## PRICE&MYERS

# 56 Croftdown Road 25293

## Response to Campbell Reith Audit Query Tracker

Prepared by:Tim Pattinson MEngChecked by:David Derby BSc ACGI CEng MICE FIStructEJob Number:25293

| Date          | Version | Notes / Amendments / Issue Purpose                   |
|---------------|---------|------------------------------------------------------|
| December 2017 | 2       | In response to Campbell Reith Audit comments Oct '17 |

## Query Number:

3 Structural calculations - Retaining wall and Underpins See Appendix A – Head of water at 2/3 basement depth added

#### Construction methodology and temporary works sequencing and propping See Appendix B – Updated construction sequence with an additional section through the light well added

#### Monitoring of structures

See Appendix C – Monitoring positions and trigger limits set

#### 5 Flood risk assessment

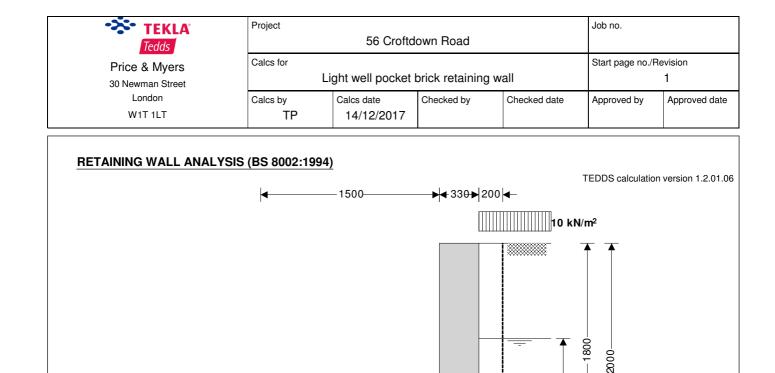
See Appendix D – York Rise Zone: flood risk assessment

Appendices

Appendix A: P&M retaining underpinned wall calculations Ver2

Appendix B: P&M drawings CS02 RevA and CS03

Appendix C: P&M movement monitoring plan


Appendix D: York Rise Zone: Flood risk assessment

# structural engineering  $\ L$  geometrics  $\ \diamondsuit$  sustainability  $\ \diamondsuit$  civil engineering

Appendix A

Structural Calculations for Retaining Underpin Walls

# structural engineering  $\downarrow$  geometrics  $\diamondsuit$  sustainability  $\diamondsuit$  civil engineering



2030

hstem = 1800 mm

twall = 330 mm

I<sub>toe</sub> = **1500** mm I<sub>heel</sub> = **200** mm

Cantilever propped at base

 $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 2030 \text{ mm}$ 

#### Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall **Retained material details** 

Mobilisation factor

200

Prop≚

## t<sub>base</sub> = 200 mm $d_{ds} = 0 \text{ mm}$ l<sub>ds</sub> = **1030** mm t<sub>ds</sub> = 200 mm $h_{wall} = h_{stem} + t_{base} + d_{ds} = 2000 \text{ mm}$ $d_{cover} = 0 mm$ d<sub>exc</sub> = **200** mm h<sub>water</sub> = 1200 mm $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 1000 mm$ $\gamma_{wall} = 23.6 \text{ kN/m}^3$ γ<sub>base</sub> = 23.6 kN/m<sup>3</sup> $\alpha = 90.0 \text{ deg}$ $\beta = 0.0 \text{ deg}$ $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 2000 \text{ mm}$

1200

¥

Moist density of retained material

M = 1.5  $\gamma_m = 21.0 \text{ kN/m}^3$ 

| TEKLA<br>Tedds                                                                                                                                                                                                                        | Project                                         | 56 Croft                                                                                                            | down Road                     |                      | Job no.                              |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|--------------------------------------|--------------------|
| Price & Myers<br>30 Newman Street                                                                                                                                                                                                     | Calcs for                                       | _ight well pocket                                                                                                   | brick retaining               | wall                 | Start page no./                      | Revision<br>2      |
| London<br>W1T 1LT                                                                                                                                                                                                                     | Calcs by<br>TP                                  | Calcs date<br>14/12/2017                                                                                            | Checked by                    | Checked date         | Approved by                          | Approved date      |
| Saturated density of retained<br>Design shear strength<br>Angle of wall friction                                                                                                                                                      | material                                        | γ <sub>s</sub> = <b>23.0</b> k<br>φ' = <b>21.1</b> d<br>δ = <b>16.1</b> de                                          | eg                            |                      |                                      |                    |
| Angle of wait inclionBase material detailsFirm clayMoist densityDesign shear strength                                                                                                                                                 |                                                 | $\gamma_{mb} = 18.0$<br>$\phi'_{b} = 24.2$                                                                          | kN/m <sup>3</sup>             |                      |                                      |                    |
| Design base friction<br>Allowable bearing pressure                                                                                                                                                                                    |                                                 | $\delta_b = 18.6$ c<br>$P_{bearing} = 1$                                                                            | -                             |                      |                                      |                    |
| Using Rankine theory<br>Active pressure coefficient fo<br>$(\cos(\phi'))^2])$                                                                                                                                                         | r retained materia                              | l Ka = (cos(                                                                                                        | 3) - √[(cos(β))²              | - (cos(¢'))²]) / (co | os(β) + √[(cos(β                     | 3)) <sup>2</sup> - |
|                                                                                                                                                                                                                                       | for baco motorial                               | K <sub>a</sub> = <b>0.471</b>                                                                                       |                               | )/(1 )/[1 (000       | (ሐ'. ))21) _ <b>ว วอด</b>            |                    |
| Passive pressure coefficient At-rest pressure                                                                                                                                                                                         | ioi base matenal                                | $\mathbf{n}_{\mathrm{p}} = (1 + 1)$                                                                                 | [ι - (COS(φb)) <sup>2</sup> ] | ) / (1 - √[1 - (cos  | (ψb)) <sup>-</sup> ]) = <b>2.389</b> | ,                  |
| At-rest pressure for retained                                                                                                                                                                                                         | material                                        | K <sub>0</sub> = 1 – si                                                                                             | n(φ') = <b>0.640</b>          |                      |                                      |                    |
| Surcharge load on plan<br>Applied vertical dead load on<br>Applied vertical live load on w<br>Position of applied vertical load<br>Applied horizontal dead load<br>Applied horizontal live load of<br>Height of applied horizontal lo | <i>r</i> all<br>ad on wall<br>on wall<br>n wall | $Surcharge$ $W_{dead} = 0.0$ $W_{live} = 0.0$ $I_{load} = 0 mr$ $F_{dead} = 0.0$ $F_{live} = 0.0$ $H_{load} = 0 mr$ | kN/m<br>n<br>kN/m<br>‹N/m     |                      |                                      |                    |
|                                                                                                                                                                                                                                       |                                                 |                                                                                                                     |                               |                      |                                      |                    |
| 25.5                                                                                                                                                                                                                                  |                                                 |                                                                                                                     | 7.6                           | 4.7 7.9              | 7.4 11.8                             |                    |

| TEKLA<br>Tedds                    | Project J<br>56 Croftdown Road                      |                          |            |              |                              |               |
|-----------------------------------|-----------------------------------------------------|--------------------------|------------|--------------|------------------------------|---------------|
| Price & Myers<br>30 Newman Street | Calcs for<br>Light well pocket brick retaining wall |                          |            |              | Start page no./Revision<br>3 |               |
| London<br>W1T 1LT                 | Calcs by<br>TP                                      | Calcs date<br>14/12/2017 | Checked by | Checked date | Approved by                  | Approved date |

| Vertical forces on wall          |   |
|----------------------------------|---|
| Wall stem                        | W |
| Wall base                        | v |
| Surcharge                        | W |
| Moist backfill to top of wall    | W |
| Saturated backfill               | v |
| Total vertical load              | V |
| Horizontal forces on wall        |   |
| Surcharge                        | F |
| Moist backfill above water table | F |
| Moist backfill below water table | F |
| Saturated backfill               | F |
| Water                            | F |
| Total horizontal load            | F |
| Calculate propping force         |   |
| Propping force                   | F |
|                                  | F |
| Overturning moments              |   |
| Surcharge                        | N |
| Moist backfill above water table | N |
| Moist backfill below water table | Ν |
| Caturated heal/fill              |   |

Saturated backfill Water Total overturning moment

Vartical forces on wall

#### **Restoring moments**

Wall stem Wall base Moist backfill Saturated backfill Total restoring moment

## Check bearing pressure Surcharge Total moment for bearing Total vertical reaction Distance to reaction Eccentricity of reaction

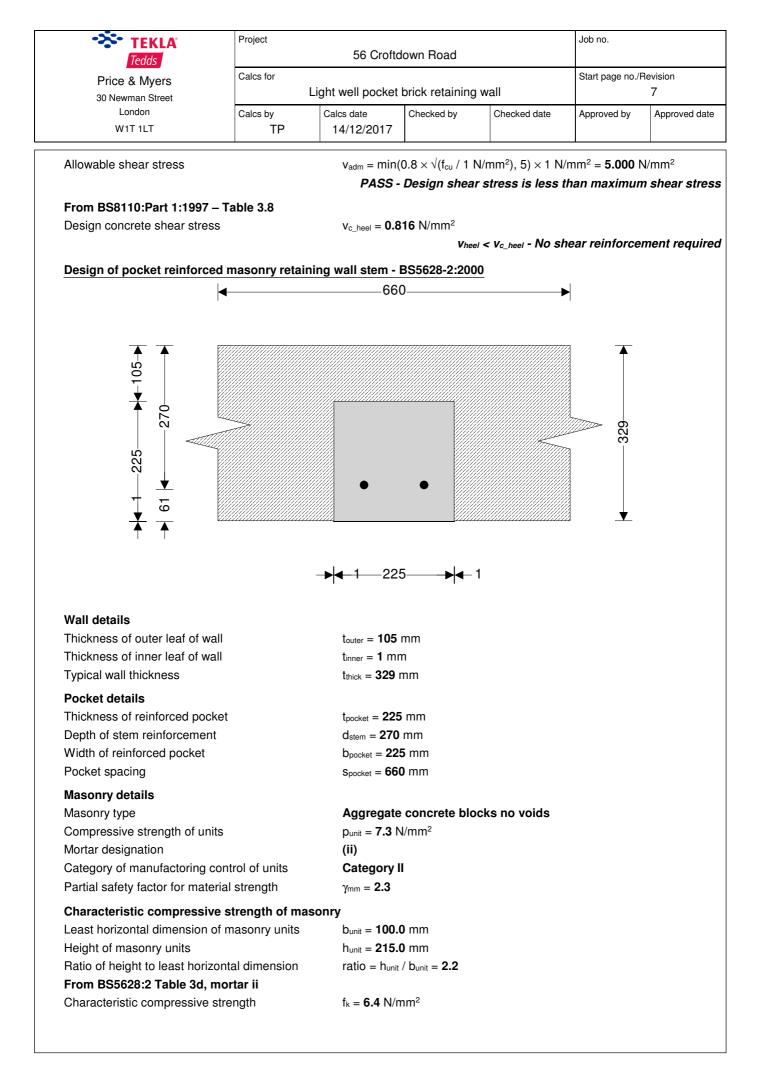
Bearing pressure at toe Bearing pressure at heel 
$$\begin{split} & w_{wall} = h_{stem} \times t_{wall} \times \gamma_{wall} = \mathbf{14} \text{ kN/m} \\ & w_{base} = l_{base} \times t_{base} \times \gamma_{base} = \mathbf{9.6} \text{ kN/m} \\ & w_{sur} = \text{Surcharge} \times l_{heel} = \mathbf{2} \text{ kN/m} \\ & w_{m\_w} = l_{heel} \times (h_{stem} - h_{sat}) \times \gamma_m = \mathbf{3.4} \text{ kN/m} \\ & w_s = l_{heel} \times h_{sat} \times \gamma_s = \mathbf{4.6} \text{ kN/m} \\ & W_{total} = w_{wall} + w_{base} + w_{sur} + w_{m\_w} + w_s = \mathbf{33.6} \text{ kN/m} \end{split}$$

$$\begin{split} F_{sur} &= K_a \times Surcharge \times h_{eff} = \textbf{9.4 kN/m} \\ F_{m\_a} &= 0.5 \times K_a \times \gamma_m \times (h_{eff} - h_{water})^2 = \textbf{3.2 kN/m} \\ F_{m\_b} &= K_a \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = \textbf{9.5 kN/m} \\ F_s &= 0.5 \times K_a \times (\gamma_s - \gamma_{water}) \times h_{water}^2 = \textbf{4.5 kN/m} \\ F_{water} &= \textbf{0.5} \times h_{water}^2 \times \gamma_{water} = \textbf{7.1 kN/m} \\ F_{total} &= F_{sur} + F_{m\_a} + F_{m\_b} + F_s + F_{water} = \textbf{33.6 kN/m} \end{split}$$

$$\begin{split} F_{prop} &= max(F_{total} - (W_{total} - w_{sur}) \times tan(\delta_b), \ 0 \ kN/m) \\ F_{prop} &= \textbf{23.0} \ kN/m \end{split}$$

$$\begin{split} M_{sur} &= F_{sur} \times (h_{eff} - 2 \times d_{ds}) \ / \ 2 = \textbf{9.4 kNm/m} \\ M_{m\_a} &= F_{m\_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{4.6 kNm/m} \\ M_{m\_b} &= F_{m\_b} \times (h_{water} - 2 \times d_{ds}) \ / \ 2 = \textbf{5.7 kNm/m} \\ M_{s} &= F_{s} \times (h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{1.8 kNm/m} \\ M_{water} &= F_{water} \times (h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{2.8 kNm/m} \\ M_{ot} &= M_{sur} + M_{m\_a} + M_{m\_b} + M_{s} + M_{water} = \textbf{24.4 kNm/m} \end{split}$$

$$\begin{split} M_{wall} &= w_{wall} \times (I_{toe} + t_{wall} / 2) = \textbf{23.3 kNm/m} \\ M_{base} &= w_{base} \times I_{base} / 2 = \textbf{9.7 kNm/m} \\ M_{m_r} &= (w_{m_w} \times (I_{base} - I_{heel} / 2) + w_{m_s} \times (I_{base} - I_{heel} / 3)) = \textbf{6.5 kNm/m} \\ M_{s_r} &= w_s \times (I_{base} - I_{heel} / 2) = \textbf{8.9 kNm/m} \\ M_{rest} &= M_{wall} + M_{base} + M_{m_r} + M_{s_r} = \textbf{48.4 kNm/m} \end{split}$$


$$\begin{split} M_{sur\_r} &= w_{sur} \times (I_{base} - I_{heel} / 2) = \textbf{3.9 kNm/m} \\ M_{total} &= M_{rest} - M_{ot} + M_{sur\_r} = \textbf{27.9 kNm/m} \\ R &= W_{total} = \textbf{33.6 kN/m} \\ x_{bar} &= M_{total} / R = \textbf{832 mm} \\ e &= abs((I_{base} / 2) - x_{bar}) = \textbf{183 mm} \\ \hline \textbf{Reaction acts within middle third of base} \\ p_{toe} &= (R / I_{base}) + (6 \times R \times e / I_{base}^2) = \textbf{25.5 kN/m}^2 \\ p_{heel} &= (R / I_{base}) - (6 \times R \times e / I_{base}^2) = \textbf{7.6 kN/m}^2 \end{split}$$

PASS - Maximum bearing pressure is less than allowable bearing pressure

| TEKLA <sup>®</sup>                              | Project          | 56 Crofto                                                                                                                                                        | down Road                                                                                       |                                                                | Job no.                            |                    |
|-------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------|--------------------|
| Price & Myers                                   | Calcs for        |                                                                                                                                                                  |                                                                                                 |                                                                | Start page no./                    | Revision           |
| 30 Newman Street                                |                  | Light well pocket                                                                                                                                                | brick retaining                                                                                 | wall                                                           |                                    | 4                  |
| London                                          | Calcs by         | Calcs date                                                                                                                                                       | Checked by                                                                                      | Checked date                                                   | Approved by                        | Approved da        |
| W1T 1LT                                         | TP               | 14/12/2017                                                                                                                                                       |                                                                                                 |                                                                |                                    |                    |
| RETAINING WALL DESIG                            | N (BS 8002:1994) | 1                                                                                                                                                                |                                                                                                 |                                                                |                                    |                    |
| Ultimate limit state load fa                    | actors           |                                                                                                                                                                  |                                                                                                 |                                                                | TEDDS calculatio                   | in version 1.2.0   |
| Dead load factor                                |                  | $\gamma_{f_d} = 1.4$                                                                                                                                             |                                                                                                 |                                                                |                                    |                    |
| Live load factor                                |                  | $\gamma_{f_{-} } = 1.6$                                                                                                                                          |                                                                                                 |                                                                |                                    |                    |
| Earth and water pressure fa                     | actor            | $\gamma_{f_e} = 1.4$                                                                                                                                             |                                                                                                 |                                                                |                                    |                    |
| Factored vertical forces o                      | n wall           |                                                                                                                                                                  |                                                                                                 |                                                                |                                    |                    |
| Wall stem                                       |                  | $W_{wall_f} = \gamma_{f_d}$                                                                                                                                      | $1 	imes h_{	ext{stem}} 	imes t_{	ext{wall}} 	imes$                                             | $\gamma_{wall} = 19.6 \text{ kN/r}$                            | n                                  |                    |
| Wall base                                       |                  | $W_{base_f} = \gamma_{f}$                                                                                                                                        | $_{\rm d} 	imes {\sf I}_{\rm base} 	imes {\sf t}_{\rm base}$                                    | <γ <sub>base</sub> = <b>13.4</b> kN                            | /m                                 |                    |
| Surcharge                                       |                  | $W_{sur_f} = \gamma_{f_i}$                                                                                                                                       | imes Surcharge $	imes$                                                                          | I <sub>heel</sub> = <b>3.2</b> kN/m                            |                                    |                    |
| Moist backfill to top of wall                   |                  | $W_{m_w_f} = \gamma_{f_w}$                                                                                                                                       | $_{\rm d} 	imes {\sf I}_{\rm heel} 	imes ({\sf h}_{\rm stem})$                                  | - h <sub>sat</sub> ) × γ <sub>m</sub> = <b>4.7</b>             | ′ kN/m                             |                    |
| Saturated backfill                              |                  | $W_{s_f} = \gamma_{f_d} \times$                                                                                                                                  | $	imes I_{heel} 	imes h_{sat} 	imes \gamma_{s}$                                                 | = <b>6.4</b> kN/m                                              |                                    |                    |
| Total vertical load                             |                  | $W_{total_f} = W_t$                                                                                                                                              | $wall_f + W_{base_f} +$                                                                         | $W_{sur_f} + W_{m_w_f} + V_{m_w_f}$                            | <i>w</i> s_f = <b>47.4</b> kN/r    | n                  |
| Factored horizontal at-res                      | t forces on wall |                                                                                                                                                                  |                                                                                                 |                                                                |                                    |                    |
| Surcharge                                       |                  | $F_{sur_f} = \gamma_{f_i}$                                                                                                                                       | $\times$ K <sub>0</sub> $\times$ Surchar                                                        | $ge 	imes h_{eff} = 20.5 k$                                    | N/m                                |                    |
| Moist backfill above water t                    | able             | $F_{m_a_f} = \gamma_{f_e}$                                                                                                                                       | $_{P} 	imes 0.5 	imes K_0 	imes \gamma$                                                         | $_{\rm m} 	imes ({\sf h}_{\rm eff} - {\sf h}_{\rm water})^2$ : | = <b>6</b> kN/m                    |                    |
| Moist backfill below water ta                   | able             | $F_{m_b_f} = \gamma_{f_e}$                                                                                                                                       | $_{e} 	imes K_{0} 	imes \gamma_{m} 	imes (h_{0})$                                               | $_{ m eff}$ - $h_{ m water}$ ) $	imes$ $h_{ m water}$          | = <b>18.1</b> kN/m                 |                    |
| Saturated backfill                              |                  | $F_{\text{s}\_f} = \gamma_{f\_e} \times 0.5 \times K_0 \times (\gamma_{\text{s}^-} \gamma_{\text{water}}) \times h_{\text{water}}^2 = \textbf{8.5} \text{ kN/m}$ |                                                                                                 |                                                                |                                    |                    |
| Water                                           |                  |                                                                                                                                                                  |                                                                                                 | $2 \times \gamma_{water} = 9.9 \text{ kN}$                     |                                    |                    |
| Total horizontal load                           |                  | $F_{total_f} = F_{su}$                                                                                                                                           | $r_f + F_{m_a_f} + F_r$                                                                         | $n_b_f + F_{s_f} + F_{wate}$                                   | <sub>r_f</sub> = <b>63</b> kN/m    |                    |
| Calculate propping force                        |                  |                                                                                                                                                                  |                                                                                                 |                                                                |                                    |                    |
| Propping force                                  |                  | $F_{prop_f} = ma$<br>$F_{prop_f} = 48$                                                                                                                           |                                                                                                 | $al_f - w_{sur_f} \times tan($                                 | δ₀), 0 kN/m)                       |                    |
| Factored overturning mor                        | nents            |                                                                                                                                                                  |                                                                                                 |                                                                |                                    |                    |
| Surcharge                                       |                  | $M_{sur_f} = F_{su}$                                                                                                                                             | $r_f \times (h_{eff} - 2 \times )$                                                              | d <sub>ds</sub> ) / 2 = <b>20.5</b> kN                         | lm/m                               |                    |
| Moist backfill above water t                    | able             | $M_{m\_a\_f} = F_{m}$                                                                                                                                            | n_a_f × (h <sub>eff</sub> + 2 >                                                                 | imes h <sub>water</sub> - 3 $	imes$ d <sub>ds</sub> ) /        | ′ 3 = <b>8.8</b> kNm/n             | n                  |
| Moist backfill below water ta                   | able             | $M_{m\_b\_f} = F_{m}$                                                                                                                                            | $h_b_f \times (h_{water} - 2)$                                                                  | $\times d_{ds}) / 2 = 10.8$                                    | kNm/m                              |                    |
| Saturated backfill                              |                  | $M_{s_f} = F_{s_f}$                                                                                                                                              | $\times$ (h <sub>water</sub> - 3 $\times$ d <sub>o</sub>                                        | ds) / 3 = <b>3.4</b> kNm/                                      | /m                                 |                    |
| Water                                           |                  |                                                                                                                                                                  | -                                                                                               | $3 \times d_{ds}) / 3 = 4 k$                                   |                                    |                    |
| Total overturning moment                        |                  | $M_{ot_f} = M_{sur}$                                                                                                                                             | $f + M_{m_a_f} + M_{m_a}$                                                                       | $m_b_f + M_{s_f} + M_{wa}$                                     | <sub>ter_f</sub> = <b>47.5</b> kNm | ı/m                |
| Restoring moments                               |                  |                                                                                                                                                                  |                                                                                                 |                                                                |                                    |                    |
| Wall stem                                       |                  | _                                                                                                                                                                |                                                                                                 | / 2) = <b>32.7</b> kNm/                                        | m                                  |                    |
| Wall base                                       |                  |                                                                                                                                                                  | $_{base_f} \times I_{base} / 2 =$                                                               |                                                                |                                    |                    |
| Surcharge                                       |                  |                                                                                                                                                                  |                                                                                                 | el / 2) = <b>6.2</b> kNm/                                      |                                    | _                  |
| Moist backfill                                  |                  |                                                                                                                                                                  |                                                                                                 | $eel / 2) + W_{m_s_f} \times$                                  |                                    | = <b>9.1</b> kNm/r |
| Saturated backfill                              |                  |                                                                                                                                                                  |                                                                                                 | 2) = <b>12.4</b> kNm/m                                         |                                    | ,                  |
| Total restoring moment                          |                  | $M_{rest_f} = M_w$                                                                                                                                               | vall_f + Mbase_f +                                                                              | Msur_r_f + Mm_r_f +                                            | M <sub>s_r_f</sub> = <b>74</b> kNr | n/m                |
| Factored bearing pressur                        | e                |                                                                                                                                                                  |                                                                                                 | ·                                                              |                                    |                    |
| Total moment for bearing                        |                  | _                                                                                                                                                                | $m_{est_f} - M_{ot_f} = 26$                                                                     | <b>.5</b> kNm/m                                                |                                    |                    |
| Total vertical reaction<br>Distance to reaction |                  | _                                                                                                                                                                | f = <b>47.4</b> kN/m                                                                            | m                                                              |                                    |                    |
| Eccentricity of reaction                        |                  | _                                                                                                                                                                | <sub>al_f</sub> / R <sub>f</sub> = <b>559</b> m<br><sub>ase</sub> / 2) - x <sub>bar_f</sub> ) : |                                                                |                                    |                    |
|                                                 |                  |                                                                                                                                                                  | ase · L ADar_f)                                                                                 | Reaction acts                                                  | outside middle                     | e third of ba      |
| Bearing pressure at toe                         |                  |                                                                                                                                                                  | $(1.5 \times x_{bar_f}) =$                                                                      |                                                                |                                    |                    |

| Tedds                                                                                                                                                                                                                                                                            | Project                                        | 56 Croftc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lown Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                               | Job no.                                                      |                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|
|                                                                                                                                                                                                                                                                                  | Calcs for                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               | Start page no./                                              | Revision                     |
| Price & Myers<br>30 Newman Street                                                                                                                                                                                                                                                |                                                | Light well pocket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | brick retaining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y wall                                                                                                                                                                                                        |                                                              | 5                            |
| London                                                                                                                                                                                                                                                                           | Calcs by                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               |                                                              | Approved da                  |
| W1T 1LT                                                                                                                                                                                                                                                                          | TP                                             | 14/12/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               | Approved by                                                  |                              |
| Bearing pressure at heel                                                                                                                                                                                                                                                         |                                                | p <sub>heel_f</sub> = 0 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/m² = <b>0</b> kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ו <sup>2</sup>                                                                                                                                                                                                |                                                              |                              |
| Rate of change of base react                                                                                                                                                                                                                                                     | tion                                           | rate = p <sub>toe_f</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $/(3 \times x_{bar_f}) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>33.75</b> kN/m²/m                                                                                                                                                                                          |                                                              |                              |
| Bearing pressure at stem / to                                                                                                                                                                                                                                                    | be                                             | pstem_toe_f =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | max(p <sub>toe_f</sub> - (ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | te × $I_{toe}$ ), 0 kN/m <sup>2</sup>                                                                                                                                                                         | <sup>2</sup> ) = <b>5.9</b> kN/m <sup>2</sup>                |                              |
| Bearing pressure at mid sten                                                                                                                                                                                                                                                     | n                                              | pstem_mid_f =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | max(ptoe_f - (ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ate 	imes (I_{toe} + t_{wall} / 2)$                                                                                                                                                                          | 2)), 0 kN/m²) =                                              | <b>0.4</b> kN/m <sup>2</sup> |
| Bearing pressure at stem / h                                                                                                                                                                                                                                                     | eel                                            | pstem_heel_f =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | max(p <sub>toe_f</sub> - (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ate × ( $I_{toe} + t_{wall}$ )),                                                                                                                                                                              | 0 kN/m²) = <b>0</b> k                                        | xN/m <sup>2</sup>            |
| Design of reinforced concr                                                                                                                                                                                                                                                       | rete retaining wa                              | all toe (BS 8002:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>994)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                               |                                                              |                              |
| Material properties                                                                                                                                                                                                                                                              |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               |                                                              |                              |
| Characteristic strength of con                                                                                                                                                                                                                                                   | ncrete                                         | f <sub>cu</sub> = <b>40</b> N/r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                              |                              |
| Characteristic strength of rein                                                                                                                                                                                                                                                  | nforcement                                     | $f_y = 500 \text{ N/r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                              |                              |
| Base details                                                                                                                                                                                                                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               |                                                              |                              |
| Minimum area of reinforceme                                                                                                                                                                                                                                                      | ent                                            | k = <b>0.13</b> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               |                                                              |                              |
| Cover to reinforcement in toe                                                                                                                                                                                                                                                    | Э                                              | c <sub>toe</sub> = <b>50</b> m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                              |                              |
| Calculate shear for toe des                                                                                                                                                                                                                                                      | sign                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               |                                                              |                              |
| Shear from bearing pressure                                                                                                                                                                                                                                                      | )                                              | $V_{toe\_bear} = ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Otoe_f + Pstem_toe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _f) × I <sub>toe</sub> / 2 = <b>46.9</b>                                                                                                                                                                      | kN/m                                                         |                              |
| Shear from weight of base                                                                                                                                                                                                                                                        |                                                | V <sub>toe_wt_base</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = $\gamma_{f_d} \times \gamma_{base} \times I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $toe \times t_{base} = 9.9 \text{ kN}$                                                                                                                                                                        | l/m                                                          |                              |
| Total shear for toe design                                                                                                                                                                                                                                                       |                                                | $V_{toe} = V_{toe\_t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ear - V <sub>toe_wt_base</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = <b>37</b> kN/m                                                                                                                                                                                              |                                                              |                              |
| Calculate moment for toe d                                                                                                                                                                                                                                                       | design                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               |                                                              |                              |
| Moment from bearing pressu                                                                                                                                                                                                                                                       | ire                                            | M <sub>toe_bear</sub> = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2 \times p_{toe_f} + p_{ste}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m_mid_f) $	imes$ (Itoe + twa                                                                                                                                                                                  | " / 2)² / 6 <b>= 52.</b>                                     | <b>4</b> kNm/m               |
| Moment from weight of base                                                                                                                                                                                                                                                       |                                                | M <sub>toe_wt_base</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = ( $\gamma_{f_d} \times \gamma_{base} \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $t_{base} 	imes (I_{toe} + t_{wall} /$                                                                                                                                                                        | $(2)^2/2) = 9.2$                                             | ⟨Nm/m                        |
| Total moment for toe design                                                                                                                                                                                                                                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sub>se</sub> = <b>43.3</b> kNm/m                                                                                                                                                                             |                                                              |                              |
|                                                                                                                                                                                                                                                                                  |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               |                                                              |                              |
|                                                                                                                                                                                                                                                                                  | ><br>•                                         | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •                                                                                                                                                                                                           | •                                                            |                              |
|                                                                                                                                                                                                                                                                                  | •                                              | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •                                                                                                                                                                                                           | •                                                            |                              |
|                                                                                                                                                                                                                                                                                  | •<br> •—150—•                                  | • •<br>•<br>b = <b>1000</b> m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •<br>ım/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • •                                                                                                                                                                                                           | •                                                            |                              |
| Check toe in bending                                                                                                                                                                                                                                                             | <ul> <li>●</li> <li>●</li> <li>●</li> </ul>    | b = <b>1000</b> m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •<br>1m/m<br>- Ctoe — (φtoe / 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • •                                                                                                                                                                                                           | •                                                            |                              |
| Check toe in bending<br>Width of toe                                                                                                                                                                                                                                             | •<br> •—150—•                                  | b = <b>1000</b> m<br>d <sub>toe</sub> = t <sub>base</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                               | •                                                            |                              |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement                                                                                                                                                                                                                   | •<br> •—150—•                                  | b = <b>1000</b> m<br>d <sub>toe</sub> = t <sub>base</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $- c_{toe} - (\phi_{toe} / 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               | •<br>inforcement i                                           | s not requir                 |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement                                                                                                                                                                                                                   | •<br> •—150—•                                  | b = <b>1000</b> m<br>d <sub>toe</sub> = t <sub>base</sub> -<br>K <sub>toe</sub> = M <sub>toe</sub> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $- c_{toe} - (\phi_{toe} / 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) = <b>0.052</b>                                                                                                                                                                                              |                                                              | -                            |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant                                                                                                                                                                                                       | <b>∢</b> —150— <b>•</b>                        | b = <b>1000</b> m<br>d <sub>toe</sub> = t <sub>base</sub> -<br>K <sub>toe</sub> = M <sub>toe</sub> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $- c_{toe} - (\phi_{toe} / 2)$<br>$f(b \times d_{toe}^2 \times f_{cu})$<br>$0.5 + \sqrt{(0.25 - (b))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) = 0.052<br>Compression re                                                                                                                                                                                   |                                                              | -                            |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant                                                                                                                                                                                                       |                                                | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} / Z_{toe} = min(C_{z_{toe}} = 135 \text{ m})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-c_{toe} - (\phi_{toe} / 2)$<br>$f'(b \times d_{toe}^2 \times f_{cu})$<br>$0.5 + \sqrt{0.25 - (0.25)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) = 0.052<br>Compression re                                                                                                                                                                                   | ′ 0.9)),0.95) × 0                                            | -                            |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm                                                                                                                                                                                          | nt required                                    | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{toe} = M_{toe} / t_{toe}$ $z_{toe} = M_{toe} / t_{toe} = 135 \text{ m}$ $A_{s\_toe\_des} = t_{toe\_des} = t_{toe\_des} = t_{toe\_des}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-c_{toe} - (\phi_{toe} / 2)$<br>$f'(b \times d_{toe}^2 \times f_{cu})$<br>$0.5 + \sqrt{0.25 - (0.25)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) = <b>0.052</b><br><i>Compression re</i><br>min(K <sub>toe</sub> , 0.225) /<br><sub>y</sub> × z <sub>toe</sub> ) = <b>736</b> mn                                                                             | ′ 0.9)),0.95) × 0                                            | -                            |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcemer                                                                                                                                                          | nt required                                    | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{toe} = M_{toe} / t_{toe}$ $z_{toe} = M_{toe} / t_{toe} = 135 \text{ m}$ $A_{s\_toe\_des} = t_{a\_toe\_min} = t_{a\_toe\_min} = t_{a\_toe\_min} = t_{a\_toe\_min}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{(0.25 - (mmmm))}$ $M_{toe} / (0.87 \times f_{base} = 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) = <b>0.052</b><br><i>Compression re</i><br>min(K <sub>toe</sub> , 0.225) /<br><sub>y</sub> × z <sub>toe</sub> ) = <b>736</b> mn                                                                             | ′′ 0.9)),0.95) × c<br>n²/m                                   | -                            |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcemer<br>Minimum area of tension reir                                                                                                                          | nt required                                    | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{toe} = M_{toe} / t_{toe}$ $z_{toe} = M_{toe} / t_{toe} = 135 \text{ m}$ $A_{s\_toe\_des} = A_{s\_toe\_min} = t_{A_s\_toe\_req} = t_{A_s\_toe\_req} = t_{A_s\_toe\_req} = t_{A_s\_toe\_req}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{(0.25 - (mmmm))}$ $M_{toe} / (0.87 \times f_{base} = 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) = <b>0.052</b><br><i>Compression re</i><br>min(K <sub>toe</sub> , 0.225) /<br><sub>y</sub> × z <sub>toe</sub> ) = <b>736</b> mn<br><b>260</b> mm <sup>2</sup> /m<br>A <sub>s_toe_min</sub> ) = <b>736</b> n | ′′ 0.9)),0.95) × c<br>n²/m                                   | -                            |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcemen<br>Minimum area of tension rein<br>Area of tension reinforcemen                                                                                          | nt required<br>nforcement<br>nt required       | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{base} - t_{base} - t_{base} - t_{base}$ $K_{toe} = M_{toe} - t_{base}$ $z_{toe} = 135 \text{ m}$ $A_{s\_toe\_des} = t_{a\_toe\_req} - t_{a\_toe\_req}$ $A_{s\_toe\_req} = t_{a\_toe\_req}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{aligned} &-c_{toe} - (\phi_{toe} / 2) \\ &/ (b \times d_{toe}^2 \times f_{cu}) \\ &/ (0.25 + \sqrt{(0.25 - (mmmmm))} \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmmm) \\ &/ (0.87 \times fmmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmm) \\ &/ (0.87 \times fmmmm) \\ &/ (0.87 \times fmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmm) \\ &/ (0$                        | ) = 0.052<br><i>Compression re</i><br>min(K <sub>toe</sub> , 0.225) /<br>y × $z_{toe}$ ) = 736 mn<br>260 mm <sup>2</sup> /m<br>$A_{s_toe_min}$ ) = 736 n<br>mm centres                                        | ′ 0.9)),0.95) × c<br>n²/m<br>nm²/m                           | dtoe                         |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcemer<br>Minimum area of tension reir<br>Area of tension reinforcemer<br>Reinforcement provided<br>Area of reinforcement provid                                | nt required<br>nforcement<br>nt required<br>ed | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{base} - t_{base} - t_{base} - t_{base}$ $K_{toe} = M_{toe} - t_{base}$ $z_{toe} = 135 \text{ m}$ $A_{s\_toe\_des} = t_{a\_toe\_req} - t_{a\_toe\_req}$ $A_{s\_toe\_req} = t_{a\_toe\_req}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{aligned} &-c_{toe} - (\phi_{toe} / 2) \\ &/ (b \times d_{toe}^2 \times f_{cu}) \\ &/ (0.25 + \sqrt{(0.25 - (mmmmm))} \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmmm) \\ &/ (0.87 \times fmmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmm) \\ &/ (0.87 \times fmmmm) \\ &/ (0.87 \times fmmmm) \\ &/ (0.87 \times fmmmmm) \\ &/ (0.87 \times fmmmm) \\ &/ (0$                        | ) = <b>0.052</b><br><i>Compression re</i><br>min(K <sub>toe</sub> , 0.225) /<br><sub>y</sub> × z <sub>toe</sub> ) = <b>736</b> mn<br><b>260</b> mm <sup>2</sup> /m<br>A <sub>s_toe_min</sub> ) = <b>736</b> n | ′ 0.9)),0.95) × c<br>n²/m<br>nm²/m                           | dtoe                         |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcemen<br>Minimum area of tension rein<br>Area of tension reinforcemen<br>Reinforcement provided<br>Area of reinforcement provided<br>Check shear resistance at | nt required<br>nforcement<br>nt required<br>ed | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = 135 \text{ m}$ $A_{s\_toe\_des} = A_{s\_toe\_des} = A_{s\_toe\_min} = 12 \text{ mm dia}$ $A_{s\_toe\_prov} = PASS - Reim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{aligned} &-c_{toe} - (\phi_{toe} / 2) \\ &/ (b \times d_{toe}^2 \times f_{cu}) \\ &/ (b \times d_{toe}^2 \times f_{cu}) \\ &/ (0.25 + \sqrt{(0.25 - (mmmm))} \\ &/ (0.87 \times fmmmm) \\ &/$ | $        ) = 0.052         Compression re        min(Ktoe, 0.225) /        y × ztoe) = 736 mn260 mm2/m        As_toe_min) = 736 mmm centres        rovided at the re$                                         | ′ 0.9)),0.95) × c<br>n²/m<br>nm²/m                           | dtoe                         |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcemer<br>Minimum area of tension reir<br>Area of tension reinforcemer<br>Reinforcement provided<br>Area of reinforcement provid                                | nt required<br>nforcement<br>nt required<br>ed | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = 135 \text{ m}$ $A_{s\_toe\_des} = A_{s\_toe\_req} = 12 \text{ mm dia}$ $A_{s\_toe\_rev} = PASS - Reim$ $V_{toe} = V_{toe} / K_{toe} = $ | $- c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cu})$ $0.5 + \sqrt{(0.25 - (mmm))}$ $M_{toe} / (0.87 \times f_{toe})$ $(b \times b \times t_{base} = 2)$ $Max(A_{s_toe_des}, bars @ 150 m^2)$ $forcement pr$ $(b \times d_{toe}) = 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $        ) = 0.052         Compression re        min(Ktoe, 0.225) /        y × ztoe) = 736 mn260 mm2/m        As_toe_min) = 736 mmm centres        rovided at the re$                                         | ' 0.9)),0.95) × 0<br>n²/m<br>nm²/m<br><b>taining wall to</b> | d <sub>toe</sub>             |

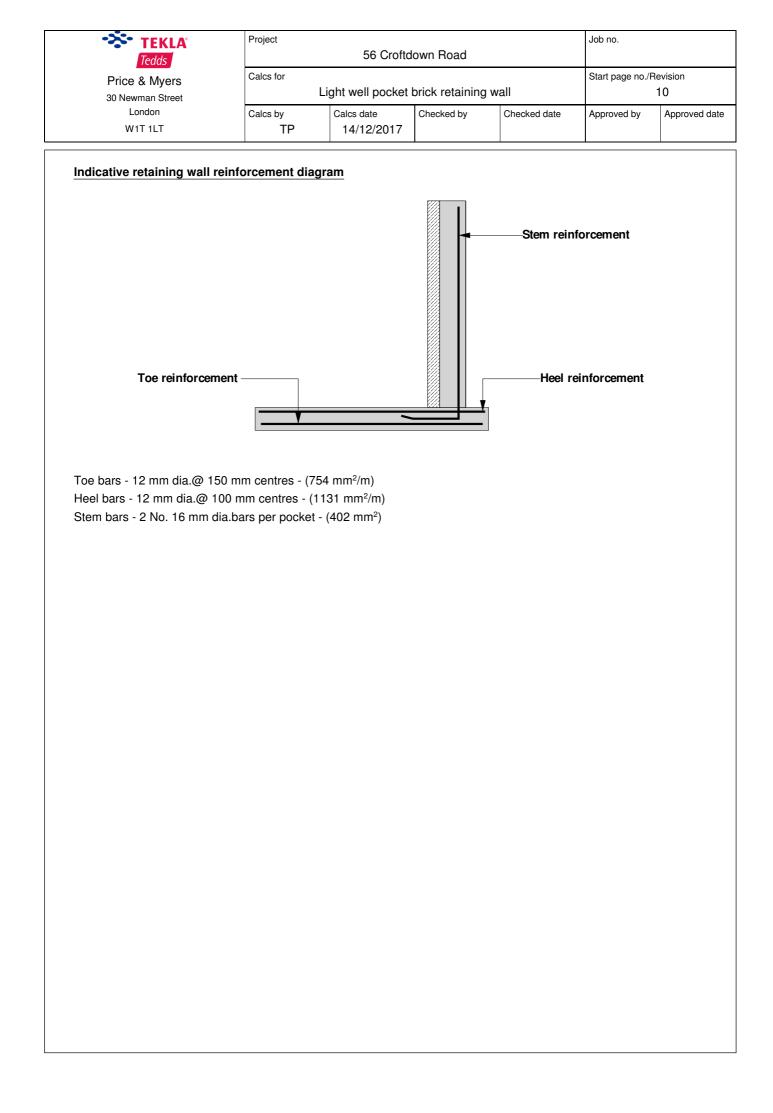
| TEKLA<br>Tedds                                     | Project                                     | 56 Croftd                                                                                               | own Road                                                           |                                                      | Job no.                             |             |  |  |
|----------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|-------------|--|--|
| Price & Myers                                      | Calcs for                                   |                                                                                                         |                                                                    |                                                      | Start page no./Revision             |             |  |  |
| 30 Newman Street                                   |                                             | Light well pocket                                                                                       | brick retaining                                                    | wall                                                 |                                     | 6           |  |  |
| London                                             | Calcs by Calcs date Checked by Checked date |                                                                                                         |                                                                    |                                                      | e Approved by Approved of           |             |  |  |
| W1T 1LT                                            | TP                                          | 14/12/2017                                                                                              |                                                                    |                                                      |                                     |             |  |  |
| From BS8110:Part 1:1997 –                          | Table 3.8                                   |                                                                                                         |                                                                    |                                                      |                                     |             |  |  |
| Design concrete shear stress                       |                                             | v <sub>c_toe</sub> = <b>0.76</b>                                                                        |                                                                    |                                                      |                                     |             |  |  |
|                                                    |                                             |                                                                                                         | Vtc                                                                | e < Vc_toe - No sh                                   | ear reinforce                       | ment requ   |  |  |
| Design of reinforced concre                        | ete retaining w                             | all heel (BS 8002:                                                                                      | 1994)                                                              |                                                      |                                     |             |  |  |
| Material properties                                |                                             |                                                                                                         |                                                                    |                                                      |                                     |             |  |  |
| Characteristic strength of con                     | crete                                       | f <sub>cu</sub> = <b>40</b> N/n                                                                         | 1m²                                                                |                                                      |                                     |             |  |  |
| Characteristic strength of rein                    |                                             | f <sub>y</sub> = <b>500</b> N/r                                                                         | nm²                                                                |                                                      |                                     |             |  |  |
| Base details                                       |                                             | -                                                                                                       |                                                                    |                                                      |                                     |             |  |  |
| Minimum area of reinforceme                        | nt                                          | k = 0.13 %                                                                                              |                                                                    |                                                      |                                     |             |  |  |
| Cover to reinforcement in hee                      | -                                           | c <sub>heel</sub> = <b>30</b> m                                                                         | m                                                                  |                                                      |                                     |             |  |  |
|                                                    |                                             |                                                                                                         | 111                                                                |                                                      |                                     |             |  |  |
| Calculate shear for heel des                       | sign                                        |                                                                                                         |                                                                    |                                                      | N1/                                 |             |  |  |
| Shear from weight of base                          |                                             |                                                                                                         |                                                                    | l <sub>heel</sub> × t <sub>base</sub> = <b>1.3</b> k | IN/M                                |             |  |  |
| Shear from weight of moist ba                      |                                             |                                                                                                         | Wm_w_f = <b>4.7</b> kN                                             |                                                      |                                     |             |  |  |
| Shear from weight of saturate                      | d backfill                                  |                                                                                                         | v <sub>s_f</sub> = <b>6.4</b> kN/m                                 |                                                      |                                     |             |  |  |
| Shear from surcharge                               |                                             | _                                                                                                       | sur_f = <b>3.2</b> kN/n                                            |                                                      |                                     |             |  |  |
| Total shear for heel design                        |                                             | $V_{heel} = V_{heel\_wt\_base} + V_{heel\_wt\_m} + V_{heel\_wt\_s} + V_{heel\_sur} = 15.7 \text{ kN/m}$ |                                                                    |                                                      |                                     |             |  |  |
| Calculate moment for heel of                       | lesign                                      |                                                                                                         |                                                                    |                                                      |                                     |             |  |  |
| Moment from weight of base                         |                                             | $M_{heel\_wt\_base}$                                                                                    | = ( $\gamma_{f_d} \times \gamma_{base} \times$                     | $t_{base} 	imes (I_{heel} + t_{wall})$               | / 2) <sup>2</sup> / 2) = <b>0.4</b> | kNm/m       |  |  |
| Moment from weight of moist                        | backfill                                    | $M_{heel\_wt\_m} = w_{m\_w\_f} \times (I_{heel} + t_{wall}) / 2 = 1.2 \text{ kNm/m}$                    |                                                                    |                                                      |                                     |             |  |  |
| Moment from weight of satura                       |                                             |                                                                                                         | -                                                                  | <sub>all</sub> ) / 2 = <b>1.7</b> kNm/               |                                     |             |  |  |
| Moment from surcharge                              |                                             | $M_{heel sur} = W_{sur} f \times (I_{heel} + t_{wall}) / 2 = 0.8 \text{ kNm/m}$                         |                                                                    |                                                      |                                     |             |  |  |
| Total moment for heel design                       |                                             | _                                                                                                       |                                                                    | wt m + Mheel wt s +                                  |                                     | kNm/m       |  |  |
| . etal memori for neer design                      | <b>∢</b> -100- <b>&gt;</b>                  |                                                                                                         | _w_base i ivinee                                                   | Windel_Wi_S T                                        |                                     |             |  |  |
|                                                    |                                             |                                                                                                         |                                                                    |                                                      |                                     |             |  |  |
| <b>▲</b>                                           | •                                           |                                                                                                         | •                                                                  |                                                      |                                     |             |  |  |
|                                                    | • •                                         | • • •                                                                                                   | •                                                                  | • •                                                  | •                                   |             |  |  |
| - 200                                              | >                                           |                                                                                                         |                                                                    |                                                      | $\geq$                              |             |  |  |
|                                                    |                                             |                                                                                                         |                                                                    |                                                      |                                     |             |  |  |
|                                                    |                                             |                                                                                                         |                                                                    |                                                      |                                     |             |  |  |
|                                                    |                                             |                                                                                                         |                                                                    |                                                      |                                     |             |  |  |
| Check heel in bending                              |                                             |                                                                                                         |                                                                    |                                                      |                                     |             |  |  |
| Width of heel                                      |                                             | b = <b>1000</b> m                                                                                       | m/m                                                                |                                                      |                                     |             |  |  |
| Depth of reinforcement                             |                                             | $d_{heel} = t_{base}$                                                                                   | $- c_{heel} - (\phi_{heel} / $                                     | 2) = <b>164.0</b> mm                                 |                                     |             |  |  |
| Constant                                           |                                             | $K_{heel} = M_{heel}$                                                                                   | / (b $\times$ d <sub>heel</sub> <sup>2</sup> $\times$ <sup>2</sup> | f <sub>cu</sub> ) = <b>0.004</b>                     |                                     |             |  |  |
|                                                    |                                             |                                                                                                         | (                                                                  | Compression re                                       | inforcement i                       | s not requ  |  |  |
| Lever arm                                          |                                             | Zheel = min(0                                                                                           | 0.5 + √(0.25 -                                                     | (min(K <sub>heel</sub> , 0.225)                      | / 0.9)),0.95) ×                     | dheel       |  |  |
|                                                    |                                             | Z <sub>heel</sub> = <b>156</b> i                                                                        | -                                                                  | ,                                                    | · · · ·                             |             |  |  |
| Area of tension reinforcement                      | required                                    |                                                                                                         |                                                                    | $f_y \times z_{heel}$ = 63 m                         | m²/m                                |             |  |  |
| Minimum area of tension reint                      |                                             |                                                                                                         | $k \times b \times t_{base} =$                                     |                                                      |                                     |             |  |  |
| Area of tension reinforcement                      |                                             |                                                                                                         |                                                                    | , A <sub>s_heel_min</sub> ) = <b>260</b>             | mm <sup>2</sup> /m                  |             |  |  |
|                                                    |                                             |                                                                                                         | .bars @ 100 n                                                      |                                                      | , 11111 /111                        |             |  |  |
| Reinforcement provided                             | d                                           |                                                                                                         |                                                                    | in centres                                           |                                     |             |  |  |
| Area of reinforcement provide                      | u                                           |                                                                                                         | 1131 mm²/m                                                         | vided at the ret                                     | ning wall be                        | ol ie odoc: |  |  |
|                                                    |                                             | rajo - Keinto                                                                                           | ncement pro                                                        | vided at the reta                                    | uning wall ne                       | ei is adeql |  |  |
| <b>.</b>                                           |                                             |                                                                                                         |                                                                    |                                                      |                                     |             |  |  |
| Check shear resistance at h<br>Design shear stress | eel                                         |                                                                                                         | / (b × d <sub>heel</sub> ) = 0                                     |                                                      |                                     |             |  |  |



| TEKLA<br>Tedds                                           | roject                                                        | 56 Crofto                            | lown Road                                                                    |                                                                 | Job no.                                  |                       |  |
|----------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|-----------------------|--|
|                                                          | alcs for                                                      |                                      |                                                                              |                                                                 | Start page no./I                         | Revision              |  |
| 30 Newman Street                                         | I                                                             | Light well pocket                    | brick retaining                                                              | ı wall                                                          |                                          | 8                     |  |
| London                                                   | alcs by                                                       | Calcs date                           | Approved by Approved of                                                      |                                                                 |                                          |                       |  |
| W1T 1LT                                                  | TP                                                            | 14/12/2017                           |                                                                              |                                                                 |                                          |                       |  |
| Factored horizontal at-rest force                        | es on stem                                                    |                                      |                                                                              |                                                                 |                                          |                       |  |
| Surcharge                                                |                                                               | $F_{s\_sur\_f} = \gamma_{f\_}$       | $_{1} \times K_{0} \times Surcha$                                            | $arge 	imes (h_{eff} - t_{base})$                               | - d <sub>ds</sub> ) = <b>18.4</b> kN     | l/m                   |  |
| Moist backfill above water table                         |                                                               | $F_{s_m_a_f} = 0$                    | $.5 	imes \gamma_{f_e} 	imes K_0 	imes$                                      | $\gamma_{ m m} 	imes$ (h <sub>eff</sub> - t <sub>base</sub> -   | $d_{ds} - h_{sat})^2 = 6 \mathbf{k}$     | κN/m                  |  |
| Moist backfill below water table                         |                                                               | $F_{s_m_b_f} = \gamma_f$             | $_{e} \times K_0 \times \gamma_m \times ($                                   | h <sub>eff</sub> - t <sub>base</sub> - d <sub>ds</sub> - h      | $h_{sat}$ ) × $h_{sat}$ = <b>15.</b>     | <b>1</b> kN/m         |  |
| Saturated backfill                                       |                                                               | $F_{s_s_f} = 0.5$                    | $\times \gamma_{f_e} \times K_0 \times (\gamma$                              | $\gamma_{s} - \gamma_{water}) \times h_{sat}^2 = 3$             | <b>5.9</b> kN/m                          |                       |  |
| Water                                                    |                                                               | $F_{s_water_f} = 0$                  | $0.5	imes\gamma_{f_e}	imes\gamma_{wate}$                                     | $h_{sat}^2 = 6.9 \text{ kN}$                                    | /m                                       |                       |  |
| Calculate shear for stem design                          | 1                                                             |                                      |                                                                              |                                                                 |                                          |                       |  |
| Shear at base of stem                                    |                                                               | V <sub>stem</sub> = F <sub>s</sub> s | ur f + Fs m a f +                                                            | $F_{s_m_b_f} + F_{s_s_f} +$                                     | Fs water f - Fprop                       | f = <b>4.2</b> kN/    |  |
| Calculate moment for stem desi                           | an                                                            | _                                    |                                                                              |                                                                 | ' ' '                                    | _                     |  |
| Surcharge                                                | שיי                                                           | Ms sur = Fa                          | sur f X (hetam + t                                                           | <sub>base</sub> ) / 2 = <b>18.4</b> kN                          | Jm/m                                     |                       |  |
| Moist backfill above water table                         |                                                               |                                      | -                                                                            | hase / L = 10.4 Kr<br>at + $h_{eff} - d_{ds} + t_{bas}$         |                                          | kNm/m                 |  |
| Moist backfill below water table                         |                                                               |                                      | n                                                                            |                                                                 |                                          |                       |  |
| Saturated backfill                                       |                                                               |                                      | $f \times h_{\text{sat}} / 3 = 2$                                            |                                                                 |                                          |                       |  |
| Water                                                    |                                                               |                                      |                                                                              | 3 = <b>2.3</b> kNm/m                                            |                                          |                       |  |
| Total moment for stem design                             |                                                               |                                      |                                                                              |                                                                 | M <sub>s_water</sub> = <b>38.4</b> kNm/m |                       |  |
| Total shear for design per pocket                        |                                                               | V <sub>stem</sub> = <b>2.8</b>       |                                                                              |                                                                 |                                          |                       |  |
| Total moment for design per pock                         | ent for design per pocket M <sub>stem</sub> = <b>25.4</b> kNm |                                      |                                                                              |                                                                 |                                          |                       |  |
| Check maximum design momer                               | nt for wall st                                                | em                                   |                                                                              |                                                                 |                                          |                       |  |
| Thickness of masonry flange                              |                                                               |                                      | (t <sub>thick</sub> , $0.5 \times d_{ste}$                                   | em) = <b>135</b> mm                                             |                                          |                       |  |
| Width of masonry flange                                  |                                                               |                                      |                                                                              | + 12 × t <sub>flange</sub> , h <sub>sten</sub>                  | n / 3) = <b>600</b> mn                   | า                     |  |
| Maximum design moment                                    |                                                               |                                      | • • • •                                                                      | $_{ m e} 	imes$ (d <sub>stem</sub> - 0.5 $	imes$ t <sub>f</sub> | -                                        |                       |  |
| 5                                                        |                                                               |                                      |                                                                              | nent is less that                                               |                                          |                       |  |
| Check wall stem in bending                               |                                                               |                                      |                                                                              |                                                                 |                                          |                       |  |
| Moment of resistance factor                              |                                                               |                                      |                                                                              | ) = <b>0.580</b> N/mm <sup>2</sup>                              |                                          |                       |  |
|                                                          |                                                               |                                      | $(1 - c) \times f_k / \gamma_n$                                              | nm                                                              |                                          |                       |  |
| Lever arm factor                                         |                                                               | c = <b>0.882</b>                     |                                                                              |                                                                 |                                          |                       |  |
| Lever arm                                                |                                                               |                                      | (0.95, c) × d <sub>ster</sub>                                                |                                                                 | 2                                        |                       |  |
| Area of tension reinforcement req                        |                                                               |                                      |                                                                              | $f_y \times z_{stem}$ ) = <b>245</b> n                          | nm-                                      |                       |  |
| Minimum area of tension reinforce                        |                                                               |                                      | $\mathbf{k} \times \mathbf{b}_{\text{flange}} \times \mathbf{t}_{\text{th}}$ |                                                                 | 7 mm <sup>2</sup>                        |                       |  |
| Area of tension reinforcement req                        | uirea                                                         |                                      | -                                                                            | es, As_stem_min) = 28                                           | <b>o<i>i</i> mm</b> ²                    |                       |  |
| Reinforcement provided<br>Area of reinforcement provided |                                                               |                                      | m dia.bars pe<br>- norm × π × φ                                              | е <b>г роске</b> т<br><sub>tem</sub> ² / 4 = <b>402</b> mm      | 2                                        |                       |  |
| Area or remorcement provided                             |                                                               |                                      | •                                                                            | vided at the reta                                               |                                          | m is adeau            |  |
| Check shear resistance at wall                           | stem                                                          |                                      |                                                                              |                                                                 |                                          |                       |  |
| Design shear stress                                      |                                                               | Votom – Voto                         | n / (h <sub>flance</sub> × d                                                 | <sub>m</sub> ) = <b>0.017</b> N/mm                              | 2                                        |                       |  |
| Basic characteristic shear strengt                       | of masonry                                                    |                                      |                                                                              | As_stem_prov / (bflang                                          |                                          | × 1 N/mm <sup>2</sup> |  |
|                                                          |                                                               | f <sub>vbas</sub> = 0.39             |                                                                              |                                                                 |                                          |                       |  |
| Shear span                                               |                                                               |                                      | V <sub>stem</sub> = <b>9176.9</b>                                            | mm                                                              |                                          |                       |  |
| Characteristic shear strength of m                       | asonry                                                        |                                      |                                                                              | 0.25 × (a / d <sub>stem</sub> ),                                | 1), 1.75 N/mm                            | <sup>2</sup> )        |  |
| <b>U</b>                                                 |                                                               | f <sub>v</sub> = <b>0.393</b> I      |                                                                              | , <u> </u>                                                      |                                          | -                     |  |
| Allowable shear stress                                   |                                                               |                                      | mv = <b>0.197</b> N/n                                                        |                                                                 |                                          |                       |  |
|                                                          |                                                               | PASS -                               | Design shea                                                                  | r stress is less i                                              | than maximun                             | n shear str           |  |
| Check limiting dimensions                                |                                                               |                                      |                                                                              |                                                                 |                                          |                       |  |
| Limiting span/effective depth ratio                      |                                                               | ratio <sub>max</sub> = 1             | 8 00                                                                         |                                                                 |                                          |                       |  |

| TEKLA<br>Tedds                    | Project J<br>56 Croftdown Road                      |                          |            |              |             |                              |  |
|-----------------------------------|-----------------------------------------------------|--------------------------|------------|--------------|-------------|------------------------------|--|
| Price & Myers<br>30 Newman Street | Calcs for<br>Light well pocket brick retaining wall |                          |            |              |             | Start page no./Revision<br>9 |  |
| London<br>W1T 1LT                 | Calcs by<br>TP                                      | Calcs date<br>14/12/2017 | Checked by | Checked date | Approved by | Approved date                |  |

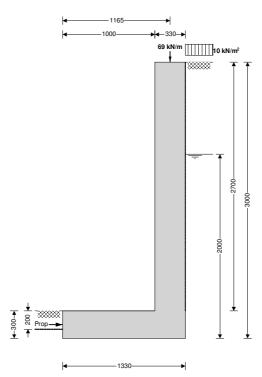
Actual span/effective depth ratio


 $ratio_{act} = (h_{stem} + d_{stem} / 2) / d_{stem} = 7.17$ 

PASS - Span to depth ratio is acceptable

## Axial load check

Factored axial load on wall Limiting axial load 
$$\begin{split} N_{wall} &= ([t_{wall} \times h_{stem} \times \gamma_{wall} + W_{dead}] \times \gamma_{f\_d}) + (W_{live} \times \gamma_{f\_l}) = \textbf{19.6 kN/m} \\ N_{limit} &= 0.1 \times f_k \times t_{wall} = \textbf{211.2 kN/m} \end{split}$$


Applied axial load may be ignored - calculations valid



| TEKLA<br>Tedds                   | Project                               | 56 Croftd             | own Road   |              | Job no.<br>252                 | 293           |
|----------------------------------|---------------------------------------|-----------------------|------------|--------------|--------------------------------|---------------|
| Price & Myers<br>37 Alfred Place | Calcs for<br>Front retaining underpin |                       |            |              | Start page no./Revision<br>1 2 |               |
| London<br>WC1E 7DP               | Calcs by<br>TP                        | Calcs date 14/12/2017 | Checked by | Checked date | Approved by                    | Approved date |

TEDDS calculation version 1.2.01.06

#### RETAINING WALL ANALYSIS (BS 8002:1994)



#### Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall

## **Retained material details**

Mobilisation factor Moist density of retained material

Cantilever propped at base h<sub>stem</sub> = **2700** mm twall = 330 mm I<sub>toe</sub> = **1000** mm  $I_{heel} = 0 \text{ mm}$  $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 1330 \text{ mm}$ t<sub>base</sub> = **300** mm  $d_{ds} = 0 mm$  $I_{ds} = \mathbf{0} \text{ mm}$ t<sub>ds</sub> = **300** mm  $h_{wall} = h_{stem} + t_{base} + d_{ds} = 3000 \text{ mm}$  $d_{cover} = 0 mm$ d<sub>exc</sub> = **200** mm h<sub>water</sub> = 2000 mm  $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 1700 mm$ ywall = 23.6 kN/m<sup>3</sup>  $\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$ α = **90.0** deg  $\beta = 0.0 \text{ deg}$  $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 3000 \text{ mm}$ 

M = **1.5** γ<sub>m</sub> = **21.0** kN/m<sup>3</sup>

| TEKLA<br>Tedds                    | Project                               | Job no.<br>25293                                  |                                                             |                                                       |                                                  |                           |  |
|-----------------------------------|---------------------------------------|---------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|---------------------------|--|
| Price & Myers                     | Calcs for                             |                                                   |                                                             |                                                       | Start page no./F                                 | Revision                  |  |
| 37 Alfred Place                   |                                       | Front retair                                      | Front retaining underpin Calcs date Checked by Checked date |                                                       |                                                  |                           |  |
| London                            | Calcs by                              | Calcs date                                        | Approved by                                                 | Approved of                                           |                                                  |                           |  |
| WC1E 7DP                          | TP                                    | 14/12/2017                                        |                                                             |                                                       |                                                  |                           |  |
| Saturated density of retained n   | naterial                              | γ <sub>s</sub> = <b>23.0</b> k                    | N/m <sup>3</sup>                                            |                                                       |                                                  |                           |  |
| Design shear strength             |                                       | ∳' = <b>21.1</b> d                                | eg                                                          |                                                       |                                                  |                           |  |
| Angle of wall friction            |                                       | δ = <b>16.1</b> de                                | eg                                                          |                                                       |                                                  |                           |  |
| Base material details             |                                       |                                                   |                                                             |                                                       |                                                  |                           |  |
| Firm clay                         |                                       |                                                   |                                                             |                                                       |                                                  |                           |  |
| Moist density                     |                                       | $\gamma_{mb} = 19.0$                              | kN/m³                                                       |                                                       |                                                  |                           |  |
| Design shear strength             |                                       | φ' <sub>b</sub> = <b>24.0</b> α                   | deg                                                         |                                                       |                                                  |                           |  |
| Design base friction              |                                       | $\delta_b = 18.6$ d                               | leg                                                         |                                                       |                                                  |                           |  |
| Allowable bearing pressure        |                                       | P <sub>bearing</sub> = 1                          | -                                                           |                                                       |                                                  |                           |  |
| Using Coulomb theory              |                                       |                                                   |                                                             |                                                       |                                                  |                           |  |
| Active pressure coefficient for   | retained mater                        | ial                                               |                                                             |                                                       |                                                  |                           |  |
| $K_a = sin(a)$                    | $(\alpha + \phi')^2 / (\sin(\alpha))$ | $^{2} \times \sin(\alpha - \delta) \times [1 + ]$ | + √(sin(φ' + δ) >                                           | < sin(φ' - β) / (sin(                                 | $(\alpha - \delta) \times \sin(\alpha + \delta)$ | $(\beta)))]^{2}) = 0$     |  |
| Passive pressure coefficient for  | r base materia                        | I                                                 |                                                             |                                                       |                                                  |                           |  |
|                                   | $K_p = sir$                           | n(90 - ø' <sub>b</sub> )² / (sin(90               | Ο - $\delta_{ m b}$ ) × [1 - $√$ (ε                         | $\sin(\phi_{b}' + \delta_{b}) \times \sin(\phi_{b}')$ | φ' <sub>b</sub> ) / (sin(90 +                    | $\delta_{b})))]^{2}) = 4$ |  |
| At-rest pressure                  |                                       |                                                   |                                                             |                                                       |                                                  |                           |  |
| At-rest pressure for retained m   | aterial                               | $K_0 = 1 - si$                                    | n(φ') = <b>0.640</b>                                        |                                                       |                                                  |                           |  |
| Loading details                   |                                       |                                                   |                                                             |                                                       |                                                  |                           |  |
| Surcharge load on plan            |                                       | Surcharge                                         | = <b>10.0</b> kN/m <sup>2</sup>                             |                                                       |                                                  |                           |  |
| Applied vertical dead load on v   | vall                                  | $W_{dead} = 55$                                   | <b>.0</b> kN/m                                              |                                                       |                                                  |                           |  |
| Applied vertical live load on wa  |                                       | W <sub>live</sub> = <b>14.</b>                    | <b>0</b> kN/m                                               |                                                       |                                                  |                           |  |
| Position of applied vertical load | d on wall                             | l <sub>load</sub> = <b>1165</b>                   | i mm                                                        |                                                       |                                                  |                           |  |
| Applied horizontal dead load o    | n wall                                | F <sub>dead</sub> = <b>0.0</b>                    | kN/m                                                        |                                                       |                                                  |                           |  |
| Applied horizontal live load on   | wall                                  | Flive = <b>0.0</b>                                | kN/m                                                        |                                                       |                                                  |                           |  |
|                                   |                                       |                                                   |                                                             |                                                       |                                                  |                           |  |
| Height of applied horizontal loa  |                                       | $h_{load} = 0 m$                                  | m                                                           |                                                       |                                                  |                           |  |
|                                   |                                       | h <sub>load</sub> = <b>0</b> m                    | m<br>ⅢⅢ10                                                   |                                                       |                                                  |                           |  |
|                                   | ad on wall                            | h <sub>load</sub> = <b>0</b> m                    |                                                             |                                                       |                                                  |                           |  |
| Height of applied horizontal loa  | ad on wall                            | $h_{load} = 0 m$                                  |                                                             |                                                       |                                                  |                           |  |
| Height of applied horizontal loa  | ad on wall                            | h <sub>load</sub> = <b>0</b> m                    |                                                             |                                                       | vn in kN/m, pressu                               |                           |  |

| TEKLA              | Project                  |                       |            |              | Job no.                 |               |
|--------------------|--------------------------|-----------------------|------------|--------------|-------------------------|---------------|
| Tedds              | 56 Croftdown Road        |                       |            |              | 25293                   |               |
| Price & Myers      | Calcs for                |                       |            |              | Start page no./Revision |               |
| 37 Alfred Place    | Front retaining underpin |                       |            |              | 3 2                     |               |
| London<br>WC1E 7DP | Calcs by<br>TP           | Calcs date 14/12/2017 | Checked by | Checked date | Approved by             | Approved date |

#### Vertical forces on wall

Wall stem Wall base Applied vertical load Total vertical load

#### Horizontal forces on wall

Surcharge Moist backfill above water table Moist backfill below water table Saturated backfill Water Total horizontal load

#### Calculate propping force

Passive resistance of soil in front of wall Propping force

#### **Overturning moments**

Surcharge Moist backfill above water table Moist backfill below water table Saturated backfill Water Total overturning moment

#### **Restoring moments**

Wall stem Wall base Design vertical load Total restoring moment

#### Check bearing pressure

Total moment for bearing Total vertical reaction Distance to reaction Eccentricity of reaction

Bearing pressure at toe Bearing pressure at heel 
$$\begin{split} w_{wall} &= h_{stem} \times t_{wall} \times \gamma_{wall} = \textbf{21} \text{ kN/m} \\ w_{base} &= l_{base} \times t_{base} \times \gamma_{base} = \textbf{9.4} \text{ kN/m} \\ W_v &= W_{dead} + W_{live} = \textbf{69} \text{ kN/m} \\ W_{total} &= w_{wall} + w_{base} + W_v = \textbf{99.4} \text{ kN/m} \end{split}$$

$$\begin{split} F_{sur} &= K_a \times cos(90 - \alpha + \delta) \times Surcharge \times h_{eff} = \textbf{12} \ kN/m \\ F_{m\_a} &= 0.5 \times K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water})^2 = \textbf{4.2} \ kN/m \\ F_{m\_b} &= K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = \textbf{16.8} \ kN/m \\ F_s &= 0.5 \times K_a \times cos(90 - \alpha + \delta) \times (\gamma_{s-} \gamma_{water}) \times h_{water}^2 = \textbf{10.5} \ kN/m \\ F_{water} &= 0.5 \times h_{water}^2 \times \gamma_{water} = \textbf{19.6} \ kN/m \\ F_{total} &= F_{sur} + F_{m\_a} + F_{m\_b} + F_s + F_{water} = \textbf{63.1} \ kN/m \end{split}$$

$$\begin{split} F_{p} &= 0.5 \times K_{p} \times cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^{2} \times \gamma_{mb} = \textbf{0.4 kN/m} \\ F_{prop} &= max(F_{total} - F_{p} - (W_{total} - W_{live}) \times tan(\delta_{b}), \ 0 \ kN/m) \\ F_{prop} &= \textbf{34.0 kN/m} \end{split}$$

$$\begin{split} M_{sur} &= F_{sur} \times (h_{eff} - 2 \times d_{ds}) \ / \ 2 = \textbf{18} \ kNm/m \\ M_{m\_a} &= F_{m\_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{9.8} \ kNm/m \\ M_{m\_b} &= F_{m\_b} \times (h_{water} - 2 \times d_{ds}) \ / \ 2 = \textbf{16.8} \ kNm/m \\ M_{s} &= F_{s} \times (h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{7} \ kNm/m \\ M_{water} &= F_{water} \times (h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{13.1} \ kNm/m \\ M_{ot} &= M_{sur} + M_{m\_a} + M_{m\_b} + M_{s} + M_{water} = \textbf{64.7} \ kNm/m \end{split}$$

$$\begin{split} M_{wall} &= w_{wall} \times (I_{toe} + t_{wall} / 2) = \textbf{24.5 kNm/m} \\ M_{base} &= w_{base} \times I_{base} / 2 = \textbf{6.3 kNm/m} \\ M_v &= W_v \times I_{load} = \textbf{80.4 kNm/m} \\ M_{rest} &= M_{wall} + M_{base} + M_v = \textbf{111.1 kNm/m} \end{split}$$

$$\begin{split} M_{total} &= M_{rest} - M_{ot} = \textbf{46.5 kNm/m} \\ R &= W_{total} = \textbf{99.4 kN/m} \\ x_{bar} &= M_{total} / R = \textbf{467 mm} \\ e &= abs((I_{base} / 2) - x_{bar}) = \textbf{198 mm} \\ \hline \textbf{Reaction acts within middle third of base} \\ p_{toe} &= (R / I_{base}) + (6 \times R \times e / I_{base}^2) = \textbf{141.4 kN/m}^2 \\ p_{heel} &= (R / I_{base}) - (6 \times R \times e / I_{base}^2) = \textbf{8.1 kN/m}^2 \end{split}$$

PASS - Maximum bearing pressure is less than allowable bearing pressure

| TEKLA <sup>®</sup>                                  | Project                                                                                                                                                   | 56 Crofto                                                                                                                                                                                                                                     | down Road                                                                             |                                            | Job no.<br>25293                              |                                |  |  |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|--------------------------------|--|--|
| Price & Myers                                       | Calcs for                                                                                                                                                 |                                                                                                                                                                                                                                               |                                                                                       |                                            | Start page no./F                              |                                |  |  |
| 37 Alfred Place                                     |                                                                                                                                                           | Front retair                                                                                                                                                                                                                                  | ning underpin                                                                         |                                            |                                               | 42                             |  |  |
| London<br>WC1E 7DP                                  | Calcs by<br>TP                                                                                                                                            | Calcs date 14/12/2017                                                                                                                                                                                                                         | Checked by                                                                            | Checked date                               | Approved by                                   | Approved d                     |  |  |
| RETAINING WALL DESIGN                               | (BS 8002:1994)                                                                                                                                            | 2                                                                                                                                                                                                                                             |                                                                                       |                                            | TEDDS calculatio                              | n version 1.2.0                |  |  |
| Ultimate limit state load fac                       | tors                                                                                                                                                      |                                                                                                                                                                                                                                               |                                                                                       |                                            |                                               |                                |  |  |
| Dead load factor                                    |                                                                                                                                                           | $\gamma_{f_d} = 1.4$                                                                                                                                                                                                                          |                                                                                       |                                            |                                               |                                |  |  |
| Live load factor                                    |                                                                                                                                                           | $\gamma_{f\_l} = 1.6$                                                                                                                                                                                                                         |                                                                                       |                                            |                                               |                                |  |  |
| Earth and water pressure fac                        | tor                                                                                                                                                       | $\gamma_{f_e} = 1.4$                                                                                                                                                                                                                          |                                                                                       |                                            |                                               |                                |  |  |
| Factored vertical forces on                         | wall                                                                                                                                                      |                                                                                                                                                                                                                                               |                                                                                       |                                            |                                               |                                |  |  |
| Wall stem                                           |                                                                                                                                                           | $W_{wall_f} = \gamma_{f_d}$                                                                                                                                                                                                                   | $\timesh_{\text{stem}} \times t_{\text{wall}} \times$                                 | $\gamma_{wall} = \textbf{29.4 kN/r}$       | n                                             |                                |  |  |
| Wall base                                           |                                                                                                                                                           | Wbase_f = $\gamma_{f}$                                                                                                                                                                                                                        | $_{ m d} 	imes {\sf I}_{ m base} 	imes {\sf t}_{ m base}$                             | ×γ <sub>base</sub> = <b>13.2</b> kN        | /m                                            |                                |  |  |
| Applied vertical load                               |                                                                                                                                                           | $W_{v_f} = \gamma_{f_d}$                                                                                                                                                                                                                      | $	imes$ W <sub>dead</sub> + $\gamma_{f_l}$ $	imes$                                    | W <sub>live</sub> = <b>99.4</b> kN/r       | n                                             |                                |  |  |
| Total vertical load                                 |                                                                                                                                                           | $W_{total_f} = W_t$                                                                                                                                                                                                                           | $wall_f + W_{base_f} +$                                                               | $W_{v_f} = 142 \text{ kN/m}$               |                                               |                                |  |  |
| Factored horizontal at-rest                         | forces on wall                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                       |                                            |                                               |                                |  |  |
| Surcharge                                           |                                                                                                                                                           | $F_{sur_f} = \gamma_{f_i}$                                                                                                                                                                                                                    | $\times K_0 \times Surchar$                                                           | $ge 	imes h_{eff} = 30.7 \ k$              | N/m                                           |                                |  |  |
| Moist backfill above water tak                      | $F_{m\_a\_f} = \gamma_{f\_e}$                                                                                                                             | $\times 0.5 	imes K_0 	imes \gamma$                                                                                                                                                                                                           | $_{\rm m} 	imes ({\sf h}_{\rm eff}$ - ${\sf h}_{\rm water})^2$ :                      | = <b>9.4</b> kN/m                          |                                               |                                |  |  |
| Moist backfill below water tab                      | $F_{m\_b\_f} = \gamma_{f\_e} \times K_0 \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 37.6 \text{ kN/m}$                                |                                                                                                                                                                                                                                               |                                                                                       |                                            |                                               |                                |  |  |
| Saturated backfill                                  | $F_{\text{s}\_f} = \gamma_{f\_e} \times 0.5 \times K_0 \times (\gamma_{\text{s}^-} \gamma_{\text{water}}) \times h_{\text{water}^2} = \textbf{23.6 kN/m}$ |                                                                                                                                                                                                                                               |                                                                                       |                                            |                                               |                                |  |  |
| Water                                               | $F_{water f} = \gamma_f$                                                                                                                                  | $_{\rm e} 	imes 0.5 	imes h_{ m water}^2$                                                                                                                                                                                                     | $^{2} \times \gamma_{water} = 27.5 \text{ k}$                                         | N/m                                        |                                               |                                |  |  |
| Total horizontal load                               |                                                                                                                                                           | F <sub>total_f</sub> = F <sub>su</sub>                                                                                                                                                                                                        | $r_f + F_{m_a_f} + F_r$                                                               | n_b_f + Fs_f + Fwater                      | r_f = <b>128.9</b> kN/n                       | n                              |  |  |
| Calculate propping force                            |                                                                                                                                                           |                                                                                                                                                                                                                                               |                                                                                       |                                            |                                               |                                |  |  |
| Passive resistance of soil in f                     | ront of wall                                                                                                                                              | F <sub>p.f</sub> = γ <sub>f.e</sub> ×                                                                                                                                                                                                         | $0.5 \times K_n \times \cos$                                                          | $s(\delta_b) 	imes (d_{cover} + t_{ball})$ | ase + dds - dexc) <sup>2</sup>                | $\times \gamma_{\rm mb} = 0.5$ |  |  |
| kN/m                                                |                                                                                                                                                           | r_ •                                                                                                                                                                                                                                          | F                                                                                     |                                            | ···· · · · · · · · · · · · · · · · · ·        | •                              |  |  |
| Propping force                                      |                                                                                                                                                           | $F_{prop_f} = ma$                                                                                                                                                                                                                             | ax(F <sub>total_f</sub> - F <sub>p_f</sub> -                                          | $(W_{total_f} - \gamma_{f_l} \times W)$    | $V_{\rm live}) \times tan(\delta_{\rm b}), 0$ | kN/m)                          |  |  |
|                                                     |                                                                                                                                                           | F <sub>prop_f</sub> = <b>88</b>                                                                                                                                                                                                               |                                                                                       |                                            |                                               |                                |  |  |
| Factored overturning mom                            | ents                                                                                                                                                      |                                                                                                                                                                                                                                               |                                                                                       |                                            |                                               |                                |  |  |
| Surcharge                                           |                                                                                                                                                           | Msur f = Fsu                                                                                                                                                                                                                                  | rf×(h <sub>eff</sub> -2×)                                                             | d <sub>ds</sub> ) / 2 = <b>46.1</b> kN     | lm/m                                          |                                |  |  |
| Moist backfill above water tak                      | ble                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                       |                                            |                                               |                                |  |  |
| Moist backfill below water tab                      |                                                                                                                                                           | $\begin{split} M_{m\_a\_f} &= F_{m\_a\_f} \times \left(h_{eff} + 2 \times h_{water} - 3 \times d_{ds}\right) / 3 = 22 \; kNm/m \\ M_{m\_b\_f} &= F_{m\_b\_f} \times \left(h_{water} - 2 \times d_{ds}\right) / 2 = 37.6 \; kNm/m \end{split}$ |                                                                                       |                                            |                                               |                                |  |  |
| Saturated backfill                                  |                                                                                                                                                           |                                                                                                                                                                                                                                               | $M_{s_{f}} = F_{s_{f}} \times (h_{water} - 3 \times d_{ds}) / 3 = 15.8 \text{ kNm/m}$ |                                            |                                               |                                |  |  |
| Water                                               |                                                                                                                                                           |                                                                                                                                                                                                                                               |                                                                                       |                                            |                                               |                                |  |  |
| Total overturning moment                            |                                                                                                                                                           | $M_{water_f} = F_{water_f} \times (h_{water} - 3 \times d_{ds}) / 3 = 18.3 \text{ kNm/m}$ $M_{ot f} = M_{sur f} + M_m a f + M_m b f + M_s f + M_{water f} = 139.7 \text{ kNm/m}$                                                              |                                                                                       |                                            |                                               |                                |  |  |
| Restoring moments                                   |                                                                                                                                                           |                                                                                                                                                                                                                                               |                                                                                       | <u>-</u>                                   |                                               |                                |  |  |
| Wall stem                                           |                                                                                                                                                           | M                                                                                                                                                                                                                                             | oll f X (lung 1 to 11                                                                 | / 2) = <b>34.3</b> kNm/                    | m                                             |                                |  |  |
| Wall base                                           |                                                                                                                                                           |                                                                                                                                                                                                                                               | $all_f \times (ltoe + lwall)$<br>$base_f \times l_{base} / 2 =$                       |                                            |                                               |                                |  |  |
| Design vertical load                                |                                                                                                                                                           |                                                                                                                                                                                                                                               | $\times I_{\text{load}} = 115.8$                                                      |                                            |                                               |                                |  |  |
| Total restoring moment                              |                                                                                                                                                           |                                                                                                                                                                                                                                               |                                                                                       | Mv_f = <b>158.9</b> kNm                    | n/m                                           |                                |  |  |
| -                                                   |                                                                                                                                                           |                                                                                                                                                                                                                                               | an_i i i¥i⊍aS⊎_i T                                                                    |                                            | .,                                            |                                |  |  |
| Factored bearing pressure                           |                                                                                                                                                           | <b>КЛ</b> К <b>Л</b>                                                                                                                                                                                                                          | . M. 10                                                                               |                                            |                                               |                                |  |  |
| Total moment for bearing<br>Total vertical reaction |                                                                                                                                                           |                                                                                                                                                                                                                                               | <sub>est_f</sub> - M <sub>ot_f</sub> = 19<br>= 142.0 kN/m                             |                                            |                                               |                                |  |  |
| Distance to reaction                                |                                                                                                                                                           |                                                                                                                                                                                                                                               | $a_{142.0} \text{ km/m}$                                                              |                                            |                                               |                                |  |  |
| Eccentricity of reaction                            |                                                                                                                                                           |                                                                                                                                                                                                                                               | <sub>ase</sub> / 2) - x <sub>bar_f</sub> ) :                                          |                                            |                                               |                                |  |  |
| ,                                                   |                                                                                                                                                           |                                                                                                                                                                                                                                               | - , <u>-bui_</u> ()                                                                   | Reaction acts of                           | outside middle                                | e third of ba                  |  |  |
| Bearing pressure at toe                             |                                                                                                                                                           | $p_{toe_f} = R_f /$                                                                                                                                                                                                                           | $(1.5 \times X_{bar_f}) =$                                                            | <b>702.9</b> kN/m <sup>2</sup>             |                                               |                                |  |  |
| Bearing pressure at heel                            |                                                                                                                                                           | •                                                                                                                                                                                                                                             | $N/m^2 = 0 kN/m^2$                                                                    |                                            |                                               |                                |  |  |
| Rate of change of base react                        |                                                                                                                                                           | • =                                                                                                                                                                                                                                           |                                                                                       | 1739.59 kN/m²/r                            |                                               |                                |  |  |

| Tedds                                                                                                                                                                                                                         | Project                          | 56 Croftd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lown Road                                                                                                                                                                                                    |                                                                                                                                                                                                                                               | Job no.<br>2                                | 5293             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|
| Price & Myers                                                                                                                                                                                                                 | Calcs for                        | Front retain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ing underpin                                                                                                                                                                                                 |                                                                                                                                                                                                                                               | Start page no./F                            | Revision<br>52   |
| London<br>WC1E 7DP                                                                                                                                                                                                            | Calcs by<br>TP                   | Calcs date<br>14/12/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Checked by                                                                                                                                                                                                   | Checked date                                                                                                                                                                                                                                  | Approved by                                 | Approved         |
| Bearing pressure at stem / toe                                                                                                                                                                                                | !                                | p <sub>stem_toe_f</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | max(p <sub>toe_f</sub> - (ra                                                                                                                                                                                 | ate × I <sub>toe</sub> ), 0 kN/m <sup>2</sup>                                                                                                                                                                                                 | <sup>2</sup> ) = <b>0</b> kN/m <sup>2</sup> |                  |
| Bearing pressure at mid stem                                                                                                                                                                                                  |                                  | $p_{stem_mid_f} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | max(p <sub>toe_f</sub> - (ra                                                                                                                                                                                 | ate $\times$ (I <sub>toe</sub> + t <sub>wall</sub> / 2                                                                                                                                                                                        | 2)), 0 kN/m²) =                             | <b>0</b> kN/m²   |
| Bearing pressure at stem / hee                                                                                                                                                                                                | el                               | $p_{stem\_heel\_f} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | max(p <sub>toe_f</sub> - (r                                                                                                                                                                                  | $ate \times (I_{toe} + t_{wall})),$                                                                                                                                                                                                           | 0 kN/m²) = <b>0</b> k                       | kN/m²            |
| Design of reinforced concre                                                                                                                                                                                                   | te retaining w                   | all toe (BS 8002:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>994)</u>                                                                                                                                                                                                  |                                                                                                                                                                                                                                               |                                             |                  |
| Material properties                                                                                                                                                                                                           |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |                                             |                  |
| Characteristic strength of conc                                                                                                                                                                                               | crete                            | f <sub>cu</sub> = <b>40</b> N/r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nm²                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |                                             |                  |
| Characteristic strength of reinf                                                                                                                                                                                              | orcement                         | $f_y = 500 \text{ N/r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mm²                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |                                             |                  |
| Base details                                                                                                                                                                                                                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |                                             |                  |
| Minimum area of reinforcemen                                                                                                                                                                                                  | nt                               | k = <b>0.13</b> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |                                             |                  |
| Cover to reinforcement in toe                                                                                                                                                                                                 |                                  | c <sub>toe</sub> = <b>50</b> m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                             |                  |
| Calculate shear for toe desig                                                                                                                                                                                                 | yn                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |                                             |                  |
| Shear from bearing pressure                                                                                                                                                                                                   |                                  | $V_{toe\_bear} = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\times  p_{toe\_f} \times x_{bar\_}$                                                                                                                                                                        | <sub>f</sub> / 2 = <b>142</b> kN/m                                                                                                                                                                                                            |                                             |                  |
| Shear from weight of base                                                                                                                                                                                                     |                                  | V <sub>toe_wt_base</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = $\gamma_{f_d} 	imes \gamma_{base} 	imes I$                                                                                                                                                                 | $t_{toe} \times t_{base} = 9.9 \text{ kN}$                                                                                                                                                                                                    | l/m                                         |                  |
| Total shear for toe design                                                                                                                                                                                                    |                                  | $V_{toe} = V_{toe\_b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ear - V <sub>toe_wt_base</sub>                                                                                                                                                                               | e = <b>132.1</b> kN/m                                                                                                                                                                                                                         |                                             |                  |
| Calculate moment for toe de                                                                                                                                                                                                   | sign                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |                                             |                  |
| Moment from bearing pressure                                                                                                                                                                                                  | e                                | $M_{toe\_bear} = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $B \times p_{\text{toe}_f} \times x_{\text{bar}_f}$                                                                                                                                                          | $_{f} \times (I_{toe} - x_{bar_{f}} + t_{was})$                                                                                                                                                                                               | all / 2) / 2 = <b>146</b>                   | <b>6.3</b> kNm/m |
| Moment from weight of base                                                                                                                                                                                                    |                                  | M <sub>toe_wt_base</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = ( $\gamma_{f_d} \times \gamma_{base} \times$                                                                                                                                                               | $t_{base} \times (I_{toe} + t_{wall} / $                                                                                                                                                                                                      | 2) <sup>2</sup> / 2) = <b>6.7</b> k         | ⟨Nm/m            |
| Total moment for toe design                                                                                                                                                                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              | <sub>se</sub> = <b>139.6</b> kNm/m                                                                                                                                                                                                            |                                             |                  |
| -242                                                                                                                                                                                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |                                             |                  |
|                                                                                                                                                                                                                               | • •                              | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                            | • • •                                                                                                                                                                                                                                         | •                                           |                  |
| 30                                                                                                                                                                                                                            | ● ●                              | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                            | • • •                                                                                                                                                                                                                                         | •                                           |                  |
|                                                                                                                                                                                                                               | ● ●                              | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                            | •••                                                                                                                                                                                                                                           | •                                           |                  |
| 30                                                                                                                                                                                                                            | - 100-▶                          | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •                                                                                                                                                                                                          | •••                                                                                                                                                                                                                                           | •                                           |                  |
| Check toe in bending                                                                                                                                                                                                          | ● ●                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                              | ) = <b>242.0</b> mm                                                                                                                                                                                                                           | •                                           |                  |
| Check toe in bending<br>Width of toe                                                                                                                                                                                          | - 100-▶                          | $d_{toe} = t_{base}$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                              | -                                                                                                                                                                                                                                             | •                                           |                  |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement                                                                                                                                                                | ● ●                              | $d_{toe} = t_{base}$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $- c_{toe} - (\phi_{toe} / 2)$<br>$d (b \times d_{toe}^2 \times f_{cu})$                                                                                                                                     | -                                                                                                                                                                                                                                             | •<br>inforcement is                         | s not requ       |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement                                                                                                                                                                |                                  | $d_{toe} = t_{base} - K_{toe} = M_{toe} / K_{toe}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $-c_{toe} - (\phi_{toe}/2)$<br>$f(b \times d_{toe}^2 \times f_{ct})$<br>$0.5 + \sqrt{0.25 - 6}$                                                                                                              | u) = <b>0.060</b>                                                                                                                                                                                                                             |                                             | -                |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm                                                                                                                                       |                                  | $d_{toe} = t_{base} - K_{toe} = M_{toe} / Z_{toe} = min(0)$ $z_{toe} = 225 m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-c_{toe} - (\phi_{toe} / 2)$ $(b \times d_{toe}^2 \times f_{ct})$ $0.5 + \sqrt{0.25 - 0}$ nm                                                                                                                | u) = 0.060<br>Compression re                                                                                                                                                                                                                  | ′ 0.9)),0.95) × c                           | -                |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement                                                                                                      | required                         | $d_{toe} = t_{base} - K_{toe} = M_{toe} / Z_{toe} = min(C_{toe} - 225 m_{s_toe_des} -$                                                                                                                                                                                                                                                     | $-c_{toe} - (\phi_{toe} / 2)$ $(b \times d_{toe}^2 \times f_{ct})$ $0.5 + \sqrt{0.25 - 0}$ nm                                                                                                                | <sub>u</sub> ) = <b>0.060</b><br><i>Compression re</i><br>(min(K <sub>toe</sub> , 0.225) /<br>f <sub>y</sub> × z <sub>toe</sub> ) = <b>1428</b> m                                                                                             | ′ 0.9)),0.95) × c                           | -                |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant                                                                                                                                                    | required                         | $d_{toe} = t_{base} - K_{toe} = M_{toe} / Z_{toe} = min(0)$ $Z_{toe} = 225 m$ $A_{s\_toe\_des} = A_{s\_toe\_min} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{ct})$ $0.5 + \sqrt{(0.25 - top)}$ $M_{toe} / (0.87 \times top)$ $k \times b \times t_{base} = 0$                                              | <sub>u</sub> ) = <b>0.060</b><br><i>Compression re</i><br>(min(K <sub>toe</sub> , 0.225) /<br>f <sub>y</sub> × z <sub>toe</sub> ) = <b>1428</b> m                                                                                             | ′′ 0.9)),0.95) × c<br>m²/m                  | -                |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement<br>Minimum area of tension reinforcement<br>Reinforcement provided                                   | required<br>prcement<br>required | $d_{toe} = t_{base} - K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = min(0)$ $z_{toe} = 225 m$ $A_{s\_toe\_des} = K_{s\_toe\_req} = K_{s\_toe\_toe\_req} = K_{s\_toe\_req} = K_{s\_toe\_re} = K_{s\_toe\_re} = K_{s\_toe\_req} = K_{s\_toe$ | $-c_{toe} - (\phi_{toe} / 2)$ $(b \times d_{toe}^{2} \times f_{ct})$ $0.5 + \sqrt{(0.25 - 6)}$ $M_{toe} / (0.87 \times 1)$ $k \times b \times t_{base} =$ $Max(A_{s_toe_{}}des,$ $.bars @ 100 $              | <sub>J</sub> ) = <b>0.060</b><br><i>Compression re</i><br>(min(K <sub>toe</sub> , 0.225) /<br>f <sub>y</sub> × z <sub>toe</sub> ) = <b>1428</b> m<br><b>390</b> mm <sup>2</sup> /m<br>A <sub>s_toe_min</sub> ) = <b>1428</b>                  | ′′ 0.9)),0.95) × c<br>m²/m                  | -                |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement<br>Minimum area of tension reinforcement                                                             | required<br>prcement<br>required | $d_{toe} = t_{base} - K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = 225 \text{ m}$ $A_{s\_toe\_des} = M_{s\_toe\_min} = M_{s\_toe\_min} = M_{s\_toe\_req} = M_{s\_toe\_req} = M_{s\_toe\_prov} = M_{s\_toe$            | $-c_{toe} - (\phi_{toe} / 2)$ $(b \times d_{toe}^2 \times f_{ct})$ $0.5 + \sqrt{(0.25 - 1)}$ $M_{toe} / (0.87 \times 1)$ $k \times b \times t_{base} =$ $Max(A_{s\_toe\_des}, bars @ 100 + 1)$ $2011 mm^2/m$ | <sub>J</sub> ) = <b>0.060</b><br><i>Compression re</i><br>(min(K <sub>toe</sub> , 0.225) /<br>f <sub>y</sub> × z <sub>toe</sub> ) = <b>1428</b> m<br><b>390</b> mm <sup>2</sup> /m<br>A <sub>s_toe_min</sub> ) = <b>1428</b>                  | ′ 0.9)),0.95) × c<br>Im²/m<br>mm²/m         | dtoe             |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement<br>Minimum area of tension reinforcement<br>Reinforcement provided                                   | required<br>prcement<br>required | $d_{toe} = t_{base} - K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = 225 \text{ m}$ $A_{s\_toe\_des} = M_{s\_toe\_min} = M_{s\_toe\_min} = M_{s\_toe\_req} = M_{s\_toe\_req} = M_{s\_toe\_prov} = M_{s\_toe$            | $-c_{toe} - (\phi_{toe} / 2)$ $(b \times d_{toe}^2 \times f_{ct})$ $0.5 + \sqrt{(0.25 - 1)}$ $M_{toe} / (0.87 \times 1)$ $k \times b \times t_{base} =$ $Max(A_{s\_toe\_des}, bars @ 100 + 1)$ $2011 mm^2/m$ | u) = <b>0.060</b><br><i>Compression re</i><br>(min(K <sub>toe</sub> , 0.225) /<br>f <sub>y</sub> × z <sub>toe</sub> ) = <b>1428</b> m<br><b>390</b> mm <sup>2</sup> /m<br>A <sub>s_toe_min</sub> ) = <b>1428</b><br>mm centres                | ′ 0.9)),0.95) × c<br>Im²/m<br>mm²/m         | dtoe             |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement<br>Minimum area of tension reinforcement<br>Reinforcement provided<br>Area of reinforcement provided | required<br>prcement<br>required | $d_{toe} = t_{base} - K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = 225 \text{ m}$ $A_{s\_toe\_des} = K_{s\_toe\_min} = K_{s\_toe\_min} = K_{s\_toe\_min} = K_{s\_toe\_req} = 16 \text{ mm dia}$ $A_{s\_toe\_prov} = PASS - Reim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-c_{toe} - (\phi_{toe} / 2)$ $(b \times d_{toe}^2 \times f_{ct})$ $0.5 + \sqrt{(0.25 - 1)}$ $M_{toe} / (0.87 \times 1)$ $k \times b \times t_{base} =$ $Max(A_{s\_toe\_des}, bars @ 100 + 1)$ $2011 mm^2/m$ | $J_{\mu}$ = <b>0.060</b><br><i>Compression re</i><br>(min(K <sub>toe</sub> , 0.225) /<br>$f_y \times z_{toe}$ ) = <b>1428</b> m<br><b>390</b> mm <sup>2</sup> /m<br>$A_{s_toe_min}$ ) = <b>1428</b><br>mm centres<br><i>rovided at the re</i> | ′ 0.9)),0.95) × c<br>Im²/m<br>mm²/m         | dtoe             |

| TEKLA'                                                                               | Project                | 56 Crofte                                                                                                                     | down Road                                                   |                                                                   | Job no.<br>25293                                               |                    |  |  |
|--------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|--------------------|--|--|
| Price & Myers<br>37 Alfred Place                                                     | Calcs for              | Front retair                                                                                                                  | ning underpin                                               |                                                                   | Start page no./F                                               | Revision<br>6 2    |  |  |
| London<br>WC1E 7DP                                                                   | Calcs by<br>TP         | Calcs date 14/12/2017                                                                                                         | Checked by                                                  | Checked date                                                      | Approved by                                                    | Approved           |  |  |
| From BS8110:Part 1:1997 – 1                                                          | able 2.8               | I                                                                                                                             | -                                                           | 1                                                                 | - <b>f</b>                                                     |                    |  |  |
| Design concrete shear stress                                                         | able 5.0               | V <sub>c toe</sub> = <b>0.7</b>                                                                                               | <b>88</b> N/mm²                                             |                                                                   |                                                                |                    |  |  |
| C C                                                                                  |                        |                                                                                                                               |                                                             | oe < Vc_toe - No sł                                               | ear reinforce                                                  | ment requ          |  |  |
| Design of reinforced concret                                                         | e retaining w          | all stem (BS 8002                                                                                                             | 2:1994)                                                     |                                                                   |                                                                |                    |  |  |
| Material properties                                                                  |                        |                                                                                                                               | <u>_</u>                                                    |                                                                   |                                                                |                    |  |  |
| Characteristic strength of conc                                                      | rete                   | f <sub>cu</sub> = <b>40</b> N/r                                                                                               | mm²                                                         |                                                                   |                                                                |                    |  |  |
| Characteristic strength of reinfo                                                    | prcement               | $f_y = 500 \text{ N/}$                                                                                                        | mm²                                                         |                                                                   |                                                                |                    |  |  |
| Wall details                                                                         |                        |                                                                                                                               |                                                             |                                                                   |                                                                |                    |  |  |
| Minimum area of reinforcemen                                                         | t                      | k = <b>0.13</b> %                                                                                                             |                                                             |                                                                   |                                                                |                    |  |  |
| Cover to reinforcement in stem                                                       | I                      | c <sub>stem</sub> = <b>50</b> r                                                                                               | nm                                                          |                                                                   |                                                                |                    |  |  |
| Cover to reinforcement in wall                                                       |                        | c <sub>wall</sub> = <b>50</b> m                                                                                               | ım                                                          |                                                                   |                                                                |                    |  |  |
| Factored horizontal at-rest for                                                      | orces on stem          | ı                                                                                                                             |                                                             |                                                                   |                                                                |                    |  |  |
| Surcharge                                                                            |                        | $F_{s\_sur\_f} = \gamma_{f\_}$                                                                                                | $_1 \times K_0 \times Surcha$                               | arge 	imes (h <sub>eff</sub> - t <sub>base</sub> ·                | - d <sub>ds</sub> ) = <b>27.6</b> kN                           | l/m                |  |  |
| Moist backfill above water table                                                     | e                      | $F_{s_m_a_f} = 0$                                                                                                             | $.5 	imes \gamma_{f_e} 	imes K_0 	imes$                     | $\gamma_{m} 	imes$ (h <sub>eff</sub> - t <sub>base</sub> - o      | d <sub>ds</sub> - h <sub>sat</sub> ) <sup>2</sup> = <b>9.4</b> | kN/m               |  |  |
| Moist backfill below water table                                                     | $F_{s_m_b_f} = \gamma$ | $f_e 	imes K_0 	imes \gamma_m 	imes 0$                                                                                        | (h <sub>eff</sub> - t <sub>base</sub> - d <sub>ds</sub> - h | <sub>sat</sub> ) × h <sub>sat</sub> = <b>32</b>                   | kN/m                                                           |                    |  |  |
| Saturated backfill                                                                   |                        | $F_{s\_s\_f} = 0.5 \times \gamma_{f\_e} \times K_0 \times (\gamma_{s-} \gamma_{water}) \times h_{sat}^2 = \textbf{17.1 kN/m}$ |                                                             |                                                                   |                                                                |                    |  |  |
| Water                                                                                |                        | $F_{s\_water\_f} = 0.5 \times \gamma_{f\_e} \times \gamma_{water} \times h_{sat}^2 = 19.8 \text{ kN/m}$                       |                                                             |                                                                   |                                                                |                    |  |  |
| Calculate shear for stem des<br>Shear at base of stem<br>Calculate moment for stem d | -                      | $V_{stem} = F_{s_s}$                                                                                                          | $sur_f + F_{s_m_a_f} +$                                     | $F_{s_m_b_f} + F_{s_s_f} +$                                       | Fs_water_f - Fprop                                             | _f = <b>17.9</b> k |  |  |
| Surcharge                                                                            |                        | $M_{s\_sur} = F_{s\_}$                                                                                                        | $_{sur_f} \times (h_{stem} + 1)$                            | i <sub>base</sub> ) / 2 = <b>41.5</b> kN                          | lm/m                                                           |                    |  |  |
| Moist backfill above water table                                                     | 9                      | $M_{s\_m\_a} = F_{s\_m\_a\_f} \times (2 \times h_{sat} + h_{eff} - d_{ds} + t_{base} / 2) / 3 = \textbf{20.5} \text{ kNm/m}$  |                                                             |                                                                   |                                                                |                    |  |  |
| Moist backfill below water table                                                     | )                      | $M_{s_m_b} = F_{s_m_b_f} \times h_{sat} / 2 = 27.2 \text{ kNm/m}$                                                             |                                                             |                                                                   |                                                                |                    |  |  |
| Saturated backfill                                                                   |                        | $M_{s_s} = F_{s_s}$                                                                                                           | $_{f} \times h_{sat} / 3 = 9.$                              | <b>7</b> kNm/m                                                    |                                                                |                    |  |  |
| Water                                                                                |                        | _                                                                                                                             |                                                             | 3 = <b>11.2</b> kNm/m                                             |                                                                |                    |  |  |
| Total moment for stem design                                                         |                        | M <sub>stem</sub> = M <sub>s</sub> _                                                                                          | _sur + Ms_m_a + I                                           | $M_{s_m_b} + M_{s_s} + M_{s_s}$                                   | s_water = 110.1 k                                              | Nm/m               |  |  |
| 330                                                                                  | •                      | •                                                                                                                             | •                                                           | •                                                                 | •                                                              |                    |  |  |
|                                                                                      | <b>⊲</b> —200          | )▶                                                                                                                            |                                                             |                                                                   |                                                                |                    |  |  |
| Check wall stem in bending                                                           |                        |                                                                                                                               |                                                             |                                                                   |                                                                |                    |  |  |
| Width of wall stem                                                                   |                        | b = <b>1000</b> n                                                                                                             | nm/m                                                        |                                                                   |                                                                |                    |  |  |
| Depth of reinforcement                                                               |                        |                                                                                                                               |                                                             | / 2) = <b>272.0</b> mm                                            |                                                                |                    |  |  |
| Constant                                                                             |                        |                                                                                                                               | $\phi_{\rm em} / (b \times d_{\rm stem}^2)$                 |                                                                   |                                                                |                    |  |  |
|                                                                                      |                        |                                                                                                                               |                                                             | Compression re                                                    | inforcement i                                                  | s not real         |  |  |
| Lever arm                                                                            |                        |                                                                                                                               | (0.5 + √(0.25 -                                             | (min(K <sub>stem</sub> , 0.225                                    |                                                                | -                  |  |  |
|                                                                                      |                        | Z <sub>stem</sub> = <b>258</b>                                                                                                | mm                                                          |                                                                   |                                                                |                    |  |  |
| Area of tension reinforcement                                                        |                        | -                                                                                                                             |                                                             | $\times$ f <sub>y</sub> $\times$ z <sub>stem</sub> ) = <b>980</b> | 24                                                             |                    |  |  |

| TEKLA<br>Tedds                   | Project                               | Job no.<br>25293         |            |              |                                |               |
|----------------------------------|---------------------------------------|--------------------------|------------|--------------|--------------------------------|---------------|
| Price & Myers<br>37 Alfred Place | Calcs for<br>Front retaining underpin |                          |            |              | Start page no./Revision<br>7 2 |               |
| London<br>WC1E 7DP               | Calcs by<br>TP                        | Calcs date<br>14/12/2017 | Checked by | Checked date | Approved by                    | Approved date |

Minimum area of tension reinforcement Area of tension reinforcement required Reinforcement provided Area of reinforcement provided  $A_{s\_stem\_min} = k \times b \times t_{wall} = 429 \text{ mm}^2/\text{m}$ 

 $A_{s\_stem\_req} = Max(A_{s\_stem\_des}, A_{s\_stem\_min}) = 980 \text{ mm}^2/\text{m}$ 

16 mm dia.bars @ 200 mm centres

 $A_{s\_stem\_prov} = 1005 \text{ mm}^2/\text{m}$ 

PASS - Reinforcement provided at the retaining wall stem is adequate

#### Check shear resistance at wall stem

Design shear stress

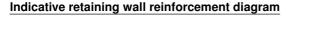
Allowable shear stress

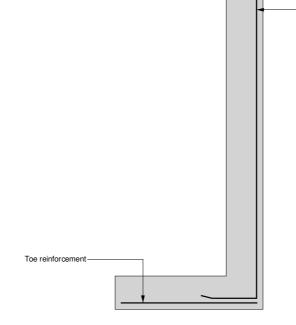
#### From BS8110:Part 1:1997 – Table 3.8

Design concrete shear stress

#### $v_{stem} = V_{stem} / (b \times d_{stem}) = 0.066 \text{ N/mm}^2$

 $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 5.000 \text{ N/mm}^2$ 


PASS - Design shear stress is less than maximum shear stress

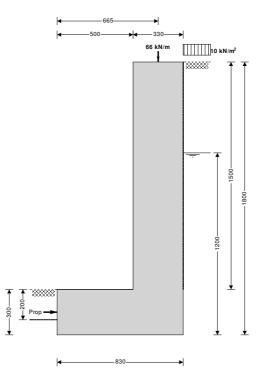

#### Vc\_stem = 0.584 N/mm<sup>2</sup>

v<sub>stem</sub> < v<sub>c\_stem</sub> - No shear reinforcement required

| TEKLA <sup>®</sup>               | Project           | Job no.<br>2          | 5293                           |              |             |               |
|----------------------------------|-------------------|-----------------------|--------------------------------|--------------|-------------|---------------|
| Price & Myers<br>37 Alfred Place | Calcs for         | Start page no./       | Start page no./Revision<br>8 2 |              |             |               |
| London<br>WC1E 7DP               | Calcs by<br>TP    | Calcs date 14/12/2017 | Checked by                     | Checked date | Approved by | Approved date |
| Indicative retaining wall r      | coinforcomont dia | arom                  |                                |              |             |               |

-Stem reinforcement






Toe bars - 16 mm dia.@ 100 mm centres - (2011 mm<sup>2</sup>/m) Stem bars - 16 mm dia.@ 200 mm centres - (1005 mm<sup>2</sup>/m)

| TEKLA<br>Tedds                   | Project                              | Job no.<br>25293      |            |              |                                |               |
|----------------------------------|--------------------------------------|-----------------------|------------|--------------|--------------------------------|---------------|
| Price & Myers<br>37 Alfred Place | Calcs for<br>Rear retaining underpin |                       |            |              | Start page no./Revision<br>1 2 |               |
| London<br>WC1E 7DP               | Calcs by<br>TP                       | Calcs date 14/12/2017 | Checked by | Checked date | Approved by                    | Approved date |

TEDDS calculation version 1.2.01.06

#### RETAINING WALL ANALYSIS (BS 8002:1994)



#### Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall

#### **Retained material details**

Mobilisation factor Moist density of retained material

#### Cantilever propped at base

h<sub>stem</sub> = **1500** mm twall = 330 mm I<sub>toe</sub> = **500** mm  $I_{heel} = 0 \text{ mm}$ Ibase = Itoe + Iheel + twall = 830 mm t<sub>base</sub> = **300** mm  $d_{ds} = \mathbf{0} mm$ lds = **530** mm t<sub>ds</sub> = **300** mm  $h_{wall} = h_{stem} + t_{base} + d_{ds} = \textbf{1800} mm$  $d_{cover} = 0 mm$ d<sub>exc</sub> = **200** mm h<sub>water</sub> = 1200 mm  $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 900 mm$  $\gamma_{wall} = 23.6 \text{ kN/m}^3$ γ<sub>base</sub> = 23.6 kN/m<sup>3</sup>  $\alpha = 90.0 \text{ deg}$  $\beta = 0.0 \text{ deg}$  $h_{\text{eff}} = h_{\text{wall}} + I_{\text{heel}} \times tan(\beta) = 1800 \text{ mm}$ 

#### M = **1.5** γ<sub>m</sub> = **21.0** kN/m<sup>3</sup>

| Tedds<br>Price & Myers<br>37 Alfred Place<br>London<br>WC1E 7DP | Calcs for            | _                                                       |                                 |                                                       | Start page po /                         |                                     |
|-----------------------------------------------------------------|----------------------|---------------------------------------------------------|---------------------------------|-------------------------------------------------------|-----------------------------------------|-------------------------------------|
| 37 Alfred Place<br>London                                       |                      | Poar rotaining undernin                                 |                                 |                                                       | Start page no./Revision                 |                                     |
|                                                                 |                      | Rear retain                                             | ing underpin                    |                                                       |                                         | 22                                  |
|                                                                 | Calcs by<br>TP       | Calcs date 14/12/2017                                   | Checked by                      | Checked date                                          | Approved by                             | Approved                            |
| Saturated density of retained r                                 | naterial             | γ <sub>s</sub> = <b>23.0</b> k                          | N/m <sup>3</sup>                |                                                       |                                         |                                     |
| Design shear strength                                           |                      | φ' = <b>21.1</b> d                                      |                                 |                                                       |                                         |                                     |
| Angle of wall friction                                          |                      | δ = <b>16.1</b> de                                      | -                               |                                                       |                                         |                                     |
| Base material details                                           |                      |                                                         | 0                               |                                                       |                                         |                                     |
| Firm clay                                                       |                      |                                                         |                                 |                                                       |                                         |                                     |
| Moist density                                                   |                      | $\gamma_{mb} = 19.0$                                    | kN/m³                           |                                                       |                                         |                                     |
| Design shear strength                                           |                      | φ' <sub>b</sub> = <b>24.0</b> α                         |                                 |                                                       |                                         |                                     |
| Design base friction                                            |                      | $\delta_{\rm b} = 18.6  {\rm d}$                        | -                               |                                                       |                                         |                                     |
| Allowable bearing pressure                                      |                      | P <sub>bearing</sub> = 1                                | -                               |                                                       |                                         |                                     |
| Using Coulomb theory                                            |                      |                                                         |                                 |                                                       |                                         |                                     |
| Active pressure coefficient for                                 | retained mater       | ial                                                     |                                 |                                                       |                                         |                                     |
| •                                                               |                      | $^{2} \times \sin(\alpha - \delta) \times [1 - \delta]$ | ⊦ √(sin(φ' + δ) ×               | < sin(φ' - β) / (sin(                                 | $\alpha$ - $\delta$ ) × sin( $\alpha$ + | $(\beta)))]^{2}) = 0$               |
| Passive pressure coefficient for                                |                      |                                                         | /                               |                                                       | , , , , ,                               |                                     |
|                                                                 | K <sub>p</sub> = sir | n(90 - ø'₅)² / (sin(90                                  | D - δ₀) × [1 - √(s              | $\sin(\phi'_{b} + \delta_{b}) \times \sin(\phi'_{b})$ | φ' <sub>b</sub> ) / (sin(90 +           | $(\delta_{b})))]^{2}) = \delta_{b}$ |
| At-rest pressure                                                |                      |                                                         | - <b>x</b>                      |                                                       |                                         |                                     |
| At-rest pressure for retained m                                 | aterial              | K₀ = 1 – si                                             | n(φ') = <b>0.640</b>            |                                                       |                                         |                                     |
|                                                                 |                      |                                                         | (,,)                            |                                                       |                                         |                                     |
| Loading details<br>Surcharge load on plan                       |                      | Surcharge                                               | = <b>10.0</b> kN/m <sup>2</sup> |                                                       |                                         |                                     |
| Applied vertical dead load on v                                 | vall                 | $W_{dead} = 53$                                         |                                 |                                                       |                                         |                                     |
| Applied vertical live load on wa                                |                      | W <sub>live</sub> = <b>13.0</b>                         |                                 |                                                       |                                         |                                     |
| Position of applied vertical loa                                | d on wall            | l <sub>load</sub> = 665 I                               | mm                              |                                                       |                                         |                                     |
| Applied horizontal dead load of                                 | n wall               | F <sub>dead</sub> = <b>0.0</b>                          | kN/m                            |                                                       |                                         |                                     |
| Applied horizontal live load on                                 |                      | Flive = <b>0.0</b> k                                    |                                 |                                                       |                                         |                                     |
| Height of applied horizontal loa                                | ad on wall           | $h_{load} = 0 m_{load}$                                 | m                               |                                                       |                                         |                                     |
|                                                                 |                      | 66<br>                                                  | 10 IIII                         |                                                       |                                         |                                     |
|                                                                 |                      | ×                                                       |                                 |                                                       |                                         |                                     |
|                                                                 |                      |                                                         |                                 |                                                       |                                         |                                     |
|                                                                 |                      |                                                         |                                 |                                                       |                                         |                                     |
|                                                                 |                      |                                                         |                                 |                                                       |                                         |                                     |
|                                                                 |                      | _                                                       |                                 | 1 1                                                   |                                         |                                     |
|                                                                 |                      |                                                         |                                 | A A                                                   |                                         |                                     |
|                                                                 |                      |                                                         |                                 |                                                       |                                         |                                     |
|                                                                 |                      |                                                         |                                 |                                                       |                                         |                                     |
|                                                                 |                      |                                                         |                                 |                                                       |                                         |                                     |
|                                                                 |                      |                                                         | 目目                              |                                                       |                                         |                                     |
|                                                                 |                      |                                                         |                                 |                                                       |                                         |                                     |
|                                                                 | -****                |                                                         |                                 |                                                       |                                         |                                     |
|                                                                 | Prop                 |                                                         |                                 |                                                       |                                         |                                     |
| 7.5                                                             |                      |                                                         |                                 |                                                       |                                         |                                     |
| 7.5                                                             | 75.7                 | 1*                                                      | 4.0 5.0<br>25.6                 | 6.3 11.8                                              |                                         |                                     |
|                                                                 | L.I.I.I.I.I.I.I      |                                                         |                                 |                                                       |                                         |                                     |
|                                                                 |                      |                                                         |                                 |                                                       |                                         |                                     |

| TEKLA<br>Tedds                   | Project                              | Job no.<br>25293         |            |                                |             |               |
|----------------------------------|--------------------------------------|--------------------------|------------|--------------------------------|-------------|---------------|
| Price & Myers<br>37 Alfred Place | Calcs for<br>Rear retaining underpin |                          |            | Start page no./Revision<br>3 2 |             |               |
| London<br>WC1E 7DP               | Calcs by<br>TP                       | Calcs date<br>14/12/2017 | Checked by | Checked date                   | Approved by | Approved date |

#### Vertical forces on wall

Wall stem Wall base Applied vertical load Total vertical load

#### Horizontal forces on wall

Surcharge Moist backfill above water table Moist backfill below water table Saturated backfill Water Total horizontal load

#### Calculate propping force

Passive resistance of soil in front of wall Propping force

#### **Overturning moments**

Surcharge Moist backfill above water table Moist backfill below water table Saturated backfill Water Total overturning moment

#### **Restoring moments**

Wall stem Wall base Design vertical load Total restoring moment

#### Check bearing pressure

Total moment for bearing Total vertical reaction Distance to reaction Eccentricity of reaction

Bearing pressure at toe Bearing pressure at heel 
$$\begin{split} w_{wall} &= h_{stem} \times t_{wall} \times \gamma_{wall} = \textbf{11.7 kN/m} \\ w_{base} &= l_{base} \times t_{base} \times \gamma_{base} = \textbf{5.9 kN/m} \\ W_v &= W_{dead} + W_{live} = \textbf{66 kN/m} \\ W_{total} &= w_{wall} + w_{base} + W_v = \textbf{83.6 kN/m} \end{split}$$

$$\begin{split} F_{sur} &= K_a \times cos(90 - \alpha + \delta) \times Surcharge \times h_{eff} = \textbf{7.2 kN/m} \\ F_{m\_a} &= 0.5 \times K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water})^2 = \textbf{1.5 kN/m} \\ F_{m\_b} &= K_a \times cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = \textbf{6 kN/m} \\ F_s &= 0.5 \times K_a \times cos(90 - \alpha + \delta) \times (\gamma_{s^-} \gamma_{water}) \times h_{water}^2 = \textbf{3.8 kN/m} \\ F_{water} &= 0.5 \times h_{water}^2 \times \gamma_{water} = \textbf{7.1 kN/m} \\ F_{total} &= F_{sur} + F_{m\_a} + F_{m\_b} + F_s + F_{water} = \textbf{25.6 kN/m} \end{split}$$

$$\begin{split} F_{p} &= 0.5 \times K_{p} \times cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^{2} \times \gamma_{mb} = \textbf{0.4 kN/m} \\ F_{prop} &= max(F_{total} - F_{p} - (W_{total} - W_{live}) \times tan(\delta_{b}), \ 0 \ kN/m) \\ F_{prop} &= \textbf{1.5 kN/m} \end{split}$$

$$\begin{split} M_{sur} &= F_{sur} \times (h_{eff} - 2 \times d_{ds}) \ / \ 2 = \textbf{6.5} \ kNm/m \\ M_{m\_a} &= F_{m\_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{2.1} \ kNm/m \\ M_{m\_b} &= F_{m\_b} \times (h_{water} - 2 \times d_{ds}) \ / \ 2 = \textbf{3.6} \ kNm/m \\ M_{s} &= F_{s} \times (h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{1.5} \ kNm/m \\ M_{water} &= F_{water} \times (h_{water} - 3 \times d_{ds}) \ / \ 3 = \textbf{2.8} \ kNm/m \\ M_{ot} &= M_{sur} + M_{m\_a} + M_{m\_b} + M_{s} + M_{water} = \textbf{16.6} \ kNm/m \end{split}$$

$$\begin{split} M_{wall} &= w_{wall} \times (I_{toe} + t_{wall} / 2) = \textbf{7.8 kNm/m} \\ M_{base} &= w_{base} \times I_{base} / 2 = \textbf{2.4 kNm/m} \\ M_v &= W_v \times I_{load} = \textbf{43.9 kNm/m} \\ M_{rest} &= M_{wall} + M_{base} + M_v = \textbf{54.1 kNm/m} \end{split}$$

$$\begin{split} M_{total} &= M_{rest} - M_{ot} = \textbf{37.5 kNm/m} \\ R &= W_{total} = \textbf{83.6 kN/m} \\ x_{bar} &= M_{total} / R = \textbf{449 mm} \\ e &= abs((I_{base} / 2) - x_{bar}) = \textbf{34 mm} \\ \hline \textbf{Reaction acts within middle third of base} \\ p_{toe} &= (R / I_{base}) - (6 \times R \times e / I_{base}^2) = \textbf{75.7 kN/m}^2 \\ p_{heel} &= (R / I_{base}) + (6 \times R \times e / I_{base}^2) = \textbf{125.6 kN/m}^2 \end{split}$$

PASS - Maximum bearing pressure is less than allowable bearing pressure

| TEKLA <sup>®</sup>            | Project                                                                                                                    | 56 Crofto                                                                                                   | down Road                                                                                               |                                                                                | Job no.<br>2                                 | 5293                       |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|----------------------------|--|--|--|
| Price & Myers                 | Calcs for                                                                                                                  |                                                                                                             |                                                                                                         |                                                                                | Start page no./                              | Revision                   |  |  |  |
| 37 Alfred Place               |                                                                                                                            | Rear retair                                                                                                 | ning underpin                                                                                           |                                                                                |                                              | 42                         |  |  |  |
| London                        | Calcs by                                                                                                                   | Calcs date                                                                                                  | Checked by                                                                                              | Checked date                                                                   | Approved by                                  | Approved d                 |  |  |  |
| WC1E 7DP                      | TP                                                                                                                         | 14/12/2017                                                                                                  |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| RETAINING WALL DESIGI         | N (BS 8002:1994)                                                                                                           | )                                                                                                           |                                                                                                         |                                                                                | TEDDS calculatic                             | n version 1.2 (            |  |  |  |
| Ultimate limit state load fa  | ictors                                                                                                                     |                                                                                                             |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Dead load factor              |                                                                                                                            | $\gamma_{f\_d} = 1.4$                                                                                       |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Live load factor              |                                                                                                                            | $\gamma_{f_{-}I} = 1.6$                                                                                     |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Earth and water pressure fa   | ctor                                                                                                                       | $\gamma_{f_e} = 1.4$                                                                                        |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Factored vertical forces o    | n wall                                                                                                                     |                                                                                                             |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Wall stem                     |                                                                                                                            | $W_{wall_f} = \gamma_{f_d}$                                                                                 | $1 	imes h_{ m stem} 	imes t_{ m wall} 	imes$                                                           | γ <sub>wall</sub> = <b>16.4</b> kN/n                                           | n                                            |                            |  |  |  |
| Wall base                     |                                                                                                                            | $W_{base_f} = \gamma_{f}$                                                                                   | $_{\rm d} 	imes {\sf I}_{\rm base} 	imes {\sf t}_{\rm base}$                                            | ×γ <sub>base</sub> = <b>8.2</b> kN/r                                           | n                                            |                            |  |  |  |
| Applied vertical load         |                                                                                                                            |                                                                                                             |                                                                                                         | W <sub>live</sub> = <b>95</b> kN/m                                             |                                              |                            |  |  |  |
| Total vertical load           |                                                                                                                            | -                                                                                                           | -                                                                                                       | W <sub>v_f</sub> = <b>119.6</b> kN/                                            | m                                            |                            |  |  |  |
| Factored horizontal at-res    | t forces on wall                                                                                                           |                                                                                                             |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Surcharge                     |                                                                                                                            | $F_{sur f} = \gamma_{f I}$                                                                                  | $\times$ K <sub>0</sub> $\times$ Surchar                                                                | ge × h <sub>eff</sub> = <b>18.4</b> k                                          | N/m                                          |                            |  |  |  |
| Moist backfill above water ta |                                                                                                                            |                                                                                                             | m × (h <sub>eff</sub> - h <sub>water</sub> ) <sup>2</sup> =                                             |                                                                                |                                              |                            |  |  |  |
| Moist backfill below water ta | $F_{m\_b\_f} = \gamma_{f\_e} \times K_0 \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 13.5 \text{ kN/m}$ |                                                                                                             |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Saturated backfill            | -                                                                                                                          |                                                                                                             | $\gamma_{water}$ $\times h_{water}^2 = 3$                                                               |                                                                                |                                              |                            |  |  |  |
| Water                         |                                                                                                                            |                                                                                                             | $r^2 \times \gamma_{water} = 9.9 \text{ kN}$                                                            |                                                                                |                                              |                            |  |  |  |
| Total horizontal load         |                                                                                                                            |                                                                                                             | $F_{total_f} = F_{sur_f} + F_{m\_a_f} + F_{m\_b_f} + F_{s\_f} + F_{water_f} = \textbf{53.8 kN/m}$       |                                                                                |                                              |                            |  |  |  |
| Calculate propping force      |                                                                                                                            |                                                                                                             |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Passive resistance of soil in | front of wall                                                                                                              | F <sub>p f</sub> = γ <sub>fe</sub> ×                                                                        | : 0.5 × K <sub>p</sub> × cos                                                                            | $s(\delta_b) 	imes (d_{cover} + t_{ball})$                                     | use + dds - dexc) <sup>2</sup>               | $\times \gamma_{mb} = 0.5$ |  |  |  |
| kN/m                          |                                                                                                                            | P=: 1                                                                                                       | - <b>F</b>                                                                                              |                                                                                | ,                                            | 1                          |  |  |  |
| Propping force                |                                                                                                                            | $F_{prop_f} = ma$                                                                                           | ax(F <sub>total_f</sub> - F <sub>p_f</sub> -                                                            | $(W_{total_f} - \gamma_{f_l} \times W)$                                        | $V_{\sf live}) 	imes tan(\delta_{\sf b}), 0$ | kN/m)                      |  |  |  |
|                               |                                                                                                                            | $F_{prop_f} = 20$                                                                                           | <b>.0</b> kN/m                                                                                          |                                                                                |                                              |                            |  |  |  |
| Factored overturning mon      | nents                                                                                                                      |                                                                                                             |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Surcharge                     |                                                                                                                            | $M_{sur_f} = F_{su}$                                                                                        | $r_f \times (h_{eff} - 2 \times 0)$                                                                     | d <sub>ds</sub> ) / 2 = <b>16.6</b> kN                                         | lm/m                                         |                            |  |  |  |
| Moist backfill above water ta | able                                                                                                                       | $M_{m_a_f} = F_n$                                                                                           | $M_{m a f} = F_{m a f} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 4.7 \text{ kNm/m}$ |                                                                                |                                              |                            |  |  |  |
| Moist backfill below water ta | able                                                                                                                       | $M_{m_b_f} = F_n$                                                                                           | $M_{m b f} = F_{m b f} \times (h_{water} - 2 \times d_{ds}) / 2 = 8.1 \text{ kNm/m}$                    |                                                                                |                                              |                            |  |  |  |
| Saturated backfill            |                                                                                                                            | $M_{s_f} = F_{s_f}$                                                                                         | $\times$ (h <sub>water</sub> - 3 $\times$ d                                                             | ds) / 3 = <b>3.4</b> kNm/                                                      | ′m                                           |                            |  |  |  |
| Water                         |                                                                                                                            | $M_{water_f} = F$                                                                                           | $_{water_f} \times (h_{water} -$                                                                        | $3 \times d_{ds}) / 3 = 4 \text{ kl}$                                          | Nm/m                                         |                            |  |  |  |
| Total overturning moment      |                                                                                                                            | $M_{ot_{f}} = M_{sur_{f}} + M_{m_{a_{f}}} + M_{m_{b_{f}}} + M_{s_{f}} + M_{water_{f}} = 36.8 \text{ kNm/m}$ |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Restoring moments             |                                                                                                                            |                                                                                                             |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Wall stem                     |                                                                                                                            | $M_{wall_f} = w_w$                                                                                          | $_{rall_f} 	imes (I_{toe} + t_{wall})$                                                                  | / 2) = <b>10.9</b> kNm/                                                        | m                                            |                            |  |  |  |
| Wall base                     |                                                                                                                            |                                                                                                             | $_{base_f} \times I_{base} / 2 =$                                                                       |                                                                                |                                              |                            |  |  |  |
| Design vertical load          |                                                                                                                            |                                                                                                             | $\times$ I <sub>load</sub> = 63.2 k                                                                     |                                                                                |                                              |                            |  |  |  |
| Total restoring moment        |                                                                                                                            | $M_{rest_f} = M_w$                                                                                          | vall_f + Mbase_f +                                                                                      | M <sub>v_f</sub> = <b>77.5</b> kNm/                                            | m                                            |                            |  |  |  |
| Factored bearing pressure     | e                                                                                                                          |                                                                                                             |                                                                                                         |                                                                                |                                              |                            |  |  |  |
| Total moment for bearing      |                                                                                                                            | $M_{total_f} = M_r$                                                                                         | rest_f - Mot_f = <b>40</b>                                                                              | <b>.6</b> kNm/m                                                                |                                              |                            |  |  |  |
| Total vertical reaction       |                                                                                                                            |                                                                                                             | <sub>f</sub> = <b>119.6</b> kN/m                                                                        |                                                                                |                                              |                            |  |  |  |
| Distance to reaction          |                                                                                                                            | $x_{bar_f} = M_{tot}$                                                                                       | <sub>al_f</sub> / R <sub>f</sub> = <b>340</b> m                                                         | ım                                                                             |                                              |                            |  |  |  |
| Eccentricity of reaction      |                                                                                                                            | $e_f = abs((I_b)$                                                                                           | <sub>ase</sub> / 2) - x <sub>bar_f</sub> ) :                                                            |                                                                                |                                              |                            |  |  |  |
|                               |                                                                                                                            |                                                                                                             |                                                                                                         | Reaction acts                                                                  |                                              | e third of b               |  |  |  |
| Bearing pressure at toe       |                                                                                                                            |                                                                                                             |                                                                                                         | $f \times e_f / I_{base}^2) = 22$                                              |                                              |                            |  |  |  |
| Bearing pressure at heel      |                                                                                                                            | $p_{\text{heel}_f} = (R_f)$                                                                                 | / $I_{base}$ ) - (6 × R                                                                                 | f × ef / I <sub>base</sub> <sup>2</sup> ) = 65<br>e = 188.45 kN/m <sup>2</sup> |                                              |                            |  |  |  |
|                               |                                                                                                                            |                                                                                                             |                                                                                                         |                                                                                |                                              |                            |  |  |  |

| TEKLA<br>Tedds                                                                                                                                                                                                                                                                               | Project                       | 56 Croftc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Iown Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Job no.<br>2                                                 | 5293             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------|
| Price & Myers                                                                                                                                                                                                                                                                                | Calcs for                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Start page no./F                                             | Revision         |
| 37 Alfred Place                                                                                                                                                                                                                                                                              |                               | Rear retain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ing underpin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              | 52               |
| London                                                                                                                                                                                                                                                                                       | Calcs by                      | Calcs date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Checked date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Approved by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Approved of                                                  |                  |
| WC1E 7DP                                                                                                                                                                                                                                                                                     | TP                            | 14/12/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Bearing pressure at stem / toe                                                                                                                                                                                                                                                               |                               | p <sub>stem_toe_f</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | max(p <sub>toe_f</sub> - (ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ate $\times$ I <sub>toe</sub> ), 0 kN/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ²) = <b>128.1</b> kN/n                                       | n²               |
| Bearing pressure at mid stem                                                                                                                                                                                                                                                                 |                               | p <sub>stem_mid_f</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | max(p <sub>toe_f</sub> - (ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ate 	imes (I_{toe} + t_{wall} / 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2)), 0 kN/m²) =                                              | <b>97</b> kN/m²  |
| Bearing pressure at stem / hee                                                                                                                                                                                                                                                               | I                             | p <sub>stem_heel_f</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | max(p <sub>toe_f</sub> - (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ate × ( $I_{toe}$ + $t_{wall}$ )),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 kN/m²) = <b>65</b> .                                       | <b>.9</b> kN/m²  |
| Design of reinforced concrete                                                                                                                                                                                                                                                                | e retaining wa                | all toe (BS 8002:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 994)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Material properties                                                                                                                                                                                                                                                                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Characteristic strength of concr                                                                                                                                                                                                                                                             |                               | f <sub>cu</sub> = <b>40</b> N/r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Characteristic strength of reinfo                                                                                                                                                                                                                                                            | prcement                      | $f_y = 500 \text{ N/m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Base details                                                                                                                                                                                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Minimum area of reinforcement                                                                                                                                                                                                                                                                | t                             | k = <b>0.13</b> %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Cover to reinforcement in toe                                                                                                                                                                                                                                                                |                               | c <sub>toe</sub> = <b>50</b> m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Calculate shear for toe desig                                                                                                                                                                                                                                                                | n                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Shear from bearing pressure                                                                                                                                                                                                                                                                  |                               | V <sub>toe_bear</sub> = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Otoe_f + Pstem_toe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _f) × I <sub>toe</sub> / 2 = <b>87.6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kN/m                                                         |                  |
| Shear from weight of base                                                                                                                                                                                                                                                                    |                               | V <sub>toe</sub> wt base =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = $\gamma_{f_d} \times \gamma_{base} \times I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $toe \times t_{base} = 5 \text{ kN/n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                            |                  |
| Total shear for toe design                                                                                                                                                                                                                                                                   |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bear - V <sub>toe_wt_base</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Calculate moment for toe des                                                                                                                                                                                                                                                                 | sian                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Moment from bearing pressure                                                                                                                                                                                                                                                                 | -                             | NA (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 × n n .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m_mid_f) $	imes$ (Itoe + twa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | " / 2\2 / 6 <b>_ 20</b>                                      | <b>0</b> kNm/m   |
|                                                                                                                                                                                                                                                                                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| Moment from weight of base<br>Total moment for toe design                                                                                                                                                                                                                                    |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $t_{base} \times (I_{toe} + t_{wall} / s_e = 37.7 \text{ kNm/m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(2)^{-}/(2) = 2.2$ r                                        | ANTH/TH          |
|                                                                                                                                                                                                                                                                                              | >                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                  |
| 244                                                                                                                                                                                                                                                                                          | •                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                            |                  |
|                                                                                                                                                                                                                                                                                              | ><br>•<br>  <b>∢</b> 200      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                            |                  |
| Check toe in bending                                                                                                                                                                                                                                                                         | -><br>●<br>  <b>∢</b> —_200   | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                            |                  |
| Check toe in bending<br>Width of toe                                                                                                                                                                                                                                                         | ><br>•<br>  <b>∢</b> 200      | b = <b>1000</b> m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                            |                  |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement                                                                                                                                                                                                                               | ><br>∙<br>  <b>∢</b> —_200    | b = <b>1000</b> m<br>d <sub>toe</sub> = t <sub>base</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - c <sub>toe</sub> - (φ <sub>toe</sub> / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                            |                  |
| Check toe in bending<br>Width of toe                                                                                                                                                                                                                                                         | -><br>  <b>∢</b> 200          | b = <b>1000</b> m<br>d <sub>toe</sub> = t <sub>base</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $- c_{toe} - (\phi_{toe} / 2)$<br>/ (b × d <sub>toe</sub> <sup>2</sup> × f <sub>ct</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a) = <b>0.016</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                            |                  |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant                                                                                                                                                                                                                   | ><br>•<br>  <b>∢</b> 200      | b = 1000  m<br>$d_{toe} = t_{base} - K_{toe} = M_{toe} / K_{toe}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $-c_{toe} - (\phi_{toe} / 2)$<br>/ (b × d <sub>toe</sub> <sup>2</sup> × f <sub>ct</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ) = 0.016<br>Compression re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | -                |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement                                                                                                                                                                                                                               | ><br>  <b>∢</b> 200           | $b = 1000 \text{ m}$ $d_{\text{toe}} = t_{\text{base}} - K_{\text{toe}} = M_{\text{toe}} / T_{\text{toe}}$ $z_{\text{toe}} = \min(0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $-c_{toe} - (\phi_{toe} / 2)$<br>$f(b \times d_{toe}^2 \times f_{cu})$<br>$0.5 + \sqrt{(0.25 - (0.25))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a) = <b>0.016</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              | -                |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm                                                                                                                                                                                                      |                               | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} / Z_{toe} = min(C_{z_{toe}} = 232 \text{ m})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cL})$ $0.5 + \sqrt{0.25 - (0.25)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) = 0.016<br>Compression re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ′ 0.9)),0.95) × c                                            |                  |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant                                                                                                                                                                                                                   | equired                       | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{toe} - t_{toe}$ $K_{toe} = M_{toe} - t_{toe}$ $z_{toe} = min(t_{toe} - t_{toe})$ $z_{toe} = 232 \text{ m}$ $A_{s\_toe\_des} = t_{toe\_des}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cL})$ $0.5 + \sqrt{0.25 - (0.25)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n) = <b>0.016</b><br><i>Compression re</i><br>(min(K <sub>toe</sub> , 0.225) /<br><sub>y</sub> × z <sub>toe</sub> ) = <b>374</b> mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ′ 0.9)),0.95) × c                                            |                  |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement r                                                                                                                                                                   | equired<br>rcement            | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{toe} = M_{toe}$ $Z_{toe} = M_{toe}$ $Z_{toe} = 232 \text{ m}$ $A_{s\_toe\_des} = A_{s\_toe\_min} = t_{toe}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cL})$ $0.5 + \sqrt{(0.25 - (mmm))}$ $M_{toe} / (0.87 \times f_{base} = 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n) = <b>0.016</b><br><i>Compression re</i><br>(min(K <sub>toe</sub> , 0.225) /<br><sub>y</sub> × z <sub>toe</sub> ) = <b>374</b> mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ′′ 0.9)),0.95) × c<br>n²/m                                   |                  |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement r<br>Minimum area of tension reinfo                                                                                                                                 | equired<br>rcement            | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = 232 \text{ m}$ $A_{s_toe_des} = A_{s_toe_des} = A_{s_toe_min} = K_{s_toe_req} = K_{s$ | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cL})$ $0.5 + \sqrt{(0.25 - (mmm))}$ $M_{toe} / (0.87 \times f_{base} = 3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n) = <b>0.016</b><br><i>Compression re</i><br>(min(K <sub>toe</sub> , 0.225) /<br><sub>y</sub> × z <sub>toe</sub> ) = <b>374</b> mn<br><b>390</b> mm <sup>2</sup> /m<br>A <sub>s_toe_min</sub> ) = <b>390</b> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ′′ 0.9)),0.95) × c<br>n²/m                                   | -                |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement r<br>Minimum area of tension reinfo<br>Area of tension reinforcement r                                                                                              | equired<br>rcement<br>equired | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{bas} - t_{bas} - t_{base} - t_{base} - t_{base} - t_{base} - t_{bas$     | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cL})$ $0.5 + (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.2$ | $f_{\rm o}) = 0.016$<br><i>Compression re</i><br>$f_{\rm min}(K_{\rm toe}, 0.225) / 0.225) / 0.225) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025) / 0.025$ | ′ 0.9)),0.95) × c<br>n²/m<br>nm²/m                           | dtoe             |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement r<br>Minimum area of tension reinfo<br>Area of tension reinforcement r<br>Reinforcement provided<br>Area of reinforcement provided                                  | equired<br>rcement<br>equired | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{bas} - t_{bas} - t_{base} - t_{base} - t_{base} - t_{base} - t_{bas$     | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{cL})$ $0.5 + (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.25 - (0.2$ | n) = <b>0.016</b><br><i>Compression re</i><br>(min(K <sub>toe</sub> , 0.225) /<br><sub>y</sub> × z <sub>toe</sub> ) = <b>374</b> mn<br><b>390</b> mm <sup>2</sup> /m<br>A <sub>s_toe_min</sub> ) = <b>390</b> n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ′ 0.9)),0.95) × c<br>n²/m<br>nm²/m                           | dtoe             |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement r<br>Minimum area of tension reinfo<br>Area of tension reinforcement r<br>Reinforcement provided<br>Area of reinforcement provided<br>Check shear resistance at toe | equired<br>rcement<br>equired | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - t_{b$     | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{ct})$ $0.5 + \sqrt{(0.25 - (mmmm))}$ $M_{toe} / (0.87 \times f_{tot})$ $k \times b \times t_{base} = 3$ $Max(A_{s\_toe\_des}, bars @ 200 m)$ $565 mm^2/m$ $forcement products = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a) = 0.016<br>Compression re<br>fmin(K <sub>toe</sub> , 0.225) /<br>$_{y} \times z_{toe}$ ) = 374 mn<br>390 mm <sup>2</sup> /m<br>A <sub>s_toe_min</sub> ) = 390 n<br>mm centres<br>rovided at the re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ′ 0.9)),0.95) × c<br>n²/m<br>nm²/m                           | dtoe             |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement r<br>Minimum area of tension reinfo<br>Area of tension reinforcement r<br>Reinforcement provided<br>Area of reinforcement provided                                  | equired<br>rcement<br>equired | $b = 1000 \text{ m}$ $d_{toe} = t_{base} - K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = M_{toe} / K_{toe} = 232 \text{ m}$ $A_{s\_toe\_des} = A_{s\_toe\_req} = 1$ $A_{s\_toe\_req} = 1$ $A_{s\_toe\_rev} = PASS - Reim$ $v_{toe} = V_{toe} / K_{toe} = V_{toe} / K_{toe}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-c_{toe} - (\phi_{toe} / 2)$ $/ (b \times d_{toe}^2 \times f_{ct})$ $0.5 + \sqrt{(0.25 - (mmm))}$ $M_{toe} / (0.87 \times f_{toe})$ $k \times b \times t_{base} = 3$ $Max(A_{s_toe_des}, bars @ 200 m)$ $565 mm^2/m$ $forcement pr$ $(b \times d_{toe}) = 0.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a) = 0.016<br>Compression re<br>fmin(K <sub>toe</sub> , 0.225) /<br>$_{y} \times z_{toe}$ ) = 374 mn<br>390 mm <sup>2</sup> /m<br>A <sub>s_toe_min</sub> ) = 390 n<br>mm centres<br>rovided at the re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ′ 0.9)),0.95) × c<br>n²/m<br>nm²/m<br><b>taining wall tc</b> | d <sub>toe</sub> |

| TEKLA<br>Tedds                                                 | Project        | 56 Croft                                                                                                                                                                                                                                                                                                 | down Road                                                                                             |                                                                       | Job no.<br>25293         |                     |  |  |
|----------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|---------------------|--|--|
| Price & Myers<br>37 Alfred Place                               | Calcs for      | Rear retair                                                                                                                                                                                                                                                                                              | ning underpin                                                                                         |                                                                       | Start page no./F         | Revision<br>62      |  |  |
| London<br>WC1E 7DP                                             | Calcs by<br>TP | Calcs date 14/12/2017                                                                                                                                                                                                                                                                                    | Checked by                                                                                            | Checked date                                                          | Approved by              | Approved            |  |  |
| From BS8110:Part 1:1997                                        | Table 3.8      |                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                       |                          |                     |  |  |
| Design concrete shear stress                                   |                | v <sub>c_toe</sub> = <b>0.5</b>                                                                                                                                                                                                                                                                          | <b>14</b> N/mm <sup>2</sup>                                                                           |                                                                       |                          |                     |  |  |
|                                                                |                |                                                                                                                                                                                                                                                                                                          | Vt                                                                                                    | oe < Vc_toe - No st                                                   | near reinforce           | ment requ           |  |  |
| Design of reinforced concre                                    | te retaining w | all stem (BS 8002                                                                                                                                                                                                                                                                                        | 2:1994)                                                                                               |                                                                       |                          |                     |  |  |
| Material properties                                            |                |                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                       |                          |                     |  |  |
| Characteristic strength of cond                                |                | f <sub>cu</sub> = <b>40</b> N/                                                                                                                                                                                                                                                                           |                                                                                                       |                                                                       |                          |                     |  |  |
| Characteristic strength of reinf                               | orcement       | f <sub>y</sub> = <b>500</b> N/                                                                                                                                                                                                                                                                           | mm²                                                                                                   |                                                                       |                          |                     |  |  |
| Wall details                                                   |                |                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                       |                          |                     |  |  |
| Minimum area of reinforcemer<br>Cover to reinforcement in sten | -              | k = <b>0.13</b> %<br><sub>Cstem</sub> = <b>50</b> I                                                                                                                                                                                                                                                      |                                                                                                       |                                                                       |                          |                     |  |  |
| Cover to reinforcement in sten                                 | I              | C <sub>stem</sub> = 50 I<br>C <sub>wall</sub> = 50 N                                                                                                                                                                                                                                                     |                                                                                                       |                                                                       |                          |                     |  |  |
|                                                                | orooo on cto   |                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                       |                          |                     |  |  |
| Factored horizontal at-rest for<br>Surcharge                   | orces on sterr |                                                                                                                                                                                                                                                                                                          | $1 \times K_0 \times Surch$                                                                           | arge 	imes (h <sub>eff</sub> - t <sub>base</sub> ·                    | - dds) - <b>15 1</b> kN  | l/m                 |  |  |
| Moist backfill above water tabl                                | e              | -                                                                                                                                                                                                                                                                                                        |                                                                                                       | $\gamma_{\rm m} \times (h_{\rm eff} - t_{\rm base} - 0)$              | -                        |                     |  |  |
| Moist backfill below water table                               | -              |                                                                                                                                                                                                                                                                                                          | -                                                                                                     |                                                                       |                          |                     |  |  |
| Saturated backfill                                             |                | $\begin{split} F_{s\_m\_b\_f} &= \gamma_{f\_e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{sat}) \times h_{sat} = \textbf{10.2 kN/m} \\ F_{s\_s\_f} &= 0.5 \times \gamma_{f\_e} \times K_0 \times (\gamma_{s-} \gamma_{water}) \times h_{sat}^2 = \textbf{4.8 kN/m} \end{split}$ |                                                                                                       |                                                                       |                          |                     |  |  |
| Water                                                          |                |                                                                                                                                                                                                                                                                                                          | $F_{s\_water_f} = 0.5 \times \gamma_{f\_e} \times \gamma_{water} \times h_{sat}^2 = 5.6 \text{ kN/m}$ |                                                                       |                          |                     |  |  |
| Calculate shear for stem des                                   | sian           | ·····                                                                                                                                                                                                                                                                                                    | 1 1.000                                                                                               |                                                                       |                          |                     |  |  |
| Shear at base of stem                                          |                | V <sub>stem</sub> = F <sub>s</sub>                                                                                                                                                                                                                                                                       | <sub>sur_f</sub> + F <sub>s_m a f</sub> +                                                             | $F_{s_m_b_f} + F_{s_s_f} +$                                           | Fs_water_f - Fprop       | _f = <b>19.3</b> kl |  |  |
| Calculate moment for stem of                                   | design         | -                                                                                                                                                                                                                                                                                                        |                                                                                                       |                                                                       |                          |                     |  |  |
| Surcharge                                                      | J              | $M_{s\_sur} = F_s$                                                                                                                                                                                                                                                                                       | $_{sur_f} \times (h_{stem} + t)$                                                                      | <sub>base</sub> ) / 2 = <b>13.8</b> kN                                | lm/m                     |                     |  |  |
| Moist backfill above water tabl                                | e              |                                                                                                                                                                                                                                                                                                          |                                                                                                       | <sub>at</sub> + h <sub>eff</sub> - d <sub>ds</sub> + t <sub>bas</sub> |                          | kNm/m               |  |  |
| Moist backfill below water table                               | е              | $M_{s_m_b} = F_{s_b}$                                                                                                                                                                                                                                                                                    | $s_m_b_f \times h_{sat} / 2$                                                                          | = <b>4.6</b> kNm/m                                                    |                          |                     |  |  |
| Saturated backfill                                             |                |                                                                                                                                                                                                                                                                                                          | $_{f} \times h_{sat} / 3 = 1.$                                                                        |                                                                       |                          |                     |  |  |
| Water                                                          |                | $M_{s\_water} = F$                                                                                                                                                                                                                                                                                       | $s_{water_f} \times h_{sat}$ /                                                                        | 3 = <b>1.7</b> kNm/m                                                  |                          |                     |  |  |
| Total moment for stem design                                   |                | M <sub>stem</sub> = M <sub>s</sub>                                                                                                                                                                                                                                                                       | _sur + Ms_m_a + 1                                                                                     | $M_{s_m_b} + M_{s_s} + M_{s_s}$                                       | s_water = <b>25.7</b> kN | lm/m                |  |  |
|                                                                | •              | •                                                                                                                                                                                                                                                                                                        | •                                                                                                     | •                                                                     | •                        |                     |  |  |
|                                                                | <b>∢</b> —200  | )                                                                                                                                                                                                                                                                                                        |                                                                                                       |                                                                       |                          |                     |  |  |
| Check wall stem in bending                                     |                |                                                                                                                                                                                                                                                                                                          |                                                                                                       |                                                                       |                          |                     |  |  |
| Width of wall stem                                             |                | b = <b>1000</b> r                                                                                                                                                                                                                                                                                        | nm/m                                                                                                  |                                                                       |                          |                     |  |  |
| Depth of reinforcement                                         |                |                                                                                                                                                                                                                                                                                                          |                                                                                                       | / 2) = <b>274.0</b> mm                                                |                          |                     |  |  |
| Constant                                                       |                |                                                                                                                                                                                                                                                                                                          | $_{em}$ / (b × d <sub>stem</sub> <sup>2</sup> >                                                       |                                                                       |                          |                     |  |  |
|                                                                |                |                                                                                                                                                                                                                                                                                                          |                                                                                                       | Compression re                                                        | inforcement i            | s not requ          |  |  |
|                                                                |                |                                                                                                                                                                                                                                                                                                          |                                                                                                       | (min/l/ 0.005                                                         |                          |                     |  |  |
| Lever arm                                                      |                | $Z_{\text{stem}} = \Pi \Pi$                                                                                                                                                                                                                                                                              |                                                                                                       | (min(K <sub>stem</sub> , 0.225                                        | )/0.9)),0.95)/           | × Ostem             |  |  |

| TEKLA<br>Tedds                   | Project 56 Croftdown Road |                                |            |              | Job no.<br>25293 |               |
|----------------------------------|---------------------------|--------------------------------|------------|--------------|------------------|---------------|
| Price & Myers<br>37 Alfred Place | Calcs for                 | Start page no./Revision<br>7 2 |            |              |                  |               |
| London<br>WC1E 7DP               | Calcs by<br>TP            | Calcs date 14/12/2017          | Checked by | Checked date | Approved by      | Approved date |

Minimum area of tension reinforcement Area of tension reinforcement required Reinforcement provided Area of reinforcement provided  $A_{s\_stem\_min} = k \times b \times t_{wall} = 429 \text{ mm}^2/\text{m}$ 

 $A_{s\_stem\_req} = Max(A_{s\_stem\_des}, A_{s\_stem\_min}) = 429 \text{ mm}^2/\text{m}$ 

12 mm dia.bars @ 200 mm centres

 $A_{s\_stem\_prov} = 565 \text{ mm}^2/\text{m}$ 

PASS - Reinforcement provided at the retaining wall stem is adequate

#### Check shear resistance at wall stem

Design shear stress

Allowable shear stress

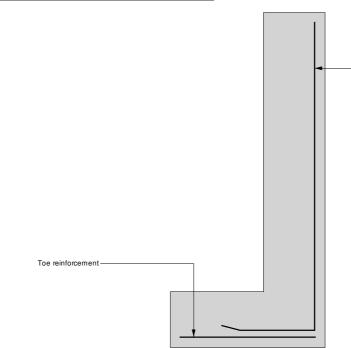
#### From BS8110:Part 1:1997 – Table 3.8

Design concrete shear stress

#### $v_{stem} = V_{stem} / (b \times d_{stem}) = 0.070 \text{ N/mm}^2$

 $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 5.000 \text{ N/mm}^2$ 

PASS - Design shear stress is less than maximum shear stress


#### Vc\_stem = 0.480 N/mm<sup>2</sup>

v<sub>stem</sub> < v<sub>c\_stem</sub> - No shear reinforcement required

| TEKLA<br>Tedds                   | Project                              | Job no.                  | Job no.<br>25293 |              |             |                                |  |
|----------------------------------|--------------------------------------|--------------------------|------------------|--------------|-------------|--------------------------------|--|
| Price & Myers<br>37 Alfred Place | Calcs for<br>Rear retaining underpin |                          |                  |              |             | Start page no./Revision<br>8 2 |  |
| London<br>WC1E 7DP               | Calcs by<br>TP                       | Calcs date<br>14/12/2017 | Checked by       | Checked date | Approved by | Approved date                  |  |

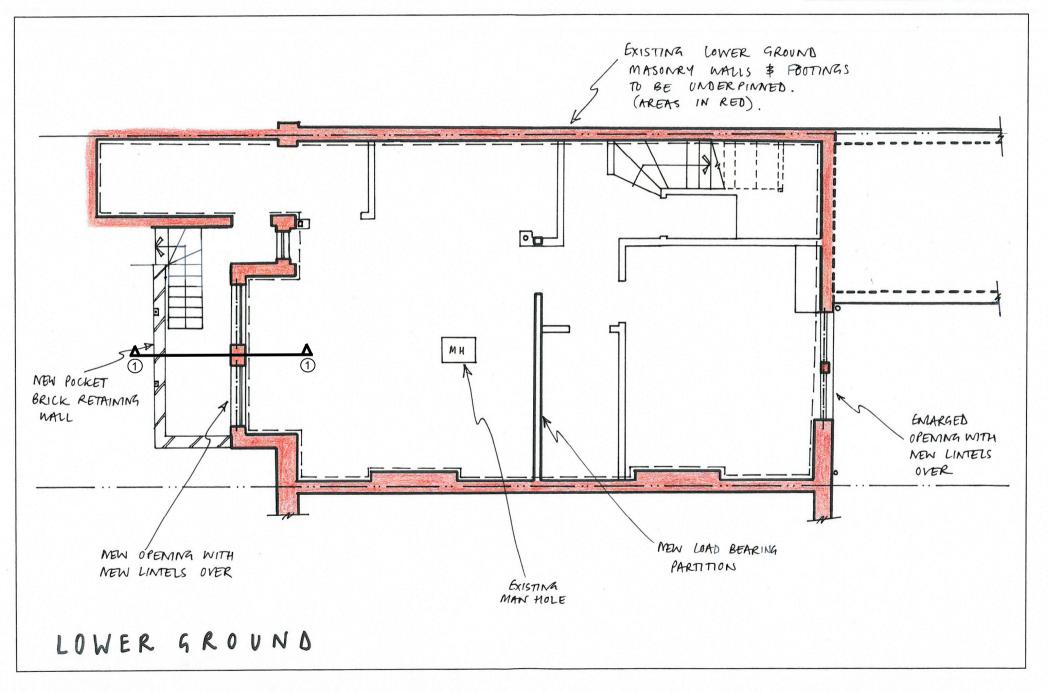
-Stem reinforcement

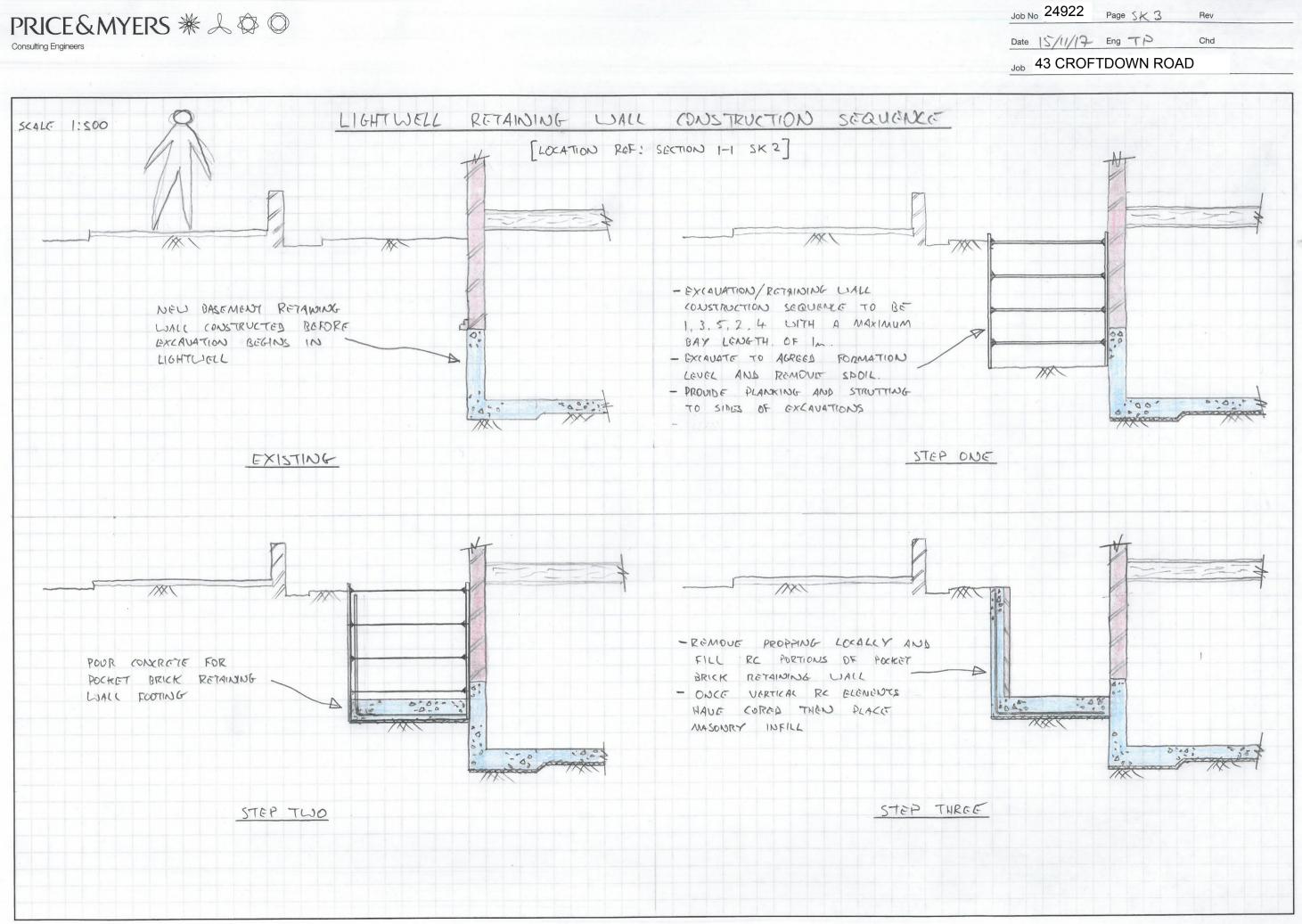
Indicative retaining wall reinforcement diagram



Toe bars - 12 mm dia.@ 200 mm centres - (565 mm<sup>2</sup>/m) Stem bars - 12 mm dia.@ 200 mm centres - (565 mm<sup>2</sup>/m)

Appendix B


Drawings CS02 RevA and CS03


# structural engineering  $\downarrow$  geometrics  $\diamondsuit$  sustainability  $\diamondsuit$  civil engineering

 $\mathsf{PRICE} \& \mathsf{MYERS} \ \ \& \ \bot \ \oslash \ \oslash$ 

Consulting Engineers

JOD NO 25293 PAGE SK 2 REV A Date JUNE 16 Eng HRS Chod JOD 56 CROFTBOWN ROAD





Appendix C

Movement Monitoring Plan

# structural engineering  $\downarrow$  geometrics  $\diamondsuit$  sustainability  $\diamondsuit$  civil engineering

## 56 Croftdown Road - Movement monitoring plan

#### Monitoring overview

Masonry structures in London are likely to show some seasonal movement in addition to small daily movement. Combining these could easily cause 2mm to 3mm of movement vertically and 3mm to 5mm movement horizontally.

A number of base readings will be taken at different times of different days before excavation works starts on site (three base readings per survey point). A minimum of two datum points will be chosen apart from each other and outside of the site and cross-checked against each other.

Movement monitoring readings will have an individual tolerance of +/- 1.5mm.

#### Locations

The attached pages demonstrate the extent of movement monitoring targets on the Party Walls and front/rear elevations.

#### **Monitoring frequencies**

Targets will be monitored on a weekly basis

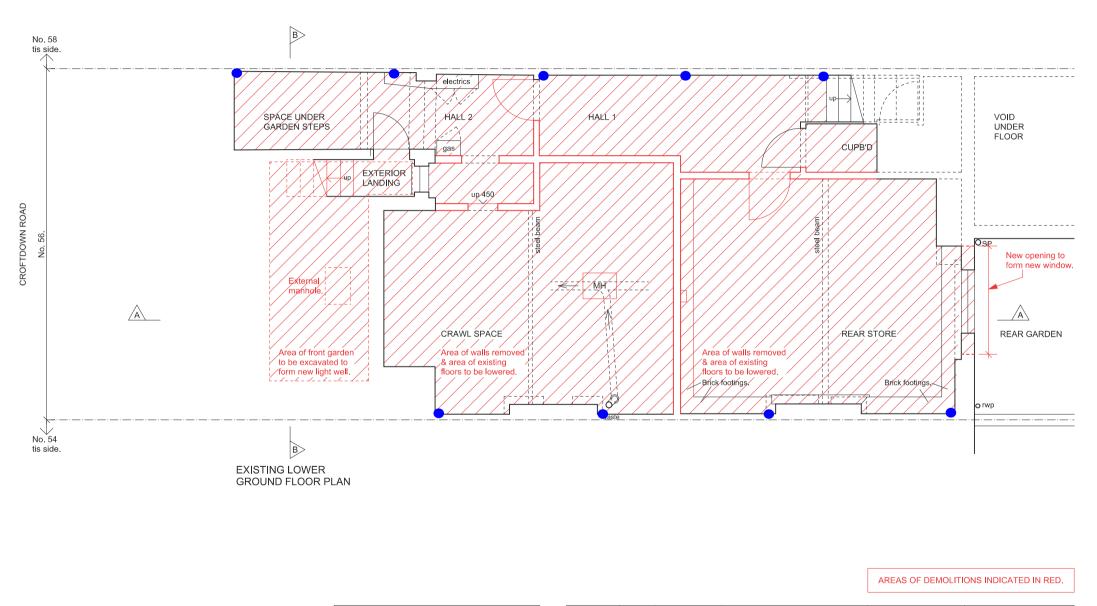
#### **Trigger levels and actions**

Trigger levels will include an allowance of 2mm for effects of tolerances, seasonal and daily movement.

Amber trigger level: 7mm – Action: submit proposals to ensure red trigger levels are not exceeded

<u>Red trigger level: 12mm</u> – Action: stop works and make safe. Inform all parties immediately and increase frequency of monitoring. Submit proposals for procedures as may be considered necessary. Work should not recommence until these have been agreed.

Note: the red trigger level is subject to review and revision by the project team at amber where the available data evaluation should lead to a clearer understanding of the actual behaviour of the structure(s)


Additional actions if the amber level is exceeded:

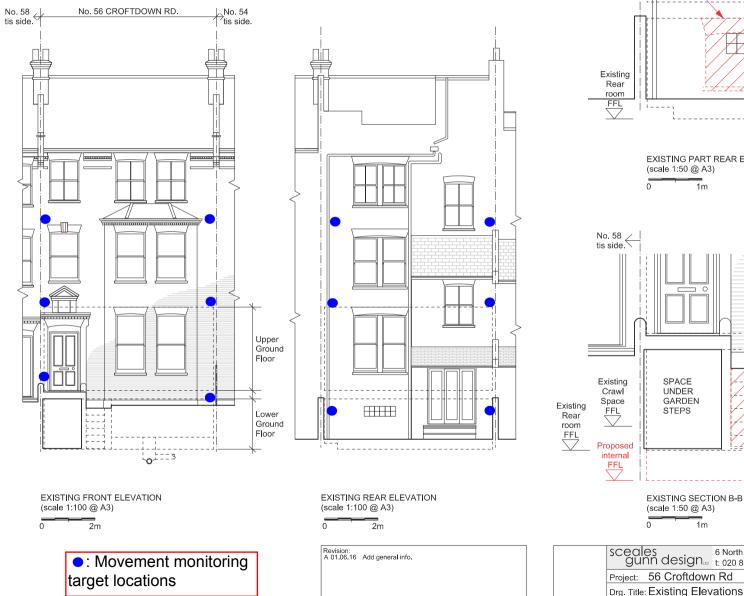
- Check whether trigger level is being, or about to be exceeded by neighbouring targets and a view will be taken whether any target has 'slipped' or apparently moved independently of the structure.
- The survey measurements will be retaken if necessary for any further clarity needed which may include an early morning survey round and a late afternoon survey round or equivalent to assess movement due to daily temperature changes. This many also include a check on datum levels.
- The movement of the structure will be assessed together with the degree of differential movement and distortion with the causes determined as far as possible. The internal

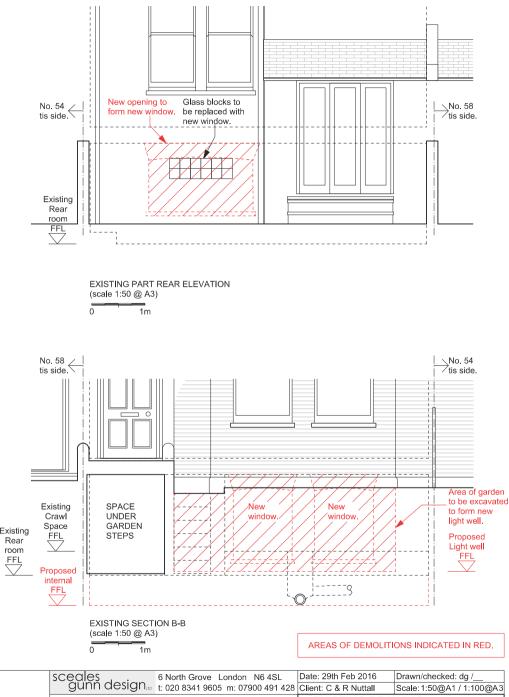
condition of the structure will be checked as far as practicable to check for any unusual changes. If the distortion or differential movement is relatively small and there is no significant alteration to the internally observed condition the red trigger level may be increased or a new red trigger level for differential movement will be introduced by the project team. No change to red trigger levels will take place without agreement.

• Possible construction/demolition/temporary works measures to reduce further movements will be examined with a view to them being implemented if further movement takes place.

## Lower ground level monitoring target locations




Revision: A 01.06.16 Add general info.


Movement monitoring

target locations

|   | ſ | $\bigcirc$ | scea                                         | sceales , .              |                 |             |             |                  | Drawn/checked: dg / |             |     |  |
|---|---|------------|----------------------------------------------|--------------------------|-----------------|-------------|-------------|------------------|---------------------|-------------|-----|--|
|   |   |            | gu                                           | iññ design               | t: 020 8341 960 | 9605 m: 079 | 900 491 428 | Client: C & R Nu | tall                | Scale: 1:50 | @A3 |  |
|   |   |            | Project:                                     | Project: 56 Croftdown Rd |                 |             |             |                  | EXISTING DRAWING    |             |     |  |
|   |   |            | Drg. Title: Existing Lower Ground Floor Plan |                          |                 | № 56CR0     | DFT         | -E- 102          | Rev. A              |             |     |  |
| - | 0 |            | 1m                                           |                          |                 |             |             |                  |                     |             |     |  |

## Front and rear elevation monitoring target locations





Scale: 1:50@A1 / 1:100@A3

Rev. A

EXISTING DRAWING

<sup>№</sup>.56CROFT -E- 300

Appendix D

York Rise Zone: Flood Risk Assessment

# structural engineering  $\downarrow$  geometrics  $\diamondsuit$  sustainability  $\diamondsuit$  civil engineering



#### **Consulting Engineers**

37 Alfred Place London WC1E 7DP 020 7631 5128 mail@pricemyers.com www.pricemyers.com

Sarah Watkins Geotechnical & Environmental Associates Widbury Barn Widbury Hill Ware, SG12 7QE 7<sup>th</sup> December 2017

Ref: 25293/2/DLin

Dear Sarah,

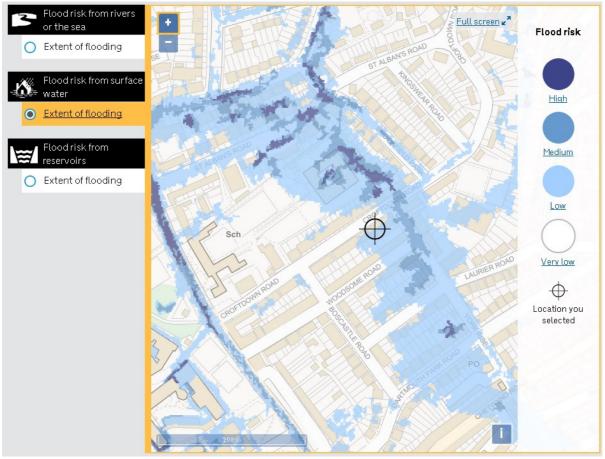
## Re:56 Croftdown Road, London, NW5 1EN - Flood Risk Assessment

Following your request for a Flood Risk Assessment (FRA) for the above site, please find below our findings.

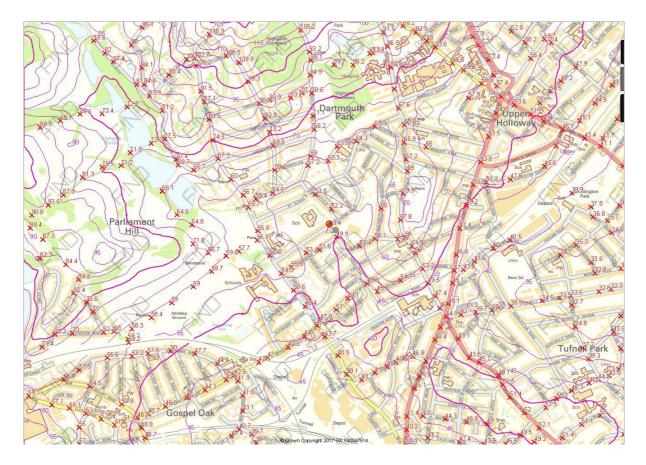
#### 1 Flood Risk from Watercourses (Fluvial/Tidal)

The EA's indicative floodplain map shows that there is very low risk of tidal and/or fluvial flooding at this site location. The map shows that the site lies within Flood Zone 1, so the risk is less than a 1 in 1000 year event and is considered low.





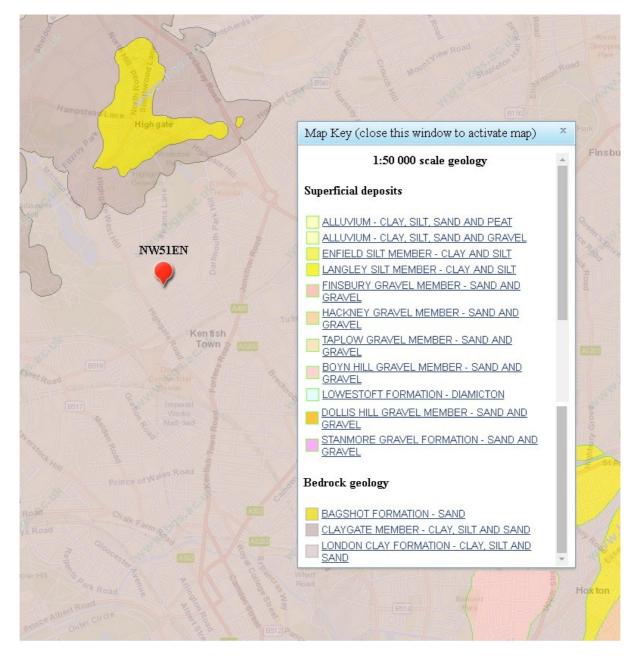

LONDON NOTTINGHAM OXFORD


Price & Myers LLP is a Limited Liability Partnership registered in England and Wales No. OC303989 Registered Office 37 Alfred Place London WC1E 7DP

## 2 Flood Risk from Surface Water

The Government's surface water flood map shows that the majority of the site is at risk of flooding from surface water. Only the front side of the site is not at risk of flooding from surface water. The proposed works involve the construction of a new lightwell at the front side of the building. The existing steps will be repositioned to provide access from the new lightwell to Croftdown Road. However, the surface water flood map shows that there are no overland flow paths from Croftdown Road to the site which to transfer flood water to the lightwell.

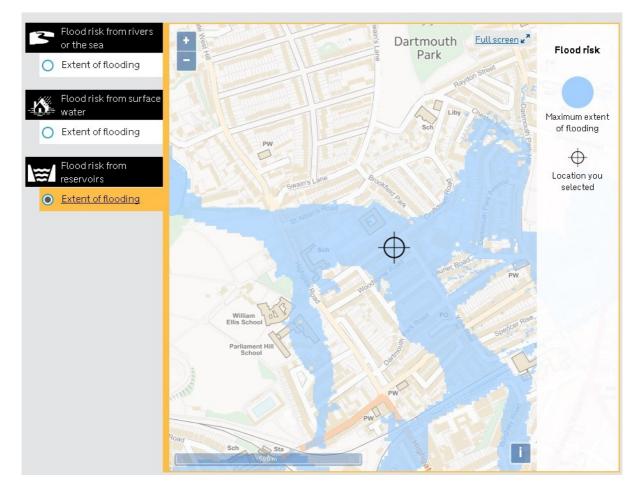



The local topography shows that the lowest levels on Croftdown Road are at its junction with York Rise. The topography then drops steeply to the south alongside York Rise. Therefore, any overland flows on Croftdown Road from any source, including surface water, sewers and burst water mains, will flow to the road's junction with York Rise and from there will flow to the south without ponding the site's front garden and lightwell. Any overland flows on Croftdown Road's channel to the east of the site.



After considering all the above, the flood risk from surface water and overland flows is considered low.

## 3 Flood Risk from Groundwater


There are currently no reported incidents of flooding from groundwater to the existing basement. A site investigation report for the site was not available at the time of writing this report. The British Geological Survey maps show that there are no superficial deposits in this area and that the London Clay underlies the site. Therefore the local geology does not form a groundwater reservoir at this location and the impermeable nature of the London clay will prevent large volumes of groundwater from moving in any direction in this area. While the existing basement will be lowered and a new lightwell will be constructed, these works will not increase the flood risk from groundwater, as these works will take place in the same ground conditions that the existing basement was constructed. Engineering techniques such as waterproofing and cavity drainage will be provided to recuse further the risk from groundwater. Therefore, the flood risk from groundwater is considered low.



## 4 Flood Risk from Sewers & Infrastructure Failure

As section 2 states the local topography will direct any overland flows from any source, including sewers and burst water mains, to the junction of Croftdown Road with York Rise, and from there the water will flow to the south in low lying areas.

The Government's map below show that the site is at risk of flooding from reservoirs. The map shows that flood water from the Highgate ponds will flow to an eastern direction, where the topography falls, flooding the site and areas lying lower than the reservoirs' ground levels.



The EA and DEFRA "Guide to risk assessment for reservoir safety management – Report SC090001/R1" document states that reservoir owners are responsible for the operation, maintenance, monitoring and the preparation of risk assessments. These activities aim to reduce the risk of reservoir failure. These activities are enforced by the enforcement authority which is the EA in England. While the Government's map shows that the site is at risk of flooding from reservoir failure, the chances of this happening are extremely low, considering that there is an effective management and monitoring plan in place to safeguard the safety of such structures.

## 5 Climate Change

The site is not near the tidal or fluvial floodplain. Therefore, elevated flood water levels due to climate change will not affect the existing building.

## 6 Proposed Run-off

In principle, the proposed building modifications, including the basement, will not generate any run-off rate, as the proposed works will take place within a building which is served by an existing drainage system. Furthermore, the proposed lightwell will be constructed within an existing hardstanding area. The proposed lightwell occupies an area of approximately  $6m^2$ . Therefore, it will generate a peak run-off rate of 0.17 l/sec (calculated based on the modified rational method,  $Q = 2.78 \times 0.0006 \times 104 = 3.76$  l/sec, where "A" is the catchment area in hectares and "i" is the rainfall intensity in mm/hr). Therefore, the run-off rate is negligible. The proposed works will not affect the existing surface water drainage system, which will be maintained.

The lightwell will be constructed on the proposed basement slab which will be formed on the London clay. Therefore, no infiltration systems can be used for surface water drainage. Attenuation techniques cannot apply, as the peak run-off rate is too low to be attenuated further. Surface water from the lightwell will be pumped to the below ground drainage network. A non-return valve will be fitted to the pump to reduce the flood risk from surcharged sewers.

## 7 Conclusion

Available information for the local area shows that the site is not at risk of tidal and/or fluvial flooding. While part of the site is at risk of flooding from surface water, the proposed works will not increase the flood risk to the basement level. The local topography confirms that overland flows from any source will not enter the new lightwell. The local geology indicates that the risk of flooding from groundwater is low. There is a risk of flooding from reservoirs, however effective maintenance, inspection and monitoring of such structures ensure that the chances of reservoir failure are extremely low. Furthermore, climate change will not increase the flood risk on site.

The proposed development will not increase the impermeable areas on site and subsequently the run-off rates and volumes to the public sewers.

Yours sincerely, For Price & Myers LLP

Dimitris Linardatos BEng MSc CEng MICE FIHE dlinardatos@pricemyers.com