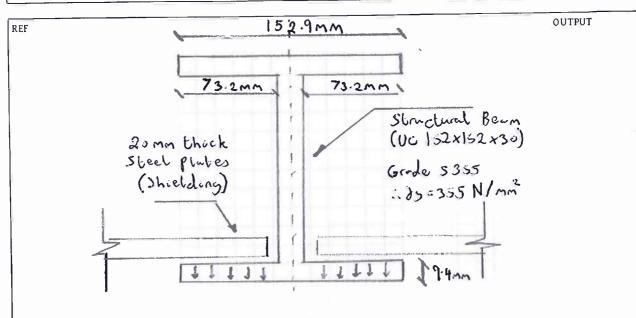
1150	Project	UCLH, Birkbeck	Job Ref. 70038590			
WSP	Structure	Internal Shieldir	ng Support Frame		Sheet no.	e 2/2
One Queens drive Birmingham B5 4PJ	Calc. by Patrick Gittings	Date 23/01/2018	Chk'd by Nathan Pentelow	Date 23/01/2018	App'd by Mark Bundy	Date 23/01/2018

Design Condition	#	Design Value	Design Capacity	Units	U.R.	Status
Shear Minor	-	No	Forces	kN	-	Not required
Buckling Shear Web	-	37.175	58.580	-	-	Pass
Moment Major	1	3.1	171.5	kNm	0.018	Pass
Moment Minor	-	No	Forces	kNm	-	Not required
Axial	-	No	Forces	kN	-	Not required
Axial Bending Combined	-	No	Forces	-	-	Not required
Buckling Lateral Torsional	-	No	Forces	-	-	Not required
Buckling Compression	-	No	Forces	-	-	Not required
Buckling Combined	-	No	Forces	-	-	Not required
Deflection Self weight	1	0.0	-	mm	-	-
Deflection Slab	-	No	Loads	mm	-	Not required
Deflection Dead	1	0.1	3.8	mm	0.016	Pass
Deflection Imposed	-	No	Loads	mm	-	Not required
Deflection Total	1	0.1	9.4	mm	0.010	Pass

St. 1 (1): SB 1/2/#19-1/1/#20 UC 152×152×37 S355

Restraints


Source	Distance / Length [m]	LTB Top / Sub-Beam	LTB Top Factor	LTB Btm / Sub-Beam	LTB Btm Factor	Strut Major / Sub-Beam	Strut Major Factor	Strut Minor / Sub- Beam	Strut Minor Factor
support	0.000	•		•		•		•	
sub-beam	5.272		1.000		1.000		1.000		1.000
support	5.272	•		•		•		•	

Static

Summary UC 152x152x37(S355)

Design Condition	#	Design Value	Design Capacity	Units	U.R.	Status
Classification	1	Class 1	-	-	-	Pass
Shear Major	1	4.6	292.4	kN	0.016	Pass
Shear Minor	-	No	Forces	kN	-	Not required
Buckling Shear Web	-	17.350	58.580	-	-	Pass
Moment Major	1	6.1	109.6	kNm	0.056	Pass
Moment Minor	-	No	Forces	kNm	-	Not required
Axial	-	No	Forces	kN	-	Not required
Axial Bending Combined	-	No	Forces	-	-	Not required
Buckling Lateral Torsional	1	6.1	79.4	kNm	0.077	Pass
Buckling Compression	-	No	Forces	-	-	Not required
Buckling Combined	-	No	Forces	-	-	Not required
Deflection Self weight	1	0.8	-	mm	-	-
Deflection Slab	-	No	Loads	mm	-	Not required
Deflection Dead	1	2.1	10.5	mm	0.196	Pass
Deflection Imposed	-	No	Loads	mm	-	Not required
Deflection Total	1	2.9	26.4	mm	0.109	Pass

Project UCLH, Birk beck	· University	, MrI	Status INFOR	MATION	115)
Date 23/01/18 By Checked MB	Job no. 70038590	Section	Sheet no.	Rev	
Rev Date Details 23/01/17 1 nte	rnal Shield	ling Su	plort Fre	-me	Te l Fax
Flunge Bend	ing Check				

Max Beam spacing = 625mm

Considering a 1m Strop;

Shielding S.w = 1.5 kN/m2

312.5 m width shielding spanning onto each glange, say 325 mm

1. UDL = 0.325 x 1.5 = 0.4875 hNm

UDL SLS= 0.5 kN/m

UDL ULS : 0.65 KN/M

Med= VOL (vis) xe = 0.66 x 0:0366 = 0.0242 kNn/m length

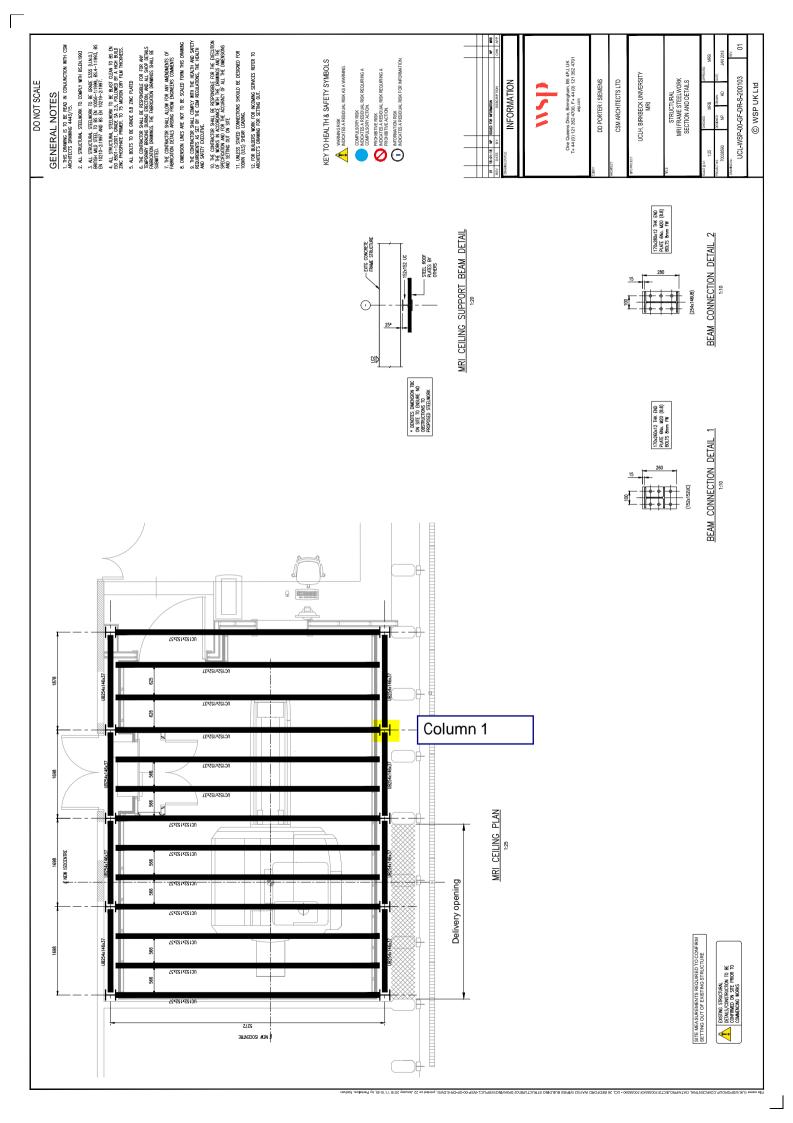
Mrd: 802 = 355 x 14726.7 = 5.23 knm/m length

es Flonge oh in bending.

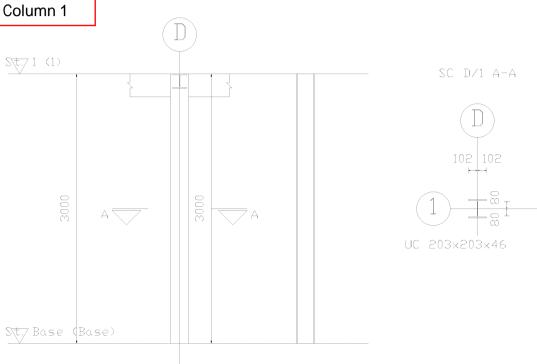
Project UCLH , Birk	MATION	WSD			
Date 23/01/19 By CG Checked MG	Job no. 7 0033590	Section	Sheet no.	Rev O1	
	ternal Shield	iony Sup	port Fr	ame	Tel Fax
Part Floringe S	hear theck				

Av= bt = $1000 \times 9.4 = 9400 \text{ m}^2$ Ved= 0.66 kN /metre length

Ved= $\frac{57 \text{ Av}}{\sqrt{3} \text{ 8m}} = \frac{355 \times 9400}{\sqrt{3} \times 1.0} = 1926 \text{ kN}$ / metre length


or Flunge oh in Shear.

REF



3.2.2 STEEL COLUMNS

The full design outputs for selected steel columns are shown below:

SC D/1

Lateral Restraints

Level	Source	Distance /	Face A restrained /	Face A	Face C restrained/	Face C
		Length	Sub-stack continuous	factor	Sub-stack continuous	factor
2	floor	3.000	Yes		Yes	
	sub-beam	3.000	No	1.000	No	1.000
1	floor	0.000	Yes		Yes	

Strut Restraints

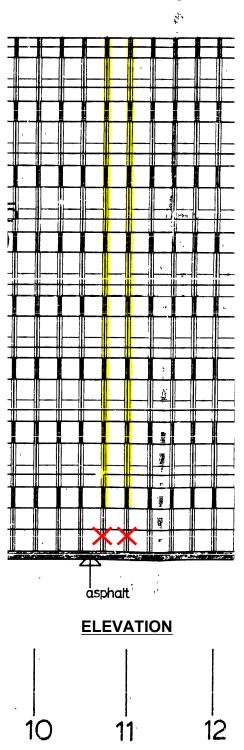
Level	Source	Distance / Length	Major restrained / Sub-stack continuous	•	Minor restrained / Sub-stack continuous	Minor factor
2	floor	3.000	Yes		Yes	
	sub-beam	3.000	No	1.000	No	1.000
1	floor	0.000	Yes		Yes	

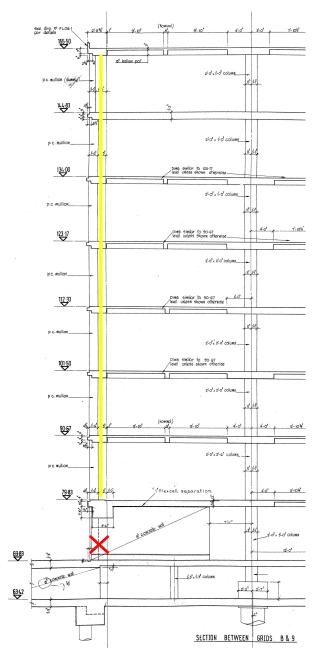
Static

Summary UC 203x203x46(S355)

Design Condition	Combination Name	Design Value	Design Capacity	Units	U.R.	Status
Classification	1	Class 2	-	-	-	Pass
Shear Major	No	Significant	Forces	kN	-	Not required
Shear Minor	No	Significant	Forces	kN	-	Not required
Buckling Shear Web	-	25.17	58.58	-	-	Pass
Moment Major	1	-0.9	176.6	kNm	0.005	Pass
Moment Minor	No	Significant	Forces	kNm	-	Not required

1150	Project	UCLH, Birkbeck	University - MRI	Job Ref. 70038590			
WSP	Structure	Structure SI Internal Shielding Support Frame				Sheet no. Page 2/2	
One Queens drive Birmingham B5 4PJ	Calc. by Patrick Gittings	Date 23/01/2018	Chk'd by Nathan Pentelow	Date 23/01/2018	App'd by Mark Bundy	Date 23/01/2018	


Design Condition	Combination Name	Design Value	Design Capacity	Units	U.R.	Status
Axial	1	16.1	2085.0	kN	0.008	Pass
Axial Bending Combined	1	-	-	-	0.000	Pass
Buckling Lateral Torsional	1	-0.9	171.0	kNm	0.005	Pass
Buckling Compression	1	16.1	1426.8	kN	0.011	Pass
Buckling Combined	1	-	-	-	0.017	Pass



4 DELIVERY OPENING STEELWORK

4.1 LOAD TAKEDOWN OF EXISTING COLUMNS

A full load takedown check has been completed in order to determine the axial load in the existing columns which are to be removed to allow for the MRI scanner delivery entrance, this has been based on existing structural information and drawings.

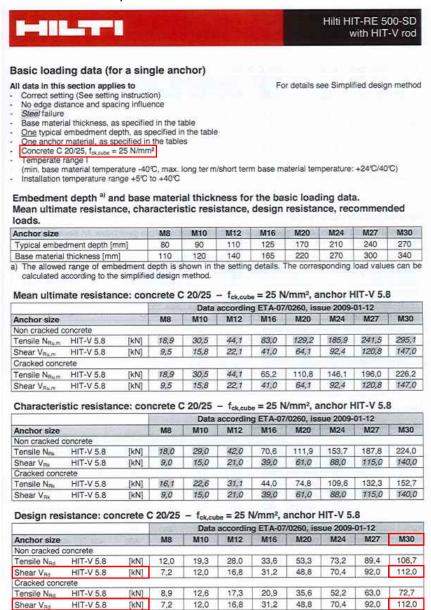
SECTION BETWEEN GRIDLINE 8&9

Birkbeck University - MRI			Status	MATION	115)		
Date 5° By PG Checked	1/01/18 NP		Job no. 70038596	Section	Sheet no.	Rev O] .
Rev	Date	Details	nd Tuke d	own Ana	loses		Tel Fax
Part	Remoi	ral oz	r Q Colu	mas don	MRI	nstalla	tion

```
REF
                                                                   OUTPUT
            7 Floors above, plus roug level
(Plunt) Rood DL= 7.0 KNm2 SDL=0.85 KN/m2 LL= 5.0 KN/m2
(oxxice) Lv5 DL= 8.4 kN/m SDL=0.85 kN/m LL= 3.5 kN/m
(oxsice) LV4 DL= 7.0 kN/m SDL= 0-85 kN/m2 LL= 3.3 kN/m
(aprice) Lv3 DL= 7.0 kN/m2 SDL= OBS hN/m LL=3.3hN/m
(oggice) Lv2 DL: 7.0 kN/m 50L: 0.85 kN/m LL: 3.5 kN/m
(byrice) Lv1 DL= 7.0 kN/m2 SDL= 0.85 kN/m2 LL= 3.5 kN/m2
(oxice) GF DL= 7.0 kN/m2 SDL= 0.85 kN/m2 LL= 3.5 hN/m2
(Library) LG DL= 8.4 LN/m SDL= 0-85 KN/m LL= 5.0 KN/m
            Office imposed Load = 2.5 kN/m
            Library Imposed Loud = 4.0 kN /n
            Lightweight Plant Lond & 500 KN /m
           Services & Finishes = 0.85 kN/m2
           Demountable Partitions = 1.0 kN /m (All except Roox)
            0.35m thk slab: 0.35x24 = 8.4 kN/m2
        Hollow Pot Floor Construction = 0.35 x 20kN/m<sup>3</sup> = 7 kN/m<sup>2</sup>
           Tributary Area = 4.0 m x 1.19m = 4.76m2 (considered Area
                                                               Per Column)
                                                 24.8m
            D_{end} = [2 \times (8.4 + 0.85) \times 4.8] + [6 \times (7.0 + 0.85) \times 4.8]
                                    (unjactored)
                         314.8 kN
               x1.35 = 425.1 kN
                                     (Jactored)
            Live Load = 2(5.0 x 4.8) + 6(3.5x4.8)
                       = 148.8 kN (unjuctored)
                      = 223.2 kN (factored)
             S/W of Column = 0.457 \times 0.230 \times 24 \text{m} High x 25 \text{kN/m}^2 = 65 \text{kN} (Unfactored)
                                                x 1.35 = 90kN (Factored)
           .. Total =
                           542 kN (unjunctioned) =>
                                                           550 kN
         (Per Column)
                                      (Soctored) =>
                           739 kN
                                                           750 kN
```

Date 09/01/2018 Job no. Section Sheet no. Rev By NP ON A STANDARD	Project	UCLH, Birb	Status Information				
Checked MB	Ву	NP	Job no. 70038590				

Rev Date Details 01 09/01/2018

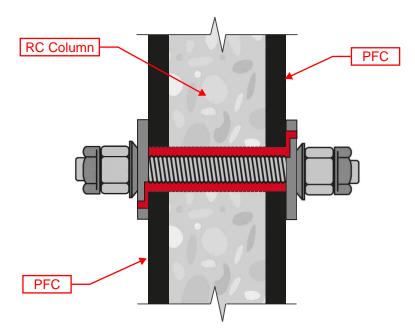

Part

Delivery Opening Concrete to Steel Through Bolts

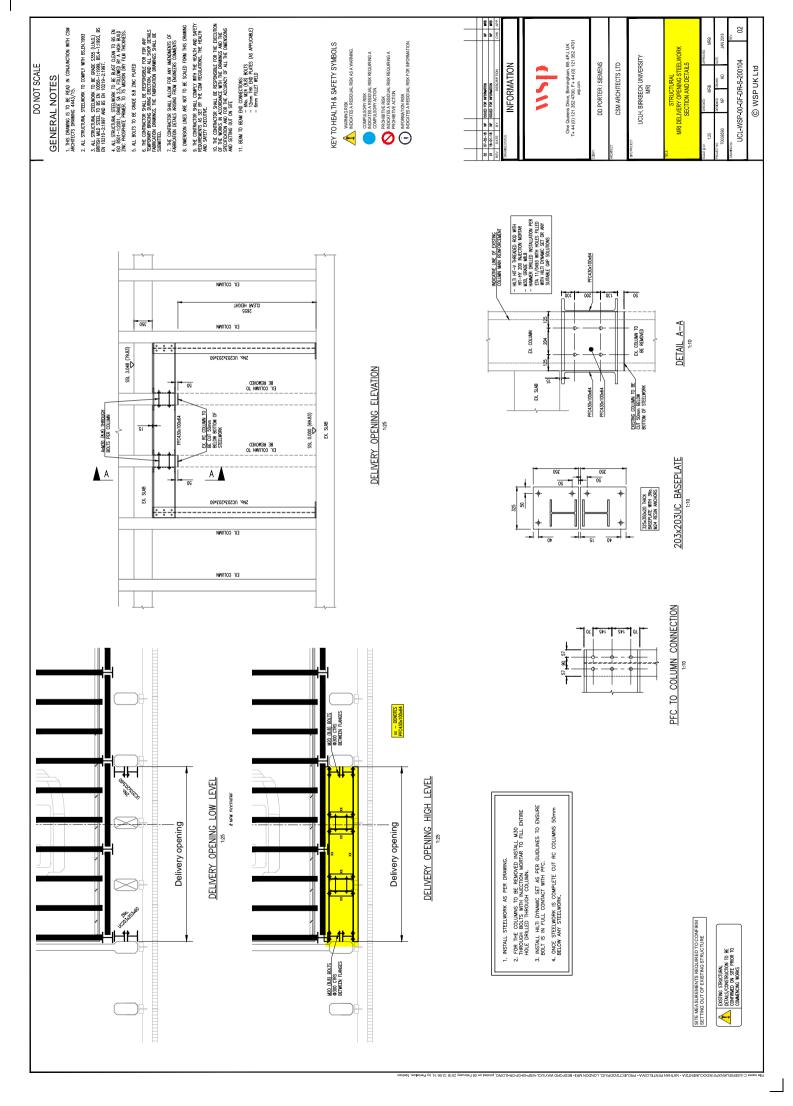
REF OUTPUT

4No. Through Bolts are required for connection of the cut concrete columns to the steel PFC's. A total design load of 750kN per column is required to be resisted by the through bolts. As a conservative approach, it is considered that 2×4 No. anchor bolts in each side of the column are taking 375kN each in single shear.

From the Hilti load table below, for a HIT-V-5.8 with HIT-RE 500-SD in C20/25 Concrete the design shear resistance is 112 kN per anchor.



As 8 x 112 = 896 kN > 750 kN therefore OKAY Provide M30 (8.8) HIT-V Threaded rod with HIT-RE 500-SD

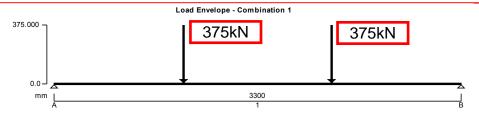

Project UCLH, Birbeck University - MRI				Status Information		115	
Date By Checked	09/01/2018 NP MB	Job no. 70038590	Section	Sheet no. 1 of 1	Rev 01		
Rev 01	Date 09/01/2018	Details		•	•		
Part Del	Part Delivery Opening Concrete to Steel Through Bolts						

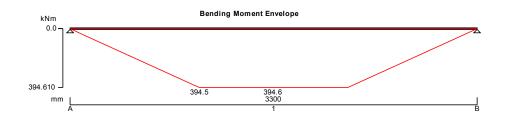
OUTPUT

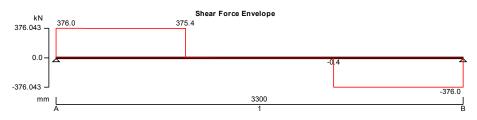
Installation of the through bolts and resin should be as follows:

- Drill hole through RC Column.
- Clean Bore hole as per manufactures requirements
- Install road with Hilti filling washer set on each side.
 Dispense HIT-RE 500 Resin through hole until entire cavity is filled.
- Tighten nut to required torque setting.

,,,,,,,	
WSP	
One Queens Drive	;
Birmingham	
B5 4PJ	


Project				Job no.	
ı	7003	8590			
Calcs for	Start page no./Re	vision			
	p 1	01			
Calcs by PG	Calcs date 09/02/2018	Checked by NP	Checked date 09/01/2018	Approved by MB	Approved date 09/01/2018


STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)


In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.13

NB: Two PFC sections to be used (one either side of the column ot be removed columns). Therefore half the total load per column (750kN factored) will be used in the design of the PFC.

Support conditions

Support A

Support B

Vertically restrained Rotationally free Vertically restrained Rotationally free

Applied loading

Beam loads

Permanent point load 375 kN at 1050 mm Permanent point load 375 kN at 2250 mm

Permanent self weight of beam × 1

Factored Loads

Load combinations

Load combination 1

Support A Permanent \times 1.00 Variable \times 1.00

Span 1 Permanent × 1.00

Variable × 1.00

Support B Permanent × 1.00

 $Variable \times 1.00$

WSP One Queens Drive Birmingham B5 4PJ

Project				Job no.	
	UCLH, Birkbeck	7003	8590		
Calcs for	Start page no./Re	vision			
	p 2	01			
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
PG	09/02/2018	NP	09/01/2018	MB	09/01/2018

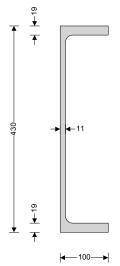
Analysis results

Unfactored permanent load reaction at support A R_{A Permanent} = **376** kN

Maximum reaction at support B $R_{B \text{ max}} = 376 \text{ kN}$ $R_{B \text{ min}} = 376 \text{ kN}$

Unfactored permanent load reaction at support B R_{B_Permanent} = **376** kN

Section details


Section type UKPFC 430x100x64 (Tata Steel Advance)

Steel grade \$355

EN 10025-2:2004 - Hot rolled products of structural steels

Nominal thickness of element $t = max(t_f, t_w) = 19.0 \text{ mm}$

Nominal yield strength $f_y = 345 \text{ N/mm}^2$ Nominal ultimate tensile strength $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity $E = 210000 \text{ N/mm}^2$

Partial factors - Section 6.1

Resistance of cross-sections γ_{M0} = 1.00 Resistance of members to instability γ_{M1} = 1.00 Resistance of tensile members to fracture γ_{M2} = 1.10

Lateral restraint

Span 1 has full lateral restraint

Effective length factors

Effective length factor in major axis $K_y = 1.000$ Effective length factor in minor axis $K_z = 1.000$ Effective length factor for torsion $K_{LT.A} = 1.000$ $K_{LT.B} = 1.000$

Classification of cross sections - Section 5.5

 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.83$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 362 mm

	W	SP	
One	e Que	ens l	Drive
	Birmi	nghai	m
	B5	4P.I	

Project				Job no.	
	7003	8590			
Calcs for	Start page no./Revision				
	р3	01			
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
PG	09/02/2018	NP	09/01/2018	MB	09/01/2018

c / t_w = 39.9 × ϵ <= 72 × ϵ Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = b - t_w - r_1 = 74 \text{ mm}$

c / t_f = 4.7 \times ϵ <= 9 \times ϵ Class 1

Section is class 1

Check shear - Section 6.2.6

Height of web $h_w = h - 2 \times t_f = 392 \text{ mm}$

Shear area factor $\eta = 1.000$

 $h_w / t_w < 72 \times \epsilon / \eta$

Shear buckling resistance can be ignored

Design shear force $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 376 \text{ kN}$ Shear area - cl 6.2.6(3) $A_{V} = A - 2 \times b \times t_{f} + (t_{W} + r_{1}) \times t_{f} = 4903 \text{ mm}^{2}$ Design shear resistance - cl 6.2.6(2) $V_{c,Rd} = V_{pl,Rd} = A_{V} \times (f_{y} / \sqrt{3}) / \gamma_{M0} = 976.5 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment major (y-y) axis - Section 6.2.5

Design bending moment $M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = 394.6 \text{ kNm}$

Design bending resistance moment - eq 6.13 $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 421.6 \text{ kNm}$

PASS - Design bending resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

Limiting deflection $\delta_{lim} = L_{s1} / 250 = 13.2 \text{ mm}$

Maximum deflection span 1 δ = max(abs(δ_{max}), abs(δ_{min})) = **10.085** mm

PASS - Maximum deflection does not exceed deflection limit



WSP One Queens Drive Birmingham B5 4PJ

	Project				Job no.	
	I	7003	8590			
Γ	Calcs for				Start page no./Re	vision
		p 1	01			
	Calcs by PG	Calcs date 09/01/2018	Checked by NP	Checked date 09/01/2018	Approved by MB	Approved date 09/01/2018

BOLT GROUP ANALYSIS

Tedds calculation version 1.0.02

Geometry of bolt group

 $\begin{array}{lll} \text{Number of rows} & & R = 3 \\ \text{Number of columns} & C = 2 \\ \text{Pitch distance} & S_x = 100 \text{ mm} \\ \text{Gauge distance} & S_y = 300 \text{ mm} \\ \text{Edge distance in vertical direction} & d_y = 50 \text{ mm} \\ \text{Edge distance in horizontal direction} & d_x = 50 \text{ mm} \\ \end{array}$

Load data

Vertical load applied on bolt group $P_y = -375.000 \text{ kN}$ Horizontal load applied on bolt group $P_x = 0.000 \text{ kN}$ X coordinate of vertical force X = 100 mmY coordinate of horizontal force Y = 0 mm

Center of gravity of bolt group

 $\begin{array}{ll} X \text{ distance of center of bolt group} & X_c = ((C-1)\times S_x) \, / \, 2 + d_x = \textbf{100} \text{ mm} \\ Y \text{ distance of center of bolt group} & Y_c = ((R-1)\times S_y) \, / \, 2 + d_y = \textbf{350} \text{ mm} \\ \end{array}$

Load eccentricity from center of gravity of bolt group

Eccentricity of vertical load from C.G. $e_X = abs(X - X_c) = 0 \text{ mm}$ Eccentricity of horizontal load from C.G. $e_Y = abs(Y - Y_c) = 350 \text{ mm}$

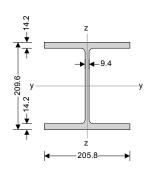
Moment about center of gravity $M = P_x \times (Y - Y_c) - P_y \times (X - X_c) = 0.000 \text{ kNm}$

Project		Job no.			
l	7003	8590			
Calcs for	Start page no./Revision				
Delivery Opening Steelwork					01
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
PG	09/01/2018	NP	09/01/2018	MB	09/01/2018

Bolt number	Bolt distance from centre of gravity		Dire	Direct shear		Torsional shear	
	X _i (mm)	Y _i (mm)	P _{dx} (kN)	P _{dy} (kN)	P _{tx} (kN)	P _{ty} (kN)	(kN)
1	-50	-300	0.0	62.5	0.0	0.0	62.5
2	50	-300	0.0	62.5	0.0	0.0	62.5
3	-50	0	0.0	62.5	0.0	0.0	62.5
4	50	0	0.0	62.5	0.0	0.0	62.5
5	-50	300	0.0	62.5	0.0	0.0	62.5
6	50	300	0.0	62.5	0.0	0.0	62.5

	Tensile stress area	Tension resistance	Shear resistance		
Diameter of bolt	Terisile stress area	Tension resistance	Single shear	Double shear	
d	A _s	Filed	F _{v,Rd}	2 x F _{v,Rd}	
mm	mm ²	kN	kN	kN	
12	84.3	48.6	32.4	64.7	
16	157	90.4	60.3	121	
20	245	141	94.1	188	
24	353	203	136	271	
30	561	323	215	431	

Extract from TATA Steel Blue Book


B5 4PJ

Project		Job no.			
	UCLH, Birkbeck	7003	8590		
Calcs for		Start page no./Re	vision		
	Delivery Oper	p 1	01		
Calcs by PG	Calcs date 09/02/2018	Checked by NP	Checked date 09/01/2018	Approved by MB	Approved date 09/01/2018

STEEL COLUMN DESIGN (EN 1993-1-1)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 1.0.12

NB. In order to accommodate the width of the removed columns, two UC sections will be provided See

UCL-WSP-00-GF-DR-S-200104.

Column and loading details

Column details

Sway

The column is not part of a sway frame in the direction of the z axis The column is not part of a sway frame in the direction of the y axis

Column loading

Axial load $N_{Ed} = 375 \text{ kN (Compression)}$

Moment about y axis at end 1 $M_{y,Ed1} = 0.0 \text{ kNm}$ Moment about y axis at end 2 $M_{y,Ed2} = 0.0 \text{ kNm}$

Moment about z axis at end 1 $M_{z,Ed1} = 0.0 \text{ kNm}$ Moment about z axis at end 2 $M_{z,Ed2} = 0.0 \text{ kNm}$

Shear force parallel to z axis $V_{z,Ed} = \mathbf{0} \text{ kN}$ Shear force parallel to y axis $V_{y,Ed} = \mathbf{0} \text{ kN}$

Material details

Steel grade \$355

Yield strength $f_y = 355 \text{ N/mm}^2$ Ultimate strength $f_u = 470 \text{ N/mm}^2$ Modulus of elasticity $E = 210 \text{ kN/mm}^2$

Poisson's ratio v = 0.3

Shear modulus $G = E / [2 \times (1 + v)] = 80.8 \text{ kN/mm}^2$

Buckling length for flexural buckling about y axis

End restraint factor $K_y = 1.000$

Buckling length $L_{cr_y} = L_y \times K_y = 3000 \text{ mm}$

Buckling length for flexural buckling about z axis

End restraint factor $K_z = 1.000$

Buckling length $L_{cr} z = L_z \times K_z = 3000 \text{ mm}$

WSP
One Queens Drive
Birmingham
B5 4PJ

Project				Job no.	
	UCLH, Birkbeck	70038590			
Calcs for		Start page no./Revision			
	Delivery Oper	p 2 01			
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
PG	09/02/2018	NP	09/01/2018	MB	09/01/2018

Section classification

Web section classification (Table 5.2)

Coefficient depending on f_y $\epsilon = \sqrt{(235 \text{ N/mm}^2 / f_y)} = \textbf{0.814}$ Depth between fillets $c_w = h - 2 \times (t_f + r) = \textbf{160.8} \text{ mm}$

Ratio of c/t $ratio_w = c_w / t_w = 17.11$

Length of web taken by axial load $l_w = min(N_{Ed} / (f_y \times t_w), c_w) = 112.4 \text{ mm}$

For class 1 & 2 proportion in compression $\alpha = (c_w/2 + l_w/2) / c_w = 0.849$

Limit for class 1 web $\text{Limit}_{1w} = (396 \times \epsilon) / (13 \times \alpha - 1) = 32.08$

The web is class 1

Flange section classification (Table 5.2)

Outstand length $c_f = (b - t_w) / 2 - r = 88.0 \text{ mm}$

Ratio of c/t ratio_f = $c_f / t_f = 6.20$

 $\begin{array}{ll} \mbox{Limit for class 1 flange} & \mbox{Limit}_{1f} = 9 \times \epsilon = \textbf{7.32} \\ \mbox{Limit for class 2 flange} & \mbox{Limit}_{2f} = 10 \times \epsilon = \textbf{8.14} \\ \mbox{Limit for class 3 flange} & \mbox{Limit}_{3f} = 14 \times \epsilon = \textbf{11.39} \\ \end{array}$

The flange is class 1

Overall section classification

The section is class 1

Resistance of cross section (cl. 6.2)

Compression (cl. 6.2.4)

Design force $N_{Ed} = 375 \text{ kN}$

Design resistance $N_{c,Rd} = N_{pl,Rd} = A \times f_y / \gamma_{M0} = 2711 \text{ kN}$

PASS - The compression design resistance exceeds the design force

Buckling resistance (cl. 6.3)

Yield strength for buckling resistance $f_v = 355 \text{ N/mm}^2$

Flexural buckling about y axis

Elastic critical buckling force $N_{cr,y} = \pi^2 \times E \times I_y / L_{cr_y}^2 = 14104 \text{ kN}$ Non-dimensional slenderness $\overline{\lambda}_y = \sqrt{(A \times f_y / N_{cr,y})} = 0.438$

Buckling curve (Table 6.2)

Imperfection factor (Table 6.1) $\alpha_v = 0.34$

Parameter Φ $\Phi_y = 0.5 \times [1 + \alpha_y \times (\overline{\lambda}_y - 0.2) + \overline{\lambda}_y^2] = \textbf{0.637}$ Reduction factor $\chi_y = \min(1.0, 1 / [\Phi_y + \sqrt{(\Phi_y^2 - \overline{\lambda}_y^2)}]) = \textbf{0.911}$ Design buckling resistance $N_{b,v,Rd} = \gamma_v \times A \times f_v / \gamma_{M1} = \textbf{2468.7 kN}$

PASS - The flexural buckling resistance about the y axis exceeds the design axial load

Flexural buckling about z axis

Elastic critical buckling force $N_{cr,z} = \pi^2 \times E \times I_z / L_{cr_z}^2 = 4755 \text{ kN}$ Non-dimensional slenderness $\overline{\lambda}_z = \sqrt{(A \times f_y / N_{cr,z})} = 0.755$

Buckling curve (Table 6.2)

Imperfection factor (Table 6.1) $\alpha_z = 0.49$

Parameter Φ $\Phi_z = 0.5 \times [1 + \alpha_z \times (\overline{\lambda_z} - 0.2) + \overline{\lambda_z}^2] = \textbf{0.921}$ Reduction factor $\chi_z = \min(1.0, 1 / [\Phi_z + \sqrt{(\Phi_z^2 - \overline{\lambda_z}^2)}]) = \textbf{0.690}$ Design buckling resistance $N_{b,z,Rd} = \chi_z \times A \times f_y / \gamma_{M1} = \textbf{1871.6 kN}$

PASS - The flexural buckling resistance about the z axis exceeds the design axial load

Project		Job no.			
	UCLH, Birkbeck	70038590			
Calcs for		Start page no./Revision			
	Delivery Oper	p 3 01			
Calcs by PG	Calcs date 09/02/2018	Checked by NP	Checked date 09/01/2018	Approved by MB	Approved date 09/01/2018

Torsional and torsional-flexural buckling (cl. 6.3.1.4)

Torsional buckling length factor $K_T = 1.00$

Effective buckling length $L_{cr_T} = K_T \times max(L_y, L_z) = 3000 \text{ mm}$

Distance from shear ctr to centroid along y axis $y_0 = 0.0$ mm Distance from shear ctr to centroid along z axis $z_0 = 0.0$ mm

 $i_0 = \sqrt{(i_y^2 + i_z^2 + y_0^2 + z_0^2)} = 103.5 \text{ mm}$

 $\beta_T = 1 - (y_0 / i_0)^2 = 1.000$

Elastic critical torsional buckling force $N_{cr,T} = 1 / i_0^2 \times (G \times I_t + \pi^2 \times E \times I_w / L_{cr,T}^2) = 7790 \text{ kN}$

Elastic critical torsional-flexural buckling force $N_{cr,TF} = N_{cr,y}/(2\times\beta_T)\times[1+N_{cr,T}/N_{cr,y}-\sqrt{[(1-N_{cr,T}/N_{cr,y})^2+4\times(y_0/i_0)^2\times N_{cr,T}/N_{cr,y}]}$

 $N_{cr,TF} = 7790 \text{ kN}$

Non-dimensional slenderness $\overline{\lambda}_T = \sqrt{(A \times f_y / min(N_{cr,T}, N_{cr,TF}))} = \textbf{0.590}$

Buckling curve (Table 6.2)

Imperfection factor (Table 6.1) $\alpha_T = 0.49$

Parameter Φ $\Phi_{T} = 0.5 \times [1 + \alpha_{T} \times (\overline{\lambda}_{T} - 0.2) + \overline{\lambda}_{T}^{2}] = \textbf{0.770}$ Reduction factor $\chi_{T} = \min(1.0, 1 / [\Phi_{T} + \sqrt{(\Phi_{T}^{2} - \overline{\lambda}_{T}^{2})}]) = \textbf{0.791}$

Design buckling resistance $N_{b,T,Rd} = \chi_T \times A \times f_y / \gamma_{M1} = 2145.5 \text{ kN}$

PASS - The torsional/torsional-flexural buckling resistance exceeds the design axial load

Minimum buckling resistance

Minimum buckling resistance $N_{b,Rd} = min(N_{b,y,Rd}, N_{b,z,Rd}, N_{b,T,Rd}) = 1871.6 \text{ kN}$

PASS - The axial load buckling resistance exceeds the design axial load

It is considered that the ground floor slab is suspended. Therefore, to transfer the large vertical loads from the delivery opening columns to the lower ground level, additional 450x300 RC columns will be provided with reinforcement details equivalent to that of the RC stub columns detailed in section 2.2. For additional information see UCL-WSP-00-GF-DR-S-200102.

5 STRUCTURAL DRAWINGS

All WSP structural drawings are shown below: