Basement Impact Assessment

of the proposed development at

46 Holmdale Road London NW6 1BL

for

Alex Wills & Artemis Doupa

	Project No:	LBH4507
	Report Ref:	LBH4507 Ver. 1.1
	Date:	31 st January 2017
	Report prepared by:	
		Tom Jones MSci (Hons) FGS
	Report supervised by:	
		Darcy Kitson-Boyce
		MEng (Hons) GMICE FGS FRGS
	Report approved by:	
		Seamus R Lefroy-Brooks
		BSc (Hons) MSc CEng MICE CGeol FGS CEnv MIEnvSc FRGS SiLC RoGEP UK Registered Ground Engineering Adviser
LBH WEI	MBLEY ENGINEERING	
12 Little E	Balmer	
Buckingh	am Industrial Park	
Buckingh	am -	
MK18 1T	F	
Tel:	01280 812310	
email: en	quiry@lbhgeo.co.uk	
website:	www.lbhgeo.co.uk	

LBH Wembley (2003) Limited. Unit 12 Little Balmer, Buckingham Industrial Park, Buckingham, MK18 1TF. Registered in England No. 4922494

LBH WEMBLEY ENGINEERING

Contents

Co	ontents		3
Fc	oreword-	Guidance Notes	6
1.	Introdu	7	
	1.1	Background	7
	1.2	Brief	7
	1.3	Planning Policy	7
	1.4	Report Structure	8
	1.5	Documents Consulted	9
2.	The Sit	e	10
	2.1	Site Location	10
	2.2	Topographical Setting	10
	2.3	Site Description	10
	2.4	Proposed Development	12
3.	Desk S	tudy	14
	3.1	Site History	14
	3.2	Geological Information	15
	3.3	Hydrogeological / Hydrological Information	15
4.	Screen	ing & Scoping Assessments	16
	4.1	Screening Assessment	16
	4.1.1	Screening Checklist for Subterranean (Groundwater) Flow	16
	4.1.2	Screening Checklist for Surface Flow and Flooding	17
	4.1.3	Screening Checklist for Stability	17
	4.2	Scoping Assessment	18
	4.2.1	Scoping for Subterranean (Groundwater) Flow	18
	4.2.2	Scoping for Surface Flow and Flooding	19
	4.2.3	Scoping for Stability	19
5.	Stage 3	- Site Investigation	20
	5.1	Ground Conditions	20
	5.1.1	Made Ground	20
	5.1.2	London Clay Formation	21
	5.1.3	Groundwater	21
6.	Discus	sion of Geotechnical Issues	22
			LBH WEMBLEY
			ENGINEERING

	6.1	Basement Proposals	22
	6.2	The proposed basement floor level will be at approximately +7.0m SD.Stability of Neighbouring Structu	ires 22
	6.2.1	No 44 Holmdale Road	22
	6.2.2	No 48 Holmdale Road	22
	6.2.3	Pedestrian Right of Way / Holmdale Road	22
	6.3	Basement Construction	22
	6.3.1	New Foundations	22
	6.3.2	Basement Heave	23
	6.3.3	Waterproofing	23
	6.3.4	Retaining Walls	23
	6.4	London Clay Formation 1900 Zero 20Single Storey Ground Floor Extension	23
	6.5	Foundation Concrete	24
	6.6	Waste Disposal	24
7.	Impact	Assessment	25
	7.1	Potential Hydrogeological Impacts	25
	7.1.1	Proportion of Hard Surfaced Area	25
	7.1.2	Surface Water Discharge	25
	7.2	Potential Hydrological Impacts	25
	7.2.1	Proportion of Hard Surfaced Area	25
	7.2.2	Surface Water Flooding	25
	7.3	Potential Stability Impacts	25
	7.3.1	London Clay / Shrink-Swell	25
	7.3.2	Pedestrian Right of Way	25
	7.3.3	Differential Depth of Foundations	26
	7.4	Ground Movement to Neighbouring Structures	26
	7.4.1	Structures Assessed for Ground Movement	26
	7.4.2	Modelled Ground Conditions	26
	7.4.3	Short Term Movements	28
	7.4.4	Post Construction Movements	29
	7.4.5	Impacts	30
	7.4.6	Mitigation of Ground Movements	30
Aŗ	opendix		31
	EXPLO	RATORY LOGS	31

STRUCTURAL TRIAL PIT RECORDS	31
GEOTECHNICAL TESTING RESULTS	31
CHEMICAL LABORATORY RESULTS	31
HAZWASTE ONLINE CLASSIFICATION REPORT	31
DRAWINGS	31

Foreword-Guidance Notes

GENERAL

This report has been prepared for a specific client and to meet a specific brief. The preparation of this report may have been affected by limitations of scope, resources or time scale required by the client. Should any part of this report be relied on by a third party, that party does so wholly at its own risk and LBH Wembley Engineering disclaims any liability to such parties.

The observations and conclusions described in this report are based solely upon the agreed scope of work. LBH Wembley Engineering has not performed any observations, investigations, studies or testing not specifically set out in the agreed scope of work and cannot accept any liability for the existence of any condition, the discovery of which would require performance of services beyond the agreed scope of work.

VALIDITY

Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances shall be at the client's sole and own risk. The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should therefore not be relied upon in the future and any such reliance on the report in the future shall again be at the client's own and sole risk.

THIRD PARTY INFORMATION

The report may present an opinion based upon information received from third parties. However, no liability can be accepted for any inaccuracies or omissions in that information.

1. Introduction

1.1 Background

It is proposed to extend and deepen the existing partial basement present at this three storey terraced Victorian property to provide further habitable space.

It is also proposed to construct a single storey infill extension to the rear of the building.

1.2 Brief

LBH WEMBLEY have been appointed by Alex Wills and Artemis Doupa to complete a Basement Impact Assessment (BIA) for submission to London Borough of Camden in order to satisfy the specific requirements of the 2017 Camden Planning Policy and Supplementary Planning Guidance CPG4 on Basements and Lightwells, and associated Camden geological, hydrogeological and hydrological study 2010 (referred to as the 'Arup' report).

1.3 Planning Policy

The 2017 Camden Local Plan Policy A5 Basements reads as follows:

"The Council will only permit basement development where it is demonstrated to its satisfaction that the proposal would not cause harm to:

- a) neighbouring properties;
- b) the structural, ground, or water conditions of the area;
- c) the character and amenity of the area;
- d) the architectural character of the building; and
- e) the significance of heritage assets.

In determining proposals for basements and other underground development, the Council will require an assessment of the scheme's impact on drainage, flooding, groundwater conditions and structural stability in the form of a Basement Impact Assessment and where appropriate, a Basement Construction Plan.

The siting, location, scale and design of basements must have minimal impact on, and be subordinate to, the host building and property. Basement development should:

f) not comprise of more than one storey;

g) not be built under an existing basement;

h) not exceed 50% of each garden within the property;

i) be less than 1.5 times the footprint of the host building in area;

j) extend into the garden no further than 50% of the depth of the host building measured from the principal rear elevation;

k) not extend into or underneath the garden further than 50% of the depth of the garden;

I) be set back from neighbouring property boundaries where it extends beyond the footprint of the host building; and

m) avoid the loss of garden space or trees of townscape or amenity value.

Exceptions to f. to k. above may be made on large comprehensively planned sites.

The Council will require applicants to demonstrate that proposals for basements:

n. do not harm neighbouring properties, including requiring the provision of a Basement Impact Assessment which shows that the scheme poses a risk of damage to neighbouring properties no higher than Burland Scale 1 'very slight';

o. avoid adversely affecting drainage and run-off or causing other damage to the water environment;

p. avoid cumulative impacts;

q. do not harm the amenity of neighbours;

r. provide satisfactory landscaping, including adequate soil depth;

s. do not harm the appearance or setting of the property or the established character of the surrounding area;

t. protect important archaeological remains; and

u. do not prejudice the ability of the garden to support trees where they are part of the character of the area.

The Council will not permit basement schemes which include habitable rooms and other sensitive uses in areas prone to flooding.

We will generally require a Construction Management Plan for basement developments.

Given the complex nature of basement development, the Council encourages developers to offer security for expenses for basement development to adjoining neighbours."

The following policies in the Local Plan are also relevant to basement development and will be taken into account when assessing basement schemes:

- "Policy A2 Open space";
- "Policy A3 Biodiversity";
- "Policy D1 Design";
- "Policy D2 Heritage"; and
- "Policy CC3 Water and flooding".

In addition to the Local Plan Policy Camden publishes Camden Planning Guidance on Basements and Lightwells. These CPG documents do not carry the same weight as the main Camden Development Plan documents (including the above Policy A5) but they are important supporting documents.

It is noted that the current CPG4 Planning Guidance on Basements and Lightwells (2015) has not yet been updated to reflect the Local Plan and refers primarily to the now withdrawn Planning Policy DP27 on Basements and Lightwells.

1.4 Report Structure

The report commences with a desk study and characterisation of the site, before progressing to BIA screening and scoping assessments, whereby consideration is given to identifying the potential hydrogeological, hydrological and stability impacts to be associated with the proposed development. Following this the findings of an intrusive ground investigation are reported and a ground model is developed, followed by a discussion of the geotechnical issues.

Finally, an Impact Assessment is presented, including an assessment of the ground movements associated with the proposed works, along with consideration of the potential damage to the host building and neighbouring structures.

1.5 Documents Consulted

The following documents have been consulted during the preparation of this document:

- 1. Camden Local Plan Adoption Version, 2017
- 2. Camden Planning Guidance 4 (CPG 4), Basements and Lightwells, 2015
- 3. Camden Development Policies DP27 Basements and Lightwells, 2010
- London Borough of Camden Geological, Hydrogeological and Hydrological Study (CHGGS), by Ove Arup & Partners Limited, dated 18th November 2010, Issue 0
- 5. Structural Trial Pit Records by Richard Tant Associates, Job No. 4435, dated 5th January 2018

2. The Site

2.1 Site Location

The site is situated on the western side of Holmdale Road, approximately 60m south of the junction with Mill Lane.

The site may be located approximately by postcode NW6 1BL or by National Grid Reference 525210, 185180.

2017 Map

2.2 Topographical Setting

The site lies on the lower southwestern slopes of Hampstead Heath on land that that falls gently to the south.

Street level at the front of the site appears to be situated at approximately +58m OD.

Patio in the front garden area

2.3 Site Description

The site is currently occupied by a Victorian, three storey terraced house with a partial basement beneath the front of the dwelling. A topographical survey undertaken by CSL Surveys (Ref: 22116RB F0, dated October 2016) has quoted figures in Site Datum (SD), with a reference datum of 10.00m and indicates that the existing ground floor level is raised by approximately 0.5m with respect to Holmdale Road. The existing basement is set at 8.03m SD; approximately 2m below the existing ground floor level.

Mature plum tree in rear garden

Plan showing existing layout

At the front of the property there is a narrow lightwell beyond which a raised planted area reaches to the rear of the pavement. The ground beneath this area is indicated to include a coal storage bunker and may include further cellars. However, for the purposes of drainage assessment it is assumed that the slate chipped patio area is permeable.

The ground floor of the property is at a split level, such that the front of the house is set at approximately +10.0m SD, whilst the rear kitchen area is set at a lower level of approximately +9.1m SD. The rear garden steps down again to around +8.3m SD.

The rear garden comprises a paved area and a lawn; a mature plum tree is present in the northwest corner of the garden. A small decking is present at ground level (+10.0m OD) at the rear of the lounge with steps down to the rear garden patio.

The site is adjoined to the north and south by terraced properties at No 48 and No 44 Holmdale Road.

2.4 Proposed Development

It is proposed to deepen the existing basement by approximately 1.1m and to extend this laterally beneath more of the existing house footprint, as well as extending and deepening the front lightwell.

A single storey infill extension is also proposed to the rear of the property.

Alterations are proposed to the internal load bearing walls at the rear of the building, adjacent to the upper ground floor level patio and the ground floor façade at the rear of the kitchen, which will involve the demolition of the existing kitchen store room.

Above: Cross section showing the proposed levels Below: plan showing the proposed layout

LBH WEMBLEY ENGINEERING

3D illustration showing the proposed development of 46 Holmdale Road

3. Desk Study

3.1 Site History

Extract from 1871-1879 maps

Many of the dwellings on Holmdale Road suffered blast damage from wartime bombing during World War II; Nos 33-39 Holmdale Road were reported to have suffered total destruction and as a result a four storey apartment block has since been constructed on the plot in the mid-20th Century.

Although the nearby Mill Lane and the Midland Railway, located approximately 400m south of the site, had been established previously, the site remained open fields until the development of Holmdale Road during the late 19th Century. A pond was recorded around 50m northeast of the site prior to development.

Residential development had spread along Holmdale Road, as well as the surrounding area, by the turn of the century and remained relatively unchanged through to present day.

Extract from 1896 map

3.2 Geological Information

British Geological Survey (BGS) records indicate that the site is directly underlain by the London Clay Formation.

3.3 Hydrogeological / Hydrological Information

A tributary of the River Westbourne is shown to flow in a south / southwest direction, approximately 220m east of the site.

The London Clay Formation may be considered virtually impermeable; hence no significant groundwater flow is expected to occur beneath the site.

The EA maps indicate that parts of Holmdale Road are at a risk from surface water flooding; however the site itself is designated as very low risk. Holmdale Road is, however, reported to have flooded in both 1975 and 2002.

4. Screening & Scoping Assessments

The Screening & Scoping Assessments have been undertaken with reference to Appendices E and F of the CGHSS, which is a process for determining whether or not a BIA is usually required.

4.1 Screening Assessment

The Screening Assessment consists of a series of checklists that identifies any matters of concern relating to the following:

- Subterranean (groundwater) flow
- Surface flow and flooding
- Slope stability

4.1.1 Screening Checklist for Subterranean (Groundwater) Flow

Question	Response	Justification			
Is the site is located directly above an aquifer?	No	The Environment Agency (EA) maps indicate that the site is not directly underlain by an aquifer.			
Will the proposed basement extend beneath the water table surface?	Νο	No groundwater is present beneath the site.			
Is the site within 100m of a watercourse, well (used/disused) or potential spring line?	Νο	The nearest watercourse is a tributary of the River Westbourne, roughly 220m to the east of the site.			
Is the site within the catchment of the pond chains on Hampstead Heath?	Νο	The site is not within catchment of the Hampstead Heath Ponds.			
Will the proposed development result in a change in the area of hard-surfaced/paved areas?	Yes	The front slate-chipped patio will be removed to facilitate the construction of the front lightwell.			
Will more surface water (e.g. rainfall and run-off) than at present will be discharged to the ground (e.g. via soakaways and/or SUDS)?	No	There is not expected to be any change to affect the current discharge.			
Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to or lower than the mean water level in any local pond?	No	No pond is present near the site.			

4.1.2 Screening Checklist for Surface Flow and Flooding

Question	Response	Justification
Is the site within the catchment area of the pond chains on Hampstead Heath?	No	The site is not within catchment of the Hampstead Heath Ponds.
As part of the site drainage, will surface water flows (e.g. rainfall and run-off) be materially changed from the existing route?	No	Surface water flows will be disposed of by the existing means.
Will the proposed basement development result in a change in the proportion of hard- surfaced/paved areas?	Yes	The front slate-chipped patio will be removed to facilitate the construction of the front lightwell.
Will the proposed basement result in changes to the profile of the inflows (instantaneous and long-term) of surface-water being received by adjacent properties or downstream watercourses?	No	Surface water flows will be disposed of by the existing means.
Will the proposed basement result in changes to the quality of surface water being received by adjacent properties or downstream watercourses?	No	
Is the site in an area known to be at risk from surface water flooding, or is it at risk from flooding for example because the proposed basement is below the static water level of a nearby surface water feature?	Yes	Environment Agency (EA) maps indicate that the site is at a very low risk of surface water flooding. However, Holmdale Road is reported to have flooded in 1975 and 2002.

4.1.3 Screening Checklist for Stability

Question	Response	Justification
Does the existing site include slopes, natural or manmade, greater than 7 degrees?	No	There are no slopes greater than 7 degrees within the site.
Does the proposed re-profiling of landscaping at the site change slopes at the property boundary to more than 7 degrees?	No	No re-profiling is planned at the site.
Does the development neighbour land, including railway cuttings and the like, with a slope greater than 7 degrees?	No	
Is the site within a wider hillside setting in which the general slope is greater than 7 degrees?	No	The general slope of the wider hillside is less than 7 degrees.

Is London Clay the shallowest strata at the site?	Yes	The site is directly underlain by the London Clay.
Will trees be felled as part of the proposed development and/or are works proposed within tree protection zones where trees are to be retained?	No	The proposed basement is not within the protection zone of a mature plum tree to be retained in the rear garden.
Is there a history of seasonal shrink-swell subsidence in the local area, and/or evidence of such effects at the site?	No	No evidence of seasonal shrink-swell subsidence has been recorded in the area.
Is the site within 100m of a watercourse of a potential spring line?	Νο	The nearest watercourse is a tributary of the River Westbourne, approximately 220m east of the site.
Is the site within an area of previously worked ground?	No	The site is not underlain by worked ground, as shown on Fig. 4 of the CGHHS.
Is the site within an aquifer?	No	The Environment Agency (EA) maps indicate that the site is not underlain by an aquifer.
Will the proposed basement extend beneath the water table such that dewatering may be required during construction?	No	No groundwater is present beneath the site.
Is the site within 50m of the Hampstead Heath ponds?	No	The site is not within catchment of the Hampstead Heath Ponds.
Is the site within 5m of a highway or pedestrian right of way?	Yes	The proposed lightwell is situated around 1m from the pedestrian right of way.
Will the proposed basement significantly increase the differential depth of foundations relative to the neighbouring properties?	Yes	It is envisaged the proposed excavations will extend up to 1m below the existing basements at 44 and 48 Holmdale Road.
Is the site over (or within the exclusion zone of) tunnels, e.g. railway lines?	No	The site is not within any exclusion zones or over tunnels.

4.2 Scoping Assessment

Where the checklist is answered with a "yes" or "unknown" to any of the questions posed in the flowcharts, these matters are carried forward to the scoping stage of the BIA process.

The scoping produces a statement which defines further the matters of concern identified in the screening stage. This defining should be in terms of ground processes, in order that a site specific BIA can be designed and executed (Section 6.3 of the CGHHS).

4.2.1 Scoping for Subterranean (Groundwater) Flow

• The proposed development will result in a change in the area of hard-surfaced/paved areas

The guidance advises that a change in the proportion of hard surfaced or paced areas of a property will affect the way in which rainfall and surface water are transmitted away from a property.

4.2.2 Scoping for Surface Flow and Flooding

• The proposed basement development will result in a change in the proportion of hardsurfaced/paved areas

The guidance advises that a change in the proportion of hard surfaced or paved areas of a property will affect the way in which rainfall and surface water are transmitted away from a property.

• The site is in an area known to be at risk from surface water flooding, or at risk from flooding for example because the proposed basement is below the static water level of nearby surface water feature

The guidance advises that a Flood Risk Assessment may be required.

4.2.3 Scoping for Stability

• London Clay is the shallowest strata at the site

The guidance advises that of the at-surface strata present in the London Borough of Camden, the London Clay is the most prone to seasonal shrink-swell (subsidence and heave).

The site is within 5m of a highway or pedestrian right of way

The guidance advises that excavation for a basement may result in damage to the road, pathway or any underground services buried in trenches beneath the road or pathway.

The proposed basement may significantly increase the differential depth of foundations relative to the neighbouring properties

The guidance advises that excavation for a basement may result in structural damage to neighbouring properties if there is a significant differential depth between adjacent foundations.

5. Stage 3 – Site Investigation

An investigation comprising two small diameter percussive boreholes was carried out in December 2017, in order to assess the ground conditions and recover samples for geotechnical and chemical laboratory testing. In addition, three trial pits were constructed to expose the configuration of the existing foundations.

The site plan above indicates the approximate position of the exploratory boreholes and trial pits, while the associated records and laboratory test results are appended. The Site Datum (SD) levels shown on these records have been interpolated from a topographical survey provided.

5.1 Ground Conditions

The investigation indicates that, beneath a limited thickness of made ground, the site is directly underlain by the London Clay Formation.

5.1.1 Made Ground

The made ground beneath the rear garden extends to approximately 0.7m depth and appears to comprise topsoil overlying a pale brown silty sandy clay fill with occasional brick and stones.

Concrete over 350mm sand and gravel fill is present in the front lightwell.

5.1.2 London Clay Formation

The London Clay generally comprises firm, becoming firm to stiff, orange-brown mottled grey silty clay with scattered selenite crystals.

The results of the plasticity index testing confirm that these soils are of high plasticity.

5.1.3 Groundwater

No groundwater was encountered during the investigation and no shallow groundwater table is considered to be present at this site.

6. Discussion of Geotechnical Issues

6.1 Basement Proposals

It is proposed to deepen (by approximately 1.1m) and laterally extend the existing basement in order to create habitable basement space beneath the front half of the dwelling, as well as extending and deepening the front lightwell.

6.2 The proposed basement floor level will be at approximately +7.0m SD.Stability of Neighbouring Structures

6.2.1 No 44 Holmdale Road

No 44 Holmdale Road is understood to have a partial basement, set at around +8.0m SD, mirroring that at No 46.

It is therefore envisaged that the party wall to No 44 Holmdale Road will generally need underpinning by up to 1m, albeit a section to the rear will need underpinning by approximately 3m.

6.2.2 No 48 Holmdale Road

No 48 Holmdale Road is understood to have constructed a basement extension around the turn of the century and and trial pit records indicate that the party wall to No 48 Holmdale Road have been underpinned by 650mm.

It is therefore envisaged that the party wall to No 48 Holmdale Road will generally need deepening by up to 0.5m.

6.2.3 Pedestrian Right of Way / Holmdale Road

It is proposed to laterally extend the front lightwell to around 1m from the pavement along Holmdale Road; hence consideration could be given to the use of some form of temporary sheeting and propping.

6.3 Basement Construction

It is proposed to construct the perimeter wall to the new basement extensions by conventional underpinning.

6.3.1 New Foundations

The basement excavation will by-pass the made ground and extend down into the London Clay Formation.

The structural loads applied by the basement extension will be accommodated by the perimeter walls. In the absence of any expectation of substantial groundwater inflows into the excavation, conventional underpinning using the 'hit and miss' excavation method may be adopted.

Outside the zone of influence of any trees, the new underpinning should be placed in suitably firm London Clay expected at the depth of the proposed basement, and may be designed to apply an assessed net allowable bearing pressure of 120kN/m².

The 'hit and miss' method may also be used to construct the front lightwell, however, if a greater degree of temporary stability is required then consideration could be given to the use of some form of temporary sheeting and propping.

6.3.2 Basement Heave

Following excavation, it is envisaged that there will be a mismatch between the weight of the soil that is removed and the weight of the new structure that is to replace this; hence post-construction heave movements may be expected.

Theoretically, long term heave movements of less than 10mm will occur beneath the centre of the basement excavation, reducing to around 5mm outside the new basement.

It is suggested that the basement should be designed as a reinforced rigid box structure to respond uniformly to any residual net unloading. Consideration may also be given to thickening the basement slab in an effort to balance the weight of the soil that is to be removed and the weight of the new structure.

6.3.3 Waterproofing

Groundwater was not encountered within the envisaged depth of the basement excavation. Nevertheless, there is potential for water to collect around the basement structure in the long term unless perimeter and under floor drainage is assured. Hence, it is recommended that the basement should be fully waterproofed and designed to withstand hydrostatic pressures in accordance with Guidance provided in BS8102:2009, Code of Practice for the Protection of Below-Ground Structures against Water from the Ground. An assumed groundwater level at 1m depth below external ground level would be prudent for the purposes of assessing hydrostatic pressures in order to allow for the possibility of surface water flooding due to a water main burst or similar.

6.3.4 Retaining Walls

London Clay Formation

20Single Storey Ground Floor Extension

6.4

The following parameters may be considered in the design of the retaining walls:

Stratum	Bulk Density	Effective Cohesion	Effective Friction Angle	
	(kg/m³)	(c' - kN/m ²)	(¢'- degrees)	
Made Ground	1800	Zero	25	

It is proposed to construct a ground floor extension adjacent to the existing kitchen, on the rear garden patio at +57.6m OD.

1900

Zero

Outside the influence of trees, new foundations placed in firm London Clay Formation may be designed to apply an assessed net allowable bearing pressure of 80kN/m².

The foundations to the rear of this extension will, however, be constructed within the zone of influence of the existing mature Wild Plum tree, to be retained, in the rear garden; hence the NHBC guidance for building near trees in high shrinkable soils should be followed.

Plum trees are identified by the NHBC guidance to be of moderate water demand and given the approximate distance from the tree to the proposed ground floor extension, it is suggested that foundations should be taken to approximately 2m depth together with suspended flooring and appropriate use of compressible material.

A construction joint should be provided between the main building and the extension.

6.5 Foundation Concrete

The results of chemical analyses carried out on selected samples of the soils encountered indicate soluble sulphate concentrations falling within Class DS-3 as defined by BRE Special Digest 1 (2005). The recommendations of that guidance for Class DS-3 sulphate conditions should therefore be followed, assuming an Aggressive Chemical Environment for Concrete (ACEC) site classification of AC-2s for static groundwater.

6.6 Waste Disposal

All material to be disposed of off-site should be properly recorded, including the retention of any waste tickets, details of excavated soil export destination and the waste classification. The results have suggested that the made ground may be classified as Non-Hazardous for waste purposes.

The London Clay may also be classed as Non-Hazardous for waste disposal purposes and WAC analysis confirms that provided that the clay can be adequately separated from any made ground, it may be possible to dispose of the natural soils to a tip licenced to accept Inert material.

7. Impact Assessment

The screening and scoping stages have identified potential effects of the development on those attributes or features of the geological, hydrogeological and hydrological environment. This stage is concerned with evaluating the direct and indirect implications of each of these potential impacts.

7.1 Potential Hydrogeological Impacts

7.1.1 Proportion of Hard Surfaced Area

The proposals include the removal of the slate-chipped patio in the front garden to facilitate the construction of the front lightwell. This area, approximately $6m^2$, is expected to be underlain by made ground of unknown permeability to the depth of the existing lightwell and is not expected to drastically affect the way water is transmitted from the property.

7.1.2 Surface Water Discharge

7.2 Potential Hydrological Impacts

7.2.1 Proportion of Hard Surfaced Area

As discussed in **Section 7.1.1** it is not expected that the way water is transmitted from the property will be drastically affected.

7.2.2 Surface Water Flooding

Holmdale Road is within Local Flood Risk Zone (LFRZ) 3_010 as defined in Figure 3.1 of the Camden Surface Water Management Plan (2011) and has also experienced flooding in 1975 and 2002. In accordance with the Camden Local Plan, a Flood Risk Assessment has been prepared – by LBH WEMBLEY (Ref: LBH4507 FRA Ver. 1.0) – in order to demonstrate that the proposed scheme will result in a minimal impact on surface water drainage conditions.

7.3 Potential Stability Impacts

7.3.1 London Clay / Shrink-Swell

The potential impacts associated with the basement construction are expected to obviate concerns regarding seasonal movements within the London Clay Formation

The construction of the foundations for the single storey ground floor extension will also negate any concerns regarding seasonal movements within the London Clay Formation.

7.3.2 Pedestrian Right of Way

The proposed lightwell lies around 1m from the pedestrian right of way and the theoretical 45° zone of support to the pedestrian right of way is expected to be comprised by the construction.

In order to preserve the integrity of the pedestrian right of way and highway, temporary sheeting should to be used to construct the side of the lightwell adjacent to the pedestrian right of way.

7.3.3 Differential Depth of Foundations

The party walls to No 44 and No 48 Holmdale Road are to be underpinned.

7.4 Ground Movement to Neighbouring Structures

The key factor to consider when undertaking a ground movement assessment for the development is that the design of the new basement will need to preserve the stability of the adjacent building, both during excavation and construction and in the permanent situation.

7.4.1 Structures Assessed for Ground Movement

7.4.1.1 44 Holmdale Road

The adjoining property at No 44 Holmdale Road is a three storey terraced dwelling with a partial basement and front lightwell present south of the site which was constructed around the same time as 46 Holmdale Road.

The partial basement appears to be set at an approximate elevation similar to the existing basement at 46 Holmdale Road. Hence underpinning is envisaged to be required for the party wall with this property and may be required to a depth of up to 3m, where the proposed basement extension does not neighbour the partial basement at No 44.

7.4.1.2 48 Holmdale Road

The adjoining property at No 48 Holmdale Road is a three storey terraced dwelling with a basement and front lightwell to the north of the site and was constructed around the same time as 44 Holmdale Road.

It is understood that a basement extension was constructed around the turn of the century, and that as part of the extension works the party wall with 46 Holmdale Road has been underpinned to a depth of 0.65m below the existing basement. Hence it is envisaged the existing foundations may require deepening by approximately 0.35m.

7.4.2 Modelled Ground Conditions

Excavation of the proposed basement will result in unloading of the clay leading to theoretical heave movement of the underlying soil in both the short and long term, depending upon the reapplication of loading.

Therefore, an analysis of the vertical movements has been carried out for a modelled situation, based on a soil model devised from the results of the ground investigation, together with published information on the London Clay Formation

The relation between the undrained shear strength (C_u) and depth (z) from the top of the London Clay Formation is therefore assumed to be $C_u = 50 + 8z$.

.The soil layers of this model are detailed in the table below.

Analysis Layer:	Upper Boundary	Thickness (m)	Average Cu	Soil Stiffness (kN/m²)		
	(+m OD)	()	(kN/m²)	Eu	E'	
London Clay Formation	55.00	1	58	26100	14500	
London Clay Formation	54.00	2	66	29700	16500	
London Clay Formation	52.00	2	82	36900	20500	
London Clay Formation	50.00	5	98	44100	24500	
London Clay Formation	45.00	5	138	62100	34500	
London Clay Formation	40.00	5	178	80100	44500	
London Clay Formation	35.00	5	218	98100	54500	
London Clay Formation	30.00	5	258	116100	64500	
Assumed Rigid Boundary	25.00					

The Undrained Modulus of Elasticity (Eu) has been based upon an empirical relationship of Eu = $450 \times Cu$, and the Drained Modulus of Elasticity (E') has been based upon an empirical relationship of $250 \times Cu$.

Poisson's Ratios of 0.5 and 0.2 have been used for short term (undrained) and long term (drained) conditions respectively.

Based on the above parameters and loading / unloading and ignoring any benefit gained from the loading of previous buildings on site, the potential vertical displacements and the post construction movements have been analysed.

The analysis uses classic modified Boussinesq elastic theory, assuming a fully flexible foundation applying a uniform loading/unloading to a semi-infinite elastic half-space, using the above parameters for stratified homogeneity and with the introduction of an assumed rigid boundary at approximately 30m depth (+25.00m OD).

The programme calculates the theoretical Boussinesq elastic stress increase/decrease due to the applied net loadings / unloadings (over the given loaded / unloaded areas) at the mid-level of each stratum.

Short-term and long-term displacements are then calculated at each calculation point for each stratum, using the given values of Stiffness Moduli and Poisson's Ratio of the whole area of the site on a 0.5m calculation grid.

7.4.3 Short Term Movements

There are two components of short term movements that might potentially interact to affect the neighbouring structures. These are settlements associated with theoretical elastic heave movements from excavation of the basement and the underpinning process.

7.4.3.1 Underpinning

It is not possible to rigorously model the party wall settlements arising from conventional underpinning. However, experience indicates that the potential movements are very much dependent on workmanship.

It is suggested that given dry conditions and good workmanship, the amount of vertical movement of the walls can be expected to be approximately 5mm per stage of underpinning.

A single stage of underpinning is expected to take place at either of the two party walls; hence, 5mm of vertical settlement may arguably be expected at these walls.

The subsequent ground horizontal movements that may occur due to yielding of the underpinned wall during the basement excavation may also be estimated. As a first approximation, the magnitude of the horizontal movement is assumed to be equal to the vertical movement at the underpinned wall; hence the horizontal movement expected at the party walls is also predicted to be 5mm.

7.4.3.2 Excavation

It is envisaged the basement excavation will generally extend to approximately 1m beneath the existing cellar area and up to approximately 3m where the basement area will be extended.

As a result, the potential effect of the basement excavation has been considered by applying a net unloading of up to -20kN/m³ due to soil loading to be removed within the existing basement and up to -60 kN/m³ where the basement is proposed to be extended.

This is illustrated on the plan as follows.

ENGINEERING

The potential effect of this soil excavation may lead to up to approximately 7mm of heave beneath the proposed deepened basement area reducing to roughly 4mm beneath both of the party walls with Nos. 48 and 44 Holmdale Road.

Plan showing theoretical approximate short term heave (mm) due to excavation

7.4.4 Post Construction Movements

In the areas where the basement is proposed to be extended or deepened there will be a mismatch between the weight of soil that is to be removed and the weight of the new structure that is to replace it. In this situation a component of long term heave that could proceed for decades is inevitable.

The results of heave analysis, as presented on the plan below, suggest that the scale of this long term heave ground movement will amount up to approximately 10mm in the area of deepest excavation.

Plan showing theoretical approximate post construction heave (mm) due to excavation

However, in practice, the construction of the ground floor extension and the new basement structure will result in an increase in loading of the soil in those areas which may serve to somewhat counteract the predicted heave movement. The structural loads are not modelled in the prediction in order to consider the worst case scenario

7.4.5 Impacts

7.4.5.1 Impact on 44 Holmdale Road

The vertical settlement due to underpinning and heave due to excavation described in the previous section are expected to potentially counteract each other to result in expected negligible net vertical movement affecting this party wall. Slight heave movement is predicted at the party wall where no underpinning is envisaged but these are not expected to be significant (<5mm).

Hence the potential damage to the building has thus been assessed as Category 0 (negligible) to Category 1 (very slight).

7.4.5.2 Impact on 48 Holmdale Road

Similarly, due to the envisaged deepening of the wall and the excavation heave it may be expected negligible net vertical movements are to affect the party wall with 48 Holmdale Road.

Heave movement at the rear party wall and in general the rear section of this building, predicted to be up to 5mm is also expected to be counteracted by the settlement due to the weight of the proposed ground floor extension.

Hence potential Category 0 (negligible) to Category 1 (very slight) damage is predicted to this building.

7.4.6 Mitigation of Ground Movements

In line with DP27, Camden will ensure that harm is not caused to neighbouring properties by basement development. Camden Local Plan (June 2017) states that the BIA must demonstrate that the basement scheme has a risk of damage to the neighbouring properties no higher than Burland Scale 1 (very slight).

It is predicted that negligible to very slight damage Category 0 to 1 may be expected on the basis that the expected slight wall settlements associated with underpinning will be largely counteracted by heave movements in the rear extension area.

Given the possibility of up to Category 1 damage to neighbouring structures, precautionary mitigation measures have been adopted as part of the proposed scheme in order to limit the potential adverse effects. The basement has therefore been designed as a monolithic reinforced box, together with temporary propping.

It should also be noted that the above predictions are based upon good workmanship and robust propping of the excavations.

Appendix

EXPLORATORY LOGS

STRUCTURAL TRIAL PIT RECORDS

GEOTECHNICAL TESTING RESULTS

CHEMICAL LABORATORY RESULTS

HAZWASTE ONLINE CLASSIFICATION REPORT

DRAWINGS

PROJECT: CLIENT:	46 Holmdal Alex Wills 8	le Road & Artemis Doupa	Project No BOREHOLE					
BORING METHOD: Small Diameter Percuss						/e	Date:	
GROUNE) WATER	:	No Groundwater Observed 20/12/2017					
REMARK	(S:		Inspection	on pit ex	cavated	to 1.1m depth		
Sam	inles	Denth	G.L Tests	+8.85n	n SD App	prox.	Description	
No	Туре	m	10313		m			
1	D	0.20					solij	
					0.30	MADE GROUND (pale	e orange-brown / grey-brown	
						slightly sandy clay with	n occasional stones and brick	
					0.75	in agricence)		
				$-\frac{x}{x}$		Firm orange-brown / g	rey mottled silty CLAY	
2	D	1.00		$-\frac{x}{x}$				
	SDT	1 30	7	$-\frac{x}{x}$				
	011	1.50	1	$-\frac{x}{x}$				
				$-\frac{x}{x}$				
				$-\frac{x}{x}$				
				$-\frac{x}{x}$				
				$-\frac{x}{x}$				
	SDT	2 30	Q	$-\frac{x}{x}$				
	551	2.30	0	$-\frac{x}{x}$				
3	D	2.50-2.70		$-\frac{x}{x}$		small sand parting a	around 2.6m depth and occasional	
				$-\frac{x}{x}$		selenite below		
				— <u> </u>				
				$-\frac{x}{x}$				
	SDT	3 30	11	$-\frac{x}{x}$				
	011	5.50		$-\frac{x}{x}$				
				$-\frac{x}{x}$	3.5			
				$\frac{-x}{-x}$		Firm to stiff blueish gre	ey / brown silty CLAY with	
				<u> </u>				
				<u>x</u> x				
	SPT	4.30	12	<u> </u>				
4	D	4 50 4 70		<u> </u>				
4	U	4.30-4.70		<u>x</u> x				
				× × ×	4.70	Stiff fissured blueish /	grey-brown sandy slightly silty	
				× · · · · · · · · · · · · · · · · · · ·		CLAY		
Shoot 1 of	U=Undistur	bed	-					
2	D= Duik D=Disturbe	d	LE	3 H	WΕ	MBLEY E	NGINEERING	
L	vv-vvalei		I					

PROJECT:	46 Holmdal	le Road & Artemis Douna				Project No	BOREHOLE BH1		
BORING	METHO):	Small Dia	ameter	Percussiv	/e	Date:		
GROUN	D WATER		No Grou	20/12/2017 No Groundwater Observed					
REMAR	KS:		Inspectio	on pit ex	cavated t	to 1.1m depth			
			G.L	+8.85n	n SD App	rox.			
San No	nples Type	Depth m	Tests	Legend	Depth m		Description		
	SPT	5.30	22	$\begin{array}{c} x \\ -x \\$	5.70				
	SPT	6.30	31	$\begin{array}{c} x \\ -x \\$	6.45	Very stiff blueish grey	-brown slightly silty CLAY		
Sheet 2 of 2	B= Bulk D=Disturbe W=Water	d	LE	3 H	WE	MBLEY E	NGINEERING		

PROJECT:	46 Holmdal	e Road				Project No	BOREHOLE BH2
BORING	METHOD):	Small Dia	ameter	Percussiv	LBH4307 /e	Date:
GROUNI	D WATER	:	No Grou	ndwate	r Observe	d	20/12/2017
REMAR	KS:		Inspectio	on pit ex	xcavated i	nto the natural soils	
			G.L	+8.00r	n SD App	rox.	
San No	nples Type	Depth	Tests	Legend	Depth		Description
110	Турс			****	0.05	MADE GROUND (con	crete)
					0.40	MADE GROUND (dift)	brown sand and gravel)
				$\frac{x}{x}$		Firm grey / brown mot	tled silty CLAY
				$-\frac{x}{x}$		occasional sand par	tings from around 0.7m depth
				$\begin{bmatrix} -\frac{x}{x} \\ -\frac{x}{x} \end{bmatrix}$			
				$\frac{-x}{-x}$			
				$-\frac{x}{x}$	1.20		
				$-\frac{x}{x}$	1.25	Sand parting Firm grey / brown mott	tled silty CLAY with occasional
				$\frac{-x}{x}$		claystones	
1	D	1.70-1.90		$-\frac{x}{x}$			
				$-\frac{x}{x}$			
				$\frac{-x}{x}$	2.20		
				<u> </u>	2.20	Firm to stiff grey / brov	vn mottled sandy slightly silty
				x x		CLAY	
				<u> </u>			
				<u> </u>			
				<u> </u>			
				· · · · · · · · · · · · · · · · · · ·	3.00		
Sheet 1 of	U=Undistur B= Bulk	bed	1 5				
1	D=Disturbe W=Water	d	LE	5 H	VVE		NGINEEKING

PROJECT:	46 Holmda	le Road					Project No	РТ			
CLIENT:	Alex Wills	& Artemis	Doupa				EBI 14307		RES	ULTS	
Borehole	Depth at	Spoon	Blow for ea	ach success	ive 75mm	penetration			Water	Is Hole	Ν
No	Start of	or							Level	Blowing?	Value
	Test (m)	Cone							(m)		
BH1	1.00	S	1	1	1	2	2	2	DRY	-	7
	2.00	S	1	1 1	2	1 2	2	3	DRY DRY	-	8 11
	4.00	S	1	1	2	3	3	4	DRY	-	12
	5.00	S	2	4	4	6 7	6 8	6		-	22 31
	0.00	0	0	U	,	,	0	5	DIT		51
Sheet 1 of 1		LE	3 H \	NEN	/ B L	ΕY	e n g	ΙΝΕ	ERI	NG	

Job No. Sheet No. Rev. Richard Tant Associates Consulting Civil & Structural Engineers ΊΑΝΓ 4435 54 Lisson Street London NW1 5DF T: 020 7724 1002 F: 020 7224 8883 E: info@richardtantassociates.com Member/Location Job Title Drg. Ref. 46 Worm PACE Rex O Made by Ør 5.1.18 Date Chd. SITE 19.12.17 170 200 50 SO SALERID WATER CLAY & 120 br/2 sbc. T.H. 2

Jab No. Sheet No. Rev. **Richard Tant Associates** ΤΑΝΓ Consulting Civil & Structural Engineers 4435 54 Lisson Street London NW1 5DF T: 020 7724 1002 F: 020 7224 8883 E: info@richardtantassociates.com Member/Location Job Title Drg. Ref. 16 WORMDACE ROAD 5.1.18 Made by Ôr -Date Chd. SME 19.12.17 175 90 PARTO SCAB. .1 r 300 FIU 120 PARK FIRM sour." SR C pe7. T.H. 3

GroundTech Laboratories

Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD

Telephone:- 01327 860947/860060 Fax:- 01327 860430 Email: groundtech@listersgeotechnics.co.uk

	PROJECT INFORMATION	SAMPI			
Site Location:-	46 Holmdale Road	Laboratory Tests Undertaken:-			
	Hampstead Heath	TEST TYPE	TEST METHO	D	TESTED
	London	Natural Water Contents (WC%)	(BS 1377:Part 2:1990 Clau	se 3.2)	\checkmark
	NW6 1BL	Liquid Limits (%)	(BS 1377:Part 2:1990 Clau	se 4.3)	\checkmark
		Plastic Limits (%)	(BS 1377:Part 2:1990 Clau	se 5.3)	\checkmark
		Plasticity Index (%)	(BS 1377:Part 2:1990 Clau	se 5.4)	\checkmark
		Linear Shrinkage (%)	(BS 1377:Part 2:1990 Clau	se 6.5)	
		PSD - Wet Sieving	(BS 1377:Part 2:1990 Clau	se 9.2)	
Client Reference:-	-	Engineering Sample Descriptions	(BS 5930 : Section 6)		
		Passing 425/63 (µm)	-		
		Hydrometer	(BS 1377:Part 2:1990 Clau	se 9.5)	
Date Samples Recei	ved:- 5th January 2018	Loss on Ignition (%)	-		
Date Testing Comp	leted:- 8th January 2018	Soil Suctions (kPa)	BRE Digest IP 4/93, 1993		
		Bulk Density (Mg/m ³)	(BS 1377:Part 2:1990 Clau	se 7.2)	
		Strength Tests	(BS 1377:Part 7:1990 Clau	se 8 & 9)	
		Soluble Sulphate Content (SO ₄ g/l)	(BS 1377:Part 3:1990 Clau	se 5.3)	\checkmark
		pH value	(BS 1377:Part 3:1990 Clau	se 9.4)	\checkmark
		California Bearing Ratios (CBR)	(BS 1377:Part 4:1990 Clau	lse 7)	
		Compaction Tests	(BS 1377:Part 4:1990 Clau	ses 3.0-3.6)	
The results relate only to	the samples tested				
This test-report may not GROUNDTECH LABO	be reproduced, except with full and written approval of RATORIES	Laboratory testing in accord with BS EN Ouality Management in accord with ISC	N ISO/IEC 17025-2000 and 0 9001		
Signed on behalf of (GroundTech Laboratories:	Technical Signa	tory	Quality As to ISO 9	ssured 9001
G	GEOTECHNICAL LABORATORY TE	ST RESULTS	Report No:	18.01.0	001

GroundTech Laboratories

Geotechnical Testing Facility

Slapton Hill Barn, Blakesley Road, Slapton, Towcester, Northants. NN12 8QD Qua Telephone: 01327 860947/860060 Fax: 01327 860430 Email: groundtech@listersgeotechnics.co.uk te												Quality to IS	y Assured O 9001											
	SAM	PLES			CL	ASS	IFIC	CATIC	ON TEST	ГS		CLA	SSI	FICAT	TION 7	(TEST:	S	S	STRE	NGTH	TESTS	5	CHEMICAL TESTS	
Test Location	Sample Type	Sample Depth -m	Test Type	WC %	LL %	PL %	PI %	Passing 425 μm %	Modified PI %	Class	Passing 63 µm %	WC/ LL	PL+ 2%	Liquidity Index	Loss on Ignition %	Soil Suction kPa	Bulk Density Mg/m3	Test Type	Cell Pressure kN/m2	Deviator Stress kN/m2	Apparent Cohesion kN/m2	ф	pH Value	Soluble Sulphate Content SO4 g/l
BH 1 BH 2	D D	2.50 4.50 1.70	PI/63 PI/63	29 35	71 76	25 27	46 49	100	46 49	CV CV	98 97	0.41	27 29	0.09									6.0	1.67
Sym	bols:			U	Undist	urbed Sam	ample	<u></u>		R 63	Remould Passing (led	<u> </u>	PI F	Plasticity Filter Pap	Index er Suction	Tests	T M	Triaxial U Multistag	Indrained		L	100mm spec	cimen men
				B W	Bulk S Water	ample Sample				H PSD	Hydrome Wet Siev	eter ving		CC	Continuou	is Core	20000	HP V	Hand Pen Vane Tes	etrometer		5	comm speer	
	LABORATORY TEST RESULTS										. une 105		Proj 1	ect F 8.01	Reference									

LBH Wembley Geotechnical & Environmental Unit 12 Little Balmer Buckingham Industrial Park Buckingham MK18 1TF

Attention: Tom Jones

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 10 January 2018 H_LBHWGE_BUK 171222-3 LBH4507 46 Holmdale Road 439595

We received 2 samples on Friday December 22, 2017 and 2 of these samples were scheduled for analysis which was completed on Wednesday January 10, 2018. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Approved By:

Sonia McWhan Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

	CERTIFICATE C	OF ANALYSIS
171000.0	Client Beferences	

LBH4507 LBH4507

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
16807568	BH1		0.20 - 0.20	20/12/2017
16807572	BH1		1.00 - 1.00	20/12/2017

Maximum Sample/Coolbox Temperature (°C) : ISO5667-3 Water quality - Sampling - Part3 -

11.2

ALS have data which show that a cool box with 4 frozen icepacks is capable of maintaining pre-chilled samples at a temperature of $(5\pm3)^\circ\text{C}$ for a period of up to 24hrs.

During Transportation samples shall be stored in a cooling device capable of maintaining a temperature of (5±3)°C.

Only received samples which have had analysis scheduled will be shown on the following pages.

171222-3 46 Holmdale Road

Client Reference: Order Number:

Report Number:

439595 Superseded Report:

Validated

BOD: 171223-0 Cline Reference: LBH407 Beport Number: Results Legred Lab Sample NO(s) 9		CERTIFICATE OF ANALYSIS													
Number 2 Customer Sample Dyset - Southise Jungender State Wie Subgender State Wie Stat	SDG: Location:	171222-3 46 Holmdale R	load	Clie Orde	nt Ref e <u>r N</u> ur	eren nber:	ce:	LBH LBH	4507 4507	Report Number: Superseded Report:					
	Results Legend X Test	Lab Sample	No(s)			16807568			16807572						
	Possible	Custome Sample Refe	er rence			BH1			BH1						
Dr. Pr. Presettione Depth (m) Distribution Distrint Distribution <thdistribution< <="" td=""><td>Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate</td><td>AGS Refere</td><td colspan="4" rowspan="2">AGS Reference Depth (m)</td><td colspan="4">AGS Reference</td><td></td><td></td><td></td><td></td><td></td></thdistribution<>	Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Refere	AGS Reference Depth (m)				AGS Reference								
RE- Received noise water wate	PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m							1.00 - 1.00						
Sample Type or or or or or ANC at pH4 and ANC at pH 6 All Tests.1 T	RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Containe	er	250g Amber Jar (ALE210)	400g Tub (ALE214)	60g VOC (ALE215)	250g Amber Jar (ALE210)	400g Tub (ALE214)	60g VOC (ALE215)						
NNC at pH4 and ANC at pH 6 All NDPa: 0 Tests: 1 ND		Sample Ty	vpe	S	S	S	ა	S	S						
Anores by Kone (scil) All NDPs: 0 Tests: 1	ANC at pH4 and ANC at pH 6	All	NDPs: 0 Tests: 1												
Nnme (v) All NDP: 0 Tests: 1 NDP: 0 rests: 1 <td>Anions by Kone (soil)</td> <td>All</td> <td>NDPs: 0 Tests: 1</td> <td>X</td> <td></td> <td></td> <td>x</td> <td></td> <td></td> <td></td> <td></td>	Anions by Kone (soil)	All	NDPs: 0 Tests: 1	X			x								
NDPs:0 <	Anions by Kone (w)	All	NDPs: 0 Tests: 1					X							
Norm Water Soluble All NDP:: 0 NDP::	sbestos ID in Solid Samples	All	NDPs: 0 Tests: 1		x										
EEN Readings All NDPs: 0 NDPs: 0 NDPs: 0 NDPs: 0 NDPs: 0 Cyande ComplFree/Total/Thiocyanate All NDPs: 0 NDPs: 0 NDPs: 0 NDPs: 0 NDPs: 0 Dissolved Metals by ICP-MS All NDPs: 0 NDPs: 0 NDPs: 0 NDPs: 0 NDPs: 0 NDPs: 0 Dissolved Organic/Inorganic Carbon All NDPs: 0 NDPs: 0 NDPs: 0 NDPs: 0 NDPs: 0 2BH by FID All NDPs: 0 Tests: 1 NDPs: 0 NDPs: 0 NDPs: 0 PH by FID All NDPs: 0 Tests: 1 NDPs: 0 NDPs: 0 NDPs: 0 PH to KG (Aliphatic) GC (S) All NDPs: 0 Tests: 1 NDPs: 0 NDPs: 0 NDPs: 0 PH to WG (Aromatic) GC (S) All NDPs: 0 Tests: 1 NDPs: 0 NDPs: 0 NDPs: 0 NDPs: 0 PH to WG (Aromatic) GC (S) All NDPs: 0 NDPs:	3oron Water Soluble	All	NDPs: 0 Tests: 1	x											
Cyanide CompiFree/Total/ThiocyanateAllNDPs: 0 Tests: 1NDPs: 0 Tests:	CEN Readings	All	NDPs: 0 Tests: 1					x							
$ \begin{split} \label{eq:bisolved Metals by ICP-MS } & All & All & DPS: 0 \\ Tests: 1 & Tests: 1 & Tests: 1 \\ Tests: 1 & Tests \\ Tes$	Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 1	x				^							
Dissolved Organic/Inorganic Carbon All NDPs: 0 Tests: 1 I I I I I Easily Liberated Sulphide All NDPs: 0 Tests: 1 NDPs: 0 Tests: 1 I I I I EPH All NDPs: 0 Tests: 1 I I I I I EPH by FID All NDPs: 0 Tests: 1 I I I I I EPH CWG (Aliphatic) GC (S) All NDPs: 0 Tests: 1 I I I I I EPH CWG (Aromatic) GC (S) All NDPs: 0 Tests: 1 I I I I I I EPH CWG (Aromatic) GC (S) All NDPs: 0 Tests: 1 I I I I I I EPH CWG (Aromatic) GC (S) All NDPs: 0 Tests: 1 I I I I I EPH CWG (Aromatic) GC (S) All NDPs: 0 Tests: 1 I I I I I EPH CWG (Aromatic) GC (S) All NDPs: 0 Tests: 1 I I I I I	Dissolved Metals by ICP-MS	All	NDPs: 0 Tests: 1					x							
Easily Liberateo Supprice All NDPs: 0 Tests: 1 NDPs: 0 X NDPs: 0 X <t< td=""><td>Dissolved Organic/Inorganic Carbon</td><td>All</td><td>NDPs: 0 Tests: 1</td><td></td><td></td><td></td><td></td><td>x</td><td></td><td></td><td></td></t<>	Dissolved Organic/Inorganic Carbon	All	NDPs: 0 Tests: 1					x							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	сазну сиренацей заприде	All	NDPs: 0 Tests: 1	X											
EPH by FID All NDPs: 0 Tests: 1 NDPs: 0 	EPH	All	NDPs: 0 Tests: 1	x											
EPH CWG (Aliphatic) GC (S) All NDPs: 0 Tests: 1 Image: Constraint of the sector	EPH by FID	All	NDPs: 0 Tests: 1	x											
EPH CWG (Aromatic) GC (S) All NDPs: 0 Tests: 1 NDPs: 0 Fluoride All NDPs: 0 Tests: 1 I	EPH CWG (Aliphatic) GC (S)	All	NDPs: 0 Tests: 1	x											
Fluoride All NDPs: 0 Tests: 1 X	EPH CWG (Aromatic) GC (S)	All	NDPs: 0 Tests: 1	x											
	Fluoride	All	NDPs: 0 Tests: 1					X							

13:14:14 10/01/2018

	SDG:	171222-3 46 Holmdale R	nad	Clie	nt Ref	ereno	ce:	LBH4	4507 4507	Report Number: Superseded Report:	439595
Results Legend		Lab Sample I	No(s)			1680			1680	,	
No Deter Possible	rmination					7568			7572		
		Custome Sample Refe	Customer Sample Reference			BH1			BH1		
Sample Types - S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Litterated Sewage		AGS Refere									
		Depth (m)			0.20 - 0.20			1.00 - 1.00		
RE - Recreational W DW - Drinking Water N UNL - Unspecified L SL - Sludge G - Gas OTH - Other	Vater Von-regulatory iquid	Containe	r	250g Amber Jar (ALE210)	400g Tub (ALE214)	60g VOC (ALE215)	250g Amber Jar (ALE210)	400g Tub (ALE214)	60g VOC (ALE215)		
		Sample Ty	pe	S	ა	ა	ა	ა	ა		
GRO by GC-FID (S)		All	NDPs: 0 Tests: 2			x			x		
Hexavalent Chromium (s))	All	NDPs: 0 Tests: 1	x							
Loss on Ignition in soils		All	NDPs: 0 Tests: 1				X				
Mercury Dissolved		All	NDPs: 0 Tests: 1					x			
Metals in solid samples by	y OES	All	NDPs: 0 Tests: 1	x							
Mineral Oil		All	NDPs: 0 Tests: 1				x				
PAH by GCMS		All	NDPs: 0 Tests: 2	x			x				
PCBs by GCMS		All	NDPs: 0 Tests: 1				x				
pН		All	NDPs: 0 Tests: 2	x			x				
Phenols by HPLC (S)		All	NDPs: 0 Tests: 1	x							
Phenols by HPLC (W)		All	NDPs: 0 Tests: 1					x			
Sample description		All	NDPs: 0 Tests: 2	x			x				
Total Dissolved Solids		All	NDPs: 0 Tests: 1					x			
Total Organic Carbon		All	NDPs: 0 Tests: 2	x			x				
Total Sulphate		All	NDPs: 0 Tests: 1	x							

	c	RTIFICATE OF ANALYS	IS
SDG: Location:	171222-3 46 Holmdale Road	Client Reference: LBH4507 Order Number: LBH4507	Report Number: 439595 Superseded Report:
Results Legend X Test N No Determination	Lab Sample No(s)	16807572 16807568	
Sample Types -	Customer Sample Reference	뿜 뿜	
S - Soil/Solid UNS - Unspecified Solid GW - Ground Water SW - Surface Water LE - Land Leachate	AGS Reference		
PL - Prepared Leachate PR - Process Water SA - Saline Water TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage	Depth (m)	1.00 - 1.00 0.20 - 0.20	
RE - Recreational Water DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge G - Gas OTH - Other	Container	60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (ALE210) 60g VOC (ALE215) 400g Tub (ALE214) 250g Amber Jar (ALE210)	
	Sample Type	໙ ໙ ໙ ໙ ໙	
TPH CWG GC (S)	All NDPs: 0 Tests: 1	x	

171222-3 Client Reference: LBH4507

171222-3Client Reference:LBH450746 Holmdale RoadOrder Number:LBH4507

Report Number: Superseded Report: Validated

439595

Sample Descriptions

Grain Sizes

very fine	<0.063mm		fine	0.063mm - 0.1mm	m	edium	0.1mm	- 2mm	coars	se	2mm - 1	0mm	very coa	rse
Lab Sample	e No(s)	Custom	er Sample Re	f. Depth (m)	Co	lour	Descripti	ion	Incl	usions	Inclu	isions 2	
1680756	68		BH1	0.20 - 0.20)	Dark	Brown	Sandy Clay I	Loam	Crush	ed Brick	S	tones	
168075	72		BH1	1.00 - 1.00)	Light	Brown	Silty Cla	у	Ν	lone	S	tones	

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

_

SDG: Location:	1	71222-3 6 Holmdale F	Road	Clien Orde	t Reference: r Number:	LBH LBH	14507 14507	Report Numb Superseded Re	er: 439595	
				orac		201			••••	
Results Legend	Cu	istomer Sample Ref.	BH1		BH1					
M mCERTS accredited.										
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	0.20 - 0.20 Soil/Solid (S)		1.00 - 1.00 Spil/Splid (S)					
* Subcontracted test.		Date Sampled	20/12/2017		20/12/2017					
** % recovery of the surrogate stand check the efficiency of the method	lard to d. The	Sample Time Date Received	22/12/2017		22/12/2017					
results of individual compounds v samples aren't corrected for the r	within ecovery	SDG Ref	171222-3		171222-3					
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	16807568		16807572					
Component	LOD/Units	Method								
Moisture Content Ratio (% of as	%	PM024	16		25					
Loss on ignition	<0.7 %	TM018			8.12	\rightarrow				
						М				
Mineral oil >C10-C40	<1 mg/kg	TM061			8.95					
EPH (C5-C40)	<35 mg/kg	TM061	117							
Mineral Oil Surrogate %	%	TM061			72.8					
EPH Range >C10 - C40	<35 mg/kg	TM061	117							
Phenol	<0.01 mg/kg	TM062 (S)	<0.01	IVI						
Cresols	<0.01 mg/kg	TM062 (S)	<0.01	M						
Xylenols	<0.015	TM062 (S)	<0.015	М						
2,3,5-Trimethylphenol	mg/kg <0.01 mg/kg	TM062 (S)	<0.01	М						
2-Isopropylphenol	<0.015	TM062 (S)	<0.015	М		_				
Phonols, Total Datastad 5	mg/kg	TM062 (S)	<0.06	М						
speciated		TW002 (3)	<0.00	М	0.404					
Organic Carbon, Total	<0.2 %	IM132	2.63	М	0.491	М				
Soil Organic Matter (SOM)	<0.35 %	TM132	4.53	#						
pH	1 pH Units	TM133	7.63	М	7.75	М				
Chromium, Hexavalent	<0.6 mg/kg	TM151	<0.6	#						
Cyanide, Total	<1 mg/kg	TM153	<1	М						
Cyanide, Free	<1 mg/kg	TM153	<1	м						
Thiocyanate	<1 mg/kg	TM153	<1	M						
PCB congener 28	<3 µg/kg	TM168		IVI	<3	м				
PCB congener 52	<3 µg/kg	TM168			<3	IVI				
PCB congener 101	<3 µg/kg	TM168			<3	M				
PCB congener 118	<3 µg/kg	TM168			<3	М				
PCB congener 138	<3 µg/kg	TM168			<3	М				
PCB congener 153	<3 µg/kg	TM168			<3	М				
PCB congener 180	<3 µg/kg	TM168			<3	М				
Sum of detected PCB 7	<21 µa/ka	TM168			<21	М				
Congeners	r-9""9	TM400	-41		2.					
Sulphide, Easily liberated	<15 mg/kg	1 M 1 80	<15	♦ M						
Arsenic	<0.6 mg/kg	TM181	18.9	М						
Boron	<0.7 mg/kg	TM181	10.9	#						
Cadmium	<0.02 mg/kg	TM181	0.252	М						
Chromium	<0.9 mg/kg	TM181	36.4	М						
Copper	<1.4 mg/kg	TM181	64.3							
	1			M						

Validated

SDG: Location:	1	71222-3 6 Holmdale F	Koad (Client Reference: Order Number:	LBH4507 LBH4507	Report Number Superseded Repo	r: 439595 ort:	
						· · ·		
Results Legend	Cu	istomer Sample Ref.	BH1	BH1				
M mCERTS accredited.								
diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	0.20 - 0.20 Soil/Solid (S)	1.00 - 1.00 Soil/Solid (S)				
* Subcontracted test.	and to	Date Sampled	20/12/2017	20/12/2017				
check the efficiency of the method	. The	Date Received	22/12/2017	22/12/2017				
results of individual compounds w samples aren't corrected for the re	ithin covery	SDG Ref	171222-3	171222-3				
(F) Trigger breach confirmed -5&+§@ Sample deviation (see appendix)		Lab Sample No.(s) AGS Reference	16807568	1680/572				
omponent	LOD/Units	Method						
ead	<0.7 mg/kg	TM181	721	м				
lercury	<0.14 mg/kg	TM181	0.75	м				
lickel	<0.2 mg/kg	TM181	26.5	м				
elenium	<1 mg/kg	TM181	<1	#				
inc	<1.9 mg/kg	TM181	271	M				
NC @ pH 4	<0.03	TM182		0.0847				
NC @ pH 6	<0.03	TM182		0.0325				
	mol/kg	T14004	0.00504					
	<u>\0.0010 %</u>		0.00591					
oron, water soluble	<1 mg/kg	TM222	1.23	м				
vater Soluble Sulphate as SO4 ∷1 Extract	<0.004 g/l	TM243	0.0327	м				

(ALS)

_

SDG:		171222-3	Clie	nt Reference:	LBH4507	Report Numb	er: 439595	
(ALS) Location:	2	16 Holmdale F	load Ord	er Number:	LBH4507	Superseded Re	port:	
GRO by GC-FID (S)		istomer Sample Ref	DUI	1				
# ISO17025 accredited. M mCERTS accredited.		astomer oumpie ren.	впі					
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	1.00 - 1.00					
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Soil/Solid (S) 20/12/2017					
** % recovery of the surrogate stand	ard to	Sample Time						
results of individual compounds v	vithin	Date Received SDG Ref	22/12/2017 171222-3					
(F) Trigger breach confirmed	scovery	Lab Sample No.(s)	16807572					
Component	LOD/Units	Method						
Methyl tertiary butyl ether	<5 µg/kg	TM089	<5					
Benzene	<10 µg/kg	TM089	-10					
Toluene	<2 µg/kg	TM089	M <2					
Ethylhenzene	<3 µa/ka	TM089	<3 M					
	io µg/kg	TM000	M					
m,p-Xylene	<ь µg/кg	1 M089	<b< td=""><td></td><td></td><td></td><td></td><td></td></b<>					
o-Xylene	<3 µg/kg	TM089	<3 M					
sum of detected mpo xylene by GC	<9 µg/kg	TM089	<9					
sum of detected BTEX by GC	<24 µg/kg	TM089	<24					

ALS

CERTIFICATE OF ANALYSIS

Validated

SDG:		171222-3 16 Holmdale F	Cli Road Or	ent Reference:	LBH4507 LBH4507	Report Numb Superseded Re	ber: 439595	
			toau Or	der Number:	LDH4307	Superseded K	sport.	
Results Legend	Ci	ustomer Sample Ref.	BH1	BH1				
# ISO17025 accredited. M mCERTS accredited.			bitt	Diff				
aq Aqueous / settled sample.		Depth (m)	0.20 - 0.20	1.00 - 1.00				
ot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid (S)	Soil/Solid (S)				
* Subcontracted test. ** % recovery of the surrogate stand	ard to	Date Sampled Sample Time	20/12/2017	20/12/2017				
check the efficiency of the method	i. The	Date Received	22/12/2017	22/12/2017				
samples aren't corrected for the re	ecovery	SDG Ref	171222-3	171222-3				
(F) Trigger breach confirmed -5&+\$@ Sample deviation (see appendix)		Lab Sample No.(s)	10807508	1680/572				
Component	LOD/Units	Method						
Naphthalene-d8 % recovery**	%	TM218	94.6					
Acenaphthene-d10 %	%	TM218	91.6					
Phenanthrene-d10 % recovery**	%	TM218	87.8					
Chrysene-d12 % recovery**	%	TM218	94.6					
^o erylene-d12 % recovery**	%	TM218	98.9					
Naphthalene	<9 µg/kg	TM218	25.4	м				
Acenaphthylene	<12 µg/kg	TM218	22.3	M				
Acenaphthene	<8 µg/kg	TM218	<8					
Fluorene	<10 µg/kg	TM218	<10					
Phenanthrene	<15 µg/kg	TM218	137					
Anthracene	<16 µg/kg	TM218	29.3	M				
Fluoranthene	<17 µg/kg	TM218	270					
Pyrene	<15 µg/kg	TM218	232	M				
Benz(a)anthracene	<14 µg/kg	TM218	194	M				
Chrysene	<10 µg/kg	TM218	206					
Benzo(b)fluoranthene	<15 µg/kg	TM218	405	M				
Benzo(k)fluoranthene	<14 µg/kg	TM218	141	M				
Benzo(a)pyrene	<15 µg/kg	TM218	251	M				
Indeno(1,2,3-cd)pyrene	<18 µg/kg	TM218	213	M				
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	58.4	M				
Benzo(g,h,i)perylene	<24 µg/kg	TM218	283	M				
PAH, Total Detected USEPA 16	<118 µg/kg	TM218	2470					
PAH total 17 (inclusive of Coronene)	<10 mg/kg	TM218		<10				

SDG:		171222-3 46 Holmdale F	Road	Clien	it Reference:	LBH4507 LBH4507	Report Numb Superseded Re	er: 439595 port:)
			loau	orue	i number.	LDII4307	Caperocaca re	porti	
TPH CWG (S) Results Legend	C	ustomer Sample Ref.	BH1		1				
# ISO17025 accredited. M mCERTS accredited	Ĭ	ustomer oumple iten	БПІ						
aq Aqueous / settled sample.		Depth (m)	0.20 - 0.20						
tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid (S)						
** % recovery of the surrogate standa	ard to	Sample Time							
results of individual compounds w	ithin	Date Received	22/12/2017 171222-3						
samples aren't corrected for the re (F) Trigger breach confirmed	covery	Lab Sample No.(s)	16807568						
1-5&+§@ Sample deviation (see appendix)	LOD/Units	AGS Reference							
GRO Surrogate % recovery**	%	TM089	76						
GRO TOT (Moisture Corrected)	<44 µg/kg	TM089	<44	м					
Methyl tertiary butyl ether (MTBE)	<5 µg/kg	TM089	<5	#					
Benzene	<10 µg/kg	TM089	<10						
Toluene	<2 µg/kg	TM089	<2	М					
Ethylbenzene	<3 µa/ka	TM089	<3	М					
m n Yulana		TMORO	-6	М					
пі,р-хуієпе	<0 µg/kg	11003	-0	М					
o-Xylene	<3 µg/kg	TM089	<3	М					
sum of detected mpo xylene by GC	<9 µg/kg	TM089	<9						
sum of detected BTEX by GC	<24 µg/kg	TM089	<24						
Aliphatics >C5-C6	<10 µg/kg	TM089	<10						
Aliphatics >C6-C8	<10 µg/kg	TM089	<10						
Aliphatics >C8-C10	<10 µg/kg	TM089	<10						
Aliphatics >C10-C12	<10 µg/kg	TM089	<10						
Aliphatics >C12-C16	<100 µg/kg	TM173	<100						
Aliphatics >C16-C21	<100 µg/kg	TM173	848						
Aliphatics >C21-C35	<100 µg/kg	TM173	13700						
Aliphatics >C35-C44	<100 µg/kg	TM173	5620						
Total Aliphatics >C12-C44	<100 µg/kg	TM173	20200						
Aromatics >EC5-EC7	<10 µg/kg	TM089	<10						
Aromatics >EC7-EC8	<10 µg/kg	TM089	<10						
Aromatics >EC8-EC10	<10 µg/kg	TM089	<10						
Aromatics >EC10-EC12	<10 µg/kg	TM089	<10						
Aromatics >EC12-EC16	<100 µg/kg	TM173	342						
Aromatics >EC16-EC21	<100 µg/kg	TM173	2190						
Aromatics >EC21-EC35	<100 µg/kg	TM173	20200						
Aromatics >EC35-EC44	<100 µg/kg	TM173	9680						
Aromatics >EC40-EC44	<100 µg/kg	TM173	3040						
Total Aromatics >EC12-EC44	<100 µg/kg	TM173	32400						
Total Aliphatics & Aromatics	<100 µg/kg	TM173	52600						
905-044 GRO >C5-C10	<10 µg/kg	TM089	<10						

Validated

Validated

 SDG:
 171222-3
 Client Reference:
 LBH4507
 Report Number:
 439595

 Location:
 46 Holmdale Road
 Order Number:
 LBH4507
 Superseded Report:
 439595

Asbestos Identification - Solid Samples

		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BH1 0.20 - 0.20 SOLID 20/12/2017 00:00:00 27/12/2017 15:32:37 171222-3 16807568 TM048	03/01/2018	Renata Bozhkov	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

		CERTIFIC	ATE OF ANAI	YSIS		Va	alidated
SDG: Location:	171222-3 46 Holmdale Road	Client Refe Order Num	rence: LBH4507 ber: LBH4507	Re Su	port Number: perseded Report:	439595	
(ACS)	CEN 2	10:1 SINGLE	STAGE LEA	CHATE TEST			
WAC ANALYTICAL RES	ULTS					REF : BS	EN 12457/2
Client Reference			Site Location		46 Ho	Imdale Road	
Mass Sample taken (kg)	0.120		Natural Moistu	re Content (%)	33.3		
Mass of drv sample (kg)	0.090		Drv Matter Con	itent (%)	75		
Particle Size <4mm	>95%						
Case					Land	fill Waste Acce	otance
SDG	171222-3					Criteria Limits	
Lab Sample Number(s)	16807572					I	
Sampled Date	20-Dec-2017					Stable	
Customor Samplo Pof	BH1				Inert Waste	Non-reactive Hazardous Waste	Hazardous
Depth (m)	1.00 - 1.00				Landfill	in Non- Hazardous	Waste Landfill
Solid Waste Analysis	Result					Landfill	
Total Organic Carbon (%)	0.491				3	5	6
Loss on Ignition (%)	8.12				-	-	10
Sum of BTEX (mg/kg)	<0.024				6	-	-
Sum of 7 PCBs (mg/kg)	<0.021				1	-	-
Mineral Oil (mg/kg)	8.95				500	-	-
pAH Sum of 17 (mg/kg)	7 75				-	>6	-
ANC to pH 6 (mol/kg)	0.0325				-	-	-
ANC to pH 4 (mol/kg)	0.0847				-	-	-
Eluate Analysis C ₂ Conc ⁿ in 10:1 eluate (mg/l) A ₂ 10:1 conc ⁿ leached (mg/kg) Limit values for compliance leaching test using RS EN 124E7-3 at 1/2 101/kg						ching test 10 l/kg	
	Result	Limit of Detection	Result	Limit of Detection		-	
Arsenic	<0.0005	<0.0005	<0.005	<0.005	0.5	2	25
Barium	0.00357	<0.0002	0.0357	<0.002	20	100	300
Cadmium	<0.0008	<0.0008	<0.0008	<0.0008	0.04	1	5
Chromium	<0.001	<0.001	<0.01	<0.01	0.5	10	70
Copper	0.00109	<0.0003	0.0109	<0.003	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	<0.0005	<0.0005	<0.005	<0.005	0.5	10	30
Nickel	0.000412	<0.0004	0.00412	<0.004	0.4	10	40
Lead	0.000327	<0.0002	0.00327	<0.002	0.5	10	50
Antimony	<0.0001	<0.0001	<0.001	<0.001	0.06	0.7	5
Selenium	0.00054	<0.0005	0.0054	<0.005	0.1	0.5	7
Zinc	0.00118	<0.001	0.0118	<0.01	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	0.612	<0.5	6.12	<5	10	150	500
Sulphate (soluble)	22.6	<2	226	<20	1000	20000	50000
Total Dissolved Solids	83.5	<5	835	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000
Leach Test Information							
Date Prepared	29-Dec-2017						
Date Prepared pH (pH Units)	29-Dec-2017 8.59						
Date Prepared pH (pH Units) Conductivity (μS/cm)	29-Dec-2017 8.59 103.00						
Date Prepared pH (pH Units) Conductivity (µS/cm) Temperature (°C) Volume Leachart (Litros)	29-Dec-2017 8.59 103.00 20.10						

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALS Environmental cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

10/01/2018 13:14:25

SDG:

Location:

CERTIFICATE OF ANALYSIS LBH4507 LBH4507 Client Reference:

Report Number: Superseded Report:

Validated

439595

Table of Results - Appendix

Order Number:

Method No	Reference	Description
PM001		Preparation of Samples for Metals Analysis
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 & 10:1 1 Step
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)
TM062 (S)	National Grid Property Holdings Methods for the Collection & Analysis of Samples from National Grid Sites version 1 Sec 3.9	Determination of Phenols in Soils by HPLC
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water
TM132	In - house Method	ELTRA CS800 Operators Guide
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM151	Method 3500D, AWWA/APHA, 20th Ed., 1999	Determination of Hexavalent Chromium using Kone analyser
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID
TM180	Sulphide in waters and waste waters 1991 ISBN 01 175 7186 SCA rec. 2007 (unpublished)'	The Determination Of Easily Liberated Sulphide In Soil Samples by Ion Selective Electrode Technique
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers
TM218	Determination of PAH by GCMS Microwave extraction	The determination of PAH in soil samples by microwave extraction and GC-MS
TM221	Inductively Coupled Plasma - Atomic Emission Spectroscopy. An Atlas of Spectral Information: Winge, Fassel, Peterson and Floyd	Determination of Acid extractable Sulphate in Soils by IRIS Emission Spectrometer
TM222	In-House Method	Determination of Hot Water Soluble Boron in Soils (10:1 Water:soil) by IRIS Emission Spectrometer
TM243		Mixed Anions In Soils By Kone
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Environmental Hawarden (Method codes TM) or ALS Environmental Aberdeen (Method codes S).

Order Number:

Report Number: Superseded Report:

439595

Validated

Test Completion Dates

Lab Sample No(s)	16807568	16807572
Customer Sample Ref.	BH1	BH1
AGS Ref.		
Depth	0.20 - 0.20	1.00 - 1.00
Туре	Soil/Solid (S)	Soil/Solid (S)
ANC at pH4 and ANC at pH 6		02-Jan-2018
Anions by Kone (soil)	04-Jan-2018	
Anions by Kone (w)		04-Jan-2018
Asbestos ID in Solid Samples	03-Jan-2018	
Boron Water Soluble	03-Jan-2018	
CEN 10:1 Leachate (1 Stage)		29-Dec-2017
CEN Readings		30-Dec-2017
Cyanide Comp/Free/Total/Thiocyanate	03-Jan-2018	
Dissolved Metals by ICP-MS		08-Jan-2018
Dissolved Organic/Inorganic Carbon		30-Dec-2017
Easily Liberated Sulphide	05-Jan-2018	
EPH	03-Jan-2018	
EPH by FID	03-Jan-2018	
EPH CWG (Aliphatic) GC (S)	29-Dec-2017	
EPH CWG (Aromatic) GC (S)	29-Dec-2017	
Fluoride		02-Jan-2018
GRO by GC-FID (S)	03-Jan-2018	03-Jan-2018
Hexavalent Chromium (s)	03-Jan-2018	
Loss on Ignition in soils		03-Jan-2018
Mercury Dissolved		09-Jan-2018
Metals in solid samples by OES	10-Jan-2018	
Mineral Oil		03-Jan-2018
PAH by GCMS	02-Jan-2018	03-Jan-2018
PCBs by GCMS		03-Jan-2018
pH	02-Jan-2018	02-Jan-2018
Phenols by HPLC (S)	02-Jan-2018	
Phenols by HPLC (W)		03-Jan-2018
Sample description	27-Dec-2017	27-Dec-2017
Total Dissolved Solids		02-Jan-2018
Total Organic Carbon	03-Jan-2018	03-Jan-2018
Total Sulphate	04-Jan-2018	
TPH CWG GC (S)	03-Jan-2018	

SDG:	171222-3	Client Reference:	LBH4507	Report Number:	439595
Location:	46 Holmdale Road	Order Number:	LBH4507	Superseded Report:	

Appendix

General

1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All sumples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP - No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.

11. Results relate only to the items tested.

12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.

13. **Surrogate recoveries** - Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.

14. **Product analyses** - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-lsopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.

21. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

If a sample is classed as deviated then the associated results may be compromised.

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
ŝ	Sampled on date not provided
•	Sample holding time exceeded in laboratory
0	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysof le	White Asbestos
Amosite	Brow n Asbestos
Cro ci dolite	Blue Asbe stos
Fibrous Actinolite	-
Fib to us Anthop hyll ite	-
Fibrous Tremolite	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Waste Classification Report

Job name	
LBH4507	
Description/Comments	
Project	
LBH4507	
Site	
46 Holmdale Road	
Waste Stream Template	
Example waste stream template for contaminated soil	S
Classified by	
Name: Jessica Hand	Company: LBH WEMBLEY

Jessica Hand Date: 16/01/2018 10:10:11 UTC Telephone: 07715944050 Company: LBH WEMBLEY Unit 12 Little Balmer Buckingham Industrial Park Buckingham MK18 1TF

Report

Created by: Jessica Hand Created date: 16/01/2018 10:10 UTC

Job summary

-				
# Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1 BH1	0.20-0.20	Non Hazardous		2

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	4
Appendix B: Rationale for selection of metal species	5
Appendix C: Version	6

Classification of sample: BH1

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	
BH1	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.20-0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		18.9 mg/kg	1.32	24.954 mg/kg	0.0025 %		
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		10.9 mg/kg	3.22	35.097 mg/kg	0.00351 %		
3	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.252 mg/kg	1.142	0.288 mg/kg	0.0000288 %	Ì	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide }		36.4 mg/kg	1.462	53.201 mg/kg	0.00532 %		
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.6 mg/kg	1.923	<1.154 mg/kg	<0.000115 %		<lod< th=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		64.3 mg/kg	1.126	72.395 mg/kg	0.00724 %		
7	4	lead { lead chromate }	1	721 mg/kg	1.56	1124.627 mg/kg	0.0721 %	Ì	
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.75 mg/kg	1.353	1.015 mg/kg	0.000102 %		
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		26.5 mg/kg	2.976	78.871 mg/kg	0.00789 %		
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }	-	1 mg/kg	2.554	2.554 mg/kg	0.000255 %		
11	4	zinc { zinc chromate }		271 mg/kg	2.774	751.794 mg/kg	0.0752 %		
12		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.005 mg/kg		<0.005 mg/kg	<0.000005 %		<lod< th=""></lod<>
13		benzene 601-020-00-8 200-753-7 71-43-2		<0.01 mg/kg		<0.01 mg/kg	<0.000001 %		<lod< th=""></lod<>
14		toluene 601-021-00-3 203-625-9 108-88-3		<0.002 mg/kg		<0.002 mg/kg	<0.000002 %		<lod< th=""></lod<>

HazWasteOnline[™] Report created by Jessica Hand on 16/01/2018

#			Determinand		Note	User entered data		Conv. Factor	Compound conc.		und conc. Classification value		Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							NC /	
15		ethylbenzene				<0.003	ma/ka		<0.003	ma/ka	<0.000003 %		
	(601-023-00-4	202-849-4	100-41-4		<0.000	iiig/itg		<0.000	iiig/ikg	<0.0000000 /0		LOD
16	6	xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<0.006	mg/kg		<0.006	mg/kg	<0.0000006 %		<lod< td=""></lod<>
17	3	cyanides { salts exception of complete ferricyanides and merricyanides and mericyanides and merricyanides and merricyanides and merricyani	of hydrogen cyanide ex cyanides such as rercuric oxycyanide e in this Annex }	with the start of	_	<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
18		pН		A		7.63	nН		7.63	nН	7 63 pH		
				PH						p			
19	4	naphthalene	202-040-5	01-20-3		0.0254	mg/kg		0.0254	mg/kg	0.00000254 %		
	_	acenanhthylene	202 043 0	51200									
20		uconapitaryiono	205-917-1	208-96-8		0.0223	mg/kg		0.0223	mg/kg	0.00000223 %		
21		acenaphthene				<0.008	ma/ka		<0.008	ma/ka	<0.000008 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
22		fluorene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	_								
23		phenanthrene				0.137	mg/kg		0.137	mg/kg	0.0000137 %		
			201-581-5	85-01-8	-							\vdash	
24		anthracene	004 271 1	120 12 7	-	0.0293	mg/kg		0.0293	mg/kg	0.00000293 %		
		fluoranthene	204-371-1	120-12-1	+								
25			205-912-4	206-44-0	-	0.27	mg/kg		0.27	mg/kg	0.000027 %		
26		pyrene	1			0.000			0.000		0.00000000.00		
20			204-927-3	129-00-0		0.232	0.232 mg/kg		0.232	тту/ку	0.0000232 %		
27		benzo[a]anthracene	е			0.194	ma/ka		0 194	ma/ka	0 0000194 %		
	(601-033-00-9	200-280-6	56-55-3		0.101	шу/ку		0.101	ing/kg			
28		chrysene				0.206	ma/ka		0.206	ma/ka	0.0000206 %		
	(601-048-00-0 205-923-4 218-01-9											
29		benzo[b]fluoranthe	ne			0.405	mg/kg		0.405	mg/kg	0.0000405 %		
	601-034-00-4 205-911-9 205-99-2		-										
30		benzo[k]fluoranther		007 00 0		0.141	mg/kg		0.141	mg/kg	0.0000141 %		
		601-036-00-5	205-916-6	207-08-9	-								
31				50 32 8	-	0.251	mg/kg		0.251	mg/kg	0.0000251 %		
	-	indeno[123-cd]pyre	200-020-3	50-52-6	+							\vdash	
32			205-893-2	193-39-5	-	0.213	mg/kg		0.213	mg/kg	0.0000213 %		
	1	dibenz[a,h]anthrace	ene										
33	6	601-041-00-2	200-181-8	53-70-3		0.0584	mg/kg		0.0584	mg/kg	0.0000584 %		
34		benzo[ghi]perylene		·		0.282	ma/ka		0 202	ma/ka	0 0000283 %		
J-			205-883-8	191-24-2		0.205	ing/kg		0.200	ing/kg	0.0000203 //		
35	ļ	phenol	202 622 7	109 05 2		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		004-001-00-2	203-032-1	100-90-2						Total	0.175 %	\vdash	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) 0

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound 4

concentration <LOD

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Report created by Jessica Hand on 16/01/2018

Appendix A: Classifier defined and non CLP determinands

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462 Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R61, R60, R50/53, R43, R42, R38, R37, R36, R22, R20 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Repr. 1B H360FD, Skin Sens. 1 H317, Resp. Sens. 1 H334, Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302, Acute Tox. 4 H332

^a dicopper oxide; copper (I) oxide (EC Number: 215-270-7, CAS Number: 1317-39-1)

CLP index number: 029-002-00-X Description/Comments: M-factor for long-term aquatic hazard not included as per paragraph (5), ATP9 Data source: Regulation (EU) 2016/1179 of 19 July 2016 (ATP9) Additional Risk Phrases: N R50/53 >= 0.25 %, N R50/53 Additional Hazard Statement(s): None. Reason for additional Hazards Statement(s)/Risk Phrase(s): 10/10/2016 - N R50/53 >= 0.25 % risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases 10/10/2016 - N R50/53 risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Description/Comments: Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Risk Phrases: None. Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s)/Risk Phrase(s): 03/06/2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5 Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Risk Phrases: None. Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s)/Risk Phrase(s): 14/12/2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25/05/2015 Risk Phrases: None. Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: R38, R37, R36, R27, R26, R22 Hazard Statements: Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 1 H310, Acute Tox. 1 H330, Acute Tox. 4 H302

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: N R51/53, N R50/53, R38, R37, R36 Hazard Statements: Aquatic Chronic 2 H411, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Irrit. 2 H315, STOT SE 3 H335, Eve Irrit. 2 H319

Report created by Jessica Hand on 16/01/2018

fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)
 Description/Comments: Data from C&L Inventory Database
 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
 Data source date: 06/08/2015
 Risk Phrases: N R50/53
 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: N R50/53, R43, R40, R38, R37, R36, R22 Hazard Statements: Skin Irrit. 2 H315, Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Carc. 2 H351, STOT SE 3 H335, Eye Irrit. 2 H319, Acute Tox. 4 H302

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17/07/2015 Risk Phrases: N R50/53, R43, R38, R37, R36 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, Skin Sens. 1 H317, Skin Irrit. 2 H315, STOT SE 3 H335, Eye Irrit. 2 H319

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21/08/2015 Risk Phrases: N R50/53 , Xn R22 Hazard Statements: Aquatic Chronic 1 H410 , Aquatic Acute 1 H400 , Acute Tox. 4 H302

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21/08/2015 Risk Phrases: N R50/53, Xi R36/37/38 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400, STOT SE 3 H335, Eye Irrit. 2 H319, Skin Irrit. 2 H315

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06/08/2015 Risk Phrases: R40 Hazard Statements: Carc. 2 H351

benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23/07/2015 Risk Phrases: N R50/53 Hazard Statements: Aquatic Chronic 1 H410, Aquatic Acute 1 H400

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

boron {diboron trioxide; boric oxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

Report created by Jessica Hand on 16/01/2018

chromium in chromium(III) compounds {chromium(III) oxide}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil. (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition, May 2015 HazWasteOnline Classification Engine Version: 2018.11.3477.7113 (11 Jan 2018) HazWasteOnline Database: 2018.11.3477.7113 (11 Jan 2018)

This classification utilises the following guidance and legislation: WM3 - Waste Classification - May 2015 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Copyright 2x2 Architects Ltd. Registered Office: 35 Endell Street, London WC2H 9BA. Registered in England and Wales No. 09679804. This drawing is the property of 2x2 Architects Ltd. No disclosure or copy of it may be made without the written permission of 2x2 Architects Ltd.

35 Endell Street London WC2H 9BA | john@2x2architects.com | 07980 573 867 | www.2x2architects.com

drawing title Existing Basement & Ground Floor Plan project 46 Holmdale Road

client Alex Wills & Artemis Doupa drawing no. EX100

scale @ A1 -

project no. 1720 revision -

scale @ A3 1:100

date	rev	revisions	scale bar	notes
-	-	-	0 1 2 3 4 5m	2x2 Architects Ltd take no responsibility for dimensions obtained by scaling from this drawing. If no dimension is shown the recipient must ascertain the dimension specifically from the architect or by site measurement and may not rely on the drawing. Supply of the drawing in digital form is solely for convenience and no reliance may be placed on any data in digital form. All data must be checked against hard copy. This drawing is issued for design intent only and should not be used for construction unless stated. All work must comply with relevant British Standards and Building Regulation requirements.

Copyright 2x2 Architects Ltd. Registered Office: 35 Endell Street, London WC2H 9BA, Registered in England and Wales No. 09679804. This drawing is the property of 2x2 Architects Ltd. No disclosure or copy of it may be made without the written permission of 2x2 Architects Ltd.

35 Endell Street London WC2H 9BA | john@2x2architects.com | 07980 573 867 | www.2x2architects.com

drawing title Existing Front & Rear Elevations project 46 Holmdale Road client

Alex Wills & Artemis Doupa

drawing no. EX150

scale @ A1 -

project no. 1720 revision -

scale @ A3 1:100

SECTION AA

daterevrevisionsscale barnotes---

Copyright 2x2 Architects Ltd. Registered Office: 35 Endell Street, London WC2H 9BA, Registered in England and Wales No. 09679804. This drawing is the property of 2x2 Architects Ltd. No disclosure or copy of it may be made without the written permission of 2x2 Architects Ltd.

35 Endell Street London WC2H 9BA | john@2x2architects.com | 07980 573 867 | www.2x2architects.com

drawing title Existing Section AA project 46 Holmdale Road

client Alex Wills & Artemis Doupa drawing no. EX160

scale @ A1 -

project no. 1720 revision -

scale @ A3 1:100

BASEMENT

Copyright 2x2 Architects Ltd. Registered Office: 35 Endell Street, London WC2H 9BA. Registered in England and Wales No. 09679804. This drawing is the property of 2x2 Architects Ltd. No disclosure or copy of it may be made without the written permission of 2x2 Architects Ltd.

35 Endell Street London WC2H 9BA | john@2x2architects.com | 07980 573 867 | www.2x2architects.com

drawing title Proposed Basement & Ground Floor Plan project 46 Holmdale Road

client Alex Wills & Artemis Doupa drawing no. A100

scale @ A1

project no. 1720

revision -

scale @ A3 1:100

FRONT ELEVATION

REAR ELEVATION

da	ate	rev	revisions	scale bar	notes
-		-	-	0 1 2 3 4 5m	2x2 Architects Ltd take no responsibility for dimensions obtained by scaling from this drawing. If no dimension is shown the recipient must ascertain the dimension specifically from the architect or by site measurement and may not rely on the drawing. Supply of the drawing in digital form is solely for convenience and no reliance may be placed on any data in digital form. All data must be checked against hard copy. This drawing is issued for design intent only and should not be used for construction unless stated. All work must comply with relevant British Standards and Building Regulation requirements.

Copyright 2x2 Architects Ltd. Registered Office: 35 Endell Street, London WC2H 9BA. Registered in England and Wales No. 09679804. This drawing is the property of 2x2 Architects Ltd. No disclosure or copy of it may be made without the written permission of 2x2 Architects Ltd.

35 Endell Street London WC2H 9BA | john@2x2architects.com | 07980 573 867 | www.2x2architects.com

drawing title Proposed Front & Rear Elevation project 46 Holmdale Road

client Alex Wills & Artemis Doupa drawing no. A150

scale @ A1 -

project no. 1720 revision -

scale @ A3 1:100

SECTION AA

daterevrevisionsnotes---</t

2x2 Architects Ltd take no responsibility for dimensions obtained by scaling from this drawing. If no dimension is shown the recipient must ascertain the dimension specifically from the architect or by site measurement and may not rely on the drawing. Supply of the drawing in digital form is solely for convenience and no reliance may be placed on any data in digital form. All data must be checked against hard copy. This drawing is issued for design intent only and should not be used for construction unless stated. All work must comply with relevant British Standards and Building Regulation requirements.

Copyright 2x2 Architects Ltd. Registered Office: 35 Endell Street, London WC2H 9BA. Registered in England and Wales No. 09679804. This drawing is the property of 2x2 Architects Ltd. No disclosure or copy of it may be made without the written permission of 2x2 Architects Ltd.

35 Endell Street London WC2H 9BA | john@2x2architects.com | 07980 573 867 | www.2x2architects.com

drawing title Proposed Section AA project 46 Holmdale Road

client Alex Wills & Artemis Doupa drawing no. A160

scale @ A1 -

project no. 1720 revision -

scale @ A3 1:100