

SuDS Strategy

Rochester Square Spiritualist Temple Rochester Square London NW1 9RY

A: Unit 6, The Courtyard, Lynton Road, London. N8 8SL, T: 020 8340 4041, E: <u>info@symmetrys.com</u>, W: <u>symmetrys.con</u> Symmetrys Limited Consulting Engineers, Registered In England And Wales, Company No. 5873122

Symmetrys Ltd Structural Engineers

12th March 2018 16061

Introduction

This document has been prepared in accordance with the HR Wallingford Method as a preliminary SuDS scheme. The Objective of the proposed drainage strategy is:

- To demonstrate the proposed development is effectively drained by use of attenuation prior to flow control offsite.
- To ensure there is no increase in surface water discharge from the existing Brownfield development land.
- To ensure the development site is not at risk from flooding in the worst case 1 in 100 year storm event + 40% for climate change.

Drainage Proposals

Refer to Appendix A for Proposed Drainage Layout drawing 16061/10 and Appendix B for Surface Water Estimated Storage Requirement Calculations.

Proposed Foul Water

It is proposed to review the existing foul network and associated connections by undertaking a full CCTV survey. Assessment of the existing foul drain network will be carried out and additional inspection chambers inserted as necessary. The new foul runs, towards the north-east of the site will either connect into existing or form a new connection to the public sewer within the road of Rochester Square, subject to Thames Water approval. Recommended remediation/jetting will also be completed.

Proposed Surface Water Drainage

The surface water drainage arrangements for any development site need to be such that the peak flow rates and volumes of surface water leaving the developed site are no greater than the rates prior to the proposed development. If the site is a greenfield site then the impact of the development will need to be managed so that the runoff from the site replicates the natural characteristics of the predeveloped site.

The Government's NPPF guidance throughout England required the use of SuDS on all new developments wherever possible. This requirement is supported by Building Regulations Part H, which sets out a hierarchy for surface water disposal listed in order of priority:

- · An infiltration system, or where that is not reasonably practical,
- Discharge to a watercourse, or where that is not reasonably practical,
- Discharge to a sewer.

Proposed Surface Water Drainage

Sustainable Drainage Systems (SuDS)

SuDS are a varied collection of techniques designed to manage storm water in a sustainable manner. SuDS achieve this by seeking to manage surface water from new developments as close to its source as possible and by mimicking the surface water flow regime present on the site prior to development.

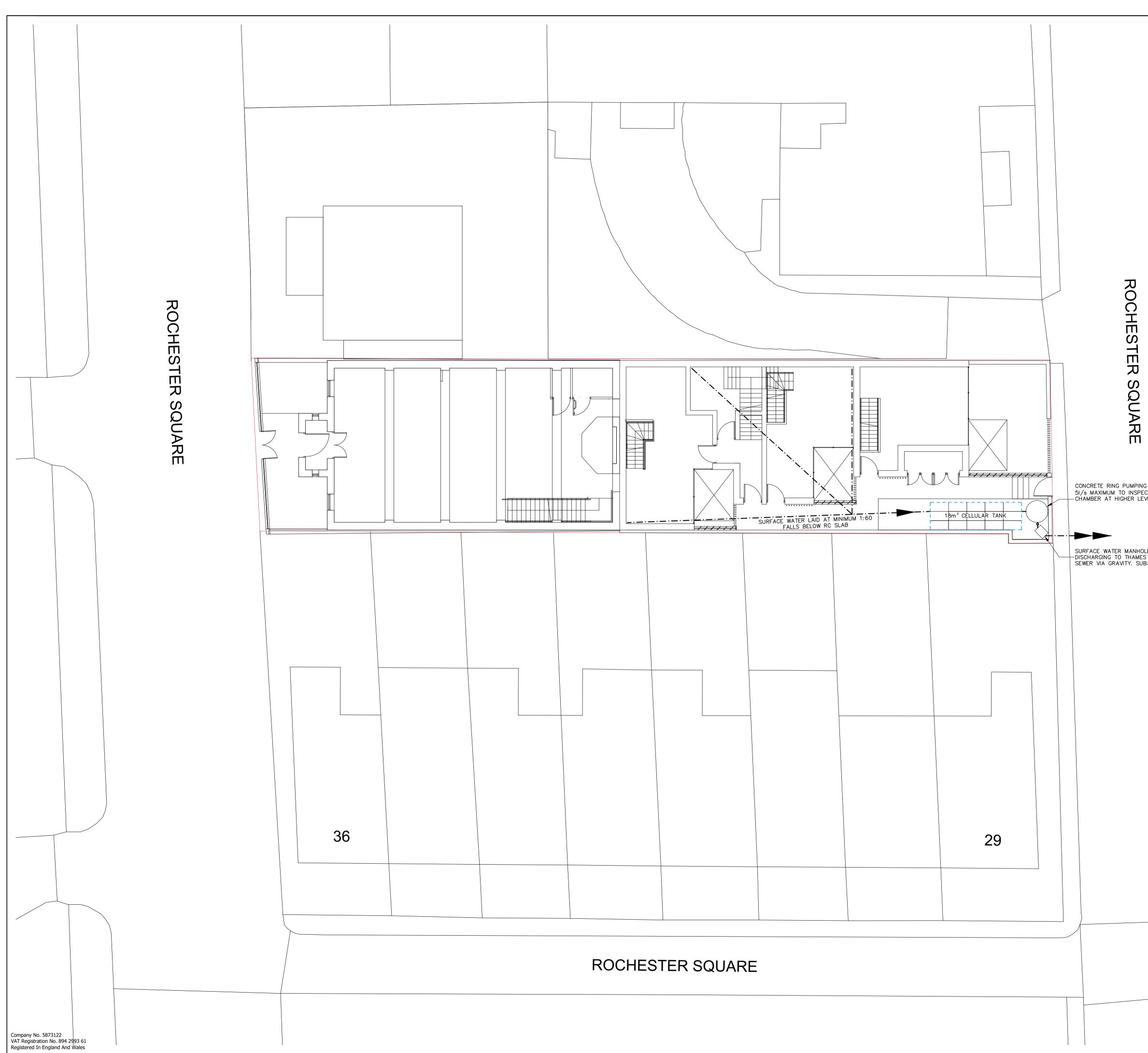
There are two main processes that can be used to manage and control the runoff from development areas. These are;

• Infiltration – This is the soaking of water into the ground.

• Detention/attenuation – Detention or attenuation is the slowing down of surface water flows before transfer downstream.

Drainage Strategy

Based on information supplied by the British Geological Survey Maps the site lies above London Clay which is known for its very low permeability. Therefore it is proposed to use a cellular attenuation tank with flow control by way of a pumping chamber to higher level and then gravity fed into the public sewer, in accordance with Thames Water's specification. To further promote a SuDS solution and to reduce the proposed storage sizing, all proposed paving is to be permeable or laid at shallow falls directed to drain into soft landscaping.



Rochester Square Spiritualist Temple

APPENDIX A PROPOSED DRAINAGE LAYOUT

		Notes		
		ALL RELEVAN AND SPECIFI		NEERS DRAWINGS
		2. DO NOT SCA	LE FROM THIS DRAWING	
IG CHAMBER. ECTION EVEL				
DLE CHAMBER ES WATER PUBLIC JBJECT TO APPROVAL				
		P1 12.03.18 MB Rev Date By Drawing Status	ISSUED FOR PLANNIN Amendments	
			PRELIMINA Symmetrys Lim	
			Consulting Structural Engine The Courtyard, Lynton Road ondon, N8 8SL 7: 020 8340 4041 V: www.symmetrys.com E: info@symmetrys.com	eers
		V E Job Title	V: www.symmetrys.com : info@symmetrys.com	
			ALIST TEN STER SQU	
		LONDON		
		Drawing Title		
		SUDS S	STRATEGY	
		Job No. 201606	Drawing No.	Revision P1
		Scales 1:100 AT Drawn By MGB	A1 Date MAR 2018	Original Size A1 Checked AH

Rochester Square Spiritualist Temple

APPENDIX B SURFACE WATER ESTIMATED STORAGE REQUIREMENT CALCULATIONS

Methodology

Site characteristics Total site area (ha)

Significant public open space (ha)

Impervious area drained via infiltration (ha)

Compliance factor for rainwater harvesting

Net site area for storage volume design (ha)

Net impermeable area for storage volume

Area positively drained (ha)

Percentage of drained area

Return period for infiltration

Impervious area drained to

rainwater harvesting systems (ha) Return period for rainwater harvesting

Impermeable area (ha)

that is impermeable (%)

system design (year)

system design (year)

system design (%)

design (ha)

Pervious area contribution (%)

Calculated by:	Mark Barnikel
Site name:	Spiritualist Temple
Site location:	Rochester Square, London

This is an estimation of the storage volume requirements that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the SuDS Manual, C753 (Ciria, 2015). It is not to be used for detailed design of drainage systems. It is recommended that hydraulic modelling software is used to calculate volume requirements and design details before finalising the drainage scheme.

0.0417

0.0042

0.0375

0.0375

30

100

0.001

100

0

10

100

0.04

0.04

FEH Statistical

Surface water storage requirements for sites

www.uksuds.com | Storage estimation tool

Site coordinates

Latitude:	51.54349° N	
Longitude:	0.13551° W	
Reference:	6322417	
Date:	2018-03-12T12:42:38	
Date:	2018-03-12T12:42:38	

Design criteria

Volume control approach	Use long term storage				
		Default	Edited		
Climate change allowance fa	1.4	1.4			
Urban creep allowance facto	1.1	1.1			
Interception rainfall depth (mi	5	5			
Minimum flow rate (l/s)	5	5			
Qmed estimation method	from BFI and SAAR				
BFI & SPR estimation method	Specify B	ecify BFI and SPR manually			
		Default	Edited		
Qmed (I/s)	0.14				
Qbar / Qmed Conversion Fac	1.136	1.136			
HOST class		N/A			
BFI / BFIHOST	0.25	0.25			
SPR / SPRHOST	0	0			
Hydrology Default Edited					
SAAR (mm)	629	629			
M5-60 Rainfall Depth (mm)	20	20			
'r' Ratio M5-60/M5-2 day	0.4	0.4			
Rainfall 100 yrs 6 hrs		63			
Rainfall 100 yrs 12 hrs		102.41			
FEH/FSR conversion factor		1.33	1.33		
Hydrological region	6				
Growth curve factor: 1 year	0.85	0.85			
Growth curve factor: 10 year		1.62	1.62		
Growth curve factor: 30 year	2.3	2.3			
Growth curve factor: 100 year	3.19	3.19			
Estimated storage volumes		Defe			
Interception storage (m ³)	Default	Edited			
Attenuation storage (m ³)			3		
Long term storage (m ³)	18	0			
Long term storage (m)	10	0			

4

4

5

* Where rainwater harvesting or infiltration has been used for managing surface water runoff such that the effective impermeable area is less than 50 % of the 'area positively drained', the 'net site area' and the estimates of Qbar and other flow rates will have been reduced accordingly.

Site discharge rates	Default	Edited
Qbar total site area (I/s)		0.18
Qbar net site area (I/s)		0.16
1 in 1 year (l/s)		5
1 in 30 years (l/s)		5
1 in 100 years (l/s)		5

This report was produced using the Storage estimation tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for use of this data in the design or operational characteristics of any drainage scheme.

Treatment storage (m³)

Total storage (excluding treatment) (m³)