

DD Porter/Siemens

UCLH, BIRKBECK UNIVERSITY -MRI

Calculation Package

UCL-WSP-ZZ-ZZ-SC-S-0001 JANUARY 2018

CONFIDENTIAL

wsp

DD Porter/Siemens

UCLH, BIRKBECK UNIVERSITY - MRI

Calculation Package

CONFIDENTIAL

PROJECT NO. 70038590 OUR REF. NO. UCL-WSP-ZZ-ZZ-SC-S-0001

DATE: JANUARY 2018

WSP 1 Queens Drive Birmingham, West Midlands B5 4PJ Phone: +44 1213 524 700 Fax: +44 121 352 4701 WSP.com

wsp

QUALITY CONTROL

Issue/revision	First issue	Revision 1	Revision 2	Revision 3
Remarks	INFORMATION			
Date	12th February 2018			
Prepared by	Patrick Gittings			
Signature	PG			
Checked by	Nathan Pentelow			
Signature	NP			
Authorised by	Mark Bundy			
Signature	MRB			
Project number	70038590			
Report number	UCL-WSP-ZZ-ZZ- SC-S-0001			
File reference				

CONTENTS

115

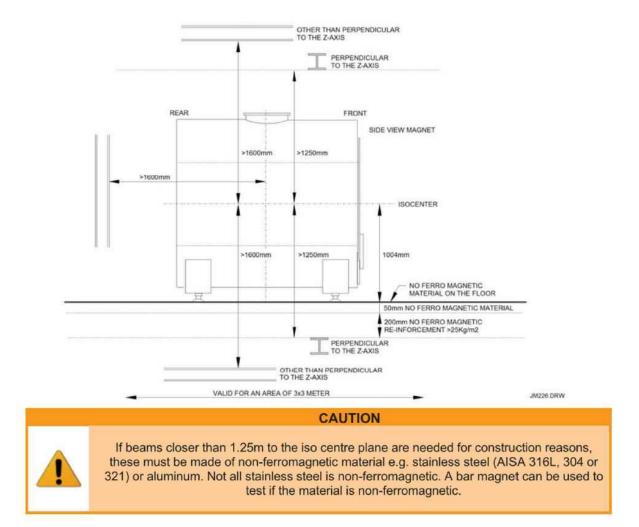
1	INTRODUCTION	1
2	MRI SUPPORT SLAB & SUPPORTS	2
2.1	RC SLAB DESIGN	2
2.2	RC STUB COLUMN DESIGN	8
2.3	RC FOUNDATION DESIGN	15
2.4	PROPPING REQUIREMENTS	20
3	INTERNAL SHIELDING SUPPORT FRAME	22
3.1	STRUCTURAL STEELWORK	22
3.2	STEEL FRAME DESIGN	23
3.2.1	Steel Beams	25
3.2.2	Steel Columns	32
4	DELIVERY OPENING STEELWORK	36
4.1	LOAD TAKEDOWN OF EXISTING COLUMNS	36
4.2	STEEL BEAM AND COLUMN DESIGN	39
5	STRUCTURAL DRAWINGS	51

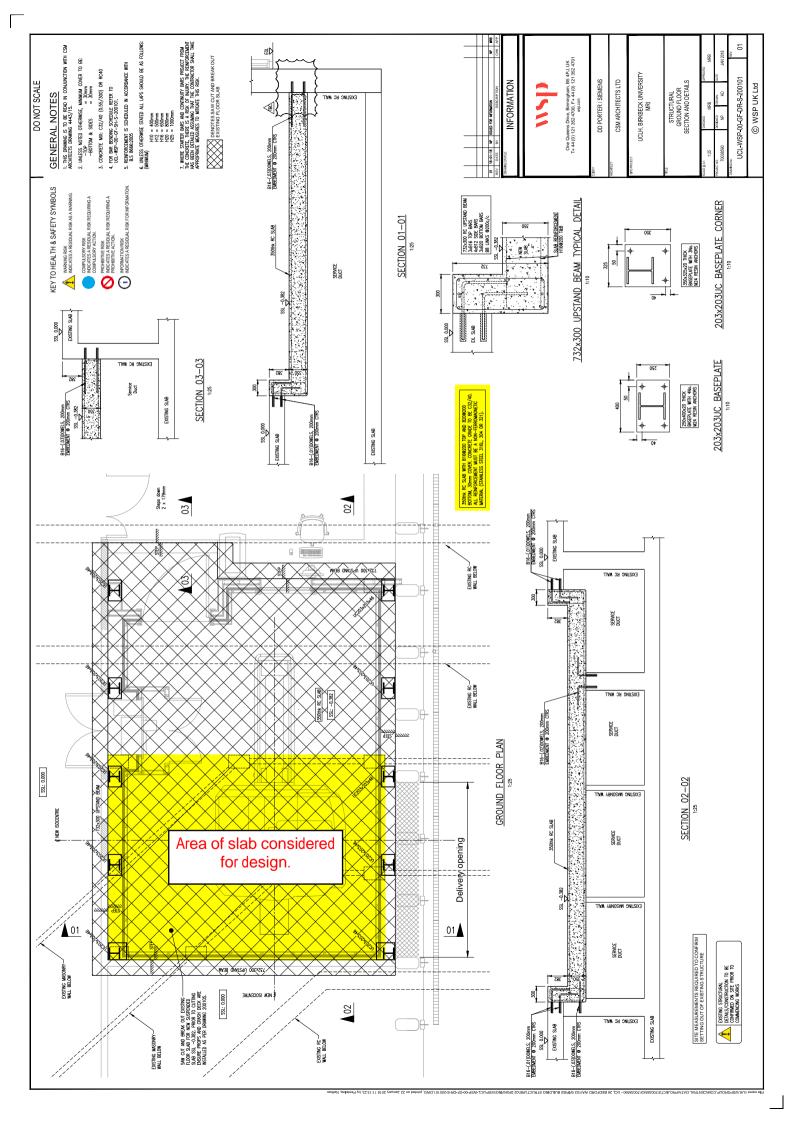
1 INTRODUCTION

The following document details the various structural calculations that have been carried out by WSP on behalf of DD Porter for the project at Birkbeck University, 26 Bedford Way, London. The calculations refer to the following structural works, which will facilitate the installation of a new Siemens 3T MRI scanner:

- A new 350mm thick RC Slab (with stainless steel bars) to support the MRI scanner.
- RC stub columns to support the slab, in addition to foundations.
- A new internal steel frame to support required RF shielding.
- Structural steel columns and beams to provide an opening in the existing facade to facilitate the delivery of the MRI scanner.

Additional information referring to the properties of the materials used and the structural philosophy can be found in WSP document UCL-WSP-ZZ-ZZ-RP-S-0001.

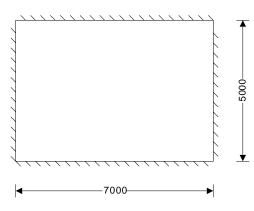

2 MRI SUPPORT SLAB & SUPPORTS


2.1 RC SLAB DESIGN

The MRI support slab has been designed using the following loadings:

- Dead Load of 8.4 kN/m² for the 350mm thick slab
- Super Imposed Dead Load of 2.25 kN/m² for the RF cage and partitions
- Services Load of 0.25 kN/m²
- Imposed Load of 25 kN/m², this value is based on the weight of the 12000kg MRI scanner being distributed over an area of 5m², plus an additional nominal allowance of 1.5 kN/m² for general imposed load.
- A load of 1.5 kN/m² has been used to allow for the weight of the shielding (based on 20mm thick steel plates).

Full design outputs for a section of the slab are shown below:



wsp	Project	UCLH, Birkbeck	Job no. 70038590			
WSP One Queens Drive	Calcs for	MRI Sup	port Slab		Start page no./Revision p 1 01	
Birmingham B5 4PJ	Calcs by PG	Calcs date 18/01/2018	Checked by NP	Checked date 18/01/2018	Approved by MB	Approved date 18/01/2018

RC SLAB DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.0.12

Slab definition

Slab reference name	MRI Slab 350mm
Type of slab	Two way spanning with
Overall slab depth	h = 350 mm
Shorter effective span of panel	lx = 5000 mm
Longer effective span of panel	l _y = 7000 mm
Support conditions	Four edges discontinu

Bottom outer layer of reinforcement

Loading

Characteristic permanent action Characteristic variable action Partial factor for permanent action Partial factor for variable action Quasi-permanent value of variable action Design ultimate load Quasi-permanent load

Concrete properties

Concrete strength class Characteristic cylinder strength Partial factor (Table 2.1N) Compressive strength factor (cl. 3.1.6) Design compressive strength (cl. 3.1.6) Mean axial tensile strength (Table 3.1) Maximum aggregate size

Reinforcement properties Characteristic yield strength Partial factor (Table 2.1N)

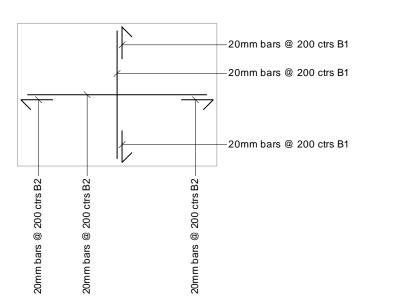
Design yield strength (fig. 3.8)

th restrained edges uous

Short span direction

Gk = 10.9 kN/m² Qk = 25.0 kN/m² γG = **1.35** γ**Q** = **1.50** $\Psi_2 = 0.30$ $q = \gamma_G \times G_k + \gamma_Q \times Q_k = 52.2 \text{ kN/m}^2$ $q_{SLS} = 1.0 \times G_k + \psi_2 \times Q_k = 18.4 \text{ kN/m}^2$

C32/40 fck = **32** N/mm² γc = **1.50** αcc = **0.85** fcd = **18.1** N/mm² $f_{ctm} = 0.30 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 3.0 \text{ N/mm}^2$ $d_{g} = 20 \text{ mm}$


fyk = **314** N/mm² γs **= 1.15** $f_{yd} = f_{yk} / \gamma s = 273.0 \text{ N/mm}^2$

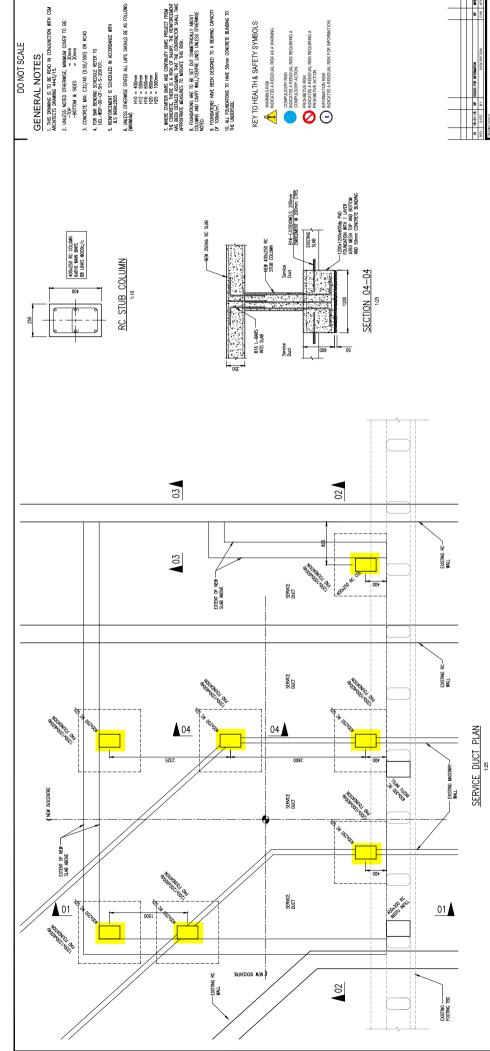
usp	Project	UCLH, Birkbeck	University - N	/IRI	Job no. 700	38590	
WSP	Calcs for				Start page no./F		
One Queens Drive						p 2 01	
Birmingham B5 4PJ	Calcs by PG	Calcs date 18/01/2018	Checked by NP	Checked date 18/01/2018	Approved by MB	Approved 18/01/2	
Concrete cover to reinforcen	nent						
Nominal cover to outer bottom	reinforcement	Cnom_b = 30	mm				
Fire resistance period to bottor	n of slab	Rbtm = 60 m	nin				
Axia distance to bottom reinft (a _{fi_b} = 10 m					
Min. btm cover requirement wit	h regard to bone						
Reinforcement fabrication		-	t to QA syste	em			
Cover allowance for deviation		$\Delta C dev = 10 r$					
Min. required nominal cover to	bottom reinft	Cnom_b_min =		ufficient cover to	the bottom	reinforcer	
Reinforcement design at mid	lspan in short s						
Bending moment coefficient		βsx_p = 0.08	-				
Design bending moment		Mx_p = βsx_p	\times q \times lx ² = 113	3.6 kNm/m			
Reinforcement provided		20 mm dia.	bars at 200 n	nm centres			
Area provided		A _{sx_p} = 157	1 mm²/m				
Effective depth to tension reinfo	orcement	$d_{x_p} = h - c_r$	om_b - \$\$_p / 2 =	= 310.0 mm			
K factor		$K = M_{x_p} / ($	$b \times d_{x_p^2} \times f_{ck}$	= 0.037			
Redistribution ratio		δ = 1.0					
K' factor		$K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = \textbf{0.208}$					
			K < K' - (Compression rei	nforcement i	s not requ	
Lever arm		z = min(0.9	$5 \times d_{x_p}, d_{x_p/2}$	2 × (1 + (1 - 3.53׳	<) ^{0.5})) = 294.5	mm	
Area of reinforcement required	for bending		$c_p / (f_{yd} \times z) =$				
Minimum area of reinforcemen	t required	$A_{sx_p_min} = n$	$nax(0.26 \times (f_{ctr}))$	m/fyk) $ imes$ b $ imes$ dx_p, 0.0) 0013×b×dx_p)	= 770 mm ²	
Area of reinforcement required				x_p_min) = 1413 mm	-		
		PASS	- Area of rein	forcement provi	ded exceeds	area requ	
Check reinforcement spacing	g						
Reinforcement service stress		-		_p_m/Asx_p), 1.0) × 0	qsls / q = 86.6	N/mm ²	
Maximum allowable spacing (T	able 7.3N)	Smax_x_p = 3					
Actual bar spacing		s _{x_p} = 200 r		.	, <u>-</u>		
Debeneration				- The reinforcen	nent spacing	is accept	
Reinforcement design at mid Bending moment coefficient	ispan in long sj	pan direction (cl βsy_p = 0.05	-				
Design bending moment		•	\times q \times lx ² = 73.	1 kNm/m			
Reinforcement provided			bars at 200 m				
Area provided		A _{sy_p} = 157					
Effective depth to tension reinfo	orcement		$d_{y_p} = h - C_{nom_b} - \phi_{x_p} - \phi_{y_p} / 2 = 290.0 mm$				
			$D \times d_{y_p^2} \times f_{ck}$				
K factor		$\delta = 1.0$					
K factor Redistribution ratio			~ ~ ~ ~ ~?	- 0 21 = 0 208			
Redistribution ratio		K' = 0.598	×δ-()18×××				
		K' = 0.598			nforcement i	s not requ	
Redistribution ratio K' factor			K < K' - (Compression rei		-	
Redistribution ratio K' factor Lever arm	for bending	z = min(0.9	Κ < Κ' - (5 × d _{y_P} , d _{y_P} /2	Compression rei 2 × (1 + (1 - 3.53׳		-	
Redistribution ratio K' factor Lever arm Area of reinforcement required	-	z = min(0.9 A _{sy_p_m} = M	K < K' - 0 5 × d _{y_p} , d _{y_p} /2 $y_p / (f_{yd} × z) =$	Compression rei 2 × (1 + (1 - 3.53׳ 972 mm²/m	<) ^{0.5})) = 275.5	mm	
Redistribution ratio K' factor Lever arm	t required	$z = \min(0.9)$ $A_{sy_p_m} = M_{sy_p_m} = n_{sy_p_m}$	K < K' - 0 $5 \times d_{y_p}, d_{y_p}/2$ $y_p / (f_{yd} \times z) =$ $hax(0.26 \times (f_{ctr}))$	Compression rei 2 × (1 + (1 - 3.53׳	S() ^{0.5})) = 275.5 D013×b×dy_p) =	mm	

usp	Project	UCLH, Birkbecł	 University - M 	M RI	Job no. 700	038590
WSP	Calcs for	MRI Support Slab p 3 01				
One Queens Drive Birmingham	Oplag hu	Calcs date		Oh a shead state	-	
B5 4PJ	Calcs by PG	18/01/2018	Checked by NP	Checked date 18/01/2018	Approved by MB	Approved da 18/01/20
Check reinforcement spac	ing					
Reinforcement service stress	S	$\sigma_{sy_p} = (f_{yk} / $	′γs) × min((Asy	p_m/Asy_p), 1.0) × c	sls / q = 59.5	N/mm ²
Maximum allowable spacing	(Table 7.3N)	Smax_y_p = 3	00 mm			
Actual bar spacing		s _{y_p} = 200 i	mm			
			PASS	S - The reinforcen	nent spacing	is accepta
Shear capacity check at sh	ort span discon	tinuous support				
Shear force	•		x/2 = 130.5	kN/m		
Reinforcement provided		20 mm dia	. bars at 200	mm centres		
Area provided		A _{sx_d} = 157				
Effective depth			= 310.0 mm			
Effective depth factor				n / dx_d) ^{0.5}) = 1.803		
Reinforcement ratio				d _{x_d})) = 0.0051		
Minimum shear resistance			-	< k ^{1.5} × (f _{ck} / 1 N/mr	$(n^2)^{0.5} \times b \times d_x$	d
		$V_{Rd,c_min} = 1$	148.6 kN/m	,	,	
Chaor registeres	Vedov d – ma			(100 × ρι × (fck/1 N	/mm²)) ^{0.333} ×	b × dx d)
Shear resistance				· · · ·	,,	- /
Shear resistance Shear capacity check at log Shear force		V _{Rd,c_x_d} = 1		PASS - Shear ca	apacity is ad	lequate (0.7
Shear capacity check at log Shear force Reinforcement provided Area provided		$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times h$ 20 mm dia $A_{sy_d} = 157$	x / 2 = 130.5 1. bars at 200 11 mm²/m	kN/m	apacity is ad	lequate (0.7
Shear capacity check at los Shear force Reinforcement provided Area provided Effective depth		$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times l_{z_d}$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$	×/2 = 130.5 a. bars at 200 1 mm²/m = 290.0 mm	kN/m mm centres	apacity is ad	lequate (0.7
Shear capacity check at lor Shear force Reinforcement provided Area provided Effective depth Effective depth factor		$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$	× / 2 = 130.5 . bars at 200 1 mm ² /m = 290.0 mm), 1 + (200 mm	kN/m mm centres n / d _{y_d}) ^{0.5}) = 1.830	apacity is ad	lequate (0.7
Shear capacity check at los Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio		$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$ $\rho_l = min(0.0)$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, Asy_d / (b ×	kN/m mm centres n / d _{y_d}) ^{0.5}) = 1.830 d _{y_d})) = 0.0054		
Shear capacity check at lor Shear force Reinforcement provided Area provided Effective depth Effective depth factor		$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times h$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$ $\rho_I = min(0.0)$ $V_{Rd,c_min} = 0$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, A _{sy_d} / (b × 0.035 N/mm ² >	kN/m mm centres n / d _{y_d}) ^{0.5}) = 1.830		
Shear capacity check at lor Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance	ng span disconf	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$ $\rho_i = min(0.0)$ $V_{Rd,c_min} = 0$ $V_{Rd,c_min} = 1$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 0, 1 + (200 mm 0, 2, A _{sy_d} / (b × 0.035 N/mm ² × 142.2 kN/m	kN/m mm centres n / dy_d) ^{0.5}) = 1.830 dy_d)) = 0.0054 k k ^{1.5} × (fck / 1 N/mr	n²) ^{0.5} × b × dy	_d
Shear capacity check at los Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio	ng span disconf	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ k = min(2.0) $\rho_l = min(0.0)$ $V_{Rd,c_min} = 0$ $V_{Rd,c_min} = 1$ $x(V_{Rd,c_min}, 0.18 N/)$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, A _{sy_d} / (b × 0.035 N/mm ² > 142.2 kN/m /mm ² / γc × k ×	kN/m mm centres n / d _{y_d}) ^{0.5}) = 1.830 d _{y_d})) = 0.0054	n²) ^{0.5} × b × dy	_d
Shear capacity check at lor Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance	ng span disconf	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$ $\rho_i = min(0.0)$ $V_{Rd,c_min} = 0$ $V_{Rd,c_min} = 1$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, A _{sy_d} / (b × 0.035 N/mm ² > 142.2 kN/m /mm ² / γc × k ×	kN/m mm centres $(d_{y_d})^{0.5} = 1.830$ $(d_{y_d}) = 0.0054$ $(k^{1.5} \times (f_{ck} / 1 N/mr)^{-1.5})$ $(100 \times \rho_I \times (f_{ck} / 1 N)^{-1.5})$	n²) ^{0.5} × b × dy //mm²)) ^{0.333} × 1	_d b × dy_d)
Shear capacity check at lor Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance	ng span disconf	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ k = min(2.0) $\rho_l = min(0.0)$ $V_{Rd,c_min} = 0$ $V_{Rd,c_min} = 1$ $x(V_{Rd,c_min}, 0.18 N/)$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, A _{sy_d} / (b × 0.035 N/mm ² > 142.2 kN/m /mm ² / γc × k ×	kN/m mm centres n / dy_d) ^{0.5}) = 1.830 dy_d)) = 0.0054 k k ^{1.5} × (fck / 1 N/mr	n²) ^{0.5} × b × dy //mm²)) ^{0.333} × 1	_d b × dy_d)
Shear capacity check at lor Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance	ng span disconf V _{Rd,c_y_d} = ma	$V_{Rd,c_xd} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ k = min(2.0) $\rho_I = min(0.0)$ $V_{Rd,c_min} = 1$ $x(V_{Rd,c_min}, 0.18 N/)$ $V_{Rd,c_yd} = 1$	x / 2 = 130.5 a. bars at 200 i1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, A _{sy_d} / (b × 0.035 N/mm ² × 142.2 kN/m fmm ² / γc × k × 164.7 kN/m	kN/m mm centres h / d _{y_d}) ^{0.5}) = 1.830 d _{y_d})) = 0.0054 k k ^{1.5} × (fck / 1 N/mr (100 × ρι × (fck/1 N PASS - Shear ca	n²) ^{0.5} × b × dy //mm²)) ^{0.333} × 1	_d b × dy_d)
Shear capacity check at loc Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance Shear resistance	ng span disconf V _{Rd,c_y_d} = ma	$V_{Rd,c_xd} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ k = min(2.0) $\rho_I = min(0.0)$ $V_{Rd,c_min} = 1$ $x(V_{Rd,c_min}, 0.18 N/)$ $V_{Rd,c_yd} = 1$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, A _{sy_d} / (b × 0.035 N/mm ² > 142.2 kN/m /mm ² / γc × k ×	kN/m mm centres h / d _{y_d}) ^{0.5}) = 1.830 d _{y_d})) = 0.0054 k k ^{1.5} × (fck / 1 N/mr (100 × ρι × (fck/1 N PASS - Shear ca	n²) ^{0.5} × b × dy //mm²)) ^{0.333} × 1	_d b × dy_d)
Shear capacity check at lor Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance Shear resistance Basic span-to-depth deflect	ng span disconf $V_{Rd,c_y_d} = ma$ ction ratio check	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ k = min(2.0) $\rho_I = min(0.0)$ $V_{Rd,c_min} = 1$ $x(V_{Rd,c_min}, 0.18 N/)$ $V_{Rd,c_y_d} = 1$ $x(CR,c_y_d) = 1$ $rac{1}{2}$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, A _{sy_d} / (b × 0.035 N/mm ² > 142.2 kN/m (mm ² / γc × k × 164.7 kN/m N/mm ²) ^{0.5} / 10	kN/m mm centres h / d _{y_d}) ^{0.5}) = 1.830 d _{y_d})) = 0.0054 k k ^{1.5} × (fck / 1 N/mr (100 × ρι × (fck/1 N PASS - Shear ca	n²) ^{0.5} × b × dy l/mm²)) ^{0.333} × ∣ apacity is ad	_d b × dy_d)
Shear capacity check at los Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance Shear resistance Basic span-to-depth deflect Reference reinforcement ratio	ng span disconf V _{Rd,c_y_d} = ma ction ratio check io ent ratio	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$ $\rho_I = min(0.0)$ $V_{Rd,c_min} = 1$ $X(V_{Rd,c_min}, 0.18 N/)$ $V_{Rd,c_y_d} = 1$ is (cl. 7.4.2) $\rho_0 = (f_{ck} / 1)$ $\rho = max(0.0)$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, A _{sy_d} / (b × 0.035 N/mm ² > 142.2 kN/m (mm ² / γc × k × 164.7 kN/m N/mm ²) ^{0.5} / 10	kN/m mm centres d / dy_d) ^{0.5}) = 1.830 dy_d)) = 0.0054 k k ^{1.5} × (fck / 1 N/mr (100 × ρι × (fck/1 N PASS - Shear ca 000 = 0.0057 / (b × dx_ρ)) = 0.00	n²) ^{0.5} × b × dy l/mm²)) ^{0.333} × ∣ apacity is ad	_d b × dy_d)
Shear capacity check at los Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance Shear resistance Basic span-to-depth deflect Reference reinforcement rati Required tension reinforcem Required compression reinfor	ng span discont $V_{Rd,c_y_d} = ma$ ction ratio check io ent ratio procement ratio le 7.4N)	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$ $\rho_l = min(0.0)$ $V_{Rd,c_min} = 1$ $X(V_{Rd,c_min}, 0.18 N/)$ $V_{Rd,c_y_d} = 1$ is (cl. 7.4.2) $\rho_0 = (f_{ck} / 1)$ $\rho = max(0.0)$ $\rho' = A_{scx_p_r}$ $K_{\delta} = 1.0$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, Asy_d / (b × 0.035 N/mm ² > 142.2 kN/m 142.2 kN/m 164.7 kN/m N/mm ²) ^{0.5} / 10 0035, Asx_p_req eq / (b × dx_p) =	kN/m mm centres $(1 / d_{y_d})^{0.5}) = 1.830$ $(d_{y_d})) = 0.0054$ $(k^{1.5} \times (f_{ck} / 1 N/mr)^{-1})$ $(100 \times \rho_1 \times (f_{ck}/1 N)^{-1})$ <i>PASS - Shear ca</i> $(100 = 0.0057)^{-1}$ $((b \times d_{x_p})) = 0.000^{-1}$	n²) ^{0.5} × b × dy //mm²)) ^{0.333} × ∣ apacity is ad 36	_d b × d _{y_d}) /equate (0.7
Shear capacity check at lor Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance Shear resistance Basic span-to-depth deflect Reference reinforcement rati Required tension reinforcem	ng span discont $V_{Rd,c_y_d} = ma$ ction ratio check io ent ratio procement ratio le 7.4N)	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$ $\rho_l = min(0.0)$ $V_{Rd,c_min} = 1$ $X(V_{Rd,c_min}, 0.18 N/)$ $V_{Rd,c_y_d} = 1$ is (cl. 7.4.2) $\rho_0 = (f_{ck} / 1)$ $\rho = max(0.0)$ $\rho' = A_{scx_p_r}$ $K_{\delta} = 1.0$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, Asy_d / (b × 0.035 N/mm ² > 142.2 kN/m 142.2 kN/m 164.7 kN/m N/mm ²) ^{0.5} / 10 0035, Asx_p_req eq / (b × dx_p) =	kN/m mm centres $(1 / d_{y_d})^{0.5}) = 1.830$ $(d_{y_d})) = 0.0054$ $(k^{1.5} \times (f_{ck} / 1 N/mr)^{-1})$ $(100 \times \rho_1 \times (f_{ck}/1 N)^{-1})$ <i>PASS - Shear ca</i> $(100 = 0.0057)^{-1}$ $((b \times d_{x_p})) = 0.000^{-1}$	n²) ^{0.5} × b × dy //mm²)) ^{0.333} × ∣ apacity is ad 36	_d b × dy_d) ∕equate (0.7
Shear capacity check at los Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance Shear resistance Basic span-to-depth deflect Reference reinforcement rati Required tension reinforcem Required compression reinfor	ng span discont $V_{Rd,c_y_d} = ma$ ction ratio check io ent ratio procement ratio le 7.4N)	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$ $\rho_l = min(0.0)$ $V_{Rd,c_min} = 1$ $X(V_{Rd,c_min}, 0.18 N/)$ $V_{Rd,c_y_d} = 1$ is (cl. 7.4.2) $\rho_0 = (f_{ck} / 1)$ $\rho = max(0.0)$ $\rho' = A_{scx_p_r}$ $K_{\delta} = 1.0$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, Asy_d / (b × 0.035 N/mm ² > 142.2 kN/m ('mm ² / γc × k × 164.7 kN/m N/mm ²) ^{0.5} / 10 0035, Asx_p_req eq / (b × dx_p) = 1 N/mm ²) ^{0.5} ×p	kN/m mm centres $(1 / d_{y_d})^{0.5}) = 1.830$ $(d_{y_d})) = 0.0054$ $(k^{1.5} \times (f_{ck} / 1 N/mr)^{-1})$ $(100 \times \rho_1 \times (f_{ck}/1 N)^{-1})$ <i>PASS - Shear ca</i> $(100 = 0.0057)^{-1}$ $((b \times d_{x_p})) = 0.000^{-1}$	n²) ^{0.5} × b × dy //mm²)) ^{0.333} × ∣ apacity is ad 36	_d b × dy_d) ∕equate (0.7
Shear capacity check at lor Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance Shear resistance Basic span-to-depth deflect Reference reinforcement rati Required tension reinforcem Required compression reinfor Stuctural system factor (Tabl Basic limit span-to-depth rati	ng span discont $V_{Rd,c_y_d} = ma$ ction ratio check io ent ratio procement ratio le 7.4N) io ratiOlim_x_bas =	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$ $\rho_i = min(0.0)$ $V_{Rd,c_min} = 1$ $X(V_{Rd,c_min}, 0.18 N/)$ $V_{Rd,c_y_d} = 1$ $X(V_{Rd,c_y_d} = 1)$ $x(V_{Rd,c_y_d} = 1)$ $x(CI, 7.4.2)$ $\rho_0 = (f_{ck} / 1)$ $\rho = max(0.0)$ $\rho' = A_{scx_p_r}$ $K_{\delta} = 1.0$ $K_{\delta} \times [11 + 1.5 \times (f_{ck}/)]$ $ratiOlim_x_bas$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, Asy_d / (b × 0.035 N/mm ² > 142.2 kN/m (mm ² / γc × k × 164.7 kN/m N/mm ²) ^{0.5} / 10 0035, Asx_p_req req / (b × dx_p) = 1 N/mm ²) ^{0.5} ×ρ = 32.45	kN/m mm centres $(1 / d_{y_d})^{0.5}) = 1.830$ $(d_{y_d})) = 0.0054$ $(k^{1.5} \times (f_{ck} / 1 N/mr)^{-1})$ $(100 \times \rho_1 \times (f_{ck}/1 N)^{-1})$ <i>PASS - Shear ca</i> $(100 = 0.0057)^{-1}$ $((b \times d_{x_p})) = 0.000^{-1}$	n²) ^{0.5} × b × dy //mm²)) ^{0.333} × 1 apacity is ad 36 nm²) ^{0.5} ×(ρο/ρ	_d b × d _{y_d}) /equate (0.7
Shear capacity check at lor Shear force Reinforcement provided Area provided Effective depth Effective depth factor Reinforcement ratio Minimum shear resistance Shear resistance Basic span-to-depth deflect Reference reinforcement rati Required tension reinforcem Required compression reinfor Stuctural system factor (Tabl Basic limit span-to-depth rati (Exp. 7.16)	ng span discont $V_{Rd,c_y_d} = ma$ ction ratio check io ent ratio brocement ratio le 7.4N) io ratiolim_x_bas = t ratiolim_x = mir	$V_{Rd,c_x_d} = 1$ inuous support $V_{y_d} = q \times k$ 20 mm dia $A_{sy_d} = 157$ $d_{y_d} = d_{y_p} =$ $k = min(2.0)$ $\rho_I = min(0.0)$ $V_{Rd,c_min} = 0$ $V_{Rd,c_min} = 1$ $X(V_{Rd,c_min}, 0.18 N/)$ $V_{Rd,c_y_d} = 1$ is (cl. 7.4.2) $\rho_0 = (f_{ck} / 1)$ $\rho = max(0.0)$ $\rho' = A_{scx_p_r}$ $K_{\delta} = 1.0$ $K_{\delta} \times [11 + 1.5 \times (f_{ck}/)]$ $ratiolim_x_bas$ $n(40 \times K_{\delta}, min(1.5, ratio_{act_x} = 1)$	x / 2 = 130.5 a. bars at 200 1 mm ² /m = 290.0 mm 0, 1 + (200 mm 02, Asy_d / (b × 0.035 N/mm ² > 142.2 kN/m 142.2 kN/m	kN/m mm centres $(1 / d_{y_{-d}})^{0.5}) = 1.830$ $(d_{y_{-d}}) = 0.0054$ $(d_{y_{-d}}) = 0.0054$ $(100 \times \rho_1 \times (f_{ck}/1 N/m)^2)$ $(100 \times \rho_1 \times (f_{ck}/1 N/m)^2)$ $(100 \times \rho_1 \times (f_{ck}/1 N/m)^2)$ $(100 \times d_{x_p}) = 0.00$ $(100 \times d_{x_p}) = 0.00$	n²) ^{0.5} × b × dy //mm²)) ^{0.333} × 1 apacity is ad 36 nm²) ^{0.5} ×(ρο/ρ	d b × dyd) d equate (0.7 -1) ^{1.5}] s) = 40.00

The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.

wsp	Project	Job no. 70038590				
WSP One Queens Drive	Calcs for	MRI Sup	port Slab		Start page no./Revision p 4 01	
Birmingham B5 4PJ	Calcs by PG	Calcs date 18/01/2018	Checked by NP	Checked date 18/01/2018	Approved by MB	Approved date 18/01/2018

Provide:


Top Bars B16@200mm c-c

Bottom Bars B20@200mm c-c

2.2 RC STUB COLUMN DESIGN

Full design outputs for a typical RC stub column are shown below:

AP MBB 5 **JAN 2018** One Queens Drive, Birmingham, B5 4PJ, UK T+ 44 (0) 121 352 4700, F+ 44 (0) 121 352 4701 wsp.com STRUCTURAL FOUNDATION SECTION AND DETAILS UCLH, BIRKBECK UNIVERSITY MRI UCL-WSP-00-GF-DR-S-200102 CSM ARCHITECTS LTD INFORMATION DD PORTER / SIEMENS © WSP UK Ltd 모 MRB NP 70038590 1:25

wsp	Project	UCLH, Birkbeck	I	Job no. 7003	8590	
WSP One Queens Drive	Calcs for	MRI Slab Sup	port Columns		Start page no./Revision p 1 01	
Birmingham B5 4PJ	Calcs by PG	Calcs date 09/01/2018	Checked by NP	Checked date 09/01/2018	Approved by MB	Approved date 09/01/2018

RC COLUMN DESIGN

y

In accordance with EN1992-1-1:2004 incorporating Corrigendum January 2008 and the UK national annex

-y

Tedds calculation version 1.2.14

6 no. 16 mm diameter longitudinal bars

8 mm diameter links

Max link spacing 250 mm generally, 150 mm for

250 mm above and below slab/beam and at laps

Column input details

Column geometry	
Overall depth (perpendicular to y axis)	h = 250 mm
Overall breadth (perpendicular to z axis)	b = 400 mm
Stability in the z direction	Unbraced
Stability in the y direction	Unbraced
Concrete details	
Concrete strength class	C32/40
Partial safety factor for concrete (2.4.2.4(1))	γc = 1.50
Coefficient α_{cc} (3.1.6(1))	α _{cc} = 0.85
Maximum aggregate size	d _g = 20 mm
Reinforcement details	
Nominal cover to links	c _{nom} = 30 mm
Longitudinal bar diameter	$\phi = 16 \text{ mm}$
Link diameter	$\phi_v = 8 \text{ mm}$
Total number of longitudinal bars	N = 6
No. of bars per face parallel to y axis	$N_y = 3$
No. of bars per face parallel to z axis	$N_z = 2$
Area of longitudinal reinforcement	$A_s = N \times \pi \times \varphi^2 / 4 = \textbf{1206} mm^2$
Characteristic yield strength	f _{yk} = 500 N/mm ²
Partial safety factor for reinft (2.4.2.4(1))	γs = 1.15
Modulus of elasticity of reinft (3.2.7(4))	E _s = 200 kN/mm ²
Fire resistance details	
Fire resistance period	R = 60 min
Exposure to fire	Exposed on more than one side
Ratio of fire design axial load to design resistance	μ _{fi} = 0.70
Axial load and bending moments from frame an	alysis
Design axial load	N _{Ed} = 48.0 kN
Moment about y axis at top	M _{topy} = 0.0 kNm
Moment about y axis at bottom	$M_{btmy} = 0.0 \text{ kNm}$
Moment about z axis at top	$M_{topz} = 0.0 \text{ kNm}$
Moment about z axis at bottom	$M_{btmz} = 0.0 \text{ kNm}$

z

400

11213	Project	UCLH, Birkbeck	CUniversity - N	IRI	Job no. 700	38590	
WSP	Calcs for				Start page no./F	Revision	
One Queens Drive		MRI Slab Su	Slab Support Columns			p 2 01	
Birmingham B5 4PJ	Calcs by PG	Calcs date 09/01/2018	Checked by NP	Checked date 09/01/2018	Approved by MB	Approved 09/01/2	
Column effective lengths							
Effective length for buckling al	hout v axis	l _{oy} = 1500	mm				
Effective length for buckling al	-	$l_{0z} = 1500$					
Calculated column propertie							
Concrete properties	_						
Area of concrete		$A_c = h \times h =$	= 100000 mm²				
Characteristic compression cy	linder strength	f _{ck} = 32 N/n					
Design compressive strength	-		_{ck} / γc = 18.1 Ν	/mm ²			
Mean value of cylinder strengt			MPa = 40.0 N				
Secant modulus of elasticity (10 MPa) ^{0.3} = 33.3	kN/mm ²		
		=====	(.0117	,			
Rectangular stress block fac Depth factor (3.1.7(3))		$\lambda_{sb} = 0.8$					
Stress factor (3.1.7(3))		λ _{sb} = 0.8 η = 1.0					
		ij — 1.0					
Strain limits	- 2 4)						
Compression strain limit (Tabl		ε _{cu3} = 0.003					
Pure compression strain limit	. ,	ε _{c3} = 0.001	/5				
Design yield strength of rein				0			
Design yield strength (3.2.7(2)))	$f_{yd} = f_{yk} / \gamma_S$	= 434.8 N/mm	1 ²			
Check nominal cover for fire	e and bond requi	rements					
Min. cover reqd for bond (to lin			$\kappa(\phi_{v}, \phi - \phi_{v}) = \mathbf{\xi}$	3 mm			
Min axis distance for fire (EN1		afi = 46 mm					
Allowance for deviations from	min cover (4.4.1.3						
Min allowable nominal cover				φν, C _{min,b} + ∆C _{dev}) = ominal cover equ		mum requ	
Effective depths of bars for	bending about y	axis					
Area per bar			² / 4 = 201 mm				
Spacing of bars in faces paral	lel to z axis (c/c)) / (N _z - 1) = 158 r	nm		
Layer 1 (in tension face)		-	om - ϕ_v - ϕ / 2 =	204 mm			
Layer 2		$d_{y2} = d_{y1} - s_{y2}$					
Effective depth about y axis		$d_y = d_{y1} = 2$	U4 mm				
Effective depths of bars for	bending about z		o /	2			
Area of per bar			² / 4 = 201 mm				
Spacing of bars in faces paral	lel to y axis (c/c)) / (N _y - 1) = 154 r	nm		
Layer 1 (in tension face)			om - φ _v - φ / 2 =	354 mm			
Layer 2			_{sy} = 200 mm				
Layer 3	bout z ovio	$d_{z3} = d_{z2} - s$		$(2)^2 - 1007 - 4^4$			
2nd moment of area of reinft a				/2) ² = 1907 cm ⁴			
Radius of gyration of reinft abo			A _s) = 126 mm				
Effective depth about z axis (5		$u_z = D / Z +$	i _{sz} = 326 mm				
Column slenderness about	y axis						
Radule of avration		i _y = h / √(12	2) = 1.2 cm				
Radius of gyration Slenderness ratio (5.8.3.2(1))		$\lambda_{\rm v} = I_{\rm 0v} / i_{\rm v} =$					

	Project Job no. UCLH, Birkbeck University - MRI 70038590)38590		
WSP	Calcs for				Start page no./	Revision
One Queens Drive		MRI Slab Su	pport Columns	\$	р	3 01
Birmingham B5 4PJ	Calcs by PG	Calcs date 09/01/2018	Checked by NP	Checked date 09/01/2018	Approved by MB	Approved da 09/01/20
Column slenderness about z	axis					
Radius of gyration		iz = b / √(12	2) = 11.5 cm			
Slenderness ratio (5.8.3.2(1))		$\lambda_z = I_{0z} / i_z$:	= 13.0			
Design bending moments						
Frame analysis moments abo	out y axis con	nbined with mom	ents due to ir	nperfections (cl.	5.2 & 6.1(4))	
Ecc. due to geometric imperfec	-		0 = 3.8 mm			
Min end moment about y axis		$M_{01y} = min$	(abs(M _{topy}), ab	s(M _{btmy})) + e _{iy} × N _E	a = 0.2 kNm	
Max end moment about y axis		$M_{02y} = max$	k(abs(M _{topy}), ab	os(M _{btmy})) + e _{iy} × N	_{Ed} = 0.2 kNm	
Slenderness limit for buckling	g about y axi	s (cl. 5.8.3.1)				
Factor A		A = 0.7				
Mechanical reinforcement ratio		$\omega = A_s \times f_{yc}$	$d / (A_c \times f_{cd}) = 0$.289		
Factor B		B = √(1 + 2	2 × ω) = 1.256			
Moment ratio		r _{my} = 1.00	0			
Factor C		C _y = 1.7 - r	r _{my} = 0.700			
Relative normal force		$n = N_{Ed} / (A)$	$A_c \times f_{cd}$ = 0.02	6		
Slenderness limit		$\lambda_{\text{limy}} = 20 \times$	$A \times B \times C_y / \sqrt{2}$	(n) = 75.7		
F					5 0 0 0 4(4)	
Frame analysis moments abo				nperfections (cl.	5.2 & 6.1(4))	
Ecc. due to geometric imperfec		e _{iz} = I _{0z} /40	0 = 3.8 mm			
Ecc. due to geometric imperfec Min end moment about z axis		$e_{iz} = I_{0z} / 40$ Mo1z = min	0 = 3.8 mm (abs(M _{topz}), ab	s(Mbtmz)) + eiz × Ne	_{Ed} = 0.2 kNm	
Ecc. due to geometric imperfec Min end moment about z axis Max end moment about z axis	tions (z axis)	$e_{iz} = l_{0z} /40$ Mo1z = min M _{02z} = max	0 = 3.8 mm (abs(M _{topz}), ab		_{Ed} = 0.2 kNm	
Ecc. due to geometric imperfec Min end moment about z axis	tions (z axis)	$e_{iz} = l_{0z} /40$ Mo1z = min M _{02z} = max	0 = 3.8 mm (abs(M _{topz}), ab	s(Mbtmz)) + eiz × Ne	_{Ed} = 0.2 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a	tions (z axis)	$e_{iz} = l_{0z} /40$ $M_{01z} = min$ $M_{02z} = max$ I. 5.8.3.1) A = 0.7	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), ab	s(Mbtmz)) + eiz × Ne ps(M _{btmz})) + eiz × N	_{Ed} = 0.2 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A	tions (z axis)	$e_{iz} = loz /40$ $M_{01z} = min$ $M_{02z} = max$ I. 5.8.3.1) $A = 0.7$ $\omega = A_s \times f_{yc}$	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), at (abs(M _{topz}), at	s(Mbtmz)) + eiz × Ne ps(M _{btmz})) + eiz × N	_{Ed} = 0.2 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio	tions (z axis)	$e_{iz} = loz /40$ $M_{01z} = min$ $M_{02z} = max$ I. 5.8.3.1) $A = 0.7$ $\omega = A_s \times f_{yc}$	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), ab (abs(M _{topz}), ab (a / (A _c × f _{cd}) = 0 (2 × ω) = 1.256	s(Mbtmz)) + eiz × Ne ps(M _{btmz})) + eiz × N	_{Ed} = 0.2 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B	tions (z axis)	$e_{iz} = loz /40$ $M_{01z} = min$ $M_{02z} = max$ I. 5.8.3.1) $A = 0.7$ $\omega = A_s \times f_{yc}$ $B = \sqrt{1 + 2}$	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), at (abs(M _{topz}), at (b) (A _c × f _{cd}) = 0 (c)	s(Mbtmz)) + eiz × Ne ps(M _{btmz})) + eiz × N	_{Ed} = 0.2 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio	tions (z axis)	$e_{iz} = loz /40$ $M_{01z} = min$ $M_{02z} = max$ I. 5.8.3.1) A = 0.7 $\omega = A_s \times f_{yc}$ $B = \sqrt{(1 + 2)}$ $r_{mz} = 1.000$ $C_z = 1.7 - r$	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), at (abs(M _{topz}), at (b) (A _c × f _{cd}) = 0 (c)	s(M _{btmz})) + e _{iz} × Ne ps(M _{btmz})) + e _{iz} × N 9.289	_{Ed} = 0.2 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C	tions (z axis)	$e_{iz} = l_{0z} / 40$ $M_{01z} = min$ $M_{02z} = max$ 1. 5.8.3.1) A = 0.7 $\omega = A_s \times f_{yc}$ $B = \sqrt{(1 + 2)}$ $r_{mz} = 1.000$ $C_z = 1.7 - r$ $n = N_{Ed} / (A)$	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), at (abs(M _{topz}), at (b) (A _c × f _{cd}) = 0 (c) (A _c × f _{cd}) = 1.256 0 mmz = 0.700	s(Mbtmz)) + eiz × Ne os(Mbtmz)) + eiz × N 0.289 6	_{Ed} = 0.2 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force	tions (z axis)	$e_{iz} = l_{0z} / 40$ $M_{01z} = min$ $M_{02z} = max$ 1. 5.8.3.1) A = 0.7 $\omega = A_s \times f_{yc}$ $B = \sqrt{(1 + 2)}$ $r_{mz} = 1.000$ $C_z = 1.7 - r$ $n = N_{Ed} / (A)$	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), ab (abs(M _{topz}), at (abs(M _{topz}), at (abs(M _{topz}), at (abs(M _{topz}), at (bbs(M _{topz}), at (cbs(M _{topz}),	s(Mbtmz)) + eiz × Ne os(Mbtmz)) + eiz × N 0.289 6	_{Ed} = 0.2 kNm _{Ed} = 0.2 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force	tions (z axis) bout y axis (c	$e_{iz} = l_{0z} / 40$ $M_{01z} = min$ $M_{02z} = max$ 1. 5.8.3.1) A = 0.7 $\omega = A_s \times f_{yc}$ $B = \sqrt{(1 + 2)}$ $r_{mz} = 1.000$ $C_z = 1.7 - r$ $n = N_{Ed} / (A)$	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), ab (abs(M _{topz}), at (abs(M _{topz}), at (abs(M _{topz}), at (abs(M _{topz}), at (bbs(M _{topz}), at (cbs(M _{topz}),	s(Mbtmz)) + eiz × Ne ps(Mbtmz)) + eiz × N p.289 6 (n) = 75.7	_{Ed} = 0.2 kNm _{Ed} = 0.2 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force Slenderness limit	tions (z axis) bout y axis (c	$e_{iz} = loz /40$ $M_{01z} = min$ $M_{02z} = max$ I. 5.8.3.1) A = 0.7 $\omega = A_s \times f_{yc}$ $B = \sqrt{(1 + 2)}$ $r_{mz} = 1.000$ $C_z = 1.7 - r$ $n = N_{Ed} / (A$ $\lambda_{limz} = 20 \times r$	$0 = 3.8 \text{ mm}$ $(abs(M_{topz}), abs(M_{topz}), abs(abs(M_{topz}), a$	s(Mbtmz)) + eiz × Ne ps(Mbtmz)) + eiz × N p.289 6 (n) = 75.7	ed = 0.2 kNm ed = 0.2 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force Slenderness limit Design bending moments (cl.	tions (z axis) bout y axis (c	$e_{iz} = loz /40$ $M_{01z} = min$ $M_{02z} = max$ $l. 5.8.3.1)$ $A = 0.7$ $\omega = A_s \times f_{yc}$ $B = \sqrt{1 + 2}$ $r_{mz} = 1.000$ $C_z = 1.7 - r$ $n = N_{Ed} / (A$ $\lambda_{limz} = 20 \times M$ $M_{Edy} = max$	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), at (abs(M _{topz}), at (abs(M _{topz}), at (abs(M _{topz}), at (bbs(M _{topz}), at (bbs(M _{topz}), at (bbs(M _{topz}), at (c) (bbs(M _{topz}), at (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	s(Mbtmz)) + eiz × Ne (Mbtmz)) + eiz × N 0.289 6 (n) = 75.7 3 <i>λtimz</i> - Second ord	ed = 0.2 kNm Ed = 0.2 kNm der effects m = 1.0 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force Slenderness limit Design bending moments (cl. Design moment about y axis	tions (z axis) bout y axis (c . 6.1(4))	$e_{iz} = loz /40$ $M_{01z} = min$ $M_{02z} = max$ $l. 5.8.3.1)$ $A = 0.7$ $\omega = A_s \times f_{yc}$ $B = \sqrt{1 + 22}$ $r_{mz} = 1.000$ $C_z = 1.7 - r$ $n = N_{Ed} / (A$ $\lambda_{limz} = 20 \times$ $M_{Edy} = max$ $M_{Edz} = max$	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), at (abs(M _{topz}), at (abs(M _{topz}), at (abs(M _{topz}), at (bbs(M _{topz}), at (bbs(M _{topz}), at (bbs(M _{topz}), at (c) (bbs(M _{topz}), at (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	s(Mbtmz)) + $e_{iz} \times Ne$ s(Mbtmz)) + $e_{iz} \times N$ 2.289 6 (n) = 75.7 $i\lambda_{limz}$ - Second ord hax(h/30, 20 mm))	ed = 0.2 kNm Ed = 0.2 kNm der effects m = 1.0 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force Slenderness limit Design bending moments (cl. Design moment about y axis Design moment about z axis	tions (z axis) bout y axis (c 6.1(4)) s with axial lo	$e_{iz} = loz /40$ $M_{01z} = min$ $M_{02z} = max$ $l. 5.8.3.1)$ $A = 0.7$ $\omega = A_s \times f_{yc}$ $B = \sqrt{1 + 22}$ $r_{mz} = 1.000$ $C_z = 1.7 - r$ $n = N_{Ed} / (A$ $\lambda_{limz} = 20 \times$ $M_{Edy} = max$ $M_{Edz} = max$	0 = 3.8 mm (abs(M _{topz}), ab (abs(M _{topz}), at (abs(M _{topz}), at (abs(M _{topz}), at (abs(M _{topz}), at (bbs(M _{topz}), at (bbs(M _{topz}), at (bbs(M _{topz}), at (c) (bbs(M _{topz}), at (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	s(Mbtmz)) + $e_{iz} \times Ne$ s(Mbtmz)) + $e_{iz} \times N$ 2.289 6 f(n) = 75.7 $c\lambda_{limz} - Second order ax(h/30, 20 \text{ mm}))$	ed = 0.2 kNm Ed = 0.2 kNm der effects m = 1.0 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force Slenderness limit Design bending moments (cl. Design moment about y axis Design moment about y axis Moment capacity about y axis Moment of resistance of cond By iteration:-	tions (z axis) bout y axis (c 6.1(4)) s with axial lo	$e_{iz} = loz /40$ $M_{01z} = min$ $M_{02z} = max$ $l. 5.8.3.1)$ $A = 0.7$ $\omega = A_s \times f_{yc}$ $B = \sqrt{1 + 22}$ $r_{mz} = 1.000$ $C_z = 1.7 - r$ $n = N_{Ed} / (A$ $\lambda_{limz} = 20 \times$ $M_{Edy} = max$ $M_{Edz} = max$	$0 = 3.8 \text{ mm}$ $(abs(M_{topz}), abs(M_{topz}), abs(abs(M_{topz}), a$	s(Mbtmz)) + $e_{iz} \times Ne$ s(Mbtmz)) + $e_{iz} \times N$ 2.289 6 f(n) = 75.7 $c\lambda_{limz} - Second order ax(h/30, 20 \text{ mm}))$	ed = 0.2 kNm Ed = 0.2 kNm der effects m = 1.0 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force Slenderness limit Design bending moments (cl. Design moment about y axis Design moment about z axis Moment capacity about y axis	tions (z axis) bout y axis (c 6.1(4)) s with axial lo crete	$e_{iz} = loz /40$ $M_{01z} = min$ $M_{02z} = max$ I. 5.8.3.1) A = 0.7 $\omega = A_s \times f_{yc}$ $B = \sqrt{(1 + 2)}$ $r_{mz} = 1.000$ $C_z = 1.7 - r$ $n = N_{Ed} / (A$ $\lambda_{limz} = 20 \times M_{Edy} = max$ $M_{Edy} = max$ $M_{Edz} = max$ $M_{Edz} = max$	$0 = 3.8 \text{ mm}$ $(abs(M_{topz}), abs(M_{topz}), abs(abs(M_{topz}), abs(M_{topz}), abs(abs(M_{topz}), abs(M_{topz}), abs(abs(M_{topz}), abs(M_{to$	s(Mbtmz)) + $e_{iz} \times Ne$ s(Mbtmz)) + $e_{iz} \times N$ 2.289 6 f(n) = 75.7 $c\lambda_{limz} - Second order ax(h/30, 20 \text{ mm}))$	ed = 0.2 kNm ed = 0.2 kNm der effects m = 1.0 kNm = 1.0 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force Slenderness limit Design bending moments (cl. Design moment about y axis Design moment about z axis Moment capacity about y axis Moment of resistance of cone By iteration:- Position of neutral axis	tions (z axis) bout y axis (c 6.1(4)) s with axial lo crete	$e_{iz} = loz /40$ $Motz = min$ $M_{02z} = max$ $I. 5.8.3.1)$ $A = 0.7$ $\omega = A_s \times f_{yc}$ $B = \sqrt{1 + 2}$ $f_{mz} = 1.000$ $C_z = 1.7 \cdot r$ $n = N_{Ed} / (A$ $\lambda_{limz} = 20 \times M_{Edz} = max$ $M_{Edz} = max$ $M_{Edz} = max$ $M_{Edz} = max$ $M_{Edz} = max$	$0 = 3.8 \text{ mm}$ $(abs(M_{topz}), abs(M_{topz}), abs(abs(M_{topz}), a$	s(Mbtmz)) + eiz × Ne (Mbtmz)) + eiz × Ne 2.289 6 (n) = 75.7 (λ <i>limz</i> - Second ord (ax(h/30, 20 mm)) ax(b/30, 20 mm))	ed = 0.2 kNm ed = 0.2 kNm der effects m = 1.0 kNm = 1.0 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force Slenderness limit Design bending moments (cl. Design moment about y axis Design moment about y axis Moment capacity about y axis Moment of resistance of cond By iteration:- Position of neutral axis Concrete compression force (3	tions (z axis) bout y axis (c . 6.1(4)) <u>s with axial lo</u> crete .1.7(3))	$e_{iz} = loz /40$ $Motz = min$ $M_{02z} = max$ $I. 5.8.3.1)$ $A = 0.7$ $\omega = A_s \times f_{yc}$ $B = \sqrt{1 + 2}$ $f_{mz} = 1.000$ $C_z = 1.7 \cdot r$ $n = N_{Ed} / (A$ $\lambda_{limz} = 20 \times M_{Edz} = max$ $M_{Edz} = max$ $M_{Edz} = max$ $M_{Edz} = max$ $M_{Edz} = max$	$0 = 3.8 \text{ mm}$ $(abs(M_{topz}), abs(M_{topz}), abs(abs(M_{topz}), a$	s(Mbtmz)) + eiz × Ne (Mbtmz)) + eiz × Ne (0.289 6 (n) = 75.7 <i>cλtimz</i> - Second ord (h/30, 20 mm)) ax(b/30, 20 mm)) (h) × b = 284.3 kN	ed = 0.2 kNm ed = 0.2 kNm der effects m = 1.0 kNm = 1.0 kNm	
Ecc. due to geometric imperfect Min end moment about z axis Max end moment about z axis Slenderness limit for buckling a Factor A Mechanical reinforcement ratio Factor B Moment ratio Factor C Relative normal force Slenderness limit Design bending moments (cl. Design moment about y axis Design moment about y axis Design moment about z axis Moment capacity about y axis Moment of resistance of cond By iteration:- Position of neutral axis Concrete compression force (3 Moment of resistance	tions (z axis) bout y axis (c . 6.1(4)) <u>s with axial lo</u> crete .1.7(3))	eiz = loz /40 Mo1z = min Mo2z = max Mo2z = max I. 5.8.3.1) A = 0.7 $\omega = A_s \times f_{yc}$ B = $\sqrt{(1 + 2)}$ rmz = 1.000 Cz = 1.7 - r n = NEd / (A $\lambda_{limz} = 20 \times$ MEdy = max MEdz = max MEdz = max MEdz = max MEdz = max MEdz = max	$0 = 3.8 \text{ mm}$ $(abs(M_{topz}), abs(M_{topz}), abs(abs(M_{topz}), a$	s(Mbtmz)) + $e_{iz} \times Ne$ s(Mbtmz)) + $e_{iz} \times Ne$ 2.289 6 (n) = 75.7 <i>Cultimz</i> - <i>Second ord</i> eax(h/30, 20 mm)) ax(b/30, 20 mm)) (λ , h) × b = 284.3 kN (λ sb × y , h)) / 2] =	ed = 0.2 kNm ed = 0.2 kNm der effects m = 1.0 kNm = 1.0 kNm	

usp	Project	UCLH, Birkbecl	k University - N	MRI	Job no. 700	38590		
WSP	Calcs for				Start page no./I			
One Queens Drive						4 01		
Birmingham B5 4PJ	Calcs by PG	Calcs date 09/01/2018	Checked by NP	Checked date 09/01/2018	Approved by MB	Approved dat 09/01/201		
Force in layer 1		$F_{y1} = N_y \times N_y$	$A_{bar} \times \sigma_{y1} = -26$	62.3 kN				
Moment of resistance of la	yer 1	$M_{Rdy1} = F_{y1}$	\times (h / 2 - d _{y1}) =	= 20.7 kNm				
Strain in layer 2		$\epsilon_{y2} = \epsilon_{cu3} \times$	$(1 - d_{y2} / y) = 0$	0.00021				
Stress in layer 2		$\sigma_{y2} = min(f_y)$	$_{yd}, E_s \times \epsilon_{y2}) = 4$	12.7 N/mm ²				
Force in layer 2		$F_{y2} = N_y \times N_y$	$A_{bar} \times \sigma_{y2} = 25.$. 8 kN				
Moment of resistance of la	yer 2	$M_{Rdy2} = F_{y2}$	× (h / 2 - d _{y2}) :	= 2.0 kNm				
Resultant concrete/steel for	orce	F _y = 47.8 k	N					
		PASS - T	his is within	half of one perce	nt of the app	lied axial lo		
Combined moment of res	sistance							
Moment of resistance about	ut y axis	M _{Rdy} = 52.7	7 kNm					
	PASS - Th	e moment capaci	ity about the	y axis exceeds th	ne design ber	nding mome		
Moment capacity about z	axis with axial lo	oad N _{Ed}						
Moment of resistance of	concrete							
By iteration:-								
Position of neutral axis		z = 79.1 m	m					
Concrete compression for	ce (3.1.7(3))	$F_{zc} = \eta \times f_{cd}$	$\times min(\lambda_{sb} \times z)$, b) × h = 287.0 kM	١			
Moment of resistance		$M_{Rdzc} = F_{zc}$	\times [b / 2 - (min	$(\lambda_{sb} \times z , b)) / 2] =$	48.3 kNm			
Moment of resistance of	reinforcement							
Strain in layer 1		$\epsilon_{z1} = \epsilon_{cu3} \times$	$(1 - d_{z1} / z) = -$	0.01216				
Stress in layer 1		$\sigma_{z1} = max(\cdot$	-1×f _{yd} , $E_s \times \epsilon_{z1}$)) = -434.8 N/mm ²				
Force in layer 1		$F_{z1} = N_z \times N_z$	$A_{bar} \times \sigma_{z1} = -17$	74.8 kN				
Moment of resistance of la	yer 1	$M_{Rdz1} = F_{z1}$	× (b / 2 - d _{z1})	= 26.9 kNm				
Strain in layer 2		$\epsilon_{z2} = \epsilon_{cu3} \times$	$(1 - d_{z2} / z) = -$	0.00535				
Stress in layer 2		$\sigma_{z2} = max(\cdot$	-1×f _{yd} , E _s × ϵ_{z2})) = -434.8 N/mm ²				
Force in layer 2		$F_{z2} = 2 \times A$	bar $\times \sigma_{z2} = -174$	1.8 kN				
Moment of resistance of la	yer 2	$M_{Rdz2} = F_{z2}$	× (b / 2 - d _{z2})	= 0.0 kNm				
Strain in layer 3		$\epsilon_{z3} = \epsilon_{cu3} \times$	$(1 - d_{z3} / z) = 0$	0.00147				
Stress in layer 3		$\sigma_{z3} = \min(f_{23})$	_{yd} , Es × εz3) - η	× f _{cd} = 274.9 N/m	m²			
Force in layer 3			$A_{bar} \times \sigma_{z3} = 110$					
Moment of resistance of la	yer 3	$M_{Rdz3} = F_{z3}$	× (b / 2 - d _{z3}) :	= 17.0 kNm				
Resultant concrete/steel for	rce	F _z = 47.8 k	N					
		PASS - T	his is within	half of one perce	nt of the app	lied axial lo		
Combined moment of res	sistance							
Moment of resistance about	ut z axis	M _{Rdz} = 92.3	3 kNm					
	PASS - Th	e moment capaci	ity about the	z axis exceeds th	ne design ber	nding mome		
Biaxial bending								
Determine if a biaxial ber	nding check is re	quired (5.8.9(3))						
Ratio of column slenderne	ss ratios	ratio _λ = ma	ıx(λ _y , λ _z) / min($(\lambda_y, \lambda_z) = 1.60$				
Eccentricity in direction of	y axis		N _{Ed} = 20.0 mn					
Eccentricity in direction of	z axis	$e_z = M_{Edy} /$	N _{Ed} = 20.0 mn	n				
Equivalent depth		$h_{eq} = i_y \times \sqrt{2}$	(12) = 250 mm	ı				
Equivalent width		$b_{eq} = i_z \times \sqrt{2}$	(12) = 400 mm	ı				
Relative eccentricity in dire	ection of y axis	$e_{rel_y} = e_y /$	b _{eq} = 0.050					
Relative eccentricity in dire	ection of z axis	$e_{rel_z} = e_z /$	$e_{rel_z} = e_z / h_{eq} = 0.080$					

wsp	Project	UCLH, Birkbeck	Job no. 70038590			
WSP One Queens Drive	Calcs for	MRI Slab Sup	Start page no./Revision p 5 01			
Birmingham B5 4PJ	Calcs by PG	Calcs date 09/01/2018	Checked by NP	Checked date 09/01/2018	Approved by MB	Approved date 09/01/2018

Ratio of relative eccentricities

 $\label{eq:ratio} \begin{array}{l} \mbox{ratio}_{e} = \mbox{min}(e_{\mbox{rel}_y}, \, e_{\mbox{rel}_z}) = \mbox{0.625} \\ \hline \mbox{ratio}_{e} > \mbox{0.2 - Biaxial bending check is required} \end{array}$

Biaxial bending (5.8.9(4))

Design axial resistance of section

Ratio of applied to resistance axial loads Exponent a

Biaxial bending utilisation

 $N_{Rd} = (A_c \times f_{cd}) + (A_s \times f_{yd}) = 2337.8 \text{ kN}$ ration = N_{Ed} / N_{Rd} = 0.021 a = 1.00

 $UF = (M_{Edy} / M_{Rdy})^{a} + (M_{Edz} / M_{Rdz})^{a} = 0.029$

PASS - The biaxial bending capacity is adequate

2.3 RC FOUNDATION DESIGN

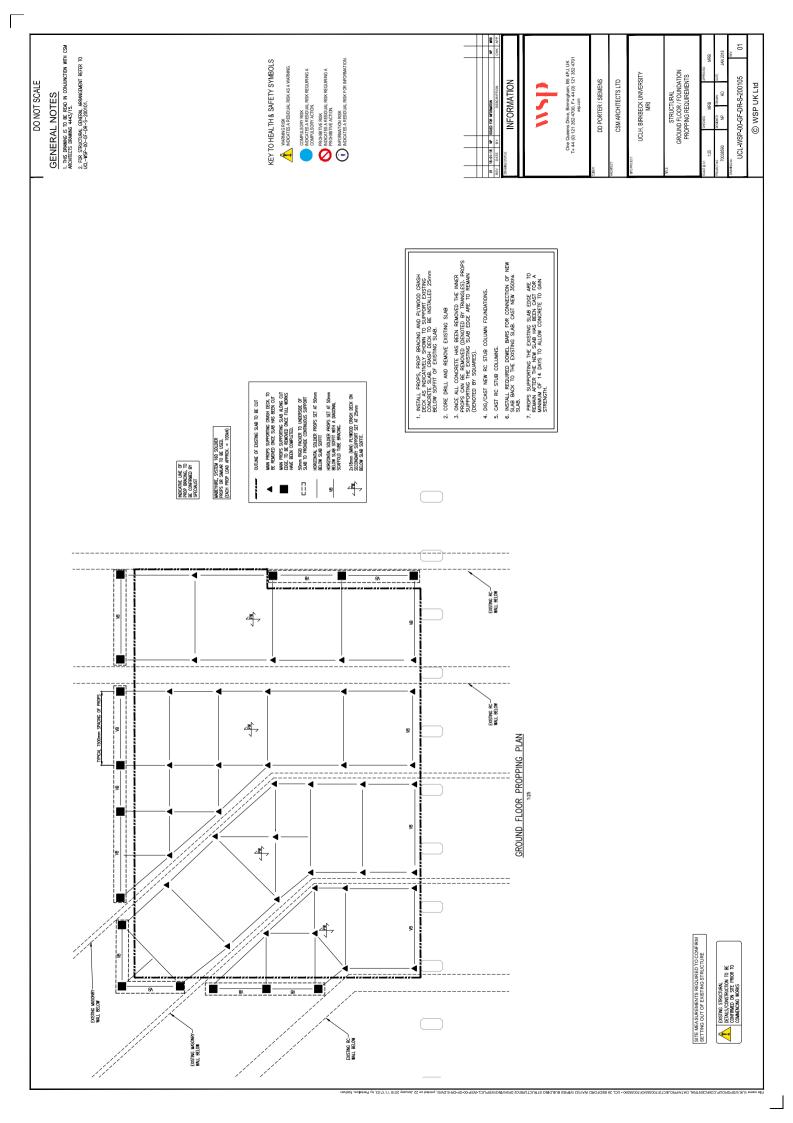
Full design outputs for a typical pad foundation for the stub columns are shown below:

wsp	Project	Job no. 70038590				
WSP One Queens Drive	Calcs for	RC Colur	nn Footing		Start page no./Revision p 1 01	
Birmingham B5 4PJ	Calcs by PG	Calcs date 18/01/2018	Checked date 18/01/2018	Approved by MB	Approved date 18/01/201	
FOUNDATION ANALYSIS (E	1:2004 incorpo	rating Corrigend	um dated Feb	pruary 2009 and	the UK Natio	nal Annex
incorporating Corrigendum	No.1				TEDDS calcula	ation version 3.2.
Pad foundation details Length of foundation Width of foundation Foundation area Depth of foundation Depth of soil over foundation Level of water Density of water Density of concrete		$L_x = 1000 \text{ m}$ $L_y = 1000 \text{ m}$ $A = L_x \times L_y$ h = 600 m $h_{\text{soil}} = 600 \text{ m}$ $h_{\text{water}} = 0 \text{ m}$ $\gamma_{\text{water}} = 9.8 \text{ m}$ $\gamma_{\text{conc}} = 24.5$	nm = 1.000 m ² n nm m kN/m ³			
73.5 kN/m ²		,		73.5 kN/m ²		
73.5 KN/m²	y *			73.5 kN/m ²		
Column no.1 details Length of column Width of column position in x-axis position in y-axis		$l_{x1} = 250 \text{ m}$ $l_{y1} = 400 \text{ m}$ $x_1 = 500 \text{ m}$ $y_1 = 500 \text{ m}$	m n			
Soil properties Density of soil Characteristic cohesion Characteristic effective shear Characteristic friction angle	resistance angle	$\gamma_{soil} = 18.0 \text{ k}$ c'k = 0 kN/n $\phi'_{k} = 30 \text{ deg}$ $\delta_{k} = 20 \text{ deg}$	n²			

wsp	Project	UCLH, Birkbecl	k University - N	Job no. 70038590						
WSP	Calcs for			Start page no./Revision						
One Queens Drive		RC Colu	mn Footing		p 2 01					
Birmingham B5 4PJ	Calcs by PG	Calcs date 18/01/2018	Checked by NP	Checked date 18/01/2018	Approved by MB	Approved of 18/01/2				
Foundation loads										
Self weight			conc = 14.7 kN/							
Soil weight		$F_{soil} = h_{soil}$	< γ _{soil} = 10.8 kN	N/m ²						
Column no.1 loads										
Permanent load in z		F _{Gz1} = 16.5								
Variable load in z		F _{Qz1} = 31.5	6 KN							
Bearing resistance (Section	6.5.2)									
Forces on foundation										
Force in z-axis		$F_{dz} = A \times (I$	F _{swt} + F _{soil}) + F	_{Gz1} + F _{Qz1} = 73.5 k	N					
Moments on foundation										
Moment in x-axis		$M_{dx} = A \times ($	F _{swt} + F _{soil}) × L	$x / 2 + F_{Gz1} \times x_1 + F_{Gz1}$	$F_{Qz1} \times \mathbf{x}_1 = 36$. 8 kNm				
Moment in y-axis		$M_{dy} = A \times ($	F _{swt} + F _{soil}) × L	y / 2 + F _{Gz1} × y ₁ +	$F_{Qz1} \times y_1 = 36$. 8 kNm				
Eccentricity of base reactio	n									
Eccentricity of base reaction i	n x-axis	$e_x = M_{dx} / F$	$e_x = M_{dx} / F_{dz}$ - $L_x / 2 = 0$ mm							
Eccentricity of base reaction i	n y-axis	$e_y = M_{dy} / F$	$e_y = M_{dy} / F_{dz} - L_y / 2 = 0 mm$							
Pad base pressures										
		$q_1 = F_{dz} \times ($	1 - 6 \times e _x / L _x ·	- 6 $ imes$ e _y / L _y) / (L _x $ imes$	L _y) = 73.5 kN	/m²				
		$q_2 = F_{dz} \times ($	1 - 6 \times e _x / L _x ·	+ 6 × e_y / L_y) / (L_x >	< L _y) = 73.5 kM	√m²				
		$q_3 = F_{dz} \times ($	$1 + 6 \times e_x / L_x$	- 6 \times e _y / L _y) / (L _x >	< L _y) = 73.5 kN	√m²				
		$q_4 = F_{dz} \times ($	$1 + 6 \times e_x / L_x$	+ 6 × e_y / L_y) / (L_x	× L _y) = 73.5 k	N/m²				
Minimum base pressure			q1, q2, q3, q4) =							
Maximum base pressure		$q_{max} = max$	(q ₁ , q ₂ , q ₃ , q ₄)	= 73.5 kN/m ²						
Presumed bearing capacity										
Presumed bearing capacity		P _{bearing} = 10 PASS - Pr		ing capacity exce	eeds design	base press				
Partial factors on actions -	Combination1									
Permanent unfavourable action		γG = 1.35								
Permanent favourable action		$\gamma_{Gf} = 1.00$								
Variable unfavourable action		γ Q = 1.50								
Variable favourable action - T	able A.3	$\gamma_{Qf} = 0.00$								
Partial factors for spread fo	undations - Co	mbination1								
Bearing - Table A.5		γ _{R.v} = 1.00								
Sliding - Table A.5		γ _{R.h} = 1.00								
Forces on foundation										
Force in z-axis		$F_{dz} = \gamma_G \times ($	$A \times (F_{swt} + F_{so})$	ii) + F _{Gz1}) + γ _Q × F _G	_{2z1} = 104.0 kN					
Moments on foundation										
Moment in x-axis		$M_{dx} = \gamma_G \times kNm$	$(A \times (F_{swt} + F_{so}))$	bil) × L _x / 2 + F _{Gz1} ×	\mathbf{x}_1) + $\gamma_Q \times F_{Qz}$	$_{1} \times X_{1} = 52.$				
Moment in y-axis		$M_{dy} = \gamma_G \times kNm$	$(A \times (F_{swt} + F_{sc}))$	bil) × Ly / 2 + F _{Gz1} ×	y_1) + $\gamma_Q \times F_{Qz}$	₁ × y₁ = 52.				
Eccentricity of base reaction	n									
Eccentricity of base reaction i		$e_x = M_{dx} / F$	$F_{dz} - L_x / 2 = 0$	mm						
	n y-axis		$F_{dz} - L_y / 2 = 0$							

wsp	Project	UCLH, Birkbeck	< University - N	MRI	Job no. 700	38590
WSP One Queens Drive	Calcs for	RC Colur	mn Footing		Start page no./	Revision 3 01
Birmingham B5 4PJ	Calcs by PG	Calcs date 18/01/2018	Checked by NP	Checked date 18/01/2018	Approved by MB	Approved date 18/01/2018
Effective area of base						
Effective length		L' _x = L _x - 2	× e _x = 1000 m	ım		
Effective width		$L'_{y} = L_{y} - 2$	× e _y = 1000 m	m		
Effective area		$A' = L'_x \times L'$	y = 1.000 m ²			
Pad base pressure						
Design base pressure		$f_{dz} = F_{dz} / A$.' = 104 kN/m ²			
Partial factors on actions	- Combination2					
Permanent unfavourable a	ction - Table A.3	γ _G = 1.00				
Permanent favourable acti	on - Table A.3	γGf = 1.00				
Variable unfavourable action	on - Table A.3	γ _Q = 1.30				
Variable favourable action	- Table A.3	$\gamma_{Qf} = 0.00$				
Partial factors for spread	foundations - Co	mbination2				
Bearing - Table A.5		γ _{R.v} = 1.00				
Sliding - Table A.5		γ _{R.h} = 1.00				
Forces on foundation						
Force in z-axis		$F_{dz} = \gamma_G \times ($	A × (F _{swt} + F _{so}	ii) + F _{Gz1}) + γq × Fq	_{z1} = 83.0 kN	
Moments on foundation						
Moment in x-axis		$M_{dx} = \gamma_G \times 0$ kNm	$(A \times (F_{swt} + F_{so}))$	bil) × Lx / 2 + F _{Gz1} ×	x 1) + γ _Q × F _{Qz}	1 × X1 = 41.5
Moment in y-axis		$M_{dy} = \gamma_G \times 0$ kNm	$(A \times (F_{swt} + F_{sot}))$	bil) × Ly / 2 + F _{Gz1} ×	y 1) + γq × Fqz	₁ × y₁ = 41.5
Eccentricity of base reac	tion					
Eccentricity of base reaction	on in x-axis	$e_x = M_{dx} / F$	$F_{dz} - L_x / 2 = 0$	mm		
Eccentricity of base reaction	on in y-axis	$e_y = M_{dy} / F$	dz - L _y / 2 = 0 i	mm		
Effective area of base						
Effective length		$L'_{x} = L_{x} - 2$	× e _x = 1000 m	im		
Effective width		$L'_{y} = L_{y} - 2$	× e _y = 1000 m	m		
Effective area		$A'=L'_x\timesL'$	' _y = 1.000 m ²			
Pad base pressure						
Design base pressure		$f_{dz} = F_{dz} / A$	' = 83 kN/m ²			
FOUNDATION DESIGN (E	N1992-1-1:2004)					
In accordance with EN19		porating Corrige	ndum dated .	January 2008 and	the UK Nati	onal Annex
incorporating National A				•		
-					TEDDS calcul	ation version 3.2.1
Concrete details (Table 3	.1 - Strength and	deformation cha	racteristics for	or concrete)		
Concrete strength class		C32/40				

Concrete strength class	C32/40
Characteristic compressive cylinder strength	f _{ck} = 32 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 40 N/mm ²
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 N/mm^2 = 40 N/mm^2$
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 3.0 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = \textbf{2.1} \ N/mm^2$
Secant modulus of elasticity of concrete	$E_{cm} = 22 \text{ kN/mm}^2 \times [f_{cm}/10 \text{ N/mm}^2]^{0.3} = 33346 \text{ N/mm}^2$
Partial factor for concrete (Table 2.1N)	γc = 1.50

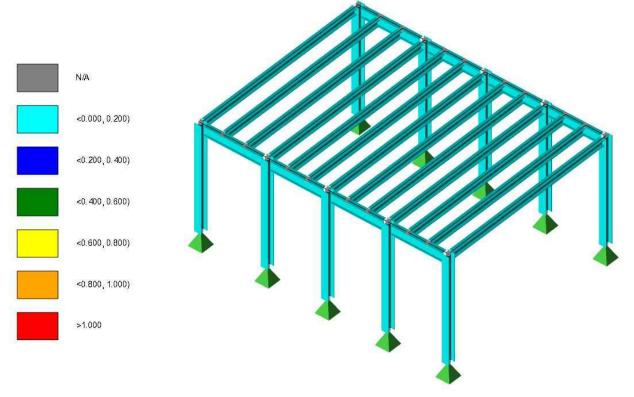

1150	Project	UCLH, Birkbec	Linivorsity N		Job no.	28500			
and the second		UCLE, DIRDec	k University - K		70038590				
WSP	Calcs for				Start page no./F				
One Queens Drive		RC Colu	mn Footing		р	4 01			
Birmingham	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved dat			
B5 4PJ	PG	18/01/2018	NP	18/01/2018	MB	18/01/201			
Compressive strength coef	ficient (cl.3.1.6(1))	α _{cc} = 0.85							
Design compressive concr	ete strength (exp.3.1	5) $f_{cd} = \alpha_{cc} \times f$	_{ck} / γc = 18.1 N	/mm²					
Tens.strength coeff.for plai	n concrete (cl.12.3.1	(1)) α _{ct,pl} = 0.80)						
Des.tens.strength for plain	concrete (exp.12.1)	$f_{ctd,pl} = \alpha_{ct,pl}$	\times f_{ctk,0.05} / γ_{C} =	1.1 N/mm ²					
Maximum aggregate size		h _{agg} = 20 n	nm						
Reinforcement details									
Characteristic yield strengt	h of reinforcement	f _{yk} = 500 N	/mm²						
Modulus of elasticity of reir	forcement	E _s = 21000	E _s = 210000 N/mm ²						
Partial factor for reinforcing	steel (Table 2.1N)	γs = 1.15	γs = 1.15						
Design yield strength of rei	nforcement	f _{yd} = f _{yk} / γs	$f_{yd} = f_{yk} / \gamma s = 435 \text{ N/mm}^2$						
Nominal cover to reinforce	ment	c _{nom} = 30 n	c _{nom} = 30 mm						
Strip and pad footings (S	ection 12.9.3)								
Design base pressure		f _{dz} = 104 k	N/m ²						
Projection from column fac	e	a = 375 mi	n						
Max.projection from colum	n face - (exp.12.13)	a _{max} = 0.85	$5 imes$ h / $\sqrt{[3 imes f_{dz}]}$	/ f _{ctd,pl}] = 970 mm					
	ASS - Projection fr								

Provide 1000x1000x600 mm deep Foundation with A393 Mesh Top & Bottom

2.4 PROPPING REQUIREMENTS

The required propping arrangement for the slab is detailed below:

3 INTERNAL SHIELDING SUPPORT FRAME


3.1 STRUCTURAL STEELWORK

Considering the number of connections and proposed details, adequate stiffness will be provided to the frame without the requirement of additional bracing. Furthermore, with the frame being internal, it is considered that any lateral forces present will be nominal and will not have an adverse effect on the stability of the structure.

3.2 STEEL FRAME DESIGN

The frame has been modelled in Tekla Structural Designer, 3D view of the structure showing the utilisation ratio of structural elements. The frame has been designed assuming a super imposed dead load of 1.5kNm⁻² to account for the weight of the shielding. The member sizes have generally been selected to suit site restrictions and geometry requirements.

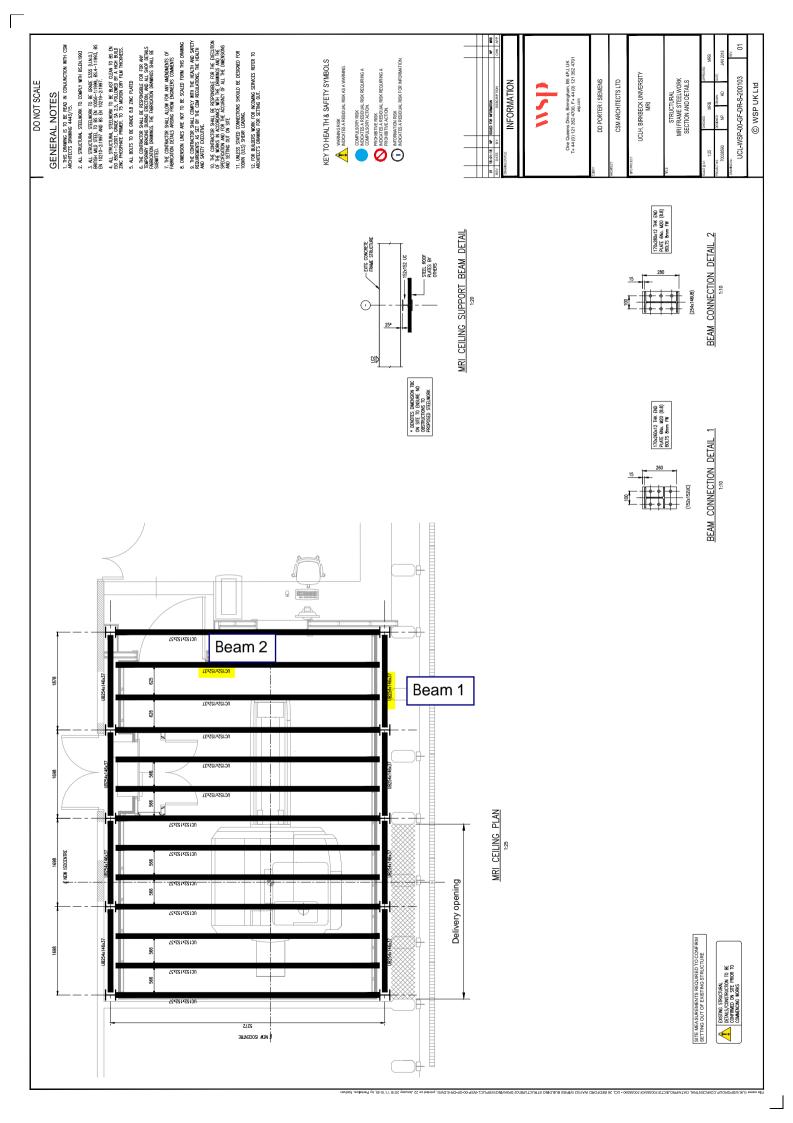
Beam Design Beam Design Summary – Static

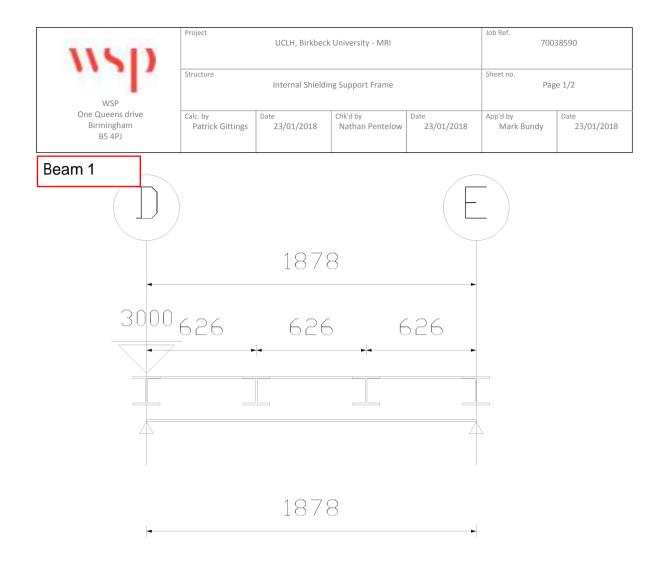
Member Reference	Group Ref.	Span	Section	Grade	Length	No. Connectors	Utilization	Status
					[m]	-		-
SB 1/A/2-1/A/1	SBR1	1	UC 152x152x37	S355	5.272	0	0.089	Pass
SB 1/B/2-1/B/1	SBR1	1	UC 152x152x37	S355	5.272	0	0.177	✓ Pass
SB 1/C/2-1/C/1	SBR1	1	UC 152x152x37	\$355	5.272	0	0.177	✓ Pass
SB 1/D/2-1/D/1	SBR1	1	UC 152x152x37	\$355	5.272	0	0.187	✓ Pass
SB 1/E/2-1/E/1	SBR1	1	UC 152x152x37	\$355	5.272	0	0.098	Pass
SB 1/A/2-1/B/2	SBR2	1	UB 254x146x37	\$355	1.698	0	0.015	V Pass
SB 1/B/2-1/C/2	SBR2	1	UB 254x146x37	\$355	1.698	0	0.015	V Pass
SB 1/C/2-1/D/2	SBR2	1	UB 254x146x37	\$355	1.698	0	0.015	✓ Pass
SB 1/D/2-1/E/2	SBR3	1	UB 254x146x37	\$355	1.878	0	0.018	✓ Pass
SB 1/A/1-1/B/1	SBR2	1	UB 254x146x37	\$355	1.698	0	0.015	✓ Pass

WSP January 2018 Page 23 of 56

Member Reference	Group Ref.	Span	Section	Grade	Length [m]	No. Connectors	Utilization	Status
SB 1/B/1-1/C/1	SBR2	1	UB 254x146x37	S355	1.698	0	0.015	Pass
SB 1/C/1-1/D/1	SBR2	1	UB 254x146x37	S355	1.698	0	0.015	Pass
SB 1/D/1-1/E/1	SBR3	1	UB 254x146x37	S355	1.878	0	0.018	✓ Pass
SB 1/2/#5-1/1/#6	SBR1	1	UC 152x152x37	S355	5.272	0	0.177	Pass
SB 1/2/#7-1/1/#8	SBR1	1	UC 152x152x37	S355	5.272	0	0.177	Pass
SB 1/2/#9-1/1/#10	SBR1	1	UC 152x152x37	S355	5.272	0	0.177	Pass
SB 1/2/#11-1/1/#12	SBR1	1	UC 152x152x37	S355	5.272	0	0.177	Pass
SB 1/2/#13-1/1/#14	SBR1	1	UC 152x152x37	S355	5.272	0	0.177	Pass
SB 1/2/#15-1/1/#16	SBR1	1	UC 152x152x37	S355	5.272	0	0.177	Pass
SB 1/2/#17-1/1/#18	SBR1	1	UC 152x152x37	S355	5.272	0	0.196	🖌 Pass
SB 1/2/#19-1/1/#20	SBR1	1	UC 152x152x37	S355	5.272	0	0.196	Pass

Column Design


Column Design Summary - Static


Member Reference	Group Ref.	Stack	Section	Grade	Length [m]	Utilization	Status
SC A/2	SCR1	1	UC 203x203x46	S355	3.000	0.013	✓ Pass
SC B/2	SCR1	1	UC 203x203x46	\$355	3.000	0.016	Pass
SC C/2	SCR1	1	UC 203x203x46	S355	3.000	0.016	Pass
SC D/2	SCR1	1	UC 203x203x46	S355	3.000	0.017	Pass
SC E/2	SCR1	1	UC 203x203x46	S355	3.000	0.014	Pass
SC E/1	SCR1	1	UC 203x203x46	S355	3.000	0.014	✓ Pass
SC D/1	SCR1	1	UC 203x203x46	S355	3.000	0.017	✓ Pass
SC C/1	SCR1	1	UC 203x203x46	S355	3.000	0.016	Pass
SC B/1	SCR1	1	UC 203x203x46	S355	3.000	0.016	Pass
SC A/1	SCR1	1	UC 203x203x46	S355	3.000	0.013	✓ Pass

3.2.1 STEEL BEAMS

The full design outputs for selected steel beams are shown below:

<u>St. 1 (1): SB 1/D/1-1/E/1</u> <u>UB 254×146×37 S355</u>

Restraints

Source	Distance / Length [m]	• •	LTB Top Factor	LTB Btm / Sub-Beam	LTB Btm Factor	Strut Major / Sub-Beam	Strut Major Factor	Strut Minor / Sub- Beam	Strut Minor Factor
support	0.000	•		•		•		•	
sub-beam	0.626	•	1.000		1.000		1.000		1.000
member	0.626	•						•	
sub-beam	0.626	•	1.000		1.000		1.000		1.000
member	1.252	•						•	
sub-beam	0.626	•	1.000		1.000		1.000		1.000
support	1.878	•		•		•		•	

Static

Summary UB 254x146x37(S355)

Design Condition	#	Design Value	Design Capacity	Units	U.R.	Status
Classification	1	Class 1	-	-	-	Pass
Shear Major	1	-5.1	360.6	kN	0.014	Pass

Tekla Structural Designer, version: 16.1.3.91