CampbellReith consulting engineers

The Hope Project, 1A Camden High Street,

London NW1

Basement Impact Assessment Audit

For

London Borough of Camden

Project Number: 12466-42

Revision: F1

February 2017

Campbell Reith Hill LLP Friars Bridge Court 41-45 Blackfriars Road London SE1 8NZ

T:+44 (0)20 7340 1700 E:london@campbellreith.com W:www.campbellreith.com

Document History and Status

Revision	Date	Purpose/Status	File Ref	Author	Check	Review
D1	February 2017	Comment	GKemb12466- 42-080217-1A Camden High St-D1.docx	GK	PIL/CC	ΜίΑ
F1	February 2017	Planning	GKemb12466- 42-210217-1A Camden High St-F1.docx	GK	PIL/CC	EMB

This document has been prepared in accordance with the scope of Campbell Reith Hill LLP's (CampbellReith) appointment with its client and is subject to the terms of the appointment. It is addressed to and for the sole use and reliance of CampbellReith's client. CampbellReith accepts no liability for any use of this document other than by its client and only for the purposes, stated in the document, for which it was prepared and provided. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of Campbell Reith Hill LLP. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the document as a whole. The contents of this document are not to be construed as providing legal, business or tax advice or opinion.

© Campbell Reith Hill LLP 2017

Document Details

Last saved	23/02/2017 12:01
Path	GKemb12466-42-210217-1A Camden High St-F1.docx
Author	G Kite, BSc MSc DIC FGS
Project Partner	E M Brown, BSc MSc CGeol FGS
Project Number	12466-42
Project Name	The Hope Project, 1A Camden High Street
Planning Reference	2016/6959/P

Contents

1.0	Non-technical summary	. 1
2.0	introduction	. 3
3.0	Basement Impact Assessment Audit Check List	. 5
4.0	Discussion	. 8
5.0	Conclusions	. 11

Appendix

Appendix 1: Residents' Consultation Comments

Appendix 2: Audit Query Tracker

Appendix 3: Supplementary Supporting Documents

1.0 NON-TECHNICAL SUMMARY

- 1.1. CampbellReith was instructed by London Borough of Camden, (LBC) to carry out an audit on the Basement Impact Assessment submitted as part of the Planning Submission documentation for The Hope Project, London, NW1 (planning reference 2016/6959/P). The basement is considered to fall within Category C as defined by the Terms of Reference.
- 1.2. The Audit reviewed the Basement Impact Assessment for potential impact on land stability and local ground and surface water conditions arising from basement development in accordance with LBC's policies and technical procedures.
- 1.3. CampbellReith was able to access LBC's Planning Portal and gain access to the latest revision of submitted documentation and reviewed it against an agreed audit check list.
- 1.4. The proposed development site is currently occupied by Koko nightclub, the Hope and Anchor pub and adjacent buildings. The proposal involves the retention of the Grade II listed Koko nightclub, the Hope and Anchor pub and facades to the adjacent buildings, known as the Bayham Street Property. The Bayham Street Property will be demolished with a new 4 to 5 storey hotel constructed with one level of basement. The basement level will be linked to the existing lower ground floors and basement levels present across the site.
- 1.5. Nearby LUL and Thames Water underground assets have been identified as within the zone of influence of the proposed development.
- 1.6. The BIA has been prepared by RSK Environment Ltd with supporting documents prepared by Heyne Tillett Steel. The authors' qualifications are in accordance the requirements of CPG4.
- 1.7. Information within the BIA is broadly in line with the aspects recommended of a desk study within the GSD Appendix G1. The ground investigation report and interpretative geotechnical report are broadly in line with the aspects recommended in the GSD Appendix G2 and G3.
- 1.8. The BIA states that the site lies upon Made Ground over designated unproductive strata, the London Clay, overlying the Lambeth Group. Groundwater has been detected within the Made Ground and perched at levels within the London Clay.
- 1.9. The BIA states that the existing basements have suffered from historic water ingress, which are believed to relate to perched water within the Made Ground and drainage issues, including sewer flooding. It is accepted that the proposed development will not impact the wider hydrological environment. However, local perched water conditions will need to be mitigated against both during the construction period and in the permanent case. It is noted that Grade 3 waterproofing is proposed.

- 1.10. The original BIA stated that the site has not been identified as having the potential for flooding. The revised BIA states that Environment Agency data indicates a low to high surface water flood risk for all the streets surrounding the development site, but that the site itself has a very low risk. The revised BIA indicates that the topography of the site is raised 200mm above street level and that further flood risk mitigation is not required. It is recommended that this assessment is reviewed and that final threshold levels are confirmed within the Basement Construction Plan (BCP).
- 1.11. Attenuation SUDS is proposed that would reduce peak offsite discharge flow rates by 50% of those discharging currently, including allowance for a 1 in 100 year storm event and a 20% allowance for climate change. The proposals should be agreed with Thames Water and LBC. It is noted that discussions with Thames Water have commenced.
- 1.12. The new basement will be formed within retaining walls constructed partly by contiguous piles and partly by underpinning existing structures. The revised BIA provides indicative pile diameters, outline construction drawings, outline retaining wall designs and an indicative temporary works scheme. The BIA states that the final scheme will be confirmed by the Contractor, once appointed, and this should be confirmed within the BCP.
- 1.13. A suitable ground movement assessment (GMA) and damage impact assessment for buildings within the zone of influence appears to have been presented, based on CIRIA C580. Damage Category 0 (Negligible) is predicted for all buildings. Once the Contractors final scheme is proposed the GMA and damage impact assessment should be reviewed and updated as required, and included within the BCP.
- 1.14. Structural monitoring within the zone of influence is proposed, although no details were originally provided. The revised BIA presents an outline structural monitoring plan. An updated, detailed monitoring strategy should be provided within the BCP, based on any revisions to the GMA as a result of the Contractor's final scheme. The monitoring strategy should control construction ensuring damage impacts are within the predicted Category 0 and agreed under the Party Wall Act, where applicable.
- 1.15. Damage impact to the adjacent highways and pavements, LUL assets and Thames Water assets are all assessed as Negligible. These should be discussed with the relevant authority responsible for each asset and a suitable monitoring plan implemented to limit movements and consequent damage to within the criteria agreed.
- 1.16. Queries and matters requiring further information or clarification are discussed in Section 4 and summarised in Appendix 2. Based on securing the required final information within a BCP, the requirements of CPG4 have been met.

CampbellReith

2.0 INTRODUCTION

- 2.1. CampbellReith was instructed by London Borough of Camden (LBC) on 11 January 2017 to carry out a Category C Audit on the Basement Impact Assessment (BIA) submitted as part of the Planning Submission documentation for The Hope Project, London NW1, Camden Reference 2016/6959/P.
- 2.2. The Audit was carried out in accordance with the Terms of Reference set by LBC. It reviewed the Basement Impact Assessment for potential impact on land stability and local ground and surface water conditions arising from basement development.
- 2.3. A BIA is required for all planning applications with basements in Camden in general accordance with policies and technical procedures contained within:
 - Guidance for Subterranean Development (GSD). Issue 01. November 2010. Ove Arup & Partners.
 - Camden Planning Guidance (CPG) 4: Basements and Lightwells.
 - Camden Development Policy (DP) 27: Basements and Lightwells.
 - Camden Development Policy (DP) 23: Water.
- 2.4. The BIA should demonstrate that schemes:
 - a) maintain the structural stability of the building and neighbouring properties;
 - b) avoid adversely affecting drainage and run off or causing other damage to the water environment; and,
 - avoid cumulative impacts upon structural stability or the water environment in the local area;

and evaluate the impacts of the proposed basement considering the issues of hydrology, hydrogeology and land stability via the process described by the GSD and to make recommendations for the detailed design.

2.5. LBC's Audit Instruction described the planning proposal as: "Redevelopment involving change of use from offices (Class B1) and erection of 5 storey building with basement to provide 32 bedroom hotel (Class C1) following demolition of 65 Bayham Place and 1 Bayham Street (retention of façade) including change of use at 1st and 2nd floor of 74 Crowndale Road from pub (Class A4) to hotel (Class C1), mansard roof extension to 74 Crowndale Road, retention of ground floor of Hope & Anchor PH (Class A4), change of use of flytower to hotel (C1) and

KOKO ancillary recording studio, creation of terraces at 3rd and 4th floor level and erection of 4th floor glazed extension above roof of Koko to provide restaurant and bar to hotel (C1)."

- 2.6. The Audit Instruction confirms that the Koko nightclub is a Grade II listed structure.
- 2.7. CampbellReith accessed LBC's Planning Portal on 01 February 2017 and gained access to the following relevant documents for audit purposes:
 - Basement Impact Assessment (ref 371475-02 (01)) dated 30 November 2016 by RSK Environment Ltd.
 - Structural Methodology Statement and Basement Impact Assessment (ref 1444 rev C) dated December 2016 by Heyne Tillett Steel.
 - Geo-environmental Site Assessment (ref 371475-01 (02)) dated 9 November 2016 by RSK Environment Ltd.
 - Drainage Strategy Report dated October 2016 by Heyne Tillett Steel Ltd.
 - Thames Water Utilities Assessment (ref 371475-03 (00)) dated 24 October 2016 by RSK Environment Ltd.
 - Comments regarding the proposed development from local residents.
- 2.8. CampbellReith were provided with the following document for audit purposes in February 2017, which is provided in Appendix 3:
 - The Hope Project HTS response to the BIA Audit (ref 1444, Rev A) dated February 2017 by Heyne Tillett Steel Ltd.

3.0 BASEMENT IMPACT ASSESSMENT AUDIT CHECK LIST

Item	Yes/No/NA	Comment
Are BIA Author(s) credentials satisfactory?	Yes	
Is data required by Cl.233 of the GSD presented?	Yes	Information within the BIA is broadly in line with the information required of a desk study in line with the GSD Appendix G1. Outline construction programme should be provided.
Does the description of the proposed development include all aspects of temporary and permanent works which might impact upon geology, hydrogeology and hydrology?	Yes	
Are suitable plans/maps included?	Yes	
Do the plans/maps show the whole of the relevant area of study and do they show it in sufficient detail?	Yes	
Land Stability Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	Worked ground risks identified and assessed. LUL and Thames Water have been consulted in regards exclusion zones and requirements of construction close to their assets.
Hydrogeology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	
Hydrology Screening: Have appropriate data sources been consulted? Is justification provided for 'No' answers?	Yes	Updated in revised submission.
Is a conceptual model presented?	Yes	Ground models presented and structural plans provided separately. However, the information is suitable.

The Hope Project, London NW1 BIA – Audit

Item	Yes/No/NA	Comment
Land Stability Scoping Provided? Is scoping consistent with screening outcome?	Yes	
Hydrogeology Scoping Provided? Is scoping consistent with screening outcome?	N/A	No issues identified at Screening.
Hydrology Scoping Provided? Is scoping consistent with screening outcome?	Yes	Updated in revised submission.
Is factual ground investigation data provided?	Yes	
Is monitoring data presented?	Yes	
Is the ground investigation informed by a desk study?	Yes	
Has a site walkover been undertaken?	Yes	
Is the presence/absence of adjacent or nearby basements confirmed?	Yes	Some levels have been conservatively assumed for the damage impact assessment.
Is a geotechnical interpretation presented?	Yes	
Does the geotechnical interpretation include information on retaining wall design?	Yes	Indicative parameters provided, 450mm diameter contiguous piles with 300mm liner wall / underpins with 200mm liner wall stated in text. To be confirmed within BCP.
Are reports on other investigations required by screening and scoping presented?	Yes	Drainage assessment.
Are baseline conditions described, based on the GSD?	Yes	

The Hope Project, London NW1 BIA – Audit

Item	Yes/No/NA	Comment
Do the base line conditions consider adjacent or nearby basements?	Yes	
Is an Impact Assessment provided?	Yes	
Are estimates of ground movement and structural impact presented?	Yes	
Is the Impact Assessment appropriate to the matters identified by screen and scoping?	Yes	Updated in revised submission.
Has the need for mitigation been considered and are appropriate mitigation methods incorporated in the scheme?	Yes	To be confirmed within the BCP (final threshold levels relative to street level).
Has the need for monitoring during construction been considered?	Yes	Updated in revised submission. An outline monitoring plan provided. To be confirmed within BCP.
Have the residual (after mitigation) impacts been clearly identified?	Yes	Updated in revised submission and to be confirmed in BCP.
Has the scheme demonstrated that the structural stability of the building and neighbouring properties and infrastructure will be maintained?	No	Retaining wall calculations, temporary works plan, GMA inputs should be provided.
Has the scheme avoided adversely affecting drainage and run-off or causing other damage to the water environment?	Yes	Attenuation SUDS proposals to be agreed with LBC and Thames Water
Has the scheme avoided cumulative impacts upon structural stability or the water environment in the local area?	Yes	Updated in revised submission and to be confirmed in BCP.
Does report state that damage to surrounding buildings will be no worse than Burland Category 2?	Yes	
Are non-technical summaries provided?	Yes	

4.0 DISCUSSION

- 4.1. The proposed development site is currently occupied by Koko nightclub, the Hope and Anchor pub and adjacent buildings. The proposal involves the retention of the Koko nightclub, the Hope and Anchor pub and facades to the adjacent buildings, known as the Bayham Street Property. The Bayham Street Property will be demolished with a new 4 to 5 storey hotel constructed with one level of basement. The basement level will be linked to the existing lower ground floors and basement levels present across the site. The Koko nightclub building is Grade II listed.
- 4.2. The Northern Line running tunnels and Mornington Crescent station are present within 10m west of the Koko nightclub, with the tunnel crowns approximately 10m below ground level (bgl). A number of Thames Water assets have been identified within the likely zone of influence of the development. Highways, pavements and shallow local utilities are also adjacent to the development and within the zone of influence.
- 4.3. The BIA has been prepared by RSK Environment Ltd with supporting documents prepared by Heyne Tillett Steel. The authors' qualifications are in accordance with the requirements of CPG4.
- 4.4. Information within the BIA is broadly in line with the aspects recommended of a desk study within the GSD Appendix G1. However, flood risk information has been limited to the assessment of flooding from rivers and seas. Surface water flood risk has not been assessed.
- 4.5. The ground investigation report and interpretative geotechnical report are broadly in line with the aspects recommended in the GSD Appendix G2 and G3.
- 4.6. The BIA states that the site lies upon Made Ground, of up to approximately 2m thickness, on to designated unproductive strata, the London Clay, which is present to approximately 25m bgl, overlying the Lambeth Group. Groundwater has been detected during the site investigation and subsequent monitoring data indicates water perched within the Made Ground and at levels within the London Clay.
- 4.7. The original BIA stated that the existing basements have suffered from historic water ingress, which are believed to relate to perched water within the Made Ground and drainage issues, including sewer flooding. Local perched water conditions will need to be mitigated against both during the construction period and in the permanent case. Dewatering via sump pumping is discussed during construction. Consideration of potential stability issues due to dewatering should be considered and mitigated against, if required. It is noted that Grade 3 waterproofing is proposed for the permanent design. Appropriate mitigation against sewer surcharging should be proposed.

The revised BIA provides further details of the anticipated sump pumping. Final details including contingency planning to be adopted will be confirmed by the Contractor's temporary works plan, which will be provided within a Basement Construction Plan (BCP). The revised BIA confirms a drained cavity waterproofing system and the use of non-return valves to mitigate against sewer surcharging.

- 4.8. It is accepted that the proposed development will not impact the wider hydrological environment and that the water encountered on site is locally perched and not part of a continuous water body.
- 4.9. The original BIA stated that the site had not been identified as having the potential for flooding. However, Environment Agency data indicates a surface water flood risk for all the streets surrounding the development site. Further flood risk assessment should be considered and suitable flood risk protection measures proposed in mitigation, both for the temporary works and for the permanent structure.

The revised BIA states that Environment Agency data indicates a low to high surface water flood risk for all the streets surrounding the development site, but that the site itself has a very low risk. The revised BIA indicates that the topography of the site is raised 200mm above street level and that further flood risk mitigation is not required. It is recommended that this assessment is reviewed and that final threshold levels are confirmed within the Basement Construction Plan (BCP).

- 4.10. Attenuation SUDS is proposed that would reduce peak offsite discharge flow rates by 50% of those discharging currently, including allowance for a 1 in 100 year storm event with a 20% allowance for climate change. An attenuation tank is proposed to be placed in the basement with off-site flows limited by a hydrobrake. The proposals should be agreed with Thames Water and LBC. It is noted that discussions with Thames Water have commenced.
- 4.11. The new basement beneath the Bayham Street Property will be formed within retaining walls constructed partly by contiguous piles and partly by underpinning existing structures, with a formation level approximately 3.2m bgl. The Hope and Anchor basement will be lowered by approximately 1.2m by underpinning the existing basement walls.
- 4.12. Indicative pile diameters, 450mm, have been provided for the proposed basement retaining walls and outline construction drawings have been presented. The revised BIA provides indicative pile diameters, outline construction drawings, outline retaining wall designs and an indicative temporary works scheme. The BIA states that the final scheme will be confirmed by the Contractor, once appointed, and this should be confirmed within the BCP.

The Hope Project, London NW1 BIA – Audit

- CampbellReith A suitable ground movement assessment (GMA) and damage impact assessment for buildings
- 4.13. within the zone of influence has been presented, based on CIRIA C580 guidance. Differential depths between the proposed development's foundations and nearby structures have been identified, and where unknown these have been conservatively assessed (for ground movement purposes) as being shallow foundations, just below the existing ground level.
- The GMA has considered vertical movements due to the demolition / unloading of the 4.14. underlying ground and construction / loading of the underlying ground using PDisp, and has considered the movements caused by installation of the retaining walls and basement excavation using XDisp. Damage Category 0 (Negligible) is predicted for all buildings.

The revised BIA confirms the pile diameter and toe depths currently proposed and adopted in the GMA. Once the Contractors final scheme is proposed the GMA and damage impact assessment should be reviewed and updated as required, and included within the BCP.

- 4.15. Structural monitoring within the zone of influence is proposed, although no details were originally provided. The revised BIA presents an outline structural monitoring plan. An updated, detailed monitoring strategy should be provided within the BCP, based on any revisions to the GMA as a result of the Contractor's final scheme. The monitoring strategy should control construction ensuring damage impacts are within the predicted Category 0 and agreed under the Party Wall Act, where applicable.
- 4.16. Damage impact to the adjacent highways and pavements is assessed as Negligible. However, this should be discussed with the relevant authority responsible (Transport for London, The Highways Agency or LBC) and a suitable monitoring plan implemented to limit movements and consequent damage to within the criteria agreed.
- 4.17. Damage impact to the adjacent LUL assets are also assessed as Negligible. This should be discussed with LUL and a suitable monitoring plan implemented to limit movements and consequent damage to within the criteria agreed. It is noted that discussions with LUL have commenced.
- Damage impacts to a number of Thames Water assets are considered, which concludes that 4.18. damage is unlikely to be caused to the assets by the proposed development activities. The assessment should be presented to Thames Water and additional analysis or mitigation measures, in conjunction with a suitable monitoring plan, should be agreed with them as required.

5.0 CONCLUSIONS

- 5.1. The proposed development site is currently occupied by Koko nightclub, the Hope and Anchor pub and adjacent buildings. The Bayham Street Property will be demolished with a new 4 to 5 storey hotel constructed with one level of basement. Nearby buildings and underground structures have been identified and the development's impact upon them has been assessed.
- 5.2. The BIA authors' qualifications are in accordance with the requirements of CPG4.
- 5.3. Information within the BIA is broadly in line with the aspects recommended of a desk study within the GSD Appendix G1.
- 5.4. The ground investigation report and interpretative geotechnical report are broadly in line with the aspects recommended in the GSD Appendix G2 and G3. The identified ground conditions are Made Ground overlying London Clay and the Lambeth Group.
- 5.5. It is accepted that the proposed development will not impact the wider hydrological environment. However, the existing basements have suffered water ingress and local perched water conditions will need to be mitigated against both during the construction period and in the permanent case.
- 5.6. The revised BIA states that Environment Agency data indicates a low to high surface water flood risk for all the streets surrounding the development site, but that the site itself has a very low risk. The revised BIA indicates that the topography of the site is raised 200mm above street level and that further flood risk mitigation is not required. It is recommended that this assessment is reviewed and that final threshold levels are confirmed within the Basement Construction Plan (BCP).
- 5.7. Attenuation SUDS are proposed. The proposals should be agreed with Thames Water and LBC. It is noted that discussions with Thames Water have commenced. It is accepted that the proposed development will not impact upon the wider hydrological environment.
- 5.8. The new basement retaining walls will be constructed partly by contiguous piles and partly by underpinning existing structures. The BIA states that the final scheme will be confirmed by the Contractor, once appointed, and this should be confirmed within the BCP.
- 5.9. A suitable ground movement assessment (GMA) and damage impact assessment for buildings within the zone of has been presented. Once the Contractors final scheme is proposed the GMA and damage impact assessment should be reviewed and updated as required, and included within the BCP.

The Hope Project, London NW1 BIA – Audit

- 5.10. The revised BIA presents an outline structural monitoring plan. An updated, detailed monitoring strategy should be provided within the BCP, based on any revisions to the GMA as a result of the Contractor's final scheme. The monitoring strategy should control construction ensuring damage impacts are within the predicted Category 0 and agreed under the Party Wall Act, where applicable.
- 5.11. Damage impact to the adjacent highways and pavements, LUL assets and Thames Water assets are all assessed as Negligible. These should be discussed with the relevant authority responsible for each asset and a suitable monitoring plan implemented to limit movements and consequent damage to within the criteria agreed.
- 5.12. Queries and matters requiring further information or clarification are summarised in Appendix 2. Based on securing the required final information within a BCP, the requirements of CPG4 have been met.

Appendix 1: Residents' Consultation Comments

The Hope Project, London NW1 BIA – Audit

Residents' Consultation Comments

Surname	Address	Date	Issue raised	Response
Summer Butterfly Investments Ltd	48 – 56 Bayham Place	6 January 2017	Fully supportive of the planned redevelopment.	N/A
Thames Water	Development Planning Dept	20 January 2017	Surface water drainage proposals should seek approval of Thames Water and should allow for appropriate attenuation.	4.10

Appendix 2: Audit Query Tracker

The Hope Project, London, NW1

Audit Query Tracker

Query No	Subject	Query	Status/Response	Date closed out
1	Land Stability	Retaining wall designs, temporary works plan, construction programme	Open – to be provided as 4.12, 4.7. – updated in revised response, but to be confirmed by Contractor's final scheme.	N/A – Ongoing, to be confirmed within BCP.
2	Land Stability	Ground movement assessment and damage impact assessment	Open – to be provided as 4.13, 4.14. – updated in revised response, but to be confirmed by Contractor's final scheme.	N/A – Ongoing, to be confirmed within BCP.
3	Land Stability	Structural monitoring	Open – to be provided as 4.15. – updated in revised response, but to be confirmed by Contractor's final scheme.	N/A – Ongoing, to be confirmed within BCP.
4	Land Stability	Asset monitoring	Open – to be agreed with asset owners, suitable to monitor and control works to within agreed criteria, as 4.16, 4.17, 4.18.	N/A - Ongoing
5	Flood Risk	Surface water flood risk	Open – suitable assessment and mitigation to be proposed as 4.4, 4.9. – threshold levels to be confirmed as suitable in final scheme.	N/A – Ongoing, to be confirmed within BCP.
6	Flood Risk	Perched water, sewer surcharging	Open – suitable assessment and mitigation to be proposed as 4.6, 4.7. – updated in revised response, but to be confirmed by Contractor's final scheme.	N/A – Ongoing, to be confirmed within BCP.
7	Hydrology	Attenuation SUDS	Open – proposals to be agreed with Thames Water and LBC as 4.10.	N/A - Ongoing

Appendix 3: Supplementary Supporting Documents

The Hope Project – HTS response to the BIA Audit (ref 1444, Rev A) dated February 2017 by Heyne Tillett Steel Ltd

The Hope Project – HTS response to the BIA Audit

Please find appended our response to the Audit of the Basement Impact Assessment for The Hope Project, Camden.

The numbered responses relate to Campbell Reith's Audit Query Tracker dated February 2017 (revision D1).

Query 1 – Land Stability

- Outline retaining wall calculations please see attached. The design of the contiguous piled retaining wall will be a contractor design portion.
- Indicative temporary works scheme, sequencing and propping arrangement please see attached (Sketches SK40-45). The exact construction methodology is to be confirmed by the appointed contractor and temporary works engineer.
- Proposed ground water control measures:
 - The ground water level has been measured below the proposed basement slab level. Localised dewatering will only be required if the ground water level is found to be higher than expected.
 - During construction localised dewatering is proposed during construction via sump pumping. The sump will be located in the centre of the site to keep the dewatered level local to the site works. The dewatering will be monitored to ensure that no fines are washed in to the sump.
 - Permanent works A Grade 3 waterproofing system is proposed in the basement areas. A drained cavity system will be installed enabling ground water collection within sump locations. Sump pumps will pump ground water via a rising main to ground floor level where it will be discharged via gravity into the combined Thames Water sewer network. Non return valves will be used to mitigate against sewer surcharging.
- Construction programme To be confirmed once a contractor has been appointed.

IE RELAINING W.	M DESIGN - BAYIMM ST	HART Eng. MTT	
b No. 1464	Sheet	Rev.	STE
-			
REGAINING	LAN CALMUTIONS		
BAYMAM ST	NEET EVENATION		
	(BAYHAN STAD	967)	
		N	
O BASONEA	Я, ,		
310			8
PhaP			10
3 * 1.	·		
	SUMMANDE	Soul (10 ana MLATER	
* RETAINED IT	E1001 = 3100m		
* CANTILEVENE BY NEW D	S REGINING LIAN TO USEMENT SUS	DE PROPPES AT BASE	
ALSWIE TO	E ANS BASE THUMBIS	ME 400mm Title	
* CLINHAR ALE	> Q= 10 12/12		
Solicophilot	De et Delat		
SOIL - ML	1 1692 32 PC1001		
	is landon cury	8= 20 /2/m3	
		$C_{n} = 70+ 6.002 = 70+ 6.002 = 3.5$	= 911m/m2
		$D' = ZS^{\circ}$	
5 GROUNSLIATER	-> GINSEWATIVEN A ABOVE BASENENT	SSUME GLUL AT VENTER SSL = 20:5 n AOD	c In
* P= VENTION	2 LOAS MOM STAN	Cant ADDUE	

Job	THE	HOPE	Most	201			Date	FE3. 2017	LEVNE
Title	NELAU	NING	LIM	JEIW	-BATHAM	SUBOL	Eng.	MJT	TILLETT
Job No.	۱)	444		Sheet	2		Rev.	-	STEEL

 $G: \left(\frac{221}{M/m^{2}x} S_{Mx} O(4m) + \left(\frac{21}{M/m^{2}x} 1.25m\right) \right)$ $+ \left(\frac{1.51}{M/m^{2}x} 1.25m\right)$ Groups FLOW<math display="block">Groups FLOW $<math display="block">Q: \left(\frac{1.51}{M/m^{2}x} 1.25m\right) + \left(\frac{51}{M/m^{2}x} 1.25m\right)$ > 48.4 m/m = 8.11m/m

RETAINING WAR DESIGNED WING TENS

SDERIGN PASSES, SEE ATTAUNES)

Tekla Tedds	Project	The Hop	e Project		Job no. 14	44
HTS	Calcs for Re	taining wall desi	gn - Bayham S	treet	Start page no./Re	evision 1
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.6.11

Retaining wall details	
Stem type	Cantilever
Stem height	h _{stem} = 3100 mm
Stem thickness	tstem = 400 mm
Angle to rear face of stem	α = 90 deg
Stem density	γ _{stem} = 25 kN/m ³
Toe length	l _{toe} = 1200 mm
Base thickness	t _{base} = 400 mm
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$
Height of retained soil	h _{ret} = 3100 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 1000 mm
Water density	γ _w = 9.8 kN/m ³
Retained soil properties	
Soil type	Hard clay
Moist density	$\gamma_{mr} = 20 \text{ kN/m}^3$
Saturated density	$\gamma_{sr} = 20 \text{ kN/m}^3$
Characteristic effective shear resistance angle	$\phi' r.k = 25 \text{ deg}$
Characteristic wall friction angle	$\delta r.k = 12.5 \text{ deg}$
Base soil properties	
Soil type	Hard clay
Soil density	γ _b = 20 kN/m ³
Characteristic undrained shear strength	$C_{b.u.k} = 91 \text{ kN/m}^2$
Characteristic effective shear resistance angle	φ'b.k = 18 deg
Characteristic wall friction angle	δ _{b.k} = 9 deg
Characteristic base friction angle	$\delta_{bb.k} = 12 \text{ deg}$
Loading details	
Variable surcharge load	Surcharge _Q = 10 kN/m ²
Vertical line load at 1400 mm	P _{G1} = 48.4 kN/m
	P _{Q1} = 8.1 kN/m

Tekla Tedds	Project The Hope Project					444
HTS	Calcs for Re	taining wall des	ign - Bayham S	Street	Start page no./R	Revision 2 Approved date
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date

두 Tekla	Project	The Hop		Job no. 1444		
HTS	Calcs for				Start page no /R	evision
	R	etaining wall desi	gn - Bayham S	treet	Clair page no./r	3
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date
Water properties						
Design water density		$\gamma w' = \gamma w / \gamma_{\gamma} =$	= 9.8 kN/m ³			
Retained soil properties						
Design moist density		γ mr' = γ mr / γ_1	_r = 20 kN/m ³			
Design saturated density		$\gamma sr' = \gamma sr / \gamma_{\gamma}$	= 20 kN/m ³			
Design effective shear resistan	ce angle	$\phi'_{r.d} = atan(t)$	$\tan(\phi'_{r.k}) / \gamma_{\phi'}) = 2$	25 deg		
Design wall friction angle		δr.d = atan(t	$an(\delta_{r.k}) / \gamma_{\phi'}) = 1$	2.5 deg		
Base soil properties						
Design soil density		γь' = γь / γ _γ =	= 20 kN/m ³			
Design effective shear resistan	ce angle	φ'b.d = atan(tan(φ'ь.κ) / γ _{φ'}) =	18 deg		
Design wall friction angle		δ _{b.d} = atan(t	tan(δ _{b.k}) / γ _φ ') = 9	eg deg		
Design base friction angle		δbb.d = atan	(tan(δьь.k) / γ _{φ'}) =	= 12 deg		
Design undrained shear streng	th	$C_{b.u.d} = C_{b.u.k}$	/ γ _{cu} = 91 kN/m	2		
Using Coulomb theory						
Active pressure coefficient		$K_A = sin(\alpha + $	+ φ'r.d) ² / (sin(α) ²	$^{2} \times sin(\alpha - \delta_{r.d}) \times$	[1 + √[sin(¢'r.d +	·δr.d) ×
		sin(φ'r.d - β)	/ (sin($lpha$ - δ r.d) ×	$sin(\alpha + \beta))]]^2) =$	0.367	
Passive pressure coefficient		K _P = sin(90	- φ'b.d) ² / (sin(90	$O + \delta b.d) \times [1 - \sqrt{s}]$	sin(φ'b.d + δb.d) ×	s in(φ'b.d) /
		(sin(90 + δь	.d))]] ²) = 2.359			
Overturning check						
Vertical forces on wall						
Wall stem		F _{stem} = γ _{Gf} ×	$A_{stem} \times \gamma_{stem} = 3$	31 kN/m		
Wall base		F _{base} = γGf ×	· Abase × γbase = 1	16 kN/m		
Line loads		$F_{P_v} = \gamma_{Gf} \times$	$P_{G1} + \gamma_{Qf} \times P_{Q1}$	= 48.4 kN/m		
Total		$F_{total_v} = F_{ster}$	em + F _{base} + F _{wate}	er_v + F _{P_v} = 95.4	kN/m	
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A$	× COS ($\delta_{r.d}$) × γ _Q ×	surcharge _Q × h	leff = 18.8 kN/m	
Saturated retained soil		$F_{sat_h} = \gamma_G \times$	$K_A \times \cos(\delta_{r.d}) \times$: (γ _{sr} ' - γ _w ') × (h _{sat}	$+ h_{base})^2 / 2 = 4$	I.8 kN/m
Water		$F_{water_h} = \gamma_G$	$\times \gamma_w' \times (h_{water} +$	d _{cover} + h _{base}) ² / 2	2 = 13 kN/m	
Moist retained soil		$F_{moist_h} = \gamma_G$	$\times K_{A} \times cos(\delta_{r.d})$	$\times \gamma_{mr}' \times$ ((h _{eff} - h _s	_{sat} - h _{base}) ² / 2 +	(h _{eff} - h _{sat} -
		$h_{base}) imes (h_{sa})$	t + h _{base})) = 49.8	3 kN/m		
Base soil		Fexc_h = -γGf	\times KP \times cos(δ b.d)	$1 imes \gamma_{b}' imes$ (h _{pass} + h	lbase) ² / 2 = -3.7	kN/m
Total		Ftotal_h = Fsa	t_h + Fmoist_h + Fe	exc_h + Fwater_h + F		/m
Overturning moments on wa	I					
Surcharge load		$M_{sur_OT} = F_s$	ur_h × $X_{sur_h} = 33$	kNm/m		
Saturated retained soil		$M_{sat_{OT}} = F_{sat}$	at_h × Xsat_h = 2.3	8 kNm/m		
Water		M _{water_OT} = F	water_h × Xwater_h	= 6.1 kNm/m		
Moist retained soil		$M_{moist_OT} = F$	 moist_h × Xmoist_h =	= 64.8 kNm/m		
Total		$M_{total_OT} = N$	lsat_OT + Mmoist_O	T + Mwater_OT + Ms	sur_OT = 106 kNr	m/m
Restoring moments on wall						
Wall stem		$M_{\text{stem}_R} = F_s$	stem \times Xstem = 43.	4 kNm/m		
Wall base		$M_{base_R} = F_{t}$	base \times Xbase = 12.	8 kNm/m		
Line loads		M _{P_R} = (abs	s(γgf × Pg1 + γqf	× Pq1)) × p1 = 67	′.8 kNm/m	
Total		$M_{total R} = M_{s}$	stem R + Mbase R +	+ Мр к = 124 kN	m/m	

		The Hope Project				
HTS	Calcs for				Start page no./F	Revision
	1	Retaining wall des	ign - Bayham	Street	4	
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approve
	MJT	08/02/2017				
Chock stability against ov	orturning					
Factor of safety	enturning	FoSot = Mto	ital R / M total OT =	= 1.169		
		PASS - Maximu	m restoring n	noment is greate	r than overtu	rning mo
Bearing pressure check						
Vertical forces on wall						
Wall stem		$F_{stem} = \gamma_G \times$	Astem × γstem =	41.9 kN/m		
Wall base		F _{base} = γ _G ×	Abase $\times \gamma$ base =	21.6 kN/m		
Line loads		F _{P_v} = γ _G ×	Pg1 + γQ × PQ1	= 77.5 kN/m		
Total		F _{total_v} = F _{st}	, _{em} + F _{base} + F _w	_{rater_v} + F _{P_v} = 140	. 9 kN/m	
Horizontal forces on wall						
Surcharge load		$F_{sur h} = K_A$	× cos(δ _{r.d}) × γα	\times Surcharge _Q × I	n _{eff} = 18.8 kN/r	n
Saturated retained soil		F _{sat h} = γ _G >	$\langle K_A \times \cos(\delta_{r,d}) \rangle$	\times (γ_{sr} ' - γ_{w} ') \times (h _{sa}	$(+ h_{base})^2 / 2 =$	4.8 kN/m
Water		$F_{water h} = \gamma G$	$x \times \gamma_w' \times (h_{water} \cdot$	$+ d_{cover} + h_{base})^2 /$	2 = 13 kN/m	
Moist retained soil		$F_{moist h} = \gamma_G \times K_A \times \cos(\delta_{r,d}) \times \gamma_{mr'} \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat})^2 / 2$				
		h _{base}) × (h _s	at + h _{base})) = 49	9.8 kN/m	·····,	,
Base soil		$F_{\text{pass } h} = -\gamma c$	$f \times K_P \times \cos(\delta)$	b.d) × γb' × (dcover +	$(h_{base})^2 / 2 = -3$.7 kN/m
Total		Ftotal_h = Fsa	at_h + Fmoist_h +	Fpass_h + Fwater_h +	Fsur_h = 82.7 k	N/m
Moments on wall						
Wall stem		Mstern = Fste	m × Xstem = 58 (6 kNm/m		
Wall base		Mbase = Fba	n X Xhase = 17 (3 kNm/m		
Surcharge load		Mour – -Four	$b \times Y_{cur} = -33$	s kNm/m		
Line loads		$M_{\rm B} = (\gamma_{\rm C} \times 10^{-1})$	$P_{C1} \pm w_{C} \times P_{C1}$) × p1 – 108 5 kNi	m/m	
Saturated retained soil		Mer = (yG ×	• • • • • • 2	3 kNm/m	11/111	
Water		$M_{\text{mater}} = -\Gamma_{\text{sat}}$		– -6 1 kNm/m		
Maist ratained soil		Mwater = -1 w	ater_n ∧ ∧water_n •	61 8 kNm/m		
Total		Mtotol – Moto	noist_n × Amoist_n = m + Mhaaa + Ma	= -04.0 KNNN/III	+ Maur + Mp - 1	78 3 kNm
		TVIIotai – TVIste	III I IVIDASE I IVIS			10.0 KINI
Check bearing pressure		Γ.	E 9271	<n1 m<="" td=""><td></td><td></td></n1>		
Propping force		r prop_base =	$r total_h = 02.7 r$			
Eccentricity of reaction			$- \frac{1}{2} - \frac{244}{2}$ m	m		
Loaded length of base		$e = \sqrt{-1}$ bas	- - - - 1111 mm			
Bearing pressure at top		$a_{too} = \sum_{x} x$	~ – 1111 11111 v / llood – 126 9	kN/m ²		
Bearing pressure at heel		$Q_{\text{heel}} = 0 \mathbf{k} \mathbf{N}$	l/m ²			
Effective overburden press	ure	$q = (t_{base} +$	d _{cover}) × γ _b ' = 8	kN/m²		
Design effective overburder	n pressure	$a' = a / \gamma_{v} =$	8 kN/m ²	-		
Foundation shape factors	1	$s_{c} = 1$				
Load inclination factors		H = Fsur h +	- Fsat_h + Fwater	_h + Fmoist_h = 86.5	kN/m	
· ···· ·		$i_{c} = 0.5 \times (2)$	1 + √(1 - H / (lic	$(\text{bad} \times \text{Cb.u.d}))) = 0.6$	9	
Net ultimate bearing capaci	ty	$n_f = (\pi + 2)$	\times C b.u.d \times S c \times i	ic + q = 331.1 kN/	m²	
Factor of safety	-	$FoS_{bp} = n_f$	/ max(q _{toe} , q _{hee}	ei) = 2.611		
-	PASS -	Allowable bearin	ng pressure e	xceeds maximu	m applied bea	nring pre
Partial factors on actions	- Table A.3 - Con	nbination 2				
Permanent unfavourable ac	tion	γ _G = 1.00				

γGf = **1.00**

Permanent favourable action

Tekla	Project	The Hor	Job no. 1444			
HTS	Calcs for	,	,		Start page no./R	Revision
	I	Retaining wall des	ign - Bayham S	Street		5
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date
Variable unfavourable action		γ Q = 1.30				
Variable favourable action		$\gamma_{Qf} = 0.00$				
Partial factors for soil paran	neters – Table	A.4 - Combinatio	n 2			
Angle of shearing resistance		$\gamma_{\Phi'} = 1.25$				
Undrained shear strength		γ _{cu} = 1.40				
Weight density		$\gamma_{\gamma} = 1.00$				
Water properties						
Design water density		$\gamma w' = \gamma w / \gamma_{\gamma}$	= 9.8 kN/m ³			
Retained soil properties						
Design moist density			u – 20 kN/m ³			
Design moist density		$y_{\rm rer} = y_{\rm rer} / y_{\rm rer}$	$= 20 \text{ kN/m}^3$			
Design effective shear resista	nce angle	$\phi'_{rd} = atan($	= ο ((()/)) tan(φ', κ) / γκ) =	20-5 deg		
Design wall friction angle	nee angle	$\delta_{rd} = atan(t)$	$\tan(\phi(k) / \gamma_{\phi}) = \frac{1}{2}$	10.1 deg		
			α (() α () () () () ()	len dog		
Design soil density		<u></u>	- 20 kNl/m ³			
Design effective shear resista	nce angle	$\gamma b = \gamma b / \gamma \gamma$	$(tan(d _{b,k}) / y_{k}) =$	- 14 6 deg		
Design wall friction angle	nce angle	φb.u – atan	$(\tan(\psi b.k) / \gamma_{\psi}) - \tan(\delta_{b,k}) / \gamma_{\psi}) - \frac{1}{2}$	7 2 deg		
Design was meter angle		δeb.d = atan	$(\tan(\delta_{bb} k) / \gamma_{\phi}) =$	= 9 7 deg		
Design undrained shear strep	ath	Cbud = Cbud	$\sqrt{v_{cu}} = 65 \text{ kN/r}$	n^2		
	9		.,			
		$K_{\rm A} = \sin(\alpha)$	$+ \frac{1}{2} $	$)^2 \times \sin(\alpha - \delta d) \times d$	[1 ⊥ √[cin(a'	L S. J V
Active pressure coemcient		$\sin(\phi'_{rd} - \beta)$	$+\psi$ (sin($\alpha - \delta_{rd}$)	$\propto \sin(\alpha + \beta))$	ο 430	r Or.a) ×
Passive pressure coefficient		$K_{\rm P} = \sin(90)$) - φ' _{b d}) ² / (sin(9	× 3iii(α + β/)]) = 90 + δ⊾d) × [1 - √[s	sin(d'r4 + 9r4) :	× sin(d'rd)/
		(sin(90 + δ	$(0.1)^{(0.1)} = 1.965$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Overturning check		(- (, [[,,]]			
		Γ		21 kN/m		
		Γ stem = γ Gf >	Astem $\times \gamma$ stem =	16 kN/m		
		$F_{\text{Dase}} = \gamma_{\text{GF}}$	$Abase \times \gamma base =$	= 48.4 kN/m		
Total		$F_v = \gamma G \land$	am + Fhasa + Fwa	r = 40.4 KN/m	kN/m	
Horizontal forces on wall			· · Dage · • Wa			
Surcharge load		Faur h - Ka	× coc(8-4) × vo	× Surchargeo × h		,
Saturated retained soil		$F_{\text{sot}} = NA$	$\times \cos(0.a) \times \gamma a$	\times Suicharged \times in \times (ver' = vw') \times (heat	$+ b_{baca})^2 / 2 - 1$	4 3 kN/m
Water		$F_{water h} = \sqrt{6}$	$\times v_w' \times (h_{water} -$	$h = \frac{1}{100} + $	P = 9.6 kN/m	
Moist retained soil		$F_{\text{moist } h} = \gamma G$	$\times K_A \times \cos(\delta_r)$	$(h_{eff} - h_{s}) \times v_{mr}' \times ((h_{eff} - h_{s}))$	_ = 0.0 KN////	- (heff - hsat -
		$h_{\text{base}} \propto (h_{\text{se}})$	$(h + h_{hase})) = 44$.5 kN/m	at 110a36) / 2 1	
Base soil		$F_{exc} h = -\gamma G$	$\times K_{P} \times \cos(\delta_{b})$	d) × νb' × (hpass + h	$(base)^2 / 2 = -3.1$	kN/m
Total		$F_{\text{total } h} = F_{\text{sa}}$	at_h + Fmoist h + I	Fexc_h + Fwater h + F	sur_h = 75 kN/r	n
Overturning moments on wa	all		. –	··· _		
Surcharge load	•••	M _{sur} ot = F	sur $h \times X_{sur} = 3$	4.4 kNm/m		
Saturated retained soil		M _{sat} от = F	sat $h \times X_{sat} h = 2$	kNm/m		
Water		M _{water} or =	Fwater_h × Xwater	n = 4.5 kNm/m		
Moist retained soil		M _{moist} ot =	$F_{moist_h} \times X_{moist_h}$	n = 57.9 kNm/m		

	roject	The Hop	be Project		Job no. 1	444
HTS	alcs for		Start page no./Revision			
	F	Retaining wall des	ign - Bayham	Street		6
c	alcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date
Total		Mtotal_OT = N	Isat_OT + Mmoist_	_OT + Mwater_OT + Ms	sur_OT = 98.8 kl	Nm/m
Restoring moments on wall						
Wall stem		$M_{\text{stem}_R} = F_{\text{stem}_R}$	$x_{stem} \times x_{stem} = 43$	3.4 kNm/m		
Wall base		$M_{base_R} = F$	$base \times x_{base} = 12$	2.8 kNm/m		
Line loads		$M_{P_R} = (abs)$	6(γGf × P G1 + γα	$p_{af} \times P_{Q1})) \times p_1 = 67$	' .8 kNm/m	
Total		$M_{total_R} = M$	stem_R + Mbase_F	R + MP_R = 124 kN	m/m	
Check stability against overturn	ning					
Factor of safety		$FoS_{ot} = M_{to}$	tal_R / Mtotal_OT =	= 1.255		
		PASS - Maximul	m restoring n	noment is greate	r than overtu	rning momen
Bearing pressure check						
Vertical forces on wall						
Wall stem		$F_{stem} = \gamma G \times$	Astem × γstem =	31 kN/m		
Wall base		F _{base} = γ _G ×	Abase × γbase =	16 kN/m		
Line loads		F _{P_v} = γ _G ×	Pg1 + γα × Pα1	= 58.9 kN/m		
Total		$F_{total_V} = F_{st}$	_{em} + F _{base} + F _w	ater_v + F _{P_v} = 105.	9 kN/m	
Horizontal forces on wall						
Surcharge load		$F_{sur h} = K_A$	× cos(δ _{r.d}) × γα	\times Surcharge _Q \times h	ı _{eff} = 19.7 kN/r	n
Saturated retained soil		$F_{sat h} = \gamma_G >$	$(K_A \times \cos(\delta_{r,d}))$	\times ($\gamma_{sr'}$ - $\gamma_{w'}$) \times (h _{sat}	$+ h_{base})^2 / 2 =$	4.3 kN/m
Water		$F_{water h} = \gamma G$	$\times \gamma_{w}' \times (h_{water})$	+ d_{cover} + h_{base}) ² / 2	2 = 9.6 kN/m	
Moist retained soil		$F_{moist h} = \gamma G$	$\times K_A \times \cos(\delta_{r})$	d) $\times \gamma_{mr'} \times ((h_{eff} - h_s))$	_{sat} - h _{base}) ² / 2 ·	+ (h _{eff} - h _{sat} -
		$h_{base}) \times (h_{sa})$	(t + h _{base})) = 44	l.5 kN/m		
Base soil		$F_{\text{pass h}} = -\gamma c$	$_{\text{Sf}} \times \mathbf{K}_{P} \times \mathbf{cos}(\delta)$	b.d) × γb' × (d _{cover} +	$h_{base})^2 / 2 = -3$	3.1 kN/m
Total		F _{total_h} = F _{sa}	it_h + Fmoist_h +	Fpass_h + Fwater_h +	Fsur_h = 75 kN	/m
Moments on wall						
Wall stem		Mstem = Fste	$m \times X$ stem = 43 .4	4 kNm/m		
Wall base		Mbase = Fbas	$x = x x_{base} = 12.5$	8 kNm/m		
Surcharge load		Msur = -Fsur	$h \times X_{sur} h = -34$	l.4 kNm/m		
Line loads		Mρ = (γg ×	- Pg1 + γα × Pq1) × p1 = 82.5 kNm/	/m	
Saturated retained soil		Msat = -Fsat_	h × Xsat_h = -2	<nm m<="" td=""><td></td><td></td></nm>		
Water		M _{water} = -F _w	ater_h $ imes$ Xwater_h :	= -4.5 kNm/m		
Moist retained soil		Mmoist = -Fm	ioist_h $ imes$ Xmoist_h =	= -57.9 kNm/m		
Total		M _{total} = M _{ste}	m + Mbase + Ms	at + M _{moist} + M _{water}	+ M _{sur} + M _P =	39.9 kNm/m
Check bearing pressure						
Propping force		Fprop_base =	Ftotal_h = 75 kN	l/m		
Distance to reaction		$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}}$ /	Ftotal_v = 377 n	nm		
Eccentricity of reaction		$e = \overline{x} - I_{bas}$	e / 2 = -423 m	m		
Loaded length of base		$I_{load} = 2 \times 10^{-10}$	x = 753 mm			
Bearing pressure at toe		$q_{toe} = F_{total}$	/ I _{load} = 140.6	kN/m ²		
Bearing pressure at heel		$q_{\text{heel}} = 0 \text{ kN}$	l/m²			
Effective overburden pressure		$q = (t_{base} +$	dcover) × γb' = 8	kN/m²		
Design effective overburden press	sure	$\mathbf{q}' = \mathbf{q} / \gamma_{\gamma} =$	8 kN/m ²			
Foundation shape factors		s _c = 1				
Load inclination factors		$H = F_{sur_h} +$	Fsat_h + Fwater_	h + Fmoist_h = 78.1	kN/m	
		$i_c = 0.5 \times (1)$	$+ \sqrt{H / (I_{load})}$	< Cb.u.d) - 1)) = 0.88	6	

	Project	The Hop	be Project		Job no.	1444
HTS	Calcs for				Start page no./	Revision
	Re	taining wall des	ign - Bayham	Street		7
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date
Net ultimate bearing capaci	ity	$n_f = (\pi + 2)$	\times Cb.u.d \times Sc \times i	c + q = 304.1 kN/	m²	
Factor of safety		$FoS_{bp} = n_f$	/ max(q _{toe} , q _{hee}	el) = 2.162		
	PASS - Al	llowable bearin	ig pressure e	xceeds maximu	m applied bea	aring pressure
RETAINING WALL DESIG	N					
In accordance with EN199	92-1-1:2004 incorpo	orating Corrige	ndum dated J	anuary 2008 an	d the UK Nati	onal Annex
incorporating National An	nendment No.1	0 0		-		
					Tedds calcul	ation version 2.6.11
Concrete details - Table 3	.1 - Strength and de	eformation cha	racteristics for	or concrete		
Concrete strength class		C32/40				
Characteristic compressive	cylinder strength	f _{ck} = 32 N/n	nm²			
Characteristic compressive	cube strength	fck,cube = 40	N/mm ²			
Mean value of compressive	cylinder strength	$f_{\rm cm} = f_{\rm ck} + 8$	N/mm ² = 40 N	N/mm ²		
Mean value of axial tensile	strength	$f_{ctm} = 0.3 N$	$/mm^2 \times (f_{ck} / 1)$	$N/mm^2)^{2/3} = 3.0$	N/mm ²	
5% fractile of axial tensile s	trength	$f_{ctk,0.05} = 0.7$	$7 \times f_{ctm} = 2.1 N_{e}$	/mm²		
Secant modulus of elasticity	y of concrete	Ecm = 22 kM	$V/mm^2 \times (f_{cm} / f_{cm})$	10 N/mm ²) ^{0.3} = 3	3346 N/mm ²	
Partial factor for concrete -	Table 2.1N	γc = 1.50				
Compressive strength coeff	ficient - cl.3.1.6(1)	αcc = 0.85				
Design compressive concre	ete strength - exp.3.1	5 $f_{cd} = \alpha_{cc} \times f_{cd}$	_{ck} / γc = 18.1 N	l/mm²		
Maximum aggregate size		h _{agg} = 20 m	ım			
Reinforcement details						
Characteristic yield strength	n of reinforcement	f _{yk} = 500 N/	/mm²			
Modulus of elasticity of rein	forcement	Es = 20000	0 N/mm ²			
Partial factor for reinforcing	steel - Table 2.1N	γs = 1.15				
Design yield strength of rein	nforcement	$f_{yd} = f_{yk} / \gamma s$	= 435 N/mm ²			
Cover to reinforcement						
Front face of stem		c _{sf} = 40 mn	n			
Rear face of stem		Csr = 50 mn	n			
Top face of base		c _{bt} = 50 mn	n			
Bottom face of base		Cbb = 75 mr	n			
Loading detail	s - Combination No.1 - kN/m ² SI	hear force - Combination No.1 - k	N/m Bending n	noment - Combination No.1 - kNm/m		
	B					
	5,38					
	5					
	õ					
	20.34 20.34					
			113.7			
49 10 10 10 10 10 10 10 10 10 10 10 10 10	ب ۲ 934					
	47		-67.5		75.3	
89				82	.8	

Tekla Tedds	Project	Job no The Hope Project	Job no. 1444			
HTS	Calcs for Re	Start page no./Revision 8				
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date

Depth of section
Rectangular section in flexure - Section 6.1

h = **400** mm

Neclangular section in nexure - Section 0.1	
Design bending moment combination 1	M = 75.3 kNm/m
Depth to tension reinforcement	d = h - c _{sr} - ϕ_{sr} / 2 = 344 mm
	$K = M / (d^2 \times f_{ck}) = 0.020$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - $3.53 \times K$) ^{0.5} , 0.95) × d = 327 mm
Depth of neutral axis	$x = 2.5 \times (d - z) = 43 \text{ mm}$
Area of tension reinforcement required	A _{sr.req} = M / (f _{yd} × z) = 530 mm ² /m

Area of tension reinforcement required	Asr.req
Tension reinforcement provided	12 di
Area of tension reinforcement provided	A _{sr.pro}
Minimum area of reinforcement - exp.9.1N	A _{sr.mir}
Maximum area of reinforcement - cl.9.2.1.1(3) A _{sr.ma}

2 dia.bars @ 150 c/c $k_{sr,prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 754 \text{ mm}^2/\text{m}$ $k_{sr,min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 541 \text{ mm}^2/\text{m}$

 $A_{sr.max} = 0.04 \times h = 16000 \text{ mm}^2/\text{m}$

max(Asr.req, Asr.min) / Asr.prov = 0.717

PASS - Area of reinforcement provided is greater than area of reinforcement required

Deflection control - Section 7.4	
Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.006$
Required tension reinforcement ratio	$\rho = A_{\text{sr.req}} / d = 0.002$
Required compression reinforcement ratio	$\rho' = A_{sr.2.req} / d_2 = 0.000$
Structural system factor - Table 7.4N	K _b = 0.4
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.422$
Limiting span to depth ratio - exp.7.16.a	$K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \rho_0 \ / \ $
	(ρ ₀ / ρ - 1) ^{3/2}] = 68.9
Actual span to depth ratio	h _{stem} / d = 9
	PASS - Span to depth ratio is less than deflection control limit

Tekla	Project The Hone Project					Job no. 1444	
	alce for				Start page no /Povision		
	Re	taining wall des	ign - Bayham	Street	9		
Ca	alcs by	Calcs date	Checked by	Checked date	Approved by	Approved dat	
	MJT	08/02/2017					
Crack control - Section 7.3							
Limiting crack width		Wmax = 0.3	mm				
Variable load factor - EN1990 - Ta	able A1.1	$\psi_2 = 0.6$					
Serviceability bending moment		M _{sis} = 47 ki	Nm/m				
Tensile stress in reinforcement		$\sigma_s = M_{sis} / (a_s)$	$A_{sr.prov} \times z) = 1$	90.8 N/mm ²			
Load duration		Long term					
Load duration factor		$k_t = 0.4$					
Effective area of concrete in tensio	on	Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) =	119000 mm²/ı	m	
Mean value of concrete tensile stre	ength	$f_{ct.eff} = f_{ctm} =$	3.0 N/mm ²				
Reinforcement ratio		$\rho_{p.eff} = A_{sr.pr}$	ov / Ac.eff = 0.00	06			
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	m = 5.998				
Bond property coefficient		k1 = 0.8					
Strain distribution coefficient		k ₂ = 0.5					
		k ₃ = 3.4					
		k4 = 0.425					
Maximum crack spacing - exp.7.11	l	$s_{r.max} = k_3 \times$	$c_{sr} + k_1 \times k_2 \times$	$k_4 \times \phi_{sr} \ / \ \rho_{p.eff} = \textbf{4}$	92 mm		
Maximum crack width - exp.7.8		Wk = Sr.max >	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$				
		$w_k = 0.282$	mm				
		wk / wmax =	0.938				
		PASS	- Maximum c	rack width is les	ss than limitin	g crack	
Rectangular section in shear - S	ection 6.2						
Design shear force		V = 67.5 km	N/m				
		$C_{\rm Rd,c}=0.18$	3 / γc = 0.120				
		k = min(1 +	· √(200 mm / c	i), 2) = 1.762			
Longitudinal reinforcement ratio		ρι = min(Asi	.prov / d, 0.02) :	= 0.002			
		Vmin = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^3$	^{/2} × fck ^{0.5} = 0.463 I	N/mm ²		
Design shear resistance - exp.6.2a	a & 6.2b	$V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}, v_{min}) \times d$					
		V _{Rd.c} = 159	.4 kN/m				
		$V / V_{Rd.c} = 0$).423				
		PAS	S - Design sl	hear resistance e	exceeds desig	n shear	
Horizontal reinforcement paralle	I to face of s	tem - Section 9	9.6				
Minimum area of reinforcement - c	cl.9.6.3(1)	A _{sx.req} = ma	$x(0.25 \times A_{sr.prc})$	ov, $0.001 \times t_{stem}$) =	400 mm²/m		
Maximum spacing of reinforcemen	t – cl.9.6.3(2)	Ssx_max = 40	0 mm				
Transverse reinforcement provideo	b	10 dia.bars	@ 150 c/c				
Area of transverse reinforcement p	provided	$A_{sx.prov} = \pi$	$\times \phi_{sx}^2 / (4 \times s_{sx})$) = 524 mm²/m			
PA	ASS - Area of	reinforcement	provided is	greater than are	a of reinforce	ment req	
Check base design at toe							

Depth of section	h = 400 mm			
Rectangular section in flexure - Section 6.	1			
Design bending moment combination 1	M = 82.8 kNm/m			
Depth to tension reinforcement	d = h - c _{bb} - φ _{bb} / 2 = 317 mm			
	$K = M / (d^2 \times f_{ck}) = 0.026$			
	K' = 0.207			
	K' > K - No compression reinforcement is required			
Lever arm	$z = min(0.5 + 0.5 \times (1 - 3.53 \times K)^{0.5}, 0.95) \times d = 301 mm$			
Depth of neutral axis	$x = 2.5 \times (d - z) = 40$ mm			

Tedds	Project The Hope Project Calcs for Retaining wall design - Bayham Street				JOD NO.	Job no. 1444		
HTS					Start page no./Revision 10			
C	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved dat		
Area of tension reinforcement req	uired	Abb.req = M	/ (f _{yd} × z) = 63 2	2 mm²/m				
Tension reinforcement provided		16 dia.bar	s @ 150 c/c					
Area of tension reinforcement pro	vided	$A_{bb.prov} = \pi$	$\times \phi_{bb}^2$ / (4 \times s _{bl}	a) = 1340 mm²/m				
Minimum area of reinforcement -	exp.9.1N	$A_{bb,min} = m$	$ax(0.26 \times f_{ctm})$	f_{vk} , 0.0013) × d =	498 mm²/m			
Maximum area of reinforcement -	cl.9.2.1.1(3)	$A_{bb,max} = 0$.04 × h = 1600	0 mm²/m				
		max(Abb.red	Abb.min) / Abb.p	rov = 0.472				
P	ASS - Area of	reinforcemen	t provided is	greater than are	a of reinforce	ment requir		
Crack control - Section 7 3			-	-				
Limiting crack width		Wmax = 0.3	mm					
Variable load factor - EN1990 – T	able A1 1	$w_{11ax} = 0.6$						
Serviceability bending moment		φ2 – 0.0 Mele – 59 3	kNm/m					
Tensile stress in reinforcement		$\sigma_0 - M_{\rm olo} / f$	$(\Delta_{\rm bb}, \alpha_{\rm ev}, \times, 7) = 1$	46 9 N/mm ²				
Load duration		l ong term	$(100.prov \land 2) =$	40.5 10/1111				
Load duration factor		kt = 0 4						
Effective area of concrete in tensi	on	$A_{n,off} = \min_{i=1}^{n}$	(25×(h-d) ((h - x)/(3 h/2) =	120125 mm ² /	'n		
Mean value of concrete tensile st	renath	$r_{\text{C,eff}} = 1101(2.3 \times (1 - 4), (1 - 3) / 3, 11 / 2) = 120123 11007/00$						
Reinforcement ratio	$a_{0} c_{0}^{\mu} = A_{0} b_{0} c_{0}^{\mu} = 0.011$							
Modular ratio	$\alpha_{0} = F_{0} / F_{cm} = 5.998$							
Bond property coefficient	$k_1 = 0.8$							
Strain distribution coefficient		$k_2 = 0.5$	$k_2 = 0.5$					
		$k_2 = 3.4$						
		k ₄ = 0.425						
Maximum crack spacing - exp.7.1	1	Sr.max = k3 >	< C bb + k 1 × k 2 >	$\langle k_4 \times \phi_{bb} / \rho_{p.eff} = 0$	499 mm			
Maximum crack width - exp.7.8		$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$						
·		Wk = 0.22 I	nm		11 * //			
		$W_k / W_{max} =$	0.733					
		PASS	S - Maximum d	rack width is le	ss than limitir	ng crack wid		
Rectangular section in shear - 9	Section 6.2							
Design shear force		V = 113.7	kN/m					
		$C_{Rd,c} = 0.1$	8 / γc = 0.120					
		$k = min(1 \cdot$	+ √(200 mm / c	(), 2) = 1.794				
l ongitudinal reinforcement ratio		$\rho_{\rm I} = \min(A_{\rm hb, prov} / d, 0.02) = 0.004$						
Longitudinal reinforcement ratio		$V_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{fe}^{0.5} = 0.476 \text{ N}/\text{mm}^2$						
Design shear resistance - exp.6.2a & 6.2b		$V_{\text{Pd}c} = \max(C_{\text{Pd}c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times 0 \times \text{fek})^{1/3} \text{ Vmin}) \times d$						
		$V_{Rdc} = 162.6 \text{ kN/m}$						
		$V / V_{Rd,c} =$	0.699					
		PAS	SS - Desian sl	near resistance o	exceeds desi	an shear for		
Secondary transverse reinforce	ment to base	- Section 9.3				,		
Minimum area of reinforcement –	cl.9.3.1.1(2)	$A_{bx,reg} = 0.2$	$2 \times A_{bb,prov} = 26$	8 mm²/m				
Maximum spacing of reinforceme	nt – cl.9.3.1.1(3	3) Sbx max = 450 mm						
Transverse reinforcement provide	ed	10 dia.bars @ 150 c/c						
Area of transverse reinforcement	provided	$A_{bx,prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 524 \text{ mm}^2/\text{m}$						
	•	einforcement provided is greater than area of reinforcement require						

Tekla Tedds	Project The Hope Project				Job no. 1444	
HTS	Calcs for Retaining wall design - Bayham Street			Start page no./Revision 11		
	Calcs by MJT	Calcs date 08/02/2017	Checked by	Checked date	Approved by	Approved date

Reinforcement details

Job	THE	HOCE	ma	SELI			
Title	NDIGTIVE	Ton	mm	wours,	PROPINE	ł	1
Job N	o. 144	¥		She	eet S	12	4:

SECTION A-A NTS

COMPLETE SUPERSTMUTURE WOMAS & NONOVE TENDOMINY WOMAS 6.7

- ENERT NEW SUPERSTRUCTURE AND PERMANENT SUPPORT TO NETAINES STANCTURE.
- SEQUENTIALLY RETURE TEMPORARY LIMITS FOLLING CONFIRMATION FROM S.E.
- REMINING INSTALLATION/EVENTION OF SUPELSTAMETURE TO WIMENCE.

AND HIS Sh 40-45.

SETTION B-B NII

Job	1	ÍÆ	H	re	pros	E 11			
Title	N	141	vE	Ten	MAT	homas,	P11	m NG	4.50
Job	No.	14	14			She	et	Sh	4

0

0

TEMONIM WOMES NOLOVES FOULDWING INSTALLITION OF NEW SWELSTMOTUNE AND RE-JUTIONT TO FALLOES

Query 2 – Land Stability

- Dimensions of the piles used in the ground movement assessment of the contiguous piled retaining wall (as confirmed by RSK):
 - o Diameter = 450mm
 - o Length = 12.3m deep
 - o Toe depth = 10.2m AOD

Query 3 – Land Stability

- Structural monitoring see below for an outline structural monitoring plan. The final detailed monitoring plans with adjacent buildings will be agreed with the appointed contractor. There are no party wall awards as the buildings on the site are under the same ownership. A site plan with indicative locations of monitoring points is appended:
- The integrity of excavations is to be maintained by the contractor at all times.
- The contractor shall be responsible for establishing and setting out of all levels and datum.
- The contractor is to provide a schedule of conditions of all adjacent buildings with photographs agreed with the CA prior to works commencing.
- Any cracks to the fabric of the adjacent structures or perimeter retained walls are to have graduated tell tales applied prior to the commencement of the demotion works, or as they are uncovered.
 - The perimeter walls shall be monitored regularly for signs of movement by all of the follow methods:
 - o Visual inspection
 - o Accurate survey techniques
 - o Graduated tell tales
- Movement shall be measured with the use of prism reflector targets. Results are to be tabulated and represented graphically and submitted on a weekly basis.
- Monitoring to be undertaken until the retained walls are tied into the new structure.
- Monitoring is to be undertaken for a suitable period prior to main demolition and excavation works commencing to enable base movement due to daily thermal effects to be established.
- Readings should be taken at the same time each day to minimise the effects of temperature fluctuations.
- Frequency of monitoring to be in accordance with CIRIA guide C579.
- Lateral or vertical movements and deflections of the perimeter retained walls and adjacent structures above those due to daily thermal effects should be monitored against an agreed traffic light system to be proposed by the contractor, based on the following:
 - Green The wall movement is within an acceptable range. Site works and frequency of monitoring can proceed as planned. Max lateral/vertical deflection trigger level 5mm.
 - Amber Wall movement exceeds the green limit but is below the red limit. Monitoring frequency is increased. A meeting is convened to review working procedures and assumptions. Max lateral/vertical deflection trigger level is greater than 5mm but less than 10mm.
 - Red Wall movement exceeds amber control limit. Work is stopped immediately and team meeting convened to identify the reason for reaching the limit and any remedial action or propping that may be required.
- Structural Engineer to be present on site to confirm remedial action.
- Differential movement trigger levels:
 - Amber Differential movement between adjacent horizontal targets which exceed 3mm difference in figures but less than 5mm. A meeting is convened to review working procedures, condition of AO finishes & assumptions.
 - Red Differential movement between adjacent horizontal targets which exceeds 5mm difference in figures. Work is stopped immediately and team meeting is convened to identify the reason for reaching the limit and any remedial action required.
- The contractor is to undertake a movement survey of the piled wall during basement construction twice weekly. Contractor to confirm method of survey. A brief report detailing monitoring locations & movement is to be issued 24 hours following survey.

Activity	Suggested frequency
From installation of monitoring to start of demolition	Weekly until reading have stabilised (allow 4 weeks)
During demolition and excavation	Weekly
Construction of all remaining structure	Fortnightly
Remainder of contract period	Every 3 months
During defects liability period	Twice, at least 6 months apart

• Suggested frequency of monitoring:

Query 4 – Land Stability

N/A - Ongoing

Query 5 – Flood Risk

• Surface Water Floor Risk – please see the following response from RSK.

"By way of background, if intense rain is unable to soak into the ground or be carried through manmade drainage systems, for a variety of reasons, it can run off over the surface causing localised floods before reaching a river or other watercourse. Generally, where there is impermeable surfacing or where the ground infiltration capacity is exceeded, surface water runoff will occur. Excess surface water flows from the site are believed to drain into the surrounding Thames Water sewer network. For the avoidance of all doubt, the surrounding private drainage and highway drainage and/or surface/combined sewer network would either have to be blocked or overflowing for there to be any risk of surface water flooding in the area.

- There is a surface water flow path along Crowndale Road to the south, which extends (to a lesser extent) up Camden High Street to the west, Bayham Street to the east and into Bayham Place to the north of the site. The flood risk associated with this flow path ranges from low to high, however, the flow pathways do not encroach onto the site and the site itself is assessed as being at very low risk from surface water flooding. Meaning that any surface water flows are likely to be confined to the surrounding road network, and probably contained within the existing road gullies adjacent to the pavements surrounding the site.
- As the area of high risk is confined to the surrounding road network, it is likely that surface water would be prevented from flowing through the site due to raised kerbs and the walls along the boundaries of the site. From Google Street View, it seems like there is a degree of freeboard between the road gullies and the site doorways, probably between 100mm and 200mm, meaning that flood depths would have to exceed these depths in order to flood the site.
- Further reference to the expected flood depths mapping in the surrounding road network indicate that expected flood depths are likely to be less than 300mm and have a velocity in excess of 0.25m/s. The main flow route is expected to be north to south down Camden High Street then west to east along Crowndale Road.
- The overall risk of flooding to the site from surface water is considered low, and therefore further site specific mitigation is not considered necessary. "

Query 6 – Flood Risk

- Proposed ground water control measures:
 - The ground water level has been measured below the proposed basement slab level. Localised dewatering will only be required if the ground water level is found to be higher than expected.
 - During construction localised dewatering is proposed during construction via sump pumping. The sump will be located in the centre of the site to keep the dewatered level local to the site works. The dewatering will be monitored to ensure that no fines are washed in to the sump.
 - Permanent works A Grade 3 waterproofing system is proposed in the basement areas. A drained cavity system will be installed enabling ground water collection within sump locations. Sump pumps will pump ground water via a rising main to ground floor level where it will be discharged via gravity into the combined Thames Water sewer network. Non return valves will be used to mitigate against sewer surcharging.

Query 7 – Hydrology

N/A - Ongoing

London

Friars Bridge Court 41- 45 Blackfriars Road London, SE1 8NZ

T: +44 (0)20 7340 1700 E: london@campbellreith.com

Surrey

Raven House 29 Linkfield Lane, Redhill Surrey RH1 1SS

T: +44 (0)1737 784 500 E: surrey@campbellreith.com

Bristol

Wessex House Pixash Lane, Keynsham Bristol BS31 1TP

T: +44 (0)117 916 1066 E: bristol@campbellreith.com

Birmingham

Chantry House High Street, Coleshill Birmingham B46 3BP

T: +44 (0)1675 467 484 E: birmingham@campbellreith.com

Manchester

No. 1 Marsden Street Manchester M2 1HW

T: +44 (0)161 819 3060 E: manchester@campbellreith.com

UAE

Office 705, Warsan Building Hessa Street (East) PO Box 28064, Dubai, UAE

T: +971 4 453 4735 E: uae@campbellreith.com

Campbell Reith Hill LLP. Registered in England & Wales. Limited Liability Partnership No OC300082 A list of Members is available at our Registered Office at: Friars Bridge Court, 41- 45 Blackfriars Road, London SE1 8NZ VAT No 974 8892-43