

Ensphere Group Ltd 10 Greycoat Place, London, SW1P 1SB +44 (0) 20 7960 6126 www.enspheregroup.com

21 John Street, Camden

Energy Statement

Client Name:	Jaspar Homes Ltd
Document Reference:	18-E018-002
Project Number:	18-E018

Quality Assurance Approval Status

This document has been prepared and checked in accordance with Ensphere Group Ltd's Quality Management System.

Issue:	Version:	Prepared by:	Reviewed by:	Date:
Final	V2	Pete Jeavons	Pete Jeavons	March 2018

Sustainability	Energy	Climate Change	Socio-Economic

Contents

1.	Executive Summary	. 1
2.	Introduction	. 2
3.	Planning Policy Context	. 3
4.	Other Planning Considerations	. 5
5.	Baseline & Carbon Reduction Target	. 6
6.	Passive Design & Energy Efficiency	. 7
7.	District Energy & Low Carbon Technology Appraisal	11
8.	Renewable Technology Appraisal	13
9.	Summary	19

Appendices

A.	Site Plan	21
B.	Energy Modelling Outputs	23
C.	General Notes	30

1. Executive Summary

- 1.1 This Energy Statement presents the energy strategy for a proposed scheme at 21 John Street, London, WC1N 2BF.
- 1.2 Development proposals include a roof extension for one residential unit.
- 1.3 Consideration has primarily been given to the planning policy context and other requirements prior to establishing a strategy based upon the energy hierarchy; with a priority given to energy reduction and efficiency. Renewable and low carbon technologies have also been considered in the context of their technical feasibility and financial viability.
- 1.4 The following is therefore proposed:
 - High performance building fabric and energy efficient lighting, services and equipment;
 - Passive design measures to reduce energy demand for heating, cooling, ventilation and lighting;
 - Photovoltaics (PV) at roof level to offset the site's electricity demand.
- 1.5 Energy modelling has been undertaken using SAP; the results of which demonstrate that a carbon saving >20% below Part L 2013 is feasible with the above strategy.
- 1.6 Overall, the proposed energy strategy is considered consistent with the National Planning Policy Framework and policies of the Council and, when implemented, will provide an efficient and low carbon development.

Introduction 2.

2.1 Ensphere Group Ltd was commissioned by Jaspar Homes Ltd to produce an Energy Statement for a proposed development at 21 John Street, London, WC1N 2BF.

Site & Surroundings

2.2 The Application Site is located the southern part of the London Borough of Camden. The site is of an irregular shape and currently occupied by a Grade II listed building comprising eight storeys of commercial and residential accommodation. The site also located in the Bloomsbury Conservation Area.

Proposed Development

2.3 Development proposals include a roof extension to accommodate one new, self-contained residential unit.

Report Objective

2.4 The objective of the Energy Statement is to outline how energy efficiency, low carbon and renewable technologies have been considered as part of the energy strategy.

Planning Policy Context

3.1 National and local planning policy relevant to sustainable development is considered in detail below:

National Planning Policy Framework

- 3.2 The Department for Communities and Local Government determines national policies on different aspects of planning and the rules that govern the operation of the system.
- 3.3 The transition to a low carbon economy is promoted in paragraphs 17, 93 through to 97 of the NPPF.

London Planning Policy Framework

3.1 The London Plan is the overall strategic plan for London. Chapter five of the Plan details London's Response to Climate Change.

Local Planning Policy Framework

Camden Local Plan (June 2017)

3.2 The Local Plan was adopted by Council on 3 July 2017 and has replaced the Core Strategy and Camden Development Policies documents as the basis for planning decisions and future development in the borough. Policies relevant to this report are presented below:

Policy CC1 Climate Change Mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

- a. Promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;
- b. Require all major development to demonstrate how London Plan targets for carbon dioxide have been met:
- c. Ensure that the location of the development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;
- d. Support and encourage sensitive energy efficiency improvements to existing buildings;

- e. Require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and
- Expect all developments to optimise resource efficiency. f.

For decentralised energy networks, we will promote decentralised energy by:

- g. Working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;
- h. Protecting existing decentralised energy networks (e.g. at Gower Street Bloomsbury, Kings Cross, Gospel Oak, and Somers Town) and safeguarding potential network routes; and
- i. Requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network.

To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

ensphere

Other Planning Considerations

4.1 This section comprises an overview of other considerations relevant to the Energy Statement.

National Planning Practice Guidance

Climate Change

4.2 Advises how planning can identify suitable mitigation and adaption measures in plan-making and the application process to address the potential for climate change.

Renewable and Low Carbon Energy

4.3 The guidance is intended to assist local councils in developing policies for renewable energy in local plans, and identifies the planning considerations for a range of renewable sources.

London Planning Practice Guidance

Sustainable Design and Construction Supplementary Planning Guidance (April 2014)

4.4 The Mayor has published supplementary planning guidance on Sustainable Design and Construction. The document provides guidance on the implementation of London Plan policy 5.3 as well as a range of policies, primarily in Chapters 5 and 7 that deal with matters relating to environmental sustainability.

Energy Planning Guidance (March 2016)

4.5 Policy 5.2 of the London Plan requires each major development proposal to submit a detailed energy assessment. The GLA provides guidance to developers and their advisors on preparing energy assessments to accompany strategic planning applications. With regards to the carbon reduction targets detailed in policy 5.2 of the London Plan, the mayor will apply a 35 per cent target beyond Part L 2013 of the Building Regulations. This is deemed to be broadly equivalent to the 40 per cent target beyond Part L 2010.

Local Planning Policy Guidance

Camden Planning Guidance – Sustainability (CPG3) (2015)

- 4.6 The guidance provides information on ways to achieve carbon reductions and more sustainable developments. It highlights the Council's requirements and guidelines in support of policies CS13, DP22 and DP23. The Guidance confirms that whilst the Code for Sustainable Homes has been withdrawn, the Council would still require new residential dwellings to demonstrate a 20% reduction in on-site carbon dioxide emissions (equivalent to a Code Level 4 performance).
- 4.7 The guidance also includes reference to a 20% renewables target contained within the, now superseded, Core Strategy. Given that this policy is no longer current, this target is not considered to apply.

Baseline & Carbon Reduction Target 5.

Baseline Position

- 5.1 A baseline position has been established and calculated using SAP and assuming compliance with Part L of the 2013 Building Regulations.
- 5.2 The following represents site-wide data for the residential TER calculation.

Figure 5.1 **Baseline Carbon Emissions (Residential)**

Carbon Reduction Target

5.3 The Target Emission Rate for the development is calculated at 19.71kgCO₂/m²/year; meaning that a 20% reduction in carbon emission would require an emission rate less than 15.71kgCO₂/m²/year.

Passive Design & Energy Efficiency 6.

This section considers features of the proposed design (including indicative performance levels) relevant to passive design and energy efficiencies. 6.1

Aspect	Description	Appraisal
Passive Design	Passive design seeks to	Passive Heating / Cooling
	maximize the use of natural	It is intended that windows will be set back slightly to provide a degree of shading from the sun. It is intended that the
	sources of heating, cooling	building will have the potential to be naturally ventilated (via openable window / vent), with ventilation rates calculated
	and ventilation to maintain	to ensure sufficient air chances per hour to maintain temperatures within a comfortable range.
	thermal comfort levels within	
	the building.	Lighting and Daylighting Design
		The design of the glazed areas will seek to offer good access to natural daylight to reduce consumption of energy for
		artificial lighting. Overall, a balance shall be sought between achieving daylighting levels and winter solar gains, whilst
		minimising summer heat gains and cooling loads.
Fabric Efficiency	Fabric efficiency concerns the	Insulation
	thermal properties associated	Heat Transfer Coefficients, otherwise referred to as U-Values, are a measure of the rate of heat transfer through a
and the second second	with the building fabric and	building element over a given area, under standardised conditions (i.e. the rate at which heat is lost or gained through
	construction.	a fabric).
		It is intended that the performance of the building fabric will incorporate relatively low U-Values to reduce the rate at
		which the buildings lose heat, preserving the heat within the space and reducing the requirement for mechanical
		heating.
		The following U-values are provided as a guide for the basic building elements:
		External Walls ~0.18W/m ² K;

Passive Design & Energy Efficiency Design Features Table 6.1

		Roof ≤0.13W/m²K;
		Windows ≤ 1.40 W/m ² K.
		Air Tightness A high level of air tightness is proposed and a level below 5m ³ /h/m ² is targeted, meaning that air infiltration between the internal and the external environment will be largely controlled and space heating demand further reduced. Thermal Bridging Thermal bridging is the penetration of the insulation layer by a highly conductive non-insulating material allowing rapid heat transfer from an interior to exterior environment (and vice versa). In well insulated buildings, as much as 30% of heat loss can occur through thermal bridges. The building fabric shall be constructed so that there are no reasonably avoidable thermal bridges in the insulation layers caused by gaps within the various elements.
System Efficiency	System efficiency concerns the energy efficiency of the heating, cooling, lighting and auxiliary systems employed within the building.	Extract Fans It is anticipated that extract fans will be employed in WC and kitchen areas. The specific fan power (SFP) for these systems will be efficient and below 0.3W/l/s. Metering The major energy uses shall be monitored via separate energy meters and a Building Energy Management System (BEMS) will be installed, which will allow for optimum operational control and performance of complex building services in the development. Lighting Efficacy At this stage, detailed lighting design calculations have not yet been undertaken, but lighting design is intended to be
		highly efficient and in excess of Building Standards requirements. It is intended that lighting efficacy shall be in excess of 80 lumens/circuit Watt.

Overheating Mitigation The issue of overheating will Limiting Summer External Gains Solar control glazing shall be installed to the elevations most affected; the precise specification of glazing types for windows and glazed curtain walling is to be based upon further analysis at later stages so that the appropriate balance is found between limiting summer heat gains without compromising daylight harvesting and winter solar gains. Progressively better sealed and insulated, the potential for overheating increases. Thermal mass (discussed above) and internal occupant-controlled shading elements will be considered at the more detailed design stage along with heat reflective finishes of the external building surfaces. The above shall be considered in conjunction and interrelationship with the ventilation strategy, to ensure thermal comfort for occupants and energy savings. Limiting Internal Heat Gains Heat losses from the Hot Water and Low Temperature Hot Water (LTHW) distribution network are considered to be a significant source of potential overheating in well insulated buildings. This issue can be a significant factor affecting comfort and will therefore need full consideration during the detailed design of the mechanical systems.			Lighting controls (e.g. PIR occupancy sensors) shall be employed throughout the non-residential components and zoned to suit the different space uses; the lighting control strategy shall work in conjunction with daylighting sensors in spaces with substantial glazing, to further reduce the energy consumption for artificial lighting. External lighting shall be highly efficient and employ controls to avoid energy wastage from unnecessary operation during daytime.
 However, it is expected that attention will be given to: The positioning of the distribution network and its potential impact on surrounding spaces; The (mechanical) ventilation of spaces where heating pipework is distributed (e.g. corridors); The implementation of combined passive/active ventilation systems for air exhaust of spaces into corridors and to the outside; Maximising the natural ventilation potential of spaces; 	Overheating Mitigation	The issue of overheating will need detailed and considered assessment at a later stage of design on the basis that, as buildings become progressively better sealed and insulated, the potential for overheating increases.	 Limiting Summer External Gains Solar control glazing shall be installed to the elevations most affected; the precise specification of glazing types for windows and glazed curtain walling is to be based upon further analysis at later stages so that the appropriate balance is found between limiting summer heat gains without compromising daylight harvesting and winter solar gains. Thermal mass (discussed above) and internal occupant-controlled shading elements will be considered at the more detailed design stage along with heat reflective finishes of the external building surfaces. The above shall be considered in conjunction and interrelationship with the ventilation strategy, to ensure thermal comfort for occupants and energy savings. Limiting Internal Heat Gains Heat losses from the Hot Water and Low Temperature Hot Water (LTHW) distribution network are considered to be a significant source of potential overheating in well insulated buildings. This issue can be a significant factor affecting comfort and will therefore need full consideration during the detailed design of the mechanical systems. However, it is expected that attention will be given to: The (mechanical) ventilation of spaces where heating pipework is distributed (e.g. corridors); The implementation of combined passive/active ventilation systems for air exhaust of spaces into corridors and to the outside; Maximising the natural ventilation potential of spaces;

• The performance of the insulation, with calculations undertaken assessing heat losses from the pipework relative
to the heat losses from the spaces.

7. District Energy & Low Carbon Technology Appraisal

7.1 Low carbon technologies are energy generation systems which offer the capability to make more efficient and effective use of primary energy resources, emitting significantly lower levels of carbon dioxide than conventional energy generation methods.

Technology	Description	Appraisal	Proposed
District Energy	The term "district energy" applies to the energy distribution network, rather than the origins of the energy and the extent of any carbon savings will be largely determined by the energy source and heat losses on the network.	 <u>Opportunities</u> A sufficient heating demand exists on site which could be satisfied by a District Energy system; <u>Limitations</u> Connection costs and energy prices may be high; The carbon factor associated with the fuel source is beyond the control of the developer. There is no district energy network (DEN) in the vicinity of the site. <u>Appraisal</u> Connection to DEN is not proposed on the basis that no network exists in the vicinity of the site. Furthermore, the scale and nature of the development do not support the creation of an onsite network as heat losses would be disproportionately large. 	No
Combined Heat & Power	Combined Heat & Power (CHP) systems generate electrical energy and provide the waste heat from the process to be used on site. They are typically gas-powered but can be run off alternative fuel sources. CHP is a highly	 Opportunities A sufficient heating demand exists on site which the CHP system could supply; A base load exists for hot water generation for the residential elements of the proposal. Limitations The space heating demand presents a variable daily, weekly and seasonal trend; this potentially introduces design complexity and viability implications for the technology; 	No

 Table 7.1
 District Energy & Low Carbon Technology Appraisal

8. Renewable Technology Appraisal

8.1 Renewable technologies are those which take their energy from sources which are considered to be inexhaustible (e.g. sunlight, wind etc.). Emissions associated with renewables are generally considered to be negligible and the technologies are frequently referred to as "zero carbon".

Technology	Description	Appraisal	Proposed
Biomass Systems	Biomass systems are heating	Opportunities	No
	systems that use agricultural,	 A sufficient heating demand exists, which the biomass system could supply; 	
	forest, urban and industrial		
	residues and waste to produce	Limitations	
and a state of the	heat and (depending on the	• Transport, storage and maintenance requirements, would increase the managerial	
North And Market	system) electricity. At the	requirements of operation;	
ANAL AND LESS	building scale, biomass boilers	• Carbon emissions associated with cultivation, processing and transport of biomass are not normally considered in the context of planning or Building Regulations meaning that total carbon emissions are likely to be significantly higher than estimated.	
	using wood pellets or		
	woodchips are the norm.		
	Biomass should be sourced		
	locally to limit "embodied	Appraisal	
	carbon" associated with	 Whilst technically feasible, the use of biomass would increase the transport in the vicinity of the site and would have a detrimental effect on local air quality. 	
	transport and ideally be derived		
	from waste wood products to		
	limit the take-up of agricultural	Biomass is therefore not a preferred technology for the scheme.	
	land for fuel crops.		

 Table 8.1
 Renewable Technology Appraisal

Oensphere

Heat Pumps	Heat pumps draw thermal	Opportunities	No
	energy from the air, water or	A sufficient heating demand exists, which ASHPs could accommodate;	
Air Source Heat Pumps	ground ("source") and upgrade		
	it to be used as useful heat at	Limitations	
	another location ("sink"). Heat	• The performance of ASHPs typically varies more than other heat pump options due to greater	
	pumps require electricity to	fluctuations in air temperatures, relative to other heat sources;	
	operate (or gas in the case of		
	Gas Absorption Heat Pumps)	Performance reduces when systems are required to achieve higher temperatures. Heat pumps	
	as mechanical input is required	are therefore normally better applied to space heating rather than hot water and specifically to	
	to convert harvested energy to	low supply temperature systems (e.g. underfloor heating);	
	useful heat and complete its	• All best numps generate poise associated with the movement of refrigerant and (any) fans:	
	transport to the "sink".	• Air near pumps generate noise associated with the movement of reingerant and (any) raits,	
		• Whilst less expensive than other heat pump systems, relative to other technologies, capital and	
	Heat pumps are generally	maintenance costs are high;	
	considered as renewable		
	(despite an electrical or gas	Appraisal	
	requirement) because the	• ASHPs are not proposed on the basis that a less complicated renewable solution is preferred.	
	source of the heat is the		
Ground Source Heat Pumps	ambient temperature in the	Opportunities	Nc
	exterior environment, which is	 A sufficient heating demand exists, which GSHPs could accommodate; 	
and a lot of the	ultimately heated via the sun.	Limitations	
	Reversible systems can	Site constraints and shading render a horizontal configuration non-feasible. Capital costs for	
	provide air conditioning comfort	vertical installations are twoically greater than for horizontal systems due to drilling costs:	
	cooling: however when in		
the state of the s	cooling, nowever, when in	• Thermal properties of the ground will depend upon a number of factors including geology and	
	considered renewable as it is	depth. Desktop information suggests that thermal properties are below average and therefore	
	not taking advantage of a	deeper boreholes would likely be required;	
	renewable source of energy		
	renewable source of energy.	• Performance reduces when systems are required to achieve higher temperatures. Heat pumps	
		are therefore normally better applied to space heating rather than hot water and specifically to	
		low supply temperature systems (e.g. underfloor heating);	

Chapter: Renewable Technology Appraisal

		 <u>Appraisal</u> Installed vertically, a GSHP system would be technically feasible for supplying heat to part of the development; However, uncertainties exist with regards to the thermal properties of the ground and performance; GSHPs are not proposed; principally for financial viability reasons and on the basis that it would represent a relatively expensive means of reducing carbon. 	
Water Source Heat Pumps		 <u>Opportunities</u> A sufficient heating demand exists, which WSHPs could accommodate; <u>Limitations</u> Surface water course in close proximity to the site are considered of insufficient size to apply this technology. Any use of the river would need to be considerate of the relevant authorities, other users and potential for impact on wildlife. <u>Appraisal</u> WSHP is not considered an option for the site; primarily for technical feasibility considerations. 	No
Micro Hydro Power	Micro hydro power systems harnesses energy from flowing water by using height differences (called "head"); the minimum allowable head is 1.5m and ideally not lower than 10m.	Opportunities • A sufficient electricity demand exists, which micro hydro power could address. Limitations • No suitable water body is found in the vicinity of the site. Appraisal • Micro hydro is therefore not considered an option for the site, for technical feasibility reasons.	No

Chapter: Renewable Technology Appraisal

Micro Wind Power	Wind turbines are used to generate electricity; with power	Opportunities
	production determined by the rotation of the blades and being proportionate to the speed of	A summer electricity demand exists, which micro wind power could contribute towards; <u>Limitations</u>
	their rotation. The technology is most efficient for constant, low	• The local wind profile is expected to be highly turbulent, reducing the efficiency of the system;
	turbulence wind profiles.	• The average wind speed is low and falls within the lower range for a viability case;
		• Roof mounted turbines would add height to the buildings with associated aesthetic and planning considerations; and
		• Moving plant on the roof potentially creates noise and vibration, with associated nuisance and structural considerations.
		Appraisal
		Whilst wind turbines are considered technically feasible in a limited capacity, wind speeds are relatively low and subject to turbulance. The technology is therefore likely to underperform
		Pelatively low and subject to turbulence. The technology is therefore likely to underperform,
		 Given the uncertainty over performance, the fact that any contribution will likely be quite minor, micro wind turbines are not proposed for the development.
Solar Systems	Both solar thermal and	Opportunities
Photovoltaics	photovoltaic (PV) systems convert energy from the sun	A sufficient electricity demand exists; which PV could partially address;
	into a form which can be applied within the building.	• An extent of roof space exists on the site, which is not subject to significant overshading.
	Solar thermal generates energy for heating (usually for	Limitations
	hot water) and PV generates	• The area of roof space will limit the potential application of the technology;
	electricity. Hybrid photovoltaic / solar thermal collectors are	• The technology tends to have a high capital cost per unit of carbon saved.

No

Yes

also a

<u>PV-T</u>

Solar Thermal	

also available and co-generate	Appraisal	
heat and power.		
	• PV panels are proposed in combination with other technologies in order to offset the	
To maximise the performance	requirement for grid electricity.	
from the technology, the solar		
collectors should be pointed	Opportunities	No
towards the sun; which in the UK is maximised when	A sufficient electricity and heating demand exists; which PV-T could partially address;	
orientated to the south and at an angle of 30°.	• An extent of roof space exists on the site, which is flat and not subject to significant overshading.	
	Limitations	
	• Potential carbon savings are jeopardised by auxiliary power needed to move the heat around the development;	
	• Heating energy generation presents high seasonal variance and has therefore limited scope in efficiently supplying the base heating load (hot water);	
	Appraisal	
	• Whilst technically feasible in a limited capacity, the potential maximum application of the	
	technology is unlikely to provide significant carbon dioxide reductions for the development;	
	This technology would conflict with other preferred LZC technologies;	
	• PV-T panels are therefore not a preferred option for the energy strategy.	
	Opportunities	No
	A sufficient heating demand exists; which Solar Thermal could partially address;	
	• An extent of roof space exists on the site, which is flat and not subject to significant overshading.	

Limitations	
• The technology tends to have a high capital cost per unit of carbon saved;	
• Heating energy generation presents high seasonal variance and has therefore limited scope in efficiently supplying the base heating load (hot water);	
Appraisal	
• Whilst technically feasible in a limited capacity, the potential maximum application of the technology is unlikely to provide significant carbon dioxide reductions for the development;	
This technology would conflict with other preferred LZC technologies;	
• Solar Thermal panels are therefore not a preferred option for the energy strategy.	

9. Summary

- 9.1 This Energy Statement provides an overview of the energy strategy in consideration of the site context, anticipated energy requirements and local priorities and initiatives.
- 9.2 A review of Camden Council's planning policies has identified a number of requirements relating to energy. Of these, Local Plan policy CC1 (*Climate Change Mitigation*) is considered most pertinent along with Camden Planning Guidance *Sustainability* (CPG3). Consideration has also been given to the NPPF and GLA's London Plan and the targets contained therein.
- 9.3 The approach follows the Energy Hierarchy, with priority given to efficient design on the basis that it is preferable to reduce carbon emissions by reducing energy demand than through the use of low and/or zero carbon technologies.
- 9.4 The building's fabric shall be constructed to a high performance standard, achieving high levels of thermal insulation and low air permeability. Energy efficient lighting and appropriate controls shall be employed throughout the development.
- 9.5 It is proposed to install an extent of photovoltaics (PV) at roof level; which would assist in reducing carbon emissions by 20% relative to Part L 2013. Indicative energy modelling has been undertaken using SAP and results are appended to this report demonstrating this level of performance.
- 9.6 Overall, the proposed energy strategy is considered consistent with the National Planning Policy Framework and policies of the Council and, when implemented, will provide an efficient and low carbon development.

Appendices

A. Site Plan

B. Energy Modelling Outputs

020 7960 6120 pjeavons@enspheregrou	DER WorkSh	eet: New	dwelling d	esign	stage		Ô
Assessor Name:		U	ser Details:	a Num	her:		
Software Name:	Stroma FSAP 201	12	Softwa	are Ve	sion:	Ver	sion: 1.0.4.10
A diductor a	Ot John Street Lor	Prop	erty Address:	Plot 1	lop floor		
1. Overall dwelling dime	nsions:	laon					
			Area(m ²)		Av. Heig	ght(m)	Volume(r
Ground floor		[50	(1a) x	2.5	5 (2a)	= 125
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e	e)+(1n)	50	(4)			
Dwelling volume				(3a)+(3b)+(3c)+(3d)-	+(3e)+(3n) =	125
2. Ventilation rate:							
	main s heating l	econdary neating	other		total		m ³ per ho
Number of chimneys	0 +	0	+ 0	- [0	x 40 =	0
Number of open flues	0 +	0	+ 0	-	0	× 20 =	0
Number of intermittent fa	ns				0	× 10 =	0
Number of passive vents					0	x 10 =	0
Number of flueless gas fi	res			E	0	x 40 =	0
Infiltration due to chimne If a pressurisation test has b Number of storeys in the Additional infiltration	ys, flues and fans = (6 een carried out or is intend he dwelling (ns)	a)+(6b)+(7a)+ ed, proceed to	(7b)+(7c) = (17), otherwise c	continue fr	0 om (9) to (1	+ (5) =	0 0
Structural infiltration: 0	.25 for steel or timber	frame or 0.3	35 for masonr	y constr	uction		0
if both types of wall are p deducting areas of openi	resent, use the value corres	sponding to the	greater wall are	a (after			
If suspended wooden t	loor, enter 0.2 (unsea	led) or 0.1 (sealed), else	enter 0			0
If no draught lobby, en	ter 0.05, else enter 0						0
Percentage of window	s and doors draught s	tripped	0.25 - 10.2	x (14) ± 1	001 =		0
Infiltration rate			(8) + (10)	+ (11) + (1	2) + (13) +	(15) =	0
Air permeability value,	q50, expressed in cul	pic metres p	er hour per se	quare m	etre of en	velope area	5
If based on air permeabil	ity value, then $(18) = [(1)$	17) ÷ 20]+(8), o	therwise (18) = (16)			0.25
Air permeability value applie Number of sides shelters	s if a pressurisation test ha d	s been done or	a degree air pei	meability	is being use	ad	
Shelter factor			(20) = 1 -	0.075 x (1	9)] =		0.92
Infiltration rate incorporat	ing shelter factor		(21) = (18)) x (20) =			0.23
Infiltration rate modified f	or monthly wind spee	d					_
Jan Feb	Mar Apr May	Jun	Jul Aug	Sep	Oct	Nov De	C
Monthly average wind sp	eed from Table 7		0 07		40	45 47	_
(22)IN= 5.1 5	4.9 4.4 4.3	3.8	5.0 3.7	4	4.3	4.5 4.7	
Wind Factor (22a)m = (2	2)m ÷ 4						

Adjusted infiltration ra												
0.20 0.20	te (allowin	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m	0.95	0.06	0.97		
Calculate effective air	change r	rate for t	he appli	cable ca	Se	0.21	0.23	0.20	0.20	0.27		
If mechanical ventil	ation:									[0	(23
If exhaust air heat pump	using Appe	endix N, (23	3b) = (23a	a) × Fmv (e	quation (1	N5)), other	wise (23b	= (23a)		[0	(23
If balanced with heat rec	overy: effici	iency in %	allowing f	or in-use fa	actor (from	n Table 4h	-			[0	(23
a) If balanced mech	nanical ve	ntilation	with he	at recove	ery (MVI	HR) (24a)m = (22	2b)m + (23b) × [1 – (23c)	÷ 100]	
(24a)m= 0 0	0	0	0	0	0	0	0	0	0	0		(24
b) If balanced mech	nanical ve	ntilation	without	heat rec	overy (I	4V) (24b)m = (22	2b)m + (23b)			
(24b)m= 0 0	0	0	0	0	0	0	0	0	0	0		(24
c) If whole house e if (22b)m < 0.5	xtract ven	tilation o	or positiv	/e input v	rentilatio	r = (22k)	utside	5 (22)				
(24c)m= 0 0	x (230), ii	0	0		0	0	0	0 × (230	" 0	0		(24
d) If natural ventilat	ion or who	ole hous	e nositi	ve input	ventilativ	on from I	oft	-				
if (22b)m = 1, th	nen (24d)r	m = (22b)m othe	erwise (2	4d)m =	0.5 + [(2	2b)m ² x	0.5]				
(24d)m= 0.54 0.54	0.54	0.53	0.53	0.52	0.52	0.52	0.53	0.53	0.53	0.54		(24
Effective air change	e rate - en	iter (24a)) or (24b	o) or (24d	c) or (24	d) in box	(25)					
(25)m= 0.54 0.54	0.54	0.53	0.53	0.52	0.52	0.52	0.53	0.53	0.53	0.54		(25
3. Heat losses and h	eat loss n	oaram et e	ər:							_		
Windows Type 1 Windows Type 2 Windows Type 3 Windows Type 4				1.2 2.62 1.2 0.6 1.2 0.6	x1 x1 x1 x1 x1 x1 x1 x1 x1	/(1/(1.4)+ /(1/(1.4)+ /(1/(1.4)+ /(1/(1.4)+ /(1/(1.4)+ /(1/(1.4)+	0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [1.59 3.47 1.59 0.8 1.59 0.8				(27 (27 (27 (27 (27) (27)
Windows Type 6								1.05				(27
Windows Type 6 Windows Type 7				0.94	x1	/[1/(1.4)+	0.04] =	1.25				
Windows Type 5 Windows Type 6 Windows Type 7 Walls	9	11.96	š	0.94	x ¹	(1/(1.4)+	0.04] = [8.47				(29
Windows Type 5 Windows Type 6 Windows Type 7 Walls 5 Roof 5	9	11.96	6	0.94 47.04 50	x1 x x	0.18	0.04] = [1.25 8.47 6.5				(29
Windows Type 5 Windows Type 6 Windows Type 7 Walls <u>5</u> Roof <u>5</u> Total area of element	9 0 s, m²	0	6	0.94 47.04 50 109	x1 x x	/[1/(1.4)+ 0.18 0.13	0.04] = [= [= [1.25 8.47 6.5				(29)(30)(31)
Windows Type 5 Windows Type 6 Windows Type 7 Walls 5 Roof 5 Total area of element * for windows and rood win	9 0 S, m ² dows, use ei	11.96	ndow U-vz	0.94 47.04 50 109 slue calcula titions	x1 x x ated using	(1/(1.4)+ 0.18 0.13 formula 1.	0.04] = [] = [] = [!(1/U-valu	1.25 8.47 6.5 e)+0.04] s	s given in	paragraph	3.2	(29 (30 (31
Windows Type 5 Windows Type 6 Windows Type 7 Walls 5 Roof 5 Total area of element * for windows and roof win * include the areas on bot Fabric heat loss, W/K	9 0 s, m² dows, use ei h sides of ini = S (A x)	11.96 0 flective wir ternal wall: U)	6 ndow U-va is and part	0.94 47.04 50 109 alue calcula titions	x1 x x ated using	(1/(1.4)+ 0.18 0.13 formula 1. (26)(30)	0.04] = [] = [] = [(1/U-value) + (32) =	1.25 8.47 6.5 e)+0.04] a	s given in	paragraph	30.82	(29) (30) (31)
Windows Type 5 Windows Type 6 Windows Type 7 Walls <u>5</u> Total area of element * include the areas on bot Fabric heat loss, W/K Heat capacity Cm = S	9 30 s, m ² dows, use ei h sides of ini = S (A x k) ;(A x k)	11.96 0 ffective wir ternal walk U)	ndow U-va	0.94 47.04 50 109 alue calcula titions	x1	(1/(1.4)+ 0.18 0.13 formula 1. (26)(30)	0.04] = [] = [] = [] = [] = [1.25 8.47 6.5 e)+0.04] a	[[[[[]	paragraph [(32e) = [30.82	(29 (30 (31 (33 3) (34
Windows Type 6 Windows Type 7 Walls 5 Roof 5 Total area of element " include the areas on bot Fabric heat loss, W/K Heat capacity Cm = S Thermal mass param	9 5, m ² dows, use el h sides of ini = S (A x I ;(A x k) eter (TMP	11.96 0 ffective wir ternal wall U) ' = Cm ÷	s ndow U-va is and part	0.94 47.04 50 109 alue calcula titions	x1 x x ated using	0.13 0.13 1 formula 1. (26)(30)	0.04] = [] = [] = [] = [!(1/U-valu + (32) = ((28) Indica	1.25 8.47 6.5 e)+0.04] a .(30) + (3)] [] [] [] [] [] [] [] [] [] [paragraph (32e) = [3.2 30.82 3742.8 250	(29 (30 (31 (33 3) (34 (35
Windows Type 5 Windows Type 7 Walls <u>5</u> Roof <u>5</u> Total area of element * <i>ior windows and roof win</i> * <i>include the areas on bot</i> Fabric heat loss, W/K Heat capacity Cm = S Thermal mass param	9 0 5, m ² dows, use el h sides of in = S (A x l i(A x k) eter (TMP here the det	11.9(0 ffective with ternal walk U) P = Cm ÷ tails of the	s indow U-va is and pan • TFA) ir construct	0.94 47.04 50 109 alue calcult titions	x1 x ated using	(1/(1.4)+ 0.18 0.13 1 formula 1. (26)(30) recisely the	0.04] = [= = [= = [((1/U-valu + (32) = ((28) Indica indicative	1.25 8.47 6.5 .(30) + (3) tive Value values of	 	paragraph (32e) = [able 1f	30.82 3742.8 250	(29 (30 (31 (33 3 (34 (35
Windows Type 5 Windows Type 7 Walls 5 Roof 5 Total area of element " include the areas on bot Fabric heat loss, W/K Heat capacity Cm = Thermal mass param For design assessments w can be used instead of a d	9 0 s, m ² dows, use el h sides of in = S (A x l i(A x k) eter (TMP here the det tetailed calcu	11.9(0 ffective wint ternal walk U) P = Cm ÷ tails of the ilation.	s and part	0.94 47.04 50 109 alue calcula titions	x1 x x ited using	/[1/(1.4)+ 0.18 0.13 (26)(30) recisely the	0.04] = [] = [] = []	1.25 8.47 6.5 .(30) + (3) tive Value values of	2) + (32a). Medium TMP in T	paragraph (320) = [[able 1f	30.82 3742.8 250	(29 (30 (31 (33 (34) (34) (35)
Windows Type 5 Windows Type 6 Windows Type 7 Walls <u>5</u> Total area of element * <i>ir windows and rool win</i> ** include the areas on bot Fabric heat loss, W/K Heat capacity Cm <u>5</u> Thermal mass param <i>For design assessments w</i> <i>can be used instead of a d</i> Thermal bridges : 5 ()	9 0 0 0 0 0 0 0 0 0 0 0 0 0	11.9(0 (fective with ternal walk U))) = Cm ÷ tails of the ilation. culated u	s indow U-va is and part · TFA) ir construct using Ap	0.94 47.04 50 109 alue calculations	known pr	(1/(1.4)+ 0.18 0.13 a formula 1. (26)(30) recisely the	0.04] = [= [= [(1/U-valu + (32) = ((28) Indica indicative	1.25 8.47 6.5 .(30) + (3) tive Value values of	2) + (32a). Medium TMP in T	paragraph (32e) = [[able 1f	3.2 30.82 3742.8 250 4.36	(29 (30 (31) (33) (34) (35) (36)
Windows Type 5 Windows Type 6 Windows Type 7 Walls <u>s</u> Total area of element * <i>br windows and rool win</i> ** include the areas on bot Fabric heat loss, W/K Heat capacity Cm <u>s</u> Thermal mass param <i>For design assessments w</i> <i>can be used instead of a d</i> Thermal bridges : S (i <i>i details of themal bridging</i>	9 0 5, m ² dows, use ei h sides of ini = S (A x li i(A x k) eter (TMP here the det tealed calcu L x Y) calco g are not known	11.94 0 flective win ternal walk U) > = Cm ÷ tails of the ilation. culated u own (36) =	TFA) ir construct using Ap 0.15 x (3	0.94 47.04 50 109 alue calculations n kJ/m ² K sion are not upendix H 17)	known pr	(1/(1.4)+ 0.18 0.13 a formula 1. (26)(30) recisely the	0.04] = [= [= [(1/U-value + (32) = ((28) Indicative (33) +	1.25 8.47 6.5 .(30) + (3: tive Values of (36) =	2) + (32a). Medium TMP in T	paragraph (320) = [able 1f	3.2 30.82 3742.5 250 4.36	(29 (30 (31 (33 3) (34 (35 (35) (36) (36) (37)
Windows Type 5 Windows Type 7 Walls 5 Roof 5 Total area of element * for windows and root win * include the areas on bot Fabric heat loss, W/K Heat capacity Cm = S Thermal mass param For design assessments w and be used instead of a d Thermal bridges : S (i if details of thermal bridgins Total fabric heat loss	9 6 5, m ² dows, use ei h sides of ini i = S (A x k) eter (TMP here the det tealed calcu L x Y) calc g are not kno calculated	11.9(0 ffective with ternal walk U) 2 = Cm ÷ tails of the slation. culated u own (36) =	mdow U-vi ls and pan TFA) ir construct using Ap 0.15 x (3)	0.94 47.04 50 109 alue calcula titions h kJ/m ² K ion are not upendix H 1)	known pr	(1/(1.4)+ 0.18 0.13 (26)(30) (26)(30)	0.04] = [= [= [(1/U-value + (32) = ((28) Indica indicative (33) + (38)m	1.25 8.47 6.5 e)+0.04] = .(30) + (3) tive Values of values of (36) = $= 0.33 \times 6$	25)m x (5	paragraph (320) = [[able 1f [30.82 3742.8 250 4.36 35.18	(29 (30 (31 (33 3) (34 (35 (36 (37

													,	
Prima Prima	ry circu	it loss (ar it loss cal	nual) fro	om Table for each	e 3 month (59)m = ((58) ÷ 36	5 x (41)	m			0	J	(58)
(mo	dified b	y factor f	rom Tab	le H5 if t	there is a	solar wat	er heati	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Comb	i loss c	alculated	for each	month	(61)m =	(60) ÷ 36	65 × (41)m						
(61)m=	41.67	36.27	38.64	35.93	35.61	32.99	34.09	35.61	35.93	38.64	38.86	41.67		(61)
Total	heat re	quired for	water he	eating c	alculated	for eac	h month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	162.94	142.33	148.09	131.35	127.17	112	107.31	119.62	120.94	137.72	147.01	159.11		(62)
Solar D	HW inpu	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	(enter '0	if no sola	r contribut	ion to wate	er heating)		
(add a	addition	al lines if	FGHRS	and/or	WWHRS	applies	, see Ap	pendix (i)	0	0	0	1	(63)
Outou	t from	votor boo	tor	0	0	0	0	0	0	0	0	U	J	(00)
(64)m=	162.94	142.33	148.09	131.35	127.17	112	107.31	119.62	120.94	137.72	147.01	159.11	1	
								Outp	out from w	ater heate	r (annual)	-12	1615.57	(64)
Heat	gains fr	om water	heating.	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m] + 0.8	(46)m	+ (57)m	+ (59)m	1	_
(65)m=	50.74	44.33	46.05	40.71	39.34	34.52	32.87	36.84	37.25	42.6	45.67	49.47	Í	(65)
incl	ude (57)m in cal	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. In	itern al g	j <mark>ains (</mark> see	Table 5	and <mark>5a</mark>):						-			
Metab	oolic ga	ns (Table	5), Wat	ts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	84.51	84.51	84.51	84.51	84.51	84.51	84.51	84.51	84.51	84.51	84.51	84.51	J	(66)
Lightin	ng gain	s (calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see '	Table 5				,	(07)
(67)m=	13.13	11.66	9.48	7.18	5.37	4.53	4.89	6.36	8.54	10.84	12.66	13.49	J	(67)
Applia (68)m-	147 2	ains (caid	ulated in	136.72	dix L, eq	116.64	13 OF L1	3a), also	112 47	120.67	131.01	140 74	1	(68)
Cooki	na aain	s (calcula	ated in A	nendix	Legua	tion 15	or 15a	also se	e Table	5	101.01	140.74	1	(00)
(69)m=	31.45	31.45	31.45	31.45	31.45	31.45	31.45	31.45	31.45	31.45	31.45	31.45	1	(69)
Pump	s and fa	ans gains	(Table 5	ja)									1	
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0	l l	(70)
Losse	s e.g. e	vaporatio	on (negat	tive valu	es) (Tab	le 5)							,	
(71)m=	-67.6	-67.6	-67.6	-67.6	-67.6	-67.6	-67.6	-67.6	-67.6	-67.6	-67.6	-67.6		(71)
Water	heatin	g gains (1	Table 5)											
(72)m=	68.2	65.97	61.9	56.54	52.88	47.94	44.17	49.51	51.73	57.26	63.44	66.49		(72)
Total	interna	l gains =				(66)	m + (67)m	1 + (68)m -	+ (69)m +	(70)m + (7	1)m + (72	m		
(73)m=	276.91	274.74	264.64	248.78	232.97	217.47	207.57	212.84	221.1	237.12	255.46	269.07		(73)
6. Sc	olar gaiı	IS:			Table Ca									
Orient	vans are	Access F	Factor	Area	aure da	Elu	ia.eo equa	motts to CO	a	e applicat	FF	ingelt.	Gains	
Stroll		Table 6d		m ²		Tal	ole 6a	т	able 6b	Т	able 6c		(W)	
Northe	east 0.9x	0.77	×	1.	2	× 1	1.28	×	0.63	7 × [0.7	-	16.55	(75)
			—				1.29	i , 🛏	0.62	۲, F	0.7	=		1.70

Oensphere

ortheast 0.9x	0.77	i .								_		
ortheast 0.9x			0.6	×	22.97	x	0.63	×	0.7	l - [4.21	(75
ortheast 0.9x	0.77	×	1.2	×	41.38	×	0.63	×	0.7	ī - [60.7	(75
	0.77	×	0.6	×	41.38	×	0.63	×	0.7	ī -	7.59	(75
ortheast 0.9x	0.77	×	1.2	×	67.96	×	0.63	×	0.7	ī - [99.69	(75
ortheast 0.9x	0.77	×	0.6	×	67.96	×	0.63	×	0.7	ī - [12.46	(75
ortheast 0.9x	0.77	×	1.2	×	91.35	×	0.63	×	0.7	Ī - [134	(75
ortheast 0.9x	0.77	×	0.6	×	91.35	×	0.63	×	0.7	٦- [16.75	(75
ortheast 0.9x	0.77	×	1.2	×	97.38	×	0.63	×	0.7	Ī - [142.86	(75
ortheast 0.9x	0.77	×	0.6	×	97.38	×	0.63	×	0.7	Ī - [17.86	(75
ortheast 0.9x	0.77	×	1.2	×	91.1	×	0.63	×	0.7	٦-	133.64	(75
ortheast 0.9x	0.77	×	0.6	×	91.1	×	0.63	×	0.7	ī - [16.71	(75
ortheast 0.9x	0.77	×	1.2	×	72.63	×	0.63	×	0.7] - [106.54	(75
ortheast 0.9x	0.77	×	0.6	×	72.63	×	0.63	×	0.7	ī - [13.32	(75
ortheast 0.9x	0.77	×	1.2	×	50.42	×	0.63	×	0.7	ī - [73.96	(75
ortheast 0.9x	0.77	×	0.6	×	50.42	×	0.63	×	0.7	Ī - [9.25	(75
ortheast 0.9x	0.77	×	1.2	×	28.07	×	0.63	×	0.7	٦-	41.17	(75
ortheast 0.9x	0.77	×	0.6	x	28.07	×	0.63	×	0.7	1-	5.15	(75
ortheast 0.9x	0.77	×	1.2	×	14.2	×	0.63	×	0.7	1 -	20.83	(75
ortheast 0.9x	0.77	x	0.6	x	14.2	×	0.63	×	0.7	1 -	2.6	(75
ortheast 0.9x	0.77	×	1.2	×	9.21	×	0.63	×	0.7	ī -	13.52	(75
ortheast 0.9x	0.77	×	0.6	x	9.21	×	0.63	×	0.7] -	1.69	(75
outheast 0.9x	0.77	×	1.2	×	36,79	×	0.63	×	0.7	ī -	13.49	[77
outheast 0.9x	0.77	×	0.94	x	36.79	×	0.63	×	0.7	ī - [10.57	[77
outheast 0.9x	0.77	×	1.2	×	62.67	×	0.63	×	0.7	ī.	22.98	(77
outheast 0.9x	0.77	×	0.94	×	62.67	×	0.63	×	0.7	ī - ī	18] (77
outheast 0.9x	0.77	×	1.2	×	85.75	×	0.63	×	0.7	٦.	31.45	(77
outheast 0.9x	0.77	×	0.94	×	85.75	×	0.63	×	0.7	Ī - [24.63	(77
outheast 0.9x	0.77	×	1.2	×	106.25	×	0.63	×	0.7	Ī - [38.97	(77
outheast 0.9x	0.77	×	0.94	×	106.25	×	0.63	×	0.7	٦- 1	30.52	(77
outheast 0.9x	0.77	×	1.2	×	119.01	×	0.63	×	0.7	ī - [43.65	(77
outheast 0.9x	0.77	×	0.94	×	119.01	×	0.63	×	0.7] -	34.19	[77
outheast 0.9x	0.77	×	1.2	×	118.15	×	0.63	×	0.7	- [43.33	(77
outheast 0.9x	0.77	×	0.94	×	118.15	×	0.63	×	0.7] -	33.94	(77
outheast 0.9x	0.77	×	1.2	×	113.91	×	0.63	×	0.7] -	41.77	[77
outheast 0.9x	0.77	×	0.94	×	113.91	×	0.63	×	0.7	- [32.72](77
outheast 0.9x	0.77	×	1.2	×	104.39	×	0.63	×	0.7] -	38.28	[77
outheast 0.9x	0.77	×	0.94	×	104.39	×	0.63	×	0.7] -	29.99	(77
outheast 0.9x	0.77	×	1.2	×	92.85	×	0.63	×	0.7] -	34.05	(77
outheast o ov	0.77	×	0.94	×	92.85	×	0.63	×	0.7] -	26.67	(77
0.01		1	10		69.27	x	0.63	x	0.7	1 -	25.4	1 (77

Southeast 0.9	x	0.77	×	0.94	×	69.27	×	0.63	×	0.7	- 1	19.9	(77)
Southeast 0.9	×	0.77	×	1.2	×	44.07	×	0.63	i ×	0.7	i -	16.16	j(77)
Southeast 0.9	×	0.77	×	0.94	×	44.07	×	0.63	×	0.7	i -	12.66	[(77)
Southeast 0.9	×	0.77	×	1.2	×	31.49	×	0.63	×	0.7	i -	11.55	[(77)
Southeast 0.9	x	0.77	×	0.94	×	31.49	×	0.63	×	0.7	j -	9.05	[(77)
Nest 0.9	×	0.77	×	1.2	×	19.64	×	0.63	×	0.7	i -	7.2	(80)
Nest 0.9	x	0.77	×	0.6	×	19.64	×	0.63	×	0.7	j -	3.6	(80)
West 0.9	×	0.77	×	1.2	×	38.42	×	0.63) ×	0.7	j -	14.09	(80)
Nest 0.9	x	0.77	×	0.6	×	38.42	×	0.63	×	0.7] -	7.05	(80)
Nest 0.9	x	0.77	×	1.2	×	63.27	×	0.63	×	0.7	- 1	23.2	(80)
Nest 0.9	x	0.77	×	0.6	×	63.27	×	0.63	×	0.7] -	11.6	(80)
West 0.9	x	0.77	×	1.2	×	92.28	×	0.63	×	0.7] -	33.84	(80)
Nest 0.9	x	0.77	×	0.6	×	92.28	×	0.63	×	0.7] -	16.92	(80)
Nest 0.9	x	0.77	×	1.2	×	113.09	×	0.63	×	0.7] -	41.48	(80)
Nest 0.9	x	0.77	×	0.6	×	113.09	×	0.63	×	0.7] -	20.74	(80)
Nest 0.9	x	0.77	×	1.2	×	115.77	×	0.63	×	0.7] -	42.46	(80)
Nest 0.9	x	0.77	×	0.6	×	115.77	×	0.63	×	0.7] -	21.23	(80)
Nest 0.9	9x	0.77	×	1.2	×	110.22	×	0.63	×	0.7] -	40.42	(80)
Nest 0.9)x	0.77	×	0.6	×	110.22	×	0.63	×	0.7] -	20.21	(80)
Nest 0.9	x	0.77	×	1.2	×	94.68	×	0.63	×	0.7] -	34.72	(80)
Nest 0.9	x	0.77	×	0.6	×	94.68	×	0.63	×	0.7] -	17.36	(80)
Nest 0.9	x	0.77	×	1.2	×	73.59	×	0.63	×	0.7] -	26.99	(80)
Nest 0.9)x	0.77	×	0.6	×	73,59	×	0.63	×	0.7] -	13.49	(80)
Nest 0.9	9x	0.77	×	1.2	×	45.59	×	0.63	×	0.7] -	16.72	(80)
Nest 0.9	x	0.77	×	0.6	×	45.59	×	0.63	×	0.7	- [8.36	(80)
Nest 0.9	x	0.77	×	1.2	×	24.49	×	0.63	×	0.7] -	8.98	(80)
West 0.9	x	0.77	×	0.6	×	24.49	×	0.63	×	0.7	- [4.49	(80)
Nest 0.9)x 🗌	0.77	×	1.2	×	16.15	×	0.63	×	0.7] -	5.92	(80)
Nest 0.9	x	0.77	×	0.6	×	16.15	×	0.63	×	0.7] -	2.96	(80)
Northwest 0.9	x	0.77	×	2.62	×	11.28	×	0.63	×	0.7] -	9.03	(81)
Northwest 0.9	x	0.77	×	2.62	×	22.97	×	0.63	×	0.7	- [18.39	(81)
Northwest 0.9	x	0.77	×	2.62	×	41.38	×	0.63	×	0.7] -	33.13	(81)
Northwest 0.9	x	0.77	×	2.62	×	67.96	×	0.63	×	0.7	- [54.41	(81)
Northwest 0.9	×	0.77	×	2.62	×	91.35	×	0.63	×	0.7] -	73.14	(81)
Northwest 0.9	x	0.77	×	2.62	×	97.38	×	0.63	×	0.7	- [77.98	(81)
Northwest 0.9	x	0.77	×	2.62	×	91.1	×	0.63	×	0.7] -	72.95	(81)
Northwest 0.9	x	0.77	x	2.62	x	72.63	×	0.63	×	0.7	-	58.15	(81)
Northwest 0.9	x	0.77	×	2.62	×	50.42	×	0.63	×	0.7	-	40.37	(81)
Northwest 0.9	x	0.77	x	2.62	x	28.07	×	0.63	×	0.7	-	22.47	(81)
Northwest 0.9	x	0.77	×	2.62	×	14.2	×	0.63	×	0.7	- 1	11.37	(81)
Northwest 0.9	x	0.77	×	2.62	×	9.21	×	0.63	×	0.7	-	7.38	(81)

()ensphere Pete Jeavons DER WorkSheet: New dwelling design stage pjeavons@enspheregroup.com Solar gains in watts, calculated for each month (83)m = Sum(74)m ...(82)m (83)m= 62.52 118.42 192.31 286.81 363.94 379.65 358.42 298.36 224.79 139.17 77.09 52.06 (83) Total gains - internal and solar (84)m = (73)m + (83)m , watts (84)m= 339.43 393.16 456.95 535.6 596.91 597.12 565.99 511.21 445.89 376.3 332.55 321.13 (84)Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1 0.99 0.98 0.92 0.78 0.59 0.44 0.5 0.78 0.96 0.99 (86) 1 (86)m= Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 19.83 19.99 20.27 20.63 20.88 20.98 21 20.99 20.91 20.56 20.13 19.79 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 19.96 19.96 19.96 19.97 19.97 19.97 19.97 19.97 19.97 19.97 19.97 19.97 19.96 19.96 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 1 0.99 0.97 0.9 0.72 0.5 0.34 0.39 0.7 0.94 0.99 1 (89) Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m 18.41 18.65 19.05 19.55 19.86 19.96 19.97 19.97 19.91 19.47 18.84 18.36 fLA = Living area + (4) = 0.56 (91) Mean internal temperature (for the whole dwelling) = fLA × T1 + (1 - fLA) × T2 (92)m= 19.2 19.4 19.74 20.15 20.43 20.53 20.54 20.54 20.47 20.08 19.56 19.16 (92) Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 19.2 19.4 19.74 20.15 20.43 20.53 20.54 20.54 20.47 20.08 19.56 19.16 (93) Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.99 0.99 0.97 0.9 0.75 0.55 0.39 0.45 0.74 0.95 0.99 1 (94) Useful gains, hmGm , W = (94)m x (84)m (95)m= 337.48 388.36 442.19 482.46 448.62 328.49 222.83 232.59 329.32 355.78 328.73 319.7 (95) Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2 (96) Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (97)m= 858.46 834.24 760.59 642.94 498.34 336.77 224.06 235.06 362.52 541.32 712.89 857.68 (97) Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 387.61 299.63 236.89 115.54 36.99 0 0 0 0 138.04 276.59 400.25 1891.55 (98) Space heating requirement in kWh/m²/year 37.83 (99) 9a. Energy requirements – Individual heating systems including micro-CH Space heating: Fraction of space heat from secondary/supplementary system (201) 0 Stroma FSAP 2012 Version: 1.0.4.10 (SAP 9.92) - http://www.stroma.com Page 7 of 9

ensphere)

Pete Jeavons 020 7960 6120 pjeavons@enspheregroup.com	rkSheet: New dw	elling design stage	() enspł
Electricity for lighting	(232) ×	0.519 =	120.31 (2
Energy saving/generation technologies			
Item 1		0.519 =	-291.34 (2)
Total CO2, kg/year		sum of (265)(271) =	779.45 (2
Dwelling CO2 Emission Rate		(272) + (4) =	15.59 (2
DF	R/		T

Oensphere

Ensphere Group Ltd Pete Jeavons 120 7960 6120 jeavons@enspheregroup.com	Regulations Co	ompliance Report	Gensphere
Approved Document L1A, 2013 Printed on 13 March 2018 at 17	Edition, England assessed by :51:50	y Stroma FSAP 2012 program, Version: 1.0.4.10	
Project Information:			
Assessed By: ()		Building Type: Flat	
Dwelling Details:			
		Total Floor Area: 50m ²	
te Heterence: 21 John Street		Plot Reference: Plot 1 Top flo	oor
address : 21 John Str	eet, London		
Client Details:	age L td		
ddress : 2nd Floor S	tanmore House, 15-19 Churc	ch Road, Stanmore, HA7 4AR	
his report covers items inclu	ded within the SAP calculat	tions.	
is not a complete report of r	egulations compliance.		
1a TER and DER			
uel for main heating system: M	ains gas		
arget Carbon Dioxide Emissior	n Rate (TER)	19.71 kg/m ²	
welling Carbon Dioxide Emissi	ion Rate (DER)	15.59 kg/m ²	ОК
1b TFEE and DFEE		48.4 kWb/m2	
welling Fabric Energy Efficience	cy (DFEE)	47.0 kWh/m ²	
			ОК
2 Fabric U-values			
Element External wall	0.18 (max 0.30)	Highest 0.18 (max. 0.70)	ок
Floor	(no floor)		
Roof	0.13 (max. 0.20)	0.13 (max. 0.35)	OK
Openings	1.40 (max. 2.00)	1.40 (max. 3.30)	ОК
Thermal bridging calcu	lated from linear thermal trans	smittances for each junction	
Air permeability at 50 pas	scals	5.00 (design value)	
Maximum		10.0	ОК
Heating efficiency			
Main Heating system:	Boiler systems with r	radiators or underfloor heating - mains gas	
	Data from manufactu	urer	
	Efficiency 89.5 % SE	DBUK2009	
	Minimum 88.0 %		OK
0			
Secondary heating system	m: None		
5 Cylinder insulation			
Hot water Storage:	No cylinder		Constant of
			N/A
roma FSAP 2012 Version: 1.0.4.10 (SAP 9.92) - http://www.stroma.com			Page 1 of 2

Ensphere Group Ltd Pete Jeavons 020 7960 6120 pjeavons@enspheregroup.com	gulations Compliance	Report	Gensphere
6 Controls			
Space heating controls Hot water controls:	TTZC by plumbing and electrical se No cylinder	ervices	ок
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights with I	ow-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
9 Summortimo tomporaturo			
Overbeating risk (Thames valle	<i>N</i>).	Slight	OK
Based on:	y)-	olight	OK
Overshading:		Average or unknown	
Windows facing: North East		4.8m ²	
Windows facing: North West		2.62m²	
Windows facing: South East Windows facing: North East		0.6m ²	
Windows facing: West		1.2m ²	
Windows facing: West		0.6m ²	
Windows facing: South East		0.94m ²	
Blinds/curtains:	\mathbf{D}	Light-coloured curtain or roller blin Closed 60% of daylight hours	d
Photovoltaic array			
Stroma FSAP 2012 Version: 1.0.4.10 (SAP 9.92) - http://www.stroma.com			

C. General Notes

Oensphere

The report is based on information available at the time of the writing and discussions with the client during any project meetings. Where any data supplied by the client or from other sources have been used it has been assumed that the information is correct. No responsibility can be accepted by Ensphere Group Ltd for inaccuracies in the data supplied by any other party.

The review of planning policy and other requirements does not constitute a detailed review. Its purpose is as a guide to provide the context for the development and to determine the likely requirements of the Local Authority.

No site visits have been carried out, unless otherwise specified.

This report is prepared and written in the context of an agreed scope of work and should not be used in a different context. Furthermore, new information, improved practices and changes in guidance may necessitate a re-interpretation of the report in whole or in part after its original submission.

The copyright in the written materials shall remain the property of Ensphere Group Ltd but with a royalty-free perpetual licence to the client deemed to be granted on payment in full to Ensphere Group Ltd by the client of the outstanding amounts.

The report is provided for sole use by the Client and is confidential to them and their professional advisors. No responsibility whatsoever for the contents of the report will be accepted to any person other than the client, unless otherwise agreed.

These terms apply in addition to the Ensphere Group Ltd "Standard Terms of Business" (or in addition to another written contract which may be in place instead thereof) unless specifically agreed in writing. (In the event of a conflict between these terms and the said Standard Terms of Business the said Standard Terms of Business shall prevail.). In the absence of such a written contract the Standard Terms of Business will apply.

Ensphere Group Ltd 10 Greycoat Place, London, SW1P 1SB +44 (0) 20 7960 6126 www.enspheregroup.com