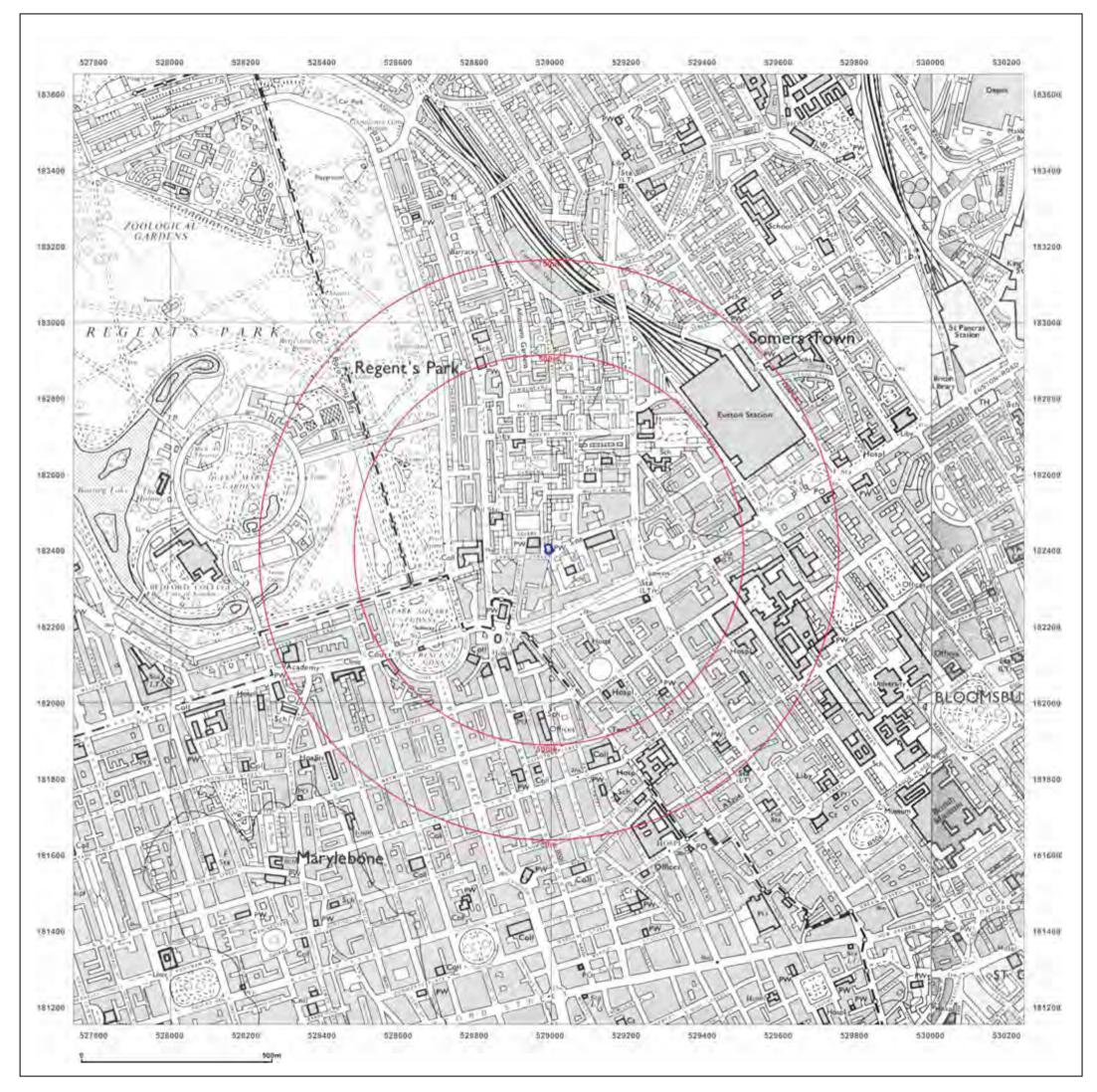
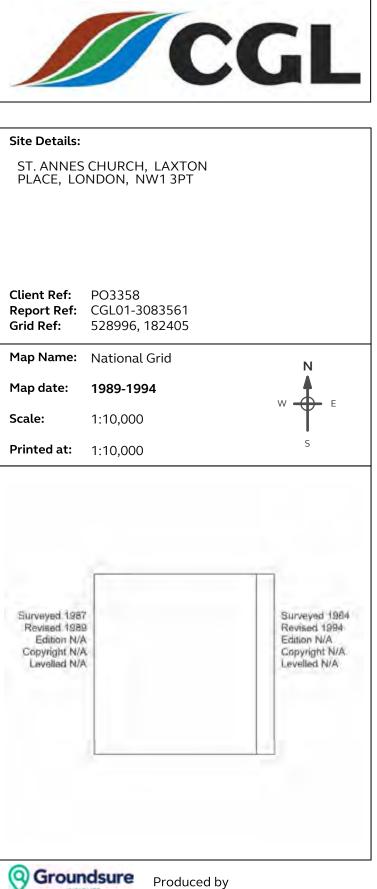



. -





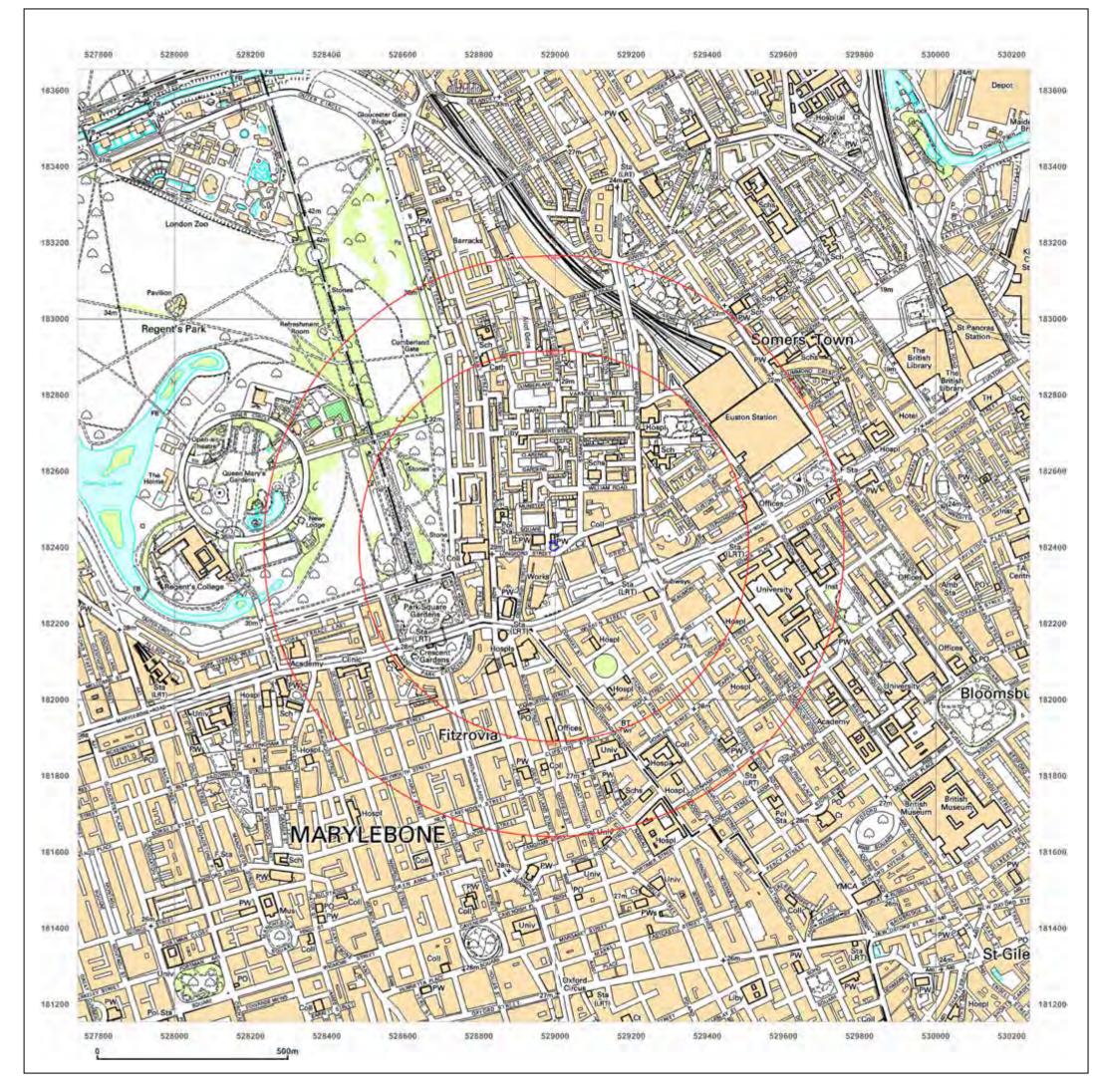


Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

 $\ensuremath{\mathbb{C}}$  Crown copyright and database rights 2015 Ordnance Survey 100035207

Production date: 22 June 2016



To view map legend click here <u>Legend</u>



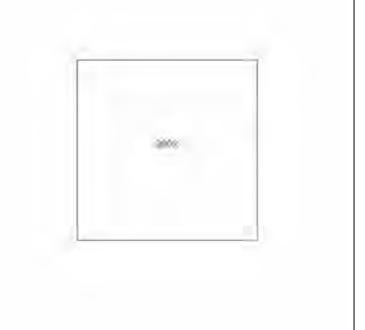



Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: <u>www.groundsure.com</u>

 $\ensuremath{\mathbb{C}}$  Crown copyright and database rights 2015 Ordnance Survey 100035207

Production date: 22 June 2016




-



#### Site Details:

ST. ANNES CHURCH, LAXTON PLACE, LONDON, NW1 3PT

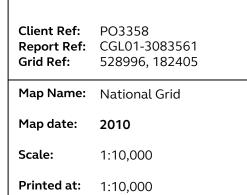
| Client Ref:<br>Report Ref:<br>Grid Ref: | PO3358<br>CGL01-3083561<br>528996, 182405 |
|-----------------------------------------|-------------------------------------------|
| Map Name:                               | 1:10,000 Raster                           |
| Map date:                               | 2002                                      |
| Scale:                                  | 1:10,000                                  |
| Printed at:                             | 1:10,000                                  |



Ν

W




Production date: 22 June 2016






#### Site Details:

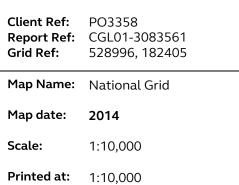











Production date: 22 June 2016



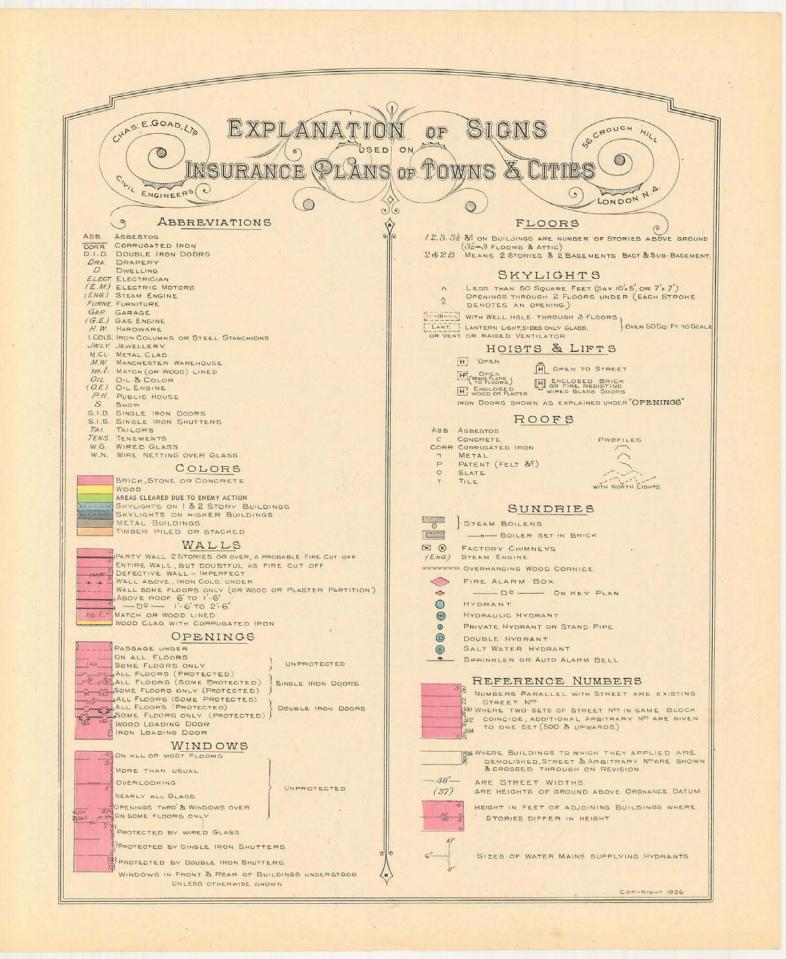


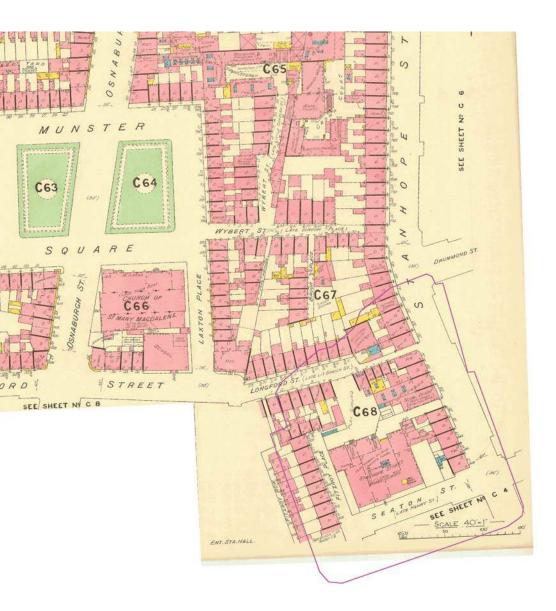
#### Site Details:









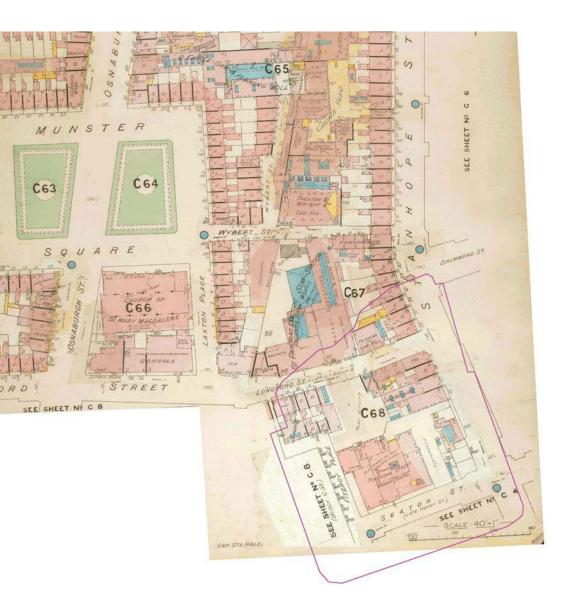

Production date: 22 June 2016

# **Appendix B**

Extracts from Envirocheck Report








Published Date : 1889 © Landmark Information Group Limited 2015.

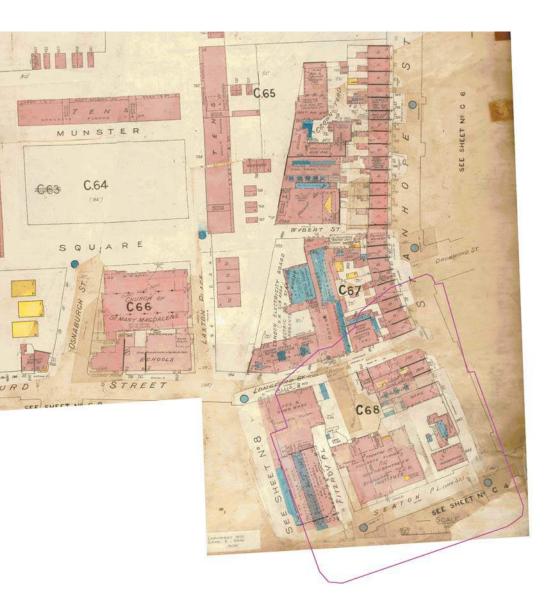





Published Date : 1927 © Landmark Information Group Limited 2015.






Published Date : 1930 © Landmark Information Group Limited 2015.

1.00





Published Date : 1957 © Landmark Information Group Limited 2015.





Published Date : 1963 © Landmark Information Group Limited 2015.





Published Date : 1966 © Landmark Information Group Limited 2015.

# **Appendix C**

Concept (2017) Phase 1 Factual Report

# SITE INVESTIGATION REPORT

# 1 Triton Square, Ground Investigation, Phase 1

C•JCEPT

**ISSUE 03** 

# SITE INVESTIGATION REPORT

1 Triton Square, Ground Investigation, Phase 1

Prepared for: British Land

Concept: 17/2961 - FR 03

29/06/2017

Unit 8, Warple Mews, Warple Way London W3 0RF Tel: 020 8811 2880 Fax: 020 8811 2881 e-mail: <u>si@conceptconsultants.co.uk</u> <u>www.conceptconsultants.co.uk</u>



Unit 8 Warple Mews, Warple Way, London W3 0RF Tel: 0208 811 2880, Fax: 0208 811 2881 Email: si@conceptconsultants.co.uk

| DOCUMENT ISSUE REGISTER |                                                |  |  |  |
|-------------------------|------------------------------------------------|--|--|--|
| Project Name:           | 1 Triton Square, Ground Investigation, Phase 1 |  |  |  |
| Project Number:         | 7/2961                                         |  |  |  |
| Document Reference:     | L7/2961 - FR 03 Current Issue 03               |  |  |  |
| Document Type:          | Site Investigation Report                      |  |  |  |

| Development  | Name       | Signature | Date       |
|--------------|------------|-----------|------------|
| Prepared by: | O Beal     | Hunth     | 29/06/2017 |
| Checked by:  | O Savvidou | Jonnalan  | 29/06/2017 |
| Approved by: | l Penchev  | M. Seck   | 29/06/2017 |

Issued to:

Arup

| Date     | Issue    | Amendment Details/ Reason for issue   | Issued to |
|----------|----------|---------------------------------------|-----------|
| 17/05/17 | Issue 00 |                                       | Arup      |
| 05/06/17 | Issue 01 | Updated with comments and lab results | Arup      |
| 20/06/17 | Issue 02 | Updated with comments                 | Arup      |
| 29/06/17 | Issue 03 | Updated with comments                 | Arup      |
|          |          |                                       |           |
|          |          |                                       |           |
|          |          |                                       |           |
|          |          |                                       |           |
|          |          |                                       |           |
|          |          |                                       |           |
|          |          |                                       |           |
|          |          |                                       |           |
|          |          |                                       |           |
|          |          |                                       |           |

Notes:

#### CONTENTS

- 1. **PROJECT PARTICULARS**
- 2. PURPOSE AND SCOPE OF WORKS
- 3. DESCRIPTION OF WORKS
- 4. INVESTIGATION METHODS
- 4.1 Cable Percussion Drilling
  - 4.1.1 Sampling and Testing during Cable Percussion Drilling
- 4.2 Diamond Coring/Hand Augering/Hand Excavation
- 4.3 Dynamic Probing
- 4.4 Permeability Testing
- 4.5 Standpipe Installations
- 4.6 Instrumentation Monitoring
- 4.7 Logging / Laboratory Testing
- 4.8 Setting Out
- 5. GEOLOGICAL GROUND PROFILE
- 6. SITE LOCATION PLAN
- 7. EXPLORATORY HOLE LOCATION PLAN
- 8. CABLE PERCUSSION BOREHOLE LOG

- 9. DIAMOND CORING LOGS AND SKETCHES
- **10. DYNAMIC PROBE RECORDS**
- **11. PERMEABILITY TEST RESULTS**
- 12. INSTRUMENTATION MONITORING RESULTS
- **13.** GEOTECHNICAL LABORATORY TEST RESULTS
- 14. CONCRETE CORE TEST RESULTS
- 15. CHEMICAL LABORATORY TEST RESULTS
- 16. PHOTOGRAPHS

#### 1. PROJECT PARTICULARS

| Site Location:            | 1, 4, 7 Triton Square, London, NW1 3HG |
|---------------------------|----------------------------------------|
| Client:                   | British Land                           |
| Investigation Supervisor: | Ove Arup & Partners Ltd                |
| Fieldwork:                | 03/04/2017 – 26/04/2017                |
| Laboratory Work:          | 27/04/2017 – 05/06/2017                |

#### 2. PURPOSE AND SCOPE OF WORKS

The purpose of the investigation was to provide information on the geometry and condition of existing substructure, the groundwater regime at the site and confirm geotechnical parameters for the design of new foundations with Limited geoenvironmental monitoring, sampling and testing.

The site currently comprises a multi-story building used for commercial and office space with a single storey basement.

The development will involve addition of three floors and a ten storey infill in the buildings central atrium.

The scope of the works comprised the following:

- 1 No. Cable Percussion Borehole to a depth of 31.50m;
- 12 No. Diamond Cored Coreholes to a maximum depth of 2.05m;
- 3 No. Diamond Cored Coreholes followed by Hand Auger to a maximum depth of 2.00m;
- 1 No. Stich-drilled Trial Pit followed by Hand Excavation to a depth of 0.90m;
- 3 No. Dynamic Probe Tests;
- 1 No. Mackintosh Probe Test;
- Permeability Test;
- Instrumentation Monitoring and Sampling;
- Geotechnical Chemical and Concrete Laboratory Testing.

#### Table 1 – Exploratory Hole List

| Hole ID | Hole Type | Depth<br>(m) | Hole ID | Hole Type | Depth<br>(m) |
|---------|-----------|--------------|---------|-----------|--------------|
| BH101   | СР        | 31.50        | CH02-DP | DP        | 3.50         |
| CH01-DP | DP        | 4.00         | CH03-DP | DP        | 3.50         |

| Hole ID | Hole Type | Core length<br>(m) | Inclination<br>(°) |
|---------|-----------|--------------------|--------------------|
| CH01    | DC        | 0.50               | 0                  |
| CH02    | DC        | 0.51               | 0                  |
| CH03    | DC        | 0.62               | 0                  |
| CH04    | DC/HA     | 2.00               | 0                  |
| CH05    | DC/HA     | 1.80               | 0                  |
| CH06    | DC/HA     | 2.00               | 0                  |
| CH07    | DC/HA     | 2.00               | 0                  |
| CH08    | DC        | 0.35               | 90                 |
| CH09    | DC        | 0.95               | 90                 |
| OP01I   | DC        | 2.05               | 45                 |
| OP01SP  | TP        | 0.90               | 0                  |
| OP01V1  | DC        | 1.80               | 0                  |
| OP01V2  | DC        | 0.90               | 0                  |
| OP02I   | DC        | 1.48               | 45                 |
| OP02V1  | DC        | 1.93               | 0                  |
| OP02V2  | DC        | 0.45               | 0                  |

Кеу

| СР    | -Cable Percussion Borehole                           |
|-------|------------------------------------------------------|
| DC    | -Diamond Cored Corehole                              |
| DC/HA | - Diamond Cored Corehole followed by Hand Auger      |
| DP    | –Dynamic Probe                                       |
| ТР    | -Stich-drilled Trial Pit followed by Hand Excavation |

#### 3. DESCRIPTION OF WORKS

The works were carried out in accordance with the Ove Arup & Partners Ltd Ground Investigation Specification and Tender Document "1 Triton Square Specification for Ground Investigation - Phase 1" with reference: 246868/SPEC/001, dated 28th March 2017 and the Concept Method Statement.

The site is located at 1, 4 and 7 Triton Square (147 Triton Square), approximately 150m to the north west of the junction of Euston and Hampstead Road and forms part of a wider Regent's Place/Triton Square development bounded by Drummond Street, Longford Street, Osnaburgh Street, Euston Road and Hampstead Road. It is centred at approximate National Grid Reference TQ290823.

The locations of all exploratory holes are shown in the Exploratory Hole Location Plan presented in Section 7 of this report.

#### 4. INVESTIGATION METHODS

#### 4.1 Cable Percussion Drilling

1 No. Cable Percussion Borehole was drilled to a depth of 31.50m using a standard cable percussion rig (Dando 1000) with 200mm and 150mm diameter casing as appropriate.

#### 4.1.1 Sampling and Testing during Cable Percussion Drilling

Bulk samples were taken at regular intervals in the Made Ground and thereafter at each change in strata. Undisturbed 102mm (U100) nominal diameter samples were taken using a down-hole sliding hammer in cohesive material at specified intervals or as instructed by the Investigation Supervisor.

Standard Penetration Tests (SPT) were carried out at specified intervals or as otherwise instructed by the Engineer. The resulting SPT "N" blowcount values are presented in the relevant borehole records. Where an SPT using a split spoon sampler was not possible, due to the granular nature of the material, a solid cone was used.

Small, disturbed samples were retrieved from the cutting shoe of the U100 sampler, the SPT split spoon sampler and at intervals specified by the Investigation Supervisor.

Environmental samples (tubs, jars and vials) were taken for chemical analysis in the Made Ground or at each change of strata and where visual or olfactory evidence of contamination was noted or as instructed by the Investigation Supervisor. All samples taken for chemical analysis were screened for volatiles using a Phocheck Tiger photoionization detector.

The cable percussion borehole logs are presented in Section 8 of this report.

#### 4.2 Diamond Coring/Hand Augering/Hand Excavation

16 No. diamond cored coreholes were carried out using a water-cooled diamond coring rig Hilti DD350.

10 No. coreholes were carried out internally from basement level, 2 No. coreholes (CH08-CH09) were formed through the basement walls to a maximum length of 0.95m and 4 No. coreholes (OP01SP, OP01I, OP01V1 & OP01V2) were carried out externally from ground level.

Further Dynamic (see section 4.3) and Mackintosh probing was carried out from the base core CH01, CH02 and CH03 to investigate the depth of the London Clay deposit.

CH04, CH05, CH06 and CH07 were followed on by hand auger to a maximum depth of 2.00m to assess and sample the material beneath.

Upon completion of CH08 core a lateral probing was carried out to 1.2m form the face of the basement wall in an attempt to confirm the presences of a sheet pile wall. The attempt was unsuccessful. Sheet pile wall was confirmed in position CH09 and sample was retrived.

Mackintosh Probe testing was carried out with in CH01 to a depth of 1.10m. A 4.5 kg free fall hammer is lifted and dropped through a height of 500mm to drive a steel cone Ø30mm into the soil. The cone is advanced into the soil by standard blows from the drop weight and the number of blows for 100mm penetration is counted.

OP01SP was stich-drilled with 3 No. Ø300mm vertical diamond cores followed by hand excavation to 0.90m depth to confirm the underside of the pile cap and the presence and dimensions of the sheet pile wall.

Ø19mm drive-in piezometers were installed from the base of CH01, CH02 and CH03.

The corehole logs are presented in Section 9 of this report and the monitoring results in Section 12.

#### 4.3 Dynamic Probing

3 No. Dynamic DPSH probes (CH01-DP, CH02-DP & CH03-DP) were carried out using a electrically powered tracked "geo" rig with a 63.50kg drop hammer falling over 750mm. Solid 90° 15 cm<sup>2</sup>, 50.5mm diameter sacrificial cones were used, and the numbers of blows were recorded for each 100mm of penetration.

Where the probe results record zero or a low blowcount, this may be indicative of very weak or loose soil. It is possible that very weak or loose soil can be penetrated under the weight of the dynamic probing rods themselves and that a single blow may advance the rods over one or more 100mm increments. Where this occurs zero blowcounts may not be indicative of the presence of voids.

The dynamic probing test records are provided in section 10.

#### 4.4 Permeability Testing

During drilling falling head permeability test was carried out within borehole BH101 at 6.00m depth. The results are presented in Section 11 of this report.

#### 4.5 Standpipe Installations

Monitoring wells with flush stopcock covers were installed in the boreholes as follows:

| Hole ID | Base of<br>Borehole<br>(m bgl) | Diameter of<br>Installation<br>(mm) | Type of<br>Installation | Base<br>(m bgl) | Top<br>RZ<br>(m bgl) | Bottom RZ<br>(m bgl) |
|---------|--------------------------------|-------------------------------------|-------------------------|-----------------|----------------------|----------------------|
| DU101   | 21 50                          | 50                                  | SPG/GW                  | 2.40            | 1.00                 | 2.40                 |
| BHIOI   | BH101 31.50                    | 50                                  | SPGW                    | 7.85            | 3.40                 | 7.85                 |
| CH01    | 0.50                           | 19                                  | SPIE*                   | 1.73            | 0.50                 | 1.73                 |
| CH02    | 0.51                           | 19                                  | SPIE*                   | 2.13            | 0.51                 | 2.13                 |
| CH03    | 0.62                           | 19                                  | SPIE*                   | 2.05            | 0.62                 | 2.05                 |

#### Table 2 – Monitoring Installation Details

KEY

SPG/GW – Gas & Groundwater Standpipe

SPGW – Groundwater Standpipe

RZ – Response Zone

\*Standpipe piezometer driven into the ground at the base of the corehole

The boreholes were backfilled with bentonite pellets, with gas/groundwater response zones backfilled with a 10mm pea shingle filter. All installations were finished with concrete and a lockable stopcock covers flush with the ground. All coreholes were reinstated with C30 mixed on site concrete with Sika 2 Waterproofing additive.

#### 4.6 Instrumentation Monitoring

Gas and groundwater monitoring and sampling was carried out by Concept subsequent to completion of the boreholes.

Ground water in the standpipes was monitored using a Geosense dipmeter and the gas concentrations were recorded using a Gas data GFM436 gas monitor. The accuracy of the instrument is summarised in Section 12 where the gas monitoring reports and groundwater results are presented.

#### 4.7 Logging / Laboratory Testing

Logging of all soil samples was carried out in accordance with BS 5930:2015.

Geotechnical testing is performed at Concept Site Investigations laboratory in accordance with BS1377:1990 unless otherwise stated in the report. Concept is accredited by UKAS for tests where the UKAS logo is appended to the individual test report or summary. Approved signatories for laboratory testing are as follows:

- LG Lynn Griffin (Quality Manager)
- KM Kasia Mazerant (Laboratory Manager)

Where subcontracted analysis has been carried out, the details of the laboratory (and accreditation where applicable) are shown in the individual test report or summary.

The results are presented in tabular format in Section 13 of this report.

Concrete core testing was carried out by Sandberg Ltd and the results are presented in Section 14.

All chemical testing was specified and scheduled by Ove Arup & Partners Ltd and carried out by i2 Analytical Ltd in accordance with the requirements of UKAS ISO17025 and MCERTS. The results are presented in tabular format in Section 15 of this report.

#### 4.8 Setting Out

The locations of all exploratory holes were agreed with the Investigation Supervisor and set out prior to commencement of the site works.

Following completion of the ground works the locations and elevations of the boreholes and pits were established by Concept's specialist subcontractor Msurv using total survey and GPS equipment.

The co-ordinates and levels of the as-built locations of the boreholes are shown in the Exploratory Hole Location Plan presented in Section 7 of this report.

#### 5. GEOLOGICAL GROUND PROFILE

The geological strata encountered during the investigation are summarised in the table below. The Top and Bottom of the strata noted in the table indicates the highest and lowest boundaries encountered in all exploratory holes.

| Table 3 - Geological | Ground Profi | e (External) |
|----------------------|--------------|--------------|
|----------------------|--------------|--------------|

| STRATUM                      | TOP<br>(moD) | BASE<br>(moD)           | DESCRIPTION                                                                                                                                                                                                                                                  |
|------------------------------|--------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |              | 25.97                   | Concrete over firm, dark grey and orangish<br>brown sandy gravelly silty CLAY. Gravel<br>comprises subangular to subrounded fine to<br>coarse flint and rare brick and concrete<br>fragments. Sand is fine to coarse.                                        |
| MADE<br>GROUND               |              |                         | Orangish brown and grey slightly clayey gravelly<br>fine to coarse SAND with low cobble content.<br>Gravel comprises angular to subangular fine to<br>coarse concrete, brick and rare clinker<br>fragments.                                                  |
|                              |              |                         | Light grey and orange sandy GRAVEL with low<br>cobble content. Gravel comprises angular to<br>subangular fine to coarse concrete and brick<br>fragments. Sand is fine to coarse.                                                                             |
| RIVER<br>TERRACE<br>DEPOSITS | 25.84        | 20.14                   | Medium dense, orangish brown slightly clayey<br>silty sandy subangular to subrounded fine to<br>coarse flint GRAVEL. Sand is fine to coarse.                                                                                                                 |
| LONDON<br>CLAY               | 20.14        | -0.51                   | Firm to very stiff, dark bluish grey to orangish<br>brown slightly sandy slightly gravelly CLAY with<br>rare pockets of grey silty fine sand and rare<br>selenite crystals. Gravel is angular to subrounded<br>fine to coarse flint and claystone fragments. |
| HARWICH<br>FORMATION         | -0.51        | -1.01                   | Very Stiff, greenish grey sandy silty CLAY. Sand is fine to coarse and glauconitic.                                                                                                                                                                          |
| LAMBETH<br>GROUP             | -1.01        | Extent<br>Not<br>Proven | Very stiff, greenish grey to blue CLAY.                                                                                                                                                                                                                      |

#### Table 4 - Geological Ground Profile (Internal/Basement)

| STRATUM        | TOP<br>(moD) | BASE<br>(moD) | DESCRIPTION                                                                                                                                                            |
|----------------|--------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MADE<br>GROUND | 24.54        | 21.14         | CONCRETE over grey to greyish brown sandy<br>GRAVEL. Gravel comprises angular to subangular<br>fine to coarse flint and concrete fragments. Sand<br>is fine to coarse. |

| STRATUM        | TOP<br>(moD) | BASE<br>(moD)           | DESCRIPTION                                                                                                                                                                            |
|----------------|--------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              |                         | Greyish brown to orangish brown silty gravelly<br>fine to coarse SAND. Gravel comprises angular to<br>subangular fine to coarse flint with occasional<br>brick and concrete fragments. |
| LONDON<br>CLAY | 24.54        | Extent<br>Not<br>Proven | Firm to stiff, bluish grey to orangish brown CLAY with rare selenite crystals.                                                                                                         |

#### REFERENCES

**British Standards Institution, (2015)** Code of practice for ground investigations, British Standard BS5930: 2015, BSI, London

**British Standards Institution, (2011)** Investigation of potentially contaminated sites, British Standard BS10175: 2011, BSI, London.

**UK Specification for Ground Investigation, (2011)** Site Investigation Steering Group, Thomas Telford, London

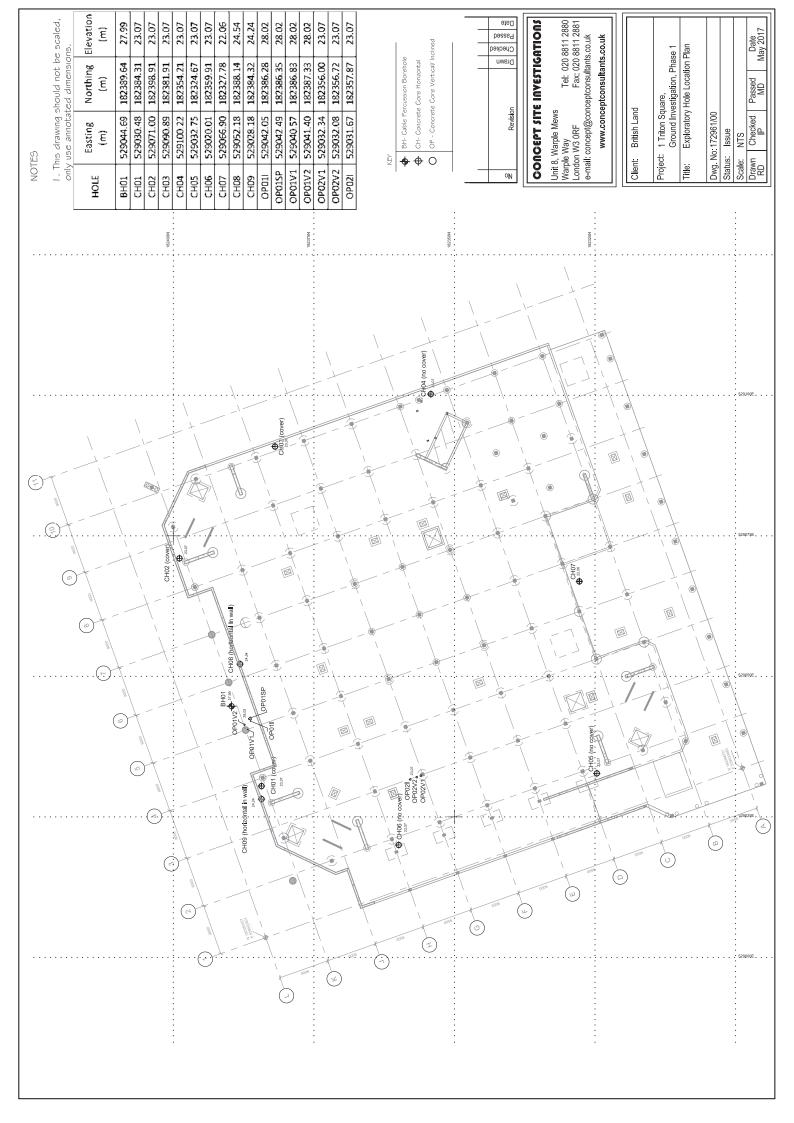
British Geological Survey (1996) London and the Thames Valley 4th Edition, London HMSO.

**British Standards Institution BS EN ISO 22475-1, (2006)** Geotechnical Investigation and Testing – Sampling Methods and Groundwater Measurements – Part 1: Technical Principles for Execution

**British Standards Institution BS EN 1997:1 (2004)** EuroCode 7 - Geotechnical Design. Part 1 – General Rules.

**British Standards Institution BS EN 1997:2 (2007)** EuroCode 7 - Geotechnical Design. Part 2 - Ground Investigation and Testing.

**King C. (1981)** The stratigraphy of the London Basin and associated deposits. Tertiary Research Special Paper, Vol. 6, Backhuys, Rotterdam, p158.


Entwisle N D C, Hobbs, P R N, Northmore, K J, Skipper, J, Raines, M R, Self, S J, Ellison, R A & Jones L D (2013) Engineering Geology of British Rocks and Soils - Lambeth Group. British Geological Survey Open Report, OR/13/006. 316pp.



#### 6. SITE LOCATION PLAN

Not to Scale © Crown Copyright reserved

### 7. EXPLORATORY HOLE LOCATION PLAN



### 8. CABLE PERCUSSION BOREHOLE LOG



Project

## 1 Triton Square, Ground Investigation, Phase 1

| Job No  |                |          | Ground Level (mOD) | Co-Ordinates          | Final Depth |
|---------|----------------|----------|--------------------|-----------------------|-------------|
| 17/2961 | Date Completed | 13/04/17 | 27.99              | E 529044.7 N 182389.6 | 31.50m      |

UKAS

(R)

(R)

UKAS

Client British Land

|              |               |          |                          | BOREH                    | HOLE S   | SUMMAH       | RY                  |          |                             |                         |
|--------------|---------------|----------|--------------------------|--------------------------|----------|--------------|---------------------|----------|-----------------------------|-------------------------|
| Top<br>(m)   | Base<br>(m)   | Туре     | Date Started             | Date Ended               | Crew     | Logged<br>By | Core Barrel<br>(mm) | Core Bit | Plant Used/<br>Method       | SPT Hammer<br>Reference |
| 0.00<br>1.20 | 1.20<br>31.50 | IP<br>CP | 10/04/2017<br>11/04/2017 | 10/04/2017<br>13/04/2017 | UN<br>SW | OJ<br>OJ     |                     |          | Hand Excavted<br>Dando 1000 | SW68                    |

|                  | WA             | TER STRIF             | KES                 |               | WATE        | R ADDED   | CHIS                           | SELLIN                          | G / SLOW I                   | DRILLING                                         |
|------------------|----------------|-----------------------|---------------------|---------------|-------------|-----------|--------------------------------|---------------------------------|------------------------------|--------------------------------------------------|
| Strike at<br>(m) | Rise to<br>(m) | Time to Rise<br>(min) | Casing Depth<br>(m) | Sealed<br>(m) | From<br>(m) | To<br>(m) | From<br>(m)                    | To<br>(m)                       | Duration<br>(hr)             | Remarks                                          |
| 6.20             | 5.44           | 20                    | 5.20                |               | 2.40        | 7.00      | 9.00<br>9.75<br>15.00<br>16.10 | 9.20<br>10.25<br>15.20<br>16.40 | 0:15<br>1:00<br>0:15<br>0:45 | Claystone<br>Claystone<br>Claystone<br>Claystone |

|                                              | H                | OLE                 | 2                                     |                                      |                                                                                 | CA                     | SING           |                          | ] [  | R         | OTARY   | RECOV | ERY                                |
|----------------------------------------------|------------------|---------------------|---------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|------------------------|----------------|--------------------------|------|-----------|---------|-------|------------------------------------|
| Dept                                         | th (m)           | Ι                   | Diameter (                            | mm)                                  | Dept                                                                            | h (m)                  | Dia            | meter (mm)               |      | From (m)  | To (m)  | Blows | Recovery (%)                       |
| 14                                           | 00<br>.00<br>.50 |                     | 200<br>200<br>150                     |                                      | 0.0<br>8.0<br>14.:                                                              | 00                     |                | 200<br>200<br>150        |      |           |         |       |                                    |
|                                              |                  | F                   | ROTARY                                | Y FLI                                | USH DE                                                                          | TAIL                   |                |                          |      |           |         |       |                                    |
| From (                                       | m) T             | 'o (m)              | Flush 7                               | Гуре                                 | Flush R                                                                         | eturn (%               | ) Fl           | ush Colour               |      |           |         |       |                                    |
|                                              |                  |                     |                                       |                                      |                                                                                 |                        |                |                          |      |           |         |       |                                    |
|                                              |                  |                     |                                       |                                      |                                                                                 |                        |                |                          |      |           |         |       |                                    |
|                                              |                  |                     |                                       |                                      |                                                                                 |                        |                |                          |      |           |         |       |                                    |
|                                              |                  |                     |                                       |                                      |                                                                                 |                        |                |                          |      |           |         |       |                                    |
|                                              |                  |                     |                                       |                                      | DN DET                                                                          |                        |                |                          |      |           |         |       |                                    |
| Туре                                         | Diame<br>(mn     | eter   I<br>n)   In | Depth of<br>stallation<br>(m)         | T<br>Respo                           | op of<br>onse Zone<br>(m)                                                       | Botto<br>Respons<br>(m | m of<br>e Zone | Date of<br>Installation  |      |           |         |       |                                    |
| SPG/GW<br>SPGW                               | 50 50 50         |                     | 2.40<br>7.85                          |                                      | 1.00<br>3.40                                                                    | 2.40<br>7.8:           | )<br>5         | 13/04/2017<br>13/04/2017 |      |           |         |       |                                    |
|                                              |                  |                     | BACk                                  | KFILI                                | L DETA                                                                          | ILS                    |                |                          |      |           |         |       |                                    |
| Toj<br>(m                                    | <b>p</b><br>1)   |                     | ttom<br>m)                            | I                                    | Material                                                                        |                        | Back           | xfill Date               |      |           |         |       |                                    |
| 0.00<br>0.50<br>1.00<br>2.40<br>3.40<br>7.85 | )<br>)<br>)      | 1<br>2<br>3<br>7    | .50<br>.00<br>.40<br>.40<br>.85<br>50 | Benton<br>Pea sh<br>Benton<br>Pea sh | ete / Flush (<br>nite pellets<br>ingle<br>nite pellets<br>ingle<br>nite pellets | Cover                  | 13/0           | 04/2017                  |      |           |         |       |                                    |
|                                              |                  |                     |                                       |                                      |                                                                                 |                        |                |                          |      |           |         |       |                                    |
| ssue No:                                     | 01               | Chec                | ked By:                               | OS                                   | Approved                                                                        | By: AN                 | I Log          | g Print Date & T         | ime: | 17/05/201 | 7 17:19 |       | AGS intercontraction of the second |

**Borehole No** 

**BH101** 





Borehole No

**BH101** 

Project

## 1 Triton Square, Ground Investigation, Phase 1

| Job | No      |
|-----|---------|
|     | 17/2961 |

Date Started

Date Completed 13/04/17

27.99

10/04/17 **Ground Level (mOD) Co-Ordinates** 

Final Depth 31.50m

Client British Land

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                               | PROGR                                                                                                                                 | ESS                                             |                                                               |                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              | SPT DETAILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                     |                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|---------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hole<br>Depth (m)                                                                                                                                                                                             | Casing<br>Depth (m)                                                                                                                   | Water<br>Depth (m)                              | Remark                                                        | s                               | Туре                                    | Depth<br>(m)                                                                                                                                                                                                                                                                                                                                                            | N<br>Value                                                                                                                                                                                                                                                                                                                                                                   | Blow Count<br>/ 75mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Casing<br>Depth (m)                                                                                                                                                                                                                                   | Water<br>Depth (m)                                                                                                           |
| I0/04/17           10/04/17           11/04/17           11/04/17           11/04/17           11/04/17           11/04/17           11/04/17           11/04/17           11/04/17           11/04/17           12/04/17           12/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           11/04/17           11/04/17           11/04/17           11/04/17           11/04/17           12/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17           13/04/17 <t< td=""><td>0.00           1.20           3.20           4.20           5.20           6.20           7.20           8.00           12.50           12.50           12.50           14.50           30.50           31.50</td><td>3.20<br/>4.20<br/>5.20<br/>6.20<br/>7.20<br/>8.00<br/>8.00<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50</td><td>ample, BLK-Block S<br/>Trypes Planeod Corner, Cl</td><td>Water addec<br/>Water strike<br/>Water strike<br/>ample<br/>ample</td><td>y/Sonic<br/>Kotay<br/>y follow on</td><td>C C C C C C C S S S S S S S S S S S S S</td><td>1.20         2.20         3.20         4.20         5.20         6.20         7.20         8.50         9.00         9.80         11.00         12.00         13.00         14.00         15.00         16.00         17.00         18.00         19.00         20.00         21.00         25.00         26.00         27.00         28.00         29.00         30.05</td><td>Value         N3         N26         N34         N32         N38         N17         N14         N19         N39         N50/0.015         N21         N23         N24         N27         N50/0.145         N50/0.035         N26         N29         N30         N34         N36         N39         N40         N43         N39         N48         N50         N50/0.205</td><td>1, 0 / 1, 0, 1, 1<br/>3, 5 / 6, 6, 7, 7<br/>3, 5 / 6, 8, 9, 11<br/>3, 4 / 6, 8, 8, 10<br/>3, 5 / 7, 9, 9, 13<br/>2, 3 / 3, 4, 5, 5<br/>2, 3 / 3, 4, 3, 4<br/>2, 3 / 3, 5, 5, 6<br/>18, 6 / 18, 11, 5, 5<br/>25 / 50<br/>2, 3 / 4, 5, 5, 7<br/>2, 3 / 5, 5, 6, 7<br/>2, 3 / 5, 5, 6, 7<br/>2, 3 / 5, 6, 6, 7<br/>3, 4 / 6, 6, 7, 8<br/>25 / 38, 12<br/>3, 22 / 50<br/>2, 4 / 5, 6, 7, 8, 8<br/>3, 4 / 6, 7, 8, 9<br/>3, 5 / 7, 8, 9, 10<br/>4, 5 / 7, 8, 10, 11<br/>4, 5 / 8, 9, 11, 12<br/>3, 6 / 8, 8, 10, 10<br/>3, 6 / 8, 9, 10, 12<br/>4, 7 / 9, 9, 11, 11<br/>5, 7 / 9, 10, 11, 13<br/>4, 7 / 8, 10, 10, 11<br/>4, 5 / 9, 11, 14, 14<br/>5, 7 / 10, 12, 13, 15<br/>8, 11 / 14, 16, 20</td><td>3.20<br/>4.20<br/>5.20<br/>6.20<br/>7.20<br/>8.00<br/>8.00<br/>8.00<br/>8.00<br/>8.00<br/>8.00<br/>8.00<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50<br/>14.50</td><td>Dry (m)<br/>Dry<br/>2.90<br/>3.80<br/>4.90<br/>5.44<br/>5.80<br/>Dry<br/>Dry<br/>Dry<br/>Dry<br/>Dry<br/>Dry<br/>Dry<br/>Dry<br/>Dry<br/>Dry</td></t<> | 0.00           1.20           3.20           4.20           5.20           6.20           7.20           8.00           12.50           12.50           12.50           14.50           30.50           31.50 | 3.20<br>4.20<br>5.20<br>6.20<br>7.20<br>8.00<br>8.00<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50 | ample, BLK-Block S<br>Trypes Planeod Corner, Cl | Water addec<br>Water strike<br>Water strike<br>ample<br>ample | y/Sonic<br>Kotay<br>y follow on | C C C C C C C S S S S S S S S S S S S S | 1.20         2.20         3.20         4.20         5.20         6.20         7.20         8.50         9.00         9.80         11.00         12.00         13.00         14.00         15.00         16.00         17.00         18.00         19.00         20.00         21.00         25.00         26.00         27.00         28.00         29.00         30.05 | Value         N3         N26         N34         N32         N38         N17         N14         N19         N39         N50/0.015         N21         N23         N24         N27         N50/0.145         N50/0.035         N26         N29         N30         N34         N36         N39         N40         N43         N39         N48         N50         N50/0.205 | 1, 0 / 1, 0, 1, 1<br>3, 5 / 6, 6, 7, 7<br>3, 5 / 6, 8, 9, 11<br>3, 4 / 6, 8, 8, 10<br>3, 5 / 7, 9, 9, 13<br>2, 3 / 3, 4, 5, 5<br>2, 3 / 3, 4, 3, 4<br>2, 3 / 3, 5, 5, 6<br>18, 6 / 18, 11, 5, 5<br>25 / 50<br>2, 3 / 4, 5, 5, 7<br>2, 3 / 5, 5, 6, 7<br>2, 3 / 5, 5, 6, 7<br>2, 3 / 5, 6, 6, 7<br>3, 4 / 6, 6, 7, 8<br>25 / 38, 12<br>3, 22 / 50<br>2, 4 / 5, 6, 7, 8, 8<br>3, 4 / 6, 7, 8, 9<br>3, 5 / 7, 8, 9, 10<br>4, 5 / 7, 8, 10, 11<br>4, 5 / 8, 9, 11, 12<br>3, 6 / 8, 8, 10, 10<br>3, 6 / 8, 9, 10, 12<br>4, 7 / 9, 9, 11, 11<br>5, 7 / 9, 10, 11, 13<br>4, 7 / 8, 10, 10, 11<br>4, 5 / 9, 11, 14, 14<br>5, 7 / 10, 12, 13, 15<br>8, 11 / 14, 16, 20 | 3.20<br>4.20<br>5.20<br>6.20<br>7.20<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50<br>14.50 | Dry (m)<br>Dry<br>2.90<br>3.80<br>4.90<br>5.44<br>5.80<br>Dry<br>Dry<br>Dry<br>Dry<br>Dry<br>Dry<br>Dry<br>Dry<br>Dry<br>Dry |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | are in metres, all diar                                                                                                                                                                                       | neters in millimetres,                                                                                                                | vater strike rise time                          | n minutes. For details of ab                                  |                                 |                                         | & Time:                                                                                                                                                                                                                                                                                                                                                                 | 17/05/20                                                                                                                                                                                                                                                                                                                                                                     | 017 17:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                       | AGS essected at determines                                                                                                   |

|                    | arple Mer<br>V3 0RF<br>e: 0208<br>@conce | ws, War<br>812880 | ple Way        | ık                                      |                                |                                                                                                                     | ®                                             |                                        |                           | AS<br>CAMINT<br>TEMS<br>01 | Borehole No<br>BH101                             |                      |  |
|--------------------|------------------------------------------|-------------------|----------------|-----------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|---------------------------|----------------------------|--------------------------------------------------|----------------------|--|
| Project<br>1       |                                          | on S              | quare          | , Gro                                   | und In                         | vestigation, Ph                                                                                                     | ase 1                                         |                                        |                           |                            |                                                  |                      |  |
| Job No<br>17       | 7/296                                    |                   | ite Start      |                                         | 10/04/17<br>13/04/17           | · ·                                                                                                                 | í I                                           |                                        | 2200 (                    | Fin                        | al Depth                                         |                      |  |
| Client             |                                          |                   |                | pieteu                                  | 15/01/17                       | 27.99                                                                                                               | E 529<br>Method/                              | 044.7 N 18                             | 2389.6                    | She                        | 31.50m                                           |                      |  |
|                    | ritish                                   | Lan               | d              |                                         |                                |                                                                                                                     | Plant Used                                    | Cable Percussion                       |                           |                            | Sheet 1 of 3                                     |                      |  |
| PRC                | )GRF                                     | ESS               |                |                                         | ST                             | RATA                                                                                                                |                                               | SAMPLE                                 | ES & T                    | ESTS                       |                                                  | ent/                 |  |
| Date               | Casing                                   | Water             | Level<br>(mOD) | Legend                                  | Depth<br>(Thickness)           | Strata Descri                                                                                                       | ption                                         | Depth<br>(m)                           | Type<br>No                | Test<br>Result             | Field<br>Records                                 | Instrument/          |  |
| .0/04/17           |                                          | Dry               | 27.92          | A A A                                   | <u> </u>                       | CONCRETE screed.<br>CONCRETE recovered as<br>GRAVEL with cobble cor<br>angular to subangular fine                   | tent. Gravel is<br>to coarse concrete         | 0.50<br>0.50                           | ES01<br>B02               |                            | VOC 0.0ppm                                       | <u>Р</u> 4           |  |
|                    |                                          |                   | 26.99          |                                         | (0.50)<br>1.00                 | fragments. Cobbles are co<br>0.20 with steel rebar in<br>Light grey and orange same                                 | 20 x 20mm grid                                | - 1.00<br>- 1.00                       | ES03<br>B04               |                            | VOC 0.0ppm                                       |                      |  |
| 0/04/17<br>1/04/17 |                                          | Dry<br>Dry        | 26.79<br>26.54 |                                         | - <u>1.20</u><br>- <u>1.45</u> | low cobble content. Grave<br>to subangular fine to coars<br>fragments. Sand is fine to                              | el comprises angular<br>se concrete and brick | 1.20<br>1.20-1.70<br>1.50<br>1.70-2.15 | B05<br>ES06<br>U07        | N3                         | 1, 0 / 1, 0, 1, 1<br>VOC 0.0ppm                  |                      |  |
|                    |                                          |                   | 25.84          |                                         | (0.70)                         | (MADE GROUND)<br>Orangish brown and grey<br>gravelly fine to coarse SA<br>content. Gravel comprises                 | ND with low cobble                            | - 2.00                                 | ES08                      | 18 blows<br>N26            | 100% Recovery<br>VOC 0.0ppm<br>3, 5 / 6, 6, 7, 7 | وليكم وتركم فرق      |  |
|                    |                                          |                   |                | 0.000                                   | -                              | subangular fine to coarse of<br>rare clinker fragments.<br>(MADE GROUND)<br>Firm, dark grey and brown               | slightly sandy                                | 2.20<br>2.20-2.70<br>2.50<br>2.80      | D09<br>B10<br>ES11<br>D12 |                            | VOC 0.0ppm                                       |                      |  |
| 1/04/17            | 3.20                                     | 2.90              |                | 0 · O · O · O · O · O · O · O · O · O · | -                              | slightly gravelly silty CLA<br>comprises subangular to s<br>coarse flint and rare brick<br>fragments.               | Y. Gravel<br>ubrounded fine to                | 3.20<br>3.20-3.70                      | B13                       | N34                        | 3, 5 / 6, 8, 9, 11                               |                      |  |
|                    |                                          |                   |                |                                         | -                              | (MADE GROUND)<br>Firm, orangish brown grav<br>CLAY. Gravel is subangu<br>fine to coarse flint. Sand i               | lar to subrounded                             | 3.80                                   | D14                       |                            |                                                  |                      |  |
| 1/04/17            | 4.20                                     | 3.80              |                |                                         |                                | (MADE GROUND)<br>Medium dense, orangish b<br>silty sandy subangular to s<br>coarse flint GRAVEL. Sa                 | ubrounded fine to                             | 4.20<br>4.20-4.70                      | B15                       | N32                        | 3, 4 / 6, 8, 8, 10                               |                      |  |
|                    |                                          |                   |                | 0000                                    | -                              | (RIVER TERRACE DEPC<br>2.40 with no clay or silt                                                                    |                                               | 4.80                                   | D16                       |                            |                                                  |                      |  |
| 1/04/17            | 5.20                                     | 4.90<br>⊻         |                | 0 0. 0 0<br>. 0 0 0<br>. 0 0 0          | (5.70)                         | 5.20 - 5.70 becoming gr<br>orange                                                                                   | eyish brown and                               | 5.20<br>5.20-5.70                      | B17                       | N38                        | 3, 5 / 7, 9, 9, 13                               |                      |  |
|                    |                                          | 1                 |                | 0.00                                    | -                              |                                                                                                                     |                                               | 5.80                                   | D18                       |                            |                                                  |                      |  |
| 1/04/17            | 6.20                                     | 6.2 <b>4</b>      |                | 0.000<br>0.000<br>0.000                 |                                |                                                                                                                     |                                               | 6.20<br>6.20<br>6.20-6.70              | W19<br>B20                | N17                        | 2, 3 / 3, 4, 5, 5                                |                      |  |
|                    |                                          |                   |                | 0000                                    | -                              |                                                                                                                     |                                               | - 6.80                                 | D21                       |                            |                                                  | 0000                 |  |
| 1/04/17            | 7.20                                     | 5.80              |                | 0.0.0<br>0.0.0<br>0.0.0<br>0.0.0        |                                |                                                                                                                     |                                               | 7.20<br>7.20-7.70                      | B22                       | N14                        | 2, 3 / 3, 4, 3, 4                                | 2000                 |  |
| 1/04/17            | 8.00                                     | Dry               | 20.14<br>19.89 |                                         | 7.85                           | Firm to stiff, orangish brov<br>sandy CLAY. Gravel is an                                                            | ngular to subangular                          | 7.85-8.00<br>8.00-8.45<br>8.00         | B23<br>U24<br>ES25        | 30 blows                   | 100% Recovery<br>VOC 0.0ppm                      | 20                   |  |
|                    |                                          |                   |                |                                         |                                | fine to coarse flint. Sand i<br>(THAMES GROUP: WEA<br>LONDON CLAY)<br>Stiff, extremely closely fis                  | ATHERED                                       | - 8.50<br>- 8.50<br>- 8.50-8.95        | D26<br>D27                | N19                        | 2, 3 / 3, 5, 5, 6                                |                      |  |
|                    |                                          |                   |                |                                         | -                              | with rare pockets of grey s<br>(<30mm) and occasional f<br>sized selenite crystals. Fis                             | ilty fine sand<br>ine to medium sand          | 8.50-9.00<br>9.00<br>9.00              | B28<br>B29                | N39                        | 18, 6 / 18, 11, 5, 5                             |                      |  |
|                    |                                          |                   |                |                                         |                                | orientated, planar, rough.<br>(THAMES GROUP: LON<br>FORMATION - B)                                                  |                                               | 9.50-9.75                              | U30                       | 80 blows                   | 56% Recovery                                     |                      |  |
|                    |                                          |                   |                |                                         |                                | 8.50 - 9.10 with frequer<br>fine sand and occasional p                                                              |                                               | 9.80                                   |                           | N50/<br>15 mm              | 25 / 50                                          |                      |  |
|                    |                                          |                   |                |                                         | -                              | (<20mm)<br>9.00 - 9.20 with a band<br>9.75 - 10.25 with light g<br>size claystone fragments<br>10.25 becoming silty | of claystone<br>grey strong gravel            | 9.80<br>9.80-10.30<br>10.50-10.95      | D31<br>B32<br>U33         | 40 blows                   | 100% Recovery                                    |                      |  |
|                    |                                          |                   |                | <br>                                    | -                              | - · · J                                                                                                             |                                               | 11.00                                  |                           | N21                        | 2, 3 / 4, 5, 5, 7                                |                      |  |
| Issue No:          | : 01                                     | Ch                | ecked By       | : OS                                    | Approv                         | ed By: AN Log Pr                                                                                                    | rint Date & Time:                             | 17/05/2017                             |                           |                            |                                                  | increment of address |  |

Concept Unit 8 Warple Mews, Warple Way London, W3 0RF Telephone: 0208812880\_ E-mail: si@conceptconsultants.co.uk

| STURQUALITY    | da,                           | STR QUALITA    | da,                           |
|----------------|-------------------------------|----------------|-------------------------------|
| $(\mathbf{R})$ | $\mathbf{V}$                  | $(\mathbf{R})$ | V                             |
| Can of         | UKAS<br>MANAGEMENT<br>STSTEMS | 1500001        | UKAS<br>MANACEMENT<br>STSTEMS |
|                | 001                           |                | 001                           |

**Borehole No** 

**BH101** 

| Job No<br>17       | 7/296        |            | nte Start<br>nte Com |        | 10/04/17<br>13/04/17 |                                                                                                                                                                                                                                           | Co-Ordinat<br>E 5290                      | t <b>es</b><br>)44.7 N 18                                                                          | 2389.6                                        |                                             | al Depth<br>31.50m                                  |             |
|--------------------|--------------|------------|----------------------|--------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|-----------------------------------------------------|-------------|
| Client<br>B        | ritish       | Lan        | d                    |        |                      |                                                                                                                                                                                                                                           | Method/<br>Plant Used                     | Cable Per                                                                                          | cussion                                       | She                                         | et 2 of 3                                           |             |
| PRC                | OGRE         | SS         |                      |        | ST                   | <b>TRATA</b>                                                                                                                                                                                                                              |                                           | SAMPLE                                                                                             | ES & T                                        | ESTS                                        |                                                     |             |
| Date               | Casing       | Water      | Level<br>(mOD)       | Legend | Depth<br>(Thickness) | Strata Description                                                                                                                                                                                                                        |                                           | Depth<br>(m)                                                                                       | Type<br>No                                    | Test<br>Result                              | Field<br>Records                                    | Tnetrumant/ |
|                    |              |            |                      |        | (7.00)               | 11.00 - 11.45 with frequent p<br>pockets of silty fine sand (<10m<br>11.50 - 12.45 with occasional<br>dark grey silt (<20mm)                                                                                                              | m)                                        | 11.00<br>11.00-11.45<br>11.50-11.95<br>12.00<br>12.00<br>12.00                                     | D34<br>D35<br>U36<br>D37<br>D38               | 38 blows<br>N23                             | 100% Recovery<br>2, 3 / 5, 5, 6, 7                  |             |
| 1/04/17<br>2/04/17 | 8.00<br>8.00 | Dry<br>Dry |                      |        |                      | 13.00 with rare partings of sil                                                                                                                                                                                                           | ty fine sand                              | 12.00<br>12.50-12.95<br>13.00<br>13.00<br>13.00-13.45<br>13.50-13.95                               | D38<br>U39<br>D40<br>D41<br>U42               | 42 blows<br>N24<br>52 blows                 | 100% Recovery<br>2, 3 / 5, 6, 6, 7<br>100% Recovery |             |
| 2/04/17            | 14.50        | Dry        |                      |        |                      |                                                                                                                                                                                                                                           |                                           | 14.00<br>14.00<br>14.00-14.45<br>14.50-14.95                                                       | D43<br>D44<br>U45                             | N27<br>80 blows                             | 3, 4 / 6, 6, 7, 8<br>100% Recovery                  |             |
|                    |              |            | 12.89                |        | 15.10                | 15.00 - 15.10 with a band of of<br>Very stiff, grey slightly sandy sl<br>CLAY with rare pockets of silty<br>(<20mm). Gravel is subangular<br>subrounded fine to coarse clayst<br>fragments.<br>(THAMES GROUP: LONDON<br>FORMATION - A3ii) | ightly gravelly<br>fine sand<br>to<br>one | 15.00<br>15.00-15.30<br>15.50-15.95<br>16.00                                                       | D46<br>B47<br>U48                             | N50/<br>145 mm<br>46 blows<br>N50/<br>35 mm | 25 / 38, 12<br>100% Recovery<br>3, 22 / 50          |             |
|                    |              |            | 10.99                |        | 17.00                | Stiff, dark grey CLAY with occa<br>of silt (<10mm).<br>(THAMES GROUP: LONDON<br>FORMATION - A3i)                                                                                                                                          | sional pockets                            | 16.00<br>16.00-16.22<br>16.10-16.50<br>16.50-16.95<br>17.00<br>17.00<br>17.00-17.45<br>17.50-17.95 | D49<br>D50<br>B51<br>U52<br>D53<br>D54<br>U55 | 48 blows<br>N26<br>50 blows                 | 100% Recovery<br>2, 4 / 5, 6, 7, 8<br>100% Recovery |             |
|                    |              |            | 9.99                 |        | - 18.00              | Very stiff, brownish grey micacc<br>sandy silty CLAY with occasion<br>dark grey silty fine sand (<20mr<br>(THAMES GROUP: LONDON<br>FORMATION - A2)                                                                                        | al pockets of n).                         | 18.00<br>18.00<br>18.00-18.45<br>18.50-18.95                                                       | D56<br>D57<br>U58                             | N29<br>54 blows                             | 3, 5 / 6, 7, 8, 8<br>100% Recovery                  |             |
|                    |              |            |                      |        |                      | 19.00 becoming sandy with fipartings and pockets of silty find (<30mm) and rare foraminifera                                                                                                                                              | equent<br>sand                            | 19.00<br>19.00<br>19.00-19.45<br>19.50-19.95                                                       | D59<br>D60<br>U61                             | N30<br>76 blows                             | 3, 4 / 6, 7, 8, 9<br>100% Recovery                  |             |
|                    |              |            |                      |        |                      |                                                                                                                                                                                                                                           |                                           | 20.00<br>20.00<br>20.00-20.45<br>20.50-20.95                                                       | D62<br>D63<br>U64                             | N34<br>72 blows                             | 3, 5 / 7, 8, 9, 10<br>100% Recovery                 |             |
|                    |              |            |                      |        |                      | 21.00 becoming very sandy w<br>partings and pockets of dark gre<br>(<30mm)                                                                                                                                                                |                                           | 21.00<br>21.00<br>21.00-21.45<br>21.50-21.95                                                       | D65<br>D66<br>U67                             | N36<br>70 blows                             | 4, 5 / 7, 8, 10, 11<br>100% Recovery                |             |
|                    |              |            |                      | ×      |                      |                                                                                                                                                                                                                                           |                                           | 22.00                                                                                              |                                               | N39                                         | 4, 5 / 8, 9, 11, 11                                 |             |

Concept Unit 8 Warple Mews, Warple Way London, W3 0RF Telephone: 0208812880\_ E-mail: si@conceptconsultants.co.uk

Project



Borehole No

**BH101** 

| Job No<br>17       | 7/2961 |            | ate Start<br>ate Com |                                         | 10/04/17<br>13/04/17      |                                                                                                                  | <b>Co-Ordinat</b><br>E 5290     | tes<br>)44.7 N 18                                    | 2389.6            |                | al Depth<br>31.50m                    |   |
|--------------------|--------|------------|----------------------|-----------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------|-------------------|----------------|---------------------------------------|---|
| Client<br>Bi       | ritish | Lan        | d                    |                                         |                           |                                                                                                                  | Method/<br>Plant Used           | Cable Per                                            |                   | She            | et 3 of 3                             |   |
| PRC                | OGRE   | SS         |                      |                                         | ST                        | <b>TRATA</b>                                                                                                     | 1                               | SAMPLE                                               | ES & T            | ESTS           |                                       | Ţ |
| Date               | Casing | Water      | Level<br>(mOD)       | Legend                                  | Depth<br>(Thickness)      | Strata Description                                                                                               | l                               | Depth<br>(m)                                         | Type<br>No        | Test<br>Result | Field<br>Records                      |   |
|                    |        |            |                      | × · · × · · · · · · · · · · · · · · · · | (9.00)                    | 22.00 with occasional pocket organic material (lignite) and py                                                   |                                 | 22.00<br>22.00-22.45<br>22.50-22.95                  | D68<br>D69<br>U70 | 80 blows       | 100% Recovery                         |   |
|                    |        |            |                      |                                         |                           |                                                                                                                  |                                 | 23.00<br>23.00<br>23.00-23.45                        | D71<br>D72        | N40            | 4, 6 / 8, 9, 11, 12                   |   |
|                    |        |            |                      | × × →<br>× · · ×                        |                           |                                                                                                                  |                                 | 23.50-23.45                                          | U73               | 72 blows       | 100% Recovery                         |   |
|                    |        |            |                      | × — ×<br>× _ × _ ×<br>× _ × _ × _ ×     |                           | 24.00 with occasional forami                                                                                     | nifera                          | - 24.00<br>- 24.00<br>- 24.00-24.45                  | D74<br>D75        | N36            | 3, 6 / 8, 8, 10, 10                   |   |
|                    |        |            |                      | ×                                       |                           |                                                                                                                  |                                 | 24.50-24.95                                          | U76               | 70 blows       | 100% Recovery                         |   |
|                    |        |            |                      |                                         |                           | 25.00 with rare pockets of sil                                                                                   | ty fine sand                    | 25.00<br>25.00<br>25.00                              | D77<br>D78        | N39            | 3, 6 / 8, 9, 10, 12                   |   |
|                    |        |            |                      |                                         |                           |                                                                                                                  |                                 | 25.50-25.95                                          | U79               | 78 blows       | 100% Recovery                         |   |
|                    |        |            |                      |                                         |                           | 26.00 with rare bioturbation                                                                                     |                                 | 26.00<br>26.00<br>26.00-26.45                        | D80<br>D81        | N40            | 4, 7 / 9, 9, 11, 11                   |   |
|                    |        |            |                      |                                         |                           |                                                                                                                  |                                 | 26.50-26.95                                          | U82               | 80 blows       | 100% Recovery                         |   |
|                    |        |            | 0.99                 |                                         | 27.00                     | Very stiff, dark grey slightly san<br>with occasional pockets and par                                            | dy silty CLAY<br>tings of silty | 27.00<br>27.00<br>27.00-27.45                        | D83<br>D84        | N43            | 5, 7 / 9, 10, 11, 13                  |   |
|                    |        |            |                      |                                         | (1.50)                    | fine sand (<30mm).<br>(THAMES GROUP: LONDON<br>FORMATION - A2)                                                   | CLAY                            | 27.50-27.95                                          | U85               | 76 blows       | 100% Recovery                         |   |
|                    |        |            |                      | × · × · · ×                             |                           | <ul><li>27.00 with occasional forami</li><li>28.00 becoming very sandy</li></ul>                                 | nıfera                          | 28.00<br>28.00<br>28.00-28.45                        | D86<br>D87        | N39            | 4, 7 / 8, 10, 10, 11                  |   |
|                    |        |            | -0.51                |                                         | 28.50                     | Very Stiff, greenish grey sandy<br>Sand is fine to coarse and glauc                                              | onitic.                         | 28.50-28.95                                          | U88               | 94 blows       | 100% Recovery                         |   |
|                    |        |            | -1.01                | ×                                       | - 29.00                   | (THAMES GROUP: HARWIC<br>FORMATION - Swanscombe M<br>Very stiff, greenish grey to blue<br>(LAMBETH GROUP: READIN | fember)<br>CLAY.                | - 29.00<br>29.00<br>29.00-29.45<br>29.00-29.50       | D89<br>D90<br>B91 | N48            | 4, 5 / 9, 11, 14, 14                  |   |
|                    |        |            |                      |                                         | -<br> -<br> -<br> -<br> - | (LAMBETH GROUP: READIN<br>FORMATION: Upper Mottled 1<br>29.00 - 29.50 becoming mott<br>brown and bluish grey     | Beds)                           | 29.50-29.95                                          | U92               | 90 blows       | 100% Recovery                         |   |
| <b>2</b> (0.1) =   |        | 5          |                      |                                         | -<br>-<br>- (2.50)        | 2.5 m and oraion Broy                                                                                            |                                 | - 30.00<br>- 30.00<br>- 30.00-30.45<br>- 30.50-30.90 | D93<br>D94<br>U95 | N50            | 5, 7 / 10, 12, 13, 15<br>89% Recovery |   |
| 2/04/17<br>3/04/17 |        | Dry<br>Dry |                      |                                         |                           |                                                                                                                  |                                 | 30.50-30.90                                          | 093               | N50/           | 89% Recovery<br>8, 11 / 14, 16, 20    |   |
| 12/04/17           | 14.50  | D          | 2.51                 |                                         |                           |                                                                                                                  |                                 | 30.95                                                | D96               | 205 mm         | , , ,,                                |   |
| 3/04/17            | 14.50  | Dry        | -3.51                |                                         | - 31.50                   | End of Borehole                                                                                                  |                                 | 30.95-31.40                                          | D97               |                |                                       |   |
|                    |        |            |                      |                                         | -  <br> <br>              |                                                                                                                  |                                 |                                                      |                   |                |                                       |   |
|                    |        |            |                      |                                         | -<br> -<br> -<br> -       |                                                                                                                  |                                 | -                                                    |                   |                |                                       |   |
| Issue No:          | : 01   | Ch         | l<br>lecked By       | ° OS                                    | Approv                    | ed By: AN Log Print D                                                                                            | Date & Time:                    | 17/05/2017                                           | 1 - 10            | 1              | AGS                                   |   |

### 9. DIAMOND CORING LOGS AND SKETCHES

| Jondor<br>Telepho<br>E9mail: | Varple B ev<br>A, W3 MRF<br>one: M1M88<br>si@  on  e  | vs, Warple<br>3j 188M                                    |                                                                        |                                                                                                                          |                                                                                                                   |                                                                 | R        | UKAS<br>BANAWARAN<br>UKAS<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>UKAS<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAWARAN<br>BANAKAN<br>BANAMARAN<br>BANAMANAN<br>BANAMANAN<br>BANAMANAN<br>BANAMANAN<br>BANAMAN<br>BANAN |            |                | Core No<br>CH01                                                                                                                                                                           |
|------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Job N                        | 1 Trito                                               | Dat                                                      | e Starteo                                                              | d 03/04/17                                                                                                               | Ground Level (1<br>23.07                                                                                          |                                                                 | Co-Ordin |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 N 1      | 82384.3        | Final Length 0.50m                                                                                                                                                                        |
|                              | Client<br>British Land                                |                                                          |                                                                        |                                                                                                                          |                                                                                                                   |                                                                 |          | i r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Diamon     | d Coring       | Sheet<br>1 of 1                                                                                                                                                                           |
|                              |                                                       |                                                          |                                                                        | STI                                                                                                                      | RATA                                                                                                              | •                                                               | SAN      | IPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ES & T     | TESTS          | Field                                                                                                                                                                                     |
| Water                        | Level<br>(mOD)                                        | Legend                                                   | Length<br>(Thickness)                                                  |                                                                                                                          | rata Description                                                                                                  |                                                                 | Dep      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Type<br>No | Test<br>Result | Records                                                                                                                                                                                   |
| 1.<br>to<br>2.<br>3.<br>4.   | NERAL<br>Ø100mm<br>1.10m dep<br>Slight wat<br>Ø19mm d | REMA<br>vertical d<br>th. Dynar<br>er seepagrive-in pior | iamond cor<br>nic probe c<br>e at the bas<br>ezometer ir<br>with concr | e carried out interna<br>carried out from 1.10<br>e carried out from 1.10<br>e carried at 1.73m bel<br>ret and made good | orizontal break<br>nm rebar<br>joint<br>CRETE, clasts are ang<br>o medium gravel sized<br>locasional air voids (< | led fine to<br>cing 1-5mm<br>flint and<br>is. Aggregat<br>5mm). |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n, followe | d by mackin    | Mackintosh Probe<br>blows per 0.10m<br>0.50-0.60m : 10 blows<br>0.60-0.70m : 35 blows<br>0.70-0.80m : 80 blows<br>0.80-0.90m : 49 blows<br>0.90-1.00m : 50 blows<br>1.00-1.10m : 75 blows |
| Issue N                      | lo: 01                                                | Drilled B                                                | y: UN                                                                  | Logged By: OJ                                                                                                            | Checked By: OS                                                                                                    | Approved                                                        | d By: OS | Log I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Print Date | e & Time:      | 17/05/2017 17:24 AGS                                                                                                                                                                      |

| C                    |                                                  |                                                      |                                      |                                                                                                                                 |                                                                      |                                               |                                      | đ                                |             | a d            | 2                | Core No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------------|-------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jondor<br>Teleph     | Warple Be<br>n, W3 MRF<br>one: M1 M8<br>si@ on e | 8i 188M                                              |                                      |                                                                                                                                 |                                                                      |                                               | R.                                   | UKA<br>MANAGAM<br>STISTEM<br>001 | 10          |                | A S<br>MENT<br>1 | СН02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Proje                |                                                  | on Sq                                                | uare,                                | Ground Inv                                                                                                                      | vestigation, <b>F</b>                                                | Phase                                         | 1                                    |                                  |             |                | I                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Job N                |                                                  |                                                      | e Starte                             | d 03/04/17                                                                                                                      | Ground Level (                                                       | mOD)                                          | Co-Ordin                             | ates                             |             |                | Fina             | l Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | 17/2961                                          | l Dat                                                | e Comp                               | leted 21/04/17                                                                                                                  | 23.07                                                                |                                               | E 52                                 | 9071                             | .0 N 1      | 82398.9        |                  | 0.51m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Clien                | t<br>British                                     | Land                                                 |                                      |                                                                                                                                 |                                                                      |                                               | Method/<br>Plant Used Diamond Coring |                                  |             |                |                  | t<br>1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | •                                                |                                                      |                                      | STI                                                                                                                             | RATA                                                                 |                                               | SAMPLES & TESTS                      |                                  |             |                |                  | Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Water                | Level<br>(mOD)                                   | Legend                                               | Length<br>(Thickness)                |                                                                                                                                 | rata Description                                                     |                                               | Dep                                  |                                  | Type<br>No  | Test<br>Result |                  | Records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | 22.62<br>22.56                                   |                                                      | - (0.45)<br>- 0.45<br>- 0.51<br>     | subangular fine tr<br>Aggregate spacin<br>(<5mm).<br>0.05 with Ø10<br>0.25 with wo (<br>0.33 with subh<br>i<br>Medium strong, g | 20mm rebars                                                          | int.<br>air voids<br>ts are angu<br>flint and | -                                    | 33                               |             |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      |                                                  |                                                      |                                      |                                                                                                                                 |                                                                      |                                               |                                      |                                  |             |                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.<br>2.<br>3.<br>4. | Corehole<br>Ø19mm o                              | vertical d<br>was dry.<br>Irive-in pio<br>reinstated | iamond co<br>ezometer i<br>with conc | nstalled at 2.13m bel<br>rete and made good u                                                                                   | lly within the basemen<br>ow basement level on 2<br>apon completion. | <u>^</u>                                      | operty to 0.51                       | m dept                           | th, followe | d by dynamic   | e probe to 3.    | 50m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Issue 1              | No: 01                                           | Drilled B                                            | y: UN                                | Logged By: OJ                                                                                                                   | Checked By: OS                                                       | Approv                                        | ved By: OS                           | Log                              | Print Dat   | e & Time:      | 17/05/201        | 7 17:24 AGS interest of the second se |

| Jondo<br>Telepi<br>E9mai | Warple B e<br>on, W3 MRF<br>hone: M1Me<br>I: si@  on | 8j 188M                                                |                                         |                        |                                      |             | R                    | UKA<br>UKA<br>STYLES | S <sub>R</sub> | R              | Core No<br>CH03      |                            |
|--------------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|------------------------|--------------------------------------|-------------|----------------------|----------------------|----------------|----------------|----------------------|----------------------------|
| Proje<br>Job I           | 1 Trit                                               | Date                                                   | e Starte                                | d 03/04/17             |                                      |             | Co-Ordin             |                      |                |                | Final Length         |                            |
|                          | 17/296                                               | I Date                                                 | e Compl                                 | eted 26/04/17          | 23.07                                |             |                      | 9090                 | .9 N 1         | 82381.9        | 0.62m                |                            |
| Clier                    | British                                              | Land                                                   |                                         |                        |                                      |             | Method/<br>Plant Use | d I                  | Diamon         | d Coring       |                      |                            |
|                          |                                                      |                                                        |                                         | STI                    | RATA                                 | '           | SAN                  | 1PL1                 | ES & 1         | TESTS          |                      |                            |
| Water                    | Level<br>(mOD)                                       | Legend                                                 | Length<br>(Thickness)                   |                        | rata Description                     |             | Dej                  | oth                  | Type<br>No     | Test<br>Result | Field<br>Records     |                            |
| GI                       | 2. Corehole<br>3. Ø19mm                              | <b>REMA</b><br>vertical di<br>was dry.<br>drive-in pie | iamond cor<br>ezometer ir<br>with concr | re carried out interna | ioint<br>orizontal break<br>nm rebar | t of the pr |                      |                      | C01            |                | c probe to 3.50m.    |                            |
|                          | No: 01                                               | Drilled B                                              | y: UN                                   | Logged By: OJ          | Checked By: OS                       | Approv      | ed By: OS            | Log l                | Print Dat      | e & Time:      | 17/05/2017 17:24 AGS | AREACHINE IF AREPEORDING & |

| Qnit 8 Warple B ews,<br>Jondon, W3 MRF<br>Telephone: MI M88j 1<br>E9mail: si@  on  ept | Warple Way<br>88M                |                                                                                                                                                                                 |                                                                                                          | 1000 5 840                                                                |                                                                                             |             |                |                    | Core No<br>CH04  |
|----------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|----------------|--------------------|------------------|
| Project<br>1 Triton                                                                    | Square, (                        | Ground Inv                                                                                                                                                                      | vestigation, Phase                                                                                       | 1                                                                         |                                                                                             |             |                | •                  |                  |
| Job No<br>17/20(1                                                                      | Date Started                     |                                                                                                                                                                                 |                                                                                                          | Co                                                                        | -Ordinates                                                                                  |             |                | Final Le           | -                |
| 17/2961<br>Client<br>British L                                                         |                                  | eted 04/04/17                                                                                                                                                                   | 23.07                                                                                                    | E 529100.2 N 182354.2<br>Method/ Diamond Coring/<br>Plant Used Hand Auger |                                                                                             |             |                | Sheet              | 2.00m            |
| 21101011 1                                                                             |                                  | ST                                                                                                                                                                              | RATA                                                                                                     |                                                                           | SAMPI                                                                                       |             |                |                    |                  |
| Level Level Ker                                                                        | egend Length<br>(Thickness)      |                                                                                                                                                                                 | trata Description                                                                                        |                                                                           | Depth                                                                                       | Type<br>No  | Test<br>Result |                    | Field<br>Records |
|                                                                                        | (0.70)<br>0.80<br>(1.20)<br>2.00 | Aggregate spacin<br>(<5mm).<br>0.05 with Ø20:<br>0.31 with Ø20:<br>0.36 with cold<br>0.50 with subh<br>Soft to firm, oran<br>(THAMES GRO)<br>CLAY FORMAT<br>Firm to stiff. blui | mm rebar<br>joint<br>orizontal break<br>gish brown slightly sandy CLAY<br>UP : WEATHERED LONDON<br>TION) |                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | B02<br>ES03 |                | Hand auge<br>depth | red below 0.70   |

#### **GENERAL REMARKS**

 Ø100mm vertical diamond core carried out to 0.72m depth and hand auger from 0.72m to 2.00m depth internally within the basement of the property.
 Corehole was dry.
 Corehole backfilled with bentonite pellets between 2.00m and 0.70m depth, reinstated with concrete between 0.70m and surface level and made good upon an event of the property. completion.

| Issue No: 01 Drilled By: UN Logged By: OJ | Checked By: OS Approved By: OS | Log Print Date & Time: | 17/05/2017 17:24 AGS |
|-------------------------------------------|--------------------------------|------------------------|----------------------|
|-------------------------------------------|--------------------------------|------------------------|----------------------|

| Job No<br>17/296<br>Client<br>Britis |        |                                   | eted 04/04/17 23.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Co-Ordinate<br>E 52903<br>Method/<br>Plant Used | es<br>32.8 N 1<br>Diamon<br>Hand | Final Length<br>1.80m<br>Sheet<br>1 of 1 |                                                 |
|--------------------------------------|--------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|------------------------------------------|-------------------------------------------------|
|                                      |        |                                   | STRATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMP                                            | LES & T                          |                                          |                                                 |
| Level (mOD)                          | Legend | Length<br>(Thickness)             | Strata Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Depth                                           | Type<br>No                       | Test<br>Result                           | Field<br>Records                                |
| 22.4                                 |        | - (0.63)<br>- 0.63<br>- 0.65/<br> | Strong, light grey CONCRETE, clasts are<br>subangular to subrounded fine to coarse gravel siz<br>flint. Aggregate spacing 1-5mm. Occasional air<br>voids (<5mm).<br>0.10 with Ø20mm rebar<br>0.31 with Ø20mm rebar<br>0.34 with Ø20mm rebar<br>0.39 with cold joint<br>Greyish brown slightly silty gravelly fine to coarse<br>SAND. Gravel comprises subangular to angular fin<br>to coarse flint with rare brick and concrete<br>fragments.<br>(MADE GROUND)<br>Firm to stiff, bluish grey CLAY with rare fine to<br>medium sand size selenite crystals.<br>(THAMES GROUP : LONDON CLAY<br>FORMATION)<br>End of Core | -                                               | B01<br>ES02<br>B03<br>B04        | V94kPa                                   | Hand augered below 0.65m<br>depth<br>VOC 0.0ppm |

Concept Onit 8 Warple Bews, Warple Way Jondon, W3 MRF Telephone: MIM88j 188M E9mail: si@| on| ept| onsultants.| o.uk



Core No

| С | H | ĥ | 6 |
|---|---|---|---|
| U |   | U | υ |

| E9mail: si@  on  ept  onsultant                                                                    | ts.  o.uk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                                                                  |                  | 001                                      | 001            |                                                               |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------|------------------------------------------|----------------|---------------------------------------------------------------|
| Project<br>1 Triton Squa                                                                           | are, Ground Inv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vestigation, P                                                                                                                                                                                               | hase 1                                                                                           |                  |                                          |                |                                                               |
|                                                                                                    | Started 05/04/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ground Level (1                                                                                                                                                                                              | nOD) Co                                                                                          | -Ordinate        |                                          |                | Final Length                                                  |
|                                                                                                    | <b>Completed</b> 05/04/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.07                                                                                                                                                                                                        |                                                                                                  |                  | 20.0 N 1                                 |                | 2.00m                                                         |
| Client<br>British Land                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                              |                                                                                                  | thod/<br>nt Used | Diamon<br>Hand                           | Sheet 1 of 1   |                                                               |
| i                                                                                                  | STI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RATA                                                                                                                                                                                                         |                                                                                                  | SAMP             | LES & 1                                  | TESTS          | Field                                                         |
|                                                                                                    | Length<br>Thickness) Str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rata Description                                                                                                                                                                                             |                                                                                                  | Depth            | Type<br>No                               | Test<br>Result | Records                                                       |
| 21.72<br>21.57<br>21.47                                                                            | (1.35)<br>(1.35)<br>(1.35)<br>(1.35)<br>(1.35)<br>(0.75 with cold j<br>(0.15)<br>(0.15)<br>(0.15)<br>(0.15)<br>(0.15)<br>(0.15)<br>(0.15)<br>(0.75 with subhell<br>comprises subang<br>brick and concrete<br>(MADE GROUN<br>Orangish brown sli<br>comprises subang<br>brick and concrete<br>(MADE GROUN<br>Orangish brown Sli<br>comprises subang<br>brick and concrete<br>(MADE GROUN<br>Orangish brown Sli<br>coarse SAND. Gr<br>angular flint with<br>fragments.<br>(MADE GROUN<br>Orangish brown C<br>CLAY FORMAT<br>2.00<br>End of Core | prizontal break<br>ghtly silty sandy GRA'<br>ular to angular fine to<br>e fragments.<br>D)<br>lightly gravelly clayey<br>avel comprises subang<br>occasional brick and c<br>D)<br>ZLAY.<br>JP : WEATHERED LC | gravel sized<br>ional air<br>VEL. Gravel<br>coarse flint,<br>silty fine to<br>ular to<br>oncrete | - 0.00-0.76      | E00<br>B01<br>B02<br>ES03<br>B04<br>ES05 | V50kPa         | Hand augered below 1.35m<br>depth<br>VOC 0.0ppm<br>VOC 0.0ppm |
| <ol> <li>Ø100mm vertical dian<br/>internally within the base</li> <li>Corehole was dry.</li> </ol> | nond core carried out to 1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              | ð300mm stitch                                                                                    | drilling to fa   | acilitate hand                           | auger from 1.  | 35m to 2.00m depth                                            |
| Issue No: 01 Drilled By:                                                                           | UN Logged By: OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Checked By: OS                                                                                                                                                                                               | Approved B                                                                                       | v. og Lí         | og Print Dat                             | e & Time:      | 17/05/2017 17:24 AGS                                          |

Col Ξ 0 Qnit 8 Warple B ews, Warple Way Jondon, W3 MRF Telephone: MIM88j 188M\_ E9mail: si@| on| ept| onsultants.| o.uk



Core No

| CII |   | ł |
|-----|---|---|
| СН  | / |   |
|     |   |   |

|          | 17/2961        |                       | e Started<br>e Compl  | l 07/04/17<br>eted 07/04/17                                                                                                                                                                                                                                            | Ground Level (mo<br>22.06                                                                                                                                                         |                                         |                                                                            | 6.9 N 1                                          | 82327.8            | Final Length<br>2.00m                                         |
|----------|----------------|-----------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------|--------------------|---------------------------------------------------------------|
| lien]    | t<br>British I | Land                  |                       |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                   |                                         | ethod/<br>int Used                                                         |                                                  | d Coring/<br>Auger | Sheet 1 of 1                                                  |
|          |                |                       |                       | STI                                                                                                                                                                                                                                                                    | RATA                                                                                                                                                                              |                                         | SAMPI                                                                      | LES & T                                          | TESTS              |                                                               |
| Water    | Level<br>(mOD) | egend                 | Length<br>(Thickness) | St                                                                                                                                                                                                                                                                     | rata Description                                                                                                                                                                  |                                         | Depth                                                                      | Type<br>No                                       | Test<br>Result     | Field<br>Records                                              |
| 1.<br>2. | Corehole wa    | ertical di<br>as dry. | amond cor             | subangular to sub<br>flint. Aggregate s<br>voids (<5mm).<br>0.05 with Ø10n<br>0.50 with Ø10n<br>0.50 with cold<br>Gravel comprises<br>coarse flint and c<br>brick. Sand is finn<br>(MADE GROUN)<br>Dark grey CLAY<br>size selenite cryst<br>(THAMES GROU<br>FORMATION) | nm rebar<br>joint<br>GRAVEL with low cobbl<br>angular to subangular fir<br>norerete fragments. Cobbl<br>e to coarse.<br>D)<br>with rare fine to medium<br>als.<br>JP: LONDON CLAY | e content.<br>he to<br>es are<br>gravel | 0.00-0.30<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | C01<br>ES02<br>B03<br>ES04<br>B05<br>B06<br>ES07 | V54kPa             | Hand augered below 0.63m<br>depth<br>VOC 0.0ppm<br>VOC 0.0ppm |

|        | 1 Tritor                      |       |                       |                                                                                                                                               | vestigation, Phase |                       |      |            |                |         |                  |
|--------|-------------------------------|-------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|------|------------|----------------|---------|------------------|
| ob N   | <sup>No</sup><br>17/2961      |       | e Started             |                                                                                                                                               | Ground Level (mOD) | Co-Ordin              |      |            |                | Final L |                  |
|        |                               | Date  | Comple                | eted 07/04/17                                                                                                                                 | 24.54              |                       | 9052 | .2 N 1     | 82388.1        | Sheet   | 0.35m            |
| lien   | ent<br>British Land<br>STRATA |       |                       |                                                                                                                                               |                    | Method/<br>Plant Used | d 1  | Diamon     | d Coring       | Sneet   | 1 of 1           |
|        |                               |       |                       | STI                                                                                                                                           | RATA               | SAN                   | [PL] | ES & T     | TESTS          |         |                  |
| W alci | Level (mOD)                   | egend | Length<br>(Thickness) | St                                                                                                                                            | rata Description   | Dep                   | oth  | Type<br>No | Test<br>Result |         | Field<br>Records |
|        | 24.19                         |       | (0.35)<br>0.35        | Strong, light grey<br>subangular fine to<br>Aggregate spacin;<br>(<5mm).<br>0.07 with Ø20t<br>0.28 with subh<br>0.29 with Ø15t<br>End of Core | orizontal break    | - to 0.00-0.          | 28   | 201        |                |         |                  |
|        | ENERAL F                      |       |                       |                                                                                                                                               |                    | -                     |      |            |                |         |                  |

Concept Onit 8 Warple Bews, Warple Way Jondon, W3 MRF Telephone: MIM88j 188M E9mail: si@| on| ept| onsultants.| o.uk



Core No

| ГΤ | A | A |
|----|---|---|
| н  | U | У |

| Job N<br>1     | lo<br>17/2961  |                                             | e Started<br>e Comple      | 06/04/17<br>eted 06/04/17                                                                                                                                                           | Ground Level (mOD<br>24.24                                                                                   | ) Co | -Ordinate<br>E 52902 | es<br>28.2 N 1 | .82384.3       | Final Leng | t <b>h</b><br>).95m |
|----------------|----------------|---------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------|----------------------|----------------|----------------|------------|---------------------|
| C <b>lien</b>  | t<br>British   | Land                                        |                            |                                                                                                                                                                                     |                                                                                                              |      | thod/<br>nt Used     | Diamon         | d Coring       | Sheet      | 1 of 1              |
|                |                |                                             |                            | STI                                                                                                                                                                                 | RATA                                                                                                         |      | SAMP                 | LES & T        | TESTS          |            |                     |
| Water          | Level<br>(mOD) | Legend                                      | Length<br>(Thickness)      | St                                                                                                                                                                                  | rata Description                                                                                             |      | Depth                | Type<br>No     | Test<br>Result |            | ield<br>cords       |
| 1.<br>2.<br>3. | Corehole       | REMA<br>horizontal<br>wall enco<br>was dry. | diamond c<br>ountered at t | flint. Aggregate s<br>voids (<5mm).<br>0.06 with Ø15n<br>0.27 with Ø30n<br>0.35 with Ø20n<br>Greyish brown sli<br>subrounded fine t<br>(MADE GROUN<br>Sheet Pile Wal<br>End of Core | nm rebar<br>nm rubber membrane<br>ghtly sandy subangular to<br>o coarse flint GRAVEL.<br>D)<br>I encountered |      | 0.15-0.35            | C01            |                |            |                     |
|                |                |                                             |                            |                                                                                                                                                                                     |                                                                                                              |      |                      |                |                |            |                     |

### **12. INSTRUMENTATION MONITORING RESULTS**

|          |                                    |                         |        |               |                  |                     |                       |                      | Sheet 1 of |
|----------|------------------------------------|-------------------------|--------|---------------|------------------|---------------------|-----------------------|----------------------|------------|
| Borehole | Depth of<br>Installation<br>(mbgl) | Date of<br>Installation | Туре   | Top<br>(mbgl) | Bottom<br>(mbgl) | Date & Time         | Water Level<br>(mbgl) | Water Level<br>(mOD) | Remarks    |
| BH101    | 2.40                               | 13/04/2017              | SPG/GW | 1.00          | 2.40             | 28/04/2017 10:35:00 | Dry                   |                      |            |
|          | 2.40                               | 13/04/2017              | SPG/GW | 1.00          | 2.40             | 05/05/2017 11:10:00 | Dry                   |                      |            |
|          | 2.40                               | 13/04/2017              | SPG/GW | 1.00          | 2.40             | 11/05/2017 12:30:00 | Dry                   |                      |            |
|          | 2.40                               | 13/04/2017              | SPG/GW | 1.00          | 2.40             | 18/05/2017 10:32:00 | Dry                   |                      |            |
|          | 7.85                               | 13/04/2017              | SPGW   | 3.40          | 7.85             | 26/04/2017 10:40:00 | 5.85                  | 22.14                |            |
|          | 7.85                               | 13/04/2017              | SPGW   | 3.40          | 7.85             | 05/05/2017 11:15:00 | 5.76                  | 22.23                |            |
|          | 7.85                               | 13/04/2017              | SPGW   | 3.40          | 7.85             | 11/05/2017 12:30:00 | 5.85                  | 22.14                |            |
|          | 7.85                               | 13/04/2017              | SPGW   | 3.40          | 7.85             | 18/05/2017 10:30:00 | 5.85                  | 22.14                |            |
| CH01     | 1.73                               | 26/04/2017              | SPIE   | 0.50          | 1.73             | 03/05/2017 10:27:00 | 1.03                  | 22.04                |            |
|          | 1.73                               | 26/04/2017              | SPIE   | 0.50          | 1.73             | 05/05/2017 10:00:00 | 1.01                  | 22.06                |            |
|          | 1.73                               | 26/04/2017              | SPIE   | 0.50          | 1.73             | 11/05/2017 13:14:00 | 0.95                  | 22.12                |            |
|          | 1.73                               | 26/04/2017              | SPIE   | 0.50          | 1.73             | 18/05/2017 10:51:00 | 1.01                  | 22.06                |            |
| CH02     | 2.13                               | 21/04/2017              | SPIE   | 0.51          | 2.13             | 03/05/2017 10:20:00 | 0.79                  | 22.28                |            |
|          | 2.13                               | 21/04/2017              | SPIE   | 0.51          | 2.13             | 05/05/2017 09:11:00 | 0.77                  | 22.30                |            |
|          | 2.13                               | 21/04/2017              | SPIE   | 0.51          | 2.13             | 11/05/2017 13:35:00 | 0.78                  | 22.29                |            |
|          | 2.13                               | 21/04/2017              | SPIE   | 0.51          | 2.13             | 18/05/2017 10:53:00 | 0.76                  | 22.31                |            |
| CH03     | 2.05                               | 26/04/2017              | SPIE   | 0.62          | 2.05             | 03/05/2017 10:00:00 | 0.67                  | 22.40                |            |
|          | 2.05                               | 26/04/2017              | SPIE   | 0.62          | 2.05             | 05/05/2017 08:23:00 | 0.69                  | 22.38                |            |
|          | 2.05                               | 26/04/2017              | SPIE   | 0.62          | 2.05             | 11/05/2017 13:52:00 | 0.64                  | 22.43                |            |
|          | 2.05                               | 26/04/2017              | SPIE   | 0.62          | 2.05             | 18/05/2017 10:59:00 | 0.64                  | 22.43                |            |

## <u>KEY</u>

SPIE- Standpipe PiezometerSPGW- Groundwater Monitor StandpipeSPG/GW- Gas / Groundwater Monitor Standpipe



# **GROUNDWATER MONITORING**

Job No: 17/2961

1 Triton Square, Ground Investigation, Phase 1 **Project:** 

**British Land** 

# CONCEPT

# **Gas Monitoring Results**

| JOB DETAILS                         |              |                                                 |                  |              |              |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                           |          |                      |
|-------------------------------------|--------------|-------------------------------------------------|------------------|--------------|--------------|---------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|----------|----------------------|
| Location:                           | Triton       |                                                 |                  |              |              |               | Engineer:        | AP + HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                           |          |                      |
| Date:                               | 28/04/2017   |                                                 |                  | Job Number:  |              | 17/2961       |                  | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10:45          |                           |          |                      |
| METFOROLOGICAL AND SITE INFORMATION | AL AND SIT   | TE INFORM                                       | ATION            |              |              |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                           |          |                      |
| Ctote of another d.                 |              |                                                 |                  |              |              | Maint         |                  | 11/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                           |          | Delete Ac Descind    |
| State of ground:                    |              | v<br>V<br>V                                     |                  |              |              | INIUISI       |                  | wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                           | č        | Delete As Kequireu   |
| W ING:                              |              | A Calm                                          |                  |              |              | Light         |                  | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                           | Strong   | Uround Level         |
| Cloud cover:                        |              |                                                 |                  |              | Х            | Slight        |                  | Cloudy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                           | Overcast |                      |
| Precipitation                       |              | X None                                          |                  |              |              | Slight        |                  | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                           | Heavy    |                      |
| Barometric pressure (mb) Before:    | (mb) Before: | 1013                                            |                  |              |              |               | Temper           | Temperature (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13             |                           |          |                      |
| <b>INSTRUMENTATION USED</b>         | ION USED     |                                                 |                  |              |              |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                           |          |                      |
|                                     | Gas Data LMS | Gas Data LMSxi G3.18, Accuaracy: $CH_4 \pm 0.2$ | aracy: CH₄ ±0    |              | %), ±1.0%    | (at 30%), ±3  | .0% (at 100%); C | $\frac{1}{2}$ (0 to 5%), ±1.0% (at 30%), ±3.0% (at 100%); CO <sub>2</sub> ±0.1% (0 to 10%), ±3.0% (at 40%); O <sub>2</sub> ±0.5% (at 5%) (b) = 0.5% (b) = 0.5\% (b) = 0 | 0%), ±3.0% (at | 40%; O <sub>2</sub> ±0.5% |          | 1                    |
| Uas concentration:                  | Gas Data GFN | Gas Data GFM 436, Accuracy: CH4 $\pm 0.3\%$ (0  | r: CH4 ±0.3%     | (0 to 5%), : | ±3.0% (at 3  | 30%), ±3.0% ( | (at 100%); CO2 = | to 5%), $\pm 3.0\%$ (at 30%), $\pm 3.0\%$ (at 100%); CO2 $\pm 0.3\%$ (0 to 5%), $\pm 3.0\%$ (at 40%); O2 $\pm 0.2\%$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ±3.0% (at 40%) | ; O2 ±0.2%;               | Х        | lick instrument used |
| BH<br>(No.)                         | Time (secs)  | Depths to<br>GW (m)                             | aP<br>(mb) After | db<br>(dm)   | Flow<br>rate | CH4 (%)       | LEL (%)          | CO <sub>2</sub> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0_{2}$ (%)    | H <sub>2</sub> S(ppm)     | CO (ppm) | Comments             |
| BH101                               |              | Dry                                             | 1013             | 0            | 0.0          |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                           |          |                      |
| Short                               | 5            |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.9           | 0.0                       | 0.0      |                      |
|                                     | 30           |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.0           | 0.0                       | 0.0      |                      |
|                                     | 60           |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.9           | 0.0                       | 0.0      |                      |
| Long                                | 5            |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.1           | 0.0                       | 0.0      |                      |
|                                     | 30           |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.9           | 0.0                       | 0.0      |                      |
|                                     | 60           |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.9           | 0.0                       | 0.0      |                      |
| <b>Circulation Short</b>            | 60           |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.9           | 0.0                       | 0.0      |                      |
|                                     | 120          |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.9           | 0.0                       | 0.0      |                      |
|                                     | 180          |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8           | 0.0                       | 0.0      |                      |
|                                     | 240          |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8           | 0.0                       | 0.0      |                      |
|                                     | 300          |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8           | 0.0                       | 0.0      |                      |
|                                     | 420          |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.0           | 0.0                       | 0.0      |                      |
|                                     | 480          |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.7           | 0.0                       | 0.0      |                      |
|                                     | 540          |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.7           | 0.0                       | 0.0      |                      |
|                                     | 600          |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.7           | 0.0                       | 0.0      |                      |
| Short                               | 5            |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8           | 0.0                       | 0.0      |                      |
|                                     | 30           |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8           | 0.0                       | 0.0      |                      |
|                                     | 60           |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8           | 0.0                       | 0.0      |                      |
| Long                                | 5            |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.9           | 0.0                       | 0.0      |                      |
|                                     | 30           |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8           | 0.0                       | 0.0      |                      |
|                                     | 60           |                                                 |                  |              |              | 0.0           | 0.0              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.8           | 0.0                       | 0.0      |                      |
| KEY                                 |              |                                                 |                  |              |              |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                           |          |                      |
| aP: Atmospheric Pressure            |              | NR: Not Recorded                                | ded              |              |              |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                           |          |                      |
| dP: Differential Pressure           | sure         |                                                 |                  |              |              |               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                           |          |                      |

n SI 072

Form SI 072 Rev 5/14 12th November 2014

# CONCEPT

# **Gas Monitoring Results**

| JOB DETAILS                         |              |                     |                                                 |              |              |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                           |          |                      |
|-------------------------------------|--------------|---------------------|-------------------------------------------------|--------------|--------------|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|----------|----------------------|
| Location:                           | Triton       |                     |                                                 |              |              |               | Engineer:       | AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                           |          |                      |
| Date:                               | 05/05/2017   |                     |                                                 | Job Number:  |              | 17/2961       |                 | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10:45          |                           |          |                      |
| METEOROLOGICAL AND SITE INFORMATION | AL AND SIT   | TE INFORM           | ATION                                           |              |              |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                           |          |                      |
| State of ground:                    |              | X Drv               |                                                 |              |              | Moist         |                 | Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                           |          | Delete As Required   |
| Wind:                               |              | Calm                |                                                 |              | х            | Light         |                 | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                           | Strong   | Ground Level         |
| Cloud cover:                        |              | None                | 0                                               |              |              | Slight        | Х               | Cloudy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                           | <u> </u> |                      |
| Precipitation                       |              | X None              | 0                                               |              |              | Slight        |                 | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                           | Heavy    |                      |
| Barometric pressure (mb) Before:    | (mb) Before: | 1017                |                                                 |              |              |               | Temper          | Temperature (°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13             |                           |          |                      |
| <b>INSTRUMENTATION USED</b>         | ION USED     |                     |                                                 |              |              |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                           |          |                      |
| Gas concentration:                  | Gas Data LMS | ixi G3.18, Acc      | Gas Data LMSxi G3.18, Accuaracy: $CH_4 \pm 0.2$ |              | %), ±1.0%    | (at 30%), ±3. | 0% (at 100%); C | $\phi$ (0 to 5%), ±1.0% (at 30%), ±3.0% (at 100%); CO <sub>2</sub> ±0.1% (0 to 10%), ±3.0% (at 40%); O <sub>2</sub> ±0.5% (at 40\%); O <sub>2</sub> ±0.5% (at 40\%) | 0%), ±3.0% (at | 40%; O <sub>2</sub> ±0.5% | ;        | Tick Instrument used |
|                                     | Gas Data GFM | 1 4 56, Accurac     | Gas Data GFM 436, Accuracy: CH4 ±0.3% (0        | (0 to 5%), ± | ±3.0% (at 3  | 0%), ±3.0% (  | at 100%); CO2 ± | to 5%), ±5.0% (at 30%), ±5.0% (at 100%); CO2 ±0.3% (0 to 5%), ±5.0% (at 40%); O2 ±0.2%;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ±3.0% (at 40%) | ; O2 ±0.2%;               | X        |                      |
| BH<br>(No.)                         | Time (secs)  | Depths to<br>GW (m) | aP<br>(mb) After                                | dP<br>(mb)   | Flow<br>rate | CH4 (%)       | LEL (%)         | CO <sub>2</sub> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $O_{2}$ (%)    | H <sub>2</sub> S(ppm)     | CO (ppm) | Comments             |
| BH101                               |              | Dry                 | 1017                                            | 0            | 0.0          |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                           |          |                      |
| Short                               | 5            |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.7           | 0.0                       | 0.0      |                      |
|                                     | 30           |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 60           |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
| Long                                | 5            |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.7           | 0.0                       | 0.0      |                      |
|                                     | 30           |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 60           |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
| <b>Circulation Short</b>            | 60           |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 120          |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.6           | 0.0                       | 0.0      |                      |
|                                     | 180          |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 240          |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 300          |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 420          |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 480          |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 540          |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 600          |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
| Short                               | 5            |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 30           |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 60           |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
| Long                                | 5            |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 30           |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
|                                     | 60           |                     |                                                 |              |              | 0.0           | 0.0             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.5           | 0.0                       | 0.0      |                      |
| KEY                                 |              |                     |                                                 |              |              |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                           |          |                      |
| aP: Atmospheric Pressure            |              | NR: Not Recorded    | rded                                            |              |              |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                           |          |                      |
| dP: Differential Pressure           | sure         |                     |                                                 |              |              |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                           |          |                      |

Form SI 072 Rev 5/14 12th November 2014

| CONCEPT                             | F                                                                                        |                     |                  |                           |                          |                                 |                                                                                                                                                                                                                         |                                   |                                     | Gas N                                  | Gas Monitoring Results | g Results                 |    |
|-------------------------------------|------------------------------------------------------------------------------------------|---------------------|------------------|---------------------------|--------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|----------------------------------------|------------------------|---------------------------|----|
| JOB DETAILS                         |                                                                                          |                     |                  |                           |                          |                                 |                                                                                                                                                                                                                         |                                   |                                     |                                        |                        |                           |    |
| ion:                                | Triton                                                                                   |                     |                  |                           |                          |                                 | Engineer:                                                                                                                                                                                                               | AP                                |                                     |                                        |                        |                           |    |
| Date:                               | 11/05/2017                                                                               |                     |                  | Job Number:               |                          | 17/2961                         |                                                                                                                                                                                                                         | Time:                             | 12:30                               |                                        |                        |                           |    |
| METEOROLOGICAL AND SITE INFORMATION | TIS UND SIT                                                                              | E INFORMA           | ATION            |                           |                          |                                 |                                                                                                                                                                                                                         |                                   |                                     |                                        |                        |                           |    |
| State of ground:                    |                                                                                          | X Dry               |                  |                           |                          | Moist                           |                                                                                                                                                                                                                         | Wet                               |                                     |                                        |                        | <b>Delete As Required</b> |    |
| Wind:                               |                                                                                          | Calm                |                  |                           | Х                        | Light                           |                                                                                                                                                                                                                         | Moderate                          |                                     |                                        | Strong                 | Ground Level              |    |
| Cloud cover:                        |                                                                                          | <u> </u>            |                  |                           |                          | Slight                          | Х                                                                                                                                                                                                                       | Cloudy                            |                                     |                                        | Overcast               |                           |    |
| Precipitation                       |                                                                                          | X None              |                  |                           |                          | Slight                          |                                                                                                                                                                                                                         | Moderate                          |                                     |                                        | Heavy                  |                           |    |
| Barometric pressure (mb) Before:    | (mb) Before:                                                                             | 992                 |                  |                           |                          |                                 | Temperature (°)                                                                                                                                                                                                         | tture (°)                         | 13                                  |                                        |                        |                           |    |
| INSTRUMENTATION USED                | ON USED                                                                                  |                     |                  |                           |                          |                                 |                                                                                                                                                                                                                         |                                   |                                     |                                        |                        |                           |    |
| Gas concentration:                  | Gas Data LMSxi G3.18, Accuaracy: CH <sub>4</sub><br>Gas Data GFM 436. Accuraev: CH4 ±0.3 | xi G3.18, Accu      |                  | 2% (0 to 5<br>0 to 5%). : | %), ±1.0%<br>±3.0% (at 3 | (at 30%), ±3.0<br>0%). ±3.0% (a | ±0.2% (0 to 5%), ±1.0% (at 30%), ±3.0% (at 100%); CO <sub>2</sub> ±0.1% (0 to 10%), ±3.0% (at 40%); O <sub>2</sub> ±0.5%<br>% (0 to 5%), ±3.0% (at 30%), ±3.0% (at 100%); CO2 ±0.3% (0 to 5%), ±3.0% (at 40%); O2 ±0.2% | $0_2 \pm 0.1\% (0 \text{ to } 1)$ | )%), ±3.0% (at 4<br>=3.0% (at 40%): | 0%); O <sub>2</sub> ±0.5%<br>O2 ±0.2%: | ×                      | Tick Instrument used      |    |
|                                     |                                                                                          | <i>(</i>            |                  | "                         |                          |                                 |                                                                                                                                                                                                                         | <i>(()</i>                        | <i>(()</i>                          | -<br>                                  |                        |                           |    |
| BH<br>(No.)                         | Time (secs)                                                                              | Depths to<br>GW (m) | aP<br>(mb) After | dP<br>(mb)                | Flow<br>rate             | CH4 (%)                         | LEL (%)                                                                                                                                                                                                                 | CO <sub>2</sub> (%)               | O <sub>2</sub> (%)                  | H <sub>2</sub> S(ppm)                  | CO (ppm)               | Comments                  | ts |
| BH101                               |                                                                                          | Dry                 | 992              | 0.03                      | 0.1                      |                                 |                                                                                                                                                                                                                         |                                   |                                     |                                        |                        |                           |    |
| Short                               | 5                                                                                        |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.8                                | 0.0                                    | 0.0                    | PID (ppm)                 | (u |
|                                     | 30                                                                                       |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.4                                | 0.0                                    | 0.0                    | Short                     |    |
|                                     | 60                                                                                       |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.5                                | 0.0                                    | 0.0                    | 15 0.0                    |    |
| Long                                | 5                                                                                        |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.4                                | 0.0                                    | 0.0                    | 30 0.0                    |    |
|                                     | 30                                                                                       |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.1                                | 0.0                                    | 0.0                    | 45 0.0                    |    |
|                                     | 60                                                                                       |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.1                                | 0.0                                    | 0.0                    |                           |    |
| <b>Circulation Short</b>            | 60                                                                                       |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    |                           |    |
|                                     | 120                                                                                      |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    |                           |    |
|                                     | 180                                                                                      |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    | 105 0.0                   |    |
|                                     | 240                                                                                      |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    | 120 0.0                   |    |
|                                     | 300                                                                                      |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    |                           |    |
|                                     | 360                                                                                      |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    | gu                        |    |
|                                     | 420                                                                                      |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    |                           |    |
|                                     | 480                                                                                      |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    |                           |    |
|                                     | 540                                                                                      |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    |                           |    |
|                                     | 600                                                                                      |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    |                           |    |
| Short                               | 5                                                                                        |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    | 75 0.1                    |    |
|                                     | 30                                                                                       |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    | 90 	0.1                   |    |
|                                     | 60                                                                                       |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.0                                | 0.0                                    | 0.0                    |                           |    |
| Long                                | 5                                                                                        |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.1                                | 0.0                                    | 0.0                    | 120 0.1                   |    |
|                                     | 30                                                                                       |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.1                                | 0.0                                    | 0.0                    |                           |    |
|                                     | 60                                                                                       |                     |                  |                           |                          | 0.0                             | 0.0                                                                                                                                                                                                                     | 0.1                               | 20.1                                | 0.0                                    | 0.0                    |                           |    |
| KEY<br>F I I F                      |                                                                                          |                     |                  |                           |                          |                                 |                                                                                                                                                                                                                         |                                   |                                     |                                        |                        |                           |    |
| aP: Atmospheric Pressure            |                                                                                          | NK: Not Kecorded    | ded              |                           |                          |                                 |                                                                                                                                                                                                                         |                                   |                                     |                                        |                        |                           |    |
| dP: Differential Pressure           | sure                                                                                     |                     |                  |                           |                          |                                 |                                                                                                                                                                                                                         |                                   |                                     |                                        |                        |                           |    |

Q:\2017/172961 - Triton Square\GAS + GW\GAS\ 3 - GAS - 11.05.2017 (cir)

| CONCEPT                             | F                                                                                        |                                 |                                                          |                            |                          |                    |                                                                                                                                                                                                                          |                                                   |                                     | Gas M                                  | lonitoring | Gas Monitoring Results    |  |
|-------------------------------------|------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|----------------------------|--------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------|----------------------------------------|------------|---------------------------|--|
| JOB DETAILS                         |                                                                                          |                                 |                                                          |                            |                          |                    |                                                                                                                                                                                                                          |                                                   |                                     |                                        |            |                           |  |
| ion:                                | Triton                                                                                   |                                 |                                                          |                            |                          |                    | Engineer:                                                                                                                                                                                                                |                                                   |                                     |                                        |            |                           |  |
| Date:                               | 18/05/2017                                                                               |                                 |                                                          | Job Number:                |                          | 17/2961            |                                                                                                                                                                                                                          | Time:                                             | 10:00                               |                                        |            |                           |  |
| METEOROLOGICAL AND SITE INFORMATION | AL AND SIT                                                                               | E INFORM                        | ATION                                                    |                            |                          |                    |                                                                                                                                                                                                                          |                                                   |                                     |                                        |            |                           |  |
| State of ground:                    |                                                                                          | X Dry                           |                                                          |                            |                          | Moist              |                                                                                                                                                                                                                          | Wet                                               |                                     |                                        |            | <b>Delete As Required</b> |  |
| Wind:                               |                                                                                          | X Calm                          |                                                          | _                          |                          | Light              |                                                                                                                                                                                                                          | Moderate                                          |                                     |                                        | Strong     | Ground Level              |  |
| Cloud cover:                        | I                                                                                        |                                 |                                                          |                            | Х                        | Slight             |                                                                                                                                                                                                                          | Cloudy                                            |                                     |                                        | Overcast   |                           |  |
| Precipitation                       |                                                                                          | X None                          |                                                          | -                          |                          | Slight             |                                                                                                                                                                                                                          | Moderate                                          |                                     |                                        | Heavy      |                           |  |
| Barometric pressure (mb) Before:    | (mb) Before:                                                                             | 1009                            |                                                          |                            |                          |                    | Temperature (°)                                                                                                                                                                                                          | tture (°)                                         | 14                                  |                                        |            |                           |  |
| <b>INSTRUMENTATION USED</b>         | ON USED                                                                                  |                                 |                                                          |                            |                          |                    |                                                                                                                                                                                                                          |                                                   |                                     |                                        |            |                           |  |
| Gas concentration:                  | Gas Data LMSxi G3.18, Accuaracy: CH <sub>4</sub><br>Gas Data GFM 436. Accuracy: CH4 ±0.3 | xi G3.18, Accu<br>436, Accuracy | aracy: CH <sub>4</sub> ±0.<br><sup>•</sup> : CH4 ±0.3% ( | .2% (0 to 5<br>0 to 5%). ∃ | %), ±1.0%<br>⊧3.0% (at 3 | (at 30%), ±3.0% (3 | ±40.2% (0 to 5%), ±1.0% (at 30%), ±3.0% (at 100%); CO <sub>2</sub> ±0.1% (0 to 10%), ±3.0% (at 40%); O <sub>2</sub> ±0.5%<br>% (0 to 5%), ±3.0% (at 30%), ±3.0% (at 100%): CO2 ±0.3% (0 to 5%), ±3.0% (at 40%): O2 ±0.3% | 0 <sub>2</sub> ±0.1% (0 to 10<br>.3% (0 to 5%). ± | )%), ±3.0% (at 4<br>±3.0% (at 40%): | 0%); O <sub>2</sub> ±0.5%<br>O2 ±0.2%: | ×          | Tick Instrument used      |  |
|                                     |                                                                                          |                                 |                                                          |                            |                          |                    |                                                                                                                                                                                                                          | - ((2, 2, 2, 2)) 2, 2, 2, 2                       |                                     |                                        |            |                           |  |
| BH<br>(No.)                         | Time (secs)                                                                              | Depths to<br>GW (m)             | aP<br>(mb) After                                         | dP<br>(mb)                 | Flow<br>rate             | CH4 (%)            | LEL (%)                                                                                                                                                                                                                  | CO <sub>2</sub> (%)                               | $O_2$ (%)                           | H <sub>2</sub> S(ppm)                  | CO (ppm)   | Comments                  |  |
| BH101                               |                                                                                          | Dry                             | 1009                                                     | 0.00                       | 0.0                      |                    |                                                                                                                                                                                                                          |                                                   |                                     |                                        |            |                           |  |
| Short                               | 5                                                                                        |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.0                                               | 20.2                                | 0                                      | 0          | PID (ppm)                 |  |
|                                     | 30                                                                                       |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          | Short                     |  |
|                                     | 60                                                                                       |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          | 15 0.0                    |  |
| Long                                | 5                                                                                        |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.0                                               | 20.8                                | 0                                      | 0          | 30 0.0                    |  |
|                                     | 30                                                                                       |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          |                           |  |
|                                     | 60                                                                                       |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          |                           |  |
| <b>Circulation Short</b>            | 60                                                                                       |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.2                                | 0                                      | 0          |                           |  |
|                                     | 120                                                                                      |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.2                                | 0                                      | 0          |                           |  |
|                                     | 180                                                                                      |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.2                                | 0                                      | 0          |                           |  |
|                                     | 240                                                                                      |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          | 120 0.0                   |  |
|                                     | 300                                                                                      |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          |                           |  |
|                                     | 360                                                                                      |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          | gu                        |  |
|                                     | 420                                                                                      |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          |                           |  |
|                                     | 480                                                                                      |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.2                                | 0                                      | 0          |                           |  |
|                                     | 540                                                                                      |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          |                           |  |
|                                     | 600                                                                                      |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          |                           |  |
| Short                               | 5                                                                                        |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.1                                               | 19.9                                | 0                                      | 0          |                           |  |
|                                     | 30                                                                                       |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          | 90 0.0                    |  |
|                                     | 60                                                                                       |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.3                                | 0                                      | 0          |                           |  |
| Long                                | 5                                                                                        |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.0                                               | 20.8                                | 0                                      | 0          | 120 0.0                   |  |
|                                     | 30                                                                                       |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.4                                | 0                                      | 0          |                           |  |
|                                     | 60                                                                                       |                                 |                                                          |                            |                          | 0.0                | 0.0                                                                                                                                                                                                                      | 0.2                                               | 19.7                                | 0                                      | 0          |                           |  |
| <u>KEY</u>                          |                                                                                          | D. Not Darre                    | de d                                                     |                            |                          |                    |                                                                                                                                                                                                                          |                                                   |                                     |                                        |            |                           |  |
| dP. Differential Pressure           |                                                                                          | INK: NOT Kecorded               | aea                                                      |                            |                          |                    |                                                                                                                                                                                                                          |                                                   |                                     |                                        |            |                           |  |
| UL: DIHCICINIAI I ICOS              | aine                                                                                     |                                 |                                                          |                            |                          |                    |                                                                                                                                                                                                                          |                                                   |                                     |                                        |            |                           |  |

Q:\2017/172961 - Triton Square\GAS + GW\GAS\ 4 - GAS - 18.05.2017 (cir)

|                                    |                                                 |                                                        |                        |             | CONCEPT      | CEPT                          |                |                      |                            |                                           |
|------------------------------------|-------------------------------------------------|--------------------------------------------------------|------------------------|-------------|--------------|-------------------------------|----------------|----------------------|----------------------------|-------------------------------------------|
|                                    |                                                 |                                                        | GROUNDW                | ATER        | - IN SITL    | - IN SITU ANALYSIS & SAMPLING | SIS & S/       | <b>MPLIN</b>         | (5)                        |                                           |
| Site:                              |                                                 | Triton                                                 |                        |             |              |                               |                |                      |                            |                                           |
| Job No.:                           |                                                 | 17/2961                                                |                        |             |              |                               |                |                      |                            |                                           |
| Date:                              |                                                 | 05/05/2017                                             |                        |             |              |                               |                |                      |                            |                                           |
| Technician:                        |                                                 | AP                                                     |                        |             |              |                               |                |                      |                            |                                           |
| Sampling method:                   | :                                               | Impeller pump (purging) and disposable bailer sampling | p (purging)            | and disposa | ble bailer s | sampling                      |                |                      |                            |                                           |
| Boreho                             | Borehole Detail                                 |                                                        |                        |             |              |                               | Sampling       | Sampling and Testing | bu                         |                                           |
| BH No. Base of<br>well<br>(mbgl) I | Top of<br>slotted<br>response<br>zone<br>(mbgl) | Depth to<br>GW (mbgl)                                  | Purge<br>Volume<br>(L) | Time        | Temp<br>(°C) | DO<br>(mg/L)                  | SPC<br>(ms/cm) | Hď                   | Redox<br>Potential<br>(mV) | Sample Detail (Colour/Odour/<br>Turbidity |
| BH101 7.85                         | 3.40                                            | 5.85                                                   | 7                      | 12:32       | 16.0         | 3.030                         | 0.97           | 8.39                 | 34.9                       |                                           |
|                                    |                                                 |                                                        | 4                      |             | 15.8         | 1.330                         | 0.96           | 8.21                 | 35.5                       |                                           |
|                                    |                                                 |                                                        | 8                      |             | 15.7         | 0.840                         | 0.96           | 8.05                 | 35.6                       |                                           |
|                                    |                                                 |                                                        | 12                     |             | 15.7         | 0.710                         | 0.96           | 7.92                 | 35.5                       |                                           |
|                                    |                                                 |                                                        |                        |             |              |                               |                |                      |                            |                                           |
|                                    |                                                 |                                                        |                        |             |              |                               |                |                      |                            |                                           |
|                                    |                                                 |                                                        |                        |             |              |                               |                |                      |                            |                                           |
|                                    |                                                 |                                                        |                        |             |              |                               |                |                      |                            |                                           |

| CONCEPT | ATER - IN SITU ANALYSIS & SAMPLING |        |          |            |             | Impeller pump (purging) and disposable bailer sampling | Sampling and Testing | Temp     DO     SPC     pH     Redox     Sample Detail (Colour/Odour/<br>Turbidity       (°C)     (mg/L)     (ms/cm)     Potential     Turbidity       (°C)     (ms/cm)     (mV)     (mV) | 13.7 9.180 0.01 10.95 27.1 | Recharge rate very slow |  |  |  |
|---------|------------------------------------|--------|----------|------------|-------------|--------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|--|--|--|
|         | <b>GROUNDW</b>                     |        |          |            |             | o (purging) and o                                      |                      | Purge Time<br>Volume<br>(L)                                                                                                                                                               | 0.8 09:11                  |                         |  |  |  |
|         |                                    | Triton | 17/2961  | 05/05/2017 | AP          | Impeller pum                                           |                      | Depth to<br>GW (mbgl)                                                                                                                                                                     | 0.77                       |                         |  |  |  |
|         |                                    |        |          |            |             |                                                        | Borehole Detail      | Top of<br>slotted<br>response<br>zone<br>(mbgl)                                                                                                                                           | -                          |                         |  |  |  |
|         |                                    |        | ·        |            | sian:       | Sampling method:                                       | Boreh                | Base of<br>well<br>(mbgl)                                                                                                                                                                 | 2.13                       |                         |  |  |  |
|         |                                    | Site:  | Job No.: | Date:      | Technician: | Samplii                                                |                      | BH No.                                                                                                                                                                                    | CH02                       |                         |  |  |  |

|             |                           |                                                 |                                                        |                        |             | COD          |                                    |                |                      |                            |                                           |
|-------------|---------------------------|-------------------------------------------------|--------------------------------------------------------|------------------------|-------------|--------------|------------------------------------|----------------|----------------------|----------------------------|-------------------------------------------|
| Site:       |                           |                                                 | Triton                                                 |                        |             |              | ALER - IN SILU ANALTSIS & SAMELING | 10 8 010       |                      | 0                          |                                           |
| Job No.:    | <br>                      |                                                 | 17/2961                                                |                        |             |              |                                    |                |                      |                            |                                           |
| Date:       |                           |                                                 | 05/05/2017                                             |                        |             |              |                                    |                |                      |                            |                                           |
| Technician: | sian:                     |                                                 | AP                                                     |                        |             |              |                                    |                |                      |                            |                                           |
| Samplir     | Sampling method:          | :p                                              | Impeller pump (purging) and disposable bailer sampling | Ip (purging)           | and disposa | ble bailer   | sampling                           |                |                      |                            |                                           |
|             | Boreh                     | Borehole Detail                                 |                                                        |                        |             |              |                                    | Sampling       | Sampling and Testing | bu                         |                                           |
| BH No.      | Base of<br>well<br>(mbgl) | Top of<br>slotted<br>response<br>zone<br>(mbgl) | Depth to<br>GW (mbgl)                                  | Purge<br>Volume<br>(L) | Time        | Temp<br>(°C) | DO<br>(mg/L)                       | SPC<br>(ms/cm) | Ha                   | Redox<br>Potential<br>(mV) | Sample Detail (Colour/Odour/<br>Turbidity |
| CH03        | 2.05                      | ,                                               | 0.69                                                   | 0.17                   | 13:30       | 15.3         | 5.270                              | 0.29           | 8.40                 | 8.0                        |                                           |
|             |                           |                                                 |                                                        | 0.35                   |             | 15.4         | 2.320                              | 0.54           | 10.76                | 33.3                       |                                           |
|             |                           |                                                 |                                                        | 0.70                   |             | 15.4         | 1.600                              | 0.58           | 211.25               | -46.3                      |                                           |
|             |                           |                                                 |                                                        | 1.0                    |             | 15.4         | 1.070                              | 0.70           | 11.52                | -57.9                      |                                           |
|             |                           |                                                 |                                                        |                        |             |              |                                    |                |                      |                            |                                           |
|             |                           |                                                 |                                                        |                        |             |              |                                    |                |                      |                            |                                           |
|             |                           |                                                 |                                                        |                        |             |              |                                    |                |                      |                            |                                           |
|             |                           |                                                 |                                                        |                        |             |              |                                    |                |                      |                            |                                           |

| International Column Site in a function in the functin in the function in the function in the func |        |                           |            |                       |                        |             | COD<br>COD   | CONCEPT  |                |          |                            |                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------|------------|-----------------------|------------------------|-------------|--------------|----------|----------------|----------|----------------------------|-------------------------------------------|
| IntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionIntroductionI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                           |            |                       | GROUN                  | DWATER      | - IN SITL    | J ANALY  | SIS & S/       | AMPLIN   | IJ                         |                                           |
| 17/2961         11/05/2017         AP         Sinter burnts         Inpelier pump (purging) and disposable bailer sampling         Borehole Detail         Mapelier pump (purging) and disposable bailer sampling         Borehole Detail         Impelier pump (purging) and disposable bailer sampling         Borehole Detail       Sampling and Testing         Borehole Detail       Sampling and Testing         Borehole Detail       Sampling and Testing         Readox       (mycl)       (mycl)       (ms/cm)       (ms/cm)       (ms/cm)         1       7.85       3.40       5.85       2       12:32       16.0       3.03       0.97       8.39       34.9       78.9         1       7.85       3.40       5.85       1       15.7       0.84       0.96       8.05       35.6       1       78.5         1       7.85       1.57       0.84       0.96       8.05       35.5       1       79.7       35.5       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Site:  |                           |            | Triton                |                        |             |              |          |                |          |                            |                                           |
| 1106/2017         AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Job No |                           |            | 17/2961               |                        |             |              |          |                |          |                            |                                           |
| APImpeller pump (purgie)Antication (mglub)DetailSampling and TestingDetailSampling and TestingTop of<br>storedReview(ub)PurgeTimeTempDO(storedBepth to<br>(ub)PurgeTimeTemp(ub)PurgeTimeTempDOSPC(ub)PurgeTimeTempDOSPC(ub)Polential("C)(mg/L)(ms/cm)Polential(ub)5.85212:3216:03.030.978.3934.93.405.85212:3216:03.030.968.2135.53.405.851215.70.840.968.0535.611215.70.710.967.9235.511110.967.9235.5111110.9110.967.9235.51111111111111111111111111111111111111111111111111111111111111111<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date:  |                           |            | 11/05/2017            |                        |             |              |          |                |          |                            |                                           |
| Impeller pump (purging) and disposable bailer sampling           Sampling and Testing           Top of<br>(sotted<br>(sponse)         Depth to<br>(wnbgi)         Purge<br>(u)         Time<br>("C")         Tomp<br>("G")         POL           Top of<br>(sponse)         Depth to<br>("U)         Purge<br>("C")         Time<br>("C")         Tomp<br>("G")         PUG         Puf         Puf           sponse<br>(mbgi)         0.5.85         2         12:32         16.0         3.03         0.97         8.39         34.9         Potential<br>(mV)           3.40         5.85         2         12:32         16.0         3.03         0.96         8.21         35.5         Potential<br>(mV)           3.40         5.85         2         12:32         16.0         3.03         0.96         8.21         35.5         Potential<br>(mV)         Potential<br>(mV) <th>Techni</th> <th>cian:</th> <th></th> <th>AP</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Techni | cian:                     |            | AP                    |                        |             |              |          |                |          |                            |                                           |
| Borehole Detail           Base of Top of Depth to Purge Time Number         Temp DO SPC PUT Purge Time Potential ("C) (mg/L) (ms/cm)         PH Redox           well solded (mbgl)         Depth to Sas         Depth to Potential ("C)         Nmg/L)         SPC PM Potential (ms/cm)         PM Redox           7:85         3:40         5:85         2         12:32         16.0         3:03         0:97         8:39         34.9           7:85         3:40         5:85         2         12:32         16.0         3:03         0:97         8:39         34.9           7:85         3:40         5:85         2         12:32         16.0         3:03         0:96         8:21         35.5           1         1         1         0:8         13         0:96         8:05         35.6         35.6           1         1         1         0:71         0:96         7:92         35.5         35.6         35.6           1         1         1         0:71         0:96         7:92         35.5         35.5         35.5           1         1         1         0:71         0:96         7:92         35.5         35.5         35.5         35.5 </th <th>Sampli</th> <th>ng metho</th> <th>d:</th> <th>Impeller pum</th> <th>p (purging)</th> <th>and disposa</th> <th>ble bailer</th> <th>sampling</th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sampli | ng metho                  | d:         | Impeller pum          | p (purging)            | and disposa | ble bailer   | sampling |                |          |                            |                                           |
| Base of<br>well<br>solted<br>(mbgl)Top of<br>sloted<br>sloted<br>(mbgl)Depth to<br>sloted<br>(mbgl)Purge<br>(mgl)Time<br>(°C)Temp<br>(mgl)DO<br>(mgl)SPC<br>(mgl)PH<br>Potential<br>(m) $vell$<br>(mbgl)sloted<br>(mbgl)GW (mbgl)<br>(mbgl) $volume$<br>(°C) $(°C)$<br>(mg/L) $(mg/L)$<br>(ms/cm)Potential<br>(m) $vell$<br>(mbgl) $response$<br>(mbgl) $(L)$ $(°C)$<br>(mg/L) $(mg/L)$<br>(ms/cm) $B.33$ $3.49$ $3.49$ $volume$<br>(mbgl) $1.33$ $0.917$<br>$1.33$ $B.33$ $3.49$ $3.55$ $3.49$ $volume$<br>(mbgl) $1.53$ $1.53$ $1.53$ $0.96$<br>$1.53$ $3.49$ $3.56$ $3.56$ $volume$<br>$volume$ $1.57$ $0.84$ $0.96$<br>$1.53$ $8.05$ $3.56$ $3.56$ $volume$ $1.57$ $0.71$ $0.96$<br>$1.57$ $8.05$ $3.55$ $3.56$ $volume$ $1.57$ $0.71$ $0.96$<br>$1.57$ $8.05$ $3.55$ $3.56$ $volume$ $1.57$ $0.71$ $0.96$<br>$1.57$ $8.05$ $3.55$ $3.56$ $volume$ $1.57$ $0.71$ $0.96$ $8.05$ $3.56$ $3.56$ $volume$ $1.57$ $0.71$ $0.96$ $7.92$ $3.55$ $3.56$ $volume$ $1.57$ $0.71$ $0.96$ $7.92$ $3.55$ $3.56$ $volume$ $1.57$ $0.71$ $0.96$ $7.92$ $3.55$ $3.56$ $volume$ $1.57$ $0.71$ $0.96$ $1.57$ $1.57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Boreh                     | ole Detail |                       |                        |             |              |          | Sampling       | and Test | ing                        |                                           |
| 7.85       3.40       5.85       2       12:32       16.0       3.03       0.97       8.39         1       1       1       1       1       1       1       1       1         1       1       1       1       1       1       1       1       1       1         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BH No. | Base of<br>well<br>(mbgl) |            | Depth to<br>GW (mbgl) | Purge<br>Volume<br>(L) | Time        | Temp<br>(°C) |          | SPC<br>(ms/cm) | Hď       | Redox<br>Potential<br>(mV) | Sample Detail (Colour/Odour/<br>Turbidity |
| 15.8     1.33     0.96     8.21       15.7     0.84     0.96     8.05       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BH101  | 7.85                      | 3.40       | 5.85                  | 2                      | 12:32       | 16.0         | 3.03     | 0.97           | 8.39     | 34.9                       | Slightly turbid                           |
| 15.7     0.84     0.96     8.05       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                           |            |                       | 4                      |             | 15.8         | 1.33     | 0.96           | 8.21     | 35.5                       |                                           |
| 15.7     0.71     0.96     7.92       15.7     0.71     0.96     7.92       15.7     15.7     15.7     15.7       15.7     15.7     15.7       15.7     15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7       15.7     15.7 <t< td=""><td></td><td></td><td></td><td></td><td>8</td><td></td><td>15.7</td><td>0.84</td><td>0.96</td><td>8.05</td><td>35.6</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                           |            |                       | 8                      |             | 15.7         | 0.84     | 0.96           | 8.05     | 35.6                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                           |            |                       | 12                     |             | 15.7         | 0.71     | 0.96           | 7.92     | 35.5                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                           |            |                       |                        |             |              |          |                |          |                            |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                           |            |                       |                        |             |              |          |                |          |                            |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                           |            |                       |                        |             |              |          |                |          |                            |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                           |            |                       |                        |             |              |          |                |          |                            |                                           |

|                  |                           |                                                 |                       |                        |                                                        | COD          | CONCEPT                            |                |                      |                            |                                           |
|------------------|---------------------------|-------------------------------------------------|-----------------------|------------------------|--------------------------------------------------------|--------------|------------------------------------|----------------|----------------------|----------------------------|-------------------------------------------|
|                  |                           |                                                 |                       | GROUNDW                | DWATER                                                 | - IN SITL    | ATER - IN SITU ANALYSIS & SAMPLING | SIS & SI       | AMPLIN               | G                          |                                           |
| Site:            |                           |                                                 | Triton                |                        |                                                        |              |                                    |                |                      |                            |                                           |
| Job No.:         |                           |                                                 | 17/2961               |                        |                                                        |              |                                    |                |                      |                            |                                           |
| Date:            |                           |                                                 | 11/05/2017            |                        |                                                        |              |                                    |                |                      |                            |                                           |
| Technician:      | an:                       |                                                 | AP                    |                        |                                                        |              |                                    |                |                      |                            |                                           |
| Sampling method: | g metho                   | d:                                              | Impeller pun          | ip (purging)           | Impeller pump (purging) and disposable bailer sampling | ble bailer   | sampling                           |                |                      |                            |                                           |
|                  | Boreh                     | Borehole Detail                                 |                       |                        |                                                        |              |                                    | Sampling       | Sampling and Testing | bu                         |                                           |
| BH No.           | Base of<br>well<br>(mbgl) | Top of<br>slotted<br>response<br>zone<br>(mbgl) | Depth to<br>GW (mbgl) | Purge<br>Volume<br>(L) | Time                                                   | Temp<br>(°C) | DO<br>(mg/L)                       | SPC<br>(ms/cm) | F                    | Redox<br>Potential<br>(mV) | Sample Detail (Colour/Odour/<br>Turbidity |
| CH03             | 2.13                      | 1                                               | 0.64                  | 0.17                   | 13:30                                                  | 15.3         | 5.27                               | 0.29           | 8.40                 | 8.0                        | Turbid brown                              |
|                  |                           |                                                 |                       | 0.35                   |                                                        | 15.4         | 2.32                               | 0.54           | 10.76                | 33.3                       |                                           |
|                  |                           |                                                 |                       | 0.70                   |                                                        | 15.4         | 1.60                               | 0.58           | 11.25                | -46.3                      |                                           |
|                  |                           |                                                 |                       | 1.0                    |                                                        | 15.4         | 1.07                               | 0.70           | 11.52                | -57.9                      |                                           |
|                  |                           |                                                 |                       |                        |                                                        |              |                                    |                |                      |                            |                                           |
|                  |                           |                                                 |                       |                        |                                                        |              |                                    |                |                      |                            |                                           |
|                  |                           |                                                 |                       |                        |                                                        |              |                                    |                |                      |                            |                                           |
|                  |                           |                                                 |                       |                        |                                                        |              |                                    |                |                      |                            |                                           |

### **15. CHEMICAL LABORATORY TEST RESULTS**



Evangelos Kafantaris Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

#### t: 020 88112880

e: evangelos@conceptconsultants.co.uk

# Analytical Report Number : 17-45957

| Project / Site name: | Triton Square                       | Samples received on:   | 14/04/2017 |
|----------------------|-------------------------------------|------------------------|------------|
| Your job number:     | 17-2961                             | Samples instructed on: | 18/04/2017 |
| Your order number:   | CL1018                              | Analysis completed by: | 27/04/2017 |
| Report Issue Number: | 1                                   | Report issued on:      | 27/04/2017 |
| Samples Analysed:    | 3 leachate samples - 4 soil samples |                        |            |

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

| soils     | <ul> <li>4 weeks from reporting</li> </ul> |
|-----------|--------------------------------------------|
| leachates | - 2 weeks from reporting                   |
| waters    | - 2 weeks from reporting                   |
| asbestos  | - 6 months from reporting                  |

Excel copies of reports are only valid when accompanied by this PDF certificate.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.



Croxley Green Business Park, Watford, Herts, WD18 8YS

7 Woodshots Meadow,

i2 Analytical Ltd.

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com





#### Analytical Report Number: 17-45957 Project / Site name: Triton Square

Your Order No: CL1018

| Lab Sample Number                                                   |                |                       |                         | 736095        | 736096           | 736097           | 736098           |   |
|---------------------------------------------------------------------|----------------|-----------------------|-------------------------|---------------|------------------|------------------|------------------|---|
| Sample Reference                                                    |                |                       |                         | BH101         | BH101            | BH101            | BH101            |   |
| Sample Number                                                       |                |                       |                         | None Supplied | None Supplied    | None Supplied    | None Supplied    |   |
| Depth (m)                                                           |                |                       |                         | 0.50          | 1.00             | 2.50             | 8.00             |   |
| Date Sampled                                                        |                |                       |                         | 11/04/2017    | 11/04/2017       | 11/04/2017       | 11/04/2017       |   |
| Time Taken                                                          |                |                       |                         | None Supplied | None Supplied    | None Supplied    | None Supplied    |   |
| Analytical Parameter<br>(Soil Analysis)                             | Units          | Limit of<br>detection | Accreditation<br>Status |               |                  |                  |                  |   |
| Stone Content                                                       | %              | 0.1                   | NONE                    | < 0.1         | < 0.1            | < 0.1            | < 0.1            |   |
| Moisture Content                                                    | %              | N/A                   | NONE                    | 13            | 17               | 4.2              | 16               |   |
| Total mass of sample received                                       | kg             | 0.001                 | NONE                    | 2.0           | 2.0              | 2.0              | 2.0              |   |
|                                                                     |                |                       |                         |               |                  |                  |                  |   |
| Asbestos in Soil                                                    | Туре           | N/A                   | ISO 17025               | Not-detected  | Not-detected     | -                | -                |   |
|                                                                     |                |                       |                         |               |                  |                  |                  |   |
| General Inorganics                                                  |                | N1/A                  |                         | 0.5           | 0.7              | 0.0              |                  | 1 |
| pH - Automated                                                      | pH Units       | N/A                   | MCERTS                  | 9.5           | 8.7              | 8.2              | 7.7              |   |
| Total Cyanide                                                       | mg/kg          | 1                     | MCERTS                  | < 1           | < 1              | < 1              | 1                |   |
| Total Organic Carbon (TOC)                                          | %              | 0.1                   | MCERTS                  | 0.6           | 0.6              | 0.2              | 0.2              |   |
| Total Phenols                                                       |                |                       |                         |               |                  |                  |                  |   |
| Total Phenols (monohydric)                                          | mg/kg          | 1                     | MCERTS                  | < 1.0         | < 1.0            | < 1.0            | < 1.0            |   |
| Total Phenois (monorigane)                                          | iiig/kg        |                       | PICENTS                 | < 1.0         | < 1.0            | < 1.0            | < 1.0            |   |
| Speciated PAHs                                                      |                |                       |                         |               |                  |                  |                  |   |
| Naphthalene                                                         | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | < 0.05           | < 0.05           | < 0.05           |   |
| Acenaphthylene                                                      | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | < 0.05           | < 0.05           | < 0.05           |   |
| Acenaphthene                                                        | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | < 0.05           | < 0.05           | < 0.05           |   |
| Fluorene                                                            | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | < 0.05           | < 0.05           | < 0.05           |   |
| Phenanthrene                                                        | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | 0.08             | < 0.05           | < 0.05           |   |
| Anthracene                                                          | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | < 0.05           | < 0.05           | < 0.05           |   |
| Fluoranthene                                                        | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | 0.09             | < 0.05           | < 0.05           |   |
| Pyrene                                                              | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | 0.08             | < 0.05           | < 0.05           |   |
| Benzo(a)anthracene                                                  | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | 0.05             | < 0.05           | < 0.05           |   |
| Chrysene                                                            | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | 0.06             | < 0.05           | < 0.05           |   |
| Benzo(b)fluoranthene                                                | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | < 0.05           | < 0.05           | < 0.05           |   |
| Benzo(k)fluoranthene                                                | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | < 0.05           | < 0.05           | < 0.05           |   |
| Benzo(a)pyrene                                                      | mg/kg          | 0.05                  | MCERTS                  | < 0.05        | < 0.05           | < 0.05           | < 0.05           |   |
| Indeno(1,2,3-cd)pyrene                                              | mg/kg          | 0.05                  | MCERTS<br>MCERTS        | < 0.05        | < 0.05<br>< 0.05 | < 0.05<br>< 0.05 | < 0.05<br>< 0.05 |   |
| Dibenz(a,h)anthracene<br>Benzo(ghi)perylene                         | mg/kg<br>mg/kg | 0.05                  | MCERTS                  | < 0.05        | < 0.05           | < 0.05           | < 0.05           |   |
| Denzo(gni)perviene                                                  | iiig/kg        | 0.05                  | MCLKIJ                  | < 0.05        | < 0.05           | < 0.05           | < 0.05           |   |
| Total PAH                                                           |                |                       |                         |               |                  |                  |                  |   |
| Speciated Total EPA-16 PAHs                                         | mg/kg          | 0.8                   | MCERTS                  | < 0.80        | < 0.80           | < 0.80           | < 0.80           |   |
|                                                                     |                | -                     |                         | -             | <u>-</u>         | -                |                  |   |
| Heavy Metals / Metalloids                                           |                |                       |                         |               |                  |                  |                  |   |
| Antimony (aqua regia extractable)                                   | mg/kg          | 1                     | ISO 17025               | 1.8           | 2.0              | < 1.0            | 2.4              |   |
| Arsenic (aqua regia extractable)                                    | mg/kg          | 1                     | MCERTS                  | 13            | 13               | 8.2              | 13               |   |
| Beryllium (aqua regia extractable)                                  | mg/kg          | 0.06                  | MCERTS                  | 0.61          | 0.73             | 0.48             | 1.0              |   |
| Boron (water soluble)                                               | mg/kg          | 0.2                   | MCERTS                  | 1.3           | 1.5              | 0.7              | 1.2              |   |
| Cadmium (aqua regia extractable)                                    | mg/kg          | 0.2                   | MCERTS                  | < 0.2         | 0.3              | < 0.2            | < 0.2            |   |
| Chromium (hexavalent)                                               | mg/kg          | 4                     | MCERTS                  | < 4.0         | < 4.0            | < 4.0            | < 4.0            |   |
| Chromium (aqua regia extractable)                                   | mg/kg          | 1                     | MCERTS                  | 23            | 36               | 23               | 33               |   |
| Copper (aqua regia extractable)                                     | mg/kg          | 1                     | MCERTS                  | 30            | 28               | 13               | 22               |   |
| Lead (aqua regia extractable)                                       | mg/kg          | 1<br>0.3              | MCERTS<br>MCERTS        | 120           | 120              | 15               | 17               |   |
| Mercury (aqua regia extractable)<br>Nickel (aqua regia extractable) | mg/kg<br>mg/kg | 0.3                   | MCERTS                  | 0.4           | 0.8<br>23        | < 0.3<br>22      | < 0.3<br>47      |   |
| Selenium (aqua regia extractable)                                   | mg/kg<br>mg/kg | 1                     | MCERTS                  | < 1.0         | < 1.0            | < 1.0            | < 1.0            |   |
| Vanadium (aqua regia extractable)                                   | mg/kg<br>mg/kg | 1                     | MCERTS                  | 39            | 43               | 29               | < 1.0<br>57      |   |
| Zinc (aqua regia extractable)                                       | mg/kg          | 1                     | MCERTS                  | 42            | 89               | 23               | 77               |   |
|                                                                     | mg/kg          |                       | I ICLINIS               | 14            | 55               | <i>L1</i>        | ,,               |   |





Project / Site name: Triton Square Your Order No: CL1018

| Lab Sample Number                       |       | 736095                | 736096                  | 736097        | 736098        |               |               |  |
|-----------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|--|
| Sample Reference                        | BH101 | BH101                 | BH101                   | BH101         |               |               |               |  |
| Sample Number                           |       |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Depth (m)                               |       |                       |                         | 0.50          | 1.00          | 2.50          | 8.00          |  |
| Date Sampled                            |       |                       |                         | 11/04/2017    | 11/04/2017    | 11/04/2017    | 11/04/2017    |  |
| Time Taken                              |       |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Analytical Parameter<br>(Soil Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |  |
| Monoaromatics                           |       |                       |                         |               |               |               |               |  |
| Benzene                                 | ug/kg | 1                     | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         |  |
| Toluene                                 | µg/kg | 1                     | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         |  |
| Ethylbenzene                            | µg/kg | 1                     | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         |  |
| p & m-xylene                            | µg/kg | 1                     | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         |  |
| o-xylene                                | µg/kg | 1                     | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         |  |
| MTBE (Methyl Tertiary Butyl Ether)      | µg/kg | 1                     | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         |  |

#### Petroleum Hydrocarbons

PCB Congener 156

PCB Congener 157

PCB Congener 167

PCB Congener 169

PCB Congener 189

Total PCBs

| TPH-CWG - Aliphatic >EC5 - EC6    | mg/kg | 0.001 | MCERTS | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
|-----------------------------------|-------|-------|--------|---------|---------|---------|---------|--|
| TPH-CWG - Aliphatic >EC6 - EC8    | mg/kg | 0.001 | MCERTS | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| TPH-CWG - Aliphatic >EC8 - EC10   | mg/kg | 0.001 | MCERTS | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| TPH-CWG - Aliphatic >EC10 - EC12  | mg/kg | 1     | MCERTS | < 1.0   | < 1.0   | < 1.0   | < 1.0   |  |
| TPH-CWG - Aliphatic >EC12 - EC16  | mg/kg | 2     | MCERTS | < 2.0   | 3.4     | < 2.0   | 2.5     |  |
| TPH-CWG - Aliphatic >EC16 - EC21  | mg/kg | 8     | MCERTS | < 8.0   | < 8.0   | < 8.0   | < 8.0   |  |
| TPH-CWG - Aliphatic >EC21 - EC35  | mg/kg | 8     | MCERTS | < 8.0   | < 8.0   | < 8.0   | 23      |  |
| TPH-CWG - Aliphatic > EC35 - EC44 | mg/kg | 8.4   | NONE   | < 8.4   | < 8.4   | < 8.4   | 11      |  |
| TPH-CWG - Aliphatic (EC5 - EC35)  | mg/kg | 10    | MCERTS | < 10    | 10      | < 10    | 29      |  |
| TPH-CWG - Aliphatic (EC5 - EC44)  | mg/kg | 10    | NONE   | < 10    | 10      | < 10    | 40      |  |
|                                   |       |       |        |         |         |         |         |  |
| TPH-CWG - Aromatic >EC5 - EC7     | mg/kg | 0.001 | MCERTS | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| TPH-CWG - Aromatic >EC7 - EC8     | mg/kg | 0.001 | MCERTS | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| TPH-CWG - Aromatic >EC8 - EC10    | mg/kg | 0.001 | MCERTS | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| TPH-CWG - Aromatic >EC10 - EC12   | mg/kg | 1     | MCERTS | < 1.0   | < 1.0   | < 1.0   | < 1.0   |  |
| TPH-CWG - Aromatic >EC12 - EC16   | mg/kg | 2     | MCERTS | < 2.0   | 4.1     | < 2.0   | < 2.0   |  |
| TPH-CWG - Aromatic >EC16 - EC21   | mg/kg | 10    | MCERTS | < 10    | < 10    | < 10    | < 10    |  |
| TPH-CWG - Aromatic >EC21 - EC35   | mg/kg | 10    | MCERTS | < 10    | < 10    | < 10    | < 10    |  |
| TPH-CWG - Aromatic > EC35 - EC44  | mg/kg | 8.4   | NONE   | < 8.4   | < 8.4   | < 8.4   | < 8.4   |  |
| TPH-CWG - Aromatic (EC5 - EC35)   | mg/kg | 10    | MCERTS | < 10    | 12      | < 10    | < 10    |  |
| TPH-CWG - Aromatic (EC5 - EC44)   | mg/kg | 10    | NONE   | < 10    | 12      | < 10    | < 10    |  |
|                                   |       |       |        |         |         |         |         |  |
| PCBs                              |       |       |        |         |         |         |         |  |
| PCB Congener 077                  | mg/kg | 0.001 | NONE   | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| PCB Congener 081                  | mg/kg | 0.001 | NONE   | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| PCB Congener 105                  | mg/kg | 0.001 | NONE   | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| PCB Congener 114                  | mg/kg | 0.001 | NONE   | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| PCB Congener 118                  | mg/kg | 0.001 | NONE   | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| PCB Congener 123                  | mg/kg | 0.001 | NONE   | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |
| PCB Congener 126                  | mg/kg | 0.001 | NONE   | < 0.001 | < 0.001 | < 0.001 | < 0.001 |  |

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.012

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.012

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.012

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.012

0.001

0.001

0.001

0.001

0.001

0.012

NONE

NONE

NONE

NONE

NONE

NONE

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg





#### Project / Site name: Triton Square

#### Your Order No: CL1018

| Lab Sample Number                           | 736099     | 736100                | 736101                  |               |               |               |  |
|---------------------------------------------|------------|-----------------------|-------------------------|---------------|---------------|---------------|--|
| Sample Reference                            |            |                       |                         | BH101         | BH101         | BH101         |  |
| Sample Number                               |            |                       | None Supplied           | None Supplied | None Supplied |               |  |
| Depth (m)                                   |            |                       | 0.50                    | 1.00          | 8.00          |               |  |
| Date Sampled                                |            |                       |                         | 11/04/2017    | 11/04/2017    | 11/04/2017    |  |
| Time Taken                                  | Time Taken |                       |                         | None Supplied | None Supplied | None Supplied |  |
| Analytical Parameter<br>(Leachate Analysis) | Units      | Limit of<br>detection | Accreditation<br>Status |               |               |               |  |

#### 10:1 WAC Leachate

| 10.1 WAC LEachate        |      |         |           |          |          |          |  |
|--------------------------|------|---------|-----------|----------|----------|----------|--|
| Arsenic                  | mg/l | 0.0011  | ISO 17025 | 0.0086   | 0.0049   | < 0.0011 |  |
| Barium                   | mg/l | 0.00005 | ISO 17025 | 0.0105   | 0.0099   | 0.0023   |  |
| Cadmium                  | mg/l | 0.00008 | ISO 17025 | < 0.0001 | < 0.0001 | < 0.0001 |  |
| Chromium                 | mg/l | 0.0004  | ISO 17025 | 0.0026   | 0.0008   | 0.0007   |  |
| Copper                   | mg/l | 0.0007  | ISO 17025 | 0.020    | 0.025    | 0.0034   |  |
| Mercury                  | mg/l | 0.0005  | ISO 17025 | < 0.0005 | < 0.0005 | < 0.0005 |  |
| Molybdenum               | mg/l | 0.0004  | ISO 17025 | 0.0042   | 0.0142   | 0.0015   |  |
| Nickel                   | mg/l | 0.0003  | ISO 17025 | 0.0021   | 0.0007   | 0.0004   |  |
| Lead                     | mg/l | 0.001   | ISO 17025 | 0.0035   | 0.0049   | 0.0019   |  |
| Antimony                 | mg/l | 0.0017  | ISO 17025 | < 0.0017 | < 0.0017 | < 0.0017 |  |
| Selenium                 | mg/l | 0.004   | ISO 17025 | < 0.0040 | < 0.0040 | < 0.0040 |  |
| Zinc                     | mg/l | 0.0004  | ISO 17025 | 0.0089   | 0.0058   | 0.0015   |  |
| Chloride                 | mg/l | 0.15    | ISO 17025 | 1.8      | 1.1      | 1.4      |  |
| Fluoride                 | mg/l | 0.05    | NONE      | 0.16     | 0.16     | 0.17     |  |
| Sulphate                 | mg/l | 0.1     | ISO 17025 | 7.2      | 11       | 6.5      |  |
| Total dissolved solids   | mg/l | 4       | NONE      | 71       | 96       | 30       |  |
| Total monohydric phenols | mg/l | 0.01    | ISO 17025 | < 0.010  | < 0.010  | < 0.010  |  |
| Dissolved organic carbon | mg/l | 0.1     | NONE      | 2.97     | 7.36     | 1.82     |  |

#### 10:1 WAC Leachate

| Arsenic                  | mg/kg | 0.011  | NONE | 0.0518   | 0.0301   | < 0.0110 |  |
|--------------------------|-------|--------|------|----------|----------|----------|--|
| Barium                   | mg/kg | 0.0005 | NONE | 0.0631   | 0.0612   | 0.0131   |  |
| Cadmium                  | mg/kg | 0.0008 | NONE | < 0.0008 | < 0.0008 | < 0.0008 |  |
| Chromium                 | mg/kg | 0.004  | NONE | 0.016    | 0.0048   | 0.0042   |  |
| Copper                   | mg/kg | 0.007  | NONE | 0.12     | 0.15     | 0.019    |  |
| Mercury                  | mg/kg | 0.005  | NONE | < 0.0050 | < 0.0050 | < 0.0050 |  |
| Molybdenum               | mg/kg | 0.004  | NONE | 0.0251   | 0.0872   | 0.0088   |  |
| Nickel                   | mg/kg | 0.003  | NONE | 0.013    | 0.0046   | < 0.0030 |  |
| Lead                     | mg/kg | 0.01   | NONE | 0.021    | 0.030    | 0.011    |  |
| Antimony                 | mg/kg | 0.017  | NONE | < 0.017  | < 0.017  | < 0.017  |  |
| Selenium                 | mg/kg | 0.04   | NONE | < 0.040  | < 0.040  | < 0.040  |  |
| Zinc                     | mg/kg | 0.004  | NONE | 0.054    | 0.036    | 0.0088   |  |
| Chloride                 | mg/kg | 1.5    | NONE | 11       | 6.9      | 8.2      |  |
| Fluoride                 | mg/kg | 0.5    | NONE | 0.98     | 1.0      | 0.98     |  |
| Sulphate                 | mg/kg | 1      | NONE | 43       | 68       | 38       |  |
| Total dissolved solids   | mg/kg | 40     | NONE | 430      | 590      | 170      |  |
| Total monohydric phenols | mg/kg | 0.1    | NONE | < 0.10   | < 0.10   | < 0.10   |  |
| Dissolved organic carbon | mg/kg | 1      | NONE | 17.8     | 45.3     | 10.5     |  |

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.





#### Project / Site name: Triton Square

\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Sample Description *                        |
|----------------------|---------------------|------------------|-----------|---------------------------------------------|
| 736095               | BH101               | None Supplied    | 0.50      | Brown clay and sand with gravel and rubble. |
| 736096               | BH101               | None Supplied    | 1.00      | Brown loam and clay with gravel and rubble. |
| 736097               | BH101               | None Supplied    | 2.50      | Brown gravelly sand.                        |
| 736098               | BH101               | None Supplied    | 8.00      | Brown clay and sand.                        |





Project / Site name: Triton Square

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

| Analytical Test Name                                | Analytical Method Description                                                                                                                                   | Analytical Method Reference                                                                                           | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Asbestos identification in soil                     | Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.                                           | In house method based on HSG 248                                                                                      | A001-PL          | D                     | ISO 17025               |
| Boron, water soluble, in soil                       | Determination of water soluble boron in soil by hot water extract followed by ICP-OES.                                                                          | In-house method based on Second Site<br>Properties version 3                                                          | L038-PL          | D                     | MCERTS                  |
| BS EN 12457-2 (10:1) Leachate Prep                  | 10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.                                       | In-house method based on BSEN12457-2.                                                                                 | L043-PL          | W                     | NONE                    |
| BTEX and MTBE in soil<br>(Monoaromatics)            | Determination of BTEX in soil by headspace GC-<br>MS.                                                                                                           | In-house method based on USEPA8260                                                                                    | L073B-PL         | W                     | MCERTS                  |
| Chloride 10:1 WAC                                   | Determination of Chloride colorimetrically by discrete analyser.                                                                                                | In house based on MEWAM Method ISBN 0117516260.                                                                       | L082-PL          | w                     | ISO 17025               |
| D.O. for Gravimetric Quant if<br>Screen/ID positive | Dependent option for Gravimetric Quant if<br>Screen/ID positive scheduled.                                                                                      | In house asbestos methods A001 & A006.                                                                                | A006-PL          | D                     | NONE                    |
| Dissolved organic carbon 10:1 WAC                   | Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.                                                                               | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L037-PL          | w                     | NONE                    |
| Fluoride 10:1 WAC                                   | Determination of fluoride in leachate by 1:1ratio<br>with a buffer solution followed by Ion Selective<br>Electrode.                                             | In-house method based on Use of Total<br>Ionic Strength Adjustment Buffer for<br>Electrode Determination"             | L033-PL          | W                     | NONE                    |
| Hexavalent chromium in soil                         | Determination of hexavalent chromium in soil by<br>extraction in water then by acidification, addition of<br>1,5 diphenylcarbazide followed by colorimetry.     | In-house method                                                                                                       | L080-PL          | W                     | MCERTS                  |
| Metals in leachate by ICP-OES                       | Determination of metals in leachate by acidification followed by ICP-OES.                                                                                       | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil""                           | L039-PL          | W                     | ISO 17025               |
| Metals in soil by ICP-OES                           | Determination of metals in soil by aqua-regia digestion followed by ICP-OES.                                                                                    | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L038-PL          | D                     | MCERTS                  |
| Moisture Content                                    | Moisture content, determined gravimetrically.                                                                                                                   | In-house method based on BS1377 Part 2,<br>1990, Chemical and Electrochemical Tests                                   | L019-UK/PL       | W                     | NONE                    |
| Monohydric phenols 10:1 WAC                         | Determination of phenols in leachate by distillation followed by colorimetry.                                                                                   | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L080-PL          | W                     | ISO 17025               |
| Monohydric phenols in soil                          | Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.                                          | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (skalar) | L080-PL          | W                     | MCERTS                  |
| PCBs WHO 12 in soil                                 | Determination of PCBs (WHO-12 Congeners) by GC-<br>MS.                                                                                                          | In-house method based on USEPA 8082                                                                                   | L027-PL          | D                     | NONE                    |
| pH in soil (automated)                              | Determination of pH in soil by addition of water<br>followed by automated electrometric<br>measurement.                                                         | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                   | L099-PL          | D                     | MCERTS                  |
| Speciated EPA-16 PAHs in soil                       | Determination of PAH compounds in soil by<br>extraction in dichloromethane and hexane followed<br>by GC-MS with the use of surrogate and internal<br>standards. | In-house method based on USEPA 8270                                                                                   | L064-PL          | D                     | MCERTS                  |

Iss No 17-45957-1 Triton Square 17-2961

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.





#### Project / Site name: Triton Square

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

| Analytical Test Name                     | Analytical Method Description                                                                                                       | Analytical Method Reference                                                                                           | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Stones content of soil                   | Standard preparation for all samples unless<br>otherwise detailed. Gravimetric determination of<br>stone > 10 mm as % dry weight.   | In-house method based on British Standard<br>Methods and MCERTS requirements.                                         | L019-UK/PL       | D                     | NONE                    |
| Sulphate 10:1 WAC                        | Determination of sulphate in leachate by ICP-OES                                                                                    | In-house method based on MEWAM 1986<br>Methods for the Determination of Metals in<br>Soil""                           | L039-PL          | W                     | ISO 17025               |
| Total cyanide in soil                    | Determination of total cyanide by distillation followed by colorimetry.                                                             | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar) | L080-PL          | W                     | MCERTS                  |
| Total dissolved solids 10:1 WAC          | Determination of total dissolved solids in water by electrometric measurement.                                                      | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L004-PL          | W                     | NONE                    |
| Total organic carbon (Automated) in soil | Determination of organic matter in soil by oxidising<br>with potassium dichromate followed by titration<br>with iron (II) sulphate. | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests""                                 | L009-PL          | D                     | MCERTS                  |
| TPH in (Soil)                            | Determination of TPH bands by HS-GC-MS/GC-FID                                                                                       | In-house method, TPH with carbon<br>banding.                                                                          | L076-PL          | D                     | NONE                    |
| TPHCWG (Soil)                            | Determination of hexane extractable hydrocarbons<br>in soil by GC-MS/GC-FID.                                                        | In-house method                                                                                                       | L076-PL          | W                     | MCERTS                  |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



Concept Life Sciences is a trading name of Scientific Analysis Laboratories registered in England and Wales (No 2514788)

# **Concept Life Sciences**

# **Certificate of Analysis**

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2404

Report Number: 652368-1

Date of Report: 12-May-2017

Customer: i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Croxley Green Hertfordshire WD18 8YS

Customer Contact: Project Management

Customer Job Reference: 17-47458 Customer Purchase Order: 8853, 17-47458 Customer Site Reference: Triton Square Date Job Received at Concept: 08-May-2017 Date Analysis Started: 10-May-2017 Date Analysis Completed: 12-May-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept SOPs



Report checked and authorised by : Lauren Clarke Project Manager Issued by : Lauren Clarke Project Manager

| Concept Reference:           | 652368      |               |            |             |                |  |  |  |
|------------------------------|-------------|---------------|------------|-------------|----------------|--|--|--|
| Project Site:                | Triton Squa | Triton Square |            |             |                |  |  |  |
| Customer Reference:          | 17-47458    |               |            |             |                |  |  |  |
| Gas Bag<br>Hydrogen Sulphide | Analysed as | s Gas Ba      | 9          |             |                |  |  |  |
|                              |             |               | Concep     | t Reference | 652368 001     |  |  |  |
|                              |             | Custor        | ner Sample | e Reference | 744164 (BH101) |  |  |  |
|                              |             |               | T          | Fest Sample | AR             |  |  |  |
|                              |             |               | Da         | te Sampled  | 05-MAY-2017    |  |  |  |
| Determinand                  | Method      | LOD           | Units      | Symbol      |                |  |  |  |
| Hydrogen sulphide            | GC/MS (DI)  | 10            | ppm        | N           | <10            |  |  |  |

| Concept Reference:  | 652368      |                |        |              |             |
|---------------------|-------------|----------------|--------|--------------|-------------|
| Project Site:       | Triton Squa | re             |        |              |             |
| Customer Reference: | 17-47458    |                |        |              |             |
| Gas Bag             | Analysed as | s Gas Bag      |        |              |             |
| Bulk Gas Screen     |             |                |        |              |             |
|                     |             |                | Concep | ot Reference | 652368 001  |
|                     | e Reference | 744164 (BH101) |        |              |             |
|                     |             |                |        | Test Sample  | AR          |
|                     |             |                | Da     | ate Sampled  | 05-MAY-2017 |
| Determinand         | Method      | LOD            | Units  | Symbol       |             |
| Carbon Dioxide      | GC/TCD      | 0.01           | %      | N            | 0.06        |
| Carbon Monoxide     | GC/TCD      | 0.01           | %      | N            | <0.01       |
| Hydrogen            | GC/TCD      | 0.01           | %      | N            | <0.01       |
| Methane             | GC/TCD      | 0.02           | %      | N            | <0.02       |
| Nitrogen            | GC/TCD      | 0.01           | %      | N            | 78          |
| Oxygen              | GC/TCD      | 0.01           | %      | N            | 22          |

# Index to symbols used in 652368-1

| Value | Description                     |
|-------|---------------------------------|
| AR    | As Received                     |
| Ν     | Analysis is not UKAS accredited |



Evangelos Kafantaris Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

#### t: 020 88112880

e: evangelos@conceptconsultants.co.uk

# Analytical Report Number : 17-47458

| Project / Site name: | Triton Square                    | Samples received on:   | 05/05/2017 |
|----------------------|----------------------------------|------------------------|------------|
| Your job number:     | 17-2961                          | Samples instructed on: | 05/05/2017 |
| Your order number:   | CL1036                           | Analysis completed by: | 16/05/2017 |
| Report Issue Number: | 1                                | Report issued on:      | 16/05/2017 |
| Samples Analysed:    | 1 gases sample - 3 water samples |                        |            |

M Signed:

Emma Winter Assistant Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

| soils     | <ul> <li>4 weeks from reporting</li> </ul> |
|-----------|--------------------------------------------|
| leachates | - 2 weeks from reporting                   |
| waters    | - 2 weeks from reporting                   |
| asbestos  | - 6 months from reporting                  |

Excel copies of reports are only valid when accompanied by this PDF certificate.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.



Croxley Green Business Park, Watford, Herts, WD18 8YS t: 01923 225404

7 Woodshots Meadow,

**f:** 01923 237404

i2 Analytical Ltd.

e: reception@i2analytical.com





Project / Site name: Triton Square

| Lab Sample Number                              |              |                    |                         | 744161        | 744162           | 744163           |          |
|------------------------------------------------|--------------|--------------------|-------------------------|---------------|------------------|------------------|----------|
| Sample Reference                               |              |                    |                         | CH02          | CH03             | BH101            |          |
| Sample Number                                  |              |                    |                         | None Supplied | None Supplied    | None Supplied    |          |
| Depth (m)                                      |              |                    |                         | None Supplied | None Supplied    | None Supplied    |          |
| Date Sampled                                   |              |                    |                         | 05/05/2017    | 05/05/2017       | 05/05/2017       |          |
| Time Taken                                     |              |                    |                         | None Supplied | None Supplied    | None Supplied    |          |
|                                                |              |                    | A                       |               |                  |                  |          |
| Analytical Parameter                           | c            | det Lir            | S S S                   |               |                  |                  |          |
| (Water Analysis)                               | Units        | ect                | dit                     |               |                  |                  |          |
| (water Analysis)                               | v            | Limit of detection | Accreditation<br>Status |               |                  |                  |          |
|                                                |              |                    | ă                       |               |                  |                  |          |
| - ··· ·                                        |              |                    |                         |               |                  |                  |          |
| General Inorganics                             | all the bar  | NI/A               | ISO 17025               | 11.0          | 11.3             | 7.5              | I        |
| PH<br>Total Cyanide                            | pH Units     | N/A<br>10          | ISO 17025<br>ISO 17025  | < 10          | < 10             | < 10             |          |
| Sulphate as SO <sub>4</sub>                    | μg/l<br>μg/l | 45                 | ISO 17025<br>ISO 17025  | 136000        | 27900            | 81500            |          |
| Chloride                                       |              | 0.15               | ISO 17025               | 110           | 73               | 96               |          |
| Ammoniacal Nitrogen as N                       | mg/l<br>μg/l | 15                 | ISO 17025               | 5600          | 5000             | 140              |          |
| Dissolved Organic Carbon (DOC)                 | mg/l         | 0.1                | NONE                    | 14.6          | 31.4             | 3.89             |          |
| Nitrate as N                                   | mg/l         | 0.01               | ISO 17025               | 0.30          | 0.24             | 2.18             |          |
| Nitrate as NO <sub>3</sub>                     | mg/l         | 0.01               | ISO 17025<br>ISO 17025  | 1.33          | 1.06             | 9.67             |          |
| Hardness - Total                               | mgCaCO3/I    | 1                  | ISO 17025               | 185           | 47.6             | 253              |          |
|                                                | Ingecessi    |                    |                         |               |                  |                  | •        |
| Total Phenols                                  |              |                    |                         |               |                  |                  |          |
| Total Phenols (monohydric)                     | µg/l         | 10                 | ISO 17025               | 23            | < 10             | < 10             |          |
|                                                |              |                    |                         |               |                  |                  |          |
| Speciated PAHs                                 |              |                    |                         |               |                  |                  |          |
| Naphthalene                                    | µg/l         | 0.01               | ISO 17025               | < 0.01        | < 0.01           | < 0.01           |          |
| Acenaphthylene                                 | µg/l         | 0.01               | ISO 17025               | < 0.01        | < 0.01           | < 0.01           |          |
| Acenaphthene                                   | µg/l         | 0.01               | ISO 17025               | < 0.01        | < 0.01           | < 0.01           |          |
| Fluorene                                       | µg/l         | 0.01               | ISO 17025               | < 0.01        | < 0.01           | < 0.01           |          |
| Phenanthrene                                   | µg/l         | 0.01               | ISO 17025               | < 0.01        | < 0.01           | < 0.01           |          |
| Anthracene                                     | µg/l         | 0.01               | ISO 17025               | < 0.01        | < 0.01           | < 0.01           |          |
| Fluoranthene                                   | µg/l         | 0.01               | ISO 17025               | < 0.01        | < 0.01           | < 0.01           |          |
| Pyrene                                         | µg/l         | 0.01               | ISO 17025               | < 0.01        | < 0.01           | < 0.01           |          |
| Benzo(a)anthracene                             | µg/l         | 0.01               | ISO 17025               | < 0.01        | < 0.01           | < 0.01           |          |
| Chrysene<br>Benzo(b)fluoranthene               | µg/l         | 0.01               | ISO 17025               | < 0.01        | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 |          |
|                                                | µg/l         |                    | ISO 17025               |               |                  | 1 1              |          |
| Benzo(k)fluoranthene<br>Benzo(a)pyrene         | µg/l         | 0.01               | ISO 17025<br>ISO 17025  | < 0.01        | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | <b> </b> |
| Indeno(1,2,3-cd)pyrene                         | μg/l<br>μg/l | 0.01               | NONE                    | < 0.01        | < 0.01           | < 0.01           |          |
| Dibenz(a,h)anthracene                          | μg/l         | 0.01               | NONE                    | < 0.01        | < 0.01           | < 0.01           |          |
| Benzo(ghi)perylene                             | µg/l         | 0.01               | NONE                    | < 0.01        | < 0.01           | < 0.01           |          |
| · · · · · · / · · · · · · · · · · · · ·        | 1 P3/·       |                    |                         |               |                  |                  |          |
| Total PAH                                      |              | -                  |                         |               |                  |                  |          |
| Total EPA-16 PAHs                              | µg/l         | 0.16               | NONE                    | < 0.16        | < 0.16           | < 0.16           |          |
|                                                |              |                    |                         |               |                  |                  |          |
| Heavy Metals / Metalloids                      |              | 0.4                | 100 1700-               | 2.6           | 0.0              | 0.0              |          |
| Antimony (dissolved)                           | µg/l         | 0.4                | ISO 17025               | 2.6           | 0.8              | 0.6              | <b> </b> |
| Arsenic (dissolved)<br>Beryllium (dissolved)   | µg/l         | 0.15               | ISO 17025<br>ISO 17025  | 1.87<br>< 0.1 | 5.32<br>< 0.1    | 0.60<br>< 0.1    |          |
| Cadmium (dissolved)                            | µg/l         | 0.1                | ISO 17025<br>ISO 17025  | < 0.02        | < 0.1            | < 0.1<br>0.04    | <b> </b> |
|                                                | µg/l         |                    |                         | < 0.02<br>67  | < 0.02<br>19     | 90               |          |
| Calcium (dissolved)<br>Chromium (hexavalent)   | mg/l         | 0.012<br>5         | ISO 17025<br>ISO 17025  | < 5.0         | < 5.0            | < 5.0            | <b> </b> |
| Chromium (nexavalent)<br>Chromium (dissolved)  | μg/l<br>μg/l | 0.2                | ISO 17025<br>ISO 17025  | < 5.0         | < 5.0            | < 5.0            | <b> </b> |
| Copper (dissolved)                             | μg/I<br>μg/I | 0.2                | ISO 17025<br>ISO 17025  | 6.7           | 34               | 2.5              | <b> </b> |
| Lead (dissolved)                               | μg/l         | 0.3                | ISO 17025               | 0.6           | 0.9              | < 0.2            | <b> </b> |
| Magnesium (dissolved)                          | mg/l         | 0.2                | ISO 17025               | 4.6           | 0.072            | 6.7              |          |
| Magnesium (dissolved)<br>Manganese (dissolved) | μg/l         | 0.005              | ISO 17025<br>ISO 17025  | 27            | 2.2              | 100              |          |
| Mercury (dissolved)                            | µg/l         | 0.05               | ISO 17025               | 0.14          | 0.09             | 0.17             |          |
| Nickel (dissolved)                             | μg/l         | 0.05               | ISO 17025               | 4.7           | 7.1              | 2.9              |          |
| Selenium (dissolved)                           | μg/l         | 0.6                | ISO 17025               | 1.7           | 3.5              | 5.7              |          |
| Vanadium (dissolved)                           | μg/l         | 0.2                | ISO 17025               | 3.8           | 93               | 2.2              |          |
| Zinc (dissolved)                               | μg/l         | 0.5                | ISO 17025               | 32            | 120              | 4.5              | <b>i</b> |





Project / Site name: Triton Square

| Your Order No: CL1036                    |       |                       |                         |               |               |               |  |
|------------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|--|
| Lab Sample Number                        |       |                       |                         | 744161        | 744162        | 744163        |  |
| Sample Reference                         |       |                       |                         | CH02          | CH03          | BH101         |  |
| Sample Number                            |       |                       |                         | None Supplied | None Supplied | None Supplied |  |
| Depth (m)                                |       |                       |                         | None Supplied | None Supplied | None Supplied |  |
| Date Sampled                             |       |                       |                         |               |               |               |  |
| Time Taken                               |       |                       |                         | None Supplied | None Supplied | None Supplied |  |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |               |  |
| Monoaromatics                            |       |                       |                         |               |               |               |  |
| Benzene                                  | µg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |  |
| Toluene                                  | µg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |  |
| Ethylbenzene                             | µg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |  |
| p & m-xylene                             | µg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |  |
| o-xylene                                 | µg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |  |
| MTBE (Methyl Tertiary Butyl Ether)       | µg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |  |

#### Petroleum Hydrocarbons

| TPH-CWG - Aliphatic >C5 - C6   | µg/l | 1  | NONE | < 1.0 | < 1.0 | < 1.0 |  |
|--------------------------------|------|----|------|-------|-------|-------|--|
| TPH-CWG - Aliphatic >C6 - C8   | µg/l | 1  | NONE | < 1.0 | < 1.0 | < 1.0 |  |
| TPH-CWG - Aliphatic >C8 - C10  | µg/l | 1  | NONE | < 1.0 | < 1.0 | < 1.0 |  |
| TPH-CWG - Aliphatic >C10 - C12 | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |
| TPH-CWG - Aliphatic >C12 - C16 | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |
| TPH-CWG - Aliphatic >C16 - C21 | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |
| TPH-CWG - Aliphatic >C21 - C35 | µg/l | 10 | NONE | 1000  | < 10  | < 10  |  |
| TPH-CWG - Aliphatic >C35 - C44 | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |
| TPH-CWG - Aliphatic (C5 - C35) | µg/l | 10 | NONE | 1000  | < 10  | < 10  |  |
| TPH-CWG - Aliphatic (C5 - C44) | µg/l | 10 | NONE | 1000  | < 10  | < 10  |  |
|                                |      |    |      |       |       |       |  |
| TPH-CWG - Aromatic >C5 - C7    | µg/l | 1  | NONE | < 1.0 | < 1.0 | < 1.0 |  |
| TPH-CWG - Aromatic >C7 - C8    | µg/l | 1  | NONE | < 1.0 | < 1.0 | < 1.0 |  |
| TPH-CWG - Aromatic >C8 - C10   | µg/l | 1  | NONE | < 1.0 | < 1.0 | < 1.0 |  |
| TPH-CWG - Aromatic >C10 - C12  | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |
| TPH-CWG - Aromatic >C12 - C16  | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |
| TPH-CWG - Aromatic >C16 - C21  | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |
| TPH-CWG - Aromatic >C21 - C35  | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |
| TPH-CWG - Aromatic >C35 - C44  | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |
| TPH-CWG - Aromatic (C5 - C35)  | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |
| TPH-CWG - Aromatic (C5 - C44)  | µg/l | 10 | NONE | < 10  | < 10  | < 10  |  |





Project / Site name: Triton Square

| Sample Number         Othor         Othor         Othor         Othor         Othor         Othor         Supple Number Supple | Your Order No: CL1036                    |       |                       |                         |               |               |               |                                         |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|-----------------------------------------|---|
| Sample Number         Unce Suppled         None Suppled         None Suppled         None Suppled         None Suppled           Date Sampled         None Suppled         None Suppled         None Suppled         None Suppled         None Suppled           Date Sampled         None Suppled         None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lab Sample Number                        |       | 744161                | 744162                  | 744163        |               |               |                                         |   |
| Depth (m)         None Supplet         None Supplet         None Supplet         None Supplet         None Supplet           Time Takan         None Supplet         None Supplet         None Supplet         None Supplet         None Supplet         None Supplet           Analytical Parameter (Water Analysis)         Sign of Supplet         None Supplet         None Supplet         None Supplet         None Supplet         None Supplet           View Analysis)         Sign of Supplet         None Supplet         None Supplet         None Supplet         None Supplet           View Analysis)         Sign of Supplet         None Supplet         None Supplet         None Supplet         None Supplet           View Analysis)         Sign of Supplet         Sign of Supplet         None Supplet         None Supplet         None Supplet           View Analysis         Sign of Supplet         Sign of Supplet         Sign of Supplet         None Supplet         None Supplet           View Analysis         Sign of Supplet         Sign of Supplet         Sign of Supplet         None Supplet         None Supplet           View Analysis         Sign of Supplet         Sign of Supplet         Sign of Supplet         None Supplet           View Analysis         Supplet         Sign of Supplet         Sign of Supplet         None Supp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Reference                         |       |                       | CH03                    | BH101         |               |               |                                         |   |
| Date Sampled         Users Supplet         Options Supplet         Options Supplet         Options Supplet           Analytical Parameter<br>(Wate Analysis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Number                            |       |                       |                         | None Supplied | None Supplied | None Supplied |                                         |   |
| Time Taken         Time Sugelied         None Sugelied         None Sugelied         None Sugelied           Analytical Parameter<br>(Water Analysis)         E         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B         B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth (m)                                |       |                       |                         |               |               |               |                                         |   |
| Analytical Parameter<br>(Water Analysis)         g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Sampled                             |       |                       |                         | 05/05/2017    | 05/05/2017    | 05/05/2017    |                                         |   |
| VICs         VICs <t< td=""><td>Time Taken</td><td></td><td></td><td></td><td>None Supplied</td><td>None Supplied</td><td>None Supplied</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time Taken                               |       |                       |                         | None Supplied | None Supplied | None Supplied |                                         |   |
| VICs         VICs <t< th=""><th>Analytical Parameter<br/>(Water Analysis)</th><th>Units</th><th>Limit of<br/>detection</th><th>Accreditation<br/>Status</th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |               |                                         |   |
| $\begin{split} \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VOCs                                     | 1     |                       |                         |               |               |               |                                         |   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          | ug/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |                                         |   |
| Decompanies         100         50.705           1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0          1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |       |                       | -                       |               |               |               |                                         |   |
| Ving Clouds         yg0         1         None         <1.0         <1.0         <1.0         <1.0           1,1-Dictionesthene         190         1         150.1785         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |       |                       | -                       |               |               |               |                                         |   |
| Trichlory Constraint         1         NONE         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |       |                       |                         |               | î             |               |                                         |   |
| 1,1-Dickhoroschene         µg/l         1         150.1705         <         <              OG-1,2-dichboroschene         µg/l         1         150.1705         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |       |                       |                         |               |               |               |                                         |   |
| j_1_2-Tributor_j_2.2+tributorethane         yg/l         1         BO 17025         < 1.0         < 1.0         < 1.0           MTBE (Methyl Tettary Bold Ether)         yg/l         1         BO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1-Dichloroethene                       | µg/l  | 1                     | ISO 17025               | < 1.0         |               |               |                                         |   |
| Org.1_2-cholonometheme         yp/1         1         350 J2025         < 1.0         < 1.0         < 1.0           JDichloropethane         yp/1         1         350 J2025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1,2-Trichloro-1,2,2-trifluoroethane    |       | 1                     | ISO 17025               | < 1.0         |               |               |                                         |   |
| j.jDichloroptane         µg1         1         150 1705         < 1.0         < 1.0         < 1.0           Trichloromethane         µg1         1         150 1705         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cis-1,2-dichloroethene                   |       | 1                     | ISO 17025               | < 1.0         |               |               |                                         |   |
| j. De/horopetane         µµ1         1         ISD 1702         < 1.0         < 1.0         < 1.0           Trichhoropetane         µµ1         1         ISD 1702         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MTBE (Methyl Tertiary Butyl Ether)       | µg/l  | 1                     | ISO 17025               | < 1.0         |               |               |                                         |   |
| The income thate         ippl         1         150 17025         < 1.0         < 1.0         < 1.0           1.2. Dickingerephane         ippl         1         150 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1-Dichloroethane                       | μg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |                                         |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,2-Dichloropropane                      | μg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trichloromethane                         | µg/l  | 1                     |                         | < 1.0         | < 1.0         | < 1.0         |                                         |   |
| j.1-Dichrogroppen         yp1         1         150 17025         < 1.0         < 1.0         < 1.0           Benzene         yp1         1         150 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1,1-Trichloroethane                    | µg/l  | 1                     |                         | -             | < 1.0         | < 1.0         |                                         |   |
| $\begin{split} Trans.1_2dickhoreethene   y_0/l   1                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-Dichloroethane                       | µg/l  | 1                     |                         |               | < 1.0         | < 1.0         |                                         |   |
| Benzené $ pg/l $ 1         ISO 17025         <1.0         <1.0         <1.0         <1.0           Terachloromethane $ pg/l $ 1         ISO 17025         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1-Dichloropropene                      | µg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |                                         |   |
| Tarachiormethane $  g_0 f  $ 1         150 17025         < 1.0         < 1.0         < 1.0         < 1.0           1_2-Dichloropropane $  g_0 f  $ 1         150 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trans-1,2-dichloroethene                 | µg/l  | 1                     |                         | < 1.0         | < 1.0         | < 1.0         |                                         |   |
| 1,2-Bithompropane $ pq I$ 1       150 17025       <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzene                                  | µg/l  | 1                     |                         | < 1.0         | < 1.0         | < 1.0         |                                         |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tetrachloromethane                       | µg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |                                         |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2-Dichloropropane                      | µg/l  | 1                     | ISO 17025               |               | < 1.0         | < 1.0         |                                         |   |
| Bromsdickboromethane $ygh$ 1         ISO 17025         < 1.0         < 1.0         < 1.0           Cis-1,3-dichloropropene $\mu gh$ 1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trichloroethene                          | µg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |                                         |   |
| $ \begin{array}{c} Cic 1.3 \ dichloropropene \\  ug/l \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dibromomethane                           | µg/l  | 1                     | ISO 17025               |               | < 1.0         | < 1.0         |                                         |   |
| Trans-1,3-dichloropropene $\mu g/l$ 1         ISO 17025         < 1.0         < 1.0         < 1.0           Toluene $\mu g/l$ 1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bromodichloromethane                     | µg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         |                                         |   |
| Toluene $\mu g/l$ 1         150 17025         < 1.0         < 1.0         < 1.0           1,1,2-Tichloroethane $\mu g/l$ 1         150 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cis-1,3-dichloropropene                  |       | 1                     | 1                       |               |               |               |                                         |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · ·                                  |       | 1                     | -                       | -             | < 1.0         | < 1.0         |                                         |   |
| 1,3-Dichloropropane $\mu g/l$ 1       ISO 17025       < 1.0       < 1.0       < 1.0         Dibromochlaromethane $\mu g/l$ 1       ISO 17025       < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |       |                       | -                       |               |               |               |                                         |   |
| Dibromachloromethane $\mu g/l$ 1         ISO 17025         < 1.0         < 1.0         < 1.0           Tetrachloroethane $\mu g/l$ 1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |       |                       | -                       |               | -             |               |                                         |   |
| Tetrachloroethene $\mu g/l$ 1       ISO 17025       < 1.0       < 1.0       < 1.0         1,2-Dibromoethane $\mu g/l$ 1       ISO 17025       < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |       |                       | -                       |               |               |               |                                         |   |
| 1,2-Dibromeethane $\mu g/l$ 1150 17025< 1.0< 1.0< 1.0< 1.0Chioroberzene $\mu g/l$ 1150 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |       |                       |                         |               |               |               |                                         |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |       |                       | -                       |               |               |               |                                         |   |
| 1,1,2,2-Tetrachloroethane $\mu g/l$ 1       ISO 17025       < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |       |                       |                         |               |               |               |                                         |   |
| Ethylbenzene $\mu g/l$ 1ISO 17025< 1.0< 1.0< 1.0< 1.0p & m-Xylene $\mu g/l$ 1ISO 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |       |                       |                         |               |               |               |                                         |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |       |                       |                         |               | -             |               |                                         |   |
| Styrene $\mu_{g/l}$ 1       ISO 17025       < 1.0       < 1.0       < 1.0       < 1.0         Tribrommethane $\mu_{g/l}$ 1       ISO 17025       < 1.0       < 1.0       < 1.0       < 1.0         o-Xylene $\mu_{g/l}$ 1       ISO 17025       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0         Isopropylbenzene $\mu_{g/l}$ 1       ISO 17025       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0         Isopropylbenzene $\mu_{g/l}$ 1       ISO 17025       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0       < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |       |                       | 1                       |               |               |               |                                         |   |
| Tribromomethane $\mu_{Q/l}$ 1ISO 17025< 1.0< 1.0< 1.0o-Xylene $\mu_{Q/l}$ 1ISO 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , , , , , , , , , , , , , , , , , , ,  |       |                       |                         |               |               |               |                                         |   |
| o-Xylene $\mu g/l$ 1Iso 1702< 1.0< 1.0< 1.0< 1.0< 1.01,1,2,2-Tetrachloroethane $\mu g/l$ 1ISO 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                        |       |                       | 1                       |               |               |               |                                         |   |
| 1,1,2,2-Tetrachloroethane $\mu g/l$ 1ISO 17025< 1.0< 1.0< 1.0< 1.0Isopropylbenzene $\mu g/l$ 1ISO 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |       |                       | 1                       |               | î             |               |                                         |   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |       |                       |                         |               |               |               |                                         |   |
| Bromobenzene $\mu g/l$ 1ISO 17025< 1.0< 1.0< 1.0n-Propylbenzene $\mu g/l$ 1ISO 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |       |                       | i i                     |               | î             |               |                                         |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |       |                       | i i                     |               | î             |               |                                         |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |       |                       | i i                     |               |               |               |                                         |   |
| 4-Chlorotoluene $\mu g/l$ 1ISO 17025< 1.0< 1.0< 1.01,3,5-Trimethylbenzene $\mu g/l$ 1ISO 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |       |                       | 1                       |               |               |               |                                         |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |       |                       | i i                     |               |               |               |                                         |   |
| tert-Butylbenzene $\mu g/l$ 1ISO 17025< 1.0< 1.0< 1.01,2,4-Trimethylbenzene $\mu g/l$ 1ISO 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |       |                       |                         |               |               |               |                                         |   |
| 1,2,4-Trimethylbenzene $\mu g/l$ 1ISO 17025< 1.0< 1.0< 1.0sec-Butylbenzene $\mu g/l$ 1ISO 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |       |                       |                         |               |               |               |                                         |   |
| sec-Butylbenzene $\mu q/l$ 1ISO 17025< 1.0< 1.0< 1.01,3-Dichlorobenzene $\mu q/l$ 1ISO 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | 1     |                       |                         |               |               |               |                                         |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |       |                       | i i                     |               |               |               |                                         |   |
| p-Isopropyltoluene         µg/l         1         ISO 17025         < 1.0         < 1.0         < 1.0            1,2-Dichlorobenzene         µg/l         1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |       |                       | 1                       |               |               |               | 1                                       |   |
| 1,2-Dichlorobenzene $\mu g/l$ 1ISO 17025< 1.0< 1.0< 1.01,4-Dichlorobenzene $\mu g/l$ 1ISO 17025< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | 1     |                       | i i                     |               |               |               | l – – – – – – – – – – – – – – – – – – – | 1 |
| 1,4-Dichlorobenzene         µg/l         1         ISO 17025         < 1.0         < 1.0         < 1.0           Butylbenzene         µg/l         1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |       |                       | 1                       |               |               |               |                                         |   |
| Butylbenzene         µg/l         1         ISO 17025         < 1.0         < 1.0         < 1.0           1,2-Dibromo-3-chloropropane         µg/l         1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |       |                       |                         |               |               |               |                                         |   |
| 1,2-Dibromo-3-chloropropane         µg/l         1         ISO 17025         < 1.0         < 1.0         < 1.0           1,2,4-Trichlorobenzene         µg/l         1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | 1     |                       |                         |               |               |               |                                         |   |
| 1,2,4-Trichlorobenzene         µg/l         1         ISO 17025         < 1.0         < 1.0         < 1.0           Hexachlorobutadiene         µg/l         1         ISO 17025         < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |       |                       | -                       |               |               |               |                                         |   |
| Hexachlorobutadiene µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |       |                       | -                       |               |               |               |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |       |                       | i i                     |               |               |               |                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2,3-Trichlorobenzene                   | μg/l  | 1                     | ISO 17025               | < 1.0         | < 1.0         | < 1.0         | 1                                       |   |





Project / Site name: Triton Square

| Your Order No: CL1036                        |                   |                       |                         |                  |                  |                  |                       |  |
|----------------------------------------------|-------------------|-----------------------|-------------------------|------------------|------------------|------------------|-----------------------|--|
| Lab Sample Number                            | Lab Sample Number |                       |                         |                  |                  |                  |                       |  |
| Sample Reference                             |                   |                       |                         | CH02             | CH03             | BH101            |                       |  |
| Sample Number                                |                   |                       |                         | None Supplied    | None Supplied    | None Supplied    |                       |  |
| Depth (m)                                    |                   |                       |                         | None Supplied    | None Supplied    | None Supplied    |                       |  |
| Date Sampled                                 |                   |                       |                         | 05/05/2017       | 05/05/2017       | 05/05/2017       |                       |  |
| Time Taken                                   |                   |                       |                         | None Supplied    | None Supplied    | None Supplied    |                       |  |
| Analytical Parameter<br>(Water Analysis)     | Units             | Limit of<br>detection | Accreditation<br>Status |                  |                  |                  |                       |  |
| SVOCs                                        |                   |                       |                         |                  |                  |                  |                       |  |
| Aniline                                      | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Phenol                                       | µg/l              | 0.05                  | NONE                    | 1.1              | 0.73             | < 0.05           |                       |  |
| 2-Chlorophenol                               | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Bis(2-chloroethyl)ether                      | μg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 1,3-Dichlorobenzene                          | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 1,2-Dichlorobenzene                          | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 1,4-Dichlorobenzene                          | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Bis(2-chloroisopropyl)ether                  | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 2-Methylphenol                               | µg/l              | 0.05                  | NONE                    | 25               | 1.5              | < 0.05           |                       |  |
| Hexachloroethane                             | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Nitrobenzene                                 | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 4-Methylphenol                               | µg/l              | 0.05                  | NONE                    | 5.2              | < 0.05           | < 0.05           | └──── <b>↓</b>        |  |
| Isophorone                                   | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           | ┞───┼                 |  |
| 2-Nitrophenol                                | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 2,4-Dimethylphenol                           | µg/l              | 0.05                  | NONE                    | 0.43             | 1.5              | < 0.05           |                       |  |
| Bis(2-chloroethoxy)methane                   | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 1,2,4-Trichlorobenzene<br>Naphthalene        | µg/l              | 0.05                  | NONE<br>ISO 17025       | < 0.05           | < 0.05<br>< 0.01 | < 0.05<br>< 0.01 |                       |  |
| 2,4-Dichlorophenol                           | µg/l<br>µg/l      | 0.01                  | NONE                    | < 0.01           | < 0.01           | < 0.01           |                       |  |
| 4-Chloroaniline                              | µg/I              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Hexachlorobutadiene                          | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 4-Chloro-3-methylphenol                      | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 2,4,6-Trichlorophenol                        | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 2,4,5-Trichlorophenol                        | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 2-Methylnaphthalene                          | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 2-Chloronaphthalene                          | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Dimethylphthalate                            | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 2,6-Dinitrotoluene                           | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Acenaphthylene                               | µg/l              | 0.01                  | ISO 17025               | < 0.01           | < 0.01           | < 0.01           |                       |  |
| Acenaphthene                                 | µg/l              | 0.01                  | ISO 17025               | < 0.01           | < 0.01           | < 0.01           |                       |  |
| 2,4-Dinitrotoluene                           | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Dibenzofuran                                 | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| 4-Chlorophenyl phenyl ether                  | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Diethyl phthalate<br>4-Nitroaniline          | µg/l<br>µg/l      | 0.05                  | NONE<br>NONE            | < 0.05<br>< 0.05 | < 0.05<br>< 0.05 | < 0.05<br>< 0.05 |                       |  |
| Fluorene                                     | μg/l              | 0.05                  | ISO 17025               | < 0.05           | < 0.01           | < 0.01           |                       |  |
| Azobenzene                                   | µg/l              | 0.01                  | NONE                    | < 0.01           | < 0.05           | < 0.01           |                       |  |
| Bromophenyl phenyl ether                     | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Hexachlorobenzene                            | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Phenanthrene                                 | µg/l              | 0.01                  | ISO 17025               | < 0.01           | < 0.01           | < 0.01           |                       |  |
| Anthracene                                   | µg/l              | 0.01                  | ISO 17025               | < 0.01           | < 0.01           | < 0.01           |                       |  |
| Carbazole                                    | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Dibutyl phthalate                            | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Anthraquinone                                | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           |                       |  |
| Fluoranthene                                 | µg/l              | 0.01                  | ISO 17025               | < 0.01           | < 0.01           | < 0.01           |                       |  |
| Pyrene                                       | µg/l              | 0.01                  | ISO 17025               | < 0.01           | < 0.01           | < 0.01           |                       |  |
| Butyl benzyl phthalate                       | µg/l              | 0.05                  | NONE                    | < 0.05           | < 0.05           | < 0.05           | ┞───┼                 |  |
| Benzo(a)anthracene                           | µg/l              | 0.01                  | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | ┝────┼                |  |
| Chrysene                                     | µg/l              | 0.01                  | ISO 17025               | < 0.01           | < 0.01           | < 0.01           | ┝────┼                |  |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene | µg/l              | 0.01                  | ISO 17025<br>ISO 17025  | < 0.01           | < 0.01           | < 0.01           | ├                     |  |
| Benzo(k)fluorantnene<br>Benzo(a)pyrene       | µg/l<br>µg/l      | 0.01                  | ISO 17025<br>ISO 17025  | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | ├                     |  |
| Indeno(1,2,3-cd)pyrene                       | µg/I<br>µg/I      | 0.01                  | NONE                    | < 0.01           | < 0.01           | < 0.01           | <b>├</b> ─── <b>├</b> |  |
| Dibenz(a,h)anthracene                        | µg/I<br>µg/I      | 0.01                  | NONE                    | < 0.01           | < 0.01           | < 0.01           |                       |  |
|                                              |                   |                       |                         |                  |                  | - 0.01           |                       |  |

U/S = Unsuitable Sample I/S = Insufficient Sample





Project / Site name: Triton Square

| Your Order No: CL1036                    |       |                       |                         |               |  |  |
|------------------------------------------|-------|-----------------------|-------------------------|---------------|--|--|
| Lab Sample Number                        |       |                       |                         |               |  |  |
| Sample Reference                         |       |                       |                         | BH101         |  |  |
| Sample Number                            |       |                       |                         | None Supplied |  |  |
| Depth (m)                                |       |                       |                         | None Supplied |  |  |
| Date Sampled                             |       |                       |                         | 05/05/2017    |  |  |
| Time Taken                               |       |                       |                         | None Supplied |  |  |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |  |  |
| Gas Analysis                             |       |                       |                         |               |  |  |

Gas Analysis (Subcontracted) NONE N/A N/A See Attached

U/S = Unsuitable Sample I/S = Insufficient Sample





#### Project / Site name: Triton Square

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

| Analytical Test Name                      | Analytical Method Description                                                                                                                                            | Analytical Method Reference                                                                                           | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Ammoniacal Nitrogen as N in water         | Determination of Ammonium/Ammonia/<br>Ammoniacal Nitrogen by the discrete analyser<br>(colorimetric) salicylate/nitroprusside method.<br>Accredited matrices SW, GW, PW. | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L082-PL          | W                     | ISO 17025               |
| BTEX and MTBE in water<br>(Monoaromatics) | Determination of BTEX and MTBE in water by<br>headspace GC-MS. Accredited matrices: SW PW<br>GW                                                                          | In-house method based on USEPA8260                                                                                    | L073B-PL         | W                     | ISO 17025               |
| Chloride in water                         | Determination of Chloride colorimetrically by discrete analyser.                                                                                                         | In house based on MEWAM Method ISBN<br>0117516260. Accredited matrices: SW, PW,<br>GW.                                | L082-PL          | w                     | ISO 17025               |
| Dissolved Organic Carbon in water         | Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.                                                                                           | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L037-PL          | W                     | NONE                    |
| Gas Subcon to SAL                         | Subcontracted.                                                                                                                                                           | Subcontracted analysis                                                                                                |                  | W                     | NONE                    |
| Hexavalent chromium in water              | Determination of hexavalent chromium in water by<br>acidification, addition of 1,5 diphenylcarbazide<br>followed by colorimetry.                                         | In-house method by continuous flow<br>analyser. Accredited Matrices SW, GW, PW.                                       | L080-PL          | w                     | ISO 17025               |
| Metals in water by ICP-MS (dissolved)     | Determination of metals in water by acidification<br>followed by ICP-MS. Accredited Matrices: SW, GW,<br>PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.                          | In-house method based on USEPA Method<br>6020 & 200.8 "for the determination of<br>trace elements in water by ICP-MS. | L012-PL          | W                     | ISO 17025               |
| Metals in water by ICP-OES<br>(dissolved) | Determination of metals in water by acidification<br>followed by ICP-OES. Accredited Matrices SW,<br>GW, PW, PrW.(Al, Cu,Fe,Zn).                                         | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | W                     | ISO 17025               |
| Monohydric phenols in water               | Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW                                                                             | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (skalar) | L080-PL          | w                     | ISO 17025               |
| Nitrate as N in water                     | Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.                                                             | In-house method based on Examination of<br>Water and Wastewatern & Polish Standard<br>Method PN-82/C-04579.08,        | L078-PL          | w                     | ISO 17025               |
| Nitrate in water                          | Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW                                                              | In-house method based on Examination of<br>Water and Wastewatern & Polish Standard<br>Method PN-82/C-04579.08,        | L078-PL          | w                     | ISO 17025               |
| pH at 20oC in water (automated)           | Determination of pH in water followed by electrometric measurement.                                                                                                      | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                   | L099-PL          | W                     | ISO 17025               |





#### Project / Site name: Triton Square

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

| Analytical Test Name                        | Analytical Method Description                                                                                                                                                       | Analytical Method Reference                                                                                           | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Semi-volatile organic compounds in<br>water | Determination of semi-volatile organic compounds<br>in leachate by extraction in dichloromethane<br>followed by GC-MS.                                                              | In-house method based on USEPA 8270                                                                                   | L102B-PL         | W                     | NONE                    |
| Speciated EPA-16 PAHs in water              | Determination of PAH compounds in water by<br>extraction in dichloromethane followed by GC-MS<br>with the use of surrogate and internal standards.<br>Accredited matrices: SW PW GW | In-house method based on USEPA 8270                                                                                   | L0102B-PL        | w                     | NONE                    |
| Sulphate in water                           | Determination of sulphate in water by acidification<br>followed by ICP-OES. Accredited matrices: SW<br>PW GW, PrW.                                                                  | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | W                     | ISO 17025               |
| Total cyanide in water                      | Determination of total cyanide by distillation<br>followed by colorimetry. Accredited matrices: SW<br>PW GW                                                                         | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar) | L080-PL          | W                     | ISO 17025               |
| Total Hardness of water                     | Determination of hardness in waters by calculation<br>from calcium and magnesium. Accredited Matrices<br>SW, GW, PW.                                                                | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L045-PL          | W                     | ISO 17025               |
| TPH in (Water)                              | Determination of TPH bands by HS-GC-MS/GC-FID                                                                                                                                       | In-house method, TPH with carbon<br>banding.                                                                          | L070-PL          | W                     | NONE                    |
| TPHCWG (Waters)                             | Determination of dichloromethane extractable<br>hydrocarbons in water by GC-MS, speciation by<br>interpretation.                                                                    | In-house method                                                                                                       | L070-PL          | W                     | NONE                    |
| Volatile organic compounds in water         | Determination of volatile organic compounds in<br>water by headspace GC-MS. Accredited matrices:<br>SW PW GW                                                                        | In-house method based on USEPA8260                                                                                    | L073B-PL         | W                     | ISO 17025               |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.



Concept Life Sciences is a trading name of Scientific Analysis Laboratories registered in England and Wales (No 2514788)

# **Concept Life Sciences**

# **Certificate of Analysis**

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2404

Report Number: 654103-1

Date of Report: 19-May-2017

Customer: i2 Analytical Ltd 7 Woodshots Meadow Croxley Green Business Park Croxley Green Hertfordshire WD18 8YS

Customer Contact: Project Management

Customer Job Reference: 17-48117 Customer Purchase Order: 8879, 17-48117 Date Job Received at Concept: 16-May-2017 Date Analysis Started: 18-May-2017 Date Analysis Completed: 19-May-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept SOPs



Report checked and authorised by : Lauren Clarke Project Manager Issued by : Lauren Clarke Project Manager

| Concept Reference:               | 654103              |          |       |            |             |  |  |  |  |  |  |  |
|----------------------------------|---------------------|----------|-------|------------|-------------|--|--|--|--|--|--|--|
| Customer Reference:              | 17-48117            | 17-48117 |       |            |             |  |  |  |  |  |  |  |
| Gas Bag<br>Bulk Gas Screen       | Analysed as Gas Bag |          |       |            |             |  |  |  |  |  |  |  |
| Concept Reference 654103 001     |                     |          |       |            |             |  |  |  |  |  |  |  |
| Customer Sample Reference 747654 |                     |          |       |            |             |  |  |  |  |  |  |  |
| Test Sample AR                   |                     |          |       |            |             |  |  |  |  |  |  |  |
|                                  |                     |          | Da    | te Sampled | 11-MAY-2017 |  |  |  |  |  |  |  |
| Determinand                      | Method              | LOD      | Units | Symbol     |             |  |  |  |  |  |  |  |
| Carbon Dioxide                   | GC/TCD              | 0.01     | %     | N          | 0.10        |  |  |  |  |  |  |  |
| Carbon Monoxide                  | GC/TCD              | 0.01     | %     | N          | <0.01       |  |  |  |  |  |  |  |
| Hydrogen                         | GC/TCD              | 0.01     | %     | N          | <0.01       |  |  |  |  |  |  |  |
| Methane                          | GC/TCD              | 0.02     | %     | N          | <0.02       |  |  |  |  |  |  |  |
| Nitrogen                         | GC/TCD              | 0.01     | %     | N          | 79          |  |  |  |  |  |  |  |
| Oxygen                           | GC/TCD              | 0.01     | %     | N          | 21          |  |  |  |  |  |  |  |

# Index to symbols used in 654103-1

| AR<br>N | As Received<br>Analysis is not UKAS accredited |  |
|---------|------------------------------------------------|--|
| N       | Analysis is not UKAS accredited                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |
|         |                                                |  |



Evangelos Kafantaris Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

#### t: 020 88112880

e: evangelos@conceptconsultants.co.uk

# Analytical Report Number : 17-48117

| Project / Site name: | Triton Square                    | Samples received on:   | 12/05/2017 |
|----------------------|----------------------------------|------------------------|------------|
| Your job number:     | 17-2961                          | Samples instructed on: | 12/05/2017 |
| Your order number:   | CL1044                           | Analysis completed by: | 22/05/2017 |
| Report Issue Number: | 1                                | Report issued on:      | 22/05/2017 |
| Samples Analysed:    | 1 gases sample - 4 water samples |                        |            |

Signed:

Rexona Rahman Reporting Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

| soils     | - 4 weeks from reporting  |
|-----------|---------------------------|
| leachates | - 2 weeks from reporting  |
| waters    | - 2 weeks from reporting  |
| asbestos  | - 6 months from reporting |

Excel copies of reports are only valid when accompanied by this PDF certificate.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.



Croxley Green Business Park, Watford, Herts, WD18 8YS t: 01923 225404

7 Woodshots Meadow,

**f:** 01923 237404

i2 Analytical Ltd.

e: reception@i2analytical.com





Project / Site name: Triton Square

| Lab Sample Number         77450         77451         77453         77453         77453           Sample Number         Supplied         Number         Supplied         Number         Supplied         Number         Supplied         Number                                                                                                                                                                                                                             | our Order No: CL1044      |            |          |           |               |               |               |               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|----------|-----------|---------------|---------------|---------------|---------------|--|
| Sample Number         Develop (m)         None Supplied         None Suplied         None Supplied         None Suppli                                          | ab Sample Number          |            | 747650   | 747651    | 747652        | 747653        |               |               |  |
| Depth (m)         Device Supplied         None Suppl                                          | •                         |            |          |           |               |               |               |               |  |
| Date Sampled         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05/2017         11/05                                                                                                         | ample Number              |            |          |           | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Time Taken         None Supplied         None Suppli                                          | epth (m)                  |            |          |           | None Supplied |               |               |               |  |
| Analytical Parameter<br>(Water Analysis)         En                                                                                                                                                                                                                                                                                                                                                               |                           |            |          |           |               | 1             |               |               |  |
| Control Longanics         Philants         NA         SO 2700         7.5         7.8         11.1         7.2           Sulphate as SO,         µg/t         0.4         SO 2705         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | me Taken                  |            |          |           | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Constrait Inorganics         PH text         N/A         ISO 12003         7.5         7.8         11.1         7.3           Cidal Cranide         3apl         10         ISO 12003         -         -         1.0         -         -         1.0         -         -         1.0         Sighate as SO,         apgl         1.0         ISO 12003         -         -         -         1.0         Sighate as SO,         apgl         1.0         ISO 12003         38700         885200         Sighate as SO,         apgl         0.05         ISO 12003         1.00         38700         885200         Sighate as SO,         apgl         0.05         ISO 12025         ISO 12003         0.00         38700         88200         Sighate as SO,         apgl         0.01         ISO 12025                                                                                                                                                                                                                                      |                           |            |          | Ac        |               |               |               |               |  |
| Central Inorganics         Philad                                                                                                                                                                                                                         | nalvtical Parameter       | ç          | lete Lin | St        |               |               |               |               |  |
| Control Longanics         Philants         NA         SO 2700         7.5         7.8         11.1         7.2           Sulphate as SO,         µg/t         0.4         SO 2705         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | nits       | it it    | atu       |               |               |               |               |  |
| Central Inorganics         Philad                                                                                                                                                                                                                         |                           |            | on of    | sitio     |               |               |               |               |  |
| pri         pri (b)         N/A         ISO (270)         7.5         7.8         11.1         7.3           Solphate as SQ,         µq/l         145         ISO (270)         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |            |          | -         |               |               |               |               |  |
| pri         pri (b)         N/A         ISO (270)         7.5         7.8         11.1         7.3           Solphate as SQ,         µq/l         145         ISO (270)         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |            |          |           |               |               |               |               |  |
| Total Cyanide         101         105         1050         -         -         -         0         -         10           Solphate as SO,         mg/l         0.045         150 17025         350000         172000         387000         852000           Chorde         mg/l         0.015         150 17025         350         170         39         85           Chorde         mg/l         0.015         1800 1725         330         178         88         97           Annonical Ntrogen as N         mg/l         0.015         1800 1725         -         -         2.275         3.99           Nitrate as N         mg/l         0.01         150 17025         -         -         7.92         318           Total Phenols (monohydric)         µg/l         10         150 17025         -         -         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | al l laite | NI/A     | 100 17025 | 7 5           | 7.0           | 11.1          | 7.2           |  |
| Suphate as SO,         ing/l         0.45         iso invasion                                                                          |                           |            |          |           |               | 1             |               | 1             |  |
| Suphate as SO,         mg1         0.045         BO 1702         350         170         39         85           Cholede         mg1         0.015         BO 1702         330         78         88         97           Annonical Nitogen as N         mg1         0.015         BO 100         -         -         5.0         0.39           Nitrate as N         mg1         0.015         BO 100         0.44         0.50         0.43         2.60           Nitrate as NO         mg1         0.01         ISO 17025         -         -         79.2         318           Total Phenols         mg2.c03/4         1         ISO 17025         -         -         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |            |          |           |               |               |               |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |            | -        |           |               |               |               |               |  |
| Ammonical Nitogen as N         mg/l         0.015         NNME         -         -         5.0         0.39           Nitrate as N         mg/l         0.01         NOME         -         -         27.5         3.99           Nitrate as NO <sub>1</sub> mg/l         0.01         ISO 17025         0.64         0.50         0.43         2.60           Nitrate as NO <sub>1</sub> mg/l         0.05         ISO 17025         -         -         79.2         318           Total Phenols          0.05         ISO 17025         -         -         79.2         318           Total Phenols          0.01         ISO 17025         -         -         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hloride                   |            | 0.15     | ISO 17025 | 130           | 78            | 88            | 97            |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |            |          |           |               |               |               |               |  |
| Nitrate as N         mg/n         0.01         ISO 17025         0.64         0.50         0.04 as         2.60           Nitrate as NO,         mg/n         0.05         ISO 17025         2.82         2.23         1.91         1.1.5           Hardness - Total         mg/a         0.05         ISO 17025         -         -         7.9.2         3.18           Total Phenols           Total Phenols (monhydric)         µg/l         1.0         ISO 17025         -         -         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |            |          |           | -             | -             |               |               |  |
| Hardness - Total         mcGaC030         1         ISO 17025         -         79.2         318           Total Phenols         Total Phenols (monhydric)         µg/l         10         ISO 17025         -         <         <         10         <           Speciated PAHs         Seciated PAHs         Second PAHs <th< td=""><td>trate as N</td><td>I 1</td><td>0.01</td><td></td><td>0.64</td><td>0.50</td><td>0.43</td><td>1</td><td></td></th<> | trate as N                | I 1        | 0.01     |           | 0.64          | 0.50          | 0.43          | 1             |  |
| Total Phenols (monohydric)         µg/l         10         Sociated PAHs           Speciated PAHs                                                                                                      <         <         <         <         <         <         < <th< td=""><td>trate as NO<sub>3</sub></td><td>mg/l</td><td>0.05</td><td>ISO 17025</td><td>2.82</td><td>2.23</td><td>1.91</td><td>11.5</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trate as NO <sub>3</sub>  | mg/l       | 0.05     | ISO 17025 | 2.82          | 2.23          | 1.91          | 11.5          |  |
| Total Phenols (monohydric) $\mu_{g/l}$ 10         ISO 17025         -         <                                                                                                 <         <         <         <         <         <           <         <         <         <         <         <         < <th< td=""><td>ardness - Total</td><td>mgCaCO3/I</td><td>1</td><td>ISO 17025</td><td>-</td><td>-</td><td>79.2</td><td>318</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ardness - Total           | mgCaCO3/I  | 1        | ISO 17025 | -             | -             | 79.2          | 318           |  |
| Total Phenols (monohydric) $\mu_{g/l}$ 10         ISO 17025         -         <         <                                                                                                <         <         <         <         <         <             <         <         <         <         < <th<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |            |          |           |               |               |               |               |  |
| Speciated PAHs           Naphthalene $\mu g/l$ 0.01         ISO 17025         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |          |           |               |               |               |               |  |
| Naphthelene         µg/l         0.01         ISO 17025         -         <         <          <            <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otal Phenols (monohydric) | µg/l       | 10       | ISO 17025 | -             | -             | < 10          | < 10          |  |
| Naphthalene         µg/l         0.01         ISO 17025         -         <         <          <             <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | existed DAHe              |            |          |           |               |               |               |               |  |
| Aceraphthylene $\mu g/l$ 0.01         ISO 17025         -         -         <         <             <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <             <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         < <td></td> <td></td> <td>0.01</td> <td>100 17025</td> <td></td> <td></td> <td>&lt; 0.01</td> <td>&lt; 0.01</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                            |                           |            | 0.01     | 100 17025 |               |               | < 0.01        | < 0.01        |  |
| Aceraphthene $\mu q/l$ 0.01         ISO 17025         -         -         <         <              <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <            <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                         |            |          |           |               |               |               |               |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |            |          |           |               | 1             |               |               |  |
| Phenanthrene $\mu g/l$ 0.01         ISO 17025         -         -         <         <                <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <             <         <          <             <         <         <         <         <         <         <         <         <         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                         |            |          |           |               | 1             |               | 1             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |            |          |           | -             | -             |               |               |  |
| Fluoranthene $\mu g/l$ 0.01         ISO 17025         -         -         <         <          <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <         <                     <         <         <          <          <         <         <         <             <         < <th< td=""><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |            |          |           | -             | -             |               |               |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | uoranthene                |            | 0.01     | ISO 17025 | -             | -             | < 0.01        | < 0.01        |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vrene                     | µg/l       | 0.01     | ISO 17025 | -             | -             | < 0.01        | < 0.01        |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | enzo(a)anthracene         | µg/l       | 0.01     | ISO 17025 | -             | -             | < 0.01        | < 0.01        |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | µg/l       | 0.01     |           | -             | -             |               |               |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | µg/l       |          |           | -             | -             |               | 1             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | 1 1        |          |           |               |               |               |               |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |            |          |           |               |               |               |               |  |
| Benzo(ghi)perylene $\mu g/l$ $0.01$ NONE         -         -         < <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |            |          |           |               | 1             |               | 1             |  |
| Total PAH           Total EPA-16 PAHs $\mu g/l$ 0.16         NONE         -         -         <         < </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |            |          |           |               |               |               |               |  |
| Total EPA-16 PAHs $\mu g/l$ $0.16$ NONE         -         -         < 0.16         < 0.16           Heavy Metals / Metalloids           Antimony (dissolved) $\mu g/l$ $0.4$ ISO 17025         -         -         2.1 $0.7$ Arsenic (dissolved) $\mu g/l$ $0.15$ ISO 17025         -         -         6.36 $0.60$ Beryllium (dissolved) $\mu g/l$ $0.11$ ISO 17025         -         -         6.36 $0.60$ Cadmium (dissolved) $\mu g/l$ $0.012$ ISO 17025         -         -         < $0.01$ ISO 17025         -         -         < $0.01$ ISO 17025         -         -         < $0.01$ ISO 17025         -         -         < $0.02$ $0.03$ I           Calcium (dissolved) $mg/l$ $0.012$ ISO 17025         -         - $31$ $120$ Chromium (hexavalent) $\mu g/l$ $0.2$ ISO 17025         -         - $1.3$ $0.4$ Copper (dissolved) $\mu g/l$ $0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | µg/i       | 0.01     | NONE      | -             | -             | < 0.01        | < 0.01        |  |
| Total EPA-16 PAHs $\mu g/l$ $0.16$ NONE         -         -         < 0.16         < 0.16           Heavy Metals / Metalloids           Antimony (dissolved) $\mu g/l$ $0.4$ ISO 17025         -         -         2.1 $0.7$ Arsenic (dissolved) $\mu g/l$ $0.15$ ISO 17025         -         -         6.36 $0.60$ Beryllium (dissolved) $\mu g/l$ $0.11$ ISO 17025         -         -         6.36 $0.60$ Cadmium (dissolved) $\mu g/l$ $0.012$ ISO 17025         -         -         < $0.01$ ISO 17025         -         -         < $0.01$ ISO 17025         -         -         < $0.01$ ISO 17025         -         -         < $0.02$ $0.03$ I           Calcium (dissolved) $mg/l$ $0.012$ ISO 17025         -         - $31$ $120$ Chromium (hexavalent) $\mu g/l$ $0.2$ ISO 17025         -         - $1.3$ $0.4$ Copper (dissolved) $\mu g/l$ $0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dtal PAH                  |            |          |           |               |               |               |               |  |
| Heavy Metals / Metalloids         Antimony (dissolved) $\mu g/l$ $0.4$ ISO 17025       -       - $2.1$ $0.7$ Arsenic (dissolved) $\mu g/l$ $0.15$ ISO 17025       -       - $6.36$ $0.60$ Beryllium (dissolved) $\mu g/l$ $0.15$ ISO 17025       -       - $6.36$ $0.60$ Cadmium (dissolved) $\mu g/l$ $0.02$ ISO 17025       -       - $<0.1$ $<0.1$ Cadmium (dissolved) $\mu g/l$ $0.02$ ISO 17025       -       - $<0.02$ $0.03$ Calcium (dissolved) $\mu g/l$ $0.012$ ISO 17025       -       - $<0.02$ $0.03$ Chromium (hexavalent) $\mu g/l$ $5$ ISO 17025       -       - $<1.3$ $0.4$ Copper (dissolved) $\mu g/l$ $0.2$ ISO 17025       -       - $0.8$ $<0.2$ Lead (dissolved) $\mu g/l$ $0.2$ ISO 17025       -       - $0.8$ $<0.2$ Magnesium (dissolved) $\mu g/l$ $0.2$ ISO 17025       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | ua/l       | 0.16     | NONE      | -             | -             | < 0.16        | < 0.16        |  |
| Antimony (dissolved) $\mu g/l$ $0.4$ ISO 17025         -         - $2.1$ $0.7$ Arsenic (dissolved) $\mu g/l$ $0.15$ ISO 17025         -         - $6.36$ $0.60$ Beryllium (dissolved) $\mu g/l$ $0.1$ ISO 17025         -         - $6.36$ $0.60$ Cadmium (dissolved) $\mu g/l$ $0.1$ ISO 17025         -         - $<0.1$ $<0.1$ Calcium (dissolved) $m g/l$ $0.02$ ISO 17025         -         - $<0.02$ $0.03$ Chromium (hexavalent) $m g/l$ $0.21$ ISO 17025         -         - $<5.0$ $<5.0$ Chromium (dissolved) $\mu g/l$ $0.2$ ISO 17025         -         - $1.3$ $0.4$ Copper (dissolved) $\mu g/l$ $0.2$ ISO 17025         -         - $0.8$ $<0.2$ Lead (dissolved) $\mu g/l$ $0.2$ ISO 17025         -         - $0.8$ $<0.2$ Magnases (dissolved) $\mu g/l$ $0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | • P3/·     |          |           |               |               |               |               |  |
| Antimony (dissolved) $\mu g/l$ $0.4$ ISO 17025         -         - $2.1$ $0.7$ Arsenic (dissolved) $\mu g/l$ $0.15$ ISO 17025         -         - $6.36$ $0.60$ Beryllium (dissolved) $\mu g/l$ $0.1$ ISO 17025         -         - $6.36$ $0.60$ Cadmium (dissolved) $\mu g/l$ $0.1$ ISO 17025         -         - $<0.1$ $<0.1$ Calcium (dissolved) $m g/l$ $0.02$ ISO 17025         -         - $<0.02$ $0.03$ Chromium (hexavalent) $m g/l$ $0.21$ ISO 17025         -         - $<5.0$ $<5.0$ Chromium (dissolved) $\mu g/l$ $0.2$ ISO 17025         -         - $1.3$ $0.4$ Copper (dissolved) $\mu g/l$ $0.2$ ISO 17025         -         - $0.8$ $<0.2$ Lead (dissolved) $\mu g/l$ $0.2$ ISO 17025         -         - $0.8$ $<0.2$ Magnases (dissolved) $\mu g/l$ $0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eavy Metals / Metalloids  |            |          |           |               |               |               |               |  |
| Beryllium (dissolved) $\mu g/l$ $0.1$ ISO 17025         -         -         < 0.1         < 0.1           Cadmium (dissolved) $\mu g/l$ $0.02$ ISO 17025         -         -         < 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | µg/I       | 0.4      | ISO 17025 | -             | -             | 2.1           | 0.7           |  |
| Cadmium (dissolved) $\mu g/l$ $0.02$ ISO 17025         -         -         < 0.02 $0.03$ Calcium (dissolved)         mg/l $0.012$ ISO 17025         -         - $31$ $120$ Chromium (hexavalent) $\mu g/l$ $5$ ISO 17025         -         - $31$ $120$ Chromium (dissolved) $\mu g/l$ $0.2$ ISO 17025         -         - $<5.0$ $<5.0$ Chromium (dissolved) $\mu g/l$ $0.2$ ISO 17025         -         - $1.3$ $0.4$ Copper (dissolved) $\mu g/l$ $0.5$ ISO 17025         -         - $0.8$ $< 0.2$ Lead (dissolved) $\mu g/l$ $0.2$ ISO 17025         -         - $0.8$ $< 0.2$ Magnesium (dissolved) $mg/l$ $0.05$ ISO 17025         -         - $3.0$ $4.2$ Manganese (dissolved) $\mu g/l$ $0.05$ ISO 17025         -         - $3.0$ $4.2$ Mercury (dissolved) $\mu g/l$ $0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · ·               | µg/I       | 0.15     |           | -             | -             |               | 0.60          |  |
| Calcium (dissolved) $mg/l$ 0.012         ISO 17025         -         -         31         120           Chromium (hexavalent) $\mu g/l$ 5         ISO 17025         -         -         <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | µg/l       |          |           |               | -             |               |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | µg/l       |          |           | -             |               |               |               |  |
| Chromium (dissolved)         µg/l         0.2         ISO 17025         -         1.3         0.4           Copper (dissolved)         µg/l         0.5         ISO 17025         -         -         44         3.3           Lead (dissolved)         µg/l         0.2         ISO 17025         -         -         44         3.3           Magnesium (dissolved)         µg/l         0.2         ISO 17025         -         -         0.8         < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 1 1        |          |           |               |               |               |               |  |
| Copper (dissolved)         µg/l         0.5         ISO 17025         -         44         3.3           Lead (dissolved)         µg/l         0.2         ISO 17025         -         -         0.8         < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | 1 1        |          |           |               |               |               |               |  |
| Lead (dissolved)         µg/l         0.2         ISO 17025         -         0.8         < 0.2           Magnesium (dissolved)         mg/l         0.005         ISO 17025         5.3         4.1         0.25         6.7           Manganese (dissolved)         µg/l         0.05         ISO 17025         -         -         3.0         42           Mercury (dissolved)         µg/l         0.05         ISO 17025         -         -         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |            |          |           |               |               |               |               |  |
| Magnesium (dissolved)         mg/l         0.005         ISO 17025         5.3         4.1         0.25         6.7           Manganese (dissolved)         μg/l         0.05         ISO 17025         -         -         3.0         42           Mercury (dissolved)         μg/l         0.05         ISO 17025         -         -         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |            |          |           |               |               |               |               |  |
| Manganese (dissolved)         μg/l         0.05         ISO 17025         -         3.0         42           Mercury (dissolved)         μg/l         0.05         ISO 17025         -         -         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |            |          |           |               |               |               |               |  |
| Mercury (dissolved)         µg/l         0.05         ISO 17025         -         <         <0.05         0.06           Nickel (dissolved)         µg/l         0.5         ISO 17025         -         9.0         4.3           Selenium (dissolved)         µg/l         0.6         ISO 17025         -         3.0         6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 1 1        |          |           |               | 1             |               |               |  |
| Nickel (dissolved)         µg/l         0.5         ISO 17025         -         9.0         4.3           Selenium (dissolved)         µg/l         0.6         ISO 17025         -         3.0         6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |            |          |           |               |               |               |               |  |
| Selenium (dissolved)         µg/l         0.6         ISO 17025         -         3.0         6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |            |          |           |               |               |               |               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |            |          |           |               |               |               |               |  |
| vanaquun (uissoiveu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | anadium (dissolved)       | mg/l       | 0.0002   | ISO 17025 | -             | -             | 0.0620        | 0.0027        |  |
| Zinc (dissolved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |            |          |           |               | -             |               |               |  |





Project / Site name: Triton Square

| Your Order No: CL1044                    |       |                       |                         |               |               |               |               |  |
|------------------------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|--|
| Lab Sample Number                        |       |                       |                         | 747650        | 747651        | 747652        | 747653        |  |
| Sample Reference                         |       |                       |                         | CH01          | CH02          | CH03          | BH101         |  |
| Sample Number                            |       |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Depth (m)                                |       |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Date Sampled                             |       |                       |                         | 11/05/2017    | 11/05/2017    | 11/05/2017    | 11/05/2017    |  |
| Time Taken                               |       |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Analytical Parameter<br>(Water Analysis) | Units | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |  |
| Monoaromatics                            |       |                       |                         |               |               |               |               |  |
| Benzene                                  | µg/l  | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Toluene                                  | µg/l  | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Ethylbenzene                             | µg/l  | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| p & m-xylene                             | µg/l  | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| o-xylene                                 | µg/l  | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| MTBE (Methyl Tertiary Butyl Ether)       | µg/l  | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |

#### Petroleum Hydrocarbons

| TPH-CWG - Aliphatic >C5 - C6   | µg/l | 1  | NONE | - | - | < 1.0 | < 1.0 |  |
|--------------------------------|------|----|------|---|---|-------|-------|--|
| TPH-CWG - Aliphatic >C6 - C8   | µg/l | 1  | NONE | - | - | < 1.0 | < 1.0 |  |
| TPH-CWG - Aliphatic >C8 - C10  | µg/l | 1  | NONE | - | - | < 1.0 | < 1.0 |  |
| TPH-CWG - Aliphatic >C10 - C12 | µg/l | 10 | NONE | - | - | < 10  | < 10  |  |
| TPH-CWG - Aliphatic >C12 - C16 | µg/l | 10 | NONE | - | - | < 10  | < 10  |  |
| TPH-CWG - Aliphatic >C16 - C21 | µg/l | 10 | NONE | - | - | < 10  | < 10  |  |
| TPH-CWG - Aliphatic >C21 - C35 | µg/l | 10 | NONE | - | - | 3100  | < 10  |  |
| TPH-CWG - Aliphatic >C35 - C44 | µg/l | 10 | NONE | - | - | 710   | < 10  |  |
| TPH-CWG - Aliphatic (C5 - C35) | µg/l | 10 | NONE | - | - | 3100  | < 10  |  |
| TPH-CWG - Aliphatic (C5 - C44) | µg/l | 10 | NONE | - | - | 3800  | < 10  |  |
|                                |      |    |      |   |   |       |       |  |
| TPH-CWG - Aromatic >C5 - C7    | µg/l | 1  | NONE | - | - | < 1.0 | < 1.0 |  |
| TPH-CWG - Aromatic >C7 - C8    | µg/l | 1  | NONE | - | - | < 1.0 | < 1.0 |  |
| TPH-CWG - Aromatic >C8 - C10   | µg/l | 1  | NONE | - | - | < 1.0 | < 1.0 |  |
| TPH-CWG - Aromatic >C10 - C12  | µg/l | 10 | NONE | - | - | < 10  | < 10  |  |
| TPH-CWG - Aromatic >C12 - C16  | µg/l | 10 | NONE | - | - | < 10  | < 10  |  |
| TPH-CWG - Aromatic >C16 - C21  | µg/l | 10 | NONE | - | - | < 10  | < 10  |  |
| TPH-CWG - Aromatic >C21 - C35  | µg/l | 10 | NONE | - | - | < 10  | < 10  |  |
| TPH-CWG - Aromatic >C35 - C44  | µg/l | 10 | NONE | - | - | < 10  | < 10  |  |
| TPH-CWG - Aromatic (C5 - C35)  | µg/l | 10 | NONE | - | - | < 10  | < 10  |  |
| TPH-CWG - Aromatic (C5 - C44)  | µg/l | 10 | NONE | - | - | < 10  | < 10  |  |





Project / Site name: Triton Square

| Your Order No: CL1044                     |              |                       |                         |               |               |               |               |  |
|-------------------------------------------|--------------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|--|
| Lab Sample Number                         |              | 747650                | 747651                  | 747652        | 747653        |               |               |  |
| Sample Reference                          |              | CH01                  | CH02                    | CH03          | BH101         |               |               |  |
| Sample Number                             |              |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Depth (m)                                 |              |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Date Sampled                              |              |                       |                         | 11/05/2017    | 11/05/2017    | 11/05/2017    | 11/05/2017    |  |
| Time Taken                                |              |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
|                                           |              |                       | A                       |               |               |               |               |  |
| Analytical Davameter                      | c            | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |  |
| Analytical Parameter<br>(Water Analysis)  | Units        | iect nit              | creditat<br>Status      |               |               |               |               |  |
| (water Analysis)                          | N.           | ĝ 9,                  | atio                    |               |               |               |               |  |
|                                           |              | -                     | 9                       |               |               |               |               |  |
| VOCs                                      |              |                       | -                       |               |               |               |               |  |
| Chloromethane                             | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Chloroethane                              | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Bromomethane                              | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Vinyl Chloride                            | µg/l         | 1                     | NONE                    | -             | -             | < 1.0         | < 1.0         |  |
| Trichlorofluoromethane                    | µg/l         | 1                     | NONE                    | -             | -             | < 1.0         | < 1.0         |  |
| 1,1-Dichloroethene                        | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,1,2-Trichloro-1,2,2-trifluoroethane     | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Cis-1,2-dichloroethene                    | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| MTBE (Methyl Tertiary Butyl Ether)        | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,1-Dichloroethane                        | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 2,2-Dichloropropane                       | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Trichloromethane                          | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,1,1-Trichloroethane                     | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,2-Dichloroethane                        | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,1-Dichloropropene                       | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Trans-1,2-dichloroethene                  | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Benzene                                   | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Tetrachloromethane                        | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,2-Dichloropropane                       | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Trichloroethene                           | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Dibromomethane                            | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Bromodichloromethane                      | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Cis-1,3-dichloropropene                   | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Trans-1,3-dichloropropene                 | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Toluene                                   | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,1,2-Trichloroethane                     | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,3-Dichloropropane                       | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Dibromochloromethane                      | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Tetrachloroethene                         | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,2-Dibromoethane                         | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Chlorobenzene                             | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,1,1,2-Tetrachloroethane<br>Ethylbenzene | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| p & m-Xylene                              | µg/l         | 1                     | ISO 17025               |               | -             | < 1.0         | < 1.0         |  |
| Styrene                                   | µg/l         | 1<br>1                | ISO 17025<br>ISO 17025  |               | -             | < 1.0         | < 1.0 < 1.0   |  |
| Tribromomethane                           | μg/l<br>μg/l | 1                     | ISO 17025<br>ISO 17025  | -             | -             | < 1.0         | < 1.0         |  |
| o-Xylene                                  | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,1,2,2-Tetrachloroethane                 | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Isopropylbenzene                          | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Bromobenzene                              | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| n-Propylbenzene                           | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 2-Chlorotoluene                           | µg/I         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 4-Chlorotoluene                           | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,3,5-Trimethylbenzene                    | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| tert-Butylbenzene                         | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,2,4-Trimethylbenzene                    | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| sec-Butylbenzene                          | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,3-Dichlorobenzene                       | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| p-Isopropyltoluene                        | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,2-Dichlorobenzene                       | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,4-Dichlorobenzene                       | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Butylbenzene                              | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,2-Dibromo-3-chloropropane               | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,2,4-Trichlorobenzene                    | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| Hexachlorobutadiene                       | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |
| 1,2,3-Trichlorobenzene                    | µg/l         | 1                     | ISO 17025               | -             | -             | < 1.0         | < 1.0         |  |





Project / Site name: Triton Square

| Your Order No: CL1044       |       |                       |                         |               |               |               |               |  |
|-----------------------------|-------|-----------------------|-------------------------|---------------|---------------|---------------|---------------|--|
| Lab Sample Number           |       | 747650                | 747651                  | 747652        | 747653        |               |               |  |
| Sample Reference            |       |                       |                         | CH01          | CH02          | CH03          | BH101         |  |
| Sample Number               |       |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Depth (m)                   |       |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Date Sampled                |       |                       |                         | 11/05/2017    | 11/05/2017    | 11/05/2017    | 11/05/2017    |  |
| Time Taken                  |       |                       |                         | None Supplied | None Supplied | None Supplied | None Supplied |  |
|                             |       |                       | A                       |               |               |               |               |  |
| a tara na s                 |       | Limit of<br>detection | Accreditation<br>Status |               |               |               |               |  |
| Analytical Parameter        | Units | le mit                | reditat<br>Status       |               |               |               |               |  |
| (Water Analysis)            | ស     | i of                  | us                      |               |               |               |               |  |
|                             |       | - T                   | 9                       |               |               |               |               |  |
| SVOCs                       |       |                       | 8                       |               |               |               |               |  |
| Aniline                     | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Phenol                      | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 2-Chlorophenol              | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Bis(2-chloroethyl)ether     | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 1,3-Dichlorobenzene         | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 1,2-Dichlorobenzene         | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 1,4-Dichlorobenzene         | µg/l  | 0.05                  | NONE                    | -             | _             | < 0.05        | < 0.05        |  |
| Bis(2-chloroisopropyl)ether | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 2-Methylphenol              | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Hexachloroethane            | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Nitrobenzene                | μg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 4-Methylphenol              | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Isophorone                  | µg/l  | 0.05                  | NONE                    | -             | _             | < 0.05        | < 0.05        |  |
| 2-Nitrophenol               | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 2,4-Dimethylphenol          | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Bis(2-chloroethoxy)methane  | µg/l  | 0.05                  | NONE                    | -             | _             | < 0.05        | < 0.05        |  |
| 1,2,4-Trichlorobenzene      | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Naphthalene                 | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.05        | < 0.01        |  |
| 2,4-Dichlorophenol          | µg/l  | 0.01                  | NONE                    | -             | -             | < 0.01        | < 0.01        |  |
| 4-Chloroaniline             | µg/l  | 0.05                  | NONE                    | -             | _             | < 0.05        | < 0.05        |  |
| Hexachlorobutadiene         | µg/l  | 0.05                  | NONE                    | -             | _             | < 0.05        | < 0.05        |  |
| 4-Chloro-3-methylphenol     | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 2,4,6-Trichlorophenol       | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 2,4,5-Trichlorophenol       | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 2-Methylnaphthalene         | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 2-Chloronaphthalene         | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Dimethylphthalate           | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 2,6-Dinitrotoluene          | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Acenaphthylene              | µg/l  | 0.03                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Acenaphthene                | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| 2.4-Dinitrotoluene          | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Dibenzofuran                | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 4-Chlorophenyl phenyl ether | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Diethyl phthalate           | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| 4-Nitroaniline              | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Fluorene                    | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Azobenzene                  | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Bromophenyl phenyl ether    | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Hexachlorobenzene           | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Phenanthrene                | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Anthracene                  | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Carbazole                   | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Dibutyl phthalate           | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Anthraquinone               | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Fluoranthene                | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Pyrene                      | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Butyl benzyl phthalate      | µg/l  | 0.05                  | NONE                    | -             | -             | < 0.05        | < 0.05        |  |
| Benzo(a)anthracene          | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Chrysene                    | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Benzo(b)fluoranthene        | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Benzo(k)fluoranthene        | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Benzo(a)pyrene              | µg/l  | 0.01                  | ISO 17025               | -             | -             | < 0.01        | < 0.01        |  |
| Indeno(1,2,3-cd)pyrene      | µg/l  | 0.01                  | NONE                    | -             | -             | < 0.01        | < 0.01        |  |
| Dibenz(a,h)anthracene       | µg/l  | 0.01                  | NONE                    | -             | -             | < 0.01        | < 0.01        |  |
|                             |       |                       |                         |               |               |               |               |  |

U/S = Unsuitable Sample I/S = Insufficient Sample





# Project / Site name: Triton Square

Your Order No: CL1044

| Lab Sample Number    | 747654 |                       |                         |               |   |  |  |  |
|----------------------|--------|-----------------------|-------------------------|---------------|---|--|--|--|
| Sample Reference     |        |                       |                         | BH101         |   |  |  |  |
| Sample Number        |        |                       |                         | None Supplied |   |  |  |  |
| Depth (m)            |        |                       |                         | None Supplied |   |  |  |  |
| Date Sampled         |        |                       |                         | 11/05/2017    |   |  |  |  |
| Time Taken           |        |                       |                         | None Supplied |   |  |  |  |
| Analytical Parameter | Units  | Limit of<br>detection | Accreditation<br>Status |               |   |  |  |  |
|                      |        |                       | 8                       | 8             | 8 |  |  |  |
| Gas (subcontracted)  | N/A    | N/A                   | NONE                    | See Attached  |   |  |  |  |





#### Project / Site name: Triton Square

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

| Analytical Test Name                      | Analytical Method Description                                                                                                                                                       | Analytical Method Reference                                                                                           | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Ammoniacal Nitrogen as N in water         | Determination of Ammonium/Ammonia/<br>Ammoniacal Nitrogen by the discrete analyser<br>(colorimetric) salicylate/nitroprusside method.<br>Accredited matrices SW, GW, PW.            | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L082-PL          | W                     | NONE                    |
| BTEX and MTBE in water<br>(Monoaromatics) | Determination of BTEX and MTBE in water by<br>headspace GC-MS. Accredited matrices: SW PW<br>GW                                                                                     | In-house method based on USEPA8260                                                                                    | L073B-PL         | W                     | ISO 17025               |
| Chloride in water                         | Determination of Chloride colorimetrically by discrete analyser.                                                                                                                    | In house based on MEWAM Method ISBN<br>0117516260. Accredited matrices: SW, PW,<br>GW.                                | L082-PL          | W                     | ISO 17025               |
| Dissolved Organic Carbon in water         | Determination of dissolved inorganic carbon in water by TOC/DOC NDIR Analyser.                                                                                                      | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton          | L037-PL          | W                     | NONE                    |
| Gas Subcon to SAL                         | Subcontracted.                                                                                                                                                                      | Subcontracted analysis                                                                                                |                  | W                     | NONE                    |
| Hexavalent chromium in water              | Determination of hexavalent chromium in water by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.                                                          | In-house method by continuous flow<br>analyser. Accredited Matrices SW, GW, PW.                                       | L080-PL          | w                     | ISO 17025               |
| Metals in water by ICP-MS (dissolved)     | Determination of metals in water by acidification<br>followed by ICP-MS. Accredited Matrices: SW, GW,<br>PW except B=SW,GW, Hg=SW,PW, Al=SW,PW.                                     | In-house method based on USEPA Method<br>6020 & 200.8 "for the determination of<br>trace elements in water by ICP-MS. | L012-PL          | w                     | ISO 17025               |
| Metals in water by ICP-OES<br>(dissolved) | Determination of metals in water by acidification<br>followed by ICP-OES. Accredited Matrices SW,<br>GW, PW, PrW.(Al, Cu,Fe,Zn).                                                    | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | W                     | ISO 17025               |
| Monohydric phenols in water               | Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW                                                                                        | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (skalar) | L080-PL          | W                     | ISO 17025               |
| Nitrate as N in water                     | Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW.                                                                        | In-house method based on Examination of<br>Water and Wastewatern & Polish Standard<br>Method PN-82/C-04579.08,        | L078-PL          | w                     | ISO 17025               |
| Nitrate in water                          | Determination of nitrate by reaction with sodium salicylate and colorimetry. Accredited matrices SW, GW, PW                                                                         | In-house method based on Examination of<br>Water and Wastewatern & Polish Standard<br>Method PN-82/C-04579.08,        | L078-PL          | W                     | ISO 17025               |
| pH at 20oC in water (automated)           | Determination of pH in water followed by electrometric measurement.                                                                                                                 | In-house method based on BS1377 Part 3,<br>1990, Chemical and Electrochemical Tests                                   | L099-PL          | W                     | ISO 17025               |
| Semi-volatile organic compounds in water  | Determination of semi-volatile organic compounds<br>in leachate by extraction in dichloromethane<br>followed by GC-MS.                                                              | In-house method based on USEPA 8270                                                                                   | L102B-PL         | W                     | NONE                    |
| Speciated EPA-16 PAHs in water            | Determination of PAH compounds in water by<br>extraction in dichloromethane followed by GC-MS<br>with the use of surrogate and internal standards.<br>Accredited matrices: SW PW GW | In-house method based on USEPA 8270                                                                                   | L0102B-PL        | W                     | NONE                    |
| Sulphate in water                         | Determination of sulphate in water by acidification<br>followed by ICP-OES. Accredited matrices: SW<br>PW GW, PrW.                                                                  | In-house method based on MEWAM 2006<br>Methods for the Determination of Metals in<br>Soil.                            | L039-PL          | W                     | ISO 17025               |
| Sulphate in water                         | Determination of sulphate in water by ICP-OES                                                                                                                                       | In-house method based on MEWAM 1986<br>Methods for the Determination of Metals in<br>Soil""                           | L039-PL          | W                     | ISO 17025               |
| Total cyanide in water                    | Determination of total cyanide by distillation<br>followed by colorimetry. Accredited matrices: SW<br>PW GW                                                                         | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton (Skalar) | L080-PL          | W                     | ISO 17025               |

Iss No 17-48117-1 Triton Square 17-2961

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.





#### Project / Site name: Triton Square

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

| Analytical Test Name                | Analytical Method Description                                                                                        | Analytical Method Reference                                                                                  | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Total Hardness of water             | Determination of hardness in waters by calculation<br>from calcium and magnesium. Accredited Matrices<br>SW, GW, PW. | In-house method based on Examination of<br>Water and Wastewater 20th Edition:<br>Clesceri, Greenberg & Eaton | L045-PL          | W                     | ISO 17025               |
| TPH in (Water)                      | Determination of TPH bands by HS-GC-MS/GC-FID                                                                        | In-house method, TPH with carbon<br>banding.                                                                 | L070-PL          | W                     | NONE                    |
| TPHCWG (Waters)                     | Determination of dichloromethane extractable<br>hydrocarbons in water by GC-MS, speciation by<br>interpretation.     | In-house method                                                                                              | L070-PL          | W                     | NONE                    |
| Volatile organic compounds in water | Determination of volatile organic compounds in<br>water by headspace GC-MS. Accredited matrices:<br>SW PW GW         | In-house method based on USEPA8260                                                                           | L073B-PL         | W                     | ISO 17025               |

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

# **Appendix D**

Concept (2017) Phase 2 Factual Report

# SITE INVESTIGATION REPORT

# 1 Triton Square, Ground Investigation, Phase 2

C•JCEPT

**ISSUE 03** 

# SITE INVESTIGATION REPORT

1 Triton Square, Ground Investigation, Phase 2

Prepared for: British Land

Concept: 17/2961 Phase 2- FR 03

23/10/2017

Unit 8, Warple Mews, Warple Way London W3 0RF Tel: 020 8811 2880 Fax: 020 8811 2881 e-mail: <u>si@conceptconsultants.co.uk</u> <u>www.conceptconsultants.co.uk</u>



Unit 8 Warple Mews, Warple Way, London W3 0RF Tel: 0208 811 2880, Fax: 0208 811 2881 Email: si@conceptconsultants.co.uk

| DOCUMENT ISSUE REGISTER |                                                |               |          |  |  |
|-------------------------|------------------------------------------------|---------------|----------|--|--|
| Project Name:           | 1 Triton Square, Ground Investigation, Phase 2 |               |          |  |  |
| Project Number:         | 17/2961                                        | 7/2961        |          |  |  |
| Document Reference:     | 17/2961 Phase 2 - FR 01                        | Current Issue | Issue 03 |  |  |
| Document Type:          | Site Investigation Report                      |               |          |  |  |

| Development  | Name      | Signature  | Date       |
|--------------|-----------|------------|------------|
| Prepared by: | R Davila  | Rantisquat | 23/10/2017 |
| Checked by:  | l Penchev | the        | 23/10/2017 |
| Approved by: | l Penchev | AL         | 23/10/2017 |

### Issued to:

Arup

| Date     | Issue    | Amendment Details/ Reason for issue                                                                                                                                                                                   | Issued to |
|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 01/09/17 | lssue 00 |                                                                                                                                                                                                                       | Arup      |
| 15/09/17 | Issue 01 | Ferroscan/Covermeter survey results revised; New survey<br>areas added; Additional Breakouts added, Laboratory results<br>added                                                                                       | Arup      |
| 13/10/17 | lssue02  | Revised as per Arup's comments.<br>Detection report revised and annotated to clarify what the<br>different outputs are, drawings reoriented and key site location<br>plan added. Break outs locations in walls added. | Arup      |
| 23/10/18 | Issue03  | Revised as per Arup's comments. Units amended in Sketch C67<br>and Typo in section 8 Title corrected.                                                                                                                 | Arup      |
|          |          |                                                                                                                                                                                                                       |           |
|          |          |                                                                                                                                                                                                                       |           |
|          |          |                                                                                                                                                                                                                       |           |
|          |          |                                                                                                                                                                                                                       |           |
|          |          |                                                                                                                                                                                                                       |           |
|          |          |                                                                                                                                                                                                                       |           |

#### Notes:

## CONTENTS

- 1. PROJECT PARTICULARS
- 2. PURPOSE AND SCOPE OF WORKS
- 3. DESCRIPTION OF WORKS
- 4. INVESTIGATION METHODS
- 4.1 Diamond Coring
- 4.2 Covermeter Survey
- 4.3 Reinforcement Exposure
- 4.4 Dimensional Survey.
- 4.5 Standpipe Installations
- 4.6 Logging / Laboratory Testing
- 4.7 Setting Out
- 5 SITE LOCATION PLAN
- 6 EXPLORATORY HOLE LOCATION PLAN
- 7 DIAMOND CORING LOGS
- 8 DIMENSIONAL AND COVERMETER SURVEY SKETCHES
- 9 GEOTECHNICAL LABORATORY TEST RESULTS
- **10 CONCRETE CORE TEST RESULTS**
- 11 CHEMICAL LABORATORY TEST RESULTS
- 12 PHOTOGRAPHS

## 1. PROJECT PARTICULARS

| Site Location:            | 1, 4, 7 Triton Square, London, NW1 3HG |
|---------------------------|----------------------------------------|
| Client:                   | British Land                           |
| Investigation Supervisor: | Ove Arup & Partners Ltd                |
| Fieldwork:                | 13/07/2017 – 8/09/2017                 |
| Laboratory Work:          | 27/07/2017 – 7/09/2017                 |

## 2. PURPOSE AND SCOPE OF WORKS

The purpose of the investigation was to provide information on the geometry and condition of existing substructure, the groundwater regime at the site and confirm geotechnical parameters for the reuse of the existing structural element in the proposed new development.

The site currently comprises a multi-story building used for commercial and office space with a single storey basement.

The development will involve addition of three floors and an 8-storey (L2-L9) infill in the buildings central atrium.

The scope of the works comprised the following:

- 4 No. Horizontal Diamond Cored Coreholes to a maximum depth of 0.21m through 4 no reinforced concrete columns;
- 4 No. Horizontal Diamond Cored Coreholes to a maximum depth of 0.21m through 4 no reinforced concrete walls;
- 5 No. Vertical Diamond Cored Coreholes to a maximum depth of 0.25m through 4 no reinforced concrete slab panels;
- 1 No. Vertical Diamond Cored Coreholes to a maximum depth of 0.25m through 4 no reinforced concrete slabs;
- 8 No. Dimensional and Covermeter survey on reinforced concrete columns;
- 7 No. Dimensional and Covermeter survey on reinforced concrete walls;
- 4 No. Covermeter surveys on the soffit of reinforced concrete slab panels;
- 3 No. Reinforcement exposure
- 3 No. Covermeter survey on reinforced concrete slab
- 1 No 300mm diamond corehole to a depth of 0.50m followed by a hand excavated pit to 1.60m to enable the installation of a water monitoring standpipe and the recovery on samples for geotechnical and chemical laboratory testing
- Geotechnical, Chemical and Concrete Laboratory Testing.

| Table 1 – Exploratory | Locations and | Type of | Investigations |
|-----------------------|---------------|---------|----------------|
|-----------------------|---------------|---------|----------------|

| Location<br>Reference | Structure<br>Type        | Core<br>Hole   | Core<br>length<br>(m) | Core<br>Orientation<br>(° from<br>Vertical/<br>Down) | Covermeter<br>Survey | Dimensional<br>Survey | Comments                                                                              |
|-----------------------|--------------------------|----------------|-----------------------|------------------------------------------------------|----------------------|-----------------------|---------------------------------------------------------------------------------------|
| C2 Face A             | Column                   |                | -                     | -                                                    | Yes                  | Yes                   |                                                                                       |
| C2 Face B             | Column                   |                | -                     | -                                                    | Yes                  | Yes                   |                                                                                       |
| C11B Face A           | Column                   |                | -                     | -                                                    | Yes                  | Yes                   |                                                                                       |
| C11B Face B           | Column                   |                | -                     | -                                                    | Yes                  | Yes                   |                                                                                       |
| C50 Face A            | Column                   |                |                       |                                                      | Yes                  | Yes                   | Reinforcement<br>Exposure                                                             |
| C50 Face B            | Column                   | CC-C50         | 0.20                  | 90                                                   | Yes                  | Yes                   |                                                                                       |
| C58                   | Column                   | CC-C58         | 0.21                  | 90                                                   | Yes                  | Yes                   | Access to one face<br>only                                                            |
| C59                   | Column                   | CC-C59         | 0.20                  | 90                                                   | Yes                  | Yes                   | Access to one face<br>only                                                            |
| C67 Face A            | Column                   | CC-C67         | 0.21                  | 90                                                   | Yes                  | Yes                   |                                                                                       |
| C67 Face B            | Column                   |                |                       |                                                      | Yes                  | Yes                   |                                                                                       |
| C90 Face A            | Column                   | -              | -                     | -                                                    | Yes                  | Yes                   |                                                                                       |
| C90 Face B            | Column                   | -              | -                     | -                                                    | Yes                  | Yes                   |                                                                                       |
| C103                  | Column                   | -              | -                     | -                                                    | Yes                  | Yes                   |                                                                                       |
| W1 Face A             | Wall                     | CC-W1          | 0.21                  | 90                                                   | Yes                  | Yes                   | Long Face                                                                             |
| W1 Face B             | Wall                     | CC-W1          | 0.21                  | 90                                                   | Yes                  | Yes                   | Narrow Face                                                                           |
| W2 Face A             | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Long Face                                                                             |
| W2 Face B             | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Narrow Face                                                                           |
| W2 Face A             | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Long Face                                                                             |
| W2 Face B             | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Narrow Face                                                                           |
| W3 Location 1         | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Long Face                                                                             |
| W3 Location 2         | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Long Face                                                                             |
| W4 Location 1         | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Long Face                                                                             |
| W4 Location 2         | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Long Face                                                                             |
| W6 Face A             | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Long Face                                                                             |
| W6 Face B             | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Narrow Face                                                                           |
| W7 Face A             | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Long Face                                                                             |
| W7 Face B             | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Narrow Face                                                                           |
| W8 Face A             | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Long Face                                                                             |
| W8 Face B             | Wall                     |                |                       |                                                      | Yes                  | Yes                   | Narrow Face                                                                           |
| P1<br>P2              | Slab Panel<br>Slab Panel | CC-P1<br>CC-P2 | 0.22                  | 180<br>180                                           | Yes<br>Yes           |                       |                                                                                       |
|                       |                          | ł              |                       |                                                      | 162                  |                       |                                                                                       |
| P3                    | Slab Panel               | CC-P3-1        | 0.09                  | 180                                                  | Voc                  |                       | Core aborted on Rebar                                                                 |
| P3                    | Slab Panel               | CC-P3-2        | 0.21                  | 180                                                  | Yes                  |                       |                                                                                       |
| P4                    | Slab Panel               | CC-P4          | 0.25                  | 180                                                  | Yes                  |                       |                                                                                       |
| Slab_Loc1             | Floor Slab               |                | ļ                     |                                                      | Yes                  | Yes                   |                                                                                       |
| Slab_Loc2             | Floor Slab               |                |                       |                                                      | Yes                  | Yes                   |                                                                                       |
| Slab_Loc3             | Floor Slab               |                |                       |                                                      | Yes                  | Yes                   |                                                                                       |
| СН10                  | Floor                    | СН10           | 0.48                  | 0                                                    | Yes                  |                       | Hand excavation to<br>1.60m depth below<br>core and Monitoring<br>Standpipe Installed |

## 3. DESCRIPTION OF WORKS

The works were carried out in accordance with the Ove Arup & Partners Ltd Ground Investigation Specification and Tender Document "1 Triton Square Specification for Ground Investigation - Phase 1" with reference: 246868/SPEC/001, dated 28th March 2017, the Supplemental Structural Survey Notes SK-S-006 rev. C and the Concept Method Statement.

The site is located at 1, 4 and 7 Triton Square (147 Triton Square), approximately 150m to the north west of the junction of Euston and Hampstead Road and forms part of a wider Regent's Place/Triton Square development bounded by Drummond Street, Longford Street, Osnaburgh Street, Euston Road and Hampstead Road. It is centred at approximate National Grid Reference TQ290823.

The locations of all exploratory holes are shown in the Exploratory Hole Location Plan presented in Section 6 of this report.

## 4. INVESTIGATION METHODS

### 4.1 Diamond Coring

13No. 75mm diameter diamond cored coreholes were carried out using a water-cooled diamond coring rig Hilti DD350 through walls, columns and slab panels (see Table 1) to recover samples for laboratory testing at locations specified by Arup following a covermeter survey (see Section 8) to minimise the risk of damaging reinforcement.

Corehole CC-P3-1 was aborted at 0.08 depth when the lead driller suspected presence of rebar. After the removal of the already cut concrete, the presence of 10mm diameter rebar was confirmed. Following further investigation, it was confirmed that the core bit penetrated 4mm into the bar.

The cores from the slab panels were recovered from the soffit and the works were carried out from a mobile tower scaffold.

All coreholes were reinstated with Weber 5 Start Concrete Repair.

All corehole logs are presented in in section 7 in this report

1No 300mm diameter diamond cored coreholes was carried out using a water-cooled diamond coring rig Hilti DD350 through floor slab at location, specified by Arup to a depth of 0.48m. Upon completion, a pit was hand excavated from the surface to a depth of 1.60m to confirm the undelaying soil types. Soil samples were recovered for geotechnical and chemical laboratory testing. A monitoring stand pipe was installed (see Section 4.5)

All findings are presented in the corehole log CH10 in section 7 in this report

### 4.2 Covermeter Survey

Covermeter Survey was carried in the locations listed in Table 1 in accordance with BS1881-2004 and Elcometer 331 Concrete Covermeter Model user manual, in an attempt to investigate the concrete cover and the reinforcing bar sizes, avoiding any intrusive works which could potentially compromise the longevity of the structural elements.

In addition, covermeter survey was carried ahead of any coring so that the risk of damaging reinforcement is minimised.

The survey was carried out in three stages using three different instruments:

• Hilti PS38 Multidetector to located the reinforcement and provide indicative concrete cover

- Elcometer 331 Concrete covermeter Model SH with standard and narrow scanning heads for determining the concrete cover and the reinforcing bar diameters.
- Hilti PS200 S Ferroscan to map the positions of the reinforcement in the surveyed areas so a better estimate of the cover and diameter of reinforcement are made. In order for the determination of the concrete cover, the reinforcing bar diameters were assumed to be equal to the reinforcing bars exposed in the local breaking outs:
  - for walls 16mm (horizontal and vertical as confirmed in the local breakouts in W1 and W4 and also observed in the corehole in W7 (see Section) 4.3
  - for Columns 40mm vertical and 10mm horizontal as confirmed in the local breakout in C50

Where no intrusive works were carried out, the diameters of the reinforcing bars and the concrete covers are only estimated.

The surveys of the columns and the walls were carried out at  $\sim$ 2.00m above the floor level (at mid high), where it was expected that the density of the reinforcement will be minimal.

The accuracies of the Elcometer 331 and the Hilti PS200 S Ferroscan.

- Accuracy of depth measurement for rebar:± 1 mm
- Localisation accuracy: ±3 mm
- Max. depth for determining rebar diameter: 60 mm
- Max. depth for determining depth of coverage 160 mm

Other factors, that affect the accuracy of the scans are:

- if the rations Cover:Specing is less than 2:1
- Presence of other steel objects.

The results of the surveys are presented in Section 8

### **4.3 Reinforcement Exposure**

The concrete cover at location agreed with Arup on site was locally removed from Column C50, Wall W1 and Wall W4 using a lightweight breaker Hilti TE 700-AVR. The uncovered reinforcement was in sound condition. The findings are presented in the C50 sketches in Section 8.

The reinforcement in Wall 7 was observed and recorded in a service corehole drilled by others

The concrete was reinstated with Weber 5 Start Concrete repair

### 4.4 Dimensional Survey.

Dimensional surveys, comprising direct measurement of the sections of the columns and the walls at high, medium and low level, together with a plumb bob survey were carried out where practically possible.

They are presented in the relevant drawings in Section 8 of this report.

### 4.5 Standpipe Installations

Monitoring wells with flush stopcock covers were installed in the boreholes as follows:

| Hole ID | Base of<br>Borehole<br>(m bgl) | Diameter of<br>Installation<br>(mm) | Type of<br>Installation | Base<br>(m bgl) | Top<br>RZ<br>(m bgl) | Bottom RZ<br>(m bgl) |
|---------|--------------------------------|-------------------------------------|-------------------------|-----------------|----------------------|----------------------|
| CH10    | 1.60                           | 50                                  | SPIE*                   | 1.50            | 0.80                 | 1.50                 |

KEYSPG/GW- Gas & Groundwater StandpipeSPGW- Groundwater StandpipeRZ- Response Zone

\*Standpipe piezometer driven into the ground at the base of the corehole

The pit was backfilled with bentonite pellets, with groundwater response zone backfilled with a 10mm pea shingle filter. The installation was finished with concrete and a lockable stopcock cover flush with the ground. The corehole was reinstated with C30 mixed on site concrete with Sika 2 Waterproofing additive.

## 4.6 Logging / Laboratory Testing

Logging of all soil samples was carried out in accordance with BS 5930:2015.

Geotechnical testing is performed at Concept Site Investigations laboratory in accordance with BS1377:1990 unless otherwise stated in the report. Concept is accredited by UKAS for tests where the UKAS logo is appended to the individual test report or summary. Approved signatories for laboratory testing are as follows:

- LG Lynn Griffin (Quality Manager)
- KM Kasia Mazerant (Laboratory Manager)

Where subcontracted analysis has been carried out, the details of the laboratory (and accreditation where applicable) are shown in the individual test report or summary.

The results are presented in tabular format in Section 9 of this report.

Concrete core testing was carried out by Sandberg Ltd and the results are presented in Section 10.

All chemical testing was specified and scheduled by Ove Arup & Partners Ltd and carried out by i2 Analytical Ltd in accordance with the requirements of UKAS ISO17025 and MCERTS. The results are presented in tabular format in Section 11 of this report.

### 4.7 Setting Out

The locations of all exploratory holes were agreed with the Investigation Supervisor and set out prior to commencement of the site works.

The investigation locations were set out from salient features. The approximate coordinates were estimated by plotting the location on the OS plan generated for the first phase 1 of the investigations. Also, it was assumed that the floor slab was at +23.07mOD as per the results from the surveying, carried out during the Phase 1.

The approximate co-ordinates and levels of the as-built locations of the boreholes are shown in the Exploratory Hole Location Plan presented in Section 7 of this report.

## REFERENCES

**British Standards Institution, (2015)** Code of practice for ground investigations, British Standard BS5930: 2015, BSI, London

**British Standards Institution, (2011)** Investigation of potentially contaminated sites, British Standard BS10175: 2011, BSI, London.

**UK Specification for Ground Investigation, (2011)** Site Investigation Steering Group, Thomas Telford, London

British Geological Survey (1996) London and the Thames Valley 4th Edition, London HMSO.

**British Standards Institution BS EN ISO 22475-1, (2006)** Geotechnical Investigation and Testing – Sampling Methods and Groundwater Measurements – Part 1: Technical Principles for Execution

**British Standards Institution BS EN 1997:1 (2004)** EuroCode 7 - Geotechnical Design. Part 1 – General Rules.

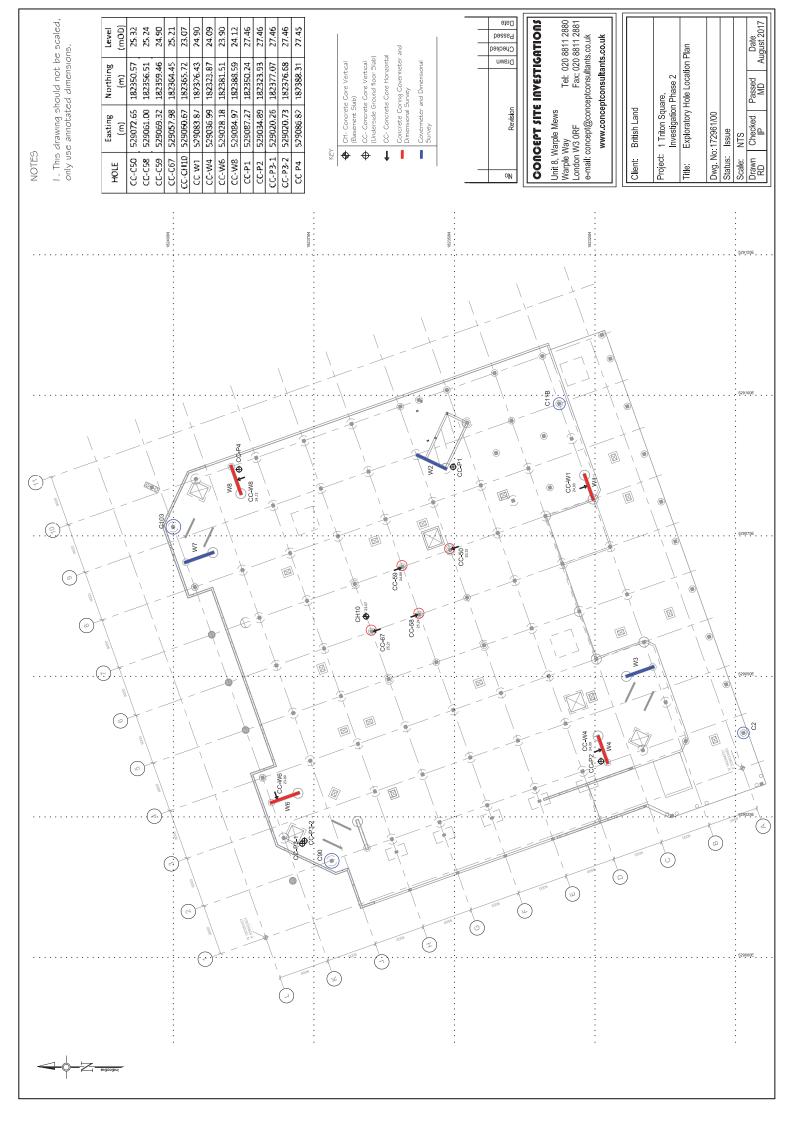
**British Standards Institution BS EN 1997:2 (2007)** EuroCode 7 - Geotechnical Design. Part 2 - Ground Investigation and Testing.

**King C. (1981)** The stratigraphy of the London Basin and associated deposits. Tertiary Research Special Paper, Vol. 6, Backhuys, Rotterdam, p158.

Entwisle N D C, Hobbs, P R N, Northmore, K J, Skipper, J, Raines, M R, Self, S J, Ellison, R A & Jones L D (2013) Engineering Geology of British Rocks and Soils - Lambeth Group. British Geological Survey Open Report, OR/13/006. 316pp.

**British Standards Institution BS 1881-204 (1988)** Testing Concrete – Part 204: Recommendations on the use of electromagnetic covermeters

**Elcometer Limited Doc.No. TMA-0384 Issue 06 Text with Cover No: 19754** - Elcometer 331 Concrete covermeter Model SH User Manual


ORIGINAL OPERATING INSTRUCTIONS PS 250 ferroscan system/ PS 200 S ferroscan: https://www.hilti.co.uk/medias/sys\_master/documents/h1f/9182632706078/Operatin g-Instruction-PS-250-PS-200-S-01-EN-Operating-Instruction-PUB-5135462-000.pdf



# 5 SITE LOCATION PLAN

Not to Scale © Crown Copyright reserved

# 6 EXPLORATORY HOLE LOCATION PLAN



7 DIAMOND CORING LOGS

Concept Unit 8 Warple Mews, Warple Way London W3 0RF Telephone: 02088112880\_Fax: 02088112881 E-mail: si@conceptconsultants.co.uk

Trial Pit No

**CH10** 

| Proje                        |                                                                         | n Sauare                                                                   | Ground In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vestigation, P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phase 2                                                                                                                                                       |                                                                |                                                                                                                                                                                                                             |                         |                                        |
|------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|
| Job N                        |                                                                         | Date Star                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ground Level (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               | Co-Ordin                                                       | ates                                                                                                                                                                                                                        |                         | Final Depth                            |
|                              | 7/2961                                                                  |                                                                            | pleted 26/07/17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                               | E 529060.7 N 182365.7                                          |                                                                                                                                                                                                                             |                         | 1.60m                                  |
| Clien                        | t<br>British 🛛                                                          | Land                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                               | /lethod/<br>lant Used                                          | Corin                                                                                                                                                                                                                       | mond<br>g/Hand<br>wated | Sheet<br>1 of 1                        |
|                              |                                                                         |                                                                            | ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                               | SAM                                                            | IPLES & T                                                                                                                                                                                                                   | TESTS                   |                                        |
| Water                        | Level<br>(mOD)                                                          | Legend Dept<br>(Thickn                                                     | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tata Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                               | Dep                                                            | INO                                                                                                                                                                                                                         | Test<br>Result          | Field<br>Records                       |
| ₽<br>GE                      | 22.59<br>22.59<br>21.95<br>21.67                                        | $\begin{array}{c} (0.12 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $  | subangular to sub<br>(average spacing<br>Occasional air vc<br>0.03 with 1No<br>rebar         34       0.05 with 2No<br>0.26 with 3No<br>0.28 with 1No<br>rebar         35       Strong, light grey<br>subangular to sub<br>(average spacing<br>Occasional air vc<br>(MADE GROUN)         80       Brown silty very<br>content, occasion<br>fragments and oc<br>comprises angula<br>brick and concret<br>Sand is fine to cc<br>(MADE GROUN)         12       Brown silty Carbon<br>fragments and co<br>comprises angula<br>brick and concret<br>Sand is fine to cc<br>(RIVER TERRA<br>Firm to stiff, brom<br>micaceous CLAY         40       Tirm to stiff, prom<br>micaceous CLAY         9       Firm to stiff, grey<br>micaceous CLAY | Ø14mm rebar and 3No<br>Ø16mm rebar<br>Ø20mm rebar<br>Ø14mm rebar and 1No<br>rish brown CONCRETE<br>forounded fine to coarse i<br>between aggregate 3mn<br>vids (<8mm).<br>D)<br>sandy GRAVEL with hi<br>al black plastic membra<br>casional wood fragment<br>to subrounded fine to<br>te fragments. Cobbles ar<br>arse.<br>D)<br>h no cobbles<br>y angular to well rounded<br>VEL with slight hydroca<br>varse.<br>CE DEPOSITS)<br>wn mottled orangish bro<br>( with occasional black<br>UP: WEATHERED LOI<br>TON)<br>v occasionally mottled br | flint<br>n).<br>Ø16mm<br>Ø16mm<br>G, clasts are<br>flint<br>n).<br>igh cobble<br>ne<br>ts. Gravel<br>coarse flint,<br>re brick.<br>ed fine to<br>arbon odour. | 0.50-0.<br>0.50-0.<br>0.65-0.<br>0.80-1.<br>0.80-1.<br>1.12-1. | 65         ES01           65         B02           80         ES03           80         B04           12         ES05           12         B06           40         ES07           50         B09           60         ES10 |                         | Water level at 1.00m depth on 24/07/17 |
| 2.<br>24/<br>3.<br>4.<br>ins | Pit collapsin<br>/07/2017.<br>Ø50mm gro<br>Corehole ba<br>stalled betwe | ng between 21/0<br>pundwater stand<br>ackfilled with pe<br>een 0.50m and g | 7/2017 and 24/07/2017<br>pipe installed at 1.50m<br>a shingle between 1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | depth (re-exc<br>0.80m and 1                                                                                                                                  | .50m depth.                                                    | .60m depth). Wa                                                                                                                                                                                                             | ater encounte           |                                        |
| Issue N                      | Vo: 00 D                                                                | Drilled By: FT                                                             | Logged By: RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Checked By: OS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Approved                                                                                                                                                      | By: OS                                                         | Log Print Dat                                                                                                                                                                                                               | te & Time:              | 01/09/2017 12:01                       |

## **11 CHEMICAL LABORATORY TEST RESULTS**



Evangelos Kafantaris Concept Site Investigations Unit 8 Warple Mews Warple Way London W3 0RF

t: 020 88112880

e: evangelos@conceptconsultants.co.uk

# Analytical Report Number : 17-55222

| Project / Site name: | Triton Square     | Samples received on:   | 24/07/2017 |
|----------------------|-------------------|------------------------|------------|
| Your job number:     | 17-2961           | Samples instructed on: | 24/07/2017 |
| Your order number:   | CL1128            | Analysis completed by: | 31/07/2017 |
| Report Issue Number: | 1                 | Report issued on:      | 31/07/2017 |
| Samples Analysed:    | 1 leachate sample |                        |            |

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

| soils     | - 4 weeks from reporting  |
|-----------|---------------------------|
| leachates | - 2 weeks from reporting  |
| waters    | - 2 weeks from reporting  |
| asbestos  | - 6 months from reporting |

Excel copies of reports are only valid when accompanied by this PDF certificate.

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com



This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

