGHTING

Energy efficient light fittings will be installed throughout the development where appropriate. In addition, external lights will be fitted with controls to reduce the energy consumption of the building during periods of infrequent use:

- External space lighting will include energy efficient fittings
- Security lighting will include daylight cut-off devices, with a maximum wattage of 150W and PIR.

LOW OR ZERO CARBON TECHNOLOGIES

A feasibility study was carried out to determine the energy strategy for the proposed development. The proposed strategy has surpassed Part L Building Regulations due to the reduction in the demand by a highly efficient shell. Photovoltaics have been proposed for the residential portion of the development, whilst air source heat pumps (ASHPs) are proposed for the commercial, achieving 9.6% reduction in CO2 emissions compared to the Baseline stage, and 20.6% compared to the Be Lean stage, which meets Camden's Local Plan Policy CC1.

CYCLE STORAGE

Communal cycle storage spaces will be provided for use by the residents to reduce the frequency of short car journeys. The cycle storage will be adequately sized and secured.

WATER

INDOOR WATER USE

The development at 307-309 Finchley Road aims to reduce water consumption in the dwellings to less than 96 litres per person per day, lower than the new target set out within the London Plan (Minor Alterations to the London Plan 2016), through the use of water efficient fittings, and these are listed below.

Fitting	Consumption per use
WC (full flush)	4 litres per flush
WC (half flush)	2.6 litres per flush
Kitchen sink tap	6 litres per min
Wash basin tap	5 litres per min
Bath	150 litres to overflow
Shower	7 litres per min
Washing machine	8.17 litres per kilogram
Dishwasher	1.25 litres per place setting

MATERIALS

Embodied energy is the energy that is used in the manufacture, processing and the transportation of the materials to site.

The construction build-ups for each of the main building elements are rated from A+ to E. Each element to be used in the building has been rated according to the BRE Green Guide to Specification whereby:

- A+ rated elements are least likely to affect the environment
- E rated elements are most likely to affect the environment

It is assumed that most of the main building elements within this development will achieve between an A+ to C rating where possible.

All timber used during site preparation and construction to be FSC certified, and all non-timber materials to be certified with Environmental Management Systems (ISO 14001 OR BES 6001) where possible.

WASTE

HOUSEHOLD WASTE

Dedicated external waste storage for the dwellings will be provided to meet the Local Authority requirements.

Adequate internal storage for recyclable waste will be provided to all dwellings in a dedicated position. The Local Authority provides recyclable household waste collection and sorting. Communal waste storage space will be provided for both commercial and residential parts of the development.

CONSTRUCTION SITE WASTE MANAGEMENT

The development will minimise the impact of construction waste on the environment through a Resource Management Plan or Strategy. This plan will include information such as:

- Benchmarks for resource efficiency
- Procedures and commitments to reduce hazardous and non-hazardous waste
- Monitoring hazardous and non-hazardous waste

POLLUTION

GLOBAL WARMING POTENTIAL (GWP) OF INSULANTS

Global warming potential (GWP) is a measure of how effective a gas is at preventing the passage of infrared radiation. Blowing agents, used in the production of insulation, are a common source of gases with high GWPs.

The development will aim to specify insulation materials that have a low Global Warming Potential (GWP).

NO_X EMISSIONS

Space heating and hot water requirements are to be met through high efficiency gas boilers with inherently low NOx emissions.

HEALTH AND WELLBEING

DAYLIGHTING

The dwellings have been designed with daylight in mind and measures have been taken to maximise daylight where possible.

SOUND INSULATION

The development proposes that airborne sound insulation will comply with current Building Regulations Part E standards.

LIFETIME HOMES

All dwellings will aim to be designed in line with Lifetime Homes principles where possible, ensuring that they are easily adaptable for future use.

MANAGEMENT

CONSTRUCTION SITE IMPACTS

To minimise the construction impacts of the site, the contractor will strive to monitor, report and set targets for:

- The production of CO₂ arising from site activities
- Water consumption from site activities

In addition, contractors will strive to adopt best practice policies for air (dust) and water (ground and surface) pollution occurring on site. All timber will be sourced following the Government's Timber Procurement Policy.

ECOLOGY

ECOLOGICAL VALUE OF SITE & PROTECTION OF ECOLOGICAL FEATURES

Due to its urban location and absence of ecological features on the existing site, the site is considered to be of low ecological value.

BUILDING FOOTPRINT

The proposed development will increase the density of the site. This will ensure that the land is used efficiently whilst maximising the building area.

SURFACE WATER RUN-OFF

There will be no increase in the man-made impermeable area draining to the watercourse, therefore there will be no increase in peak rate of runoff over the development lifetime.

The Environment Agency flood map shows the proposed development to be located within an area at low risk of flooding. A detailed Sustainable Urban Drainage Systems Strategy for the proposed development can be found in the following section.

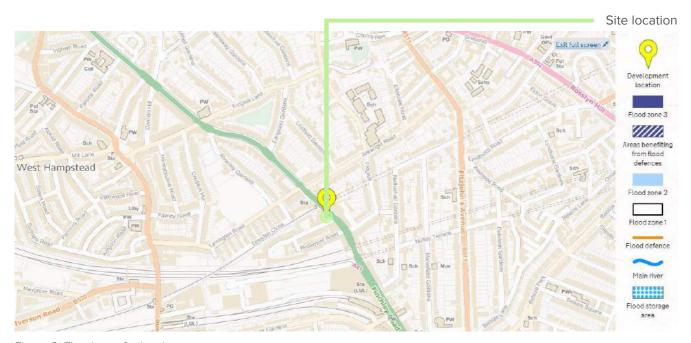


Figure 3: Flood map for local area

SUSTAINABLE URBAN DRAINAGE SYSTEMS

The total site area is approximately 528m² and is considered to be impermeable in its entirety. This impermeable area consists of both existing and proposed roof space. Pre and post development surface water runoff calculations showing the peak flow rate leaving the site can be found in Appendix D.

The onsite surface water would be managed in a sustainable manner to mimic the surface water flow arising from the site prior to the proposed development. This management strategy should aim to reduce flood risk to the site itself as well as elsewhere in the catchment while taking the influence of climate change into account.

The most effective way of managing flood risk at urban sites is through reducing the rate of surface water discharge. Historically, traditional piped systems transport surface water through our developments as quickly as possible, however this has proven to cause a number of additional adverse impacts including downstream flooding, reduced ground water levels, dry water flow and surface water contamination through run-off contamination.

EXISTING DRAINAGE NETWORKS

The Thames Water asset plan in Appendix E shows that there is a combined sewer running along both Lithos Road and Finchley Road. The closest manhole to the development site is located immediately north east of the site. The elevation of this manhole is shown to be 59.4m AOD with an invert level of 54.85m AOD on the asset plan

PROPOSED SUDS SOLUTION

The suggested SUDS solution aims to treat rainwater at source as far as possible, reducing the burden on existing Thames Water infrastructure. As the development involves the refurbishment and extension of an existing developed site located within a dense urban environment it is not considered possible to increase the area of permeable space. For this reason it is deemed most appropriate to integrate onsite storage and attenuation in order to reduce runoff as far as feasibly possible.

Policy 5.13 (Sustainable Drainage) of the London Plan states that developments should aim to achieve greenfield runoff rates and ensure that surface water run-off is managed as close to its source as possible. In the case of the proposed development site, greenfield runoff rate was calculated at 0.08 l/s.

Due to the urban nature, density of the site the application of natural infiltration SUDS techniques was considered unrealistic. For this reason the scheme will utilise onsite rainwater attenuation. As a result of the proposed attenuation, runoff is determined by the nature of the flow control device (Hydro-brake or similar approved) that restricts outflow to the local sewer system to 5l/s.

For the proposed 307-309 Finchley Road development it has been decided that the most appropriate SUDS strategy would be the integration of 4.2m³ of storage in the form of a rainwater attenuation tank. It was decided that the most appropriate location for this tank would be at basement level, allowing all site runoff to naturally drain to the lowest point of the site. This system would provide the total storage requirement to cope with the runoff rate following a 1 in 100 year, 6 hour storm event. This stored water will be channelled to the closest manhole located to the north east of the development site. As the proposed attenuation tank will be located at below ground level it will be necessary for the installation of a water pump to assist the flow of water from the site to the local combined sewer system.

This analysis has fully considered the Sustainable Urban Drainage hierarchy. With the information provided it has been proven that with the addition of a basement level attenuation tank the outflow will be reduced to 5l/s and thus reduce the flood risk and burden on existing Thames Water Infrastructure currently associated with the development site

SUSTAINABILITY STANDARDS

Within the Draft Core Strategy (2016), the BREEAM standard of 'Excellent' is required for all residential refurbishments with 5 or more dwellings. The following Pre-Assessment demonstrates compliance with the Local Authority's policies in relation to BREEAM assessments.

BREEAM DOMESTIC REFURBISHMENT 2014

BREEAM Domestic Refurbishment is a performance based assessment method and certification scheme for domestic buildings undergoing refurbishment. The primary aim of BREEAM Domestic Refurbishment is to improve the environmental performance of existing dwellings in a robust and cost effective manner. This is achieved through integration and use of the scheme by clients and their project teams at key stages in the refurbishment process.

A BREEAM Domestic Refurbishment Pre-Assessment was carried out for the residential refurbishment element of the development.

The pre-assessment tool uses established benchmarks to evaluate a building's specification, design, construction and operation, over a broad range of categories and criteria:

- Management processes
- Health and wellbeing
- Energy use
- Transport
- Water use
- Materials
- Waste
- Land use and ecology
- Pollution
- Innovation

The outcome of the pre-assessment is expressed as a single certified BREEAM rating, ranging from Pass (30%) to Outstanding (85%).

Table 2: BREEAM Certification Thresholds

BREEAM 2014 Rating	Percentage of Credits Required
Outstanding	85%
Excellent	70%
Very Good	55%
Good	45%
Pass	30%

The following section discusses how the development addresses the BREEAM sustainability criteria required to meet BREEAM 'Excellent'.

Each of the sustainability categories as set out in BREEAM are addressed; each sub-section highlights the sustainability measures that have been adopted to meet BREEAM 'Excellent'.

MANAGEMENT

MAN01 Home User Guide

A 'Home User Guide' will be made available to the main dwellings providing occupants with an understanding of the energy associated with the operation of their home. This non-technical guide will include operational instructions, recommendations on improving energy use and information on the surrounding area (local amenities) to obtain full credits in this section.

MANO2 Responsible Construction Practices

The tender specification will require contractors to be compliant with the Considerate Constructors Scheme (CCS). Additional credits have been awarded as it is expected that formal certification will be achieved and that contractors will operate beyond best practice with a score of 35-39 with a score of at least 7 in each section.

MAN03 Construction Site Impacts

To minimise the construction impacts of the site, contractors will be required to monitor, report and set targets for the reduction of CO_2 arising from site activities in respect to energy and CO_2 emissions, and water consumption.

MAN04 Security

All external doors and windows will meet minimum security standards and be appropriately certified. A suitably qualified security consultant will be consulted at the design stage, with their recommendations incorporated into the refurbishment specification.

MAN06 Project Management

All of the project team has been involved in the project decision-making and individual and shared roles and responsibilities have been assigned by the project manager across the following key design and refurbishment stages:

- Planning and Building control notification
- Design
- Refurbishment
- Commissioning and handover
- Occupation

Key design team meetings will be held to define and make key decisions that influence or affect the dwelling's proposed designs, and their refurbishment in accordance with the design (and therefore the dwelling's sustainability impacts and BREEAM performance).

As part of the handover and aftercare strategy a handover meeting will be arranged and two or more of the following items will be committed to:

- A site inspection within 3 months of occupation.
- Conduct post occupancy interviews with building occupants or a survey via phone or posted information within 3 months of occupation.
- Longer term after care e.g. a helpline, nominated individual or other appropriate system to support building users for at least the first 12 months of occupation.

HEALTH AND WELLBEING

HEA01 Daylighting

The refurbishment will be designed to result in a neutral impact on the dwellings daylighting levels in the kitchen, living room, dining room and study.

HEA02 Sound Insulation

Existing separating walls and floors will be designed to achieve airborne sound insulation levels 3dB higher than Part E and impact sound levels 3dB lower than Part E. This will be confirmed through sound testing post-completion.

HEA05 Ventilation

The minimum ventilation levels set out in Sections 5 and 7 of Building Regulations Approved Document Part F will be provided for all habitable rooms, kitchens, utility rooms and bathrooms.

HEA06 Safety

Fire and carbon monoxide detection systems will be installed as part of the refurbishment and extension. A compliant fire detection and alarm system will also be provided.

ENERGY

ENEO1 Improvement in Energy Efficiency Rating (EER)

The Energy Efficiency Rating (EER) is a measure of the overall efficiency of a dwelling. It accounts for regulated energy use in terms of heating, hot water, equipment, lighting and auxiliary energy use.

The methodology set out by the Department of Energy and Climate Change (DECC) for assessing the energy use of dwellings is the Standard Assessment Procedure (SAP). The current version of software is FSAP 2012.

Preliminary SAP calculations were carried out to assess the potential CO_2 savings achieved through energy efficiency measures.

The preliminary SAP calculation for the proposed development at 307-309 Finchley Road showed considerable reductions in energy demand in comparison to the existing building. The SAP calculation results indicate that the EER will increase by an average of 19 for the refurbished dwellings.

ENEO2 Energy Efficiency Rating (EER) Post Refurbishment

Reduction in energy demand of the proposed dwellings will be achieved through the use of well insulated external building elements, high performance glazing, use of efficient lighting throughout the dwellings, and the installation of energy efficient space heating and hot water systems.

SAP calculations show that an average EER of 80 will be achieved. This exceeds the EER of 70 required to meet BREEAM Domestic Refurbishment 'Excellent'.

ENEO3 Primary Energy Demand

An average primary energy demand of less than 120 $kWh/m^2/year$ will be achieved after refurbishment works are carried out for the development at 307-309 Finchley Road.

ENE05 Energy Labelled White Goods

The dwellings will be supplied with energy efficient appliances that are recognised as having the following ratings in the EU Energy Efficiency Labelling Scheme.

- Fridges, freezers & fridge-freezers: A+
- Washing machines: A++
- Dishwashers: A+
- Washer dryers & tumble dryers A>

ENEO6 Drying Space

The proposed refurbishment will include provisions for clothes drying, thereby reducing the amount of electricity consumed through the use of tumble dryers. The development will include at least 4m of retractable drying lines in 1-2 bedroom dwellings and at least 6m of retractable drying line in 3+ bedroom dwellings.

ENE07 Lighting

External - Energy efficient light fittings will be installed in the external spaces. Existing external lighting will also meet the compliance requirements.

In addition, external lights will be fitted with controls to reduce the energy consumption of the building during periods of infrequent use:

- external space lighting will include energy
- efficient fittings
- security lighting will include daylight cut-off devices, with a maximum wattage of 150W and
- PIR

Internal lighting will have a maximum average wattage across the total floor area of 9 watts/m².

ENEO8 Energy Display Devices

Energy display devices will be installed in all dwellings to enable the occupants to gain an understanding of their energy consumption and to enable them to reduce their energy use in the future.

The display device will provide information on current electricity and primary heating consumption data and will be capable of recording consumption data.

ENE09 Cycle Storage

At least 20 cycle storage spaces will be provided for the site. This is to reduce the frequency of short car journeys. The cycle storage space will be adequately sized, secure, covered and accessible to all residents.

ENE10 Home Office

Each proposed dwelling will allow for a home office space in an appropriate room comprising:

- sufficient space for a chair, desk and bookshelf
- adequate ventilation
- 2 No. double power sockets and
- 2 No. telephone sockets (or one telephone
- socket where broadband is provided)

WATER

WAT01 Internal Water Use

The water category aims to reduce the consumption of potable water in the home from all sources. These are mandatory credits within BREEAM Domestic Refurbishment, with BREEAM 'Excellent' setting an upper limit of 107 litres per person per day.

The proposed development aims to reduce water consumption through the use of water efficient fittings, including dual flush toilet, water efficient shower heads and taps.

It is estimated that the proposed refurbishment and extension will achieve a water consumption rate of less than 96 litres/person/day, exceeding the minimum requirement for BREEAM Domestic Refurbishment 'Excellent'.

WATO2 External Water Use

As the development have no individual or communal garden space, this credit has been awarded by default.

MATERIALS

MAT01 Environmental Impact of Materials

Embodied energy is the energy that is used in the manufacture, processing and the transportation of the materials to site.

The construction build-ups for each of the main building elements are rated from A+ to E. Each element to be used in the building has been rated according to the BRE Green Guide to Specification whereby:

- A+ rated elements are least likely to affect the environment
- E rated elements are most likely to affect the environment

It is assumed that most of the main building elements within this development will achieve between an A+ to C rating.

MATO2 & MATO3 Responsible Sourcing of Materials and Insulation

The principal contractor will source materials in accordance with a documented sustainable procurement plan and at least 80% of the materials specified will be obtained from responsible sources.

This includes all basic building elements, comprising the building frame, floors, roof, external walls, foundations and internal walls and all finishing elements.

In addition, 100% of all timber used on site will be legally sourced, thereby satisfying the mandatory requirements set out in this category. Any timber used in the structural and finishing elements will be specified from certified sustainable sources such as FSC or PEFC.

Where possible, on-site materials will be reused and recycled to lower transport CO_2 emissions associated with off-site recycling. Where practicable, materials with a high recycled or waste content will be specified.

The insulation index for all new insulation used in external walls, floors, roof and building services will be more than 2 when calculated using the BREEAM Mat03 Insulation Calculator.

WASTE

WAS01 Household Waste

A Local Authority Collection Scheme will be in operation for the collection of mixed recyclable household waste, at least 30 litres of storage space for recycling will be provided internally at a dedicated position in the kitchen.

WASO2 Construction Site Waste Management

The development will minimise the impact of construction waste on the environment through a Level 2 Site Waste Management Plan (SWMP). This plan will include:

- benchmarks for resource efficiency
- procedures and commitments to reduce
- hazardous and non-hazardous waste
- monitoring hazardous and non-hazardous
- waste

The amount of waste generated will be recorded in the SWMP, and the volume of non-hazardous construction waste generated from the development will meet or exceed the target resource efficiency benchmark. If demolition is included as part of the refurbishment programme, then the audit should also cover demolition materials. In addition, pre-refurbishment audit of the existing building will be completed prior to works commencing on site.

POLLUTION

POL01 NOx Emissions

This section aims to reduce the release of nitrogen oxide (NOx) into the atmosphere. Space heating and hot water requirements of the dwellings will be met by high efficiency gas boiler with low inherent NOx emissions. Gas boilers with NOx emissions of less than 40 mg/kWh will be specified.

POL02 Surface Water Runoff

The building footprint will remain the same after the refurbishment, therefore there will be a neutral impact on surface water.

POL03 Flooding

The Environment Agency flood map shows the site to be at low risk of flooding. Please refer to image 3 in Page 21.

BREEAM PRE-ASSESSMENT RESULTS

A BREEAM pre-assessment has been undertaken at pre-application stage which has shown that a score of 73.34 is feasible. This includes the minimum requirements from Camden Council for Energy and

Water (at least 60% of available credits) and Materials (at least 40% of available credits).

The results for the pre-assessment are summarised in the table below, and include a breakdown of the currently targeted score for each issue and category.

Table 3: BREEAM Pre-Assessment Breakdown

DDEEAM Catagory	Total Credits	Score Assessment			
BREEAM Category	Available	Sub-total	Weighting	Score (%)	
Management	11	11	12%	12.0%	
Health & Wellbeing	12	8	17%	11.3%	
Energy	29	10	43%	30.4%	
Water	5	4	11%	8.80%	
Materials	48	22	8%	3.6%	
Waste	5	4	3%	2.4%	
Pollution	8	5	6%	3.75%	
Innovation	10	1	-	1.0%	
BREE	EEAM 'Excellent' Total Points Scored: 73.34%				

ENERGY STRATEGY SUMMARY

This section describes the predicted energy performance and carbon dioxide emissions of the proposed 307-309 Finchley Road development based on the information provided by the design team.

METHODOLOGY - BE LEAN, BE CLEAN, BE GREEN

The methodology used to determine CO_2 emissions is in accordance with the London Plan's three-step Energy Hierarchy (Policy 5.2A) outlined below. The development will be compared to existing baseline buildings and Building Regulations Part L 2013 baseline.

The reductions made through each step have been outlined here:

BE LEAN - USE LESS ENERGY

The first step addresses reduction in energy demand, through the adoption of passive and active design measures.

The proposed energy efficiency measures include levels of insulation beyond Building Regulation requirements, low air tightness levels, efficient lighting as well as energy saving controls for space conditioning and lighting.

By means of energy efficiency measures alone, regulated CO_2 emissions are shown to reduce by:

- 0.3% (0.01 tonnes per annum) for the new build domestic part of the development;
- 56.5% (25.5 tonnes per annum) for the refurbishment domestic part of the development;
- 57.3% (7.7 tonnes per annum) for the nondomestic part of the development; and
- 53.4% (33.2 tonnes per annum) across the whole site.

BE CLEAN – SUPPLY ENERGY EFFICIENTLY

The application site is located in an area where district heating is not expected to be implemented in the future.

A site heat network has not been found to be feasible or viable for a development of this scale; individual high efficiency gas boilers are instead proposed to provide heat to the dwellings. There will be no additional savings at this step.

BE GREEN - USE RENEWABLE ENERGY

The renewable technologies feasibility study carried out for the development identified photovoltaics and air source heat pumps as suitable technologies for the development.

The incorporation of renewable technologies will further reduce CO₂ emissions *on site* by a further:

- 26.3% (1.0 tonnes per annum) for the new build domestic part of the development;
- 8.2% (3.7 tonnes per annum) for the refurbished domestic part of the development;
- 10.3% (1.4 tonnes per annum) for the nondomestic part of the development; and
- 9.6% (5.9 tonnes per annum) across the site as a whole.

The scheme will also achieve a 20.6% reduction in regulated CO2 emission with LZC technologies when compared to the Be Lean Stage, which meets the 20% target set out in Camden's Local Plan Policy CC1.

CUMULATIVE ON SITE SAVINGS

The overall regulated CO_2 savings *on site* against existing buildings baseline and Part L 2013 compliant scheme are therefore:

- 26.6% (1.0 tonnes per annum) for the new build domestic part of the development;
- 64.7% (29.1 tonnes per annum) for the refurbishment domestic part of the development; and
- 67.6% (9.1 tonnes per annum) for the nondomestic part of the development.

The total regulated CO_2 savings for the site are 39.1 tonnes, equivalent to 63% of the baseline emissions, and exceeding the 35% reduction target set out in the London Plan for major developments.

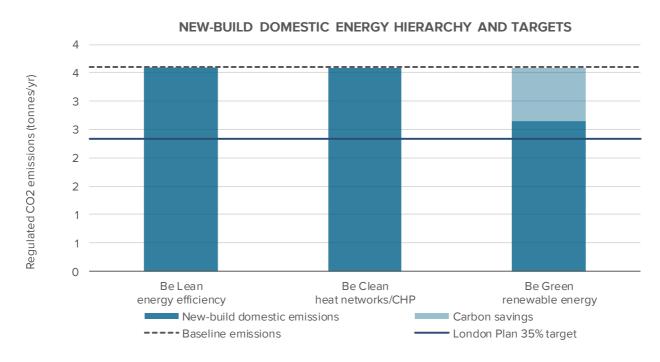


Figure 4: The New Build Domestic Energy Hierarchy

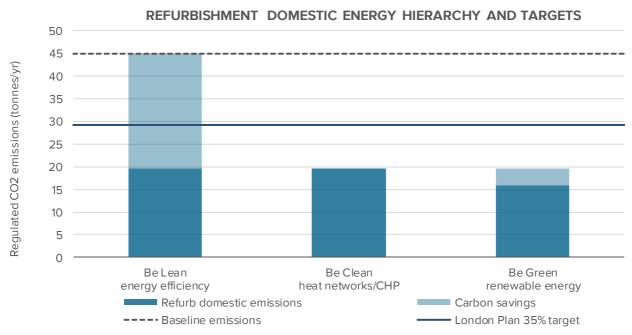


Figure 5: The Refurbishment Domestic Energy Hierarchy

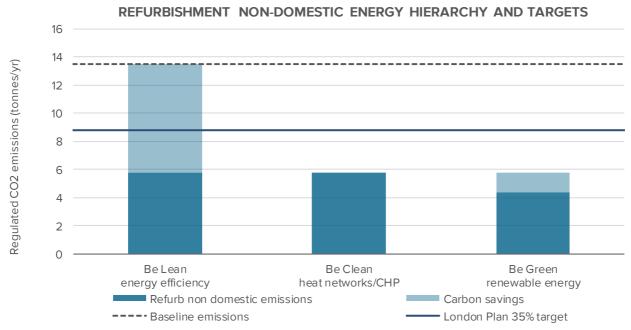


Figure 6: The Non-Domestic Energy Hierarchy

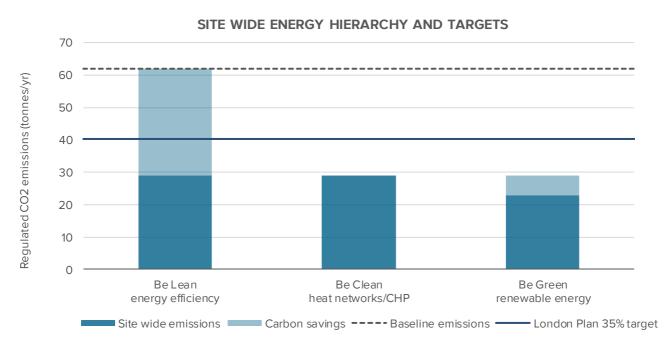


Figure 7: The Site Wide Energy Hierarchy

BE LEAN – USE LESS ENERGY

The proposal incorporates a range of passive and active design measures that will reduce the energy demand for space conditioning, hot water and lighting. Measures will also be put in place to reduce the risk of overheating. The regulated carbon saving achieved in this step of the Energy Hierarchy is 53.4% over the site wide baseline level.

PASSIVE DESIGN MEASURES

ENHANCED U-VALUES

The heat loss of different building fabric elements is dependent upon their U-value. A building with low U-values provides better levels of insulation and reduced heating demand during the cooler months.

The proposed development will incorporate high levels of insulation and high-performance glazing beyond notional building specifications, in order to reduce the demand for space conditioning (heating and/or cooling).

The tables to the right demonstrate the improved performance of the proposed building fabric for both new build and refurbishment domestic and non-domestic uses.

AIR TIGHTNESS IMPROVEMENT

Heat loss may also occur due to air infiltration. Although this cannot be eliminated altogether, good construction detailing and the use of best practice construction techniques can minimise the amount of air infiltration.

The proposed development will aim to improve upon the Part L 2013 minimum standards for air tightness by targeting air permeability rates of $5 \, \text{m}^3/\text{m}^2$ at 50Pa for all new build units and $10 \, \text{m}^3/\text{m}^2$ at 50Pa for refurbished areas

Table 4: Thermal Envelope U-values

New Build Domestic (U-values in W/m².K)					
Element	Building Regulations	Proposed	Improvement		
Walls	0.30	0.15	50%		
Roof	0.20	0.10	50%		
Windows	2.00	1.40	30%		
Refurbishment (U-values in W/m².K)					
	ent (O-values in	W/III .IX)			
Element	Existing	Proposed	Improvement		
	·		Improvement 82%		
Element	Existing	Proposed	•		
Element Walls	Existing 1.70	Proposed 0.30	82%		

REDUCING THE NEED FOR ARTIFICIAL LIGHTING

The development has been designed to maximise daylight in all habitable spaces.

All of the habitable areas will benefit from generous glazing area to increase the amount of daylight within the internal spaces where possible. This is expected to reduce the need for artificial lighting whilst delivering pleasant, healthy spaces for occupants.

ACTIVE DESIGN MEASURES

HIGH EFFICACY LIGHTING

The development intends to incorporate low energy lighting fittings throughout the residential and non-residential spaces. All light fittings will be specified as low energy lighting, and will accommodate LED, compact fluorescent (CFLs) or fluorescent luminaries only.

HEAT RECOVERY VENTILATION

Mechanical ventilation heat recovery (MVHR) is proposed for the commercial units. The mechanical ventilation system will include heat recovery in order to achieve ventilation in the most energy-efficient way. Natural ventilation is proposed for the dwellings.

COMFORT COOLING

Air source heat pumps with high energy efficiency ratios may be used for both heating and cooling in the commercial units, therefore the impact of active cooling in terms of energy use and carbon emissions will be minimised.

CONTROLS

Advanced lighting controls will be incorporated, specifically for areas of infrequent use, occupant sensors will be fitted for lighting, whereas day lit areas will incorporate daylight sensors where appropriate for the commercial parts of the development.

MONITORING

Apart from the above design measures, the development will incorporate monitoring equipment and systems to enable occupiers to monitor and reduce their energy use.

Smart meters will be installed to monitor the heat and electricity consumption of each dwelling; the display board will demonstrate real-time and historical energy use data and will be installed at an accessible location within the dwellings.

ENERGY USE

The table below shows a breakdown of carbon dioxide emissions associated with the proposed development's fossil fuel and electricity consumption for the different uses. The site-wide data are presented, i.e. the sum of the demand for both the domestic and non-domestic parts of the development. The figures provide a comparison between the baseline condition and the proposed development once energy efficiency measures (Lean) have been applied.

This table demonstrates the energy savings achieved through energy efficiency measures (Lean stage of the Energy Hierarchy)

Table 5: Breakdown of energy consumption and CO_2 emissions for the baseline and the proposed schemes after 'Lean' measures are implemented

	Baseline			Lean		
	Energy (kWh/yr.)	kgCO₂ /yr.	kgCO ₂ /m ²	Energy (kWh/yr.)	kgCO₂ /yr.	kgCO ₂ /m ²
Hot Water	58,670	12,800	11.1	34,590	7,550	6.5
Space Heating	157,620	37,800	32.8	62,590	14,070	12.2
Cooling	6,480	3,280	2.8	3,420	1,730	1.5
Auxiliary	3,100	1,590	1.4	1,370	700	0.6
Lighting	12,810	6,570	5.7	9,470	4,850	4.2
Equipment	43,880	22,770	19.7	46,320	24,040	20.8
Total Part L	238,670	62,050	53.8	111,440	28,900	25.0
Total (incl. equipment)	282,560	84,830	73.5	157,760	52,940	45.9

BE LEAN CO₂ EMISSIONS & SAVINGS

By means of energy efficiency measures alone, regulated CO_2 emissions are shown to reduce by:

- 0.3% (0.01 tonnes per annum) for the new build domestic part of the development;
- 56.5% (25.5 tonnes per annum) for the domestic refurbishment part of the development;
- 57.3% (7.7 tonnes per annum) for the nondomestic part of the development; and
- 53.4% (33.2 tonnes per annum) across the whole site.

BE CLEAN - SUPPLY ENERGY EFFICIENTLY

The development site does not lie in the vicinity of an existing or proposed district energy network, and a communal CHP network would not be viable for this scale of development. Communal heating has also been disregarded given the associated design, cost and maintenance implications of incorporating and operating a communal plantroom and the lesser efficiency of such a system compared to an individualised solution. The proposed system for space heating and hot water is therefore individual high efficiency gas boilers.

ENERGY SYSTEM HIERARCHY

The energy system for the development has been selected in accordance with the London Plan decentralised energy hierarchy. The hierarchy listed in Policy 5.6 states that energy systems should consider:

- Connection to existing heating and cooling networks;
- 2. Site wide CHP network; and,
- 3. Communal heating and cooling.

Local heat and power sources minimise distribution losses and achieve greater efficiencies when compared to separate energy systems, thus reducing CO_2 emissions.

In a communal energy system, energy in the form of heat, cooling, and/or electricity is generated from a central source and distributed via a network of insulated pipes to surrounding residences.

CONNECTION TO AN EXISTING NETWORK

The London Heat Map identifies existing and potential opportunities for decentralised energy projects in London. It builds on the 2005 London Community Heating Development Study.

An excerpt from the London Heat Map can be seen on the following page which shows the energy demand for different areas. Darker shades of red signify areas where energy demand is high. The map also highlights any existing and proposed district heating networks within the vicinity of the development.

SITE WIDE CHP NETWORK

The small scale of the development would not render the option of a site wide CHP network a feasible or viable option.

COMMUNAL HEATING

A centralised system is not suitable to a development of this size, due to the relatively large space required for the plant room, the small number of households to cover the capital costs and the small overall demand for heating rendering the centralised system inefficient.

INDIVIDUAL HEATING

Space heating and hot water for the development will therefore be provided by individual high efficiency gas boilers. Compared to a communal boiler heating system, individual boilers will be more efficient to run and maintain, therefore delivering higher carbon savings.

Given that it has not been found feasible or viable for the proposed development to incorporate the supply of low carbon heating, no carbon savings are achieved for this step of the Energy Hierarchy.

ENERGY & SUSTAINABILITY STATEMENT

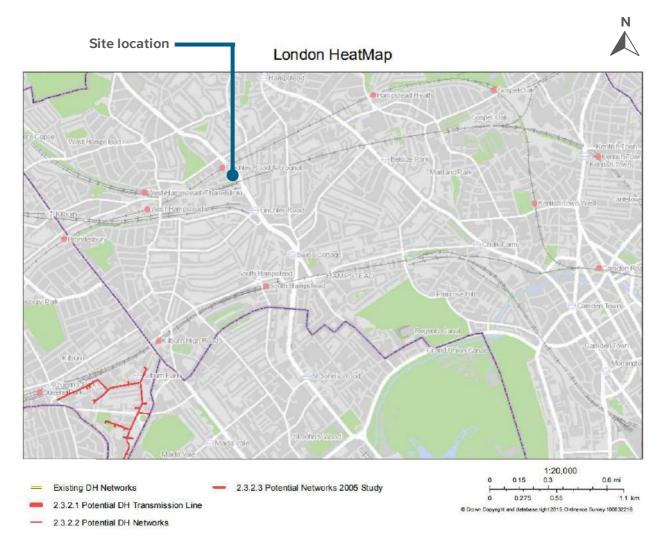


Figure 8: Excerpt from the London Heat Map

BE GREEN – USE RENEWABLE ENERGY

The renewable technologies feasibility study carried out for the development identified photovoltaics for the domestic part of the development and air source heat pumps for the commercial part of the development as suitable technologies. The regulated carbon saving achieved in this step of the Energy Hierarchy is 9.6% over the site wide baseline level.

RENEWABLE TECHNOLOGIES FEASIBILITY STUDY

Methods of generating on-site renewable energy (Green) were assessed, once Lean and Clean measures were taken into account.

The development of 307-309 Finchley Road will benefit from an energy efficient building fabric which will reduce the energy consumption of the proposed development in the first instance. A range of renewable technologies were subsequently considered including:

- Biomass;
- Ground/water source heat pumps;
- Air source heat pump;
- Wind energy;
- Photovoltaic panels, and,
- Solar thermal panels.

In determining the appropriate renewable technology for the site, the following factors were considered:

- CO₂ savings achieved;
- Site constraints; and
- Any potential visual impacts.

ENERGY & SUSTAINABILITY STATEMENT

RENEWABLE ENERGY APPRAISAL SUMMARY

The table below summarises the factors taken into account in determining the appropriate renewable technologies for this project. This includes estimated capital cost, lifetime, level of maintenance and level of impact on external appearance. The final column indicates the feasibility of the technology in relation to the site conditions (10 being the most feasible and 0 being infeasible). It is important to note that the

information provided is indicative and based upon early project stage estimates.

The feasibility study demonstrates that photovoltaics and ASHP would be the most feasible renewable technologies for the proposed 307-309 Finchley Road development. Detailed assessments for the proposed technologies can be found in the following sections.

Table 6: Summary of renewable technologies feasibility study

		Comments	Lifetime	Maintenance	Impact on external appearance	Site feasibility
Biomass		Not adopted -burning of wood pellets releases high NOx emissions and there are limitations for their storage and delivery within an urban location.	20 yrs.	High	High	2
PV		Adopted	25 yrs.	Low	Med	9
Solar thermal		Not adopted - PV is deemend to be the most effective roof mouted renewable solution	25 yrs.	Low	Med	3
GSHP		Not adopted -the installation of ground boreholes requires significant space, additional time at the beginning of the construction process and very high capital costs.	20 yrs.	Med	Low	0
ASHP	- S	Adopted	20 yrs.	Med	Med	8
Wind		Not adopted - Wind turbines located at the site will have a significant visual impact on the existing locally listed building.	25 yrs.	Med	High	2

DETAILED ASSESSMENT OF PHOTOVOLTAIC PANELS

Four types of solar cells are available on the market at present and these are mono-crystalline, polycrystalline, thin film and hybrid panels. Although monocrystalline and hybrid cells are the most expensive, they are also the most efficient with an efficiency rate of 12-20%. Poly-crystalline cells are cheaper but they are less efficient (9-15%). Thin film cells are only 5-8% efficient but can be produced as thin and flexible sheets.

Photovoltaics are considered a suitable technology for this development for the following reasons:

- The development provides an extent of roof space for the installation of PV panels;
- PV arrays are relatively easy to install when compared to other renewable systems; and
- PV panels provide a significant amount of CO₂ savings.

The PV shall comprise 11.6kWp (72.2m²) of horizontal roof mounted arrays. The PV array will be connected to the domestic part of the development (landlord areas).

The table to the right summarises the technical data for the proposed PV array and estimated CO_2 savings from the application of this technology. In total, the PV installation would produce regulated CO_2 savings of 7.3% for the development.

An indicative area for the installation of the PV panels on the roof can be found in the following page.

Table 7: Summary of technical/operational data and estimated CO_2 savings for PVs

16	%
Horizontal	
950.6	kWh/m².yr
20	%
11.55	kWp
72.16	m ²
8,780	kWh/yr.
4.6	t/yr.
62.1	t/yr.
84.8	t/yr.
9.6	%
7.0	%
	Horizontal 950.6 20 11.55 72.16 8,780 4.6 62.1 84.8 9.6

^{* %} reduction from site baseline

Figure 9: Monocrystalline PV arrays

ENERGY & SUSTAINABILITY STATEMENT

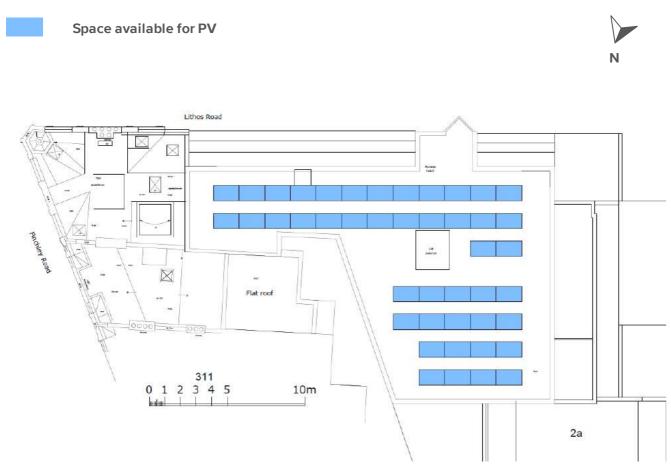


Figure 10. Proposed PV layout for 307-309 Finchley Road

DETAILED ASSESSMENT OF AIR SOURCE HEAT PUMPS

Air source heat pumps (ASHPs) employ the same technology as ground source heat pump (GSHPs). However, instead of using heat exchangers buried in the ground, heat is extracted from the external ambient air.

The efficiency of heat pumps is very much dependent on the temperature difference between the heat source and the space required to be heated. As a result, ASHPs tend to have a lower COP than GSHPs. This is due to the varying levels of air temperature throughout the year when compared to the relatively stable ground temperature. The lower the difference between internal and external air temperature, the more efficient the system.

ASHP is considered a suitable technology for the commercial part of the development for the following reasons:

- It is a high efficiency system that can cater for the space heating and cooling of the nondomestic areas of the proposed development;
- Requires less capital cost than GSHP and other renewable technologies; and
- It can be integrated with the proposed ventilation strategy.

This technology may be employed to provide the space heating and cooling for future fit-out of the non-domestic parts of the development.

The table below summarises the technical data for the proposed ASHP and estimated CO_2 savings from the application of this technology. In total, the ASHP technology would produce regulated CO_2 savings of 2.2% for the development.

Table 8: Summary of technical/operational data and estimated CO_2 savings for ASHP

ASHP for non-domestic spaces				
COP heating		4.0		
COP cooling		6.0		
Carbon intensity of electricity	0.519	kgCO2/kWh		
Proportion of non-domestic space heating and hot water met by ASHP	0	%		
Proportion of non-domestic space cooling met by ASHP	100	%		
Energy met by ASHP	10,590	kWh/yr.		
Energy used by ASHP	2,620	kWh/yr.		
Total CO ₂ savings	1.4	t/yr.		
Regulated baseline CO ₂ emissions	62.1	t/yr.		
Total baseline CO ₂ emissions	84.8	t/yr.		
% Regulated CO ₂ reduction*	2.2	%		
% Total CO ₂ reduction*	1.6	%		

^{* %} reduction from site baseline

Figure 11: Outdoor unit of an ASHP

ENERGY & SUSTAINABILITY STATEMENT

BE GREEN CO₂ EMISSIONS & SAVINGS

The incorporation of renewable technologies will further reduce CO_2 emissions by a further:

- 26.3% (1.0 tonnes per annum) for the new build domestic part of the development;
- 8.2% (3.7 tonnes per annum) for the domestic refurbishment part of the development;
- 10.3% (1.4 tonnes per annum) for the nondomestic part of the development; and
- 9.6% (5.9 tonnes per annum) across the whole site.

CONCLUSIONS

Following the implementation of the three-step Energy Hierarchy, the cumulative CO_2 savings on site are estimated at 26.6% for the new build domestic and 64.7% for the domestic refurbishment parts, and 67.6% for the non-domestic part of the development, against an existing buildings baseline and Part L 2013 compliant scheme. The regulated CO_2 savings for the site as a whole are 63%.

ON SITE CO₂ SAVINGS

By implementing the three step Energy Hierarchy as detailed in the previous sections, the Regulated CO_2 emissions for the development have been reduced against a Part L 2013 compliant scheme through on site measures alone by:

- 26.6% (2.6 tonnes per annum) for the new build domestic part of the development;
- 64.7% (29.1 tonnes per annum) for the domestic refurbishment part of the development;
- 10.3% (9.1 tonnes per annum) for the nondomestic part of the development; and
- 63% (39.1 tonnes per annum) across the whole site.

The proposed development complies with the London Plan CO_2 savings target of 35% overall. The target 20% reduction in regulated CO_2 emissions from LZC technologies (when compared to the Be Lean Stage) set out in the Camden Local Plan is also achieved through the installation of photovoltaics and air source heat pumps.

The tables on the following pages summarise the implementation of the Energy Hierarchy for the proposed scheme and detail the CO_2 emissions and savings against the baseline scheme for each step of the hierarchy.

Separate tables are presented for the new build domestic, domestic refurbishment and non-domestic refurbishment parts of the development; as well as for the site as a whole.

Overall, the proposed development has been designed to meet energy policies set out by the GLA and the London Borough of Camden, which

demonstrates the client and the design team's commitment to enhancing sustainability of the scheme.

In line with GLA policy, carbon offset payment to zero carbon for the residential elements is not relevant for this scheme.

SUSTAINABILITY

In summary, the proposed 307-309 Finchley Road development will meet the targets set out by Camden Council and the Greater London Authority (GLA). The scheme achieves a BREEAM score of 73.34%, exceeding the BREEAM 'Excellent' target of 70%.

The credits obtained in the BREEAM pre-assessment and the site-wide sustainability measures incorporated reflect the client and design team's aspirations in integrating sustainability measures and demonstrates that the project is designed to exceed the planning policy sustainability requirements.

DOMESTIC CUMULATIVE SAVINGS

 $Table \ 9: CO_2 \ emissions \ after \ each \ step \ of \ the \ Energy \ Hierarchy \ for \ the \ new \ build \ domestic \ part \ of \ the \ development$

	Carbon dioxide emissions for new build domestic part (tonnes CO2 per annum)		
	Regulated	Unregulated	
Baseline	3.6	3.6	
After energy demand reduction	3.6	3.6	
After heat network/CHP	3.6	3.6	
After renewable energy	2.64	3.6	

Table 10: Regulated CO2 savings from each stage of the Energy Hierarchy for the new build domestic part of the development

	Regulated new build domestic part carbon dioxide savings		
	Tonnes CO ₂ per annum	% over baseline	
Savings from energy demand reduction	0.01	0.3%	
Savings from heat network/CHP	0.0	0.0%	
Savings from renewable energy	0.95	26.3%	
Cumulative on site savings	0.96	26.6%	

Table 11: CO₂ emissions after each step of the Energy Hierarchy for the domestic refurbishment part of the development

	Carbon dioxide emissions for domestic refurbishment part (tonnes CO2 per annum)		
	Regulated	Unregulated	
Baseline	45.0	15.6	
After energy demand reduction	19.5	15.6	
After heat network/CHP	19.5	15.6	
After renewable energy	15.86	15.6	

Table 12: Regulated CO₂ savings from each stage of the Energy Hierarchy for the domestic refurbishment part of the development

	Regulated domestic refurbishment part carbon dioxide savings			
	Tonnes CO ₂ per annum	% over baseline		
Savings from energy demand reduction	25.4	56.5		
Savings from heat network/CHP	0.0	0.0		
Savings from renewable energy	3.7	8.2		
Cumulative on site savings	29.1	64.7		

NON-DOMESTIC CUMULATIVE SAVINGS

Table 13: CO₂ emissions after each step of the Energy Hierarchy for the non-domestic refurbishment part of the development

	Carbon dioxide emissions for non-domestic refurbishment part (tonnes CO₂ per annum)		
	Regulated	Unregulated	
Baseline	13.5	3.5	
After energy demand reduction	5.8	3.5	
After heat network/CHP	5.8	3.5	
After renewable energy	4.4	3.5	

Table 14: Regulated CO_2 savings from each stage of the Energy Hierarchy for the non-domestic refurbishment part of the development

	Regulated non-domestic refurbishment part carbon dioxide savings			
	Tonnes CO ₂ per annum	% over baseline		
Savings from energy demand reduction	7.7	57.3		
Savings from heat network/CHP	0.0	0.0		
Savings from renewable energy	1.4	10.3		
Cumulative on site savings	9.1	67.6		

SITE-WIDE CUMULATIVE SAVINGS

Table 15: Site wide regulated CO₂ emissions and savings

	Total regulated emissions (tonnes CO₂/year)	Regulated CO ₂ savings (tonnes CO ₂ /year)	Percentage saving (%)
Baseline	62.1		
Be Lean	28.9	33.2	53.4%
Be Clean	28.9	0.0	0.0%
Be Green	23.0	5.9	9.6%
Total	62.1	39.1	63.0%

APPENDIX A – OVERHEATING RISK ASSESSMENT

Calculated by Stroma FSAP 2012 program, produced and printed on 22 August 2017

Property Details: Flat 2

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: Yes Number of storeys: 2

Front of dwelling faces: Unspecified

Overshading: Average or unknown

No

Thermal mass parameter: Indicative Value Medium

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach): 8 (Windows fully open)

Overheating Details:

Summer ventilation heat loss coefficient: 339.23 (P1)

Transmission heat loss coefficient: 42.1

Summer heat loss coefficient: 381.32 (P2)

Overhangs:

Overhangs:

Orientation:	Ratio:	Z_overhangs:			
North West (NW)	0	1			
South East (SE)	0	1			
Nort <mark>h We</mark> st (NW Baseme	e 0 t)	1			
Solar shading:					
Orie <mark>ntati</mark> on:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North West (NW)	1	0.9	1	0.9	(P8)
South East (SE)	1	0.9	1	0.9	(P8)
North West (NW Baseme	efit)	0.9	1	0.9	(P8)

Solar gains:

Orientation		Area	Flux	g _	FF	Shading	Gains
North West (NW)	0.9 x	2.4	98.85	0.7	0.8	0.9	107.61
South East (SE)	0.9 x	6	119.92	0.7	0.8	0.9	326.38
North West (NW Bas	eme aty x	3.8	98.85	0.7	0.8	0.9	170.38
						Total	604.36 (P3/P4)

Internal gains:

	June	July	August
Internal gains	286.45	275.06	281.33
Total summer gains	929.17	879.42	813.23 (P5)
Summer gain/loss ratio	2.44	2.31	2.13 (P6)
Mean summer external temperature (Thames valley)	16	17.9	17.8
Thermal mass temperature increment	0.25	0.25	0.25
Threshold temperature	18.69	20.46	20.18 (P7)
Likelihood of high internal temperature	Not significant	Not significant	Not significant

Assessment of likelihood of high internal temperature: Not significant

Calculated by Stroma FSAP 2012 program, produced and printed on 22 August 2017

Property Details: Plot 4

Dwelling type:FlatLocated in:EnglandRegion:Thames valleyCross ventilation possible:No

Cross ventilation possible: Number of storeys: 2

Front of dwelling faces: Unspecified

Overshading: Average or unknown

None

Thermal mass parameter: Indicative Value Medium

False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach): 5 (Windows fully open)

Overheating Details:

Summer ventilation heat loss coefficient: 186.72 (P1)

Transmission heat loss coefficient: 56.6

Summer heat loss coefficient: 243.37 (P2)

Overhangs:

Overhangs:

Night ventilation:

Orientation:	Ratio:	Z_overhangs:			
South East (SE)	0	1			
North East (NE)	0	1			
North East (NE Baseme	en t)	1			
Solar shading:					
Orie <mark>ntati</mark> on:	Z blinds:	Solar access:	Overhangs:	Z summer:	
South East (SE)	1	0.9	1	0.9	(P8)
North East (NE)	1	0.9	1	0.9	(P8)
North East (NE Baseme	ent)	0.9	1	0.9	(P8)

Solar gains:

Orientation		Area	Flux	\mathbf{g}_{-}	FF	Shading	Gains
South East (SE)	0.9 x	4.6	119.92	0.7	0.8	0.9	250.23
North East (NE)	0.9 x	3.1	98.85	0.7	0.8	0.9	138.99
North East (NE Base	men t) .9 x	2.3	98.85	0.7	0.8	0.9	103.12
						Total	492.34 (P3/P4)

Internal gains:

	June	July	August
Internal gains	265.18	254.69	260.62
Total summer gains	789.23	747.03	692.13 (P5)
Summer gain/loss ratio	3.24	3.07	2.84 (P6)
Mean summer external temperature (Thames valley)	16	17.9	17.8
Thermal mass temperature increment	0.25	0.25	0.25
Threshold temperature	19.49	21.22	20.89 (P7)
Likelihood of high internal temperature	Not significant	Slight	Slight

Assessment of likelihood of high internal temperature: Slight

Calculated by Stroma FSAP 2012 program, produced and printed on 22 August 2017

Dwelling type: Flat Located in: England Region: Thames valley Yes

Cross ventilation possible: Number of storeys: 1

Front of dwelling faces: Unspecified

Overshading: Average or unknown

Thermal mass parameter: Indicative Value Medium

False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach): 6 (Windows fully open)

Summer ventilation heat loss coefficient: (P1) 487.84

Transmission heat loss coefficient: 63.4 Summer heat loss coefficient:

551.2 (P2)

Overhangs:

Overhangs:

Night ventilation:

Orientation:	Ratio:	Z_overhangs:			
North East (NE)	0	1			
South West (SW)	0	1			
South East (SE)	0	1			
Solar shading:	_			_	
Orie <mark>ntati</mark> on:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North East (NE)	1	0.9	1	0.9	(P8)
South West (SW)	1	0.9	1	0.9	(P8)
South East (SE)	1	0.9	1	0.9	(P8)

Orientation		Area	Flux	\mathbf{g}_{-}	FF	Shading	Gains
North East (NE)	0.9 x	5.4	98.85	0.7	0.8	0.9	242.12
South West (SW)	0.9 x	3.2	119.92	0.7	0.8	0.9	174.07
South East (SE)	0.9 x	1.5	119.92	0.7	0.8	0.9	81.6
						Total	497.78 (P3/P4)

	June	July	August
Internal gains	405.07	388.74	397.15
Total summer gains	934.83	886.52	833.73 (P5)
Summer gain/loss ratio	1.7	1.61	1.51 (P6)
Mean summer external temperature (Thames valley)	16	17.9	17.8
Thermal mass temperature increment	0.25	0.25	0.25
Threshold temperature	17.95	19.76	19.56 (P7)
Likelihood of high internal temperature	Not significant	Not significant	Not significant

Assessment of likelihood of high internal temperature: Not significant

Calculated by Stroma FSAP 2012 program, produced and printed on 22 August 2017

Property Details: Plot 8

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: Yes
Number of storeys: 1

Front of dwelling faces: Unspecified

Overshading: Average or unknown

Overhangs: Nor

Thermal mass parameter: Indicative Value Medium

False

Night ventilation: Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):6 (Windows fully open)

Overheating Details

Summer ventilation heat loss coefficient: 386.51 (P1)

Transmission heat loss coefficient: 50.5

Summer heat loss coefficient: 436.96 (P2)

Overhangs:

Orientation:	Ratio:	Z_overhangs:			
South East (SE)	0	1			
South West (SW)	0	1			
Solar shading:					
Orie <mark>ntati</mark> on:	Z blinds:	Solar access:	Overhangs:	Z summer:	
South East (SE)	1	0.9	1	0.9	(P8)
South West (SW)	1	0.9	1	0.9	(P8)
Solar gains:					

Orientation		Area	Flux	g_{-}	FF	Shading	Gains
South East (SE)	0.9 x	3.6	119.92	0.7	0.8	0.9	195.83

South West (SW) 0.9 x 1.4 119.92 0.7 0.8 0.9 76.16 **Total** 271.98 **(P3/P4)**

Internal gains:

	June	July	August
Internal gains	343.98	330.4	338.2
Total summer gains	629.5	602.38	591.93 (P5)
Summer gain/loss ratio	1.44	1.38	1.35 (P6)
Mean summer external temperature (Thames valley)	16	17.9	17.8
Thermal mass temperature increment	0.25	0.25	0.25
Threshold temperature	17.69	19.53	19.4 (P7)
Likelihood of high internal temperature	ihood of high internal temperature Not significant Not significant		Not significant

Assessment of likelihood of high internal temperature: Not significant

Calculated by Stroma FSAP 2012 program, produced and printed on 22 August 2017

Property Details: Plot 10

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: No Number of storeys: 1

Front of dwelling faces: Unspecified

Overshading: Average or unknown

None

Thermal mass parameter: Indicative Value Medium

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach): 4 (Windows fully open)

Overheating Details

Summer ventilation heat loss coefficient: 114.39 (P1)

Transmission heat loss coefficient: 17.7

Summer heat loss coefficient: 132.12 (P2)

Overhangs:

Overhangs:

Orientation:	Ratio:	Z	_overhangs:						
North East (NE)	0	1							
Solar shading:									
Orie <mark>ntati</mark> on:	Z bline	ls: S	Solar access:	Ove	erhangs:	Zs	ummer:		
Nort <mark>h Eas</mark> t (NE)	1	C).9	1		0.9			(P8)
Solar gains:									
Orientation		Area	Flux	g_	FF		Shading	Gains	
North East (NE)	0.9 x	4.7	98.85	0.7	0.8		0.9	210.73	
						T	otal	210.73	(P3/P4)

Internal dains:

	June	July	August	
Internal gains	251.38	241.54	247.39	
Total summer gains	478.88	452.27	419.8 (F	P5)
Summer gain/loss ratio	3.62	3.42	3.18 (F	P6)
Mean summer external temperature (Thames valley)	16	17.9	17.8	
Thermal mass temperature increment	0.25	0.25	0.25	
Threshold temperature	19.87	21.57	21.23 (F	P7)
Likelihood of high internal temperature	Not significant	Slight	Slight	

Assessment of likelihood of high internal temperature: Slight

APPENDIX B – SAP RESULTS

		Harri Datalla				
		User Details:				
Assessor Name:		Stroma Nu				
Software Name:	Stroma FSAP 2012	Software \		Versio	n: 1.0.4.6	
	Р	roperty Address: Flat	2			
Address:	ciona					
Overall dwelling dimen	SIONS.	Area(m²)	Av. Height(m	, \	Volume(m³)	
Basement		21.93 (1a)		(2a) =	57.67	(3a)
Ground floor		21.93 (1b)		(2b) =	70.83	」` ´
)+(1b)+(1c)+(1d)+(1e)+(1r		3.20	(==)	70.00	
,	/1(1b)1(16)1(1d)1(16)1(11	,, , ,	+(3b)+(3c)+(3d)+(3e)+	(3p) - [٦,,
Dwelling volume		(3a)-	-(3b)+(3c)+(3d)+(3e)+	(311) =	128.5	(5)
2. Ventilation rate:	main secondar	v other	total		m³ per hour	
Nivershau of alaiman ave	heating heating	·		x 40 =		_
Number of chimneys					0	(6a)
Number of open flues	0 + 0	+ 0 =	0	x 20 =	0	(6b)
Number of intermittent fan	S		2	x 10 =	20	(7a)
Number of passive vents			0	x 10 =	0	(7b)
Number of flueless gas fire	es		0	x 40 =	0	(7c)
				Air ch	ange <mark>s per</mark> ho	ur
Inditation due to chiese	fluor and form (60) (6b) (7	70) ((7b) ((7c) -				_
	s, flues and fans = (6a)+(6b)+(7 en carried out or is intended, proceed		20 ue from (9) to (16)	÷ (5) =	0.16	(8)
Number of storeys in the					0	(9)
Additional infiltration			[((9)-1]x0.1 =	0	(10)
Structural infiltration: 0.2	25 for steel or timber frame or	0.35 for masonry cor	nstruction		0	(11)
if both types of wall are pre deducting areas of opening	sent, use the value corresponding to	o the greater wall area (afte	er	- -		_
	oor, enter 0.2 (unsealed) or 0.	.1 (sealed), else ente	r 0	Γ	0	(12)
If no draught lobby, ente	,	,,,		ļ	0	(13)
	and doors draught stripped			ļ	0	(14)
Window infiltration	0 11	0.25 - [0.2 x (14)) ÷ 100] =	Į.	0	(15)
Infiltration rate		(8) + (10) + (11)	+ (12) + (13) + (15) =	ļ	0	(16)
Air permeability value, q	50, expressed in cubic metre	es per hour per square	e metre of envelor	oe area	10	(17)
•	y value, then (18) = [(17) ÷ 20]+(8		·		0.66	(18)
Air permeability value applies	if a pressurisation test has been dor	ne or a degree air permeab	ility is being used	L		」 ` ′
Number of sides sheltered					2	(19)
Shelter factor		(20) = 1 - [0.075	x (19)] =		0.85	(20)
Infiltration rate incorporating	ng shelter factor	$(21) = (18) \times (20)$)) =	Ī	0.56	(21)
Infiltration rate modified for	monthly wind speed		· · · · ·			
Jan Feb M	Mar Apr May Jun	Jul Aug Se	ep Oct No	v Dec		
Monthly average wind spe	ed from Table 7					

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

Wind Factor (2	22a)m –	(22)m :	1										
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
Adjusted infiltr	otion rat	o (allowi	na for ol	alter on	d wind a	nood) –	(21a) v	(22a)m				_	
0.71	0.7	0.68	0.61	0.6	0.53	0.53	0.52	0.56	0.6	0.63	0.65	1	
Calculate effe		_	rate for t	he appli	1	ise]	
If mechanic			andiv NL (C)))) (00a	a) [m, /	aguatian (l	\ F\\ atha	muiaa (22h	·) (22a)			0	
If balanced wit		0		, ,	,	. ,	,, .	`	i) = (23a)			0	
a) If balance		•	-	_					2h)m + (23h) 🗴 [1 <i>– (23c</i>)	0 0 ÷ 1001	(23c)
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If balance	ed mech	anical ve	entilation	without	heat red	covery (N	иV) (24k	m = (22)	2b)m + (23b)	1	1	
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24b)
c) If whole h											-	_	
	1	< (23b), t	· ` `	´`		· `	í``	í 	· ` ·	í 		1	(0.4.)
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
d) If natural if (22b)r		on or wh en (24d)							0.51				
$(24d)_{m=}$ 0.75	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.66	0.68	0.7	0.71		(24d)
Effective air	change	rate - er	nter (24a) or (2 <mark>4</mark> b	o) or (24	c) or (24	d) in bo	x (25)					
(25)m= 0.75	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.66	0.68	0.7	0.71		(25)
0.11(1													
3. Heat losse	es and he	eat loss p	paramet										
3. Heat losse ELEMENT	Gros	ss	Openin	ıgs	Net Ar		U-val		AXU		k-value		AXk
ELEMENT		ss		ıgs	A ,r	m²	W/m2	2K	(W/	K)	k-value kJ/m²-		kJ/K
ELEMENT Doors	Gros area	ss	Openin	ıgs	A ,r	m ² x	W/m2	2K	(W/	K)			kJ/K (26)
ELEMENT Doors Windows Type	Gros area	ss	Openin	ıgs	A ,r	m² x x1	W/m ₂ 1.5 /[1/(1.6)+	= = = = = = = = = = = = = = = = = = =	3 3.61	K)			kJ/K (26) (27)
Doors Windows Type Windows Type	Gros area e 1	ss	Openin	ıgs	A ,r 2 2.4 6	m² x x1 x1	W/m2 1.5 /[1/(1.6)+ /[1/(1.6)+	2K = + 0.04] = + 0.04] =	3 3.61 9.02	K)			kJ/K (26) (27) (27)
Doors Windows Type Windows Type Windows Type	Gros area e 1	ss	Openin	ıgs	A ,r 2 2.4 6 3.8	x1 x1 x1	W/m ² 1.5 /[1/(1.6)+ /[1/(1.6)+	2K = 0.04] = 0.04] = 0.04] = 0.04] =	3 3.61 9.02 5.71	K)			kJ/K (26) (27) (27) (27)
Doors Windows Type Windows Type Windows Type Floor	Gros area e 1 e 2 e 3	ss (m²)	Openin m	gs 1 ²	A ,r 2 ,4 6	x1 x1 x1 x1 x1 x1	W/m ² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	2K = 0.04] = - 0.04] = - 0.04] = = =	(W// 3 3.61 9.02 5.71 5.482	K)			kJ/K (26) (27) (27) (27) (28)
Doors Windows Type Windows Type Windows Type Floor Walls Type1	Gros area = 1 = 2 = 3	ss (m²)	Openin m	gs 1 ²	A ,r 2 ,4 6	x1 x1 x1 x1 x2 x	W/m ² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25	2K = 0.04] = 0	(W// 3 3.61 9.02 5.71 5.482 3.52	K)			(26) (27) (27) (27) (28) (29)
Doors Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2	Gros area = 1 = 2 = 3 = 15.5 = 17.8	52 33	3.8 10.4	gs 1 ²	A ,r 2 , 2.4 6	x1 x1 x1 x1 x2 x	W/m ² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3	2 K = 0.04] = + 0.04] = + 0.04] = = = = = = =	(W// 3 3.61 9.02 5.71 5.482 3.52 2.23	K)			(26) (27) (27) (27) (27) (28) (29)
Doors Windows Type Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Walls Type3	Gros area e 1 e 2 e 3 15.5 17.8	52 33 3	Openin m	gs 1 ²	A ,r 2 .4 6 .3.8 21.92 11.72 7.43 2.93	x1 x1 x1 x1 x2 x x	W/m ² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25	2 K = 0.04] = + 0.04] = + 0.04] = = = = = = =	(W// 3 3.61 9.02 5.71 5.482 3.52	K)			kJ/K (26) (27) (27) (27) (28) (29) (29)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Walls Type3 Total area of extended to the windows and	Gros area e 1 e 2 e 3 15.5 17.8 2.9 elements	52 33 3, m ² dows, use 6	3.8 10.4 0	indow U-ve	A ,r 2 ,4 6	x1 x1 x1 x2 x x x x x x	W/m ² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3 0.27	2K =	(W// 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78		kJ/m²-	K C	(26) (27) (27) (27) (27) (28) (29)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Walls Type3 Total area of e	Gros area e 1 e 2 e 3 15.5 17.8 2.9 elements d roof wind as on both	52 33 3 5, m ² dows, use 6	3.8 10.4 0 effective winternal wal	indow U-ve	A ,r 2 ,4 6	x1 x1 x1 x2 x x x x x x	W/m ² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3 0.27	2 K	(W// 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78		kJ/m²-	K C	(26) (27) (27) (27) (28) (29) (29) (29) (31)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Walls Type3 Total area of e * for windows and ** include the area	Gros area e 1 e 2 e 3 15.5 17.8 2.9 ellements as on both ss, W/K =	52 33 3, m ² dows, use et a sides of irr = S (A x	3.8 10.4 0 effective winternal wal	indow U-ve	A ,r 2 ,4 6	x1 x1 x1 x2 x x x x x x	W/m ² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3 0.27	2 K = -0.04 = -0.04 = -0.04 = = = = = = = = = =	(W// 3 3.61 9.02 5.71 5.482 3.52 2.23 0.78	as given in	kJ/m²-	K	(26) (27) (27) (27) (28) (29) (29) (29) (31)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Walls Type3 Total area of e * for windows and ** include the area Fabric heat los	Gros area e 1 e 2 e 3 15.5 17.8 2.9 elements a roof wind as on both ss, W/K: Cm = S(52 33 3, m ² lows, use e a sides of ir = S (A x (A x k)	3.8 10.4 0 effective winternal wall	indow U-valls and pan	A ,r 2 .4 6 .3.8 21.92 11.72 7.43 2.93 58.24 alue calculatitions	x1 x1 x1 x1 x2 x x x x x x x x x x x x x	W/m ² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3 0.27	2 K	3 3.61 9.02 5.71 5.482 3.52 2.23 0.78	as given in [2] + (32a).	kJ/m²-	h 3.2	(26) (27) (27) (27) (28) (29) (29) (29) (31) (34)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Walls Type3 Total area of e * for windows and ** include the are Fabric heat los Heat capacity	Gros area e 1 e 2 e 3 15.5 17.8 2.9: elements d roof winde as on both ss, W/K: Cm = S(s parame sments wh	52 33 3 3 3 6, m ² 6 ws, use et a sides of interest (A x k) eter (TMF) eter (TMF)	3.8 10.4 0 effective winternal wall U) $P = Cm - \frac{1}{2}$ etails of the	indow U-valls and pan	A ,r 2	x1 x	W/m² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3 0.27 g formula 1 (26)(30	2 K	3 3.61 9.02 5.71 5.482 3.52 2.23 0.78 ue)+0.04] a	as given in (2) + (32a).: Medium	kJ/m²-	h 3.2	(26) (27) (27) (27) (28) (29) (29) (29) (31) (34)
ELEMENT Doors Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Walls Type3 Total area of e * for windows and ** include the are Fabric heat los Heat capacity Thermal mass For design assess	Gros area e 1 e 2 e 3 15.5 17.8 2.9 elements d roof wind as on both ss, W/K: Cm = S(g parame sments wh and of a de	52 33 3 3, m ² lows, use enders of interpretation of the control of the cont	3.8 10.4 0 effective winternal wall U) P = Cm - etails of the ulation.	indow U-vells and part	A ,r 2 .4 6 .3.8 21.92 11.72 7.43 2.93 58.2' alue calculatitions n kJ/m²K	x1 x	W/m² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3 0.27 g formula 1 (26)(30	2 K	3 3.61 9.02 5.71 5.482 3.52 2.23 0.78 ue)+0.04] a	as given in (2) + (32a).: Medium	kJ/m²-	h 3.2	(26) (27) (27) (27) (28) (29) (29) (29) (31) (34) (34) (0) (35)
ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Floor Walls Type1 Walls Type2 Walls Type3 Total area of e * for windows and ** include the area Fabric heat los Heat capacity Thermal mass For design assess can be used inste	Gros area e 1 e 2 e 3 15.5 17.8 2.9 elements d roof winder as on both ess, W/K: Cm = S(c parame sments whe and of a de es : S (L al bridging	52 33 3 6, m² clows, use end sides of interest (A x k) enter (TMF) entere the decentaled calculation.	3.8 10.4 0 effective winternal wall U) P = Cm - etails of the ulation. culated	indow U-valls and part	A ,r 2.4 6 3.8 21.92 11.72 7.43 2.93 58.2 salue calculatitions n kJ/m²K cion are no	x1 x	W/m² 1.5 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.25 0.3 0.3 0.27 g formula 1 (26)(30	2 X =	3 3.61 9.02 5.71 5.482 3.52 2.23 0.78 ue)+0.04] a	as given in (2) + (32a).: Medium	kJ/m²-	h 3.2	(26) (27) (27) (27) (28) (29) (29) (29) (31) (35) (34) (0 (35)

Ventila	tion hea	at loss ca	alculated	l monthly	y				(38)m	= 0.33 × (25)m x (5))		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	31.91	31.49	31.08	29.17	28.81	27.15	27.15	26.84	27.79	28.81	29.54	30.29		(38)
Heat tr	ansfer c	coefficier	nt, W/K	-	-	-	-	-	(39)m	= (37) + (37)	38)m			
(39)m=	73.99	73.58	73.17	71.25	70.9	69.23	69.23	68.92	69.87	70.9	71.62	72.38		
Heat Ic	ss para	meter (F	HLP), W/	/m²K			-			Average = = (39)m ÷	Sum(39) ₁	12 /12=	71.25	(39)
(40)m=	1.69	1.68	1.67	1.62	1.62	1.58	1.58	1.57	1.59	1.62	1.63	1.65		
م ما مصد دا			oth /Tob	lo 40\			ı	ı	,	Average =	Sum(40) ₁	12 /12=	1.62	(40)
Numbe	Jan	Feb	nth (Tab Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
(11)	0.		0.							<u> </u>			l	()
1 \//0	tor boot	ing oner	av roqui	iromont:								kWh/ye	oor:	
4. VVa	ilei neai	ing ener	gy requi	irement:								Kvvri/ye	tal.	
		ipancy, I		F4	/ o oooo	140 (T	- 400	\0\1 · 0 /	2040 /	FEA 40		.51		(42)
	A > 13.9 A £ 13.9		+ 1./6 X	[1 - ехр	(-0.0003	349 X (11	-A -13.9)2)] + 0.0	J013 X (IFA -13.	.9)			
Annual	l averag	e hot wa						(25 x N)).11		(43)
				usage by all w		_	•	to achieve	a water us	se target o	f			
not more			·								ı			
Hot water	Jan er usaga ii	Feb	Mar day for es	Apr	May	Jun	Jul Table 1c x	Aug	Sep	Oct	Nov	Dec		
	,	,						<i>/ / / / / / / / / / / / / / / / / / / </i>	00 = 1					
(44)m=	7 7.13	74.32	71.52	68.71	65.91	63.1	63.1	65.91	68.71	71.52	74.32	7 7.13	044.07	7(44)
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x E	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		841.37	(44)
(45)m=	114.37	100.03	103.23	89.99	86.35	74.51	69.05	79.23	80.18	93.44	102	110.77		_
lf instant	taneous w	ater heatir	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46		Γotal = Su	m(45) ₁₁₂ =	=	1103.17	(45)
(46)m=	17.16	15	15.48	13.5	12.95	11.18	10.36	11.89	12.03	14.02	15.3	16.61		(46)
	storage	loss:											I	
Storag	e volum	e (litres)	includin	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
	-	•			-		litres in	. ,						
			hot wate	er (this in	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
	storage anufact		eclared l	oss facto	or is kno	wn (kWł	n/day).					0		(48)
•			m Table		J. 10 1410	("aay).					0	 	(49)
				, kWh/ye	ear			(48) x (49)) =			0	 	(50)
				cylinder l		or is not		(10) // (10)	,			0	l	(50)
				om Tabl								0		(51)
	-	_	ee secti	on 4.3									ĺ	
		from Tal		2h							-	0		(52)
•			m Table					(47) =	· /==>	- 0)		0	 	(53)
		m water [54) in (5	_	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
		, , ,	•	for each	month			((56)m - (55) ~ (41)	m		0	I	(55)
1				for each		_		((56)m = (_		l	(50)
56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)

If cylinder conta	ins dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circu	uit loss cal	culated t	for each	month (,	` '	` '				0		(58)
(modified	-	1			i	i e			i		1	1	(50)
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss o	alculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m					-	
(61)m= 39.3	34.21	36.44	33.89	33.59	31.12	32.16	33.59	33.89	36.44	36.65	39.3		(61)
Total heat re	quired for	water he	eating ca	alculated	for eacl	h month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)n	า
(62)m= 153.6	8 134.24	139.67	123.88	119.94	105.63	101.21	112.82	114.07	129.89	138.65	150.07		(62)
Solar DHW inpu	it calculated	using App	endix G or	· Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add addition	al lines if	FGHRS	and/or V	VWHRS	applies	, see Ap	pendix (G)				•	
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	water hea	ter											
(64)m= 153.6	8 134.24	139.67	123.88	119.94	105.63	101.21	112.82	114.07	129.89	138.65	150.07		_
							Outp	out from w	ater heate	r (annual) ₁	12	1523.74	(64)
Heat gains fi	om water	heating,	kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 47.86	41.81	43.43	38.39	37.11	32.56	31	34.74	35.13	40.18	43.08	46.66		(65)
in <mark>clude</mark> (57	7)m in cal	culation	of (65)m	only if c	ylinder i	s in the	dwelling	or hot w	ate <mark>r is fr</mark>	om com	munity h	eating	
5. Internal	gains (see	Table 5	and 5a):									
Metabolic ga	ins (Table	5), Wat	ts									_	
Met <mark>abolic</mark> ga		5), Wat Mar	ts Apr	May	Jun	Jul –	Aug	Sep	Oct	Nov	Dec		
	Feb			May 90.73	Jun 90.73	Jul - 90.73	Aug 90.73	Sep 90.73	Oct 90.73	Nov 90.73	Dec 90.73		(66)
Jan	Feb 90.73	Mar 90.73	Apr 90.73	90.73	90.73	90.73	90.73	90.73					(66)
(66)m= 90.73	Feb 90.73 s (calcula	Mar 90.73	Apr 90.73	90.73	90.73	90.73	90.73	90.73					(66) (67)
(66)m= 90.73 Lighting gair	Feb 90.73 s (calcula 26	Mar 90.73 ted in Ap 21.14	90.73 ppendix 16.01	90.73 L, equat 11.97	90.73 ion L9 o	90.73 r L9a), a 10.92	90.73 Iso see	90.73 Table 5	90.73	90.73	90.73		` '
(66)m= 90.73 Lighting gair (67)m= 29.27	Feb 90.73 s (calcula 26 gains (calcula	Mar 90.73 ted in Ap 21.14	90.73 ppendix 16.01	90.73 L, equat 11.97	90.73 ion L9 o	90.73 r L9a), a 10.92	90.73 Iso see	90.73 Table 5	90.73	90.73	90.73		` '
Jan (66)m= 90.73 Lighting gair (67)m= 29.27 Appliances g	Feb 90.73 s (calcula 26 gains (calcula 198.06	Mar 90.73 ted in Ap 21.14 culated in	Apr 90.73 ppendix 16.01 Append 182.02	90.73 L, equat 11.97 dix L, eq 168.25	90.73 ion L9 of 10.1 uation L	90.73 r L9a), a 10.92 13 or L1 146.65	90.73 Iso see 14.19 3a), also 144.62	90.73 Table 5 19.04 See Ta	90.73 24.18 ble 5 160.66	90.73	90.73		(67)
(66)m= 90.73 Lighting gair (67)m= 29.27 Appliances c (68)m= 196.0	Feb 3 90.73 s (calcula 26 pains (calcula 3 198.06 ns (calcula	Mar 90.73 ted in Ap 21.14 culated in	Apr 90.73 ppendix 16.01 Append 182.02	90.73 L, equat 11.97 dix L, eq 168.25	90.73 ion L9 of 10.1 uation L	90.73 r L9a), a 10.92 13 or L1 146.65	90.73 Iso see 14.19 3a), also 144.62	90.73 Table 5 19.04 See Ta	90.73 24.18 ble 5 160.66	90.73	90.73		(67)
(66)m= 90.73 Lighting gair (67)m= 29.27 Appliances g (68)m= 196.0 Cooking gair (69)m= 45.59	Feb 3 90.73 s (calcula 26 gains (calcula 3 198.06 ns (calcula 45.59	Mar 90.73 ted in Ap 21.14 culated in 192.94 ated in A 45.59	Apr 90.73 ppendix 16.01 Append 182.02 ppendix 45.59	90.73 L, equat 11.97 dix L, eq 168.25 L, equat	90.73 ion L9 of 10.1 uation L 155.3 ion L15	90.73 r L9a), a 10.92 13 or L1 146.65 or L15a	90.73 lso see 14.19 3a), also 144.62 , also se	90.73 Table 5 19.04 See Ta 149.74 ee Table	90.73 24.18 ble 5 160.66	90.73	90.73 30.09 187.38		(67) (68)
Jan (66)m= 90.73 Lighting gair (67)m= 29.27 Appliances c (68)m= 196.0 Cooking gair	Feb 3 90.73 s (calcula 26 gains (calcula 3 198.06 ns (calcula 45.59	Mar 90.73 ted in Ap 21.14 culated in 192.94 ated in A 45.59	Apr 90.73 ppendix 16.01 Append 182.02 ppendix 45.59	90.73 L, equat 11.97 dix L, eq 168.25 L, equat	90.73 ion L9 of 10.1 uation L 155.3 ion L15	90.73 r L9a), a 10.92 13 or L1 146.65 or L15a	90.73 lso see 14.19 3a), also 144.62 , also se	90.73 Table 5 19.04 See Ta 149.74 ee Table	90.73 24.18 ble 5 160.66	90.73	90.73 30.09 187.38		(67) (68)
Jan (66)m= 90.73 Lighting gain (67)m= 29.27 Appliances G (68)m= 196.0 Cooking gain (69)m= 45.55 Pumps and f (70)m= 3	Feb 3 90.73 s (calcula 26 gains (calcula 3 198.06 ns (calcula 45.59 ans gains 3	Mar 90.73 ted in Ap 21.14 culated in 192.94 ated in Ap 45.59 (Table 5	Apr 90.73 ppendix 16.01 Append 182.02 ppendix 45.59 5a)	90.73 L, equat 11.97 dix L, eq 168.25 L, equat 45.59	90.73 ion L9 of 10.1 uation L 155.3 tion L15 45.59	90.73 r L9a), a 10.92 13 or L1 146.65 or L15a;	90.73 Iso see 14.19 3a), also 144.62), also se 45.59	90.73 Table 5 19.04 See Ta 149.74 ee Table 45.59	90.73 24.18 ble 5 160.66 5 45.59	90.73 28.22 174.43 45.59	90.73 30.09 187.38 45.59		(67) (68) (69)
Jan (66)m= 90.73 Lighting gair (67)m= 29.27 Appliances g (68)m= 196.0 Cooking gair (69)m= 45.59 Pumps and f	Feb 3 90.73 s (calcula 26 gains (calcula 3 198.06 ns (calcula 45.59 ans gains 3 evaporation	Mar 90.73 ted in Ap 21.14 culated in 192.94 ated in Ap 45.59 (Table 5	Apr 90.73 ppendix 16.01 Append 182.02 ppendix 45.59 5a)	90.73 L, equat 11.97 dix L, eq 168.25 L, equat 45.59	90.73 ion L9 of 10.1 uation L 155.3 tion L15 45.59	90.73 r L9a), a 10.92 13 or L1 146.65 or L15a;	90.73 Iso see 14.19 3a), also 144.62), also se 45.59	90.73 Table 5 19.04 See Ta 149.74 ee Table 45.59	90.73 24.18 ble 5 160.66 5 45.59	90.73 28.22 174.43 45.59	90.73 30.09 187.38 45.59		(67) (68) (69)
Jan (66)m= 90.73 Lighting gain (67)m= 29.27 Appliances Q (68)m= 196.0 Cooking gain (69)m= 45.59 Pumps and f (70)m= 3 Losses e.g. Q (71)m= -60.49	Feb 3 90.73 s (calcula 2 26 gains (calcula 3 198.06 ns (calcula 45.59 ans gains 3 evaporation 6 -60.49	Mar 90.73 ted in Ap 21.14 culated in 192.94 ated in A 45.59 (Table 5 3 on (negated)	Apr 90.73 ppendix 16.01 Append 182.02 ppendix 45.59 5a) 3	90.73 L, equat 11.97 dix L, eq 168.25 L, equat 45.59 3 es) (Tab	90.73 ion L9 of 10.1 uation L 155.3 ion L15 45.59 3	90.73 r L9a), a 10.92 13 or L1 146.65 or L15a 45.59	90.73 Iso see 14.19 3a), also 144.62 , also se 45.59	90.73 Table 5 19.04 See Ta 149.74 ee Table 45.59	90.73 24.18 ble 5 160.66 5 45.59	90.73 28.22 174.43 45.59	90.73 30.09 187.38 45.59		(67) (68) (69) (70)
Jan (66)m= 90.73 Lighting gair (67)m= 29.27 Appliances G (68)m= 196.0 Cooking gair (69)m= 45.55 Pumps and f (70)m= 3 Losses e.g. G (71)m= -60.44 Water heatin	Feb 3 90.73 s (calcula 26 gains (calcula 3 198.06 ns (calcula 45.59 ans gains 3 evaporatio 9 -60.49 g gains (1	Mar 90.73 ted in Ap 21.14 culated in 192.94 ated in A 45.59 (Table 5 3 on (negated)	Apr 90.73 ppendix 16.01 Append 182.02 ppendix 45.59 5a) 3 tive valu -60.49	90.73 L, equat 11.97 dix L, eq 168.25 L, equat 45.59 3 es) (Tab	90.73 ion L9 of 10.1 uation L 155.3 ion L15 45.59 3	90.73 r L9a), a 10.92 13 or L1 146.65 or L15a 45.59	90.73 Iso see 14.19 3a), also 144.62 , also se 45.59	90.73 Table 5 19.04 See Ta 149.74 ee Table 45.59	90.73 24.18 ble 5 160.66 5 45.59	90.73 28.22 174.43 45.59	90.73 30.09 187.38 45.59		(67) (68) (69) (70) (71)
Jan	Feb 3 90.73 s (calcula 2 26 gains (calcula 3 198.06 ns (calcula 45.59 ans gains 3 evaporation 6 -60.49 g gains (7 6 62.22	Mar 90.73 ted in Ap 21.14 sulated in 192.94 ated in Ap 45.59 (Table 5 3 on (negator) -60.49 able 5) 58.38	Apr 90.73 ppendix 16.01 Append 182.02 ppendix 45.59 5a) 3	90.73 L, equat 11.97 dix L, eq 168.25 L, equat 45.59 3 es) (Tab	90.73 ion L9 of 10.1 uation L 155.3 ion L15 45.59 3 lle 5) -60.49	90.73 r L9a), a 10.92 13 or L1 146.65 or L15a 45.59 3	90.73 Iso see 14.19 3a), also 144.62 1, also se 45.59 3	90.73 Table 5 19.04 See Ta 149.74 See Table 45.59 3 -60.49	90.73 24.18 ble 5 160.66 5 45.59 3 -60.49	90.73 28.22 174.43 45.59 3 -60.49	90.73 30.09 187.38 45.59 3 -60.49		(67) (68) (69) (70)
Jan (66)m = 90.73	Feb 3 90.73 s (calcula 2 26 gains (calcula 3 198.06 ns (calcula 45.59 ans gains 3 evaporation 9 -60.49 g gains (7 62.22 al gains =	Mar 90.73 ted in Ap 21.14 culated in 192.94 ated in Ap 45.59 (Table 5 3 on (negated) -60.49 able 5) 58.38	Apr 90.73 ppendix 16.01 Append 182.02 ppendix 45.59 5a) 3 tive valu -60.49	90.73 L, equat 11.97 dix L, eq 168.25 L, equat 45.59 3 es) (Tab -60.49	90.73 ion L9 of 10.1 uation L 155.3 ion L15 45.59 3 lle 5) -60.49	90.73 r L9a), a 10.92 13 or L1 146.65 or L15a) 45.59 3 -60.49 41.66	90.73 Iso see 14.19 3a), also 144.62 1, also se 45.59 3 -60.49	90.73 Table 5 19.04 See Ta 149.74 See Table 45.59 3 -60.49 48.79 + (69)m +	90.73 24.18 ble 5 160.66 5 45.59 3 -60.49 54.01 (70)m + (7	90.73 28.22 174.43 45.59 3 -60.49 59.83 1)m + (72)	90.73 30.09 187.38 45.59 3 -60.49		(67) (68) (69) (70) (71) (72)
Jan (66)m= 90.73 Lighting gair (67)m= 29.27 Appliances Q (68)m= 196.0 Cooking gair (69)m= 45.59 Pumps and f (70)m= 3 Losses e.g. Q (71)m= -60.49 Water heatin (72)m= 64.32 Total intern (73)m= 368.4	Feb 3 90.73 s (calcula 2 26 pains (calcula 3 198.06 ns (calcula 45.59 ans gains 3 evaporatic 9 -60.49 ng gains (7 62.22 al gains = 5 365.11	Mar 90.73 ted in Ap 21.14 sulated in 192.94 ated in Ap 45.59 (Table 5 3 on (negator) -60.49 able 5) 58.38	Apr 90.73 ppendix 16.01 Append 182.02 ppendix 45.59 5a) 3 tive valu -60.49	90.73 L, equat 11.97 dix L, eq 168.25 L, equat 45.59 3 es) (Tab	90.73 ion L9 of 10.1 uation L 155.3 ion L15 45.59 3 lle 5) -60.49	90.73 r L9a), a 10.92 13 or L1 146.65 or L15a 45.59 3	90.73 Iso see 14.19 3a), also 144.62 1, also se 45.59 3	90.73 Table 5 19.04 See Ta 149.74 See Table 45.59 3 -60.49	90.73 24.18 ble 5 160.66 5 45.59 3 -60.49	90.73 28.22 174.43 45.59 3 -60.49	90.73 30.09 187.38 45.59 3 -60.49		(67) (68) (69) (70) (71)
Jan (66)m = 90.73	Feb 3 90.73 s (calcula 2 26 gains (calcula 3 198.06 ns (calcula 45.59 gans gains 3 evaporation 9 -60.49 g gains (7 e 62.22 al gains = 5 365.11 ns:	Mar 90.73 ted in Ap 21.14 culated in 192.94 ated in Ap 45.59 (Table 5 3 on (negat -60.49 Table 5) 58.38	Apr 90.73 ppendix 16.01 Appendix 45.59 5a) 3 tive valu -60.49 53.33	90.73 L, equat 11.97 dix L, eq 168.25 L, equat 45.59 3 es) (Tab -60.49 49.88	90.73 ion L9 of 10.1 uation L 155.3 ion L15 45.59 3 lle 5) -60.49 45.22 (66) 289.45	90.73 r L9a), a 10.92 13 or L1 146.65 or L15a 45.59 3 -60.49 41.66 om + (67)m 278.06	90.73 Iso see 14.19 3a), also 144.62), also se 45.59 3 -60.49 46.7 1+(68)m- 284.33	90.73 Table 5 19.04 See Ta 149.74 See Table 45.59 3 -60.49 48.79 + (69)m + 296.41	90.73 24.18 ble 5 160.66 5 45.59 3 -60.49 54.01 (70)m + (7 317.67	90.73 28.22 174.43 45.59 3 -60.49 59.83 1)m + (72) 341.31	90.73 30.09 187.38 45.59 3 -60.49 62.71		(67) (68) (69) (70) (71) (72)

Table 6b

Table 6c

Table 6a

m²

Table 6d

(W)

Southeast _{0.9x}	0.77	X	6	X	3	6.79	X	0.7	X	0.8	=	85.67	(77)
Southeast _{0.9x}	0.77	X	6	X	6	2.67	x	0.7	X	0.8	=	145.93	(77)
Southeast _{0.9x}	0.77	x	6	x	8	5.75	X	0.7	X	0.8	=	199.67	(77)
Southeast _{0.9x}	0.77	х	6	x	10	06.25	X	0.7	х	0.8	=	247.4	(77)
Southeast 0.9x	0.77	х	6	x	1	19.01	x	0.7	x	0.8		277.11	(77)
Southeast 0.9x	0.77	x	6	x	1	18.15	x	0.7	х	0.8	=	275.11	(77)
Southeast 0.9x	0.77	х	6	x	1	13.91	x	0.7	x	0.8	=	265.24	(77)
Southeast 0.9x	0.77	х	6	x	10	04.39	x	0.7	x	0.8		243.07	(77)
Southeast 0.9x	0.77	х	6	x	9	2.85	x	0.7	x	0.8		216.2	(77)
Southeast 0.9x	0.77	х	6	х	6	9.27	X	0.7	х	0.8	=	161.29	(77)
Southeast 0.9x	0.77	х	6	x	4	4.07	x	0.7	x	0.8		102.62	(77)
Southeast 0.9x	0.77	х	6	x	3	1.49	x	0.7	x	0.8		73.32	(77)
Northwest _{0.9x}	0.77	x	2.4	x	1	1.28	x	0.7	x	0.8	=	10.51	(81)
Northwest _{0.9x}	0.77	x	3.8	x	1	1.28	x	0.7	x	0.8		16.64	(81)
Northwest _{0.9x}	0.77	x	2.4	x	2	2.97	x	0.7	x	0.8		21.39	(81)
Northwest 0.9x	0.77	х	3.8	x	2	2.97	x	0.7	x	0.8	=	33.87	(81)
Northwest 0.9x	0.77	х	2.4	x	4	1.38	X	0.7	x	0.8	=	38.54	(81)
Northwest 0.9x	0.77	х	3.8	X	4	1.38	Х	0.7	Х	0.8	=	61.02	(81)
Northwest 0.9x	0.77	х	2.4	х	6	7.96	х	0.7	Х	0.8	=	63.29	(81)
Northwest _{0.9x}	0.77	х	3.8	х	6	7.96	x	0.7	х	0.8	=	100.21	(81)
Northwest _{0.9x}	0.77	х	2.4	x	9	1.35	X	0.7	х	0.8	=	85.08	(81)
Northwest _{0.9x}	0.77	х	3.8	х	9	1.35	Х	0.7	Х	0.8		134.71	(81)
Northwest _{0.9x}	0.77	х	2.4	x	9	7.38	Х	0.7	Х	0.8	-	90.7	(81)
Northwest 0.9x	0.77	х	3.8	х	9	7.38	x	0.7	х	0.8	=	143.61	(81)
Northwest 0.9x	0.77	х	2.4	х	9	91.1	x	0.7	x	0.8	=	84.85	(81)
Northwest _{0.9x}	0.77	x	3.8	x	9	91.1	x	0.7	x	0.8		134.35	(81)
Northwest _{0.9x}	0.77	х	2.4	x	7	2.63	х	0.7	x	0.8		67.64	(81)
Northwest _{0.9x}	0.77	x	3.8	x	7	2.63	x	0.7	x	0.8		107.1	(81)
Northwest _{0.9x}	0.77	х	2.4	x	5	0.42	x	0.7	x	0.8		46.96	(81)
Northwest 0.9x	0.77	х	3.8	х	5	0.42	x	0.7	x	0.8	=	74.36	(81)
Northwest _{0.9x}	0.77	x	2.4	x	2	8.07	x	0.7	x	0.8		26.14	(81)
Northwest _{0.9x}	0.77	х	3.8	x	2	8.07	x	0.7	x	0.8		41.39	(81)
Northwest 0.9x	0.77	х	2.4	х		14.2	x	0.7	x	0.8	=	13.22	(81)
Northwest _{0.9x}	0.77	x	3.8	x		14.2	x	0.7	x	0.8		20.94	(81)
Northwest _{0.9x}	0.77	х	2.4	x	9	9.21	х	0.7	x	0.8		8.58	(81)
Northwest _{0.9x}	0.77	x	3.8	x	9	9.21	x	0.7	x	0.8	=	13.59	(81)
													_
Solar gains in v	vatts, calcula	ated	for each mon	th			(83)m	= Sum(74)m	(82)m				
(83)m= 112.82	201.19 299		410.91 496.9		09.43	484.43	417.	.82 337.52	228.8	2 136.78	95.49		(83)
Total gains – in			· , , , ,	 					1			1	
(84)m= 481.27	566.31 650	.52	741.1 805.8	2 7	98.87	762.49	702	.15 633.93	546.4	9 478.09	454.49		(84)
7. Mean intern	al temperat	ure (heating seaso	n)									
Temperature of	during heatir	ng pe	eriods in the li	ving	area f	rom Tab	ole 9,	Th1 (°C)				21	(85)
Utilisation fact	or for gains	for li	ving area, h1,	m (s	ee Ta	ble 9a)			,		1	1	
Stroma ESA 2012	vE8bn. 1.d.4	ar(s	AP992) http://www	ww.s	Juna.c	_{om} Jul	Αι	ug Sep	Oc	Nov	Dec	Page :	5 of 8

Mean internal temperature (for the whole dwelling) = (LA x T1 + (1 - fLA) x T2 (10 - fLA) x 10 (
	(86)m= 0.98	0.97	0.93	0.85	0.71	0.53	0.39	0.44	0.68	0.89	0.97	0.99		(86)
Temperature during heating periods riest of dwelling from Table 9, Th2 (°C)	Mean intern	al tempe	rature in	living ar	ea T1 (fo	ollow ste	ps 3 to 7	' in Table	e 9c)					
Segret 19.55 19.56 19.56 19.56 19.6 19.6 19.6 19.6 19.63 19.63 19.63 19.62 19.6 19.50 19.50 19.58 (88)		 	1			i e	i 			20.56	20.14	19.8		(87)
Segret 19.55 19.56 19.56 19.56 19.6 19.6 19.6 19.6 19.63 19.63 19.63 19.62 19.6 19.50 19.50 19.58 (88)	Temperatur	e durina l	neating p	eriods i	rest of	dwellina	from Ta	ble 9. Ti	h2 (°C)			•	•	
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) Read internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for Table 4e, where appropriate Read internal temperature (for Male 11 Read internal temperature (for Table 4e, where appropriate Read internal temperature (for Male 11 Read internal temperature (for Male 11 Read internal temperature (for Table 4e, where appropriate Read internal temperature (for Male 11	· —			T T	r		r			19.6	19.59	19.58		(88)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) Read internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for the whole dwelling) = FLA × T1 + (1 - FLA) × T2 Read internal temperature (for Table 4e, where appropriate Read internal temperature (for Male 11 Read internal temperature (for Table 4e, where appropriate Read internal temperature (for Male 11 Read internal temperature (for Male 11 Read internal temperature (for Table 4e, where appropriate Read internal temperature (for Male 11	Utilisation fa	actor for o	ains for	rest of d	wellina.	h2.m (se	ee Table	9a)			•	•		
18.03 18.3 18.6 19.13 19.39 19.51 19.53 19.53 19.47 19.12 18.54 18.03 (90)			1	î .		```	1	<u> </u>	0.57	0.85	0.96	0.98		(89)
18.03 18.3 18.6 19.13 19.39 19.51 19.53 19.53 19.47 19.12 18.54 18.03 (90)	Mean intern	al tempe	rature in	the rest	of dwelli	na T2 (f	ollow ste	ens 3 to 7	7 in Tabl	e 9c)			ı	
Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92) (92) (19.15 19.47 19.86 20.09 20.21 20.23 20.23 20.16 19.84 19.34 18.92 (92) (93) (93) (93) (93) (93) (19.22 19.15 19.47 19.86 20.09 20.21 20.23 20.23 20.16 19.84 19.34 18.92 (93) (93) (93) (93) (93) (93) (93) (93) (19.24 19.34 19.34 18.92 (93) (1		r	- ` `					18.54	18.03		(90)
(92)mo		-1	!	<u> </u>	<u> </u>	<u> </u>	ļ		f	LA = Livin	g area ÷ (4) =	0.5	(91)
(92)mo	Mean intern	al tempe	ratura (fo	r the wh	ole dwe	lling) – fl	ΙΔ ν Τ1	⊥ /1 _ fl	Δ) ~ T2					
Apply adjustment to the mean internal temperature from Table 4e, where appropriate (83)me 18.92 19.15 19.47 19.86 20.08 20.21 20.23 20.23 20.16 19.84 19.34 19.34 18.92 (83) 8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the futilisation factor for gains, Inm: (94)me 0.97 0.95 0.91 0.81 0.66 0.47 0.33 0.37 0.61 0.86 0.95 0.98 (94) Useful gains, InmGm, W = (94)m x (84)m (95)m 468.12 539.14 591.63 603.28 532.54 376.1 248.82 260.15 388.6 469.78 455.65 444.12 (95) Monthly average external temperature from Table 8 (96)m 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm, W = (93)m x [(93)m - (96)m 1 0.04.2) 94.98 76.99 56.51 388.11 250.96 263.63 423.29 655.26 876.73 1065.1 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m 456.66 342.09 265.86 127.9 46.54 0 0 0 0 0 138 303.18 462.01 Fraction of space heat from main system 1 (204) = (202) x [1 - (203)] = 1 204.25 (98) Space heating requirements — Individual heating systems including micro-CHP) Space heating requirement (calculated above) 466.66 342.09 265.86 127.9 May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 456.66 342.09 265.86 127.9 46.54 0 0 0 0 0 138 303.18 462.01 Efficiency of secondary/supplementary system 1 (204) = (202) x [1 - (203)] = 1 204.86 10.00			T	I	1					19.84	19.34	18.92		(92)
18.92 19.15 19.47 19.86 20.09 20.21 20.23 20.16 19.84 19.34 18.92 (93)	` /		he mear	ı ı interna	L I temper	L ature fro	m Table	4e, whe	ere appro	priate	<u>!</u>	ļ		
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: [94]m= 0.97 0.95 0.91 0.81 0.66 0.47 0.33 0.37 0.61 0.86 0.95 0.98	· · · · · · · · · · · · · · · · · · · 	1	1	r		r	r			•	19.34	18.92		(93)
Utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	8. Space he	eating req	uirement											
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec						ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	culate	
Utilisation factor for gains, hm: (94)ml= 0.97			Ť						_			_	1	
(94) (94) (94) (95) (94) (95) (9		-			May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Useful gains, hmGm, W = (94)m x (84)m (95)m			_		0.66	0.47	0.33	0.37	0.61	0.86	0.95	0.08	1	(94)
(95)m= 468.12 539,14 591.63 603.28 532.54 376.1 248.82 260.15 389.6 469.78 455.65 444.12 (96) Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14/.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W = [(39)m x [(93)m - (96)m] (97)m= 1081.91 1048.2 948.98 780.91 595.1 388.11 250.96 263.63 423.29 655.26 876.73 1065.1 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 456.66 342.09 265.86 127.9 46.54 0 0 0 0 0 138 303.18 462.01 Total per year (kWh/year) = Sum(98)682 = 2142.25 (98) Space heating requirement in kWh/m²/year 9.8 Energy requirements — Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system 0 (201) Fraction of total heating from main system 1 (204) = (202) x [1 - (203)] = 1 (204) (204) (208) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 456.66 342.09 265.86 127.9 46.54 0 0 0 0 0 148.71 326.71 497.85		_				0.47	0.55	0.57	0.01	0.00	0.95	0.90		(0.1)
Heat loss rate for mean internal temperature, Lm , W = [(39)m x [(93)m - (96)m] Heat loss rate for mean internal temperature, Lm , W = [(39)m x [(93)m - (96)m]		_	<u> </u>	<u> </u>		376.1	248.82	260.15	389.6	469.78	455.65	444.12		(95)
Heat loss rate for mean internal temperature, Lm , W = [(39)m × [(93)m – (96)m] (97)m = 1081.91 1048.2 948.98 780.91 595.1 388.11 250.96 263.63 423.29 655.26 876.73 1065.1 Space heating requirement for each month, kWh/month = 0.024 × [(97)m – (95)m] × (41)m (98)m = 456.66 342.09 265.86 127.9 46.54 0 0 0 0 138 303.18 462.01 Space heating requirement in kWh/m²/year Total per year (kWh/year) = Sum(98)492 2142.25 (98) Space heating: Fraction of space heat from secondary/supplementary system Fraction of space heat from main system(s) (202) = 1 – (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 – (203)] = 1 (204) Efficiency of main space heating system 1 (204) = (202) × [1 – (203)] = 1 (204) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 456.66 342.09 265.86 127.9 46.54 0 0 0 0 138 303.18 462.01 (211)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (211)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (212)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (213)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (214)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (214)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (215)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (216)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (217)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (218)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (211)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (211)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (211)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (211)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (211)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (211)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (211)m = {[(98)m × (204)] } × 100 ÷ (206) (211) (211)m = {[(98)m ×	` '					able 8								
(97)m= 1081.91 1048.2 948.98 780.91 595.1 388.11 250.96 263.63 423.29 655.26 876.73 1065.1 Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 456.66 342.09 265.86 127.9 46.54 0 0 0 0 0 138 303.18 462.01 Total per year (kWh/year) = Sum(98)89.12 = 2142.25 (98) Space heating requirement in kWh/m²/year 48.85 (99) 9a. Energy requirements - Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of main space heating system 1 (204) = (202) x [1 - (203)] = 1 (204) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 456.66 342.09 265.86 127.9 46.54 0 0 0 0 0 138 303.18 462.01 (211)m = {[(98)m x (204)] } x 100 ÷ (206) (211)	(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m	Heat loss ra	ite for me	an intern	al temp	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]	•	•		
(98)m= 456.66 342.09 265.86 127.9 46.54 0 0 0 0 138 303.18 462.01 Total per year (kWh/year) = Sum(98)	(97)m= 1081.9	1 1048.2	948.98	780.91	595.1	388.11	250.96	263.63	423.29	655.26	876.73	1065.1		(97)
Space heating requirement in kWh/m²/year Sum(98)s2 2142.25 (98)			1	r each n	r	Wh/mon	th = 0.02	24 x [(97))m – (95)m] x (4	1)m	1	1	
Space heating requirement in kWh/m²/year 48.85 (99)	(98)m= 456.66	342.09	265.86	127.9	46.54	0	0	·				<u> </u>		_
9a. Energy requirements – Individual heating systems including micro-CHP) Space heating: Fraction of space heat from secondary/supplementary system								Tota	l per year	(kWh/yeaı	r) = Sum(9	18)15,912 =	2142.25	(98)
Space heating: Fraction of space heat from secondary/supplementary system 0 (201) Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 92.8 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 456.66 342.09 265.86 127.9 46.54 0 0 0 0 0 138 303.18 462.01 (211) (211) m = {[(98)m x (204)] } x 100 ÷ (206) (211) 492.09 368.63 286.49 137.82 50.16 0 0 0 0 148.71 326.71 497.85 (211)	Space heat	ing requir	ement in	kWh/m²	² /year								48.85	(99)
Fraction of space heat from secondary/supplementary system Fraction of space heat from main system(s) Fraction of total heating from main system 1 Efficiency of main space heating system 1 Efficiency of secondary/supplementary heating system, % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec KWh/year Space heating requirement (calculated above) 456.66 342.09 265.86 127.9 46.54 0 0 0 0 138 303.18 462.01 (211) m = {[(98) m x (204)] } x 100 ÷ (206) (201) (202) = 1 - (201) =	9a. Energy re	equireme	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Fraction of space heat from main system(s) (202) = 1 - (201) = 1 (202) Fraction of total heating from main system 1 (204) = (202) × [1 - (203)] = 1 (204) Efficiency of main space heating system 1 92.8 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) (211)m = {[(98)m x (204)] } x 100 ÷ (206) (211) (211)m = {[(98)m x (204)] } x 100 ÷ (206) (211) (204	•	_												
Fraction of total heating from main system 1 (204) = (202) × [1 – (203)] = 1 (204) Efficiency of main space heating system 1 92.8 (206) Efficiency of secondary/supplementary heating system, % 0 (208) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 456.66 342.09 265.86 127.9 46.54 0 0 0 0 138 303.18 462.01 (211)m = {[(98)m x (204)] } x 100 ÷ (206) (211) 492.09 368.63 286.49 137.82 50.16 0 0 0 0 148.71 326.71 497.85		•				mentary	•						0	(201)
Efficiency of main space heating system 1 Efficiency of secondary/supplementary heating system, % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year Space heating requirement (calculated above) 456.66 342.09 265.86 127.9 46.54 0 0 0 0 138 303.18 462.01 (211)m = {[(98)m x (204)] } x 100 ÷ (206) 492.09 368.63 286.49 137.82 50.16 0 0 0 0 148.71 326.71 497.85	Fraction of	space hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Efficiency of secondary/supplementary heating system, % Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year	Fraction of t	total heati	ng from	main sy	stem 1			(204) = (2	02) x [1 –	(203)] =			1	(204)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec kWh/year	Efficiency o	f main spa	ace heat	ing syste	em 1								92.8	(206)
Space heating requirement (calculated above) 456.66 342.09 265.86 127.9 46.54 0 0 0 0 138 303.18 462.01 (211)m = {[(98)m x (204)] } x 100 ÷ (206) 492.09 368.63 286.49 137.82 50.16 0 0 0 148.71 326.71 497.85	Efficiency of	f seconda	ry/suppl	ementar	y heatin	g system	າ, %						0	(208)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/y	ear
$ (211) m = \{ [(98) m \times (204)] \} \times 100 \div (206) $ $ (211) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (212) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (213) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (214) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (215) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (216) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (217) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (218) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (219) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (219) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (219) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (219) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (210) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (211) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (212) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (213) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (214) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (215) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (216) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (217) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (218) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (218) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (218) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (219) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (219) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (219) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (219) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (219) m = \{ (98) m \times (204)] \} \times 100 \div (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (206) $ $ (219) m = \{ (98) m \times (204) \} \times 100 + (2$	Space heat	ing requir	ement (c	alculate	d above)							•	
492.09 368.63 286.49 137.82 50.16 0 0 0 148.71 326.71 497.85	456.66	342.09	265.86	127.9	46.54	0	0	0	0	138	303.18	462.01		
	(211)m = {[(9	8)m x (20	04)] } x 1	00 ÷ (20)6)									(211)
Total (kWh/year) =Sum(211) _{15,1012} = 2308.46 (211)	492.09	368.63	286.49	137.82	50.16	0	0		_					
								Tota	l (kWh/yea	ar) =Sum(2	211)	=	2308.46	(211)

Space heating fuel (secondary), kV	/h/month									
= {[(98)m x (201)] } x 100 ÷ (208)		-	Ι .	Γ.	Ι .			Ι .	1	
(215)m= 0 0 0 0	0	0	0	0 Tota	0 L(k\\\b\\\a	0 ar) =Sum(2	0	0		(215)
Matar basting				Tota	ii (KVVII/yea	ar) =5urri(2	13) _{15,101}	2	0	(215)
Water heating Output from water heater (calculated	l above)									
153.68 134.24 139.67 123.8		105.63	101.21	112.82	114.07	129.89	138.65	150.07]	
Efficiency of water heater									83.5	(216)
(217)m= 90.27 89.98 89.37 87.9	85.91	83.5	83.5	83.5	83.5	88.05	89.67	90.33		(217)
Fuel for water heating, kWh/month										
$(219)m = (64)m \times 100 \div (217)m$ (219)m = 170.24	1 139.61	126.51	121.2	135.11	136.61	147.52	154.63	166.13]	
			<u> </u>	Tota	I = Sum(2	19a) ₁₁₂ =		<u> </u>	1743.85	(219)
Annual totals						k\	Wh/yea	r	kWh/yea	<u></u>
Space heating fuel used, main syste	m 1								2308.46	
Water heating fuel used									1743.85	
Electricity for pumps, fans and electricity	ic keep-hot									
central heating pump:								30]	(230
Total electricity for the above, kWh/y	ear			sum	of (230a).	(230g) =			30	(231)
Electricity for lighting									206.78	(232)
Electricity generated by PVs									-482.91	(233)
10a. Fuel costs - individual heating	systems:									
		Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
Space heating - main system 1			1) x			3.4		x 0.01 =	80.33	(240)
Space heating - main system 2		(213	3) x			0		x 0.01 =	0	
Space heating - secondary		(215	5) x			13.	19	x 0.01 =	0	(242)
Water heating cost (other fuel)		(219	9)			3.4	8	x 0.01 =	60.69	(247)
Pumps, fans and electric keep-hot		(231	1)			13.	19	x 0.01 =	3.96	(249)
(if off-peak tariff, list each of (230a) t Energy for lighting	o (230g) se _l	oarately (232		licable a	nd apply	fuel prid		rding to - x 0.01 =	Table 12a 27.27	(250)
Additional standing charges (Table	2)								120	(251)
									L	
	,	one	of (233) to	o (235) x)		13 '	19	x 0.01 =	-63.7	(252)
Appendix Q items: repeat lines (253	and (254) a			o (235) x)		13.	19	x 0.01 =	-63.7	(252)
• • • • • • • • • • • • • • • • • • • •	, ,	as need				13.	19	x 0.01 =	-63.7 228.56	(252)
• • • • • • • • • • • • • • • • • • • •	(245)(2	as need	ded			13.	19	x 0.01 =		
Total energy cost 11a. SAP rating - individual heating	(245)(2	as need	ded			13.	19	x 0.01 =		
Appendix Q items: repeat lines (253 Total energy cost 11a. SAP rating - individual heating Energy cost deflator (Table 12) Energy cost factor (ECF)	(245)(2 systems	as need 47) + (25	ded	=		13.	19	x 0.01 =	228.56	(255)

12a. CO2 emissions – Individual heating systems	s including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	498.63 (26
Space heating (secondary)	(215) x	0.519 =	0 (26
Water heating	(219) x	0.216 =	376.67 (26
Space and water heating	(261) + (262) + (263) + (264) =		875.3
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	15.57 (26
Electricity for lighting	(232) x	0.519 =	107.32
Energy saving/generation technologies Item 1		0.519 =	-250.63 (26
Total CO2, kg/year	sur	n of (265)(271) =	747.56 (27
CO2 emissions per m²	(27	2) ÷ (4) =	17.05
El rating (section 14)			89 (2
13a. Primary Energy			
Space heating (main system 1) Space heating (secondary) Energy for water heating Space and water heating	Energy kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) =	Primary factor 1.22 = 3.07 = 1.22 =	P. Energy kWh/year 2816.32 (2 0 (2 2127.5 (2 4943.83 (2)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07 =	92.1
Electricity for lighting	(232) x	0 =	634.82
Energy saving/generation technologies tem 1		3.07	-1482.54 (2
Total Primary Energy	sun	n of (265)(271) =	4188.21 (2

(272) ÷ (4) =

Primary energy kWh/m²/year

(273)

95.5

		User Details:			
Assessor Name:		Stroma Nu			
Software Name:	Stroma FSAP 2012	Software V		Version: 1.0.4.	6
		Property Address: Plot	4		
Address :	-1				
Overall dwelling dimens	SIONS:	Araa(m²)	Av Hoight(m)	Volum	o(m3)
Basement		Area(m²) 21.13 (1a)	Av. Height(m) × 2.63	(2a) = 55.58	
Ground floor		17.83 (1b)		(2b) = 57.56	
Total floor area TFA = (1a)	+(1b)+(1c)+(1d)+(1e)+ (3.23	(23) = 37.36	0 (00)
	+(10)+(10)+(10)+(16)+((3b) (3a) (3d) (3a)	(2n) -	1
Dwelling volume		(3a)+	(3b)+(3c)+(3d)+(3e)+((3h) = 113.1	(5)
2. Ventilation rate:	main second	arv other	total	m³ per	hour
Niverban of abinomass	heating heating	g			
Number of chimneys	0 + 0	+ 0 =			(6a)
Number of open flues	0 + 0	+ 0 =			(6b)
Number of intermittent fans			2 x 10	0 = 20	(7a)
Number of passive vents			0 x 10	0 =	(7b)
Number of flueless gas fire	s		0 x 40	0 =	(7c)
				Air changes pe	ar hour
Infiltration due to chimneys	fluor and force (60) (6b)	1(7a) ((7b) 1(7c) -			
	en carried out or is intended, proce			(5) = 0.18	(8)
Number of storeys in the				0	(9)
Additional infiltration			[(9)-1	1]x0.1 = 0	(10)
Structural infiltration: 0.2	5 for steel or timber frame	or 0.35 for masonry con	struction	0	(11)
if both types of wall are pres deducting areas of openings	sent, use the value corresponding	g to the greater wall area (after	r		
	or, enter 0.2 (unsealed) or	0.1 (sealed), else enter	0	0	(12)
If no draught lobby, ente	, ,	,,,		0	(13)
	and doors draught stripped	I		0	(14)
Window infiltration	3 11	0.25 - [0.2 x (14)	÷ 100] =	0	(15)
Infiltration rate		(8) + (10) + (11)	+ (12) + (13) + (15) =	0	(16)
Air permeability value, g	50, expressed in cubic met	tres per hour per square	metre of envelope		(17)
If based on air permeability	•		·	0.68	 -
Air permeability value applies i	f a pressurisation test has been c	done or a degree air permeabi	ility is being used		
Number of sides sheltered				2	(19)
Shelter factor		(20) = 1 - [0.075]		0.85	(20)
Infiltration rate incorporatin	g shelter factor	$(21) = (18) \times (20)$) =	0.58	(21)
Infiltration rate modified for	monthly wind speed	<u>, , , , , , , , , , , , , , , , , , , </u>	, , , ,		
Jan Feb M	lar Apr May Jun	n Jul Aug Se	p Oct Nov	Dec	
Monthly average wind spee	ed from Table 7				

4.3

3.8

3.8

3.7

4.3

4.5

4.7

vviria F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
Adjuste	ed infiltra	ation rat	e (allowi	ing for sl	nelter an	d wind s	peed) :	= (21a) x	(22a)m					
ſ	0.73	0.72	0.7	0.63	0.62	0.55	0.55	0.53	0.58	0.62	0.65	0.68]	
		ctive air o	•	rate for t	he appli	cable ca	se	•		•			- -	
_				andiv N (2	3h) - (23a	a) v Emy (e	auation	(N5)) , othe	rwica (23h	n) = (23a)				0 (23a)
								m Table 4h) = (23a)				0 (23b)
			•	•	•		•	/HR) (24a	•	2h)m + (23h) 🗴 [·	1 <i>– (23c</i>)	L	0 (23c)
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24a)
L	balance	d mecha	anical ve	ı entilation	without	heat red	overv (MV) (24k	p)m = (22)	2b)m + (2	 23b)		J	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0	1	(24b)
c) If v	whole h	ouse ex	tract ver	ntilation o	or positiv	/e input v	/entilat	ion from (outside				_	
í	f (22b)n	n < 0.5 ×	: (23b), t	then (24	c) = (23b	o); other	wise (2	4c) = (22	b) m + 0	.5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,					•	•		ion from : 0.5 + [(2		0.51				
(24d)m=		0.76	0.75	0.7	0.69	0.65	0.65	0.64	0.67	0.69	0.71	0.73		(24d)
Effec	tive air	change	rate - er	nter (24a) or (24	o) or (24	c) or (2	4d) in bo	x (25)				•	
(25)m=	0.77	0.76	0.75	0.7	0.69	0.65	0.65	0.64	0.67	0.69	0.71	0.73	1	(25)
3. Hea	at losse	s and he	eat loss	paramet	er:									
ELEM		Gros area	SS	Openin	gs	Net Ar A ,r		U-val W/m2		A X U (W/I	()	k-value	-	A X k kJ/K
Doors		arca	(111)	"	'	2	'' 			3	, 	NO/III -	IX.	(26)
Windov	ws Tyne	1	l			4.6		1/[1/(1.6)+			븍			(27)
Windov	• •						_	1/[1/(1.6)+		6.92	_			
Windov						3.1		1/[1/(1.6)+	•	4.66	_			(27)
Floor T		, 0				2.3	=			3.46	᠆			(27)
						21.13	=		=	5.283	<u> </u>		-	(28)
Floor T	• •		. 1		_	3.304	=		=	0.9912	닠 ¦		- -	(28)
Walls T Walls T		10.9		0	=	10.94	=		=	3.28	닠 ¦		- - - </td <td>(29)</td>	(29)
		14.5		10	_	4.56	=		=	1.37	닠 ¦		<u> </u>	(29)
	ypes	25.0	_	2		23.06	=		=	6.13	닠 ¦		<u> </u>	(29)
Walls T		1				22.91	X	0.3	=	6.87			1 1	(29)
Walls T	• •	22.9		0			=	0.0						
Walls T	rea of e	lements	, m²			97.91				1005				(31)
Walls T Total at	rea of e	lements roof winde	, m² ows, use e			97.91 alue calcul		ng formula 1		ue)+0.04] a	ns given in	paragrapi	h 3.2	
Walls T Total at * for wind ** include	rea of e dows and e the area	lements roof winde	, m² ows, use e sides of ir	effective wi		97.91 alue calcul			/[(1/U-valu	ue)+0.04] a	s given in	paragrapi		
Walls T Total at * for wind ** include Fabric I	rea of e dows and the area heat los	elements roof windo as on both	, m² ows, use e sides of ir = S (A x	effective wi		97.91 alue calcul		ng formula 1	1/[(1/U-valu) + (32) =	ue)+0.04] a			41	(31)

Stroma FSAP 2012 Version: 1.0.4.6 (SAP 9.92) - http://www.stroma.com

can be used instead of a detailed calculation.

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

Thermal br	dges : S (L	x Y) cal	culated (using Ap	pendix I	K						14.69	(36)
if details of the	ermal bridging	are not kn	own (36) =	= 0.15 x (3	1)								
Total fabric	heat loss							(33) +	(36) =			56.65	(37)
Ventilation	heat loss c	alculated	monthly	У				(38)m	= 0.33 × (25)m x (5)		_	
Ja	n Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m= 28.	72 28.33	27.94	26.15	25.81	24.25	24.25	23.96	24.85	25.81	26.49	27.2		(38)
Heat transf	er coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m= 85.	84.97	84.59	82.8	82.46	80.9	80.9	80.61	81.5	82.46	83.14	83.85		_
Heat loss p	arameter (I	HLP), W	/m²K						Average = = (39)m ÷	Sum(39) _{1.} · (4)	12 /12=	82.8	(39)
(40)m= 2.1	9 2.18	2.17	2.13	2.12	2.08	2.08	2.07	2.09	2.12	2.13	2.15]	
Number of	dava in ma	nth (Tob	lo 10\					,	Average =	Sum(40) ₁ .	12 /12=	2.13	(40)
Number of Ja	- i -	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
(41)m= 3:	-	31	30	31	30	31	31	30	31	30	31	1	(41)
(**)***													, ,
4 Water h	eating ene	rav reau	irement [.]								kWh/y	ear:	
i. Water i	iodiing ono	igy ioqu	nomoni.								TXVVIII y	-	
Assumed o	ccupancy, 13.9, N = 1		·[1 - ovn	(<u>-</u> 0 0003	MQ v /T	-Λ ₋ 13 Ω)2)] + 0 (1013 v (Γ Ε Λ ₋ 13		38		(42)
	13.9, N = 1	+ 1.70 X	. [ı - exp	(-0.0003	49 X (11	A -13.8)Z)] + 0.t) X C 1 OC	IFA - 13.	.9)			
Ann <mark>ual av</mark> e											.95		(43)
Redu <mark>ce the</mark> a not more that					_	-	to achieve	a water us	se target o	f			
Ja		Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
Hot water usa			Apr ach month	,			(43)	Seb	Oct	NOV	Dec		
(44)m= 73.	65 70.97	68.29	65.61	62.93	60.26	60.26	62.93	65.61	68.29	70.97	73.65	1	
()										m(44) ₁₁₂ =		803.41	(44)
Energy conte	nt of hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x E	OTm / 3600) kWh/mor	th (see Ta	ables 1b, 1	c, 1d)		
(45)m= 109	21 95.52	98.57	85.93	82.46	71.15	65.93	75.66	76.56	89.23	97.4	105.77		
If instantance	us water heati	na at naint	of uso (no	hot water	r storago)	ontor O in	haves (16		Γotal = Su	m(45) ₁₁₂ =	=	1053.4	(45)
If instantaneo												1	(40)
(46)m= 16. Water stora		14.79	12.89	12.37	10.67	9.89	11.35	11.48	13.38	14.61	15.87		(46)
Storage vo	-) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0	1	(47)
If communi	` '		•			_						1	()
Otherwise	, ,			•			` '	ers) ente	er '0' in (47)			
Water stora	ige loss:											_	
a) If manu	acturer's d	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Temperatu	re factor fro	m Table	2b								0		(49)
Energy lost		_	-				(48) x (49)) =			0		(50)
b) If manut Hot water s	acturer's de		-								0	1	(51)
If communi	_			U ∠ (KVVI	ii/iiti C /Uc	ху <i>)</i>					0	J	(51)
Volume fac			-								0	1	(52)
Temperatu	re factor fro	m Table	2b								0]	(53)

Energy lost from water storage, kWh/year Enter (50) or (54) in (55)	(47) x (51) x (52) x (53) =	= 0	`	54) 55)
Water storage loss calculated for each month	$((56)m = (55) \times (41)m$			55)
(56)m= 0 0 0 0 0 0 0	0 0	0 0	0 (5	56)
If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷	(50), else (57)m = (56)m wh	here (H11) is fror	m Appendix H	
(57)m= 0 0 0 0 0 0 0	0 0	0 0	0 (5	57)
Primary circuit loss (annual) from Table 3		0) (5	58)
Primary circuit loss calculated for each month (59)m = (58) ÷	365 × (41)m			
(modified by factor from Table H5 if there is solar water hea	 	 		
(59)m =	0 0	0 0	0 (5	59)
Combi loss calculated for each month (61)m = (60) \div 365 × (11)m			
(61)m= 37.53 32.66 34.8 32.36 32.07 29.72 30.7	32.07 32.36 34	4.8 35	37.53	61)
Total heat required for water heating calculated for each mon	th (62)m = $0.85 \times (45)$ i	m + (46)m + ((57)m + (59)m + (61)m	
(62)m= 146.74 128.18 133.37 118.29 114.53 100.87 96.6	107.73 108.92 124	4.03 132.4	143.3	62)
Solar DHW input calculated using Appendix G or Appendix H (negative quar		ntribution to water	r heating)	
(add additional lines if FGHRS and/or WWHRS applies, see	'i ' ' 			00)
(63)m= 0 0 0 0 0 0	0 0	0 0	0 (6	63)
Output from water heater				
(64)m= 146.74 128.18 133.37 118.29 114.53 100.87 96.6		4.03 132.4	143.3	C4)
	Output from water h			64)
Heat gains from water heating, kWh/month 0.25 [0.85 × (45	, , , , , , , , , , , , , , , , , , ,		<u> </u>	
(65)m= 45.7 39.93 41.47 36.66 35.43 31.09 29.6	33.17 33.55 38			
		3.37 41.13		65)
include (57)m in calculation of (65)m only if cylinder is in th				65)
				65)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts	e dwelling or hot water	r is from comr	munity heating	65)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul	Aug Sep C	r is from comr	munity heating Dec	
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74 82.74 82.74 82.74 82.74 82.74 82.74	Aug Sep Constant 82.74 82.74 82.74	r is from comr	munity heating Dec	66)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74	Aug Sep Consistency Aug Se	Oct Nov 2.74 82.74	Dec 82.74	66)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74	Aug Sep C 82.74 82.74 82 also see Table 5 12.85 17.24 21	Oct Nov 2.74 82.74	Dec 82.74	
include (57)m in calculation of (65)m only if cylinder is in the second	Aug Sep C 82.74 82.74 82 also see Table 5 12.85 17.24 21 13a), also see Table 5	7 is from common Coct Nov 2.74 82.74 1.9 25.56 5	Dec 82.74 (6	66) 67)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74	Aug Sep C 82.74 82.74 82 also see Table 5 12.85 17.24 21 2.13a), also see Table 5 9 130.95 135.59 145	Oct Nov 2.74 82.74	Dec 82.74 (6	66)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.75 Lighting gains (calculated in Appendix L, equation L9 or L9a) (67)m= 26.51 23.54 19.15 14.49 10.84 9.15 9.88 Appliances gains (calculated in Appendix L, equation L13 or (68)m= 177.5 179.34 174.7 164.82 152.35 140.63 132.75 Cooking gains (calculated in Appendix L, equation L15 or L15 180.15 11	Aug Sep C 82.74 82.74 82 also see Table 5 12.85 17.24 21 13a), also see Table 5 9 130.95 135.59 145 6a), also see Table 5	7 is from common	Dec 82.74 (6	66) 67)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.74 82.75 Lighting gains (calculated in Appendix L, equation L9 or L9a) (67)m= 26.51 23.54 19.15 14.49 10.84 9.15 9.88 Appliances gains (calculated in Appendix L, equation L13 or (68)m= 177.5 179.34 174.7 164.82 152.35 140.63 132.7 Cooking gains (calculated in Appendix L, equation L15 or L18 (69)m= 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.65 44.65	Aug Sep C 82.74 82.74 82 also see Table 5 12.85 17.24 21 13a), also see Table 5 9 130.95 135.59 145 6a), also see Table 5	7 is from common Coct Nov 2.74 82.74 1.9 25.56 5	Dec 82.74 (6	66) 67)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74	Aug Sep C 82.74 82.74 82 also see Table 5 12.85 17.24 21 2.13a), also see Table 5 9 130.95 135.59 145 5a), also see Table 5 5a 44.65 44.65 44	7 is from common	Dec 82.74 (6) 169.67 (6) 44.65	66) 67) 68)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul	Aug Sep C 82.74 82.74 82 also see Table 5 12.85 17.24 21 2.13a), also see Table 5 9 130.95 135.59 145 5a), also see Table 5 5a 44.65 44.65 44	7 is from common	Dec 82.74 (6) 169.67 (6) 44.65	66) 67)
include (57)m in calculation of (65)m only if cylinder is in the state of the state	Aug Sep Construction	r is from comr Oct Nov 2.74 82.74 1.9 25.56 5 5.47 157.95 4.65 44.65 3 3	Dec 82.74 (6.27.24 (6	666) 667) 668) 70)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul	Aug Sep Construction	7 is from common	Dec 82.74 (6.27.24 (6	66) 67) 68)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74	Aug Sep C 82.74 82.74 82 also see Table 5 12.85 17.24 21 13a), also see Table 5 9 130.95 135.59 145 5a), also see Table 5 6 44.65 44.65 44	7 is from common	Dec 82.74 (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	666) 667) 668) 70)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74	Aug Sep Consider the second se	r is from comr Oct Nov 2.74 82.74 1.9 25.56 5 5.47 157.95 4.65 44.65 3 3 5.16 -55.16	Dec 82.74 (6.27.24 (6	666) 667) 668) 70)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74	Aug Sep C 82.74 82.74 82 also see Table 5 12.85 17.24 21 13a), also see Table 5 9 130.95 135.59 145 5a), also see Table 5 6 44.65 44.65 44 3 3 3 3 6 -55.16 -55.16 -55 8 44.59 46.59 51 7)m + (68)m + (69)m + (70)m	r is from common	Dec 82.74 (6.27.24 (6	666) 667) 668) 70) 71)
include (57)m in calculation of (65)m only if cylinder is in the 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul (66)m= 82.74	Aug Sep C 82.74 82.74 82 also see Table 5 12.85 17.24 21 13a), also see Table 5 9 130.95 135.59 145 5a), also see Table 5 6 44.65 44.65 44 3 3 3 3 6 -55.16 -55.16 -55 8 44.59 46.59 51 7)m + (68)m + (69)m + (70)m	r is from comr Oct Nov 2.74 82.74 1.9 25.56 5 5.47 157.95 4.65 44.65 3 3 5.16 -55.16	Dec 82.74 (6.27.24 (6	666) 667) 668) 70)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation: Access Factor Table 6d	r	Area m²		Flux Table 6a			g_ Table 6b		FF Table 6c		Gains (W)		
Northeast 0.9x 0.77	x	3.1	x	11.	28	x	0.7	x	0.8	=	13.57	(75)	
Northeast 0.9x 0.77	x	2.3	X	11.	28	x	0.7	x	0.8	=	10.07	(75)	
Northeast 0.9x 0.77	x	3.1	X	22.	97	x	0.7	x	0.8	<u> </u>	27.63	(75)	
Northeast 0.9x 0.77	×	2.3	X	22.	97	x	0.7	X	0.8	<u> </u>	20.5	(75)	
Northeast 0.9x 0.77	x	3.1	X	41.	41.38		0.7	X	0.8	= [49.78	(75)	
Northeast 0.9x 0.77	X	2.3	X	41.	38	x	0.7	X	0.8	= [36.93	(75)	
Northeast 0.9x 0.77	X	3.1	X	67.	96	x	0.7	X	0.8	= [81.75	(75)	
Northeast 0.9x 0.77	X	2.3	X	67.	96	x	0.7	X	0.8	= [60.66	(75)	
Northeast _{0.9x} 0.77	X	3.1	X	91.	35	x	0.7	X	0.8	=	109.89	(75)	
Northeast 0.9x 0.77	X	2.3	X	91.	35	x	0.7	X	0.8	= [81.53	(75)	
Northeast 0.9x 0.77	X	3.1	X	97.	38	x	0.7	x	0.8	= [117.16	(75)	
Northeast 0.9x 0.77	X	2.3	X	97.	38	x	0.7	X	0.8	=	86.92	(75)	
Northeast 0.9x 0.77	X	3.1	X	91	.1	x	0.7	X	0.8	= [109.6	(75)	
Northeast 0.9x 0.77	x	2.3	X	91	.1	x	0.7	X	0.8	=	81.32	(75)	
Northeast 0.9x 0.77	x	3.1	X	72.	63	x	0.7	x	0.8	<u> </u>	87.37	(75)	
Northeast 0.9x 0.77	×	2.3	X	72.	63	Х	0.7	X	0.8		64.83	(75)	
Northeast 0.9x 0.77	x	3.1	Х	50.	42	х	0.7	х	0.8		60.66	(75)	
Northeast 0.9x 0.77	x	2.3	Х	50.	42	×	0.7	х	0.8	=	45	(75)	
Northeast 0.9x 0.77	x	3.1	X	28.	07	x	0.7	х	0.8	-	33.77	(75)	
Northeast _{0.9x} 0.77	x	2.3	X	28.	07	Х	0.7	х	0.8	=	25.05	(75)	
Northeast 0.9x 0.77	x	3.1	X	14	.2	x	0.7	х	0.8	=	17.08	(75)	
Northeast 0.9x 0.77	x	2.3	х	14	.2	x	0.7	х	0.8	<u> </u>	12.67	(75)	
Northeast 0.9x 0.77	x	3.1	X	9.2	21	x	0.7	X	0.8	<u> </u>	11.09	(75)	
Northeast 0.9x 0.77	×	2.3	X	9.2	21	x	0.7	X	0.8	_ = [8.22	(75)	
Southeast 0.9x 0.77	x	4.6	X	36.	79	x	0.7	X	0.8	= [65.68	(77)	
Southeast 0.9x 0.77	X	4.6	X	62.	67	x	0.7	X	0.8	=	111.88	(77)	
Southeast 0.9x 0.77	X	4.6	X	85.	75	x	0.7	X	0.8	= [153.08	(77)	
Southeast 0.9x 0.77	X	4.6	X	106	.25	x	0.7	X	0.8	= [189.68	(77)	
Southeast 0.9x 0.77	X	4.6	X	119	.01	x	0.7	X	0.8	= [212.45	(77)	
Southeast 0.9x 0.77	X	4.6	X	118	.15	x	0.7	X	0.8	= [210.92	(77)	
Southeast 0.9x 0.77	X	4.6	X	113	.91	x	0.7	X	0.8	= [203.35	(77)	
Southeast 0.9x 0.77	X	4.6	X	104	.39	x	0.7	X	0.8	=	186.35	(77)	
Southeast 0.9x 0.77	X	4.6	X	92.	85	x	0.7	X	0.8	_ = [165.76	(77)	
Southeast 0.9x 0.77	X	4.6	X	69.	27	x	0.7	X	0.8	_ [123.65	(77)	
Southeast 0.9x 0.77	x	4.6	X	44.	07	x	0.7	х	0.8	<u> </u>	78.67	(77)	
Southeast 0.9x 0.77	x	4.6	X	31.	49	x	0.7	x	0.8	<u> </u>	56.21	(77)	
Solar gains in watts, calcula			\neg				= Sum(74)m .		į			_	
(83)m= 89.33 160.01 239		332.09 403.88			394.26	338	.55 271.42	182.47	108.42	75.52		(83)	
Total gains – internal and s		` ' 	_	<u> </u>		65.		1	45	10= == 1		(0.4)	
(84)m= 429.99 497.55 564	.62	637.56 689.92	2 6	883.18	651.96	602	.17 546.08	476.64	424.29	407.55		(84)	

7. Me	an inter	nal temr	perature	(heating	season)								
		·	neating p	· ·		•	from Tal	ole 9 Th	1 (°C)				21	(85)
		_	ains for			•		JIO 0, 111	. (0)			ļ	21	(00)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(86)m=	0.98	0.97	0.95	0.9	0.8	0.65	0.51	0.56	0.77	0.93	0.97	0.99		(86)
Mean	internal	l temper	ature in	living ar	ea T1 (fo	ollow ste	ps 3 to 7	in Tabl	e 9c)					
(87)m=	19.39	19.57	19.86	20.26	20.58	20.8	20.88	20.86	20.7	20.28	19.78	19.37		(87)
Temp	erature	during h	neating p	eriods ir	n rest of	dwelling	from Ta	able 9, T	h2 (°C)					
(88)m=	19.21	19.22	19.22	19.25	19.26	19.28	19.28	19.29	19.27	19.26	19.25	19.23		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	0.98	0.96	0.93	0.86	0.72	0.51	0.33	0.38	0.66	0.89	0.96	0.98		(89)
Mean	internal	l temper	ature in	the rest	of dwell	ing T2 (f	ollow ste	eps 3 to	7 in Tabl	le 9c)				
(90)m=	17.18	17.45	17.87	18.43	18.85	19.1	19.15	19.15	19.01	18.48	17.77	17.18		(90)
									1	fLA = Livin	ig area ÷ (4	4) =	0.46	(91)
Mean	internal	l temper	ature (fo	r the wh	ole dwe	lling) = f	LA × T1	+ (1 – fL	A) × T2					
(92)m=	18.19	18.42	18.78	19.27	19.64	19.88	19.94	19.93	19.78	19.3	18.69	18.18		(92)
			he mear		· ·				ere appro	_				
(93)m=	18.19	18.42	18.78	19.27	19.64	19.88	19.94	19.93	19.78	19.3	18.69	18.18	_	(93)
			uirement		un alatair		11 -6	Table 0	- 41	4 T: (70)	-1 1-	ulata	
			ternai ter or gains			ied at st	ep 11 of	l able 9	o, so tha	it 11,m=(76)m an	d re-calc	culate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	1:										
(94)m=	0.97	0.96	0.93	0.86	0.74	0.57	0.4	0.45	0.7	0.89	0.96	0.98		(94)
	<u> </u>		W = (94)						i			 	l	
(95)m=		476.18	523.1	547.96	511.3	386.32	260.87	271.03	380.33	423.63	406.05	397.91		(95)
(96)m=	aly avera	age exte	ernal tem	perature 8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
			I ^{6.3} an intern		<u> </u>		l	<u> </u>	ļ		7.1	4.2		(50)
			1038.85		655.06	426.98	270.31	284.93	463.09	717.45	963.43	1172.64		(97)
Space	e heating	g require	ement fo	r each n	nonth, k	Wh/mon	th = 0.02	24 x [(97	ı)m – (95	i i)m] x (4	1)m	ļ		
(98)m=	571.29	451.84	383.72	223.46	106.96	0	0	0	0	218.61	401.32	576.4		
				-				Tota	l per year	(kWh/yea	r) = Sum(9	8)15,912 =	2933.59	(98)
Space	e heating	g require	ement in	kWh/m²	²/year								75.3	(99)
9a. En	ergy req	uiremer	nts – Indi	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
-	e heatir	_	ot from a	ooodor	مامعیند/پ	mantan	, avatam					ĺ		7(204)
	-		at from s			memary	Systeili	(202) = 1	- (201) –				0	(201)
	-		at from m	•	. ,				02) × [1 –	(203)1 –			1	(202)
			ng from	•				(204) = (2	02) * [1 -	(200)] =			1	(204)
	-	•	ace heat	•		a ovete-	n 0/						92.8	(206)
⊏πici€	ency of s	seconda	ry/suppl	ementar	y neatin	y systen	1, %						0	(208)

								_	
	May Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space heating requirement (calculated al	i				040.04	404.00	<i>-</i>	7	
	06.96 0	0	0	0	218.61	401.32	576.4	J	
$ (211)m = \{ [(98)m \times (204)] \} \times 100 \div (206) $ $ 615.61 486.9 413.49 240.79 11 $	5.26 0	0	0	T 0	235.57	432.46	621.12	1	(211)
013.01 400.9 413.49 240.79 11	3.20 0			l (kWh/yea				3161.19	(211)
Space heating fuel (secondary), kWh/mo	nth				,	715,1012	•	0101.13	
= {[(98)m x (201)] } x 100 ÷ (208)								_	
(215)m= 0 0 0 0	0 0	0	0	0	0	0	0		_
			Tota	ıl (kWh/yea	ar) =Sum(2	215) _{15,1012}	=	0	(215)
Water heating	- \								
Output from water heater (calculated abov	<u>(e)</u> 4.53 100.87	96.64	107.73	108.92	124.03	132.4	143.3	1	
Efficiency of water heater	I	<u>l</u>		l				83.5	(216)
(217)m= 90.73 90.57 90.21 89.36 87	7.75 83.5	83.5	83.5	83.5	89.2	90.3	90.79		(217)
Fuel for water heating, kWh/month	•	•		•				_	
(219) m = (64) m x $100 \div (217)$ m (219) m= (64) m x $100 \div (217)$ m (219) m= (64) m x $(100 \div (217)$ m (219) m= (64) m x $(100 \div (217)$ m	0.52 120.8	115.74	129.02	130.44	139.04	146.61	157.84	1	
(210)		1	l	I = Sum(2	l		101.101	1653.49	(219)
Annual totals					k\	Wh/year		kWh/year	_
Spa <mark>ce he</mark> ating fuel <mark>used, main syst</mark> em 1								3161.19	
Water heating fuel used								1653.49	7
Clastricity for numbal fond and alastric kas									
Electricity for pumps, fans and electric kee	p-hot								
central heating pump:	ep-hot						30	1	(230c)
central heating pump:	ep-hot	/	sum	of (230a).	(230g) =		30	30	(230c) (231)
central heating pump: Total electricity for the above, kWh/year	ep-not		sum	of (230a).	(230g) =		30		(231)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting	ep-not		sum	of (230a).	(230g) =		30	187.24	(231)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs			sum	of (230a).	(230g) =		30		(231)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting	ms:		sum	of (230a).			30	187.24 -428.92	(231)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs	ms:	el /h/year	sum	of (230a).	(2 <mark>3</mark> 0g) =		30	187.24	(231)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs	ms: Fu		sum	of (230a).	Fuel P	12)	30 x 0.01 =	187.24 -428.92	(231)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs 10a. Fuel costs - individual heating system	ms: Fu kW	/h/year	sum	of (230a).	Fuel P (Table	12)		187.24 -428.92 Fuel Cost £/year	(231) (232) (233)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs 10a. Fuel costs - individual heating system Space heating - main system 1	ms: Fu kW (21) (21)	/h/year 1) x	sum	of (230a).	Fuel P (Table	12)	x 0.01 =	187.24 -428.92 Fuel Cost £/year	(231) (232) (233) (240)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2	ms: Fu kW (21) (21)	/h/year 1) x 3) x 5) x	sum	of (230a).	Fuel P (Table	12) 8	x 0.01 = x 0.01 =	187.24 -428.92 Fuel Cost £/year 110.01	(231) (232) (233) (240) (241)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2 Space heating - secondary	ms: Fu kW (21:	/h/year 1) x 3) x 5) x	sum	of (230a).	Fuel P (Table 3.4	12) 8 19	x 0.01 = x 0.01 = x 0.01 =	187.24 -428.92 Fuel Cost £/year 110.01 0	(231) (232) (233) (240) (241) (242)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel)	ms: Fu kW (211) (213) (218) (234)	/h/year 1) x 3) x 5) x 9) 1) y as app			Fuel P (Table 3.4 0 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4	12) 8 19 8 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	187.24 -428.92 Fuel Cost £/year 110.01 0 57.54 3.96	(231) (232) (233) (240) (241) (242) (247)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot (if off-peak tariff, list each of (230a) to (230a)	ms: Fu kW (213 (213 (214) (233 (233 (239)) separately	/h/year 1) x 3) x 5) x 9) 1) y as app			Fuel P (Table 3.4 0 13. 3.4 13.	12) 8 19 8 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	187.24 -428.92 Fuel Cost £/year 110.01 0 57.54 3.96 Table 12a	(231) (232) (233) (240) (241) (242) (247) (249)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot (if off-peak tariff, list each of (230a) to (230a) to lighting	ms: Fu kW (21: (21: (21: (23: (23: (23: (23: (23: (23: (23: (23	/h/year 1) x 3) x 5) x 9) 1) y as app	licable a		Fuel P (Table 3.4 0 13. 3.4 13.	12) 8 19 8 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	187.24 -428.92 Fuel Cost £/year 110.01 0 57.54 3.96 Table 12a 24.7	(231) (232) (233) (233) (240) (241) (242) (247) (249)
central heating pump: Total electricity for the above, kWh/year Electricity for lighting Electricity generated by PVs 10a. Fuel costs - individual heating system Space heating - main system 1 Space heating - main system 2 Space heating - secondary Water heating cost (other fuel) Pumps, fans and electric keep-hot (if off-peak tariff, list each of (230a) to (230a) to lighting	ms: Fu kW (21: (21: (21: (23: (23: (23: (23: (23: (23: (23: (23	/h/year 1) x 3) x 5) x 9) 1) y as app 2) of (233) to	licable a		Fuel P (Table 3.4 0 13. 3.4 13. fuel prid 13.	12) 8 19 8 19 ce accor	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 = rding to x 0.01 =	187.24 -428.92 Fuel Cost £/year 110.01 0 57.54 3.96 Table 12a 24.7 120	(231) (232) (233) (233) (240) (241) (242) (247) (249) (250) (251)

44 - 048 - 6 - 1 - 1 - 1 - 1 - 6 - 1 - 1 - 6 - 1			
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(255) x	(256)] ÷ [(4) + 45.0] =		1.3 (257)
SAP rating (Section 12)			81.88 (258)
12a. CO2 emissions – Individual heating syste	ems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	682.82 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	357.15 (264)
Space and water heating	(261) + (262) + (263) + (2	(64) =	1039.97 (265)
Electricity for pumps, fans and electric keep-ho	t (231) x	0.519 =	15.57 (267)
Electricity for lighting	(232) x	0.519 =	97.18 (268)
Energy saving/generation technologies Item 1		0.519 =	-222.61 (269)
Total CO2, kg/year		sum of (265)(271) =	930.11 (272)
CO2 emissions per m²		(272) ÷ (4) =	23.87 (273)
EI rating (section 14)			85 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	3856.66 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22	2017.25 (264)
Space and water heating	(261) + (262) + (263) + (2	(64) =	5873.91 (265)
Electricity for pumps, fans and electric keep-ho	t (231) x	3.07	92.1 (267)
Electricity for lighting	(232) x	0 =	574.83 (268)
Energy saving/generation technologies Item 1		3.07 =	-1316.78 (269)
ROIII I		3.07	-1316.78 (269)

sum of (265)...(271) =

 $(272) \div (4) =$

'Total Primary Energy

Primary energy kWh/m²/year

(272)

(273)

5224.07

134.09

Stroma Name: Stroma FSAP 2012 Software Version: Version: 1,0,4,6			User D	etails:						
## Action Control Cont			Versio	on: 1.0.4.6						
Area(m²)	Address :		торену	Address	. PIOL 6					
Ground floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 246.39 (5) Z. Ventilation rate:	1. Overall dwelling dime	nsions:								
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)	0			• •	L			٦		<u>-</u>
Dwelling volume				70.98		3	3.47	(2a) =	246.39	(3a)
2. Ventilation rate: main heating heati	Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e)+(1	n) <u>7</u>	70.98	(4)					
Number of chimneys	Dwelling volume				(3a)+(3b)+(3c)+(3c	d)+(3e)+	(3n) =	246.39	(5)
Number of chimneys	2. Ventilation rate:									
Number of open flues			ry	other		total			m³ per hou	ır
Number of intermittent fans 2	Number of chimneys	0 + 0	+	0] = [0	X	40 =	0	(6a)
Number of passive vents	Number of open flues	0 + 0] + [0] = [0	X	20 =	0	(6b)
Number of flueless gas fires	Number of intermittent fa	ns				2	X	10 =	20	(7a)
Air changes per hour	Number of passive vents				Ī	0	x	10 =	0	(7b)
Infiltration due to chimneys, flues and fans = (68)+(6b)+(7a)+(7b)+(7c) = 20	Number of flueless gas fi	res				0	X	40 =	0	(7c)
Number of storeys in the dwelling (ns) Q Q Q								Air ch	nanges per ho	our
Number of storeys in the dwelling (ns) Additional infiltration (10) (10)								÷ (5) =	0.08	(8)
Additional infiltration			ea to (17), i	otnerwise (continue ti	rom (9) to	(16)		0	(9)
if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 · [0.2 × (14) ÷ 100] = 0 Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 10 (17) (17) (17) (17) (17) (17) (18) (18) (18) (18) (18) (19) (19) (19) (19) (19) (19) (19) (19		d					[(9)	-1]x0.1 =		—
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12)	Structural infiltration: 0.	.25 for steel or timber frame o	r 0.35 fo	r masoni	ry consti	ruction			0	(11)
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0			o the great	ter wall are	a (after					
If no draught lobby, enter 0.05, else enter 0	=		.1 (seale	ed), else	enter 0				0	(12)
Window infiltration $0.25 - [0.2 \times (14) + 100] = 0.25 - [$	•	,	,	,.						=
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) = 0$ (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ 0.58 (18) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.85$ (20) Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = 0.49$ (21) Infiltration rate modified for monthly wind speed Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Monthly average wind speed from Table 7 $(22)m = 5.1 $	Percentage of windows	s and doors draught stripped							0	(14)
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) ÷ 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered Shelter factor (20) = 1 - [0.075 × (19)] =	Window infiltration			0.25 - [0.2	2 x (14) ÷ 1	0	(15)			
If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.85 (20) Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ $(21) = (18) \times (20) =$ $(21) = (18) \times (20) =$ Monthly average wind speed from Table 7 $(22) = 5.1 + 5 + 4.9 + 4.4 + 4.3 + 3.8 + 3.8 + 3.8 + 3.7 + 4 + 4.3 + 4.5 + 4.7$ Wind Factor $(22a) = (22) + 4$									0	(16)
Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] = $ $(20) = 1 - [0.075 \times (19)] = $ $(21) = (18) \times (20) = $ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) = $ $(22) = (18) \times (20) = $ $(23) = (18) \times (20) = $ $(24) = (18) \times (20) = $ $(25) = (18) \times (20) = $ $(27) = (18) \times (20) = $ $(28) = (18) \times (20) = $ $(28) = (18) \times (20) = $ $(29) = (18) \times (20) = $	•	·		•	•	etre of e	envelope	area		=
Number of sides sheltered $ (20) = 1 - [0.075 \times (19)] = 0.85 $	•	•				is heina u	sed		0.58	(18)
Infiltration rate incorporating shelter factor			70 07 a ao	groo an po	modelinty	io boilig a	oou		2	(19)
Infiltration rate modified for monthly wind speed Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Monthly average wind speed from Table 7 (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m ÷ 4	Shelter factor			(20) = 1 -	[0.075 x (19)] =			0.85	(20)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Monthly average wind speed from Table 7 (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m ÷ 4	Infiltration rate incorporat	ing shelter factor		(21) = (18) x (20) =				0.49	(21)
Monthly average wind speed from Table 7 (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m ÷ 4	Infiltration rate modified for	or monthly wind speed							1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Wind Factor (22a)m = (22)m ÷ 4	 				1				1	
	(22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
	Wind Factor (22a)m = (22	2)m ÷ 4								
		' 	0.95	0.92	1	1.08	1.12	1.18		

ajastea iriiliti	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m				_	
0.63	0.62	0.61	0.54	0.53	0.47	0.47	0.46	0.49	0.53	0.56	0.58		
<i>alcul<mark>ate effe</mark></i> If mechanic		•	rate for t	he appli	cable ca	se							
If exhaust air h			endix N. (2	3b) = (23a	a) × Fmv (e	eguation (N5)) . othe	wise (23h	a(23a)			0	(:
If balanced with		0 11		, ,	, ,	. ,	,, .	,) = (20 0)			0	==
a) If balance		•	•	_					2h)m . (22h) v [1 (220)	. 1001	(
4a)m= 0	0	0	0	0	0	0	0	0	0	0	0	+ 100j	(
b) If balance				-			1 .			33P)	, ,		
1b)m= 0		0	0	0	0	0	0	0	0	0	0		
c) If whole h	OUSE EX	tract ver	tilation (or nositiv	e innut v	<u>l</u> ventilatio	on from o	utside					
•				•	•		·c) = (22k		.5 × (23b	o)			
lc)m= 0	0	0	0	0	0	0	0	0	0	0	0		
d) If natural	ventilation	on or wh	ole hous	e positiv	/e input	ventilati	on from I	oft					
,					•		0.5 + [(2		0.5]				
ld)m= 0.7	0.69	0.68	0.65	0.64	0.61	0.61	0.6	0.62	0.64	0.65	0.67		
Effective air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	ld) in box	(25)					
i)m= 0.7	0.69	0.68	0.65	0.64	0.61	0.61	0.6	0.62	0.64	0.65	0.67		(
. Heat losse	s and he	eat loss	paramet	er:							_	_	
LEMENT	Gros		Openin		Net Ar	ea	U-valu		ΑXU		k-value		ΑΧk
	area	(m²)	m	²	A ,r	n²	W/m2	K	(W/I	K)	kJ/m²·l	<	kJ/K
oors					2	Х	1.5	=	3				
indows Type	e 1				5.4	x1	/[1/(1.6)+	0.04] =	8.12				(
indows Type	e 2				3.2	x1	/[1/(1.6)+	0.04] =	4.81				(
indows Type	e 3				1.5	x1	/[1/(1.6)+	0.04] =	2.26				(
oor Type 1					66.59	9 x	0.25	=	16.6497	5			(
oor Type 2					4.385	x	0.3	=	1.3155	; [(
alls Type1	38.7	74	10.1		28.64	x	0.3	=	8.59			$\neg $	
alls Type2	6.4	3	2		4.43	x	0.27	=	1.19				
otal area of e	elements	, m²			116.1	6							(
or windows and	l roof wind	ows, use e	effective wi	ndow U-va	alue calcul	ated using	g formula 1	/[(1/U-valu	ue)+0.04] a	as given in	paragraph	3.2	
include the are				ls and part	titions								
bric heat lo		,	U)				(26)(30)					45.93	(
eat capacity		` ,	_					,	(30) + (32	, , ,	(32e) =	0	(
nermal mass	•	,		•					ative Value			250	(
r design asses n be used inste				constructi	ion are no	t known p	recisely the	indicative	e values of	TMP in T	able 1f		
nermal bridg				using Ap	pendix l	<						17.42	
letails of therm	,	,			•							=	
otal fabric he	at loss							(33) +	- (36) =			63.36	
entilation he	at loss c	alculated	monthl	/				(38)m	n = 0.33 × ((25)m x (5))		•
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Jan					l	1	1		1	52.04		l	(
3)m= 56.78	56.15	55.54	52.66	52.12	49.61	49.61	49.14	50.57	52.12	53.21	54.35		•
	<u> </u>	L	52.66	52.12	49.61	49.61	49.14		52.12 $1 = (37) + (37)$	ļ.	54.35		•

Heat loss para	ımeter (I	HLP), W	/m²K					(40)m	= (39)m ÷	· (4)			
(40)m= 1.69	1.68	1.67	1.63	1.63	1.59	1.59	1.58	1.61	1.63	1.64	1.66		
					l .	ı	ı	,	Average =	Sum(40) ₁ .	12 /12=	1.63	(40)
Number of day	1	nth (Tab	le 1a)	1				ı		i			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		()
(41)m= 31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Water heat	ting ene	rgy requi	irement:								kWh/ye	ear:	
Assumed occu if TFA > 13.9 if TFA £ 13.9	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (¯	TFA -13.		27		(42)
Annual averag Reduce the annua not more that 125	al average	hot water	usage by	5% if the α	lwelling is	designed t			se target o		.11		(43)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water usage is	n litres pe	r day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)		!				
(44)m= 96.92	93.39	89.87	86.35	82.82	79.3	79.3	82.82	86.35	89.87	93.39	96.92		
			and to do	th. b	100 - 1/-/-		T / 000/			m(44) ₁₁₂ =		1057.29	(44)
Energy content of													
(45)m= 143.73	125.7	129.72	113.09	108.51	93.64	86.77	99.57	100.76	117.42	128.18	139.19	4000.07	(45)
If inst <mark>antane</mark> ous w	vater heati	ng at point	of use (no	o hot water	storage),	enter 0 in	boxes (46		lotal = Su	m(45) ₁₁₂ =		1386.27	(45)
(46)m= 21.56	18.86	19.46	16.96	16.28	14.05	13.02	14.94	15.11	17.61	19.23	20.88		(46)
Water storage	loss:												
Storage volum	ne (litres) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If community h	•			•			` '						
Otherwise if no		hot wate	er (this in	ncludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water storage a) If manufact		eclared I	oss facto	or is kno	wn (kWl	n/dav):					0		(48)
Temperature f					(, , .					0		(49)
Energy lost fro				ear			(48) x (49)) =			0		(50)
b) If manufact		_	-		or is not	known:	. , , , ,						()
Hot water stor	•			le 2 (kW	h/litre/da	ay)					0		(51)
If community he Volume factor	_		on 4.3										(52)
Temperature f			2b							—	0		(52) (53)
Energy lost fro				ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter (50) or (_	,	ou.			() (-)	, (- , (,		0		(55)
Water storage	loss cal	culated t	for each	month			((56)m = ((55) × (41)	m				
(56)m= 0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder contains	I s dedicate	d solar sto	rage, (57)	<u>I</u> m = (56)m	x [(50) – (<u>I</u> H11)] ÷ (5	0), else (5	<u>1</u> 7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit	loss (ar	nnual) fro	m Table	 ∋ 3							0		(58)
Primary circuit	•	•			59)m =	(58) ÷ 36	65 × (41)	m					
(modified by	factor f	rom Tab	le H5 if t	here is s	solar wa	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)

Combi loss calculated for each month (61)m = (60) + 365 × (41)m (61)m= 40.39 42.99 45.8 46.8 46.8 42.68 42.2 39.11 40.41 42.2 42.58 46.8 46.06 49.39 (61) Total heat required for water heating calculated for each month (62)m = 0.85 × (45)m + (46)m + (57)m + (59)m + (61)m (62)m= 133.11 188.08 175.51 156.67 150.72 132.74 127.18 141.77 143.34 153.22 174.23 188.68 (62) Soler DPW input calculated using Appendix G or Appendix H (negative quantity) (enter if no solar contribution to water heating) (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
Total heat required for water heating calculated for each month (62)m = 0.85 x (45)m + (46)m + (57)m + (59)m + (61)m (62)m = 9.81 x 1 808.0 = 175.51 155.67 150.72 32.74 27.18 141.77 143.34 163.22 174.23 88.58 (62) Solad PHW input calculated using Appendix F or Appendix H (negative quantity) (enter Ti if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHS applies, see Appendix F or 180.0 = 0 0 0 0 0 0 0 0 0			1	ì	<u>` </u>	- ` ` `	<u> </u>		1	1	1	1	(0.1)
(62) (62) (62) (62) (63)	, ,		ļ	<u> </u>	<u> </u>		ļ		<u> </u>	ļ	<u> </u>		(61)
Solar DHW input calculated using Appendix G or Appendix H (regative quantity) (enter 0" if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							`		ì	`	`	(59)m + (61)m	(22)
(Add additional lines if FGHRS and/or WHRRS applies, see Appendix G) (Bayma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	` ′			<u> </u>		<u> </u>				1			(62)
Casim Casi									r contribu	tion to wate	er heating)		
Output from water heater (64)ms	` _		1			 	i 			Т.		1	(00)
193.11 188.69 175.51 155.67 150.72 132.74 127.18 141.77 143.34 163.22 174.23 188.58			0	0	0	0	0	0	0	0	0		(63)
Heat gains from water heating, kWh/month 0.25	· —		T	l		l	· =	_ 1		1		1	
Heat gains from water heating, kWh/month 0.25 ´ [0.85 x (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m] (65)m	(64)m= 193.11 168.6	9 175.51	155.67	150.72	132.74	127.18	ļ			ļ	L	1011.77	1(64)
(65)me													(64)
include (67)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 136.19 1			î .	1	1	T T		1	T .	1	1	1] 1	(2-)
Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m 136.19 136			ļ			ļ	Į.				ļ		(65)
Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)nl= 136.19 13	include (57)m in ca	alculation	of (65)m	only if c	ylinder i	s in the	dwellir	ng or hot w	ater is f	rom com	munity h	neating	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	5. Internal gains (s	ee Table 5	5 and 5a):									
Cooking gains (calculated in Appendix L, equation L13 of L13a), also see Table 5	Metabolic gains (Tab	le 5), Wat	tts		•								
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 46.26	Jan Feb	Mar	Apr	May	Jun	Jul	Au	g Sep	Oct	Nov	Dec		
(67) 46.26	(66)m= 136.19 136.1	136.19	136.19	136.19	136.19	136.19	136.1	9 136.19	136.19	136.19	136.19		(66)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m = 297.88 300.98 293.19 276.6 255.67 236 222.85 219.76 227.55 244.13 265.07 284.74 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m = 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 (69) Pumps and fans gains (Table 5a) (70)m = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Lighting gains (calcu	lated in Ap	ppendix	L, equ <mark>at</mark>	ion L9 o	r L9a), a	lso se	e Table 5					
(68)m= 297.88 300.98 293.19 276.6 256.61 236 222.85 219.76 227.55 244.13 265.07 284.74 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 (69) Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(67)m= 46.26 41.09	33.42	25.3	18.91	15.96	17.25	22.42	30.1	38.21	44.6	47.55		(67)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m	App <mark>liance</mark> s gains (ca	<mark>lculat</mark> ed ir	n Append	dix L, eq	uation L	13 or L1	<mark>3</mark> a), al	so see Ta	ble <mark>5</mark>				
Color Colo	(68)m= 297.88 300.9	3 293.19	276.6	255.67	236	222.85	219.7	6 227.55	244.13	265.07	284.74		(68)
Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Cooking gains (calcu	lated in A	ppendix	L, equat	ion L15	or L15a), also	see Table	5		-		
Comparison (negative values) (Table 5) Losses e.g. evaporation (negative values) (Table 5) (71)m=	(69)m= 50.89 50.89	50.89	50.89	50.89	50.89	50.89	50.89	50.89	50.89	50.89	50.89		(69)
Losses e.g. evaporation (negative values) (Table 5) (71)m=	Pumps and fans gair	ns (Table :	5a)										
(71)m=	(70)m= 3 3	3	3	3	3	3	3	3	3	3	3		(70)
Water heating gains (Table 5) (72)m= 80.83 78.19 73.36 67.01 62.68 56.82 52.36 58.68 61.32 67.87 75.18 78.8 (72) Total internal gains = (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m (73)m= 524.26 519.54 499.25 468.2 436.54 408.07 391.74 400.15 418.25 449.5 484.14 510.37 (73) 6. Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d Table 6c (W) Northeast 0.9x 0.77 x 5.4 x 11.28 x 0.7 x 0.8 = 23.64 (75) Northeast 0.9x 0.77 x 5.4 x 22.97 x 0.7 x 0.8 = 48.13 (75) Northeast 0.9x 0.77 x 5.4 x 41.38 x 0.7 x 0.8 = 86.71 (75) Northeast 0.9x 0.77 x 5.4 x 41.38 x 0.7 x 0.8 = 86.71 (75) Northeast 0.9x 0.77 x 5.4 x 41.38 x 0.7 x 0.8 = 142.41 (75)	Losses e.g. evapora	tion (nega	tive valu	es) (Tab	le 5)	•		•	•	•		•	
(72)m= 80.83 78.19 73.36 67.01 62.68 56.82 52.36 58.68 61.32 67.87 75.18 78.8 (72) Total internal gains = (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m (73)m= 524.26 519.54 499.25 468.2 436.54 408.07 391.74 400.15 418.25 449.5 484.14 510.37 (73) 6. Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d Area m² Flux g g Flux g FFF Gains Table 6a Table 6b Table 6c (W) Northeast 0.9x 0.77 x 5.4 x 11.28 x 0.7 x 0.8 = 23.64 (75) Northeast 0.9x 0.77 x 5.4 x 22.97 x 0.7 x 0.8 = 48.13 (75) Northeast 0.9x 0.77 x 5.4 x 41.38 x 0.7 x 0.8 = 86.71 (75) Northeast 0.9x 0.77 x 5.4 x 67.96 x 0.7 x 0.8 = 142	(71)m= -90.79 -90.79	-90.79	-90.79	-90.79	-90.79	-90.79	-90.7	9 -90.79	-90.79	-90.79	-90.79		(71)
Total internal gains =	Water heating gains	(Table 5)	•	•		•	•	•		•	•	•	
(73)m= 524.26 519.54 499.25 468.2 436.54 408.07 391.74 400.15 418.25 449.5 484.14 510.37 (73) 6. Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d Area m² Flux g_ FF Gains Table 6c (W) Northeast 0.9x 0.77 x 5.4 x 11.28 x 0.7 x 0.8 = 23.64 (75) Northeast 0.9x 0.77 x 5.4 x 22.97 x 0.7 x 0.8 = 48.13 (75) Northeast 0.9x 0.77 x 5.4 x 41.38 x 0.7 x 0.8 = 86.71 (75) Northeast 0.9x 0.77 x 5.4 x 67.96 x 0.7 x 0.8 = 142.41 (75)	(72)m= 80.83 78.19	73.36	67.01	62.68	56.82	52.36	58.68	61.32	67.87	75.18	78.8]	(72)
Solar gains: Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Area Flux g_{-} FF Gains Table 6d m^2 Table 6a Table 6b Table 6c (W) Northeast $0.9x$ 0.77 x 5.4 x 11.28 x 0.7 x 0.8 $=$ 23.64 (75) Northeast $0.9x$ 0.77 x 5.4 x 22.97 x 0.7 x 0.8 $=$ 48.13 (75) Northeast $0.9x$ 0.77 x 5.4 x 41.38 x 0.7 x 0.8 $=$ 86.71 (75) Northeast $0.9x$ 0.77 x 5.4 x 41.38 x 0.7 x 0.8 $=$ 142.41 (75)	Total internal gains	=	!		(66))m + (67)m	า + (68)	m + (69)m + ((70)m + (7	71)m + (72))m	_	
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. Orientation: Access Factor Table 6d m^2 Table 6a m^2 Table 6a m^2 Table 6b Table 6c m^2 Table 6b Table 6c m^2 Table 6a m^2 Table 6b Table 6c m^2 Table	(73)m= 524.26 519.5	4 499.25	468.2	436.54	408.07	391.74	400.1	5 418.25	449.5	484.14	510.37]	(73)
Orientation: Access Factor Table 6d Area m² Flux Table 6a g_{-} Table 6b FF Table 6c Gains (W) Northeast $0.9x$ 0.77 x 5.4 x 11.28 x 0.7 x 0.8 = 23.64 (75) Northeast $0.9x$ 0.77 x 5.4 x 22.97 x 0.7 x 0.8 = 48.13 (75) Northeast $0.9x$ 0.77 x 5.4 x 41.38 x 0.7 x 0.8 = 86.71 (75) Northeast $0.9x$ 0.77 x 5.4 x 67.96 x 0.7 x 0.8 = 142.41 (75)	6. Solar gains:	_											
Table 6d m ² Table 6a Table 6b Table 6c (W) Northeast 0.9x 0.77 x 5.4 x 11.28 x 0.7 x 0.8 = 23.64 (75) Northeast 0.9x 0.77 x 5.4 x 22.97 x 0.7 x 0.8 = 48.13 (75) Northeast 0.9x 0.77 x 5.4 x 41.38 x 0.7 x 0.8 = 86.71 (75) Northeast 0.9x 0.77 x 5.4 x 67.96 x 0.7 x 0.8 = 142.41 (75)	Solar gains are calculate	ed using sola	r flux from	Table 6a	and assoc	iated equa	itions to	convert to th	e applica	ble orientat	tion.		
Northeast 0.9x													
Northeast 0.9x	Table 6	Sd	m²		Ta	ble 6a		Table 6b	Т	able 6c		(W)	
Northeast 0.9x	Northeast _{0.9x} _{0.7}	77 ×	5.	4	X 1	11.28	x [0.7	x	0.8	=	23.64	(75)
Northeast 0.9x 0.77 x 5.4 x 67.96 x 0.7 x 0.8 = 142.41 (75)	Northeast _{0.9x} 0.7	77 ×	5.	4	x 2	22.97	x	0.7	x	0.8	=	48.13	(75)
	Northeast 0.9x 0.7	77 ×	5.	4	x	11.38	_ x [0.7	x	0.8	=	86.71	(75)
Northeast 0.9x 0.77 x 5.4 x 91.35 x 0.7 x 0.8 = 191.43 (75)	Northeast 0.9x 0.7	77 ×	5.	4	x 6	67.96] x	0.7	x [0.8	=	142.41	(75)
	Northeast 0.9x 0.7	77 X	5.	4	x g	91.35	x	0.7	x [0.8	=	191.43	(75)

Northeast 0.9x 0.77	٦		1		1		¬ г		_		7(75)
No ather and	X	5.4	X	97.38] X	0.7	× [0.8	=	204.08	(75)
N. d. d.	X	5.4	X	91.1	X	0.7	_	0.8	_ =	190.91	(75)
Northeast 0.9x 0.77	X	5.4	X	72.63	X	0.7	_	0.8	_ =	152.2	(75)
Northeast 0.9x 0.77	X	5.4	X	50.42	X	0.7	X	0.8	=	105.66	(75)
Northeast 0.9x 0.77	X	5.4	X	28.07	X	0.7	X	0.8	=	58.82	(75)
Northeast 0.9x 0.77	X	5.4	X	14.2	X	0.7	X	0.8	=	29.75	(75)
Northeast 0.9x 0.77	X	5.4	X	9.21	X	0.7	X	0.8	=	19.31	(75)
Southeast 0.9x 0.77	X	1.5	X	36.79	X	0.7	X	0.8	=	21.42	(77)
Southeast 0.9x 0.77	X	1.5	X	62.67	X	0.7	X	0.8	=	36.48	(77)
Southeast 0.9x 0.77	X	1.5	X	85.75	X	0.7	x	0.8	=	49.92	(77)
Southeast 0.9x 0.77	X	1.5	X	106.25	X	0.7	x [0.8	=	61.85	(77)
Southeast 0.9x 0.77	X	1.5	X	119.01	X	0.7	x	0.8	=	69.28	(77)
Southeast 0.9x 0.77	X	1.5	x	118.15	x	0.7	x	0.8	=	68.78	(77)
Southeast 0.9x 0.77	X	1.5	x	113.91	x	0.7	x	0.8	=	66.31	(77)
Southeast 0.9x 0.77	x	1.5	x	104.39	x	0.7	x	0.8	=	60.77	(77)
Southeast 0.9x 0.77	j×	1.5	x	92.85	x	0.7	= x	0.8	-	54.05	(77)
Southeast 0.9x 0.77	X	1.5	X	69.27	x	0.7	x	0.8	-	40.32	(77)
Southeast 0.9x 0.77	X	1.5	X	44.07	Х	0.7	Х	0.8		25.65	(77)
Southeast 0.9x 0.77	j×	1.5	x	31.49	X	0.7	X	0.8		18.33	(77)
Southwest _{0.9x} 0.77	i x	3.2	х	36.79	i /	0.7	x	0.8	_	45.69	(79)
Southwest _{0.9x} 0.77	J	3.2] x	62.67	i/	0.7	x	0.8	_	77.83	(79)
Southwest _{0.9x} 0.77	i x	3.2	X	85.75		0.7	X	0.8	=	106.49	(79)
Southwest _{0.9x} 0.77	J	3.2)] x	106.25		0.7	x	0.8	= =	131.95	(79)
Southwest _{0.9x} 0.77	J	3.2	X	1/19.01]]	0.7	x	0.8	= =	147.79	(79)
Southwest _{0.9x} 0.77]	3.2) x	118.15]]	0.7	_ x	0.8	= =	146.73	(79)
Southwest _{0.9x} 0.77] x	3.2] x	113.91]]	0.7		0.8	= =	141.46	(79)
Southwest _{0.9x} 0.77]	3.2]	104.39]]	0.7	_	0.8		129.64	(79)
Southwest _{0.9x} 0.77] x	3.2]	92.85]]	0.7	_	0.8	= =	115.31	(79)
Southwest _{0.9x} 0.77	」 ^] x	3.2] ^] x	69.27]]	0.7	」^↓ ⅂ _x 「	0.8		86.02	(79)
0 11 1	╡] ^] x]]		」^↓ ⅂				(79)
0 11 1	」× ┐,	3.2] 1	44.07]]	0.7	≓ ¦	0.8	=	54.73	=
Southwest _{0.9x} 0.77	X	3.2	X	31.49	j	0.7	X	0.8	=	39.1	(79)
Solar gains in watte colou	latad	for each man	th.		(02) _w	- Cum/74\m	(92)m				
Solar gains in watts, calcu (83)m= 90.76 162.44 24:	3.13	336.21 408.5	\neg	19.58 398.68	342	n = Sum(74)m 2.6 275.02	185.16	110.13	76.74		(83)
Total gains – internal and		!		l		1		1			` ,
	2.37	804.41 845.0	``	27.65 790.43	742	.75 693.27	634.66	594.27	587.12		(84)
` ' L L L					<u> </u>						` '
7. Mean internal tempera		`		araa frans Tab	-l- 0	Th4 (9C)					7(05)
Temperature during heat	•		_		oie 9	, INT (°C)				21	(85)
Utilisation factor for gains			Ť				O e t	Nov	Daa		
 	/lar 98	Apr May 0.95 0.88	_	Jun Jul 0.74 0.59	0.6	ug Sep 64 0.84	Oct 0.96	0.99	Dec 0.99		(86)
` ' L L L		<u> </u>		<u> </u>	<u> </u>		0.90	0.99	บ.ชช		(00)
Mean internal temperatur			Ì	i	1	 	00	1 45 55	46.5		(07)
(87)m= 19.67 19.8 20	.02	20.34 20.63	3 2	20.83 20.9	20.	89 20.74	20.39	19.99	19.66		(87)

Tanan anatoma donina ha atina na aria da in asat af donellia a fasar Table O. The (90)	
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.55	1 (88)
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	7
(89)m= 0.99 0.98 0.97 0.92 0.82 0.63 0.42 0.47 0.75 0.94 0.98 0.99	(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)	_
(90)m= 17.82 18.01 18.35 18.82 19.2 19.45 19.51 19.51 19.37 18.9 18.32 17.83	(90)
fLA = Living area ÷ (4) =	0.3 (91)
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$	
(92)m= 18.37 18.55 18.85 19.28 19.63 19.86 19.92 19.92 19.78 19.34 18.82 18.38	(92)
Apply adjustment to the mean internal temperature from Table 4e, where appropriate	_
(93)m= 18.37 18.55 18.85 19.28 19.63 19.86 19.92 19.92 19.78 19.34 18.82 18.38	(93)
8. Space heating requirement	
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-cal	culate
the utilisation factor for gains using Table 9a	_
JanFebMarAprMayJunJulAugSepOctNovDec	
Utilisation factor for gains, hm:	-
(94)m= 0.99 0.98 0.96 0.92 0.82 0.65 0.46 0.51 0.77 0.93 0.98 0.99	(94)
Useful gains, hmGm , W = (94)m x (84)m	
(95)m= 605.99 666.65 713.05 738.02 696.41 537.43 364.52 379.64 531.7 590.45 580.02 579.83	(95)
Monthly average external temperature from Table 8	_
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2	(96)
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m]	-
(97)m= 1690.75 1631.01 1468.06 1203.8 915.4 594.72 375.55 396.1 647 1009.5 1365.6 1669.11	<u>(97)</u>
Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m	7
(98)m= 807.06 648.05 561.73 335.36 162.93 0 0 0 311.77 565.62 810.43	
Total per year (kWh/year) = Sum(98) _{15,912} =	4202.95 (98)
Space heating requirement in kWh/m²/year	59.21 (99)
9a. Energy requirements – Individual heating systems including micro-CHP)	
Space heating:	
Fraction of space heat from secondary/supplementary system	0 (201)
Fraction of space heat from main system(s) $(202) = 1 - (201) =$	1 (202)
Fraction of total heating from main system 1 (204) = (202) × [1 – (203)] =	1 (204)
Efficiency of main space heating system 1	92.8 (206)
Efficiency of secondary/supplementary heating system, %	0 (208)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	kWh/year
Space heating requirement (calculated above)	٦
807.06 648.05 561.73 335.36 162.93 0 0 0 311.77 565.62 810.43	_
$(211)m = \{[(98)m \times (204)] \} \times 100 \div (206)$	(211)
869.68 698.33 605.31 361.38 175.57 0 0 0 0 335.96 609.5 873.31	
Total (kWh/year) =Sum(211) _{15,1012} =	4529.04 (211)
Space heating fuel (secondary), kWh/month	
= {[(98)m x (201)]} x 100 ÷ (208)	٦
(215)m= 0 0 0 0 0 0 0 0 0 0 0 0 0	
Total (kWh/year) =Sum(215) _{15,1012} =	0 (215)

					ergy /h/year			Emiss kg CO	ion fac 2/kWh	tor	Emissions kg CO2/yea	
12a. CO2 emissions	– Individ	lual heati	ng syste	ems inclu	uding mi	cro-CHF)					
SAP rating (Section											84.99	(258)
Energy cost factor (E0	,		[(255) x	(256)] ÷ [(4) + 45.0]	=					1.08	(257)
Energy cost deflator (Table 12)									0.42	(256)
11a. SAP rating - ind	ividual h	eating sy	stems									
Appendix Q items: rep Total energy cos	t	, ,	(245)(ded 60)(254)	=					297.17	(255)
				one	of (233) to	o (235) x)		13.	19	x 0.01 =	-103.12	(252)
Additional standing ch	arges (T	able 12)									120	(251)
Energy for lighting				(232	2)			13.	19	x 0.01 =	43.1	(250)
(if off-peak tariff, list ea	ach of (2	30a) to (230g) se	eparately	as app	licable a	nd apply	fuel pri	ce accor	rding to	Table 12a	_
Pumps, fans and elec	tric keep	-hot		(231	1)			13.	19	x 0.01 =	3.96	(249)
Water heating cost (of	her fuel)			(219	9)			3.4	8	x 0.01 =	75.62	(247)
Space heating - secon	dary			(215	5) x			13.	19	x 0.01 =	0	(242)
Spa <mark>ce he</mark> ating - main	system 2	2		(213	3) x			0		x 0.01 =	0	(241)
Spa <mark>ce he</mark> ating - main	system 1	1		(211	I) x			3.4	8	x 0.01 =	157.61	(240)
				Fu kW	el /h/ye <mark>ar</mark>			Fuel P (Table		_	Fuel Cost £/year	
Toa. Fuel costs - Indi	viduai Tie	saurig sy	sterris.								- 10	
Electricity generated by 10a. Fuel costs - indi		octing ov	otomo:							_	-781.79	(233)
Electricity for lighting	D\/a										326.79	(232)
Total electricity for the	above, i	kvvn/yea	Γ			Sum	UI (230a).	(230g) =			30	(231)
central heating pump		14) A / b / c a a	_			cum	of (230a).	(220a) –		30		(230c)
Electricity for pumps, t		electric	keep-no	l							7	(2200)
Water heating fuel use		ala atria l	مط معمدا								2172.96	
Space heating fuel us		system	1								4529.04	_
Annual totals		(k'	Wh/yeaı	r	kWh/year	- -
	Į.	!				Tota	I = Sum(2	19a) ₁₁₂ =	<u> </u>	!	2172.96	(219)
(219)m = (64) m x 10 (219)m = 212.57 185.96	0 ÷ (217) 194.14)m 173.67	171.1	158.97	152.31	169.79	171.66	182.61	192.68	207.48	1	
Fuel for water heating										•	J	
(217)m= 90.85 90.71	90.4	89.64	88.09	83.5	83.5	83.5	83.5	89.38	90.43	90.89	00.0	(217)
193.11 168.69 Efficiency of water hea	175.51 ater	155.67	150.72	132.74	127.18	141.77	143.34	163.22	174.23	188.58	83.5	(216)
Output from water hea				100.74	407.40	444 77	440.04	400.00	174.00	1,00,50	7	
Water heating												

Space heating (main system 1)	(211) x	0.216	=	978.27	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	469.36	(264)
Space and water heating	(261) + (262) + (263) + (264) =			1447.63	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	15.57	(267)
Electricity for lighting	(232) x	0.519	=	169.61	(268)
Energy saving/generation technologies					_
Item 1		0.519	=	-405.75	(269)
Total CO2, kg/year	sur	m of (265)(271) =		1227.06	(272)
CO2 emissions per m ²	(27	72) ÷ (4) =		17.29	(273)
El rating (section 14)				86	(274)

13a. Primary Energy

	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22	5525.43 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22	2651.01 (264)
Space and water heating	(261) + (262) + (263) + (264) =		8176.43 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	92.1 (267)
Electricity for lighting	(232) x	0 =	1003.25 (268)
Energy saving/generation technologies			
Item 1		3.07	-2400.08 (269)
'Total Primary Energy	sum	of (265)(271) =	6871.7 (272)
Primary energy kWh/m²/year	(272	?) ÷ (4) =	96.81 (273)

				User E	Details:						
Assessor Name: Software Name:	Stroma FS	SAP 201			Strom Softwa	are Ve			Versio	on: 1.0.4.6	
			Р	roperty	Address	Plot 8					
Address:	naiona:										
1. Overall dwelling dime	11510115.			۸ro	a(m²)		Λν Ηο	ight(m)		Volume(m	31
Ground floor						(1a) x		3.47	(2a) =	195.21	(3a)
Total floor area TFA = (1	a)_(1b)_(1c)_	۵۱) <u>ـ</u> (۲۱).	_ (1r			(4)](3)	100.21	
	а)+(10)+(10)+	(10)+(16	<i>)</i> +(11	" [56.24		\ . (2-\ . (2-	4) . (2 -) .	(2-)		_
Dwelling volume						(3a)+(3b)+(3c)+(3c	d)+(3e)+	.(3n) =	195.21	(5)
2. Ventilation rate:	main		o o o d o o	n.,	oth or		40401			m³ nor hou	
	main heating		econdar eating	у	other		total			m³ per hou	ır
Number of chimneys	0	+	0	+	0	=	0	X	40 =	0	(6a)
Number of open flues	0	+	0	+	0	=	0	x :	20 =	0	(6b)
Number of intermittent fa	ns						2	X	10 =	20	(7a
Number of passive vents	i					Ī	0	x -	10 =	0	(7b)
Number of flueless gas fi	res						0	X e	40 =	0	(7c)
						L					()
									Air ch	nanges <mark>per</mark> h	our
Infilt <mark>ration</mark> due to chi <mark>mne</mark>	ys, flues and f	ans = (6	a)+(6b)+(7	7a)+(7b)+((7c) =	Г	20		÷ (5) =	0.1	(8)
If a pressurisation test has b			d, procee	d to (17),	otherwise (continue fi	rom (9) to	(16)			<u>-</u>
Number of storeys in the	ne dw <mark>elling</mark> (n	s)								0	(9)
Additional infiltration	OF for steel a	u timah a u f		. 0. 25 to				[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0 if both types of wall are p.						•	ruction			0	(11
deducting areas of opening				g		(
If suspended wooden to		•	ed) or 0	.1 (seale	ed), else	enter 0				0	(12
If no draught lobby, en	•									0	(13
Percentage of windows	s and doors di	raught st	ripped		0.25 - [0.2	v (14) + 4	1001 –			0	(14
Window infiltration Infiltration rate					(8) + (10)			+ (15) =		0	(15)
Air permeability value,	a50 everess	ed in cub	ic metre	s ner hø	. , . ,	. , , ,	, , ,	, ,	area	0	(16
If based on air permeabil					•	•	ictic oi c	лисюрс	arca	0.6	(18)
Air permeability value applie	-						is being u	sed		0.0	(
Number of sides sheltere	ed									2	(19)
Shelter factor					(20) = 1 -	[0.075 x (19)] =			0.85	(20
Infiltration rate incorporat	_				(21) = (18) x (20) =				0.51	(21)
Infiltration rate modified f		nd speed					1	1	·	7	
Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Monthly average wind sp		le 7							•	1	
(22)m= 5.1 5	4.9 4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7]	
Wind Factor (22a)m = (2	2)m ∸ 4										
	1.23 1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18	1	
, ,							<u> </u>			J	

0.65	0.64	0.63	0.56	0.55	0.49	0.49	0.47	0.51	0.55	0.58	0.6		
Calculate effec		-	rate for t	he appli	cable ca	se						-	
If mechanical If exhaust air he			andiv N (2	3h) - (23a	a) v Emy (e	aguation (N	J5)) other	wise (23h) = (232)			0	(2:
If balanced with) = (23a)			0	(2
		-	-	_					0h.\ (00h) [4 (00 =	0	(2
a) If balance	a mecn	anicai ve	ntilation	with nea	at recove	ery (IVIVI	1R) (24a	0 = (22)	2b)m + (. 0	23b) × [1 – (23C) ÷ 100]]	(2
	_											_	(2
b) If balance	o mech	anicai ve	niliation 0	without	neat red		0	0)m = $(22$	$\frac{20}{0}$	230)	0	1	(2
							<u> </u>					_	(2
c) If whole h if (22b)n				•	•				5 x (23h	n)			
4c)m= 0	0	0	0	0	0	0	0	0	0	0	0	1	(2
d) If natural	ventilatio	n or wh	ole hous	e nositiv	ve input	L ventilatio	n from l	oft		<u> </u>	<u>!</u>	_	
if (22b)n				•	•				0.5]				
4d)m= 0.71	0.7	0.7	0.66	0.65	0.62	0.62	0.61	0.63	0.65	0.67	0.68		(2
Effective air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)	-	-	-	_	
5)m= 0.71	0.7	0.7	0.66	0.65	0.62	0.62	0.61	0.63	0.65	0.67	0.68		(2
3. Heat losse	and he	at lose	naram a t	or.								_	
LEMENT	Gros		Openin		Net Ar	A2	U-valu	IA	AXU		k-valu	<u> </u>	ΑΧk
LEWIEW	area		m		A ,r		W/m2		(W/I	K)	kJ/m ² ·		kJ/K
oors					2	x	1.5	= [3				(2
/in <mark>dows</mark> Type	1				3.6	x1.	/[1/(1.6)+	0.04] =	5.41	Ħ.			(2
indows Type	2				1.4	x1.	/[1/(1.6)+	0.04] =	2.11	Ħ			(2
/alls Type1	24.8	37	0		24.87	, x	0.3	=	7.46	٦,		¬ F	(2
alls Type2	29.4	16	5	=	24.46	x	0.28	-	6.85	F i		= =	(2
/alls Type3	43.1		2		41.11	=	0.27	= =	11.01	=		=	(2
otal area of e					97.44	=	0.21		11.01				(3
or windows and			effective wi	ndow U-va			formula 1	/[(1/U-valu	ıe)+0.041 a	as aiven in	paragrap	h 3.2	(
include the area								1(), 0	,	J	,gp.		
abric heat los	s, W/K	= S (A x	U)				(26)(30)	+ (32) =				35.8	4 (3
eat capacity	Cm = S((Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	0	(3
nermal mass	parame	ter (TMF	P = Cm ÷	- TFA) ir	n kJ/m²K			Indica	tive Value	: Medium		250) (3
or design assess				construct	ion are not	t known pr	ecisely the	indicative	values of	TMP in T	able 1f		
n be used inste				. a.i.a.a. A.m	ا بنام مصم	,							——————————————————————————————————————
nermal bridge	•	,			•	`						14.6	2 (3
details of therma otal fabric he		are not kn	OWII (30) =	= 0.13 X (3	(1)			(33) +	(36) =			50.4	6 (3
entilation hea		alculated	l monthly	/					= 0.33 × (25)m x (5))		
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
3)m= 45.94	45.41	44.88	42.43	41.97	39.83	39.83	39.44	40.66	41.97	42.9	43.87	1	(3
		L	L			<u> </u>	ь		Ц	Ц		J	
eat transfer o	nefficie	nt \///K						(30\m	= (37) + (37)	38)m			

leat los	ss para	meter (H	ILP), W/	m²K					(40)m	= (39)m ÷	(4)			
10)m=	1.71	1.7	1.7	1.65	1.64	1.61	1.61	1.6	1.62	1.64	1.66	1.68		
umher	r of day	e in mor	nth (Tabl	a 1a)					,	Average =	Sum(40) _{1.}	12 /12=	1.65	(4
Г	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
1)m=	31	28	31	30	31	30	31	31	30	31	30	31		(4
_	•	•	•											
4. Wat	er heati	ng ener	gy requi	rement:								kWh/yea	ar:	
if TFA	A > 13.9			[1 - exp	(-0.0003	349 x (TF	FA -13.9))2)] + 0.0	0013 x (⁻	ΓFA -13.		87		(4
	A £ 13.9	•	tor uson	o in litro	s par da	w Vd av	orago –	(25 x N)	. 26					,
educe th	he annua	l average i	hot water i	usage by	5% if the a		designed t	(23 X IN) to achieve		se target o		3.7		(
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
ot water	r usage in	litres per	day for ea	ch month	Vd,m = fa	ctor from T	Table 1c x	(43)						
4)m=	86.57	83.42	80.27	77.12	73.98	70.83	70.83	73.98	77.12	80.27	83.42	86.57		
nergy co	ontent of I	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D	Tm / 3600		Total = Su oth (see Ta			944.36	
5)m= [128.38	112.28	115.86	101.01	96.92	83.64	77.5	88.93	90	104.88	114.49	124.33		
netanta	noous w	ator hoatin	a at point	of uso (no	hot water	: etorago)	ontor () in	boxes (46)		Total = Su	m(45) ₁₁₂ =		1238.21	
	19.26	16.84	17.38	15.15	14.54	12.55	11.63	13.34	13.5	15.73	17.17	18.65		(
	torage		17.30	10.10	14.54	12.00	17.05	13.34	15.5	13.73	17.17	10.03		•
torage	volume	e (litres)	includin	g any so	olar or W	WHRS	storage	within sa	me ves	sel		0		(
	•	_			_	nter 110		, ,						
	ise it no itorage		not wate	er (this in	cludes i	nstantar	eous co	mbi boil	ers) ente	er '0' in (47)			
	•		clared lo	oss facto	or is kno	wn (kWh	n/dav):					0		(
			m Table			(.,, , .					0		,
-			storage		ear			(48) x (49)	=			0		(
) If ma	anufactu	urer's de	clared c	ylinder l	oss fact	or is not								•
		•			e 2 (kWl	h/litre/da	ıy)					0		(
	-	eating so rom Tab	ee sectio	on 4.3										,
			n Table	2h								0		(
•			storage		oor			(47) x (51)	v (52) v (53) -				
•		11 water 54) in (5	_	, KVVII/ye	aı			(47) X (31)	X (32) X (33) =		0		(
•	, ,	, ,	culated f	or each	month			((56)m = (55) × (41):	m		<u> </u>		
_			-			0					0			(
s)m= cylinder	0 contains	0 dedicated	0 d solar stor	0 rage, (57)r	0 n = (56)m	0 x [(50) – (0 H11)] ÷ (5	0 0), else (57	0 7)m = (56)	0 m where (0 H11) is fro	0 m Appendix	:Н	•
7)m=	0	0	0	0	0	0	0	0	0	0	0	0		(
· L	circuit	loss (an	nual) fro	m Table	3							0		(
_		(
imary		loss cald				59)m = ((58) ÷ 36	65 × (41)	m					
imary imary	circuit		culated f	or each	month (•	. ,	55 × (41) ng and a		r thermo	stat)			

Combi loss calculated for each month (61)m = (60) ÷ 365 x (41)m. (61)m
Total heat required for water heating calculated for each month (62)m = 0.85 x (45)m + (46)m + (57)m + (59)m + (61)m (62)m = 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44 (62)
Column 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44 (62)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)ms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Couput from water heater (64)me
Output from water heater (64)m= 172.49 150.67 156.77 139.04 134.62 118.56 113.59 126.63 128.03 145.79 155.62 168.44 Output from water heating, kWh/month 0.25 ' [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m= 53.71 46.93 48.75 43.09 41.65 36.54 34.79 38.99 39.43 45.1 48.35 52.37 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5, Watts Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 112.41 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (68)m= 243.84 246.37 239.99 226.42 209.28 193.18 152.42 179.89 186.27 199.84 216.98 233.08 (68) Cooking gains (calculated in Appendix L, equation L13 of L13a), also see Table 5 (69)m= 48.11 (69) Pumps and fans gains (Table 5) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Couput from water heater (annual) Couput from water (annual) Coupu
Heat gains from water heating, kWh/month 0.25 ′ [0.85 x (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m] (65)m = 53.71 46.93 48.75 43.09 41.65 36.54 34.79 38.99 39.43 45.1 48.35 52.37 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(65)m= 53.71
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m = 112.41 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m = 41.9 37.22 30.27 22.92 17.13 14.46 15.63 20.31 27.26 34.62 40.4 43.07 (67) Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (88)m = 243.84 246.37 239.99 226.42 209.28 193.18 182.42 179.83 186.27 199.84 216.98 233.08 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (89)m = 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 (69) Pumps and fans gains (Table 5a) (70)m = 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 112.41 112.4
Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(66)m= 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 112.41 (66) Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 41.9 37.22 30.27 22.92 17.13 14.46 15.63 20.31 27.26 34.62 40.4 43.07 Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 243.84 246.37 239.99 226.42 209.28 193.18 182.42 179.89 186.27 199.84 216.98 233.08 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 (69) Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 41.9 37.22 30.27 22.92 17.13 14.46 15.63 20.31 27.26 34.62 40.4 43.07 Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 243.84 246.37 239.99 226.42 209.28 193.18 182.42 179.89 186.27 199.84 216.98 233.08 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 (69) Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(67)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 243.84 246.37 239.99 226.42 209.28 193.18 182.42 179.89 186.27 199.84 216.98 233.08 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 (69) Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(68)m= 243.84 246.37 239.99 226.42 209.28 193.18 182.42 179.89 186.27 199.84 216.98 233.08 (68) Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 (69) Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 (69) Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
(69)m= 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 48.11 (69) Pumps and fans gains (Table 5a) (70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Pumps and fans gains (Table 5a) (70)m= 3
(70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Losses e.g. evaporation (negative values) (Table 5) (71)m= -74.94 -7
(71)m=
Water heating gains (Table 5) (72)m= 72.2 69.84 65.52 59.85 55.98 50.75 46.76 52.41 54.77 60.62 67.15 70.39 Total internal gains =
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Total internal gains = \(\begin{array}{c c c c c c c c c c c c c c c c c c c
(73)m= 446.53 442.01 424.37 397.77 370.98 346.98 333.4 341.2 356.88 383.66 413.12 435.12 (73) 6. Solar gains:
6. Solar gains:
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.
Orientation: Access Factor Area Flux g_ FF Gains
Table 6d m² Table 6a Table 6b Table 6c (W)
Southeast $0.9x$ 0.77 x 3.6 x 36.79 x 0.7 x 0.8 = 51.4 (77)
Southeast $0.9x$ 0.77 x 3.6 x 62.67 x 0.7 x 0.8 $=$ 87.56 (77)
Southeast $0.9x$ 0.77 x 3.6 x 85.75 x 0.7 x 0.8 = 119.8 (77)
Southeast $0.9x$ 0.77 x 3.6 x 106.25 x 0.7 x 0.8 = 148.44 (77)
0.0 100.120 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.

-		7		_			1		_				_
Southeast _{0.9x}	0.77	X	3.6	×	1	18.15	X	0.7	X	0.8	=	165.07	(77)
Southeast _{0.9x}	0.77	X	3.6	X	1	13.91	X	0.7	X	0.8	=	159.14	(77)
Southeast _{0.9x}	0.77	X	3.6	X	10	04.39	X	0.7	X	0.8	=	145.84	(77)
Southeast _{0.9x}	0.77	X	3.6	X	9	2.85	X	0.7	X	0.8	=	129.72	(77)
Southeast 0.9x	0.77	X	3.6	X	6	9.27	X	0.7	X	0.8	=	96.77	(77)
Southeast 0.9x	0.77	X	3.6	X	4	4.07	X	0.7	X	0.8	=	61.57	(77)
Southeast 0.9x	0.77	X	3.6	x	3	1.49	x	0.7	x	0.8	=	43.99	(77)
Southwest _{0.9x}	0.77	X	1.4	x	3	6.79]	0.7	X	0.8	=	19.99	(79)
Southwest _{0.9x}	0.77	X	1.4	x	6	2.67]	0.7	x	0.8	=	34.05	(79)
Southwest _{0.9x}	0.77	X	1.4	x	8	5.75]	0.7	x	0.8	=	46.59	(79)
Southwest _{0.9x}	0.77	x	1.4	×	10	06.25	Ī	0.7	×	0.8	_ =	57.73	(79)
Southwest _{0.9x}	0.77	X	1.4	x	1	19.01	ĺ	0.7	×	0.8		64.66	(79)
Southwest _{0.9x}	0.77	x	1.4	x	1	18.15	ĺ	0.7	×	0.8	=	64.19	(79)
Southwest _{0.9x}	0.77	x	1.4	x	1	13.91	j	0.7	×	0.8	=	61.89	(79)
Southwest _{0.9x}	0.77	X	1.4	x	10	04.39	j	0.7	×	0.8	=	56.72	(79)
Southwest _{0.9x}	0.77	X	1.4	×	9	2.85	j	0.7	×	0.8		50.45	(79)
Southwest _{0.9x}	0.77	X	1.4	×	6	9.27	j	0.7	×	0.8		37.63	(79)
Southwest _{0.9x}	0.77	X	1.4	×	4	4.07		0.7	X	0.8	=	23.94	(79)
Southwest _{0.9x}	0.77	X	1.4	= x	3	1.49	i	0.7	x	0.8	=	17.11	(79)
Sola <mark>r gain</mark> s in w	atts, <mark>calcu</mark> l	ated	for each mo	onth			(83)m	n = Sum(74)m	.(82)m				
(83)m= 71.39	121.61 166	6.39	206.17 230	.93 2	229.26	221.03	202	.56 180.17	134.4	1 85.51	61.1		(83)
(83)m= 71.39 Total gains – int							202	.56 180.17	134.4	1 85.51	61.1		(83)
Total gains – int		solar)m + (202 543		134.4 518.0		61.1 496.22		(83)
Total gains – int	ernal and s	solar).77	(84)m = (73 603.94 601	.91 5	(83)m	, watts					1		
Total gains – int (84)m= 517.92	ernal and s 563.63 590 al temperat	solar).77 ture ((84)m = (73 603.94 601 (heating sea	.91 5 .son)	(83)m 576.24	, watts 554.43	543	.76 537.05			1	21	
Total gains – international gains – internat	ernal and s 563.63 590 al temperaturing heati	olar 0.77 ture ((84)m = (73 603.94 601 (heating sea eriods in the	91 5 son)	(83)m 576.24 area f	ywatts 554.43 from Tab	543	.76 537.05			1	21	(84)
Total gains – into (84)m= 517.92 5 7. Mean international Temperature descriptions of the following statement of the following st	ernal and s 563.63 590 al temperat uring heati or for gains	olar 0.77 ture ((84)m = (73 603.94 601 (heating sea eriods in the iving area, h	91 5 son)	(83)m 576.24 area f	ywatts 554.43 from Tab	543 ole 9,	.76 537.05		7 498.63	1	21	(84)
Total gains – into (84)m= 517.92 5 7. Mean internation of the control of the con	ernal and s 563.63 590 al temperat uring heati or for gains	solar).77 ture (ng pe for li	(84)m = (73 603.94 601 (heating sea eriods in the iving area, h	son) living 1,m (s	(83)m 576.24 area f	554.43 from Tabble 9a)	543 ole 9,	.76 537.05 , Th1 (°C)	518.0	7 498.63	496.22	21	(84)
Total gains – internation (84)m= 517.92 8 7. Mean internation factor Jan (86)m= 0.99	ernal and s 563.63 590 al temperat uring heatil or for gains Feb M 0.98 0.9	o.77 ture (ng pe for li far	(84)m = (73 603.94 601 (heating sea eriods in the ving area, h Apr M 0.95 0.9	son) living 1,m (s	area face Ta	from Tab ble 9a) Jul 0.65	543 ole 9,	.76 537.05 , Th1 (°C) ug Sep 68 0.85	518.0 Oct	7 498.63 Nov	496.22 Dec	21	(84)
Total gains – into (84)m= 517.92 5 7. Mean international Temperature dutilisation factor Jan	ernal and s 563.63 590 al temperat uring heatil or for gains Feb M 0.98 0.9	ture (ng pe for li far 98	(84)m = (73 603.94 601 (heating sea eriods in the ving area, h Apr M 0.95 0.9	son) living 1,m (s lay 1 (follo	area face Ta	from Tab ble 9a) Jul 0.65	543 ole 9,	.76 537.05 , Th1 (°C) ug Sep 68 0.85 Table 9c)	518.0 Oct	7 498.63 Nov 0.98	496.22 Dec	21	(84)
Total gains – interest (84)m= 517.92 5 7. Mean internation factor Jan (86)m= 0.99 Mean internal to (87)m= 19.68	ernal and s 563.63 590 al temperaturing heating for gains Feb N 0.98 0.9 emperature 19.8 20.	ture (ng pe for li far 98 e in li	(84)m = (73 603.94 601 (heating sea eriods in the iving area, h	son) living 1,m (s lay 1 (follo	area f see Ta Jun 0.8 ow ste	554.43 from Table 9a) Jul 0.65 ps 3 to 7 20.89	543 Die 9, 0.6 7 in T 20.	.76 537.05 , Th1 (°C) ug Sep 68 0.85 Table 9c) 88 20.73	Oct 0.95	7 498.63 Nov 0.98	Dec 0.99	21	(84)
Total gains – interest (84)m = 517.92	ernal and s 563.63 590 al temperate uring heating for gains Feb M 0.98 0.9 emperature 19.8 20. uring heating heatin	ture (ng pe for li lar 98 e in li ng pe	(84) m = (73 603.94 601 (heating sea eriods in the eving area, h Apr M 0.95 0.9 iving area T 20.3 20.9 eriods in res	son) living 1,m (s lay 1 (follo 57	area facee Ta Jun 0.8 ow stee 20.79	554.43 from Table 9a) Jul 0.65 ps 3 to 7 20.89	543 Die 9, 0.6 7 in T 20.	.76 537.05 , Th1 (°C) ug Sep 0.85 Table 9c) 88 20.73 9, Th2 (°C)	Oct 0.95	7 498.63 Nov 0.98	Dec 0.99	21	(84)
Total gains – internation (84)m = 517.92	ernal and s 563.63 590 al temperate uring heatility for gains Feb M 0.98 0.9 emperature 19.8 20 uring heatil 19.54 19	ture (ng pe for li far 98 e in li .01 ng pe	(84) m = (73 603.94 601 (heating sea eriods in the eving area, h Apr M 0.95 0.9 iving area T 20.3 20. eriods in res 19.58 19.	son) living 1,m (s lay 1 (follo 57	area facee Ta Jun 0.8 ow ste 20.79 velling	554.43 from Tabble 9a) Jul 0.65 ps 3 to 7 20.89 from Ta	543 A 0.6 7 in T 20.	.76 537.05 , Th1 (°C) ug Sep 0.85 Table 9c) 88 20.73 9, Th2 (°C)	Oct 0.95	7 498.63 Nov 0.98	Dec 0.99	21	(84) (85) (86) (87)
Total gains – interest (84)m = 517.92	ernal and s 563.63 590 al temperaturing heating for gains Feb N 0.98 0.9 emperature 19.8 20. uring heating heating heating heating heating heating for gains or for gains	ture (ng pe for li lar 98 e in li ng pe	(84)m = (73 603.94 601 (heating sea eriods in the eving area, head of the eving area of the eving a	son) living 1,m (s lay 1 (follo 57 :: t of dv 58	area for see Ta Jun 0.8 ow ste 20.79 velling 19.61	from Take ble 9a) Jul 0.65 ps 3 to 7 20.89 from Ta	543 Al 0.6 Al 0.6 19. 9a)	.76 537.05 , Th1 (°C) ug Sep 68 0.85 Table 9c) 88 20.73 9, Th2 (°C) 61 19.6	Oct 0.95 20.39	7 498.63 Nov 0.98	Dec 0.99 19.68	21	(84) (85) (86) (87) (88)
Total gains – interest (84)m = 517.92	ernal and s 563.63 590 al temperaturing heating for gains Feb N 0.98 0.9 emperature 19.8 20. uring heating	ture (ng pe for li lar 98 e in li .01 ng pe .54 for re	(84)m = (73 603.94 601 (heating sea eriods in the eving area, h N 0.95 0.9 iving area T 20.3 20.3 20.0 eriods in res 19.58 19.58 19.0 est of dwelli 0.93 0.93 0.8	son) living 1,m (s lay 1 (follo 57 :: t of dv 58 ng, h2	area f see Ta Jun 0.8 ow ste 20.79 velling 19.61 2,m (se 0.69	from Take ble 9a) Jul 0.65 ps 3 to 7 20.89 from Ta 19.61 ee Table 0.47	543 ble 9 0.6 7 in T 20. able 9 19. 9a) 0.5	.76 537.05 .76 S37.05 .76 S37.05 .76 S97.05 .77 S97.05 .78	Oct 0.95 20.39 19.58	7 498.63 Nov 0.98	Dec 0.99	21	(84) (85) (86) (87)
Total gains – interest (84)m = 517.92	ernal and s 563.63 590 al temperate uring heatility or for gains Feb M 0.98 0.9 emperature 19.8 20. uring heatil 19.54 19. or for gains 0.98 0.9	ture (ng pe for li lar 98 e in li .01 ng pe .54 for re	(84) m = (73 603.94 601 (heating sea eriods in the eriods in the eriods in the 3.95 0.95 0.95 0.95 eriods in res 19.58 19.58 est of dwelli 0.93 0.93 he rest of dwelli 0.93 0.93	son) living 1,m (s lay 1 (follo 57 t of dv 58 mg, h2 welling	area fage Ta Jun 0.8 ow ste 20.79 velling 19.61 c,m (se 0.69	from Table 9a) Jul 0.65 ps 3 to 7 20.89 from Table 0.47 collow steen	543 A 0.6 19. 9a) 0.5	.76 537.05 Th1 (°C) ug Sep 0.85 Table 9c) 88 20.73 9, Th2 (°C) 61 19.6 10.77	Oct 0.95 20.39 19.58 0.93	7 498.63 Nov 0.98 20 19.57	Dec 0.99 19.68 0.99	21	(84) (85) (86) (87) (88)
Total gains – interest (84)m = 517.92	ernal and s 563.63 590 al temperate uring heatility or for gains Feb M 0.98 0.9 emperature 19.8 20. uring heatil 19.54 19. or for gains 0.98 0.9	ture (ng pe for li lar 98 e in li .01 ng pe .54 for re	(84) m = (73 603.94 601 (heating sea eriods in the eriods in the eriods in the 3.95 0.95 0.95 0.95 eriods in res 19.58 19.58 est of dwelli 0.93 0.93 he rest of dwelli 0.93 0.93	son) living 1,m (s lay 1 (follo 57 t of dv 58 mg, h2 welling	area f see Ta Jun 0.8 ow ste 20.79 velling 19.61 2,m (se 0.69	from Take ble 9a) Jul 0.65 ps 3 to 7 20.89 from Ta 19.61 ee Table 0.47	543 ble 9 0.6 7 in T 20. able 9 19. 9a) 0.5	.76 537.05 .76 S37.05 .76 S37.05 .77 Sep Sep .78 0.85 .79 Th2 (°C) .70 19.6 .71 0.77 .71 To 7 in Table .72 19.34	Oct 0.95 20.39 19.58 0.93 e 9c) 18.89	7 498.63 Nov 0.98 0 20 19.57 0.98	19.68 19.56 0.99		(84) (85) (86) (87) (88) (89)
Total gains – interest (84)m = 517.92	ernal and s 563.63 590 al temperate uring heatility or for gains Feb M 0.98 0.9 emperature 19.8 20. uring heatil 19.54 19. or for gains 0.98 0.9	ture (ng pe for li lar 98 e in li .01 ng pe .54 for re	(84) m = (73 603.94 601 (heating sea eriods in the eriods in the eriods in the 3.95 0.95 0.95 0.95 eriods in res 19.58 19.58 est of dwelli 0.93 0.93 he rest of dwelli 0.93 0.93	son) living 1,m (s lay 1 (follo 57 t of dv 58 mg, h2 welling	area fage Ta Jun 0.8 ow ste 20.79 velling 19.61 c,m (se 0.69	from Table 9a) Jul 0.65 ps 3 to 7 20.89 from Table 0.47 collow steen	543 A 0.6 19. 9a) 0.5	.76 537.05 .76 S37.05 .76 S37.05 .77 Sep Sep .78 0.85 .79 Th2 (°C) .70 19.6 .71 0.77 .71 To 7 in Table .72 19.34	Oct 0.95 20.39 19.58 0.93 e 9c) 18.89	7 498.63 Nov 0.98 20 19.57	19.68 19.56 0.99	0.23	(84) (85) (86) (87) (88)
Total gains – internations (84)m = 517.92 state (84)m = 517.92 state (84)m = 517.92 state (85)m = 0.99 state (86)m = 0.99 state (87)m = 19.68 state (88)m = 19.53 state (89)m = 0.99 state (89)m = 0.99 state (90)m = 17.83 state (90)m = 17.83 state (84)m = 17.83 state	ernal and s 563.63 590 al temperate uring heating or for gains Feb M 0.98 0.9 emperature 19.8 20. uring heating 19.54 19. or for gains 0.98 0.9 emperature 18.01 18.	ture (ng pe for li lar 98 e in li .01 for re 97 e in t .32	(84) m = (73 603.94 601 (heating sea eriods in the eriods in the ving area, h Apr N 0.95 0.9 iving area T 20.3 20.3 20. eriods in res 19.58 19.58 19. est of dwelli 0.93 0.8 19. he rest of dwelli 19. r the whole of 19.	son) living 1,m (s lay 1 (follo 57 t of dv 58 mg, h2 36 welling	(83)m 676.24 area f see Ta Jun 0.8 cow ste 20.79 velling 19.61 2,m (se 0.69 g T2 (fo 19.41	from Table 9a) Jul 0.65 ps 3 to 7 20.89 from Table 0.47 collow steel 19.49	543 Al 0.6 7 in T 20. able 9 0.5 19. + (1	.76 537.05 .76 S37.05 .76 S37.05 .76 S37.05 .77 S40.73 .78 S40.73 .79 S40.73 .70	Oct 0.95 20.39 19.58 0.93 e 9c) 18.89 A = Liv	7 498.63 Nov 0.98 20 19.57 0.98 18.33 ving area ÷ (-	19.68 19.56 0.99 17.85 4) =		(84) (85) (86) (87) (88) (89) (90)
Total gains – interest (84)m = 517.92 s 7. Mean internation factor Jan (86)m = 0.99 Mean internal transfer (87)m = 19.68 Temperature draw (88)m = 19.53 Utilisation factor (89)m = 0.99 Mean internal transfer (90)m = 17.83 Mean internal transfer (90)m = 17.83	ernal and s 563.63 590 al temperat uring heati or for gains Feb N 0.98 0.9 emperature 19.54 19. or for gains 0.98 0.9 emperature 18.01 18. emperature 18.42 18	for roger for line for roger for rog	(84) m = (73 603.94 601 (heating sea 601 eriods in the 601 eriods in the 601 iving area, h 602 iving area T 603 20.3 203 eriods in res 19.58 19.58 19.58 he rest of dwelling 0.93 0.8 19.58 19.1 19.1 19.1 19.1	son) living 1,m (s lay 1 (follo 57 2 t of dv 58 mg, h2 36 welling 12 dwelling 45	area f see Ta Jun 0.8 ow ste 20.79 velling 19.61 2,m (se 0.69 g T2 (fo 19.41	from Take ble 9a) Jul 0.65 ps 3 to 7 20.89 from Take 19.61 ee Table 0.47 collow steen 19.49 A × T1 19.81	543 All 0.6 All 0.6 19. 9a) 0.5 + (1 19.	.76 537.05 .76 Say	Oct 0.95 20.39 19.58 0.93 e 9c) 18.89 A = Liv	7 498.63 Nov 0.98 20 19.57 0.98 18.33 ving area ÷ (19.68 19.56 0.99		(84) (85) (86) (87) (88) (89)

(93)m= 18.25	18.42	18.7	19.1	19.45	19.73	19.81	19.81	19.66	19.23	18.71	18.26		(93)
8. Space hea	ating requ	uirement											
Set Ti to the					ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the utilisation	i e		~~~		1	11	A	0	0-4	Navi	D.,		
Jan Utilisation fac	Feb	Mar Jains hm	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(94)m= 0.98	0.97	0.96	0.93	0.86	0.7	0.5	0.54	0.77	0.92	0.97	0.98		(94)
Useful gains	l	ļ			0.7	0.0	0.04	0.11	0.02	0.07	0.00		(0.7)
(95)m= 508.5	548.9	566.57	559.36	514.76	403.72	278.09	291.05	413.68	478.13	484.07	488.45		(95)
Monthly aver	age exte	rnal tem	ıberature	from Ta	L able 8	<u> </u>		<u> </u>					
(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss rat	e for me	an intern	ıal tempe	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]				
(97)m= 1344.84	1296.01	1163.16	947.88	716.45	462.95	289.7	306.24	506.53	797.9	1083.75	1326.6		(97)
Space heatir	ng require	ement fo	r each m	nonth, k\	Nh/mon	th = 0.02	24 x [(97))m – (95)m] x (4	1)m			
(98)m= 622.24	502.06	443.86	279.73	150.05	0	0	0	0	237.91	431.77	623.59		
		-	-		-	-	Tota	l per year	(kWh/year) = Sum(9	8) _{15,912} =	3291.21	(98)
Space heatir	ng require	ement in	kWh/m²	/year							'	58.52	(99)
9a. Energy re	•			•	vetome i	neludina	micro-C	'HDI					
Space heati	•	illa – Illul	viduai III		ysterns i	ricidaling	TITICIO-C)					
Fraction of s		t from s	econdar	//supple	mentary	system						0	(201)
Fraction of s							(202) = 1 -	(201) =				1	(202)
Fraction of to							(204) = (2)		(203)] =			1	(204)
			•				(20.)	0=/[.	(200)]				╡`
Efficiency of						0.4						92.8	(206)
Efficiency of		ry/suppl	ementar	y neating	g system	1, %						0	(208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	ar
Space heatin					i								
	502.06	443.86	<u> </u>		0	0	0	0	237.91	431.77	623.59		
(211) m = {[(98)	í `	 	<u> </u>		Ι	ı				1	ı		(211)
670.51	541.01	478.3	301.44	161.7	0	0	0	0	256.37	465.27	671.97		٦
							rota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	F	3546.56	(211)
Space heating	•		• •	month									
$= \{[(98)m \times (26)m \times $	01)] } x 1 0	00 ÷ (20	0	0		<u> </u>	0	0	0		0		
(215)m= 0	1 0			0	0	0		l (kWh/yea		0		0	(215)
							Tota	ii (KVVII/yea	ar) =50111(2	213) _{15,1012}	-	0	(215)
Water heating Output from w	_	tor (calc	ulated al	2010)									
172.49	150.67	156.77	139.04	134.62	118.56	113.59	126.63	128.03	145.79	155.62	168.44		
Efficiency of w	ı zater hea	ıter			<u> </u>					<u> </u>	<u> </u>	83.5	(216)
(217)m= 90.61	90.47	90.18	89.49	88.16	83.5	83.5	83.5	83.5	89.03	90.14	90.65		(217)
Fuel for water	<u> </u>												
(219)m = (64)	_												
(219)m= 190.37	166.54	173.84	155.37	152.7	141.99	136.04	151.65	153.33	163.75	172.65	185.81		_
							Tota	I = Sum(2	19a) ₁₁₂ =			1944.04	(219)
Annual totals									k\	Wh/year	•	kWh/year	_
Space heating	g fuel use	ed, main	system	1								3546.56	1
			•									00.000	

Water heating fuel used			1944.04
Electricity for pumps, fans and electric keep-hot			
central heating pump:		30	(230c)
Total electricity for the above, kWh/year	sum of (230	0a)(230g) =	30 (231)
Electricity for lighting			296.02 (232)
Electricity generated by PVs			-619.8 (233)
10a. Fuel costs - individual heating systems:			
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating - main system 1	(211) x	3.48 x 0.01 =	123.42 (240)
Space heating - main system 2	(213) x	0 x 0.01 =	0 (241)
Space heating - secondary	(215) x	13.19 x 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	3.48 x 0.01 =	67.65 (247)
Pumps, fans and electric keep-hot	(231)	13.19 x 0.01 =	3.96 (249)
(if off-peak tariff, list each of (230a) to (230g) sep		0.04	
Energy for lighting	(232)	13.19 × 0.01 =	39.04
Additional standing charges (Table 12)			120 (251)
	one of (233) to (235) x)	13.19 × 0.01 =	-81.75 (252)
Appendix Q items: repeat lines (253) and (254) a			(0.75)
Total energy cost (245)(2 11a. SAP rating - individual heating systems	47) + (250)(254) =		272.32 (255)
Energy cost deflator (Table 12)	050)] - [(4) - 45 0]		0.42 (256)
g, ()	256)] ÷ [(4) + 45.0] =		1.13 (257)
SAP rating (Section 12) 12a. CO2 emissions – Individual heating system	no including miero CHD		84.24 (258)
12a. CO2 emissions – muividual neating system	<u> </u>		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	766.06 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216	419.91 (264)
Space and water heating	(261) + (262) + (263) + (264) =		1185.97 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	15.57 (267)
Electricity for lighting	(232) x	0.519 =	153.63 (268)
Energy saving/generation technologies Item 1		0.519 =	-321.68 (269)
Total CO2, kg/year	SIII	m of (265)(271) =	
rotar 002, ngryoar	Sui	(=00)(=1 1) =	1033.5 (272)

CO2 emissions per m ²	(272) ÷ (4) =	18.38	(273)
EI rating (section 14)		86	(274)

13a. Primary Energy

	Energy kWh/year	Primary factor		P. Energy kWh/year	
Space heating (main system 1)	(211) x	1.22	=	4326.8	(261)
Space heating (secondary)	(215) x	3.07	=	0	(263)
Energy for water heating	(219) x	1.22	=	2371.73	(264)
Space and water heating	(261) + (262) + (263) + (264) =			6698.53	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	=	92.1	(267)
Electricity for lighting	(232) x	0	=	908.78	(268)
Energy saving/generation technologies					
Item 1		3.07	=	-1902.79	(269)
'Total Primary Energy	sum	of (265)(271) =		5796.61	(272)
Primary energy kWh/m²/year	(272	?) ÷ (4) =		103.07	(273)

		User E	Details:						
Assessor Name: Software Name:	Stroma FSAP 2012		Strom Softwa	are Ve	rsion:		Versio	on: 1.0.4.6	
Address :		Property	Address	: Plot 10					
1. Overall dwelling dime	ensions:								
		Are	a(m²)	ī	Av. He	ight(m)	,	Volume(m	<u> </u>
Ground floor			35.53	(1a) x	2	.44	(2a) =	86.66	(3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1	ln) (35.53	(4)					
Dwelling volume				(3a)+(3b)+(3c)+(3c	d)+(3e)+	(3n) =	86.66	(5)
2. Ventilation rate:									
	main seconda heating heating		other		total			m³ per hou	ır
Number of chimneys	0 + 0	+	0	=	0	X	40 =	0	(6a)
Number of open flues	0 + 0	- + -	0	<u> </u>	0	x	20 =	0	(6b)
Number of intermittent fa	ns				2	x	10 =	20	(7a)
Number of passive vents				F	0	X	10 =	0	(7b)
Number of flueless gas fi				F	0	X	40 =	0	(7c)
Air changes per hour									
	ys, flues and fans = (6a)+(6b)+ een carried out or is intended, proce			continuo fi	20		\div (5) =	0.23	(8)
Number of storeys in the		cu to (11),	ouror wise t	Sommac II	0111 (0) 10 ((10)		0	(9)
Additional infiltration						[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0	.25 for steel or timber frame of	or 0.35 fo	r masoni	ry consti	ruction			0	(11)
if both types of wall are po deducting areas of openion	resent, use the value corresponding	to the grea	ter wall are	a (after					
•	floor, enter 0.2 (unsealed) or	0.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, en	ter 0.05, else enter 0							0	(13)
Percentage of windows	s and doors draught stripped							0	(14)
Window infiltration			0.25 - [0.2	. ,	-			0	(15)
Infiltration rate			(8) + (10)					0	(16)
•	q50, expressed in cubic metrity value, then $(18) = [(17) \div 20]$ -	-	•	•	etre of e	envelope	area	10	(17)
•	ity value, then $(10) = [(17) \div 20]^{-1}$ is if a pressurisation test has been defined by				is beina u	sed		0.73	(18)
Number of sides sheltere		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	groo an po	modelinty	io boilig a	oou		2	(19)
Shelter factor			(20) = 1 -	[0.075 x (19)] =			0.85	(20)
Infiltration rate incorporat	ting shelter factor		(21) = (18) x (20) =				0.62	(21)
Infiltration rate modified f	or monthly wind speed				•				
Jan Feb	Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Table 7						r	1	
(22)m= 5.1 5	4.9 4.4 4.3 3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (2	2)m ÷ 4								
	1.23 1.1 1.08 0.95	0.95	0.92	1	1.08	1.12	1.18]	
, ,				L			<u> </u>	J	

Adjusted infiltra	ation rate	e (allowi	ng for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m					
0.79	0.78	0.76	0.68	0.67	0.59	0.59	0.57	0.62	0.67	0.7	0.73]	
Calculate effec		•	rate for t	he appli	cable ca	se			!			_	
If mechanica			or disciplination	Ol-) (OO -			(IE)) - (I		\ (00-)			0	(23a)
If exhaust air he		•		, ,		. ,		,) = (23a)			0	(23b)
If balanced with		-	-	_								0	(23c)
a) If balanced						- ` ` 	- ^ `	ŕ	 	` 	- ` ` `) ÷ 100]	(a.)
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If balanced					1		- 	i `	2b)m + (23b)		7	
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole ho				•	•								
if (22b)m		<u> </u>	· ` `	<u> </u>	ŕ –	· ` `	É È	. 	· ` `	i 		1	(0.1.)
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
d) If natural v if (22b)m				•	•				0.5]			_	
(24d)m= 0.81	0.8	0.79	0.73	0.72	0.67	0.67	0.67	0.69	0.72	0.74	0.77		(24d)
Effective air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in bo	x (25)					
(25)m= 0.81	0.8	0.79	0.73	0.72	0.67	0.67	0.67	0.69	0.72	0.74	0.77		(25)
3. Heat losses	and he	at loss r	naramet	or.								_	_
ELEMENT	Gros		Openin		Net Ar	ea	U-val	IIE	AXU		k-valu	Δ	AXk
	area		m		A ,r		W/m2		(W/	K)	kJ/m².		kJ/K
Doo <mark>rs</mark>					2	х	1.5	= [3				(26)
Windows					4.7	x1.	/[1/(1.6)+	0.04] =	7.07	Ħ			(27)
Walls Type1	12.8	9	4.7		8.19	X	0.3	1	2.46	Fi i			(29)
Walls Type2	4.46	_	2	╡╹	2.46	×	0.27		0.66	Ħ i		5	(29)
Roof	4.33		0	=	4.33	=	0.3	<u>-</u>	1.3	=		╡	(30)
Total area of el						=	0.5	[1.0				
* for windows and i		•	offective wi	ndow I I-vs	21.68		ı formula 1	/[(1/ ₋ val	د 0.41 مداهر	as aiven in	naragrani	h 3 2	(31)
** include the areas						atou uomg	, romaia i	, _{[(} ,, o va.a	10) 10.0 1] 0	ao givoiriii	paragrapi	7 0.2	
Fabric heat loss	s, W/K =	= S (A x	U)				(26)(30)) + (32) =				14.48	(33)
Heat capacity C	Cm = S(Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	0	(34)
Thermal mass	parame	ter (TMF	c = Cm ÷	- TFA) ir	n kJ/m²K			Indica	tive Value	: Medium		250	(35)
For design assessi	ments wh	ere the de	tails of the	construct	ion are no	t known pr	ecisely the	e indicative	values of	TMP in T	able 1f		
can be used instea													
Thermal bridge	•	•		• .	•	<						3.25	(36)
if details of thermal		are not kn	own (36) =	= 0.15 x (3	11)			(22) 1	(26) -				(07)
Total fabric hea		aloudot-	المامصدادا						(36) =	(OE) (- (E	.	17.73	3 (37)
Ventilation hear			·		1	1, ,1	۸			(25)m x (5)	1	1	
Jan 23 27	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	(38)
(38)m= 23.27	22.92	22.58	20.97	20.67	19.28	19.28	19.02	19.82	20.67	21.28	21.92	J	(30)
Heat transfer co						1	1	<u> </u>	= (37) + (1	
(39)m= 41	40.65	40.31	38.71	38.41	37.01	37.01	36.75	37.55	38.41	39.01	39.65		
								,	Average =	: Sum(39)₁	12 /12=	38.7	1 (39)

Heat Id	ss para	meter (H	HLP), W/	′m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	1.15	1.14	1.13	1.09	1.08	1.04	1.04	1.03	1.06	1.08	1.1	1.12		
									,	Average =	Sum(40) ₁	12 /12=	1.09	(40)
Numbe	er of day	s in mor	nth (Tab	le 1a)							1			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	iter heat	ing ener	gy requi	rement:								kWh/ye	ar:	
if TF				[1 - exp	(-0.0003	49 x (TF	FA -13.9))2)] + 0.0	0013 x (¯	ΓFA -13.		29		(42)
Reduce	the annua	ıl average	hot water	usage by		welling is	designed t	(25 x N) to achieve		se target o		.91		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water	er usage ir	n litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)						
(44)m=	71.41	68.81	66.21	63.62	61.02	58.42	58.42	61.02	63.62	66.21	68.81	71.41		
Enormy	contont of	hot water	usod sol	culated ma	anthly = 1	100 v Vd r	n v nm v F	Tm / 3600			m(44) ₁₁₂ =		778.98	(44)
										-				
(45)m=	105.89	92.62	95.57	83.32	79.95	68.99	63.93	73.36	74.24	8 <mark>6.51</mark>	94.44	102.55	1021.36	(45)
If inst <mark>ant</mark>	taneous w	ater heatii	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46)		10tai = 5u	m(45) ₁₁₂ =		1021.36	(43)
(46)m=	15.88	13.89	14.34	12.5	11.99	10.35	9.59	11	11.14	12.98	14.17	15.38		(46)
Water	storage	loss:	7											
Storag	e volum	e (litres)	includir	ig any so	olar or W	WHRS	storage	within sa	ame ves	sel		0		(47)
	-	_			•		litres in	, ,		(01: /	4-7			
	vise if no storage		not wate	er (this in	iciudes ii	nstantar	neous co	mbi boil	ers) ente	er 'O' in (47)			
	•		eclared l	oss facto	or is kno	wn (kWł	n/day):					0		(48)
•			m Table			`	, ,					0		(49)
•			storage		ear			(48) x (49)) =			0		(50)
• • • • • • • • • • • • • • • • • • • •			_	-	oss facto	or is not	known:							, ,
		_			e 2 (kWl	n/litre/da	ay)					0		(51)
	•	eating s from Tal	ee section	on 4.3										(52)
			m Table	2b								0		(52) (53)
•			storage		ear			(47) x (51)) x (52) x (53) =		0		(54)
٠.		54) in (5	•	, 1	Jul			(, (,	, (=_, (,	_	0		(55)
Water	storage	loss cal	culated f	or each	month			((56)m = (55) × (41)ı	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
	er contains	dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (<u>I</u> H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	хН	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (an	nual) fro	m Table	 3							0		(58)
	-	,	,			59)m = ((58) ÷ 36	65 × (41)	m					
(mod	dified by	factor fi	om Tab	le H5 if t	here is s	olar wat	ter heatir	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)

Combi loss calculated for each month (61) m = $(60) \div 365 \times (41)$ m	(04)
(61)m= 36.39 31.67 33.74 31.37 31.1 28.81 29.77 31.1 31.37 33.74 33.93 36.39	(61)
Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (46)m + (57)m + (59)m + (46)m + (46)m$	•
(62)m= 142.28 124.29 129.31 114.69 111.04 97.8 93.7 104.45 105.61 120.26 128.37 138.94	(62)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)	
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)	(62)
(63)m= 0 0 0 0 0 0 0 0 0 0 0 0	(63)
Output from water heater	
(64)m= 142.28 124.29 129.31 114.69 111.04 97.8 93.7 104.45 105.61 120.26 128.37 138.94	(64)
Output from water heater (annual) ₁₁₂ 1410.7	(64)
Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m]	(05)
(65)m= 44.31 38.71 40.21 35.55 34.36 30.14 28.7 32.17 32.53 37.2 39.88 43.2	(65)
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating	
5. Internal gains (see Table 5 and 5a):	
Metabolic gains (Table 5), Watts	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
(66)m= 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.	(66)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5	
(67)m= 25.99 23.08 18.77 14.21 10.62 8.97 9.69 12.6 16.91 21.47 25.05 26.71	(67)
App <mark>liance</mark> s gains (ca <mark>lculat</mark> ed in Appendix L, equation L13 or L13a), also see Table 5	
(68)m= 164.89 166.6 162.29 153.11 141.52 130.63 123.36 121.65 125.96 135.14 146.73 157.62	(68)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5	
(69)m= 44.05 44.05 44.05 44.05 44.05 44.05 44.05 44.05 44.05 44.05 44.05	(69)
Pumps and fans gains (Table 5a)	
(70)m= 3 3 3 3 3 3 3 3 3 3 3 3	(70)
Losses e.g. evaporation (negative values) (Table 5)	
(71)m= -51.73 -51.73 -51.73 -51.73 -51.73 -51.73 -51.73 -51.73 -51.73 -51.73 -51.73 -51.73	(71)
Water heating gains (Table 5)	
(72)m= 59.55 57.61 54.05 49.37 46.18 41.86 38.57 43.23 45.18 50 55.39 58.06	(72)
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$	
(73)m= 323.35 320.21 308.03 289.61 271.24 254.38 244.54 250.39 260.96 279.52 300.09 315.3	(73)
6. Solar gains:	
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.	
Orientation: Access Factor Area Flux g_ FF Gains	
Table 6d m ² Table 6a Table 6b Table 6c (W)	
Northeast 0.9x 0.77 x 4.7 x 11.28 x 0.7 x 0.8 = 20.58	(75)
Northeast 0.9x 0.77 x 4.7 x 22.97 x 0.7 x 0.8 = 41.89	(75)
Northeast 0.9x 0.77 x 4.7 x 41.38 x 0.7 x 0.8 = 75.47	(75)
Northeast 0.9x 0.77 x 4.7 x 67.96 x 0.7 x 0.8 = 123.9	5 (75)
Northeast 0.9x 0.77 x 4.7 x 91.35 x 0.7 x 0.8 = 166.6	1 (75)

Northeast 0.9x 0.77	X	4.7	7	x (97.38	x		0.7	x	0.8	=	177.63	(75)
Northeast 0.9x 0.77	X	4.7	7	x	91.1	x		0.7	x	0.8	=	166.17	(75)
Northeast 0.9x 0.77	X	4.	7	X	72.63	x		0.7	х	0.8	=	132.47	(75)
Northeast 0.9x 0.77	X	4.	7	x .	50.42	x		0.7	х	0.8	=	91.97	(75)
Northeast 0.9x 0.77	x	4.	7	x 2	28.07	x		0.7	_ x [0.8	=	51.19	(75)
Northeast 0.9x 0.77	X	4.	7	х	14.2	x		0.7	x	0.8	= =	25.89	(75)
Northeast 0.9x 0.77	x	4.	7	x	9.21	x		0.7	x	0.8	=	16.81	(75)
													_
Solar gains in watts, cal	culated	for eacl	n month			(83)m	= Sur	m(74)m .	(82)m				
(83)m= 20.58 41.89	75.47	123.95	166.61	177.63	166.17	132.	.47	91.97	51.19	25.89	16.81		(83)
Total gains – internal an	ıd solar	(84)m =	= (73)m ·	+ (83)m	, watts						-		
(84)m= 343.93 362.1	383.5	413.56	437.86	432.01	410.71	382	.86	352.93	330.72	325.99	332.11		(84)
7. Mean internal tempe	erature	(heating	season)									
Temperature during he	ating p	eriods ir	the livii	ng area	from Tal	ble 9,	Th1	(°C)				21	(85)
Utilisation factor for gain	ins for I	iving are	a, h1,m	(see Ta	able 9a)								
Jan Feb	Mar	Apr	May	Jun	Jul	Aı	ug	Sep	Oct	Nov	Dec		
(86)m= 0.98 0.98	0.96	0.89	0.74	0.54	0.39	0.4	4	0.69	0.91	0.97	0.99		(86)
Mean internal tempera	ture in	living are	2a T1 (fo	ollow ste	ens 3 to 7	7 in T	able	9c)					
(87)m= 20.26 20.35	20.51	20.75	20.89	20.94	20.95	20.9		20.92	20.75	20.5	20.27		(87)
				alus a Hisa a	, fue as T			0 (00)					
Temperature during he (88)m= 19.96 19.96	19.97	20.01	20.02	20.05	20.05	20.0	$\overline{}$	20.04	20.02	20	19.99		(88)
				<u> </u>			05	20.04	20.02	20	19.99		(00)
Utilisation factor for ga						T					1		(00)
(89)m= 0.98 0.97	0.94	0.86	0.69	0.46	0.31	0.3	35	0.61	0.88	0.96	0.98		(89)
Mean internal tempera	ture in	the rest	of dwelli	ng T2 (f	ollow ste	eps 3	to 7	in Tabl	e 9 <mark>c)</mark>				
(90)m= 18.99 19.13	19.37	19.71	19.89	19.97	19.98	19.9	98	19.94	19.73	19.37	19.03		(90)
								f	LA = Livir	ng area ÷ (4	4) =	0.7	(91)
Mean internal tempera	ture (fo	r the wh	ole dwe	lling) = f	LA × T1	+ (1	– fLA	A) × T2					
(92)m= 19.87 19.98	20.16	20.43	20.58	20.65	20.65	20.0	65	20.62	20.44	20.15	19.9		(92)
Apply adjustment to the	e mean	internal	temper	ature fro	m Table	4e,	wher	e appro	priate			•	
(93)m= 19.87 19.98	20.16	20.43	20.58	20.65	20.65	20.0	65	20.62	20.44	20.15	19.9		(93)
8. Space heating requi													
Set Ti to the mean inte		•		ed at st	ep 11 of	Tabl	e 9b,	so tha	t Ti,m=((76)m an	d re-calc	culate	
the utilisation factor for Jan Feb	Mar	Apr	May	Jun	Jul	Ι	ug	Sep	Oct	Nov	Dec		
Utilisation factor for gain		•	iviay	Juli	Jui		ug	Sep	Oct	INOV	Dec		
(94)m= 0.98 0.97	0.95	0.87	0.72	0.51	0.36	0.4	1	0.66	0.89	0.96	0.98		(94)
Useful gains, hmGm , \	W = (94	1)m x (84	4)m		Į.	<u> </u>	!_			ļ.	<u> </u>		
	362.69	359.89	315.67	220.75	149.61	155.	.67	233.27	294.75	313.78	325.87		(95)
Monthly average exteri	nal tem	perature	from Ta	able 8					<u> </u>	!		I	
(96)m= 4.3 4.9	6.5	8.9	11.7	14.6	16.6	16.	.4	14.1	10.6	7.1	4.2		(96)
Heat loss rate for mean	n intern	al tempe	erature,	Lm , W	=[(39)m	x [(93	3)m–	(96)m]				
(97)m= 638.57 612.95	550.85	446.33	341.14	223.79	150.01	156	.36	244.88	377.93	509.27	622.32		(97)
Space heating requirer	ment fo	r each m	nonth, k	/Vh/mon	th = 0.02	24 x [(97)n	n – (95)m] x (4	1)m		ı	
(98)m= 224.66 175.87	139.99	62.24	18.95	0	0	0		0	61.88	140.76	220.56		

			Tota	l nor your	(14) (16)	e) — Sum/0	00)	1044.9	(98)
0			TOLA	i per year	(kWh/yeaı) = Sum(9	10) _{15,912} =		=
Space heating requirement in kWh/m²/year								29.41	(99)
9a. Energy requirements – Individual heating	ı systems i	ncluding	micro-C	CHP)					
Space heating: Fraction of space heat from secondary/supp	olementary	system						0	(201)
Fraction of space heat from main system(s)	•	-	(202) = 1	- (201) =				1	(202)
Fraction of total heating from main system 1			(204) = (2	02) x [1 –	(203)] =			1	(204)
Efficiency of main space heating system 1								92.8	(206)
Efficiency of secondary/supplementary heat	ing system	ո, %						0	(208)
Jan Feb Mar Apr Ma	y Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/y	 ear
Space heating requirement (calculated above	ve)								
224.66 175.87 139.99 62.24 18.99	5 0	0	0	0	61.88	140.76	220.56		
(211)m = {[(98)m x (204)] } x 100 ÷ (206)						г	1	Ī	(211)
242.09 189.51 150.85 67.07 20.43	2 0	0	0	0	66.69	151.68	237.67		–
0			Tota	i (kwn/yea	ar) =Sum(2	211) _{15,1012}	2=	1125.97	(211)
Space heating fuel (secondary), kWh/month = $\{[(98)m \times (201)]\} \times 100 \div (208)$	1								
(215) m = 0	0	0	0	0	0	0	0		
			Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}		0	(215)
Water heating									
Output from water heater (calculated above)	97.8	93.7	104.45	105.61	120.26	128.37	138.94		
Efficiency of water heater	97.0	95.7	104.43	103.01	120.20	120.57	130.94	83.5	(216)
(217)m= 88.96 88.71 88.09 86.55 84.74	4 83.5	83.5	83.5	83.5	86.44	88.12	88.97	00.0	(217)
Fuel for water heating, kWh/month			!		<u> </u>	<u>I</u>	ļ		
(219) m = (64) m x $100 \div (217)$ m	4 47.40	140.00	105.00	100.40	100.44	445.00	450.40	Ī	
(219)m= 159.94 140.11 146.8 132.52 131.0	4 117.13	112.22	125.09 Tota	126.48 I = Sum(2		145.68	156.16	1632.28	(219)
Annual totals						Wh/yeaı	r	kWh/yea	
Space heating fuel used, main system 1						, , ,		1125.97	
Water heating fuel used								1632.28	ラー こ
Electricity for pumps, fans and electric keep-	hot								
central heating pump:							30		(230c)
Total electricity for the above, kWh/year			sum	of (230a).	(230g) =			30	(231)
Electricity for lighting								183.57	(232)
Electricity generated by PVs								-391.65	(233)
10a. Fuel costs - individual heating systems	s:								
	Fu	el /h/year			Fuel P (Table			Fuel Cost £/year	į
Space heating - main system 1		l) x			· .		x 0.01 =	39.18	(240)
Space fieating - main system i	(~11	., ^			3.4	Ö	. 0.01 =	J9.18	(240)

Space heating - main system 2	(213) x	0 x 0.01 =	0 (241)
Space heating - secondary	(215) x	13.19 x 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	3.48 x 0.01 =	56.8 (247)
Pumps, fans and electric keep-hot	(231)	13.19 x 0.01 =	3.96 (249)
(if off-peak tariff, list each of (230a) to (2			
Energy for lighting	(232)	13.19 x 0.01 =	24.21 (200)
Additional standing charges (Table 12)			120 (251)
	one of (233) to (235) x)	13.19 x 0.01 =	-51.66 (252)
Appendix Q items: repeat lines (253) an	nd (254) as needed		
Total energy cost	(245)(247) + (250)(254) =		192.5 (255)
11a. SAP rating - individual heating sys	stems		
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF)	$[(255) \times (256)] \div [(4) + 45.0] =$		1 (257)
SAP rating (Section 12)			85.99 (258)
12a. CO2 emissions – Individual heatir	ng systems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216	243.21 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) X	0.216 =	352.57 (264)
Space and water heating	(261) + (262) + (263) + (264) =		595.78 (265)
Electricity for pumps, fans and electric k	keep-hot (231) x	0.519 =	15.57 (267)
Electricity for lighting	(232) x	0.519 =	95.27 (268)
Energy saving/generation technologies			(000)
Item 1	e.	0.519 = um of (265)(271) =	-203.27 (269)
Total CO2, kg/year			503.36 (272)
CO2 emissions per m ²	(2	(72) ÷ (4) =	14.17 (273)
El rating (section 14)			92 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	1373.69 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22 =	1991.38 (264)
Space and water heating	(261) + (262) + (263) + (264) =	=	3365.07 (265)
Electricity for pumps, fans and electric k	keep-hot (231) x	3.07	92.1 (267)

(232) x Electricity for lighting (268)0 563.56 Energy saving/generation technologies (269) -1202.38 3.07 'Total Primary Energy sum of (265)...(271) =(272) 2818.35 $(272) \div (4) =$ Primary energy kWh/m²/year 79.32 (273)

APPENDIX C – SBEM RESULTS

BRUKL Output Document

Compliance with England Building Regulations Part L 2013

Project name

Finchley Road_Lean

As built

Date: Tue Aug 22 18:20:31 2017

Administrative information

Building Details

Address: Address 1, Address 2, City, Postcode

Certification tool

Calculation engine: SBEM

Calculation engine version: v5.2.g.3

Interface to calculation engine: Virtual Environment

Interface to calculation engine version: v7.0.6

BRUKL compliance check version: v5.2.g.3

Owner Details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Certifier details

Name: Name

Telephone number: Phone

Address: Street Address, City, Postcode

Criterion 1: The calculated CO2 emission rate for the building should not exceed the target

CO ₂ emission rate from the notional building, kgCO ₂ /m ² .annum	23.4
Target CO ₂ emission rate (TER), kgCO ₂ /m ² .annum	23.4
Building CO ₂ emission rate (BER), kgCO ₂ /m ² .annum	18
Are emissions from the building less than or equal to the target?	BER =< TER
Are as built details the same as used in the BER calculations?	Separate submission

Criterion 2: The performance of the building fabric and the building services should achieve reasonable overall standards of energy efficiency

Values not achieving standards in the Non-Domestic Building Services Compliance Guide and Part L are displayed in red.

Building fabric

Element	U _{a-Limit}	U _{a-Calc}	Ui-Calc	Surface where the maximum value occurs*
Wall**	0.35	0.31	0.31	RM000001_W1
Floor	0.25	0.25	0.25	RM000001_F
Roof	0.25	-	-	"No heat loss roofs"
Windows***, roof windows, and rooflights	2.2	1.6	1.6	RM000001_W12_O0
Personnel doors	2.2	3.08	3.08	RM000006_W4_O0
Vehicle access & similar large doors	1.5	194 2		"No external vehicle access doors"
High usage entrance doors	3.5		-	"No external high usage entrance doors"
LL unit = Limiting area-weighted average LL-values IV	V/(m²K)1		1	

U_{a-Limit} = Limiting area-weighted average U-values [W/(m²K)]

Ua-calc = Calculated area-weighted average U-values [W/(m2K)]

U_{i-Calc} = Calculated maximum individual element U-values [W/(m²K)]

N.B.: Neither roof ventilators (inc. smoke vents) nor swimming pool basins are modelled or checked against the limiting standards by the tool.

Air Permeability	Worst acceptable standard	This building	
m³/(h.m²) at 50 Pa	10	10	

^{*} There might be more than one surface where the maximum U-value occurs.

^{**} Automatic U-value check by the tool does not apply to curtain walls whose limiting standard is similar to that for windows.

^{***} Display windows and similar glazing are excluded from the U-value check.

Building services

The standard values listed below are minimum values for efficiencies and maximum values for SFPs. Refer to the Non-Domestic Building Services Compliance Guide for details.

Whole building lighting automatic monitoring & targeting with alarms for out-of-range values	YES
Whole building electric power factor achieved by power factor correction	>0.95

1- Main system

	Heating efficiency	Cooling efficiency	Radiant efficiency	SFP [W/(I/s)]	HR	efficiency
This system	4	6	- 0	-	S#8	
Standard value	2.5*	2.6	N/A	N/A	N/A	4
Automatic monit	toring & targeting w	ith alarms for out-of	-range values for th	is HVAC syster	n	NO

1- SYST0000-DHW

	Water heating efficiency	Storage loss factor [kWh/litre per day]
This building	Hot water provided by HVAC system	-
Standard value	N/A	N/A

Local mechanical ventilation, exhaust, and terminal units

ID	System type in Non-domestic Building Services Compliance Guide
Α	Local supply or extract ventilation units serving a single area
В	Zonal supply system where the fan is remote from the zone
С	Zonal extract system where the fan is remote from the zone
D	Zonal supply and extract ventilation units serving a single room or zone with heating and heat recovery
E	Local supply and extract ventilation system serving a single area with heating and heat recovery
F	Other local ventilation units
G	Fan-assisted terminal VAV unit
Н	Fan coil units
1	Zonal extract system where the fan is remote from the zone with grease filter

Zone name		SFP [W/(I/s)]						HR efficiency			
ID of system type	Α	В	С	D	E	F	G	Н	1	T HK 6	emclency
Standard value	0.3	1.1	0.5	1.9	1.6	0.5	1.1	0.5	1	Zone	Standard
B1 basement	*	200	-	0.8		-	-		-	0.7	0.5
A2	7	-	-	0.8		-	-	70		0.7	0.5
B1 Ground	8	-	-	0.8	-	-	-	2	-	0.7	0.5

General lighting and display lighting	Lumino	ous effic]	
Zone name	Luminaire	Lamp	Display lamp	General lighting [W]
Standard value	60	60	22	
B1 basement	68	-	-	1105
A2	-	80	80	699
B1 Ground	68	1.5	5	675

Criterion 3: The spaces in the building should have appropriate passive control measures to limit solar gains

Zone	Solar gain limit exceeded? (%)	Internal blinds used?	
B1 basement	NO (-94%)	NO	

Zone	Solar gain limit exceeded? (%)	Internal blinds used?
A2	NO (-41.7%)	NO
B1 Ground	NO (-60.7%)	NO

Criterion 4: The performance of the building, as built, should be consistent with the calculated BER

Separate submission

Criterion 5: The necessary provisions for enabling energy-efficient operation of the building should be in place

Separate submission

EPBD (Recast): Consideration of alternative energy systems

Were alternative energy systems considered and analysed as part of the design process?		
Is evidence of such assessment available as a separate submission?	NO	
Are any such measures included in the proposed design?	NO	

Technical Data Sheet (Actual vs. Notional Building)

Building Global Parameters

244.3 363	244.3 363
100100007	201000000
LON	
LON	LON
10	5
166.49	212.19
0.46	0.58
19.4	19.23
	166.49 0.46

^{*} Percentage of the building's average heat transfer coefficient which is due to thermal bridging

Building Use

% Area	Building Type
20	A1/A2 Retail/Financial and Professional services
	A3/A4/A5 Restaurants and Cafes/Drinking Est./Takeaways
80	B1 Offices and Workshop businesses
	B2 to B7 General Industrial and Special Industrial Groups

B8 Storage or Distribution

C1 Hotels

C2 Residential Inst.; Hospitals and Care Homes

C2 Residential Inst.: Residential schools

C2 Residential Inst.; Universities and colleges

C2A Secure Residential Inst.

Residential spaces

D1 Non-residential Inst.: Community/Day Centre

D1 Non-residential Inst.: Libraries, Museums, and Galleries

D1 Non-residential Inst.: Education

D1 Non-residential Inst.: Primary Health Care Building

D1 Non-residential Inst.: Crown and County Courts

D2 General Assembly and Leisure, Night Clubs and Theatres

Others: Passenger terminals Others: Emergency services

Others: Miscellaneous 24hr activities

Others: Car Parks 24 hrs Others - Stand alone utility block

Energy Consumption by End Use [kWh/m²]

	Actual	Notional
Heating	4.87	6.17
Cooling	6.07	11.24
Auxiliary	3.27	2.92
Lighting	20.57	24.79
Hot water	0.7	1.03
Equipment*	37.7	37.7
TOTAL**	35.47	46.15

^{*} Energy used by equipment does not count towards the total for calculating emissions.
** Total is net of any electrical energy displaced by CHP generators, if applicable.

Energy Production by Technology [kWh/m²]

	Actual	Notional
Photovoltaic systems	0	0
Wind turbines	0	0
CHP generators	0	0
Solar thermal systems	0	0

Energy & CO₂ Emissions Summary

	Actual	Notional
Heating + cooling demand [MJ/m ²]	158.35	199.73
Primary energy* [kWh/m²]	106.18	138.15
Total emissions [kg/m²]	18	23.4

^{*} Primary energy is net of any electrical energy displaced by CHP generators, if applicable.

ŀ	IVAC Sys	stems Per	rformanc	е						
Sy	stem Type	Heat dem MJ/m2		The state of the s	Cool con kWh/m2		Heat SSEEF	Cool SSEER	Heat gen SEFF	Cool gen SEER
[ST] Split or multi-split system, [HS] Heat pump (electric): air source, [HFT] Electricity, [CFT] Electricity										
	Actual	65.3	93.1	4.9	6.1	3.3	3.73	4.26	4	6
	Notional	54	145.7	6.2	11.2	2.9	2.43	3.6		

Key to terms

Heat dem [MJ/m2] = Heating energy demand Cool dem [MJ/m2] = Cooling energy demand Heat con [kWh/m2] = Heating energy consumption Cool con [kWh/m2] = Cooling energy consumption Aux con [kWh/m2] = Auxiliary energy consumption

Heat SSEFF = Heating system seasonal efficiency (for notional building, value depends on activity glazing class)

Cool SSEER = Cooling system seasonal energy efficiency ratio

Heat gen SSEFF = Heating generator seasonal efficiency

Cool gen SSEER = Cooling generator seasonal energy efficiency ratio

 ST
 = System type

 HS
 = Heat source

 HFT
 = Heating fuel type

 CFT
 = Cooling fuel type

Key Features

The BCO can give particular attention to items with specifications that are better than typically expected.


Building fabric

Element	U _{i-Typ}	Ui-Min	Surface where the minimum value occurs		
Wall	0.23	0.31	RM000001_W1		
Floor	0.2	0.25	RM000001_F		
Roof	0.15	e - :	"No heat loss roofs"		
Windows, roof windows, and rooflights	1.5	1.6	RM000001_W12_O0		
Personnel doors	1.5	3.08	RM000006_W4_O0		
Vehicle access & similar large doors	1.5	(-	"No external vehicle access doors"		
High usage entrance doors	1.5	.	"No external high usage entrance doors"		
U _{FTyp} = Typical individual element U-values [W/(m²l	<)]		U _{i-Min} = Minimum individual element U-values [W/(m²K)]		
* There might be more than one surface where the	minimum l	J-value oc	ccurs.		

Air Permeability	Typical value	This building
m³/(h.m²) at 50 Pa	5	10

APPENDIX D – SURFACE WATER CALCULATIONS

MasterDrain HY 9.36

XCO2 Energy Ltd

17-18 Haywards Place, Clerkenwell, London EC1R 0EQ Tel: +44 (0)20 7700 1000 Email: mail@xco2energy.com Job No. 8.996 Sheet no. 1 Date 22/08/17

Project 30	7-309 Finchley Road	Ву	Checked	Reviewed
		JC		
Title Su	rface Water Runoff			

Data:-

Hydrology:-					
Location = Finch	ley Road	WRAP		=	2
Long reference =	0	Grid	reference	=	
$M5-60 \ (mm) =$	21	SAAR	(mm/yr)	= 6	00
r =	0.45	Soil		=0.	30
Hyd. area =	7	Hyd.	zone	= 8	
Hydrograph =	Summer	Area	= England	and	Wales

Site values used in design:-

Total site area Pre-dev area drained Imperm runoff factor	= 0.0528 ha = 0.0528 ha = 98%	Climate change factor Post-dev area drained Perm runoff factor	= 40% = 0.0528 ha = 20%
Pre-development			
Area to soakaways	= 0.0000 ha	Area to other SUDS	= 0.0000 ha
Perv. area to SUDS	= 0.0000 ha	Pre-dev flow to drain	= 0.00 1/s
Post-development			
Area to soakaways	= 0.0000 ha	Area to other SUDS	= 0.0000 ha
Perv. area to SUDS	= 0.0000 ha	Post-dev flow to drain	= 0.00 1/s

Calculations:-

```
Revised Post-dev Imperm. area = 0.053 ha

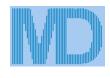
Equiv. Post-dev Imperm. area = 0.052 ha

Equiv. Post-dev Perm. area = 0.000 ha

Total Pre-dev equiv. area ha = 0.052 ha

Total Post-dev equiv. area ha = 0.052 ha

100 yr 6 hour mean intensity = 10.37mm/hr
```


Results:-

Kepurca.												
Pre-dev	peakflo	ow runc	off (1/	s)(m³/	s)							
R.P.	15	30	60	120	240	360	480	600	Max	CCF	Final	R.P.
1	19.2	12.5	7.8	4.6	2.8	2.1	1.7	1.4	19.2	N/A	19.2	1
30	46.9	29.9	18.2	10.8	6.2	4.5	3.6	3.0	46.9	N/A	46.9	30
100	61.1	39.3	24.0	14.2	8.1	5.8	4.6	3.9	61.1	N/A	61.1	100
Post-dev	peakf:	low rur	noff (1	./s)								
R.P.	15	30	60	120	240	360	480	600	Max	CCF	Final	R.P.
1	19.2	12.5	7.8	4.6	2.8	2.1	1.7	1.4	19.2	40	26.9	1
30	46.9	29.9	18.2	10.8	6.2	4.5	3.6	3.0	46.9	40	65.7	30
100	61.1	39.3	24.0	14.2	8.1	5.8	4.6	3.9	61.1	40	85.6	100

```
100 year 6 hour (x Climate Change Factor) storm gives:-
Pre-dev runoff volume m³ = 32.2m³
Post-dev rainfall volume = 45.1m³
Post-dev volume m³ (excess above SUDS) = 45.1m³
100 yr 6 hour mean intensity = 10.37mm/hr
Pre-dev volume to drain at 0 1/s = 0.0 m³
Post-dev volume to drain at 0 1/s = 0.0 m³
Post-dev storage volume = 45.1m³
Post-dev 5mm imperm volume = 2.6 m³
Post-dev 5mm perm volume = 0.0 m³
```

 $Q_{BAR(rural)} = 0.080 \text{ l/s}$ or 1.522 l/s/ha or 0.000 cumecs - from IoH 124.

The rainfall rates are calculated using the location specific values above in accordance with the Wallingford procedure.

MasterDrain HY 9.36

XCO2 Energy Ltd

17-18 Haywards Place, Clerkenwell, London EC1R 0EQ Tel: +44 (0)20 7700 1000 Email: mail@xco2energy.com

JC

Project 307-309 Finchley Road

THE Surface Water Runoff

Data summary.

Use the data below for the SUR1 form

Site areas:-

Total site area = 0.0528 ha ;528.0 m² [3A]
Pre-development impermeable area = 0.0528 ha [3B]

Pre-development permeable area = 0.0000 ha
Post-development impermeable area = 0.0528 ha [3C]
Post-development permeable area = 0.0000 ha

Peak runoff:-

 $\begin{array}{lll} \mbox{Pre-development 1 year storm (15min)} &= & 19.2 \ l/s \ [6A] \\ \mbox{Pre-development 100 year storm (15min)} &= & 61.1 \ l/s \ [6C] \\ \mbox{Post-development 1 year storm (15min)} &= & 19.2 \ l/s \ [6B] \\ \mbox{Post-development 100 year storm (15min)} &= & 61.11 \ l/s \ [6D] \\ \end{array}$

Greenfield runoff:-

 $Q_{BAR(rural)} = 0.080 \text{ l/s}$ or 1.522 l/s/ha or 0.000 cumecs - from IoH 124.

Climate change factor:-

CCF = 40%

Volumes:-

Pre-development 100 yr/6hr storm [12A]= 45.1m³

Post-development 100 yr/6hr storm (add. volume with no SUDS) [12B]= $45.1m^3$ Post-development 100 yr/6hr storm (add. volume with SUDS) = $45.1m^3$ Post-development add. predicted volume (No SUDS) [12C] = $0.0m^3$

You may also require

Data relating to the infiltration test calculations (if applicable) Evidence to show runoff reduction (if applicable) Information on calculation methods (if applicable see next sheet)

Note

Numbers in square brackets relate to the Nov. 2010 v1.1 / issued 11/02/10 copy of SUR1

MasterDrain HY 9.36

XCO2
Energy Ltd
www.xco2.com

307-309 Finchley Road

Title Surface Water Runoff

17-18 Haywards Place, Clerkenwell, London EC1R 0EQ Tel: +44 (0)20 7700 1000

Email: mail@xco2energv.com

Job No.
8.996
Sheet no.
3
Date
22/08/17

By
Checked Reviewed

Definitions and methods

Hydrology

The hydrological constants are derived from the Wallingford maps. They are used to calculate location specific rainfall figures.

Site values and factors

Areas of the site should be entered in hectares (10000 m²). If the Pre-development site is a green field, this box is blank.

Climate Change Factor is initially set at 20% - this may be changed as required.

Greenfield runoff is calculated using the method described in IoH 124.

Runoff factors

The impermeable runoff factor is initially set at 98% The permeable runoff factor is initially set at 20%

Note: the CCF and the runoff factors may be changed by the user to suit the development The areas draining to soakaways and other SUDS are entered in the appropriate box (in hectares)

Calculations

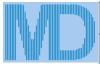
The post-development area is reduced by subtracting the areas that drain to soakaways or other SUDS, to give a revised figure.

All areas are then multiplied by the appropriate runoff factor to give an equivalent area with 100% runoff. These are then summated.

This gives a total pre-development equivalent area, and a similar figure for the post-development area.

The 'Post-dev volume to drain (no SUDS)' gives the total runoff to drain if no SUDS were used.

Results


The pre- and post-development areas are subjected to 1,30 and 100 year return period storms with a duration of 15 to 600 minutes.

The Revised Post-dev Imperm. area is the area (in ha) that is not going to SUDS x impervious runoff factor.

The runoff rates are calculated for the chosen hydrograph (Summer or Winter) as I/s. Figures in red indicate m³/s The peak value is measured, multiplied by the CCF and the total maximum rate is shown.

The pre- and post-development volumes for a 100 year / 6 hour storm are calculated from the area under the hydrograph curve.

Post-dev volume (i.e. excess above SUDS) is that volume produced by the drained area that does not go to SUDS. Qbar(rural) is calculated in accordance with the procedure laid down in IoH 124

Company Project XCO2 Energy Ltd Finchley Road Item Job Ref Sheet no. Storage volume 8.996 1 Calc. by Date Checked by Date Approved by Date

MasterDrain

JC

_	_				
כת	аt	_	•	_	

Hydrology: -Location = Finchley Road Grid reference = $M5-60 \ (mm) = 21$ = 0.45 SAAR (mm/yr) = 600= 2 / 0.30WRAP/Soil Mean intensity = 14.5mm/hr for a 6.00 hour storm Return period = 100 Storm duration = 6.00 hrs Climate change factor = 40% Available MH storage = 0.0 m³ Pipeline storage = 0.0 m³ Offline storage = 0.0 m^3

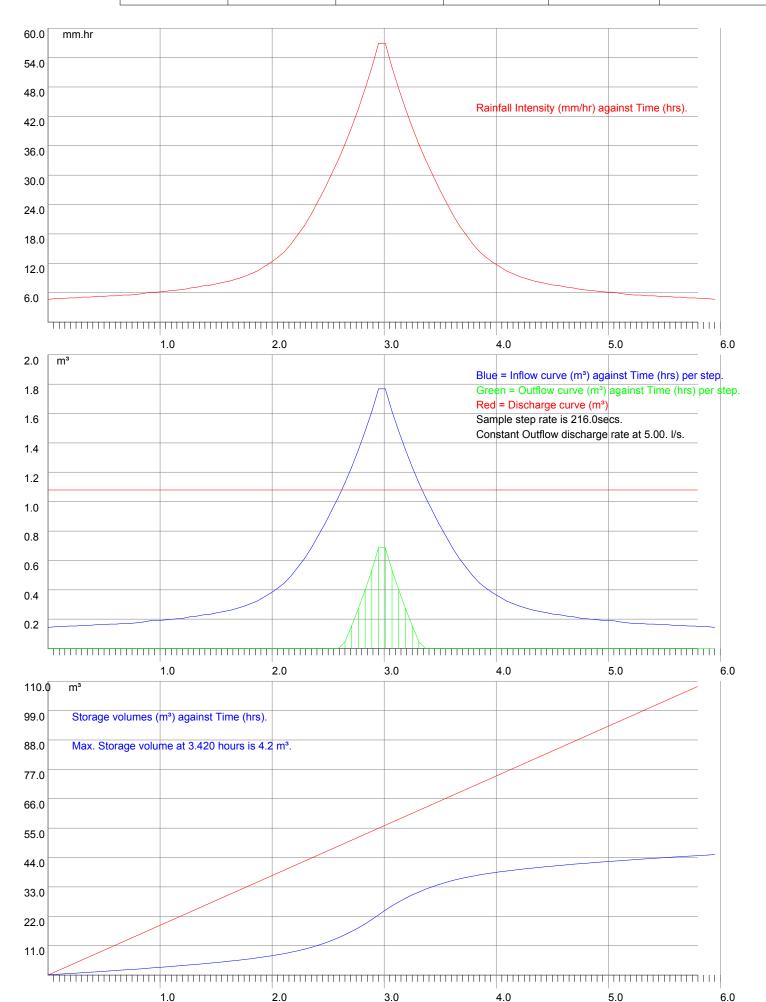
Percentage runoff = 98.0% (manual setting)

22/08/17

Imperv. area = 528 m^2 Pervious area = 0 m^2 Total area = 528 m^2 Equiv area = 517 m^2 (Tot. area x % runoff). Total runoff = 45.1 m^3 Discharge rate = 5.000 l/sStorage (m³) = 4.2 m^3 (Sum of all balance quantities) Total rainfall depth = 87.1 mm

Calculations :-

Time	%Mean	Rain	Inflow	Outflow	Balance	Cumulative	
(hrs)	intens	mm/hr	(m3)	(m3)	(m3)	(m3)	
0.060	32.0	4.6	0.144	1.080	0.000	0.000	
0.120	33.0	4.8	0.149	1.080	0.000	0.000	
0.180	33.0	4.8	0.149	1.080	0.000	0.000	
0.240	34.0	4.9	0.153	1.080	0.000	0.000	
0.300	34.0	4.9	0.153	1.080	0.000	0.000	
0.360	35.0	5.1	0.158	1.080	0.000	0.000	
0.420	35.0	5.1	0.158	1.080	0.000	0.000	
0.480	36.0	5.2	0.162	1.080	0.000	0.000	
0.540	36.0	5.2	0.162	1.080	0.000	0.000	
0.600	37.0	5.4	0.167	1.080	0.000	0.000	
0.660	37.0	5.4	0.167	1.080	0.000	0.000	
0.720	38.0	5.5	0.171	1.080	0.000	0.000	
0.780	38.0	5.5	0.171	1.080	0.000	0.000	
0.840	39.0	5.7	0.176	1.080	0.000	0.000	
0.900	40.0	5.8	0.180	1.080	0.000	0.000	
0.960	42.0	6.1	0.189	1.080	0.000	0.000	
1.020	42.0	6.1	0.189	1.080	0.000	0.000	
1.080	43.0	6.2	0.194	1.080	0.000	0.000	
1.140	44.0	6.4	0.198	1.080	0.000	0.000	
1.200	45.0	6.5	0.203	1.080	0.000	0.000	
1.260	46.0	6.7	0.207	1.080	0.000	0.000	
1.320	48.0	7.0	0.216	1.080	0.000	0.000	
1.380	49.0	7.1	0.221	1.080	0.000	0.000	
1.440	51.0	7.4	0.230	1.080	0.000	0.000	
1.500	52.0	7.6	0.234	1.080	0.000	0.000	
1.560	54.0	7.8	0.243	1.080	0.000	0.000	
1.620	56.0	8.1	0.252	1.080	0.000	0.000	
1.680	58.0	8.4	0.262	1.080	0.000	0.000	
1.740	61.0	8.9	0.275	1.080	0.000	0.000	
1.800	64.0	9.3	0.289	1.080	0.000	0.000	
1.860	68.0	9.9	0.307	1.080	0.000	0.000	
1.920	72.0	10.5	0.325	1.080	0.000	0.000	
1.980	78.0	11.3	0.352	1.080	0.000	0.000	
2.040	84.0	12.2	0.379	1.080	0.000	0.000	
2.100	91.0	13.2	0.410	1.080	0.000	0.000	
2.160	99.0	14.4	0.446	1.080	0.000	0.000	
2.220	110.0	16.0	0.496	1.080	0.000	0.000	
2.280	123.0	17.9	0.555	1.080	0.000	0.000	
2.340	136.0	19.8	0.613	1.080	0.000	0.000	
2.400	152.0	22.1	0.685	1.080	0.000	0.000	



	Company	Project	
h	XCO2 Energy Ltd	Finchley Road	
	Item	Job Ref	Sheet no.
JII"	Storage volume	8.996	2

MasterDrain	JC	Date 22/08/17	Checked by	Date	Approved by	Date

Calculations	(cont.) :-					
Time	%Mean	Rain	Inflow	Outflow	Balance	Cumulative
(hrs)	intens	mm/hr	(m3)	(m3)	(m3)	(m3)
2.460	170.0	24.7	0.766	1.080	0.000	0.000
2.520	188.0	27.3	0.848	1.080	0.000	0.000
2.580	208.0	30.2	0.938	1.080	0.000	0.000
2.640	228.0	33.1	1.028	1.080	0.000	0.000
2.700	250.0	36.3	1.127	1.080	0.047	0.047
2.760	274.0	39.8	1.235	1.080	0.155	0.203
2.820	300.0	43.6	1.353	1.080	0.273	0.475
2.880	328.0	47.6	1.479	1.080	0.399	0.874
2.940	358.0	52.0	1.614	1.080	0.534	1.408
3.000	392.0	56.9	1.767	1.080	0.687	2.096
3.060	392.0	56.9	1.767	1.080	0.687	2.783
3.120	358.0	52.0	1.614	1.080	0.534	3.317
3.180	328.0	47.6	1.479	1.080	0.399	3.716
3.240	300.0	43.6	1.353	1.080	0.273	3.989
3.300	274.0	39.8	1.235	1.080	0.155	4.144
3.360	250.0	36.3	1.127	1.080	0.047	4.191
3.420	228.0	33.1	1.028	1.080	0.000	4.139
3.480	208.0	30.2	0.938	1.080	0.000	3.997
3.540	188.0	27.3	0.848	1.080	0.000	3.765
3.600	170.0	24.7	0.766	1.080	0.000	3.451
3.660	152.0	22.1	0.685	1.080	0.000	3.057
3.720	136.0	19.8	0.613	1.080	0.000	2.590
3.780	123.0	17.9	0.555	1.080	0.000	2.064
3.840	110.0	16.0	0.496	1.080	0.000	1.480
3.900	99.0	14.4	0.446	1.080	0.000	0.847
3.960	91.0	13.2	0.410	1.080	0.000	0.177
4.020	84.0	12.2	0.379	1.080	0.000	0.000
4.080	78.0	11.3	0.352	1.080	0.000	0.000
4.140	72.0	10.5	0.325	1.080	0.000	0.000
4.200	68.0	9.9	0.307	1.080	0.000	0.000
4.260	64.0	9.3	0.289	1.080	0.000	0.000
4.320	61.0	8.9	0.275	1.080	0.000	0.000
4.380	58.0	8.4	0.262	1.080	0.000	0.000
4.440	56.0	8.1	0.252	1.080	0.000	0.000
4.500	54.0	7.8	0.243	1.080	0.000	0.000
4.560	52.0	7.6	0.234	1.080	0.000	0.000
4.620	51.0	7.4	0.230	1.080	0.000	0.000
4.680	49.0	7.1	0.221	1.080	0.000	0.000
4.740	48.0	7.0	0.216	1.080	0.000	0.000
4.800	46.0	6.7	0.207	1.080	0.000	0.000
4.860	45.0	6.5	0.203	1.080	0.000	0.000
4.920	44.0	6.4	0.198	1.080	0.000	0.000
4.980	43.0	6.2	0.194	1.080	0.000	0.000
5.040	42.0	6.1	0.189	1.080	0.000	0.000
5.100	42.0	6.1	0.189	1.080	0.000	0.000
5.160	40.0	5.8	0.180	1.080	0.000	0.000
5.220	39.0	5.7	0.176	1.080	0.000	0.000
5.280	38.0	5.5	0.171	1.080	0.000	0.000
5.340	38.0	5.5	0.171	1.080	0.000	0.000
5.400	37.0	5.4	0.167	1.080	0.000	0.000
5.460	37.0	5.4	0.167	1.080	0.000	0.000
5.520	36.0	5.2	0.162	1.080	0.000	0.000
5.580	36.0	5.2	0.162	1.080	0.000	0.000
5.640	35.0	5.1	0.158	1.080	0.000	0.000
5.700 5.760	35.0	5.1	0.158	1.080	0.000	0.000
5.760 5.820	34.0	4.9 4.9	0.153	1.080	0.000 0.000	0.000
5.820	34.0		0.153	1.080		0.000
5.880 5.940	33.0	4.8 4.8	0.149 0.149	1.080 1.080	0.000 0.000	0.000 0.000
6.000	33.0 32.0	4.8 4.6	0.149	1.080	0.000	0.000
0.000	J2.U	7.0	0.144	1.000	0.000	0.000

MasterDrain

					Project Finchley Road	
Item Storage volume						Sheet no.
	Calc. by	Date 22/08/17	Checked by	Date	Approved by	Date

Maximum storage volumes for varying duration storms.

Storm length	Max. Vol	Max. Vol	Mean intens	Step time.	Peak found
(hrs)	(m³)	time	(mm/hr)	(mins)	rean reand
0.25	0.00	0.25	151.84	0.2	
0.5	0.00	0.50	97.58	0.3	
1	0.00		59.61	0.6	
2	0.00		35.17	1.2	
3	0.00		25.51	1.8	
4	0.00		20.20	2.4	
5	0.00		16.84	3.0	
6	0.00		14.52	3.6	
7	0.00		12.81	4.2	
8	0.00		11.49	4.8	
9	0.00		10.43	5.4	
10	0.00		9.57	6.0	
12	0.00		8.24	7.2	
15	0.00		6.86	9.0	
18	0.00		5.90	10.8	
20	0.00		5.41	12.0	
24	0.00		4.65	14.4	
30	0.00		3.87	18.0	
36	0.00		3.33	21.6	
42	0.00		2.93	25.2	
48	0.00		2.62	28.8	
54	0.00		2.37	32.4	
60	0.00		2.17	36.0	
66	0.00		2.01	39.6	
72	0.00		1.87	43.2	
84	0.00		1.64	50.4	
96	0.00		1.47	57.6	
120	0.00		1.22	72.0	
150	0.00		1.01	90.0	
175	0.00		0.89	105.0	
200	0.00		0.79	120.0	
250	0.00		0.66	150.0	
300	0.00		0.56	180.0	
375	0.00		0.47	225.0	
500	0.00		0.37	300.0	
750	0.00		0.26 0.20	450.0	
1000	0.00			600.0	
1250 1500	0.00		0.17 0.15	750.0	
1570	0.00 0.00	- 	0.15	900.0 942.0	
2000	0.00		0.14	1200.0	
2500	0.00		0.11	1500.0	
3000	0.00		0.09	1800.0	
3500	0.00		0.08	2100.0	
4000	0.00		0.06	2400.0	
1000	0.00		0.00	2100.0	

MasterDrain

lı.	Company		Project			
llı	XCO2 Energy Ltd				Finchley Road	
	tem Storage volume				Job Ref	Sheet no.
ľ					8.996	5
	Calc. by	Date	Checked by	Date	Approved by	Date
	JC	22/08/17				

Explanatory notes for Peak Flow Storage

- 1) This system uses the rainfall intensity/ duration curve calculated using either the Wallingford or FEH method as selected.
- 2) The balance is calculated from the inflow minus the outflow.
- 3) The storage volume is the maximum value of the balance curve.
- 4) This method was described by Davis (1963) see Butler & Davies, 2nd edition, p294
- 5) References to 'storm duration' relate only to the hydrograph method (qv).
- 6) There are always 600 steps in the calculation process, thus a 'run' time of 10 hours will be sampled every minute,

Explanatory notes for Hydrograph Storage

- 1) The user has the choice of Summer or Winter curves
- 2) The mean intensity varies with the duration of the storm curve
- 3) There are always 120 steps in the calculation process, irrespective of storm duration.
- 4) The balance is calculated from the inflow minus the outflow.
- 5) The storage volume is the sum of the balance values for each step.
- 6) Varying durations should be tried to find the maximum storage value this can be narrowed down very closely.

*Modelling using the flow characteristics of the restrictor is available using Vortex Control modelling function. Please be aware that this function needs the full design data file to function.

Why do the two methods give different results?

The rainfall characteristics for each method are very different.

The Peak flow (using the Intensity/Duration/Frequency curve) does not model the actual rainfall. This curve is joined points which represent the mean intensity of a storm at a given duration i.e. a value of 19.5 mm/hr for a 60 minute storm indicates that over the sixty minute period, the mean intensity was 19.5 mm/hr. The calculation method samples the IDF curve for a given location and frequency (Return Period) and calculates the storage for that rate and duration less the outflow volume. The maximum value is displayed as the 'worst case' storage.

The hydrograph method uses a standard curve for either Winter or Summer storms. Traditionally these are symmetrical about the central peak. UK rainfall does not fit into this convenient curve, so the calculations are dealing with a stylised set of data. The mean intensity for the storm is calculated from the IDF curve and applied to the curve data, calculating the storage for that step less the outflow volume. The final storage volume is the sum of the storage for all the steps.

It can be seen that these two methods are very different, and the user may have the choice of which result to use. This is not an exact science, though is often treated as such by those that do not understand the principles of the calculations.

APPENDIX E - THAMES WATER ASSET PLAN

XCO2 Energy Ltd 56Kingsway Place SANS WALK LONDON EC1R 0LU

Search address supplied 307-309 Finchley Road

309

Finchley Road London NW3 6EH

Your reference Finchley Road

Our reference ALS/ALS Standard/2017_3632604

Search date 15 August 2017

Keeping you up-to-date

Knowledge of features below the surface is essential in every development. The benefits of this not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility for any commercial or residential project.

An asset location search provides information on the location of known Thames Water clean and/or wastewater assets, including details of pipe sizes, direction of flow and depth. Please note that information on cover and invert levels will only be provided where the data is available.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0845 070 9148

Search address supplied: 307-309 Finchley Road, 309, Finchley Road, London, NW3 6EH

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: searches@thameswater.co.uk

Web: www.thameswater-propertysearches.co.uk

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts
 or highway drains. If any of these are shown on the copy extract they are shown for
 information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public
 water mains in the vicinity of the property. It should be possible to estimate the
 likely length and route of any private water supply pipe connecting the property to
 the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

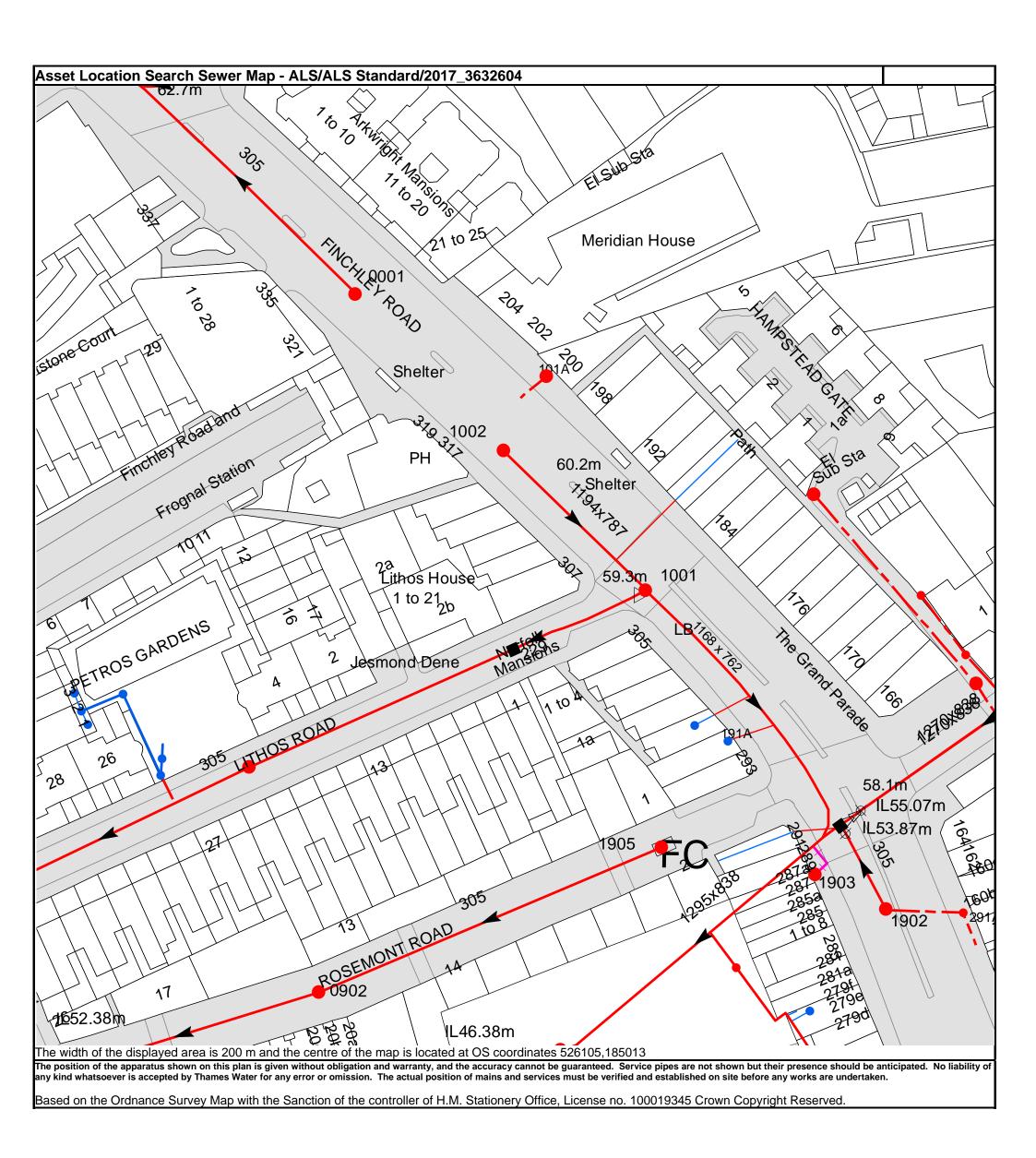
Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water)
Thames Water
Clearwater Court
Vastern Road
Reading
RG1 8DB

Tel: 0845 850 2777

Email: developer.services@thameswater.co.uk

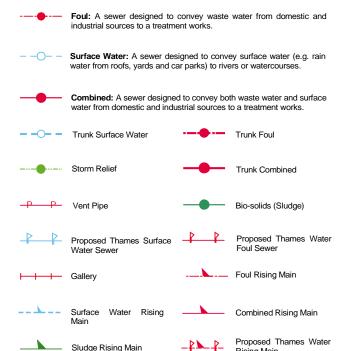

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0845 850 2777

Email: developer.services@thameswater.co.uk


<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 **T** 0845 070 9148 **E** <u>searches@thameswater.co.uk</u> **I** <u>www.thameswater-propertysearches.co.uk</u>

Manhole Reference	Manhole Cover Level	Manhole Invert Level
191C	n/a	n/a
191D	n/a	n/a
291A	n/a	n/a
1902	57.86	54.02
0902	57.55	53.8
091C	n/a	n/a
091B	n/a	n/a
091H	n/a	n/a
091F	n/a	n/a
091E	n/a	n/a
091D	n/a	n/a
091G	n/a	n/a
0001	61.45	58.7
1903	n/a	n/a
1905	58.3	55.92
191A	n/a	n/a
191B	n/a	n/a
2901	n/a	n/a
1916	n/a	n/a
1005	n/a	n/a
1001	59.4	54.85
1004	n/a	n/a
1002	60.41	55.76
101A	n/a	n/a

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Public Sewer Types (Operated & Maintained by Thames Water)

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Air Valve

Dam Chase

Fitting

Meter

♦ Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Control Valve

Drop Pipe

Ancillary

✓ Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Outfall

Undefined End

/ Inle

Notes:

----- Vacuum

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Other Symbols

Symbols used on maps which do not fall under other general categories

▲ / ▲ Public/Private Pumping Station

* Change of characteristic indicator (C.O.C.I.)

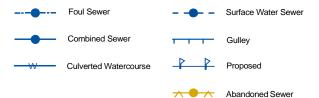
M Invert Level

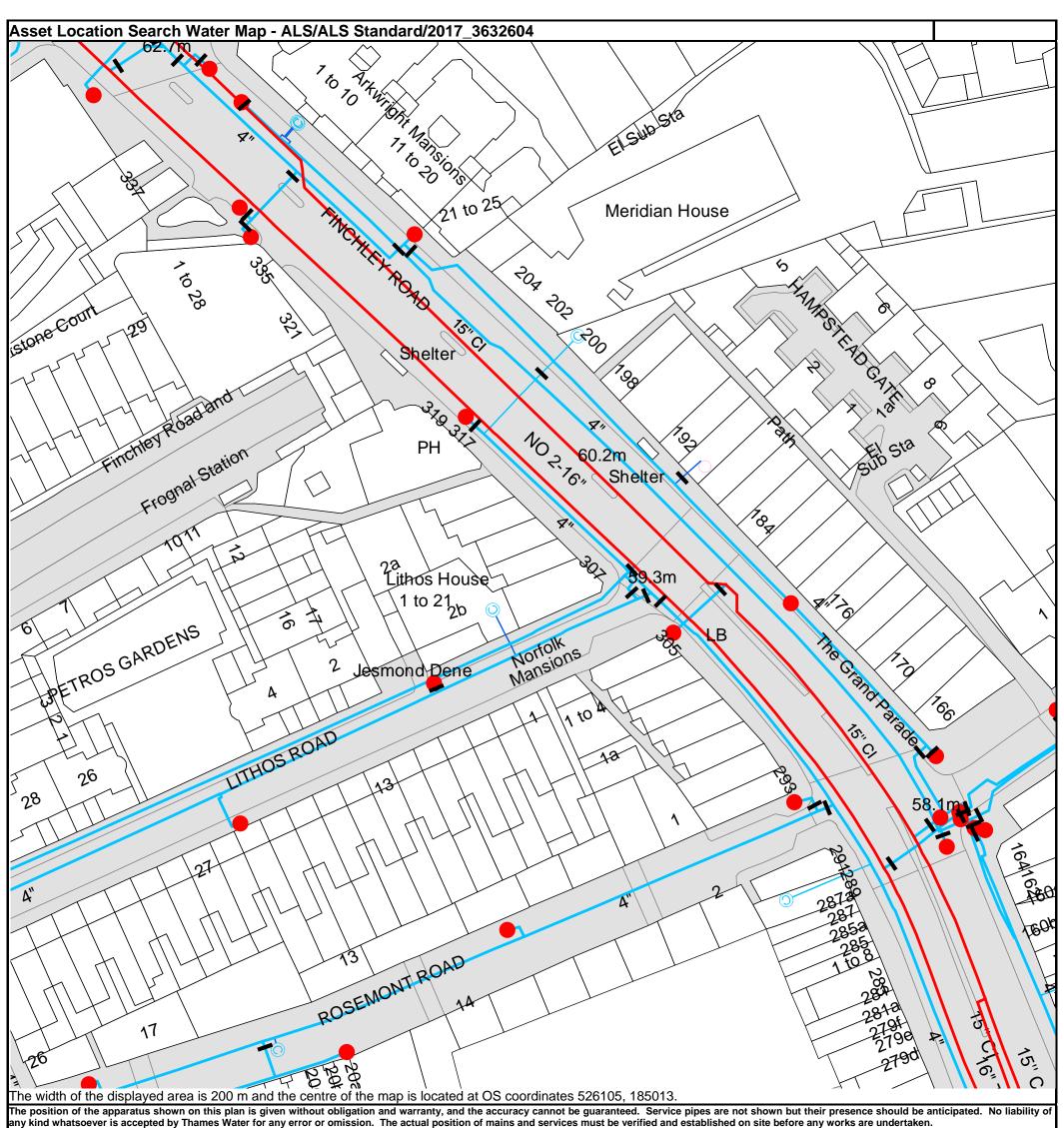
< Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement


Operational Site


Chamber Chamber

Tunnel

Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

3" SUPPLY

3" FIRE

3" METERED

Water Pipes (Operated & Maintained by Thames Water)

Distribution Main: The most common pipe shown on water maps.
With few exceptions, domestic connections are only made to distribution mains.

Trunk Main: A main carrying water from a source of supply to a

Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.

Supply Main: A supply main indicates that the water main is used as a supply for a single property or group of properties.

Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.

Metered Pipe: A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.

Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.

Proposed Main: A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

Valves

General PurposeValve

Air Valve

Pressure ControlValve

Customer Valve

Hydrants

Single Hydrant

Meters

Meter

End Items

Symbol indicating what happens at the end of $\,^{\perp}$ a water main.

Blank Flange
Capped End

Emptying Pit
Undefined End

Manifold

Oustomer Supply

Fire Supply

Operational Sites

Booster Station
Other

Other (Proposed)

Pumping Station
Service Reservoir

Shaft Inspection

Treatment Works

____ Unknown

———— Water Tower

Other Symbols

_____ Data Logger

PIPE DIAMETER DEPTH BELOW GROUND

Up to 300mm (12")	900mm (3')	
300mm - 600mm (12" - 24")	1100mm (3' 8")	
600mm and bigger (24" plus)	1200mm (4')	

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to 'Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if he finds that you have suffered actual loss as a result of your search provider failing to keep to the Code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP Tel: 01722 333306

Fax: 01722 333206 Email: admin@tpos.co.uk

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE