APPENDIX C Fieldwork Logs

						Ground	and Wa	ter Ltd Bord	ehole No
								E	3H1
								She	et 1 of 1
Proi	ect Na	ame			Pı	roject N	lo.	Ho	ole Type
		ster Grove	:			WPR2		Colorados	WLS
Loca	ation:	Belsize	Park,	London NW3 4	НВ			I avale	Scale 1:50
Clie	nt:	Croft S	tructur	al Engineers				Dates: 12/10/2017	gged By JH
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m AOD)	Legend	Stratum Description	
201 201	Otrikes	Depth (m)	Туре	Results	0.05	(III AOD)	XXXXX	TARMAC	
		0.30 0.50	D D		0.45			MADE GROUND:Dark brown to black sandy gravel. Sand is fine coarse grained. Gravel is abundant, fine to coarse, angular to sub-rounded tarmac.	to
© ∃ S		0.80 1.00 1.00	D SPT D	N=10	0.90		8888	MADE GROUND: Dark brown/orange brown sandy gravelly clay. is fine to coarse grained. Gravel is occasional to abundant, fine to medium, sub-angular to sub-rounded tarmac, flint and	Sand -1
				(1,2/ 2,2,3,3)				brick fragments. LONDON CLAY FORMATION: Grey-brown and orange -brown 0	/
		1.50	D				D-D-D-	ESTECT OF THE WHOLE STOP BOTH UND STATES OF THE	[
		2.00 2.00	SPT D	N=12 (2,4/ 3,3,3,3)					-2
		2.50	D		2.50		× × × × × × × × × × × × × × × × × × ×	LONDON CLAY FORMATION: Grey-brown and orange brown si sandy silty CLAY. Sand is fine to medium grained.	lightly
		3.00 3.00	SPT D	N=16 (2,3/					-3
				3,4,4,5)			X X X X X X X X X X X X X X X X X X X		
		3.50	D				× × × × × × × × × × × × × × × × × × ×		-
		4.00 4.00	SPT D	N=17 (3,4/			×		-4
		4.50	D	4,4,5,4)	4.50		× × ×	LONDON CLAY FORMATION: Grey-brown CLAY.	
		5.00	SPT	N-20					-5
		5.00	D	N=20 (3,4/ 4,5,6,5)					-
		5.50	D		5.50			LONDON CLAY FORMATION: Grey-brown CLAY. Rare claystor fragments and selenite crystals noted.	ne -
		6.00 6.00	SPT D	N=28 (5,7/ 6,7,7,8)	6.00			LONDON CLAY FORMATION: Grey-brown sandy CLAY. Sand is medium grained. Claystones band noted from 6.50m bgl.	s fine to
		6.50	D	21.1.12)	6.60		3		
								End of Borehole at 6.60 m	-
									-7
									-
									-8
									-
									9
				_					
Pam	arke:	No groun	Type	Results er encountered.					
I Noil	uika.	Fine root	s note	ed to 1.70m bgl. ed on claystone	band.				AGS

						Ground	d and Wa	ter Ltd			Borehole No
											WS1
								1			Sheet 1 of 1
	ject Na	ame ster Grove	v			roject N WPR2		Co-	-ords:	-	Hole Type WLS
	ation:			London NW3 4		VVI 1\2	200				Scale
200	ution.	DOIOIZO	T GITS,	London 14470				Lev	/el:	-	1:50
Clie	nt:	Croft S	tructu	ral Engineers				Dat	tes:	12/10/2017	Logged By JH
Well	Water Strikes	Sample Depth (m)	es & In Type	Situ Testing Results	Depth (m)	Level (m AOD	Legend	,		Stratum Description	
		0.30	D	results	()	(coarse g	rained. (b: Dark brown to black gravelly sand. Sa Gravel is occasional to abundant, fine to gular to sub-rounded flint and brick fragi)
		0.50	D		0.50			MADE G	ROUND	b: Dark brown sandy gravelly clay. Sand Gravel is rare to occasional, fine to me	is fine to
		0.80 1.00	D D		1.00			sub-angu	ular to su	ub-rounded flint and brick fragments. Orange sandy gravelly sub-base. San	
		1.50	D		1.50		***	medium sub-roun	grained. nded, brid	. Gravel is abundant, fine to coarse, and ck and type 1.	gular to
			2000					\ grained.	Gravel is	 Brown sandy gravelly clay. Sand is fin s occasional to abundant, sub-angular t k fragments and flint. 	to
		2.00	D					LONDO	N CLAY	FORMATION: Brown CLAY.	-2
		2.50	D								-
		0.00			0.00						
		3.00	D		3.00			LONDO	N CLAY	FORMATION: Grey/brown CLAY.	-3
(X) (X)					3.50		===			F-d -f Pb-lt 2 50	
										End of Borehole at 3.50 m	
											-4
											Ē
											-5
											E
											-
											-6
											-
											-7
											-
											-
											-8
											-9
											[9
											E
			Туре	Results							-
Rem	narks:	No grour	ndwate	er encountered.							
		Fine root	s note	ed to 0.90m bgl.							AGS

	DYNAMIC PRO	BING			Probe No DP1					
Client	Croft Structural Engi	neers			She	et 1 of 1				
Site	51 Lancaster Grove				Proj	ect No GWPR	2283			
E -	N -	L	evel -		Date	12/10/2017	Logged	by JH		
epth (m)	Readings Blows/100mm		10	20	100 Val	30	40	Torque (Nm)		
1.0 - 2.0 - 3.0 - 4.0 - 5.0 - 6.0 - 7.0 - 8.0 - 9.0 -								0		
	Ground and V	ater Ltd	Fall Heig	500		Cone Base Diameter				
			Hammer Probe Ty	50.00 DPSH		inal Depth og Scale	1:50	AGS		

						Ground	d and Wate	r Ltd		WSA Sheet 1 of
	4 NT-	2000					12	1		
	ect Na ancas	ame ster Grov	е			oject N WPR2:		Co-ords:	-	Hole Type TP
	ation:			London NW3 4						Scale
0 20								Level:		1:50
Clie	nt:	Croft S	Structur	al Engineers				Dates:	17/11/2017	Logged By JH
/ell	Water	Samp Depth (m)	les & In	Situ Testing	Depth (m)	Level (m AOD	Legend		Stratum Description	
	Otrikes	Depth (m)	Туре	Results	0.10	(III AOD)	VVV.	CONCRETE		
		0.30	D				*****	MADE GROUND	: Dark brown to black gravelly sand. S	and is fine to
		0.50	D		0.40			coarse grained. (Gravel is occasional to abundant, fine t gular to sub-rounded flint and brick frag	o /
		0.80	D		0.65) RESERVE): Dark brown sandy gravelly clay. Sand	
		1.00	D		0.85			medium grained.	Gravel is rare to occasional, fine to mub-rounded flint and brick fragments.	edium,
		1.50	D				X X X	MADE GROUND medium grained.): Orange sandy gravelly sub-base. Sal Gravel is abundant, fine to coarse, an	nd is fine to gular to
		1.50					<u> </u>	sub-rounded, brid		/
		2.00	D				X =	LONDON CLAY	FORMATION: Orange brown silty CLA	Y.
		2.00	J				xx			
			_				<u>x</u>			
		2.50	D				<u> </u>			
			20000				x			
		3.00	D		3.00				End of Borehole at 3.00 m	
						1				

APPENDIX D Geotechnical Laboratory Test Results

Job No.			Project	Name						1	Progr	ramme	
	3518				Grove, Belsize Park					Samples r	eceived	17/1	0/2017
Project No.			Client							Schedule Project sta			0/2017 0/2017
-	PR2283	2	Ground	8. \N/a	iter I td					Testing S			0/2017
	T 1(220)		Cround	Q VV	T			1		resuing o	T	2771	5/201/
Hole No.		San	nple		Soil Desc	cription	NMC	Passing 425µm	LL	PL	PI	Rer	narks
	Ref	Тор	Base	Туре			%	%	%	%	%		
BH1	-	1.50	-	D	Brown slightly mottled CLAY with occasional and traces of fine root	I selenite crystals	31						
BH1	-	2.00	-	D	Brown slightly mottled with occasional selen orangish brown fine s	ite crystals and	30						
BH1		2.50	-	D	Brown slightly mottled with occasional selen black flecks		28						
BH1		3.00		D	Orangish brown slight grey silty CLAY with o crystals		28	100	71	24	47		
BH1	-	3.50	-	D	Orangish brown slightly mottled bluish grey silty CLAY with occasional selenite crystals and traces of fine rootlets		27	100	71	23	48		
BH1	-	4.00	-	D	Orangish brown slightly mottled grey silty CLAY with traces selenite crystals		27						
BH1	i	4.50	-	D	Brown slightly mottled sandy silty CLAY with crystals		27	100	70	23	47		
WS1	·	3.00	-	D	Brown slightly mottled with occasional selen		28	100	73	22	51		
	Test Methods: BS1377: Part 2: 1990: Natural Moisture Content : clause 3.2 Atterberg Limits: clause 4.3 and 5.0				Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288						roved		

Sulphate Content (Gravimetric Method) for 2:1 Soil: Water Extract and pH Value - Summary of Results Tested in accordance with BS1377 : Part 3 : 1990, clause 5.3 and clause 9

/	SOIL	5			Tested in accordance with BS1377 :	Part 3 : 1	990, cla	use 5.3 a	and clau	se 9	
Job No. 23518			Project N		ve, Belsize Park				Samples r		17/10/2017
7.5.62 (C.2000, 7.5.40)				asiei Gio	ve, Delsize Faik				Schedule		16/10/2017
Project No).		Client						Project s	tarted	17/10/2017
GWPR228	33		Ground &	& Water I	_td				Testing S	Started	25/10/2017
Hole No.			imple		Soil description	Dry Mass passing 2mm	SO3 Content	SO4 Content	pН		Remarks
	Ref	Тор	Base	Type		%	g/l	g/l			
BH1	i-	3.00	-	D	Orangish brown slightly mottled bluish grey silty CLAY with occasional selenite crystals	100	1.12	1.35	7.80		
*					Took Deport by I/A COIL C LA DODATOD					Ch	ecked and
*					Test Report by K4 SOILS LABORATOR Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288	i T				A Initials	pproved J.P
2519	9		,	Approved	Email: James@k4soils.com d Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab	.Mgr)				Date:	30/10/2017 MSF-5-R29

James Dalziel Ground & Water Ltd 2 The Long Barn Norton Farm Selborne Road Alton Hampshire GU34 3NB

QTS Environmental Ltd

Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN **t:** 01622 850410 russell.jarvis@qtse

senvironmental.com

QTS Environmental Report No: 17-65721

Site Reference: 51 Lancaster Grove, Belsize Park, London, NW3 4HB

Project / Job Ref: GWPR2283

Order No: None Supplied

Sample Receipt Date: 17/10/2017

17/10/2017 Sample Scheduled Date:

Report Issue Number: 1

Reporting Date: 23/10/2017

Authorised by:

Kevin Old Associate Director of Laboratory

QTSE is the trading name of DETS Ltd, company registration number 03705645

Authorised by:

Dave Ashworth Deputy Quality Manager

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate **Rose Lane** Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate QTS Environmental Report No: 17-65721 Ground & Water Ltd Site Reference: 51 Lancaster Grove, Belsize Park, London, NW3 4HB Date Sampled 02/10/17 02/10/17 None Supplied BH1 None Supplied WS Time Sampled TP / BH No Project / Job Ref: GWPR2283 Order No: None Supplied Reporting Date: 23/10/2017 None Supplied 5.00 Additional Refs None Supplied 2.00 296509 Depth (m)
QTSE Sample No

Determinand	Unit	RL	Accreditation				
pH	pH Units	N/a	MCERTS	7.4	7.7		
Total Sulphate as SO ₄	mg/kg	< 200	NONE	6493	15600		
Total Sulphate as SO ₄	%	< 0.02	NONE	0.65	1.56		
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	3120	2400		
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	3.12	2.40		
Total Sulphur	%	< 0.02	NONE	0.23	0.52		
Ammonium as NH ₄	mg/kg	< 0.5	NONE	< 0.5	< 0.5		
Ammonium as NH ₄	mg/l	< 0.05	NONE	< 0.05	< 0.05		
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	243	77		
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	122	38.6		
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	< 3	< 3		
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	< 1.5	< 1.5		
W/S Magnesium	mg/l	< 0.1	NONE	220	99		

wy.o magnesium mg/n| < 0.1| NON
Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C
Subcontracted analysis (5)

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 17-65721	
Ground & Water Ltd	
Site Reference: 51 Lancaster Grove, Belsize Park, London, NW3 4HB	
Project / Job Ref: GWPR2283	
Order No: None Supplied	
Reporting Date: 23/10/2017	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
\$ 296508	BH1	None Supplied	5.00	16.2	Brown clay
\$ 296509	WS1	None Supplied	2.00	18.4	Light brown clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm LIS}$ Unsuitable Sample $^{\rm LIS}$

\$ samples exceeded recommended holding times

QTS Environmental Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information
QTS Environmental Report No: 17-65721
Ground & Water Ltd
Site Reference: 51 Lancaster Grove, Belsize Park, London, NW3 4HB
Project / Job Ref: GWPR2283
Order No: None Supplied
Reporting Date: 23/10/2017

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
			Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total		E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR		Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried AR As Received

APPENDIX E Ground Movement Assessment Calculations

Project Ref: GWPR2283 Site: 51 Lincatter Grove, Belsize Park, London NW3 448 Exzavation Depth: 3

	roperty 1	Neighbouring Prop	erty 2
House No.	49	House No.	
Closest Wall (m)	1.60	Closest Wall (m)	2.3
Length (m)	11.10	Length (m)	10.8
Furthest Wall (m)	12.70	Furthest Wall (m)	13.0
Height	14.40	Height	14.4
Distance to Negligibi			
(Table 2.4 CRIA CS80) Distance to Negligibi Movement	(m)		
Distance to Negligibi			
Distance to Negligibi	(m)		
Distance to Negligibi Movement Horizontal:	(m) 12		

eighbouring Prop	perty 1	No.	49	Interval 2.78	Neighbouring Property	2	No. 53		Interval 2.70		Distance for
			Distance/Max				Dist	ance/Max			41
ontour Plot Point	Dist	ance (m)	Excaytion Depth		Contour Plot Point	Distan	ice (m) Exca	rtion Depth			41
	A	1.60	0.53			A	2.20	0.73			2 1
	8	4.38	1.46			8	4.90	1.63			1 . 1 . 2
	C	7.15	2.38			C	7.60	2.53			1
	D	9.93	3.31			D	10.30	3.43			1
	Ε	12.70	4.23			E	13.00	4.33			111
			Horizontal Moves	ment				Horizontal Movem	ent	Horiztontal	1"
tance (m)	%		(m) (mm)		Distance (m)	%	(m)	(men)		movement calcs	100
	1.60	0.13	0.00390	3.90 Movement at closest wall		2.20	0.12	0.00368	3.68 Movement at closest wall	uses linear	to the contract
	4.38	0.10	0.00286	2.86		4.90	0.09	0.00266	2.66	relationship from	2 47
	7.15	0.06	0.00182	1.82		7.60	0.06	0.00165	1.65	graph	47 500
	9.91	0.03	0.00078	0.78		0.30	0.02	0.00064	0.64		**
	12.70	-0.01	-0.00026	0.00 Movement at furthest wall	1	3.00	-0.01	-0.00038	0.00 Movement at furthest wall		(A) Horzontal m
			Vertical Movem	ost				Vertical Moveme	ot.		Name of Street Street
itance (m)	%		(mm) (mm)		Distance (m)	%	(m)	(men)			Te to ve
	1.60	0.09	0.00264	2.64 Movement at closest wall		2.20	0.08	0.00237	2.37 Movement at closest wall		5. 326 4
	4.38	0.06	0.00175	1.75		4.90	0.05	0.00160	1.60		1- 3
	7.15	0.03	0.00096	0.96		7.60	0.03	0.00063	0.83		1-12
	9.93	0.01	0.00016	0.16		0.30	0.00	0.00005	0.05	Vertical movement	17
	12.70	0.02	-0.00063	0.00 Movement at furthest wall	1	3.00	-0.02	-0.00072	0.00 Movement at furthest wall	is not linear so	4.
										relationship has	-
										been estimated from	to the same of the
TE: If there are	any are minu	is number	s change to 0 (Distance is me	re than distance to negligible movement from Table	2.4)					graph. The	
										estimated	Distriction nations
										relationship used in	42
										spreadsheet is	411
										shown in orange in	
										graph below.	2 3 3 6
											9 11

Potential Damage to Building

leighbouring Property 1	No.	49	
	m	mm	
£.	11.10	11100	
н	14.40	14400	
L/H	0.77		
Vertical Deflection (Δ)	0.5	mm	from graph (max difference between blue and orange line)
Defelction Ratio (Δ/L)	0.004505	%	between titue and drange me;
Horizontal Movement (8h)	3.90	mm	difference between horizontal movement at nearest and
Horzontal Strain (Eh) = δh/L	0.03514	%	farthest walls

<u>CATEGORY OF DAMAGE</u> Damage category limits are given in Table 2.5 (below).

L/H	0.77	
Negligible damage limit (Elim)	0.05	
(Δ/L)/(Elim) (Eh)/(Elim)	0.09009009 0.702702703	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'negligible' category - no need to plot points below
Very Slight damage limit (Elim)	0.075	
(Δ/L)/(Elim) (Eh)/(Elim)	0.06006006 0.468468468	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'very slight' category - no need to plot points below
Slight damage limit (Elim)	0.15	
(Δ/L)/(Elim) (Eh)/(Elim)	0.03003003 0.234234234	Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category - no need to plot points below
Moderate damage limit (Elim)	0.3	
(Δ/L)/(Elim) (Eh)/(Elim)	0.015015015 0.117117117	Plot this point on fig2.18 (b) if the plotted point is below the appropriate I/H line then damage falls into 'moderate' category - if the point is not below, damage is 'severe'

Negligible

No. 53 m 10.80 14.40

0.75

0.005093 %

3.68

L H L/H

Defeiction Ratio (Δ/L) Horizontal Movement (δh)

Horzontal Strain (Eh) = δh/L

mm 10800 14400

(Δ/L]/(Elim) (Eh)/(Elim)

0.3

Negligible

Fig 2.18 (b)

Calculated Category of Damage

(b) Influence of horizontal strain on $\Delta L / \varepsilon_{\rm lim}$ (after Burland, 2001)

| Page |

Potential Damage to Building Property 2 - Verticle Movement 3.6 mm 4.4 mm Defelction Ratio (Δ/L) 0.032432 % Defelction Ratio (Δ/L) 0.040741 % Horizontal Movement (δh) 3.90 mm rizontal Movement (δh) L/H L/H Negligible damage limit (Elim) 0.05 0.05 Slight damage limit (Elim) 0.216216216 0.234234234 Plot this point on fig2.18 (b) if the plotted point is 0.234234234 below the appropriate L/H line then damage falls into slight' category - no need to plot points below (Δ/L)/(Elim) (Eh)/(Elim) 0.3 Calculated Category of Damage Calculated Category of Damage Fig 2.18 (b) - (*L/H*) = 1.0 - 1.2 --(L/H) = 1.5- 0.8 - 0.4 - 0.2

(b) Influence of horizontal strain on $\Delta\!\!\!/ L/ \, z_{\rm lim}$ (after Burland, 2001)

0.2 0.4 0.6 0.8 $\varepsilon_{\rm h}/\varepsilon_{\rm lim}$

Part | Part |

Potential Damage to Building Property 2 - Verticle Movement -2.00 0.000 2.00 4.00 6.00 8.00 3.2 mm 3.6 mm Defelction Ratio (Δ/L) 0.028829 % Defelction Ratio (Δ/L) 0.033333 % Horizontal Movement (δh) 3.90 mm rizontal Movement (δh) 4.05 L/H L/H Negligible damage limit (Elim) 0.05 0.05 Slight damage limit (Elim) Slight damage limit (Elim) 0.192192192 0.234234234 Plot this point on fig2.18 (b) if the plotted point is below the appropriate 1/H line then damage falls into slight' category - no need to plot points below 0.222222222 Plot this point on fig2.18 (b) if the plotted point is below the appropriate L/H line then damage falls into 'slight' category no need to plot points below (Δ/L)/(Elim) (Eh)/(Elim) 0.3 Calculated Category of Damage Slight Calculated Category of Damage Fig 2.18 (b) - (*L/H*) = 1.0 - 1.2 --(L/H) = 1.5- 0.8 - 0.4 - 0.2

(b) Influence of horizontal strain on $\Delta\!\!\!/ L/ \, z_{\rm lim}$ (after Burland, 2001)

0.2 0.4 0.6 0.8 $\varepsilon_{\rm h}/\varepsilon_{\rm lim}$

(b) Influence of horizontal strain on $\Delta\!\!\!/ L/ \ \varepsilon_{\rm lim}$ (after Burland, 2001)