SINCLAIRJOHNSTON CONSULTING CIVIL AND STRUCTURAL ENGINEERS

STRUCTURAL ENGINEER'S REPORT AND CONSTRUCTION METHOD STATEMENT FOR SUBTERRANEAN DEVELOPMENT AT

51 GLOUCESTER CRESCENT LONDON NW1 7EG

Prepared by:

Sian Hill MEng & Ravi Azad MEng (Hons) CEng MICE MIStructE Sinclair Johnston & Partners Limited 93 Great Suffolk Street London SE1 0BX

Tel:020 7593 1900E-mail:razad@sinclairjohnston.co.uk

8761 170913 RA

SEPTEMBER 2017 UPDATED DECEMBER 2017 8761: 51 Gloucester Crescent, London NW1 Structural Methodology Report

CONTENTS

1.0	Introduction
2.0	Existing Site
3.0	Ground Condition
4.0	Structural Propo
5.0	Construction Me
6.0	Temporary Wor
7.0	Construction Tra
8.0	Neighbouring B
9.0	Conclusions

APPENDICES

A S	Site Plan
B S	Structural Draw
C S	Structural Calcu
D	Resin Grouting
E 1	Femporary Prop

	page	1
	page	2
ons and Hydro-geology	page	2
sals	page	3
ethodology	page	5
ks	page	7
affic Management	page	7
uildings	page	8
	page	9

wings

culations

g Product Information

opping Design

DECEMBER 2017

1.0 INTRODUCTION

- 1.1 The following Structural Engineer's Report & Construction Method Statement has been prepared as part of the wider Basement Impact Assessment (BIA) undertaken for the planning application, submitted by UV Architects, for the proposed residential redevelopment at 51 Gloucester Crescent, London NW1 7EG. It is to be read in conjunction with all Architect's and other Consultant's documents submitted with the application.
- 1.2 The proposals broadly comprise:
 - The formation of a new basement under the entirety of the existing ground floor, within the existing building footprint including front and rear light wells.
- 1.3 This statement has been prepared to address the requirements of Camden's Development Policies and should be read with the Basement Impact Assessment (BIA) Report prepared by Soil Consultants Ltd.
- 1.4 This statement provides specific details of the excavation, the temporary works, and the construction technique proposed for the development, and investigates the potential impact of the subterranean development on the existing and neighbouring structures.
- 1.5 The statement is not intended to constitute a structural condition report. Any description of the existing structure is provided based on a non-intrusive, visual inspection without recourse to intrusive investigation or opening up of the existing structure.
- 1.6 This statement has been prepared by Sian Hill MEng (Engineer) and Ravi Azad MEng CEng MICE
 MIStructE (Technical Director) at Sinclair Johnston & Partners.

DECEMBER 2017

EXISTING SITE 2.0

- The site address is 51 Gloucester Crescent, Camden, London NW1 7EG and is located at approximate 2.1 National Grid Reference TQ 286 838.
- The site is located within the Camden Town with Primrose Hill Ward and Primrose Hill Conservation 2.2 Area in the London Borough of Camden.
- The existing site is rectangular in plan shape with approximate dimensions of 10m x 16m. The site is 2.3 generally level. A map showing the site location is provided in Appendix A of this report.
- 2.4 The site has a small parking area to the front of the property and a small garden to the rear of the site. The property is situated within a short row of detached dwellings, 51A Gloucester Crescent to the east and 50 Gloucester Crescent to the west.
- The building is set over ground and first floor. The building is of traditional load bearing masonry 2.5 construction, supporting timber floors and a timber tiled roof. There is a groundbearing slab at ground floor level.
- 2.6 Access is currently provided to the ground floor of the building off Gloucester Crescent towards the front and via the rear garden to the back. Access to the property is only available via Gloucester Crescent.
- 2.7 There are no trees present at the front of the site but there is a semi-mature tree in the rear garden of the property to the south-east of the site.
- 2.8 There are no known below ground tunnels on or close to the site.
- 2.9 The Environment Agency indicates that the site is located in an area where there is less than a 0.1 per cent (1 in 1000) chance of flooding occurring each year. This is the same as Flood Zone 1, in England.
- 2.10 As identified in the Camden Flood Risk Management Strategy the site is not in an area at risk of flooding from rivers or the sea. Nor is it in an area that has historically been at risk from surface runoff, groundwater and sewer flooding.
- 2.11 Site investigation works undertaken (ref. Site Investigation Report) have confirmed that foundations to the building generally consist of corbelled solid brick footings on mass concrete strip foundations.

3.0 **GROUND CONDITIONS AND HYDRO-GEOLOGY**

- 3.1 The ground conditions on site consist of made ground to a depth of 4.5m, overlying London Clay, which extends to significant depth.
- 3.2 Logs from boreholes undertaken at 51 Gloucester Crescent are enclosed, which extend to 6m below current ground level. These logs are considered to be a good representation of the ground conditions across the site.
- 3.3 Trial pits have been undertaken adjacent to existing walls on site to ascertain the depth, extent and profile of existing wall foundations, and make-up of the underlying ground. Further information can be found in the Site Investigation Report in.
- 3.4 The following is a summary of the findings of the boreholes, information obtained from desk top study, and information obtained from investigation works undertaken at sites nearby:
 - i) The existing building is founded on made ground comprising mostly of clays, which made ground is London Clay Formation which extends to significant depth.
 - ii) feature is located 140m north of the site.
 - There are no Zone 2 or Zone 3 floodplains or flood defences within 250m of site. iii)
 - The site does not sit within an aquifer. iv)
 - The site is not within a Groundwater Source Protection Zone. v)
 - vi) undertaken on 3rd March 2017 & 17th March 2017.
 - Groundwater monitoring shows the measured groundwater level varies between -2.49m and vii) -2.30m, within the made ground layer which overlies the London Clay.
 - viii) OS mapping indicates an approximate elevation of 33.0m AOD therefore the groundwater table groundwater level is expected to be less than 0.2m.

contradicts local geological maps for the area, implying the site may have been raised at some stage in the site's history or perhaps the clay was excavated locally. Beneath an initial layer of

The site sits 160m south of Grand Union Canal Regent's Canal. The nearest surface water

Groundwater was encountered within both boreholes. Ground water monitoring was

is likely to be situated at approximately 30.51m - 30.7m AOD. The seasonal range of the

- The measured ground water level is approximately 2200mm above the underside of the new ix) basement raft.
- x) Ground water flows are expected during excavation. Ground stabilisation works will be required prior to excavation for underpins, to prevent washing in of fines and to minimise the extent of dewatering required.
- The proposals will not increase the proportion of hard surfaced-areas and therefore the volume xi) of surface water inflow from surface run-off will not change due to the proposed development.
- xii) The development is not considered to impact the surface water regime of the site or adjacent sites.
- xiii) The property is in a low probability Radon-affected area.
- It has not been possible to confirm the foundation details to Nos. 51A / 50 Gloucester Crescent xiv) or No. 22 Regent's Park Terrace by intrusive investigation due to access restrictions.
- Information on the planning section of Camden Council's website shows that No. 51A is xv) founded on a reinforced concrete raft slab. This property does not have a basement. There is no planning history for No. 50 Gloucester Crescent or No. 22 Regent's Park Terrace, and it is therefore assumed that there are no basements under these properties and that they are both founded on shallow spread footings.

STRUCTURAL PROPOSALS 4.0

- Drawings describing the proposed structure are provided in Appendix B. For further information on 4.1the proposed scheme, please refer to Architect's information.
- 4.2 It is proposed to form a new basement under part of the existing ground floor of the property. The basement extends beyond the footprint of the property with front and rear light wells and will be only be accessible internally.
- 4.3 The new basement sub-structure is to be made up of a reinforced concrete (r.c.) slab, which will act as a raft at basement level, supporting loads from the new basement and loadbearing perimeter walls over in bearing. The existing ground floor perimeter walls will be underpinned with r.c. walls cast in a hit/miss sequence, which will be cast integrally with the basement raft slab.
- 4.4 The structural make-up of the existing building will remain largely unchanged. The existing ground floor slab over the new basement will be reconstructed as an r.c. slab supported on steel beams bearing onto steel columns built off the r.c. raft slab.
- 4.5 The basement raft is to be constructed and founded within the London Clay at -4.5m below ground level. The Site Investigation Report classifies the risk of collapsible ground / stability to be low.
- It will be necessary to implement ground stabilisation works in advance of excavation to control water 4.6 ingress and to limit migration of fines, creating an effectively watertight seal around the site to allow excavation for underpins.
- In this case, low-pressure resin grouting can be used to harden and stabilise soil below the water table, 4.7 in advance of and during excavation. Specialist geotechnical advice has been sought on this matter and trial excavations using the resin will be undertaken on site in due course. Appendix D gives further information on the resin grouting. The design and implementation of resin grouting works will be specifically addressed within a Basement Construction Plan (BCP).
- Lateral loads due to earth pressures, transient hydrostatic pressures, and surcharge pressures are to be 4.8 resisted by the walls of the reinforced concrete box around the perimeter of the new basement space, which will act as propped walls in both the temporary and permanent condition. The retaining walls will be propped at ground level, lower ground level and basement level by the r.c. slabs at these levels.

- Heave forces due to the unloading of the clay under the made ground, and forces due to a hypothetical 4.9 raised ground water level are to be resisted by the reinforced concrete basement raft slab, which spans in two-directions between the walls which form the new basement box structure.
- The stiffness of the below ground structure ensures that ground movements are kept within acceptable 4.10 defined limits.
- 4.11 Foul water will be pumped from the new basement level to ground level, to allow the foul waste to be removed from site via gravity as per the existing system, into the existing sewer.
- 4.12 The existing surface water drainage arrangement will remain, where rainwater will be collected at ground level via rainwater pipes and drained via gravity into the existing sewer as per the existing system. There will be additional surface water collection in the front and rear light wells which will be pumped to the existing surface water drainage system at ground level.

Predicted Structural Damage to Neighbouring Properties:

- 4.13 An initial prediction of structural damage to neighbouring properties has been undertaken in general accordance with CIRIA publication C580 by Soil Consultants Ltd. Calculations and a summary of their findings are provided in the Ground Movement Analysis Report.
- 4.14 The assessment by Soil Consultants Ltd has found that the category of damage to Nos. 50 & 51A Gloucester Crescent, and 22 Regent's Park Terrace as classified under Burland et al, anticipated from the proposed construction of the new basement is expected to be no worse than Category 0, Negligible.
- The Contractor will be required to monitor ground movements during the works to check the validity 4.15 of the ground movement analysis and the performance of the temporary works and working methods. A 'traffic light' system of green, amber, red trigger values will be set with specific Contractor actions set against each trigger values. Indicative ground movement trigger levels to be set are as follows:

Traffic Ligh	t Trigger Value (mm)	Contractor Action
Green	< 2	No action required.
Amber	2 - 4	Notify the CA and P monitoring. Implem
Red	> 4	Notify the CA and the cease movement and

4.16 The monitoring method is to be developed further during detailed design. Monitoring will be undertaken prior to the injection of low pressure resin and before any ground works commence, and will continue through to completion of the basement structure.

Party Wall Surveyor(s). Increase frequency of ment contingency measures if movement continues.

the Party Wall Surveyor(s). Implement measures to nd stop work.

CONSTRUCTION METHODOLOGY 5.0

- 5.1 It is envisaged that ground stabilisation works would be undertaken during excavation for underpin walls for the new basement. The basic permeation resin grouting technique methodology is:
 - i) Installation of injection lances around the perimeter of the proposed basement to the depth and width specified by the specialist contractor. This will require locally breaking out the existing ground bearing ground floor mass concrete slab locally for access and excavating down to approx. 500mm above assumed ground water level. Lances to extend into the underlying Clay member.
 - ii) Injection of resin at low pressure, which reacts with the water upon contact, forming a gel which foams and binds the granular components of the soil together, limiting water ingress. Resin to be installed around full perimeter of basement walls, with lances removed once resin has been placed.
 - iii) Excavate through set / hardened resin to form r.c. walls.
- 5.2 For the purposes of this report, the basement extension is to be constructed using a bottom-up method of construction, as outlined in the following construction sequence:
 - i) Install reinforced concrete (r.c.) underpinning under ground floor perimeter walls in a typical 1-3-5-2-4 hit/miss sequence, installing resin as required during excavation. Underpin widths to be limited to 900mm to ensure that the existing walls over can effectively arch over temporary excavations.
 - ii) Given the granular nature of the existing subsoil, faces of excavations to the depth of underpinning may require temporary propping during underpinning works. Localised trench sheeting and props can be used to form excavations for underpins if required.
 - iii) Reinstate arisings from excavations for underpins in well-compacted layers once each underpin has been cast. Underpins to be packed up to underside of masonry walls with 3:1 sharp sand / cement well rammed in.

- iv) layout.
- v) property.
- vi) r.c. walls to provide a prop to the head of underpin walls.
- vii) Remove excavation material waste towards front of property.
- viii) beams, to provide temporary propping to the base of the underpin walls.
- ix) temporary steel shores at basement level.
- Install new steel columns at basement level built off the basement raft slab. x)
- xi) off the perimeter r.c. underpin walls and new steel columns.
- Cast new suspended r.c. slab at ground level on profiled metal decking. xii)
- xiii) ground floor slab has been installed.
- The undertaking of such works to existing buildings is specialist work and Sinclair Johnston & 5.3 Partners Ltd will be involved in the selection of an appropriate Contractor, who will need relevant expertise and experience in working on these types of projects.

Where existing loadbearing masonry walls are to be supported at ground floor level, needle through existing walls at ground floor level with closely spaced temporary steel needles, and support needles off parallel (deep) steel beams set above existing ground floor level, spanning onto the recently-installed perimeter r.c. underpin walls. Appendix E -Temporary propping

Excavate to 500mm below top of underpin wall level. Remove waste through front of

Install temporary steel waling beams and flying shore props across the width of the basement

Excavate down to 500mm above top of basement underpin toe level within the perimeter of the new basement. Excavate through the hardened resin, which will serve to stabilise the gravels and limit water ingress into excavation. Dewater from within basement space as excavation progresses through the water table to basement formation level using pumps.

Fix waling beams and flying shores at low level spanning across width of site between waling

Excavate to base of underpin toe level and install new basement r.c. raft slab, with reinforcement achieving continuity with the r.c. underpin walls. Remove temporary props and

Install new (permanent) steel beams, packed up tight to the underside of the existing walls over with 3:1 sharp sand / cement dry pack well rammed in (between needles), taking support

Remove temporary steel needle beams and temporary flying shores and waling beams once

- 5.4 The Contractor will be required to demonstrate a positive attitude and commitment toward minimising environmental disturbance to local residents and will be required to be registered with the Considerate Contractors Scheme. Impacts on the local amenity due to construction will be strictly controlled and managed by the Contractor.
- 5.5 Noise, dust, and vibration will be controlled by employing Best Practical Means (BPM) as prescribed in the following legislative documents and the approved code of practice BS 5228:
 - The Control of Pollution Act 1972.
 - The Health & Safety at Work Act 1974.
 - The Environmental Protection Act 1990.
 - Construction (Design and Management) Regulations 1994.
 - The Clean Air Act 1993.
- General measures to be adopted by the Contractor to reduce noise, dust and vibration include: 5.6
 - Drop heights to be minimised during any demolition.
 - Use of super-silenced plant where feasible.
 - Use of well-maintained modern plant.
 - Effective noise and vibration monitoring to be implemented. •
 - Reducing the need to adopt percussive and vibrating machinery. .
 - Vehicles not to be left idling.
 - All loads entering and leaving site are to be covered.
 - Measures to be adopted to prevent site runoff of water or mud. .
 - Water to be used as a dust suppressant.
 - Cutting equipment to use water as suppressant or suitable local exhaust ventilation system.
 - Skips to be covered.
- 5.7 It is not anticipated that cutting of any concrete will be required on site. In any case, demolition of any existing concrete will be undertaken using a 'clean' deconstruction method to reduce noise, dust, and vibration. Concrete elements are to be cut into manageable sections using a stitch drilling method to reduce noise, dust, and vibration.
- 5.8 Where practical, demolition material is to be taken to recycling plants.

- 5.9 Working hours will be restricted as required by the Local Authority.
- A Chartered Engineer holding MICE or MIStructE accreditation from Sinclair Johnston & Partners 5.10 Ltd will have an ongoing role on site to monitor that the works are being carried out generally in accordance with the structural design and specification. This role will typically involve weekly / fortnightly site visits throughout the duration of structural works on site.

TEMPORARY WORKS 6.0

- Please refer to Sinclair Johnston & Partners Ltd structural drawings for information on the outline 6.1 temporary works required for the construction of the new basement. Appendix E.
- 6.2 The structural arrangement of the existing building is to be generally retained.
- No vertical temporary supports will be required for installation of the reinforced concrete wall under 6.3 perimeter walls, with all excavations below existing walls undertaken in short 'hit-miss' segments.
- The existing loadbearing walls extending to basement level will be supported directly off reinforced 6.4 concrete underpin walls prior to excavation for the basement, thus limiting the length of time that temporary support of the walls is required during the construction works.
- 6.5 Given the granular nature of the existing subsoil, faces of excavations to the depth of underpinning may require temporary propping during underpinning works. Localised trench sheeting and props can be used to form excavations for underpins if required.
- Given the plan dimensions of the new basement, temporary lateral support in the form of waling 6.6 beams and flying shores will be of relatively short span lengths.
- The types of temporary works required to construct the permanent structure as described above are 6.7 common forms of temporary works, which most competent contractors will be familiar with.
- 6.8 The temporary works are to be designed by a qualified and experienced Temporary Works Coordinator in accordance with BS 5975 'Code of Practice for Temporary Works Procedures and the Permissible Stress Design of Falsework.'
- 6.9 Good workmanship will be required for the works to ensure ground movements due to wall deflection are suitably controlled.

7.0 **CONSTRUCTION TRAFFIC MANAGEMENT**

- The Contractor will be required to develop a detailed Construction Traffic Management Plan for 7.1 submission to and agreement with the Local Authority.
- 7.2 However, the following have been considered at the planning stage to mitigate the impacts on the local highways and highway safety:
 - All access to the site will be through the front door only.
 - evenings.
 - will be turned away.
 - user safety and to ensure congestion is minimised.
 - Vehicles are to be sized so as to be suitable for the local highways.
 - vehicles leaving site.

• Traffic movements are to be scheduled to avoid periods of heavy traffic such as mornings and

• All deliveries are to be agreed with the Contractor in advance. Any unscheduled deliveries

Banksmen are to be provided for all site vehicle movements to ensure pedestrian and highway

• As all vehicles arriving to and leaving site will be driving on tarmacked roads and no vehicles will need to access site for pick-up or delivery, it is not envisaged that any muck from site will be tracked onto wheels. Nonetheless, it is anticipated that wheel washing facilities will be put in place by the Contractor on site to ensure that site muck is not tracked onto wheels of

8.0 <u>NEIGHBOURING BUILDINGS AND PARTY WALL MATTERS</u>

- 8.1 The property is a detached building therefore no Party Walls will require underpinning during the construction of the new basement.
- 8.2 Excavation is within 6m of neighbouring building boundary walls, and therefore full procedures under the Party Wall etc. 1996 Act will apply.
- 8.3 The structural scheme adopted has been designed with due regard to maintaining the structural stability and integrity of neighbouring buildings & structures and surrounding land. The structural form of the basement and the method of construction have been developed to ensure that lateral deflections, and associated ground movements, are kept within acceptable limits.
- 8.4 The design and implementation of resin grouting works will be specifically addressed within a Basement Construction Plan (BCP). This will form the basis of Party Wall Awards, which will be in place prior to the commencement of any excavation works.

DECEMBER 2017

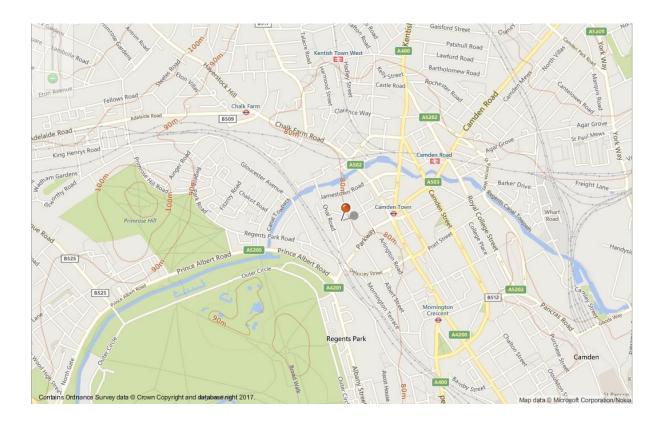
CONCLUSIONS 9.0

- 9.1 The structural proposals and construction methodology for the subterranean development at 51 Gloucester Crescent have been developed with due regard to the existing site constraints, the site specific and local ground conditions, the local amenity and the local highway.
- The ground conditions are well understood and have been investigated by boreholes to 6m below 9.2 existing ground level.
- 9.3 The site is located in Flood Risk Zone 1. The site has not previously been, or is likely to be, subject to surface water flooding.
- 9.4 The proposed works and basement development have been shown to be unlikely to detrimentally affect the surface water regime in the local and wider area. The existing pathway for surface water flows will not be altered by the proposals.
- 9.5 Anticipated ground movements associated with the works can be limited to acceptable values by a combination of the stiffness of the proposed retaining structure, suitably designed temporary works, and good levels of workmanship.
- 9.6 The proposals demonstrate that:
 - The site geology is capable of supporting the loads and construction techniques to be imposed.
 - The subterranean development, and associated construction and temporary works, have been developed so as to have no adverse impact on the structural integrity and natural ability for movement of existing and surrounding structures, utilities, infrastructure and man-made cavities, such as tunnels.
 - The permanent and temporary works and the method of construction have been developed so ٠ that the development will not initiate slope instability.
 - The subterranean development has no adverse impact on drainage, sewage, surface water and ٠ ground water flows and levels.
 - The proposed temporary works, permanent works and construction method have been developed with due regard to the geology and hydrology.

- works, permanent works and construction methodology.
- excavation and construction.
- The proposed subterranean development has no adverse impact on existing trees.
- 9.7 The proposals described herein are a proven form of construction and are designed to maintain the structural stability and integrity of the existing buildings on and around the site.
- 9.8 This report demonstrates that by adopting good construction practices the works can be executed in a safe manner while minimising any impact on the local amenity.
- 9.9 A Chartered Engineer holding MICE or MIStructE accreditation from Sinclair Johnston & Partners Ltd will have an ongoing role on site to monitor that the works are being carried out generally in accordance with the structural design and specification.

• The existing structure has been investigated and considered when developing the temporary

• The report describes the engineering details of the scheme, including proposals for the


8761: 51 Gloucester Crescent, London NW1 Structural Methodology Report

Appendix A - Site Plan

SEPTEMBER 2017

APPENDIX 1

51 GLOUCESTER CRESCENT, NW1 SITE PLAN

8761: 51 Gloucester Crescent, London NW1 Structural Methodology Report

Appendix B - Structural Drawings

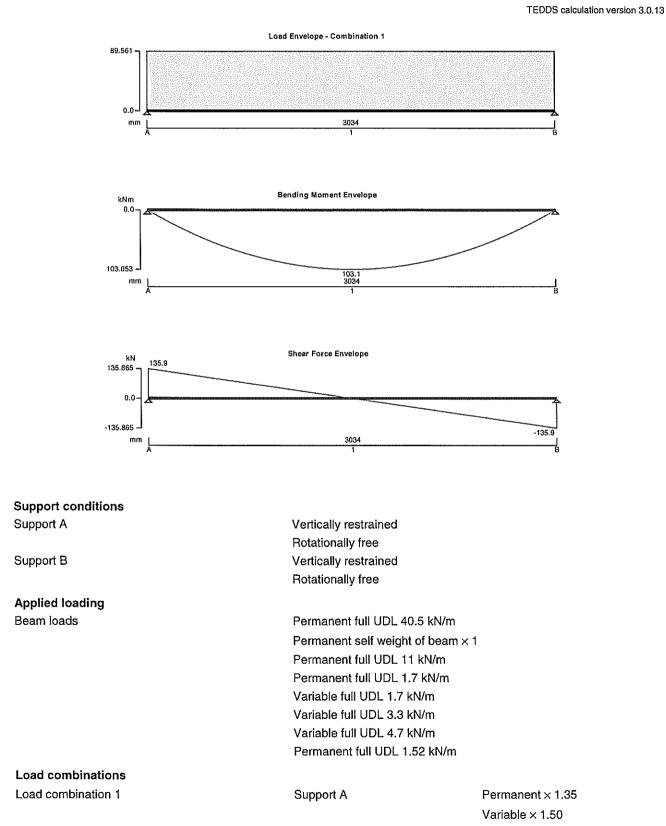
SEPTEMBER 2017

8761: 51 Gloucester Crescent, London NW1 Structural Methodology Report

Appendix C – Structural Calculations

SEPTEMBER 2017

SINCLAID LOUNISTON	Date	Job No.	Sheet No.
SINCLAIR JOHNSTON	Eng.	8761	
& PARTNERS LIMITED	Review		
	Project	- ^	,]
	51 Glouceste	u cres	cent
Load Take-down			
△ Existing Front, Rear & side wall the			
330mm (100mm x2 Guity Wall).		_	
height of building. In:			
	<u></u>		
7m x 4.5KNm2 = 31.5KJ/m (DL	-)		
A Internal walls; 215mm Wall: 4.6KN/m²- +00mm Wall; 7.1KN/m²	· · · · · · · · · · · · · · · · · · ·		
+ Hound Wall: 7.1KNm2			
A New RC wall: 0.4m (thk) ×25KNm	$\times 5.5m(h)$		
= 33kNm. (DL)			
△ Existiva Roof: 1.5KNm² × 3.4m =	5.1 WM.		
	DL+LL		
A Existing 1st Floor timber floor:			
DL: O SKNM ² LL = 1. SKNM ² (Dom	estic)		
Vet v Servin Lon			
$45m \times 2KNm^2 = 9KNm$			
			handd Manshindig y'
A Proposed new Ground Floor - ISOTHK	RC Slab		
			· •
on profiled metal decking. DL (24kulm3	x0.15)		
$DL = 5 \text{ KM}^2 + 1.2 + C$	$>.15 = SKNm^2$		
$LL = 1.5 \text{ kNm}^2$			
		Aver/stanfords	
Approximate Moments'			
- Aller			
			· · · · · · · · · · · · · · · · · · ·
			•
73101- 18501 14500 - 788011M			
			······
138KN			
5010			
S S S S S S S S S S S S S S S S S S S			

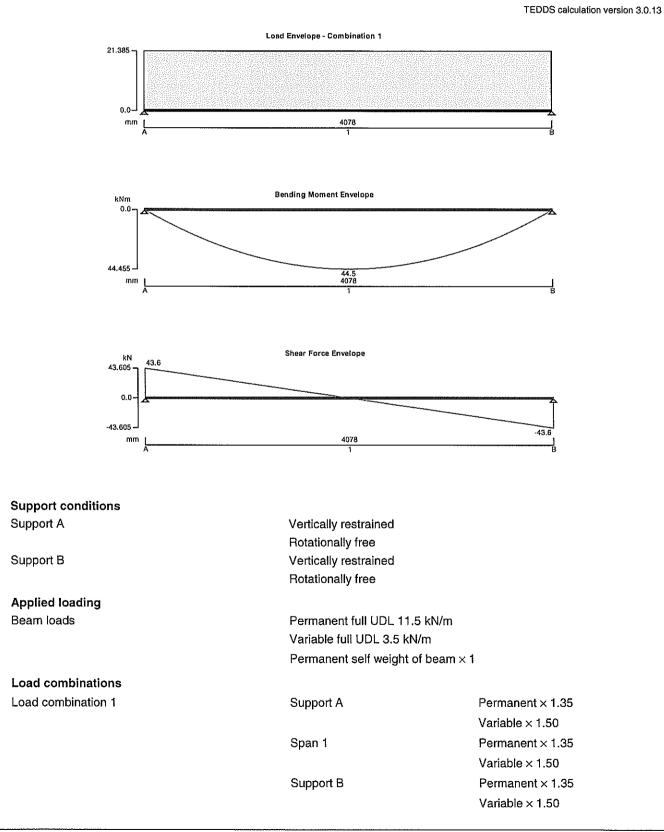

SINCLAIR JOHNSTON	Date	Job No. Sheet No.
& PARTNERS LIMITED	Eng. Review	8761 2
	Project SI G(nocester C
	Crescent	
		<u></u>
Total load: 400+800+720+5	20	
= 3400 KN.	· · · · · · · · · · · · · · · · · · ·	
Total check		
Roof: 1. SKNM2 < 9.7 × 7.2= 104	4 11	
Sida walls: 4.5Km² × 7m × 7.2m = 2	27×2=458	, VIV.
Contractory and Contractory	570 196	
$\frac{1}{10000000000000000000000000000000000$	492 KN	· · · · · · · · · · · · · · · · · · ·
Internal walls: 215 wall 4.6KNm2;	×5 mx 5.7=13	1 KN
$\frac{400 \text{ wall } 7.1 \text{ km}^2}{\text{First floot}} = 202 \text{ wall } 7.2 \text{ km}^2}$ $\frac{2 \text{ km}^2 \times 9.6 \times 7.2 \text{ = } 138 \text{ km}^2}{2 \text{ km}^2}$	<u>1</u>	
$\frac{2 \times 10^{-2} \times 9.6 \times 7.2}{6 \times 10^{-2} \times 9.6} = 6.5 \times 10^{-2} \times 9.6$	x 7.7 = 450	n
Ease, ont walls: 33WIM × 10 =	530/20122	-1660KN
+2.71 wm × 9.6 -	2606122	= 520KN.
10al = 3150KN		
	· · · · · · · · · · · · · · · · · · ·	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
010		
SI 2	· · · · · · · · · · · · · · · · · · ·	

SINCLAIR JOHNSTON	Date	Job No.	Sheet No.
/	Eng. Review	8761	3
& PARTNERS LIMITED	Project		
	SI Glouces	ster C	rescent
Steel beam checks under reta	and the second		
Masonry walls & new rc Slab	Beam 2.		<i>/</i>
Beam under 400thk internal wal			
Length: 3034mm (l)			
Wall over . $7.1 \text{ kNm}^2 \times 5.7 \text{ m}(h) = 40$	2.5KNM (DL	.)	
Slab: 6.5KN/m² (DL+LL) × 2.2m =	14.3KNM		
1st Floor: 2knm2 (PL+LL) × 3.11,	6.22 KIJan		
$R_{oof} 1.5 \times Nm^{2} (DL+LL) \times 2.2m = 3.5$			
203×203×86UC OK.			
MaxEM: 103 KNm < Capacity 25	SKNM		
Mas SF: 136KN < Capacity 46			
Max X 3.6mm K Capacity 12	-lmm		
See Tedds Output			
			······································
. Boarn 2 under new suspe	nded RC		
slab on profiled metal decking:			
length 4078mm			
		h)	
Slabover: 6.5KNm (atu) X 2.3 n	n max long	'h/	
: ISKNM.			
see Tedds output: 2032202 UC 46.			
Max BM: 44.5 KNM 2 Capacity 136	KIVM		
Mox SF 43.6 KN < Capocity 269	KN		
Max S: 6 mm 2 Capacity 16	2 Mar		
2010 			
<u>S</u>] <u>S</u>]			

TEKLA Talilis	Project	51 Glouces	ster Crescent		Job no. 8	3761
<u>eastere</u>	Calcs for	Calcs for Beam1			Start page no./Revision	
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex


TEKLA Trans	Project	51 Glouc	Job no. 8761				
	Calcs for		1		Start page no./	Start page no./Revision 2	
			Beam1				
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved date	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Span 1		Dorma	anent × 1.35	• · · · ·	
		opan i			ble \times 1.50		
		Support I	3	Perma	anent × 1.35		
				Variat	ole × 1.50		
Analysis results							
Maximum moment			03.1 kNm		0 kNm		
	Maximum shear		5.9 kN	V _{min} = δ _{min} =	-135.9 kN		
Deflection Maximum reaction at support a	Δ	$\delta_{max} = 3.6$	135.9 kN		= 135.9 kN		
Unfactored permanent load re			ant = 84.3 kN	1 1A_min	- 100.5 KM		
Unfactored variable load react			= 14.7 kN				
Maximum reaction at support I		R _{B_max} =		R _{B_min}	= 135.9 kN		
Unfactored permanent load re	action at suppor	t B R _{B_Perman}	ent = 84.3 kN				
Unfactored variable load react	tion at support B	RB_Variable	= 14.7 kN				
Section details							
Section type			3x203x86 (Tata	Steel Advance)			
Steel grade		S275					
EN 10025-2:2004 - Hot rolled Nominal thickness of element	-						
Nominal thickness of element Nominal yield strength			r, t _w) = 20.5 mm				
		f 265	N/mm2				
	ath	f _y = 265 f _y = 410					
Nominal ultimate tensile stren Modulus of elasticity	gth ▲ 북 &	$f_{u} = 410$					
Nominal ultimate tensile stren		f _u = 410 E = 2100	N/mm ² 000 N/mm ²				
Nominal ultimate tensile stren	- 	f _u = 410 E = 2100	N/mm² 000 N/mm²				
Nominal ultimate tensile stren Modulus of elasticity Partial factors - Section 6.1	- 	f _u = 410 E = 2100	N/mm ² 000 N/mm ²				
Nominal ultimate tensile stren Modulus of elasticity Partial factors - Section 6.1 Resistance of cross-sections	222.2 20.5 222.2 20.5 20.5 - 20.5 - - - - - - - - -	f _u = 410 E = 2100 	N/mm ² 000 N/mm ² • 12.7 • 12.7				
Nominal ultimate tensile stren Modulus of elasticity Partial factors - Section 6.1 Resistance of cross-sections Resistance of members to ins	stability	f _u = 410 E = 2100 	N/mm ² 000 N/mm ² 4-12.7 199.1				
Nominal ultimate tensile stren Modulus of elasticity Partial factors - Section 6.1 Resistance of cross-sections	stability	f _u = 410 E = 2100 	N/mm ² 000 N/mm ² 4-12.7 199.1				
Nominal ultimate tensile stren Modulus of elasticity Partial factors - Section 6.1 Resistance of cross-sections Resistance of members to ins	stability	f _u = 410 E = 2100 	N/mm ² 000 N/mm ² - 12.7 				
Nominal ultimate tensile stren Modulus of elasticity Partial factors - Section 6.1 Resistance of cross-sections Resistance of members to ins Resistance of tensile membe Lateral restraint	stability	f _u = 410 E = 2100 	N/mm ² 000 N/mm ² 4-12.7 199.1	estraint			
Nominal ultimate tensile stren Modulus of elasticity Partial factors - Section 6.1 Resistance of cross-sections Resistance of members to ins Resistance of tensile membe	stability rs to fracture	f _u = 410 E = 2100 	N/mm ² 000 N/mm ² 4-12.7 99.1 00 10 has full lateral re	estraint			

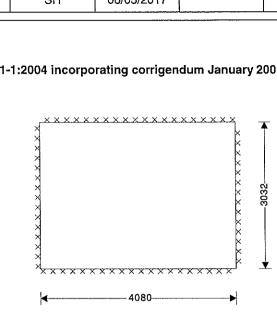
	Project	51 Glouces	ster Crescent		Job no.	761
Tedds	Calcs for					
		Be	am1		Start page no./F	3
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved d
Effective length factor for tor	sion	K _{LT.A} = 1.00			····	
		Кіт.в = 1.00	00			
Classification of cross sec	tions - Section		۱/mm² / f _۲] = 0.	94		
Internal compression parts	s subject to ben	ding - Table 5.2 (sheet 1 of 3)			
Width of section		c = d = 160	-			
			4×ε<= 72×ε	Class	1	
Outstand flanges - Table 5	2 (sheet 2 of 3)	i i				
Width of section			2 × r) / 2 = 88	mm		
		•	×ε<=9×ε	Class	1	
						tion is cla
Check shear - Section 6.2.	6					
Height of web	•	h _w = h - 2 >	< t _f = 181.2 mn	n		
Shear area factor		η = 1.000				
		h _w / t _w < 72	2×ε/n			
			•	Shear buckling	resistance d	an be igne
Design shear force		$V_{Ed} = max$	(abs(V _{max}), abs	- s(V _{min})) = 135.9 kľ		_
Shear area - cl 6.2.6(3)		$A_v = max(A_v)$	$A - 2 \times b \times t_i +$	$(t_w + 2 \times r) \times t_f, \eta >$	$(h_w \times t_w) = 30$	69 mm²
Design shear resistance - cl	6.2.6(2)	$V_{c,Rd} = V_{pl,l}$	$Rd = A_v \times (f_y / \sqrt{v})$	[3]) / γ _{M0} = 469.6 Ι	٨N	
		PAS	SS - Design sl	hear resistance o	exceeds desi	gn shear fo
Check bending moment m	ajor (y-y) axis -	Section 6.2.5				
Design bending moment		M _{Ed} = max	(abs(M _{s1_max}),	$abs(M_{s1_min})) = 10$	3.1 kNm	
Design bending resistance r				′ γ _{M0} = 258.8 kNm		
	PAS	SS - Design bend	ing resistance	e moment excee	ds design be	nding mor
Check vertical deflection -	Section 7.2.1					
Consider deflection due to p	permanent and v	ariable loads				
Limiting deflection			250 = 12.1 mn			
Maximum deflection span 1				_{min})) = 3.629 mm		
				deflection does		

Project	51 Glouces	ter Crescent		Job no. 8	3761	
Calcs for	Calcs for Beam 2			Start page no./F	Start page no./Revision 1	
Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved date	

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

	Project	51 Glouces	Job no. {	3761			
	Calcs for		-		Start page no./		
			Beam 2		2		
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved da	
Analysis results		<u></u>				- 44400	
Maximum moment		$M_{max} = 44.5$	5 kNm	M _{min} =	0 kNm		
Maximum shear		V _{max} = 43.6	3 kN	V _{min} =	-43.6 kN		
Deflection		$\delta_{max} = 5.8$ I	mm	δ _{min} =	0 mm		
Maximum reaction at support	A	$R_{A_{max}} = 43$	3.6 kN	R _{A_min}	= 43.6 kN		
Unfactored permanent load r							
Unfactored variable load read	• •			_			
Maximum reaction at support		$R_{B_{max}} = 43$		R _{B_min}	= 43.6 kN		
Unfactored permanent load r	••	—					
Unfactored variable load read	ction at support E	B RB_Variable =	7.1 KN				
Section details							
Section type			03x46 (BS4-1))			
Steel grade		S275					
EN 10025-2:2004 - Hot rolle Nominal thickness of elemen	•		t _w) = 11.0 mm				
Nominal yield strength	14	$f_y = 275 \text{ N/}$					
Nominal ultimate tensile stre	nath	$f_{\rm u} = 410 \ {\rm N}$					
Modulus of elasticity		$E = 210000 \text{ N/mm}^2$					
	↑ ≹ 📼			ooyandi sa tafari.			
		203.	6	\			
Partial factors - Section 6.	1						
Resistance of cross-section		γ _{мо} = 1.00					
Resistance of members to in		γ _{M1} = 1.00					
Resistance of tensile memb	-	γ _{M2} = 1.10					
		1wz - 1110					
Lateral restraint		Spop 1 b	an full latoral r	octraint			
		Spanning	as full lateral re	estraint			
Effective length factors			_				
Effective length factor in ma	-	Ky = 1.000					
Effective length factor in mir		$K_z = 1.00$					
Effective length factor for to	rsion	К _{LT.A} = 1.0 К _{LT.B} = 1.0					
		N_{L} $B = 1.0$					
Classification of cross see							


Tedds		51 Gloucester Crescent				
	Calcs for	Calcs for Beam 2			Start page no./Revision 3	
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved
		00/03/2017				
Internal compression par Width of section	ts subject to ben	ding - Table 5.2 (c = d = 16	•			
which of section			2×ε<=72×ε	Class 1		
Outstand flanges - Table	5.2 (sheet 2 of 3)					
Width of section		c = (b - t _w -	2 × r) / 2 = 88	mm		
		$c / t_f = 8.7$	×ε <= 9×ε	Class 1		
					Sec	tion is cla
Check shear - Section 6.2	2.6	L L O				
Height of web Shear area factor			< t _f = 181.2 mm	1		
		η = 1.000 h _w / t _w < 72)ye/n			
		1107 10 1 12	. ^ ट/ प	Shear buckling	resistance o	an be iar
Design shear force		V _{Ed} = max	(abs(V _{max}), abs	(V _{min})) = 43.6 kN		j.
Shear area - cl 6.2.6(3)		$A_v = max(A_v)$	A - 2 \times b \times t _f + ($t_w + 2 \times r) \times t_f, \eta \times$: h _w × t _w) = 16 9	98 mm²
Design shear resistance - o	cl 6.2.6(2)	$V_{c,Rd} = V_{pl}$	$Rd = A_v \times (f_y / \sqrt{[}$	3]) / γ _{M0} = 269.5 k	Ν	
		PAS	SS - Design sh	near resistance e	xceeds desi	gn shear
Check bending moment r	major (y-y) axis -					
Design bending moment				$abs(M_{s1_min})) = 44.$	5 kNm	
Design bending resistance		SS - Design bend		γ _{M0} = 136.8 kNm moment exceed	te desian he	ndina mo
Check vertical deflection		2001gii 2011u	ing rootolailoo		io acoigii be	nanig ino
Consider deflection due to		ariable loads				
Limiting deflection			250 = 16.3 mm	ı		
Maximum deflection span	1	δ = max(a	bs(δ _{max}), abs(δ _r	ուո)) = 5.801 mm		
		PAS	SS - Maximum	deflection does	not exceed o	deflection

SINCLAID LOUNISTON	Date	Job No.	Sheet No.
SINCLAIR JOHNSTON	Eng.	8761	4
& PARTNERS LIMITED	Review		
	Project		
	51 Glouces	fer Cr	rescent
	<u> </u>		
Total bearing pressure on new re	aft sab		
Total moments acting on stab: 31	ISOKN.		·····
Weight of slab: 2501m × 94m × 0.	.4-m = 940KN		
$LL: 15 \times 94m^2 = 141 \text{ kN}$			······································
+ Masonry Walls at basement level:			
$4.5m(\lambda) \times 4.5KNm^2 \times 3.86m(h) =$			
Total: 3150+940+22KN+141=	4.7253KN		·····
Total Area: 94.06m2			
Braing pressure. 4253/94.06=	45KN/m2		
	KI40KNM2	, de	
Worstase span between column	nemenana anno an inclusione and incl	<u> </u>	
2- rlay spanning slab - check for	r uplift.		
Remanent action: $DL = G_{L} = 40$	DKNm²		
Variable action: LL Qx = 5.1 KNG	<u>~</u>		
See Tedds output - 400th K Sla			··
$\rightarrow ce + au \rightarrow outpu - 400 m - 31a$		1000 (1000)	
		may to a the second sec	
		2000 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
		11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
		2	
			······
<u>6</u>	· · · · · · · · · · · · · · · · · · ·		
3] 201		<u> </u>	

TEKLA TERLA	Project	51 Glouces	Job no. 8761			
	Calcs for	RC Sla	b design		Start page no./F	Revision 1
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved date

RC SLAB DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex Tedds calculation version 1.0.11

Slab definition

Slab reference name Type of slab Overall slab depth Shorter effective span of panel Longer effective span of panel Support conditions Top outer layer of reinforcement Bottom outer layer of reinforcement	Basement Two way spanning with restrained edges h = 400 mm l _x = 3032 mm l _y = 4080 mm Four edges continuous (interior panel) Short span direction Long span direction
Loading Characteristic permanent action Characteristic variable action Partial factor for permanent action Partial factor for variable action Quasi-permanent value of variable action Design ultimate load Quasi-permanent load	$\begin{array}{l} G_{k} = \textbf{40.0 \ kN/m^{2}} \\ Q_{k} = \textbf{5.1 \ kN/m^{2}} \\ \gamma_{G} = \textbf{1.35} \\ \gamma_{Q} = \textbf{1.30} \\ \psi_{2} = \textbf{0.30} \\ q = \gamma_{G} \times G_{k} + \gamma_{Q} \times Q_{k} = \textbf{61.7 \ kN/m^{2}} \\ q_{SLS} = \textbf{1.0} \times G_{k} + \psi_{2} \times Q_{k} = \textbf{41.5 \ kN/m^{2}} \end{array}$
Concrete properties Concrete strength class Characteristic cylinder strength Partial factor (Table 2.1N) Compressive strength factor (cl. 3.1.6) Design compressive strength (cl. 3.1.6) Mean axial tensile strength (Table 3.1) Maximum aggregate size	C32/40 $f_{ck} = 32 \text{ N/mm}^2$ $\gamma_c = 1.50$ $\alpha_{cc} = 0.85$ $f_{cd} = 18.1 \text{ N/mm}^2$ $f_{ctm} = 0.30 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 3.0 \text{ N/mm}^2$ $d_g = 20 \text{ mm}$
Reinforcement properties Characteristic yield strength Partial factor (Table 2.1N) Design yield strength (fig. 3.8)	$f_{yk} = 500 \text{ N/mm}^2$ $\gamma_S = 1.15$ $f_{yd} = f_{yk} / \gamma_S = 434.8 \text{ N/mm}^2$

TEKLA	Project				Job no.	
Tedds		51 Glouces	ster Crescent		8761	
enconstruct carry network	Calcs for		Start page no./i	Revision		
		RC Sla	ab design			2
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	SH	08/05/2017				
Concrete cover to reinfo					- I	L
Nominal cover to outer to	p reinforcement	Cnom_t = 50				
Nominal cover to outer to	p reinforcement	Cnom_t = 50 Cnom_b = 75				
Nominal cover to outer to Nominal cover to outer bo	p reinforcement ottom reinforcement		mm			
	p reinforcement ottom reinforcement op of slab	Cnom_b = 75	i mm nin			
Nominal cover to outer to Nominal cover to outer bo Fire resistance period to t	p reinforcement ottom reinforcement op of slab pottom of slab	c _{nom_b} = 75 R _{top} = 60 n	i mm nin nin			
Nominal cover to outer to Nominal cover to outer bo Fire resistance period to the Fire resistance period to b	p reinforcement ottom reinforcement op of slab oottom of slab (Table 5.8)	Cnom_b = 75 R _{top} = 60 n R _{btm} = 60 r	i mm nin nin ım			

Min. btm cover requirement with regard to bond $c_{min,b_-b} = 32 \text{ mm}$ Reinforcement fabricationNot subject to QA systemCover allowance for deviation $\Delta c_{dev} = 10 \text{ mm}$ Min. required nominal cover to top reinft $c_{nom_-L_min} = 42.0 \text{ mm}$

Min. required nominal cover to bottom reinft

PASS - There is sufficient cover to the top reinforcement PASS - There is sufficient cover to the bottom reinforcement

Reinforcement design at midspan in short span direction (cl.6.1)

Bending moment coefficient	$\beta_{sx_p} = 0.0359$
Design bending moment	$M_{x_p} = \beta_{sx_p} \times q \times l_x^2 = 20.4 \text{ kNm/m}$
Reinforcement provided	32 mm dia. bars at 200 mm centres
Area provided	$A_{sx_p} = 4021 \text{ mm}^2/\text{m}$
Effective depth to tension reinforcement	$d_{x_p} = h - c_{nom_b} - \phi_{y_p} - \phi_{x_p} / 2 = 277.0 \text{ mm}$
K factor	$K = M_{x_p} / (b \times d_{x_p}^2 \times f_{ck}) = 0.008$
Redistribution ratio	$\delta = 1.0$
K' factor	$K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$
	<i>K < K' - Compression reinforcement is not required</i>
Lever arm	z = min(0.95 × d _{x_p} , d _{x_p} /2 × (1 + (1 - 3.53×K) ^{0.5})) = 263.1 mm

 $A_{sx_p} = M_{x_p} / (f_{yd} \times z) = 178 \text{ mm}^2/\text{m}$

 $A_{sx_p_{req}} = max(A_{sx_p_m}, A_{sx_p_{min}}) = 436 \text{ mm}^2/\text{m}$

 $C_{nom_b_{min}} = 42.0 \text{ mm}$

Area of reinforcement required for bending Minimum area of reinforcement required Area of reinforcement required

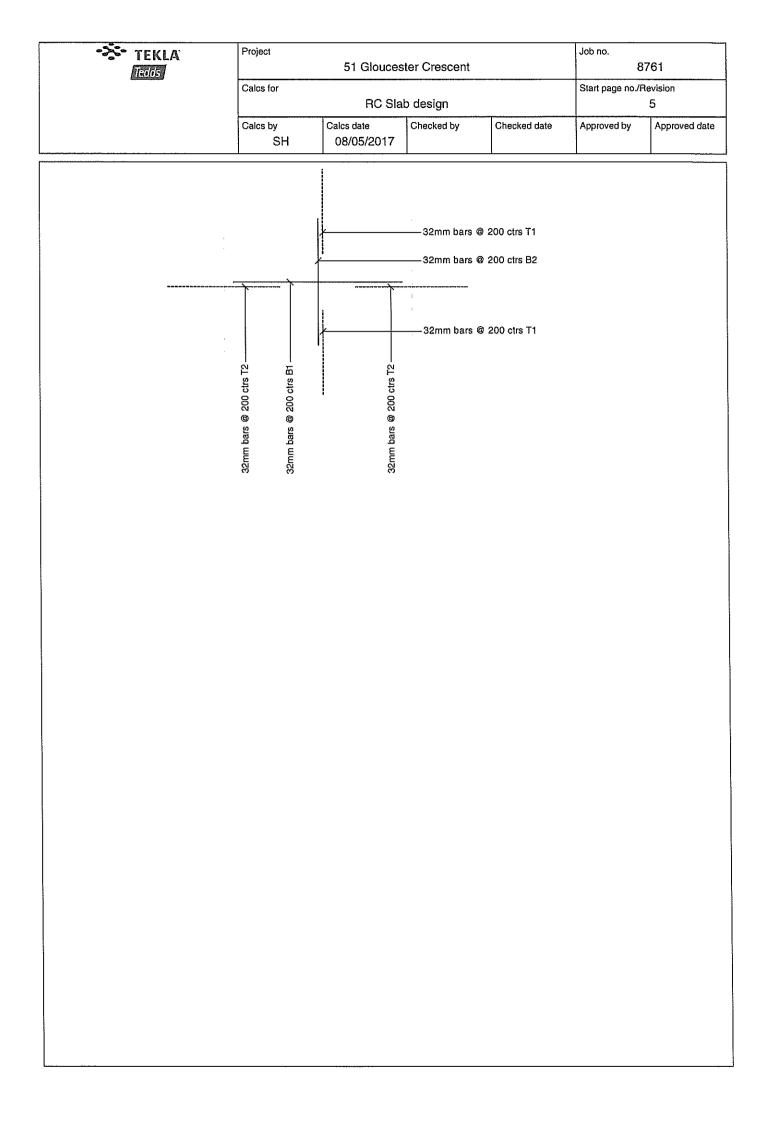
Check reinforcement spacing

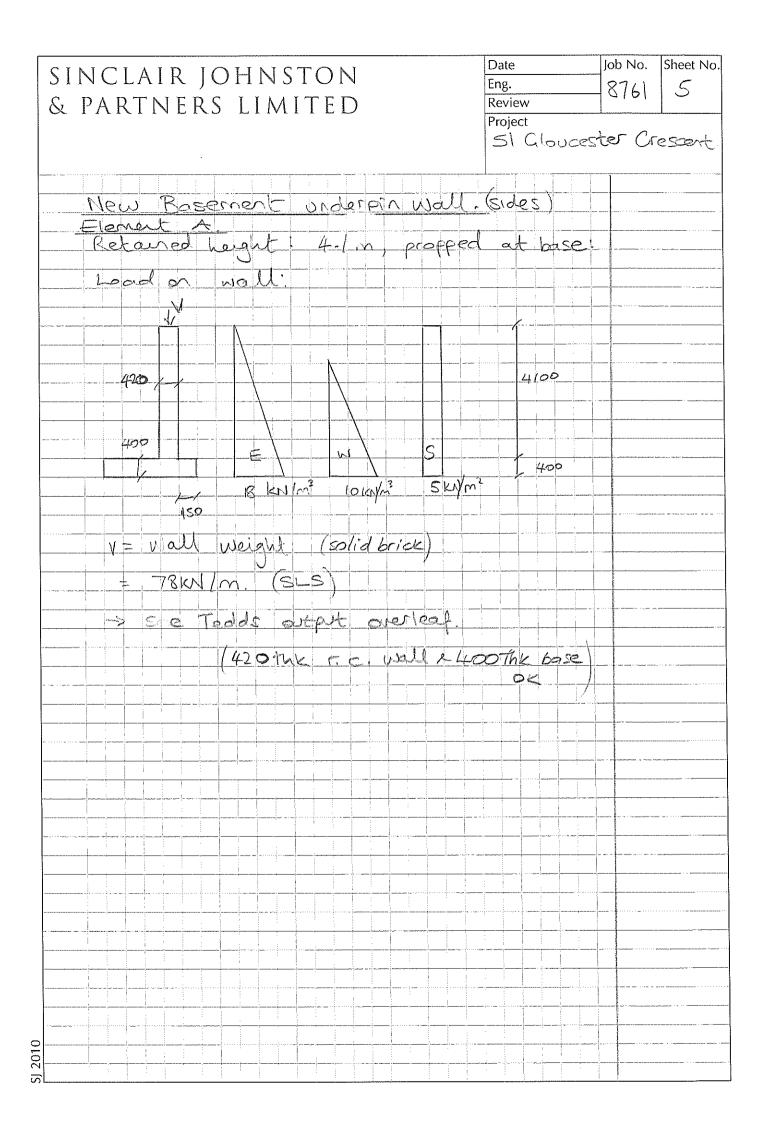
Reinforcement service stress Maximum allowable spacing (Table 7.3N) Actual bar spacing $\sigma_{sx_p} = (f_{yk} / \gamma_s) \times min((A_{sx_p_m}/A_{sx_p}), 1.0) \times q_{sLs} / q = 13.0 \text{ N/mm}^2$ $s_{max_x_p} = 300 \text{ mm}$ $s_{x_p} = 200 \text{ mm}$

 $A_{sx_p_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{x_p}, 0.0013 \times b \times d_{x_p}) = 436 \text{ mm}^2/\text{m}$

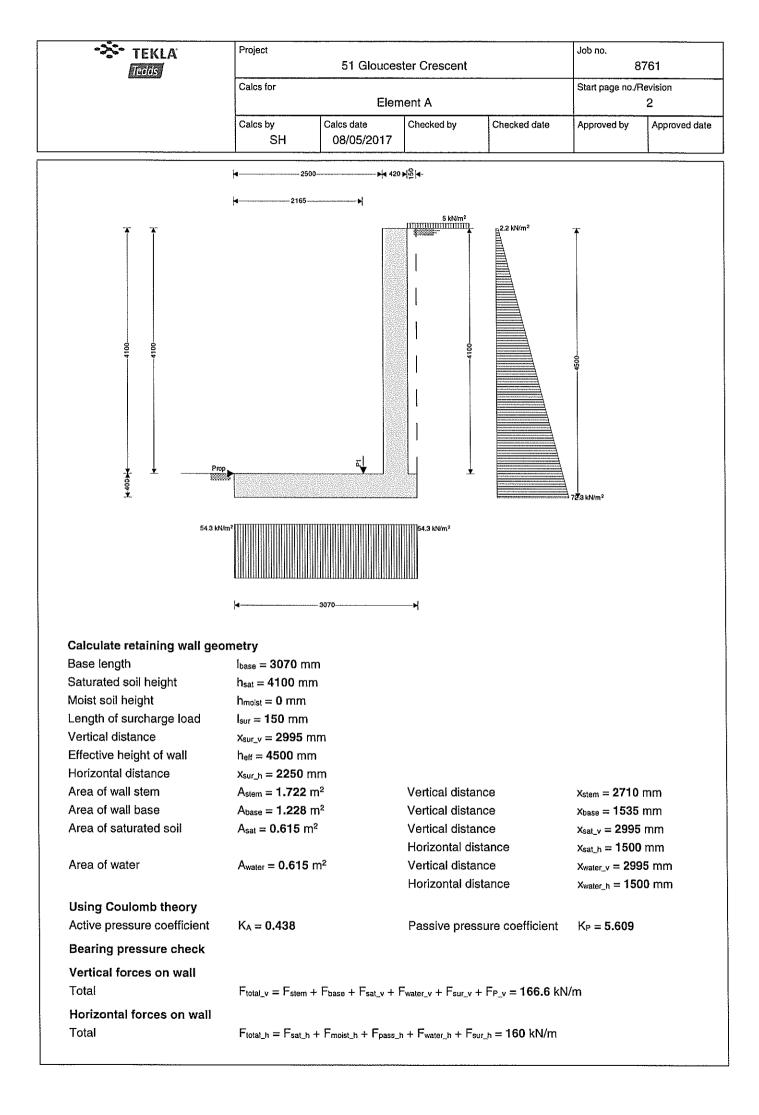
PASS - Area of reinforcement provided exceeds area required

PASS - The reinforcement spacing is acceptable

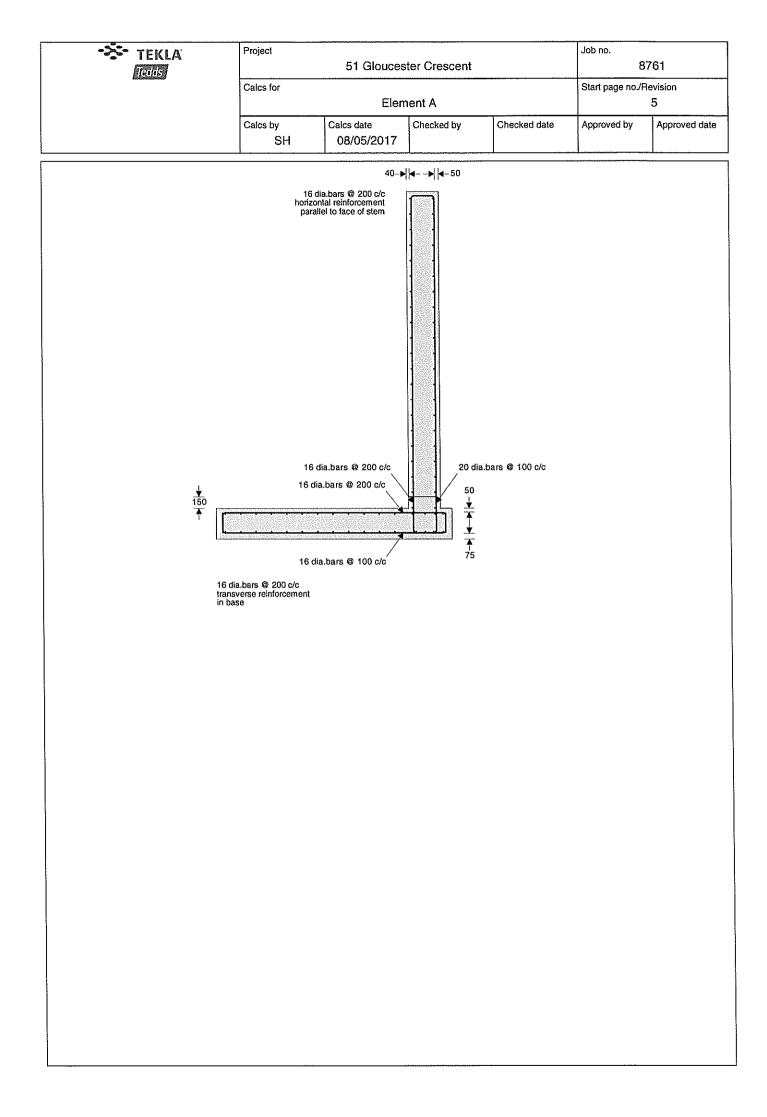

Reinforcement design at midspan in long span direction (cl.6.1)


Bending moment coefficient	$\beta_{sy_p} = 0.0240$
Design bending moment	$M_{y_p} = \beta_{sy_p} \times q \times I_{x^2} = 13.6 \text{ kNm/m}$
Reinforcement provided	32 mm dia. bars at 200 mm centres
Area provided	A _{sy_p} = 4021 mm ² /m
Effective depth to tension reinforcement	$d_{y_p} = h - c_{nom_b} - \phi_{y_p} / 2 = 309.0 \text{ mm}$
K factor	$K = M_{y_p} / (b \times d_{y_p}^2 \times f_{ck}) = 0.004$
Redistribution ratio	$\delta = 1.0$
K' factor	$K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$
	<i>K</i> < <i>K</i> ' - Compression reinforcement is not required
Lever arm	$z = min(0.95 \times d_{y_p}, d_{y_p}/2 \times (1 + (1 - 3.53 \times K)^{0.5})) = 293.5 mm$

TEKLA North	Project	51 Glouces	ster Crescent		Job no. 8	3761
R (MEILE)	Calcs for		Start page no/Revision 3			
		RC Sla				
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved
Area of reinforcement required	for bending	Asy o m = N	$I_{y_p} / (f_{yd} \times z) =$	107 mm²/m	<u> </u>	
Minimum area of reinforcemen	+			$_{m/f_{yk}}) \times b \times d_{y_p}, 0$.0013×b×d _{v p})	= 486 mm
Area of reinforcement required	-			_{sy_p_min}) = 486 mm		
· · · · · · · · · · · · · · · · · · ·				nforcement prov		area req
Check reinforcement spacing	1					
Reinforcement service stress	•	$\sigma_{sy_p} = (f_{yk})$	$(\gamma_{\rm S}) \times {\rm min}(({\rm A}_{\rm sy}))$	/_p_m/A _{sy_p}), 1.0) ×	: q _{SLS} / q = 7.8	N/mm²
Maximum allowable spacing (T	able 7.3N)	$S_{max_y_p} = 3$				
Actual bar spacing		s _{y_p} = 200				
				6 - The reinforce	ement spacing	is accep
Reinforcement design at con	tinuous supp	ort in short spar	direction (cl.	.6.1)		
Bending moment coefficient		$\beta_{sx_n} = 0.04$,			
Design bending moment			$n \times q \times l_x^2 = 27$.1 kNm/m		
Reinforcement provided		- • -	. bars at 200 r			
Area provided		$A_{sx_n} = 402$	21 mm²/m			
Effective depth to tension reinf	orcement	d _{x_n} = h - c	: nom_t - \$x_n / 2 =	= 334.0 mm		
K factor		K = M _{x_n} /	$(b \times d_{x_n^2} \times f_{ck})$	= 0.008		
Redistribution ratio		δ = 1.0				
K' factor		K' = 0.598	×δ-0.18×δ ³	² - 0.21 = 0.208		
			K < K' -	Compression re	einforcement	is not req
Lever arm		z = min(0.	95 × d _{x_n} , d _{x_n} /,	2 × (1 + (1 - 3.53	×K) ^{0.5})) = 317. 3	3 mm
Area of reinforcement required	for bending	$A_{sx_n_m} = N$	$\Lambda_{x_n} / (f_{yd} \times z) =$	• 196 mm²/m		
Minimum area of reinforcemer	t required	A _{sx_n_min} =	max(0.26 × (fo	$_{tm}/f_{yk}) \times b \times d_{x_n}, ($	0.0013×b×d _{x_n})	= 525 mn
Area of reinforcement required	i	A _{sx_n_req} =	max(A _{sx_n_m} , A		n²/m	
		PAS	S - Area of rei	nforcement pro	vided exceed:	s area req
Check reinforcement spacin	g					
Reinforcement service stress	-	$\sigma_{sx_n} = (f_{yk}$	$/\gamma_{\rm S}) \times min((A_{\rm s}))$		< q _{sLs} / q = 14.	3 N/mm²
Maximum allowable spacing (ſable 7.3N)	Smax_x_n = :	300 mm			
Actual bar spacing		s _{x_n} = 200	mm			
				S - The reinforc	ement spacing	g is accep
Reinforcement design at co	itinuous supp		-	6.1)		
Bending moment coefficient		β _{sy_n} = 0.0				
Design bending moment		•- • •	$n \times q \times l_x^2 = 18$			
Reinforcement provided			a. bars at 200 $21 \text{ mm}^2/\text{m}$	mm centres		
Area provided	forcoment	-	21 mm²/m	(0 202 0	<u>_</u>	
Effective depth to tension rein	orcement			_{/_n} / 2 = 302.0 mn	IL	
K factor		-	$(b \times d_{y_n^2} \times f_{ck})$) = 0.006		
Redistribution ratio		$\delta = 1.0$	5 6 6 6 6 6	°		
K' factor		K' = 0.598		² - 0.21 = 0.208 - Compression I	reinforcement	is not red
Lever arm		z = min(0	$.95 imes d_{y_n}, d_{y_n}$	/2 × (1 + (1 - 3.53	8×K)⁰.⁵)) = 286.	9 mm
Area of reinforcement require	d for bending	$A_{sy_n_m} = 1$	$M_{y_n} / (f_{yd} \times z) =$	= 145 mm²/m		
Minimum area of reinforceme	nt required	A _{sy_n_min} =	max($0.26 \times (f$	$_{\rm ctm}/{\rm f}_{\rm yk}) imes b imes d_{y_n},$	0.0013×b×d _{y_n}) = 475 mi
Area of reinforcement require	d	A _{sy_n_req} =	max(A _{sy_n_m} , /	A _{sy_n_min}) = 475 m	m²/m	


	Project	51 Glouces	ster Crescent		Job no. 8	3761
<u> E LUT I GE</u>	Calcs for			Start page no./Revision		
		RC Slab design				4
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved
Check reinforcement space	ing					
Reinforcement service stress	S	σ _{sy_n} = (f _{yk} /	$(\gamma_{s}) \times min((A_{sy}))$	_n_m/Asy_n), 1.0) ×	q _{SLS} / q = 10.6	N/mm ²
Maximum allowable spacing	(Table 7.3N)	$S_{max_y_n} = 3$	00 mm			
Actual bar spacing		s _{y_n} = 200	mm			
			PASS	- The reinforce	ment spacing	is accept
Shear capacity check at sh	ort span contin	uous support				
Shear force	·		x/2 = 93.5 kN	/m		
Effective depth factor (cl. 6.2	2.2)	k = min(2.0)	0, 1 + (200 mm	$(d_{x_n})^{0.5} = 1.77$	4	
Reinforcement ratio		$\rho_1 = \min(0.1)$	02, A _{sx_n} / (b ×	d _{x_n})) = 0.0120		
Minimum shear resistance (I	Exp. 6.3N)	$V_{\text{Fld}, c_{\min}} = 0$	0.035 N/mm ² ×	: k ^{1.5} × (f _{ck} / 1 N/r	nm^2) ^{0.5} × b × d _x	_n
			156.2 kN/m			
	V ma	X(Ved a min (0.18 N	$\sqrt{mm^2/\gamma_c} \times k$	\times (100 \times ρ_i \times (f _{ck})	/ 1 N/mm ²)) ^{0.333}	× b × d _{x_n})
Shear resistance (Exp. 6.2a)) VRd,c_x_n ≕ IIIai	uv(+ ⊔a'c‴aaat /ou io i.				
Shear resistance (Exp. 6.2a)	/ VRd,c_x_n = IIId		239.8 kN/m			
Shear resistance (Exp. 6.2a)) VRd,c_x_n = 111d			PASS	Shear capac	ity is adeq
		$V_{Rd,c_x_n} = 2$		PASS	Shear capac	ity is adeq
Shear resistance (Exp. 6.2a) Shear capacity check at lo Shear force		V _{Rd,c_x_n} = : uous support			- Shear capac	ity is adeq
Shear capacity check at lo	ng span continu	$V_{Rd,c_x_n} = 3$ uous support $V_{y_n} = q \times 1$	239.8 kN/m l _x / 2 = 93.5 kN		·	ity is adeq
Shear capacity check at lo Shear force	ng span continu	$V_{Rd,c_x_n} = 3$ uous support $V_{y_n} = q \times k = min(2.4)$	239.8 kN/m l _x / 2 = 93.5 kN 0, 1 + (200 mm	/m	·	ity is adeq
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio	ng span continu 2.2)	$V_{\text{Rd,c_x_n}} = 1$ uous support $V_{y_n} = q \times 1$ $k = \min(2.4)$ $p_i = \min(0.3)$	239.8 kN/m i _x / 2 = 93.5 kN 0, 1 + (200 mm 02, A _{sy_n} / (b ×	/m 1 / dy_n) ^{0.5}) = 1.81	4	
Shear capacity check at lo Shear force Effective depth factor (cl. 6.2	ng span continu 2.2)	$V_{Rd,c_x_n} = 3$ uous support $V_{y_n} = q \times 1$ k = min(2.4) $\rho_1 = min(0.1)$ $V_{Rd,c_min} = 1$	239.8 kN/m i _x / 2 = 93.5 kN 0, 1 + (200 mm 02, A _{sy_n} / (b ×	/m n / dy_n) ^{0.5}) = 1.81 dy_n)) = 0.0133	4	
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (I	n g span continu 2.2) Exp. 6.3N)	$V_{Rd,c_x_n} = 3$ Uous support $V_{y_n} = q \times k = min(2.0)$ $p_i = min(0.0)$ $V_{Rd,c_min} = V_{Rd,c_min} = 0$	239.8 kN/m l _x / 2 = 93.5 kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² × 146.1 kN/m	/m n / dy_n) ^{0.5}) = 1.81 dy_n)) = 0.0133 < k ^{1.5} × (f _{ck} / 1 N/r	4 mm²) ^{0.5} × b × d	/_n
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio	n g span continu 2.2) Exp. 6.3N)	$V_{Rd,c_x_n} = 3$ uous support $V_{y_n} = q \times l$ $k = min(2.4)$ $p_l = min(0.0)$ $V_{Rd,c_min} = $ $V_{Rd,c_min} = $ $Rax(V_{Rd,c_min}, (0.18))$	239.8 kN/m l _x / 2 = 93.5 kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² × 146.1 kN/m	/m n / dy_n) ^{0.5}) = 1.81 dy_n)) = 0.0133 < k ^{1.5} × (f _{ck} / 1 N/r	4 mm²) ^{0.5} × b × d	/_n
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (I	n g span continu 2.2) Exp. 6.3N)	$V_{Rd,c_x_n} = 3$ uous support $V_{y_n} = q \times l$ $k = min(2.4)$ $p_l = min(0.0)$ $V_{Rd,c_min} = $ $V_{Rd,c_min} = $ $Rax(V_{Rd,c_min}, (0.18))$	239.8 kN/m l _x / 2 = 93.5 kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² × 146.1 kN/m N/mm ² / γ _c) × k	/m $d_{y_n}^{(0.5)} = 1.81$ $d_{y_n}^{(0.5)} = 0.0133$ $k^{1.5} \times (f_{ck} / 1 N/r)$ $\times (100 \times p_1 \times (f_{ck}))$	4 mm²) ^{0.5} × b × d	/_n ³× b × dy_n)
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (I	ng span continu 2.2) Exp. 6.3N)) V _{Rd,c_y_} n = ma	$V_{Rd,c_x_n} = 3$ Uous support $V_{y_n} = q \times l$ $k = min(2.4)$ $p_l = min(0.4)$ $V_{Rd,c_min} = 0$ $V_{Rd,c_min} = 0$ $V_{Rd,c_min} = 0$ $V_{Rd,c_y_n} = 0$	239.8 kN/m l _x / 2 = 93.5 kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² × 146.1 kN/m N/mm ² / γ _c) × k	/m $d_{y_n}^{(0.5)} = 1.81$ $d_{y_n}^{(0.5)} = 0.0133$ $k^{1.5} \times (f_{ck} / 1 N/r)$ $\times (100 \times p_1 \times (f_{ck}))$	4 mm²) ^{0.5} × b × d ₁ / 1 N/mm²)) ^{0.33;}	/_n ³× b × dy_n)
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (I Shear resistance (Exp. 6.2a)	ng span continu 2.2) Exp. 6.3N)) V _{Rd,c_y_} n = ma ction ratio checl	V _{Rd,c_x_n} = 2 Jous support V _{y_n} = q × 1 k = min(2.1 p ₁ = min(0. V _{Rd,c_min} = V _{Rd,c_min} = AX(V _{Rd,c_min} , (0.18 N V _{Rd,c_y_n} = k (cl. 7.4.2)	239.8 kN/m l _x / 2 = 93.5 kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² × 146.1 kN/m N/mm ² / γ _c) × k	/m h / dy_n) ^{0.5}) = 1.81 dy_n)) = 0.0133 < k ^{1.5} × (fck / 1 N/r × (100 × ρι× (fck <i>PASS</i>)	4 mm²) ^{0.5} × b × d ₁ / 1 N/mm²)) ^{0.33;}	n ³× b × dy_n)
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (Shear resistance (Exp. 6.2a) Basic span-to-depth deflet	ng span continu 2.2) Exp. 6.3N)) V _{Rd,c_y_n} = ma ction ratio checl	V _{Rd,c_x_n} = 2 Jous support V _{y_n} = q × 1 k = min(2.4 ρ _i = min(0. V _{Rd,c_min} = V _{Rd,c_min} = Ax(V _{Rd,c_min} , (0.18 N V _{Rd,c_y_n} = k (cl. 7.4.2) ρ ₀ = (f _{ck} / 1	239.8 kN/m i _x / 2 = 93.5 kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² > 146.1 kN/m V/mm ² / γc) × k 229.3 kN/m I N/mm ²) ^{0.5} / 10	/m h / dy_n) ^{0.5}) = 1.81 dy_n)) = 0.0133 < k ^{1.5} × (fck / 1 N/r × (100 × ρι× (fck <i>PASS</i>)	4 mm²) ^{0.5} × b × d / 1 N/mm²)) ^{0.33:} - <i>Shear capac</i>	/_n ³× b × dy_n)
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (I Shear resistance (Exp. 6.2a) Basic span-to-depth deflect Reference reinforcement rat	ng span continu 2.2) Exp. 6.3N)) V _{Rd,c_y_n} = ma ction ratio checl tio nent ratio	$V_{Rd,c_x,n} = 3$ Uous support $V_{y_n} = q \times l$ $k = min(2.1)$ $\rho_l = min(0.1)$ $V_{Rd,c_min} = V_{Rd,c_min} = 0$ $V_{Rd,c_min}, (0.18 N)$ $V_{Rd,c_y,n} = 0$ $k (cl. 7.4.2)$ $\rho_0 = (f_{ck} / 1)$ $\rho = max(0)$	239.8 kN/m i _x / 2 = 93.5 kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² > 146.1 kN/m V/mm ² / γc) × k 229.3 kN/m I N/mm ²) ^{0.5} / 10	/m $(d_{y_n})^{0.5} = 1.81$ $(d_{y_n}) = 0.0133$ $(k^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck})^{1.5} \times (f_{ck})^{1.5} \times (100 \times p_1 \times (f_{ck})^{1.5} \times (f_{ck})^{1.5} \times (f_{ck})^{1.5} \times (f_{ck} \times (f_{ck})^{1.5} \times (f_{ck})^{$	4 mm²) ^{0.5} × b × d / 1 N/mm²)) ^{0.33:} - <i>Shear capac</i>	/_n ³× b × dy_n)
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (Shear resistance (Exp. 6.2a) Basic span-to-depth deflet Reference reinforcement rat Required tension reinforcem	ng span continu 2.2) Exp. 6.3N)) V _{Rd,c_y_n} = ma ction ratio checl tio nent ratio orcement ratio	$V_{Rd,c_x,n} = 3$ Uous support $V_{y_n} = q \times l$ $k = min(2.1)$ $\rho_l = min(0.1)$ $V_{Rd,c_min} = V_{Rd,c_min} = 0$ $V_{Rd,c_min}, (0.18 N)$ $V_{Rd,c_y,n} = 0$ $k (cl. 7.4.2)$ $\rho_0 = (f_{ck} / 1)$ $\rho = max(0)$	239.8 kN/m $I_x / 2 = 93.5$ kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² × 146.1 kN/m V/mm ² / γ_c) × k 229.3 kN/m I N/mm ²) ^{0.5} / 10 .0035, A _{sx_p_req}	/m $(d_{y_n})^{0.5} = 1.81$ $(d_{y_n}) = 0.0133$ $(k^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck})^{1.5} \times (f_{ck})^{1.5} \times (100 \times p_1 \times (f_{ck})^{1.5} \times (f_{ck})^{1.5} \times (f_{ck})^{1.5} \times (f_{ck} \times (f_{ck})^{1.5} \times (f_{ck})^{$	4 mm²) ^{0.5} × b × d / 1 N/mm²)) ^{0.33:} - <i>Shear capac</i>	′_n ³× b × dy_n)
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (f Shear resistance (Exp. 6.2a) Basic span-to-depth deflet Reference reinforcement rat Required tension reinforcem Required compression reinforcem	ng span continu 2.2) Exp. 6.3N)) $V_{Rd,c_y_n} = ma$ ction ratio check tio nent ratio orcement ratio ole 7.4N)	$V_{Rd,c_x,n} = 3$ Uous support $V_{y_n} = q \times I$ $k = min(2.4)$ $\rho_I = min(0.0)$ $V_{Rd,c_min} = V_{Rd,c_min} = 0$ $Rd,c_y,n = 0$ $V_{Rd,c_y,n} = 0$ $k (cl. 7.4.2)$ $\rho_0 = (f_{ck} / 1)$ $\rho = max(0)$ $\rho' = A_{scx,p_x}$ $K_{\delta} = 1.5$	239.8 kN/m i _x / 2 = 93.5 kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² > 146.1 kN/m V/mm ² / γc) × k 229.3 kN/m I N/mm ²) ^{0.5} / 10 .0035, A _{sx_p_req} _{req} / (b × d _{x_p}) =	/m $(d_{y_n})^{0.5} = 1.81$ $(d_{y_n}) = 0.0133$ $(k^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times $	4 mm ²) ^{0.5} × b × d ₂ / 1 N/mm ²)) ^{0.33;} - <i>Shear capac</i> 0035	/_n ³×b×dy_n) ity is adec
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (f Shear resistance (Exp. 6.2a) Basic span-to-depth deflet Reference reinforcement rat Required tension reinforcem Required compression reinf Stuctural system factor (Tab	ng span continu 2.2) Exp. 6.3N)) $V_{Rd,c_y_n} = ma$ ction ratio check tio nent ratio orcement ratio ole 7.4N)	$V_{Rd,c_x,n} = 3$ Uous support $V_{y_n} = q \times I$ $k = min(2.4)$ $\rho_I = min(0.0)$ $V_{Rd,c_min} = V_{Rd,c_min} = 0$ $Rd,c_y,n = 0$ $V_{Rd,c_y,n} = 0$ $k (cl. 7.4.2)$ $\rho_0 = (f_{ck} / 1)$ $\rho = max(0)$ $\rho' = A_{scx,p_x}$ $K_{\delta} = 1.5$	239.8 kN/m $I_x / 2 = 93.5$ kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² × 146.1 kN/m N/mm ² / γ_c) × k 229.3 kN/m I N/mm ²) ^{0.5} / 10 .0035, A _{sx_p_req} _{req} / (b × d _{x_p}) = /1 N/mm ²) ^{0.5} × p	/m $(d_{y_n})^{0.5} = 1.81$ $(d_{y_n}) = 0.0133$ $(k^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times $	4 mm ²) ^{0.5} × b × d ₂ / 1 N/mm ²)) ^{0.33;} - <i>Shear capac</i> 0035	/_n ³×b×dy_n) ity is adec
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (I Shear resistance (Exp. 6.2a) Basic span-to-depth deflet Reference reinforcement rat Required tension reinforcem Required compression reinf Stuctural system factor (Tab Basic limit span-to-depth rat	ng span continu 2.2) Exp. 6.3N)) $V_{Rd,c_y_n} = ma$ ction ratio check tio nent ratio orcement ratio ole 7.4N) tio ratio _{lim_x_bas} =	$V_{Rd,c_x,n} = 3$ Uous support $V_{y_n} = q \times l$ $k = min(2.4)$ $p_i = min(0.$ $V_{Rd,c_min} =$ $V_{Rd,c_min} =$ $V_{Rd,c_min}, (0.18 N)$ $V_{Rd,c_y,n} =$ $k (cl. 7.4.2)$ $p_0 = (f_{ck} / 1)$ $p = max(0)$ $p' = A_{scx,p}$ $K_{\delta} = 1.5$ $K_{\delta} \times [11 + 1.5 \times (f_{ck})]$	239.8 kN/m $J_x / 2 = 93.5$ kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² > 146.1 kN/m N/mm ² / γ_c) × k 229.3 kN/m I N/mm ²) ^{0.5} / 1(.0035, A _{sx_p_req} _req / (b × d _{x_p}) = /1 N/mm ²) ^{0.5} ×p _s = 50.21	/m $(d_{y_n})^{0.5} = 1.81$ $(d_{y_n}) = 0.0133$ $(k^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times p_1 \times (f_{ck} / 1 N/r)^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (f_{ck} / 1 N/r)^{1.5}$	4 mm ²) ^{0.5} × b × d / 1 N/mm ²)) ^{0.33;} - <i>Shear capac</i> 0035	,_n ³ × b × dy_n) ity is adec -1) ^{1.5}]
Shear capacity check at Io Shear force Effective depth factor (cl. 6.2 Reinforcement ratio Minimum shear resistance (f Shear resistance (Exp. 6.2a) Basic span-to-depth deflet Reference reinforcement rat Required tension reinforcem Required compression reinf Stuctural system factor (Tab Basic limit span-to-depth rat (Exp. 7.16)	ng span continu 2.2) Exp. 6.3N)) $V_{Rd,c_y_n} = ma$ ction ratio check tio nent ratio orcement ratio ble 7.4N) tio ratio _{lim_x_bas} = it ratio _{lim_x} = mi	$V_{Rd,c_x,n} = 3$ Uous support $V_{y_n} = q \times l$ $k = min(2.4)$ $p_I = min(0.4)$ $V_{Rd,c_min} = 0$ $V_{Rd,c_min} = 0$ $V_{Rd,c_min}, (0.18 N)$ $V_{Rd,c_y,n} = 0$ $k (cl. 7.4.2)$ $p_0 = (f_{ck} / 1)$ $p = max(0)$ $p' = A_{scx,p}$ $K_{\delta} = 1.5$ $K_{\delta} \times [11 + 1.5 \times (f_{ck} + 1)]$ $ratio_{lim_x,be}$ $lin(40 \times K_{\delta}, min(1.5)$	239.8 kN/m $J_x / 2 = 93.5$ kN 0, 1 + (200 mm 02, A _{sy_n} / (b × 0.035 N/mm ² > 146.1 kN/m N/mm ² / γ_c) × k 229.3 kN/m I N/mm ²) ^{0.5} / 1(.0035, A _{sx_p_req} _req / (b × d _{x_p}) = /1 N/mm ²) ^{0.5} ×p _s = 50.21	/m $(d_{y_n})^{0.5} = 1.81$ $(d_{y_n}) = 0.0133$ $(k^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (100 \times \rho_1 \times (f_{ck})^{1.5} \times (100 \times \rho_1 \times (f_{ck} / 1 N/r)^{1.5})^{1.5} \times (100 \times \rho_1 \times (f_{ck} / 1 N/r)^{1.5})^{1.5} \times (100 \times \rho_1 \times (f_{ck} / 1 N/r)^{1.5})^{1.5} \times (100 \times (f_{ck} / 1 N/r)^{1.5})^{1.5} \times (f_{ck} / 1 N/r)^{1.5} \times (f_{ck} / $	4 mm ²) ^{0.5} × b × d / 1 N/mm ²)) ^{0.33;} - <i>Shear capac</i> 0035	,_n ³ × b × dy_n) ity is adeo -1) ^{1.5}]

The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.

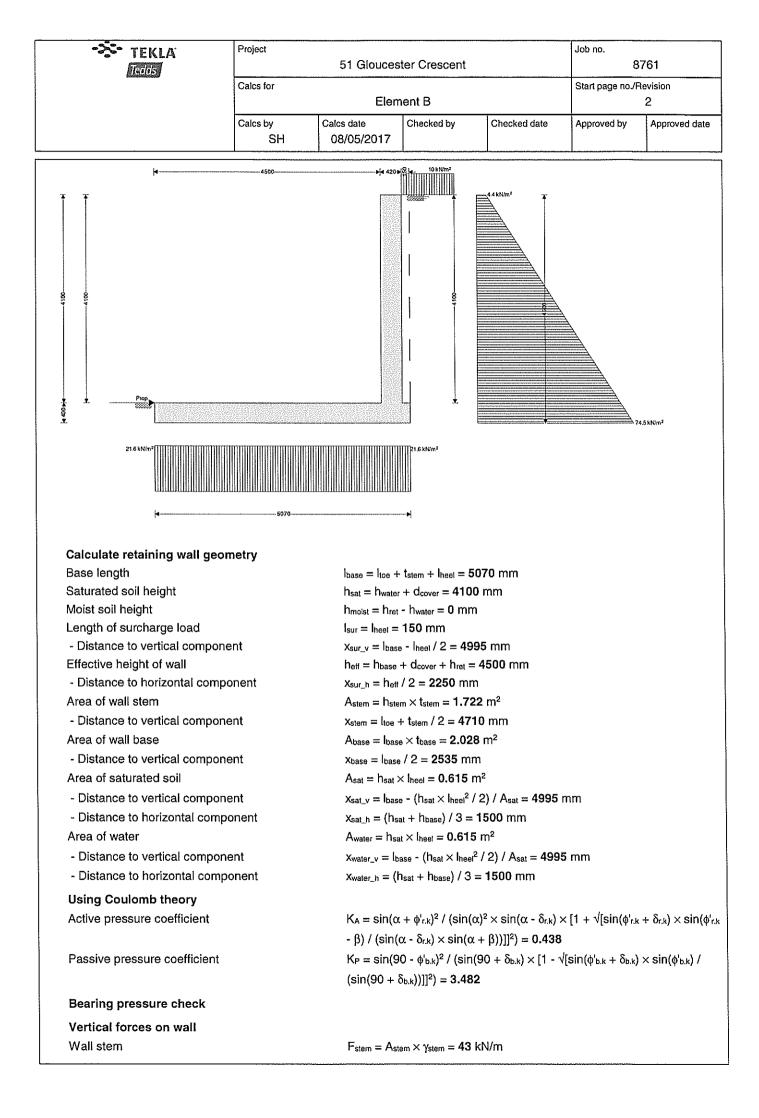


TEKLA TEKLA	Project	Job no. 8761				
Editerio de Carto de	Calcs for	Calcs for Element A			Start page no./Revision 1	
	Caics by C SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved
RETAINING WALL ANALYS In accordance with EN1997 incorporating Corrigendum Retaining wall details Stem type Stem height Stem thickness Angle to rear face of stem Stem density Toe length Heel length	-1:2004 incorporati No.1 Cantilever $h_{stem} = 4100 \text{ mm}$ $t_{stem} = 420 \text{ mm}$ $\alpha = 90 \text{ deg}$ $\gamma_{stem} = 25 \text{ kN/m}^3$ $h_{toe} = 2500 \text{ mm}$ $h_{neel} = 150 \text{ mm}$	ng Corrigenc	lum dated Fel	bruary 2009 and	i the UK Natio Tedds calcul	
Base thickness Base density Height of retained soil Depth of cover Height of water Water density	$t_{base} = 400 \text{ mm}$ $\gamma_{base} = 25 \text{ kN/m}^3$ $h_{ret} = 4100 \text{ mm}$ $d_{cover} = 0 \text{ mm}$ $h_{water} = 4100 \text{ mm}$ $\gamma_w = 9.8 \text{ kN/m}^3$		Angle of soil	surface	β = 0 deg	
Retained soil properties Soil type Moist density Saturated density Characteristic effective shear Characteristic wall friction any	-	ell graded sar	$\phi^{i}_{r,k}=\textbf{23}~\text{deg}$ $\delta_{r,k}=\textbf{0}~\text{deg}$			
Base soil properties Soil type Soil density Characteristic effective shear	Medium dense w $\gamma_b = 18 \text{ kN/m}^3$ r resistance angle	ell graded sar	ıd φ' _{b.k} = 30 deg			
Characteristic wall friction an Characteristic base friction an Presumed bearing capacity	gle	m²	$\delta_{b,k} = 18 \text{ deg}$ $\delta_{bb,k} = 21 \text{ deg}$			
Loading details Variable surcharge load Vertical line load at 2165 mm	Surcharge _o = 5 k P _{G1} = 78 kN/m	:N/m²				

です。 TEKLA 「正明月	Project	51 Glouce	ster Crescent		Job no. 8	761
	Calcs for	Start page no./Revision 3				
	Calcs by C SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved
Moments on wall						
Total	M _{total} = M _{stem} + M _b	ase + Msat + M	moist + M _{water} + N	l _{sur} + M _P = 118.3	kNm/m	
Check bearing pressure						
Propping force	$F_{prop_{base}} = 160 \text{ kM}$	l/m				
Bearing pressure at toe	q _{toe} = 54.3 kN/m ²		Bearing press	sure at heel	q _{heel} = 54.3 k	N/m²
Factor of safety	$FoS_{bp} = 2.579$	_				
	PASS - Allo	owable beari	ng pressure ex	cceeds maximu	m applied bea	ring pres
RETAINING WALL DESIGN						
In accordance with EN1992-	-1-1:2004 incorport	ating Corrige	ndum dated J	anuary 2008 an	d the UK Natio	onal Anne
incorporating National Ame		00				
					Tedds calcula	ation version
Concrete details - Table 3.1	 Strength and def 	ormation ch	aracteristics for	or concrete		
Concrete strength class	C32/40					
Char.comp.cylinder strength	$f_{ck} = 32 \text{ N/mm}^2$	•	Mean axial te	-	f _{ctm} = 3.0 N/n	
Secant modulus of elasticity	E _{cm} = 33346 N/m	m²	Maximum ago		h _{agg} = 20 mm	
Design comp.concrete streng	th		f _{cd} = 18.1 N/m	im²	Partial factor	γc = 1
Reinforcement details						
Characteristic yield strength	$f_{yk} = 500 \text{ N/mm}^2$		Modulus of elasticity		E _s = 200000 N/mm ²	
Design yield strength	f _{yd} = 435 N/mm ²		Partial factor		γs = 1.15	
Cover to reinforcement						
Front face of stem	c _{sf} = 40 mm		Rear face of :		$c_{sr} = 50 \text{ mm}$	
Top face of base	$c_{bt} = 50 \text{ mm}$		Bottom face of	of base	c _{bb} = 75 mm	
Check stem design at base						
Depth of section	h = 420 mm					
Rectangular section in flexu	ure - Section 6.1					
Design bending moment	M = 269.3 kNm/n	n	K = 0.065		K' = 0.207	
<u> </u>		<u>.</u> .	K' > K -	No compressio	on reinforcem	ent is req
Tens.reinforcement required	A _{sr.req} = 1833 mm		T			• 21
Tens.reinforcement provided Min.area of reinforcement	20 dia.bars @ 10 A _{sr.min} = 566 mm ²		Tens.reinforcement provided Max.area of reinforcement		$A_{sr,prov} = 314$	
wintarea or remotechent					A _{sr.max} = 16800 mm²/m rea of reinforcement reg	
Deflection control - Section						
Limiting span to depth ratio	12.7		Actual span t	o depth ratio	11.4	
Emming opan to appun ratio		PAS	-	oth ratio is less		on control
			_, 			
Crack control - Section 7.9						am
Crack control - Section 7.3	$W_{max} = 0.3 \text{ mm}$		Maximum ers	ack width	WL - 0 191 -	
Limiting crack width	w _{max} = 0.3 mm	141	Maximum cra		w _k = 0.181 n	
Limiting crack width PASS - Maximum crack wid	Ith is less than lim	iting crack w	<i>idth</i> Rectangu	lar section in sh	near - Section	6.2
Limiting crack width			<i>idth</i> Rectangu Design sheal	lar section in sh	near - Section V _{Rd.c} = 228.8	6.2 3 kN/m
Limiting crack width <i>PASS - Maximum crack wid</i> Design shear force	lth is less than lim V = 190.3 kN/m	PA	<i>idth</i> Rectangu Design shea <i>SS - Design s</i> i	lar section in sh	near - Section V _{Rd.c} = 228.8	6.2 3 kN/m
Limiting crack width <i>PASS - Maximum crack wid</i> Design shear force Horizontal reinforcement pa	Ith is less than lim V = 190.3 kN/m arallel to face of st	PA em - Section	<i>iidth</i> Rectangu Design shea <i>SS - Design s</i> 9.6	lar section in sh r resistance hear resistance	near - Section V _{Rd.c} = 228.8 <i>exceeds desi</i>	6.2 3 kN/m <i>gn shear</i>
Limiting crack width <i>PASS - Maximum crack wid</i> Design shear force	Ith is less than lim V = 190.3 kN/m arallel to face of st A _{sx.req} = 785 mm ²	<i>PA</i> em - Section ²/m	<i>iidth</i> Rectangu Design sheai <i>SS - Design s</i> i 9.6 Max.spacing	lar section in sh	near - Section V _{Rd.c} = 228.8 <i>exceeds desi</i> t s _{sx_max} = 400	6.2 3 kN/m <i>gn shear</i>) mm

	Project	Job no. 8761				
	Calcs for	Start page no./Revision				
			nent A		4	
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved
Check base design at toe					····	
Depth of section	h = 400 mm					
Rectangular section in flexu	re - Section 6.	.1				
Design bending moment	M = 160.8 kN	lm/m	K = 0.050		K' = 0.207	
			K' > K -	No compressio	n reinforcem	ent is req
Tens.reinforcement required Tens.reinforcement provided	Abb.reg = 1228 16 dia.bars @		Tono roinforo	ement provided	$A_{bb,prov} = 201$	1 mm2/m
Min.area of reinforcement	Abb.min = 498			einforcement	$A_{bb,prov} = 201$ $A_{bb,max} = 160$	
		of reinforcemen				
Crack control - Section 7.3			-	-		
Limiting crack width	w _{max} = 0.3 m	m	Maximum cra	ick width	w _k = 0.232 n	nm
PASS - Maximum crack widt	h is less than	limiting crack w	<i>idth</i> Rectangul	lar section in sh	ear - Section	6.2
Design shear force	V = 71.5 kN/	m	Design shear	r resistance	V _{Rd.c} = 186.2	2 kN/m
		PAS	SS - Design sl	hear resistance	exceeds desi	gn shear
Rectangular section in flexu	re - Section 6	.1				
Design bending moment	M = 0.8 kNm	ı/m	K = 0.000		K' = 0.207	
		5 4	K' > K ·	No compressio	on reinforcem	ent is req
Tens.reinforcement required	$A_{bt.req} = 6 mn$		Tono voinfora	amont provided	A 100	
Tens.reinforcement provided Min.area of reinforcement	16 dia.bars (A _{bt.min} = 538			ement provided	$A_{bt,prov} = 100$ $A_{bt,max} = 160$	
win.area or reinforcement		a of reinforcemer				
Crack control - Section 7.3			-	-		
Limiting crack width	w _{max} = 0.3 m	m	Maximum cra	ack width	w _k = 0.003 r	nm
PASS - Maximum crack wide	h is less than	limiting crack w	<i>idth</i> Rectangu	lar section in sh	near - Section	6.2
Design shear force	V = 11.2 kN/	ím -	Design shea	r resistance	V _{Rd.c} = 158.	7 kN/m
		PA	SS - Design s	hear resistance	exceeds desi	ign shear
Secondary transverse reinfo	rcement to b	ase - Section 9.3				
Min.area of reinforcement	A _{bx.req} = 402	mm²/m	Max.spacing	of reinforcement	t Sbx_max = 450	0 mm
Trans.reinforcement provided				cement provided	•	
	PASS - Area	a of reinforcemer	nt provided is	greater than ar	ea of reinforc	ement red

SINCLAIR JOHNSTON	Date	Job No. Sheet	No.
& PARTNERS LIMITED	Eng. Review	-2761 6	
	Project	<u> </u>	
	51 Glouceste	's Crescent	
New Basement front e reas was	US - Element	<u>B</u>	
Retained height: 4.1m, propped a	t base		
		·····	
no vertical load Load or wall:			
	4/00		
40° E S W			
18KN mª SKNm² low/m²	1 400		
18KM to Skiller 10klims			
-> See Todds atput over lea			
(420The wall & 400Thick	re loase - de	<u>}</u>	
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		
Q			
2] 201			


TEKLA Teggis	Project	Project 51 Gloucester Crescent				Job no. 8761	
	Calcs for	Elen	nent B		Start page no.//	Revision 1	
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved date	

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.6.05

Retaining wall details	
Stem type	Cantilever
Stem height	h _{stem} = 4100 mm
Stem thickness	t _{stem} = 420 mm
Angle to rear face of stem	$\alpha = 90 \text{ deg}$
Stem density	$\gamma_{stem} = 25 \text{ kN/m}^3$
Toe length	l _{toe} = 4500 mm
Heel length	l _{heel} = 150 mm
Base thickness	t _{base} = 400 mm
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$
Height of retained soil	h _{ret} = 4100 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 4100 mm
Water density	γ _w = 9.8 kN/m³
Retained soil properties	
Soil type	Medium dense well graded sand
Moist density	γ _{mr} = 18 kN/m³
Saturated density	$\gamma_{sr} = 23 \text{ kN/m}^3$
Characteristic effective shear resistance angle	$\phi'_{\mathbf{r},\mathbf{k}} = 23 \operatorname{deg}$
Characteristic wall friction angle	$\delta_{r.k} = 0 \text{ deg}$
Base soil properties	
Soil type	Medium dense well graded sand
Soil density	γ _b = 18 kN/m ³
Characteristic effective shear resistance angle	φ' _{b,k} = 21 deg
Characteristic wall friction angle	δ _{b.k} = 18 deg
Characteristic base friction angle	$\delta_{bb,k} = 21 \text{ deg}$
Presumed bearing capacity	$P_{\text{bearing}} = 140 \text{ kN/m}^2$
Loading details Variable surcharge load	Surchargeo = 10 kN/m ²
vanable surcharge loau	

・茶・TEKLA 「GGGA	Project	51 Glouces	ster Crescent		Job no. 8	761	
a restora	Calcs for				Start page no./F	Revision	
	04100 101	Elen	nent B		Clair page nost	3	
	Calcs by SH						
Wall base		F _{base} = A _{bas}	$se imes \gamma_{base} = 50.7$	7 kN/m		···	
Surcharge load		F _{sur_v} = Sui	$rcharge_Q imes I_{hee}$	ı = 1.5 kN/m			
Saturated retained soil	$F_{sat_v} = A_{sat} \times (\gamma_{sr} - \gamma_{w}) = 8.1 \text{ kN/m}$						
Water		$F_{water_v} = A_{water} \times \gamma_w' = 6 \text{ kN/m}$					
Total		$F_{total_v} = F_{stem} + F_{base} + F_{sat_v} + F_{water_v} + F_{sur_v} = 109.4 \text{ kN/m}$					
Horizontal forces on wall							
Surcharge load		$F_{sur_h} = K_A$	× Surchargeo	× h _{eff} = 19.7 kN/r	n		
Saturated retained soil	$F_{sat_h} = K_A \times (\gamma_{sr} - \gamma_w) \times (h_{sat} + h_{base})^2 / 2 = 58.5 \text{ kN/m}$						
Water		$F_{water_h} = \gamma_w' \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 99.3 \text{ kN/m}$					
Moist retained soil		$F_{moist_h} = K_A \times \gamma_{mr} \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base})) = 0 \text{ kN/m}$					
Base soil		$F_{\text{pass}_h} = -K_P \times \cos(\delta_{b.d}) \times \gamma_b' \times (d_{\text{cover}} + h_{\text{base}})^2 / 2 = -4.8 \text{ kN/m}$					
Total		$F_{total_h} = F_{sat_h} + F_{moist_h} + F_{pass_h} + F_{water_h} + F_{sur_h} = 172.8 \text{ kN/m}$					
Moments on wall							
Wall stem		$M_{stem} = F_{ste}$	em × Xstem = 20;	2.8 kNm/m			
Wall base		$M_{base} = F_{base}$	$x_{base} \times x_{base} = 123$	B.5 kNm/m			
Surcharge load		$M_{sur} = F_{sur}$	v × Xsur_v - Fsur	$h \times X_{sur_h} = -36.9$	kNm/m		
Saturated retained soil		$M_{sat} = F_{sat}$	v × Xsat_v - Fsat_	$h \times X_{sat_h} = -47.2$	kNm/m		
Water		$M_{water} = F_w$	ater_v × Xwater_v ~	$F_{water_h} \times X_{water_h}$	= -118.9 kNm/r	n	
Moist retained soil		M _{moist} = -F _t	moist_h $ imes$ Xmoist_h	= 0 kNm/m			
Total		$M_{total} = M_{st}$	em + Mbase + M	sat + M _{moist} + M _{wate}	ər + M _{sur} = 128.3	3 kNm/m	
Check bearing pressure							
Propping force		F _{prop_base} =	Ftotal_h = 172.8	3 kN/m			
Distance to reaction		$\overline{\mathbf{x}} = \mathbf{l}_{base}$ /	2 = 2535 mm				
Eccentricity of reaction		e = x - I _{ba}	_{se} / 2 = 0 mm				
Loaded length of base			= 5070 mm				
Bearing pressure at toe		-	$_v / _{base} = 21.6$				
Bearing pressure at heel		•	$_{\rm al_v} / l_{\rm base} = 21.0$				
Factor of safety		FoS _{bp} = Pi - Allowable beari		q_{heel} = 6.488			

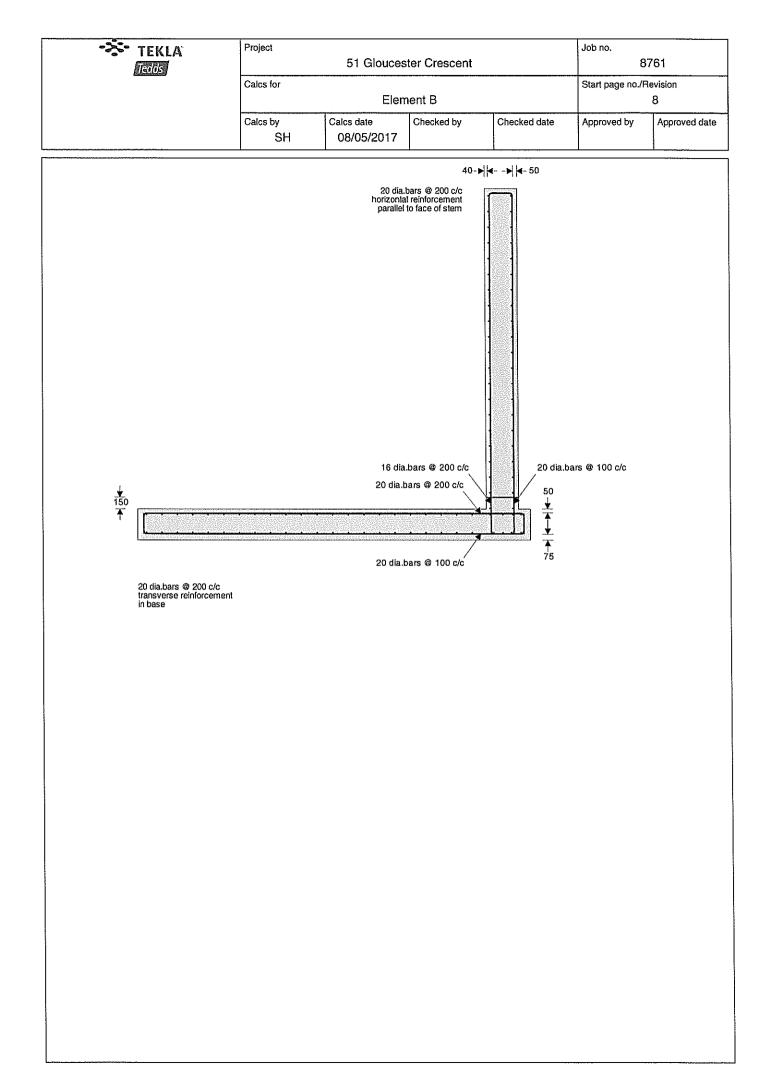
RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

edds calculation version 2.6.05

incorporating National Amendment No.1	
	Tedds calcul
Concrete details - Table 3.1 - Strength and defo	rmation characteristics for concrete
Concrete strength class	C32/40
Characteristic compressive cylinder strength	f _{ck} = 32 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 40 N/mm ²
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 40 \text{ N/mm}^2$
Mean value of axial tensile strength	$f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 3.0 \text{ N/mm}^2$
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.1 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	$E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 33346 \text{ N/mm}^2$
Partial factor for concrete - Table 2.1N	$\gamma_{\rm C} = 1.50$
Compressive strength coefficient - cl.3.1.6(1)	$\alpha_{cc} = 0.85$
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} \ / \ \gamma_C = 18.1 \ N/mm^2$

TEKLA TRADA	Project	Job no. 51 Gloucester Crescent 87			761		
<u>REDILCS</u>	Calcs for				Start page no./F		
			nent B			4	
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved da	
Maximum aggregate size		h _{agg} = 20 m	IM	and the stand of the			
Reinforcement details							
Characteristic yield strength of	reinforcement	f _{yk} = 500 N/	/mm²				
Modulus of elasticity of reinford	cement	E _s = 20000	0 N/mm²				
Partial factor for reinforcing ste	el - Table 2.1N	$\gamma_{\rm S} = 1.15$					
Design yield strength of reinfor	rcement	$f_{yd} = f_{yk} / \gamma_S$	= 435 N/mm²				
Cover to reinforcement							
Front face of stem		$c_{st} = 40 \text{ mm}$	n				
Rear face of stem		$c_{sr} = 50 mr$	n				
Top face of base		c _{bt} = 50 mr	n				
Bottom face of base		$c_{bb} = 75 m m$	m				
Check stem design at base of	of stem						
Depth of section		h = 420 mr	n				
Rectangular section in flexu	re - Section 6.1						
Design bending moment comb	ination 1	M = 297 ki	Nm/m				
Depth to tension reinforcemen	t	d = h - c _{sr} -	φ _{sr} / 2 = 360 m	m			
		$K = M / (d^2 \times f_{ck}) = 0.072$					
		K' = 0.207					
			K' > K -	No compressio	on reinforcem	ent is requi	
Lever arm		z = min(0.8	5 + 0.5 × (1 - 3.	53 × K) ^{0.5} , 0.95)	× d = 336 mm		
Depth of neutral axis		$x = 2.5 \times (6$	d – z) = 61 mm				
Area of tension reinforcement	required	$A_{sr,req} = M$	$(f_{yd} \times z) = 203!$	5 mm²/m			
Tension reinforcement provide			s @ 100 c/c				
Area of tension reinforcement	•		$\times \phi_{sr}^2 / (4 \times s_{sr})$				
Minimum area of reinforcement	nt - exp.9.1N		-	_{/k} , 0.0013) × d =	566 mm²/m		
Maximum area of reinforceme	nt - cl.9.2.1.1(3)	$A_{sr.max} = 0.04 \times h = 16800 \text{ mm}^2/\text{m}$					
		max(A _{sr.req} , A _{sr.min}) / A _{sr.prov} = 0.648 f reinforcement provided is greater than area of reinforcement requi					
	PASS - Area o	ot reinforcemen	t provided is <u>c</u>	reater than are	ea of reinforce	ement requ	
Deflection control - Section							
Reference reinforcement ratio			1 N/mm ²) / 100	0 = 0.006			
Required tension reinforceme		$\rho = A_{sr.req} / P$					
Required compression reinfor		•	$_{\rm q}/{\rm d_2}=0.000$				
Structural system factor - Tab		$K_{b} = 0.4$					
Reinforcement factor - exp.7.		-	•	× Asr.req / Asr.prov			
Limiting span to depth ratio - o	exp.7.16.a			/ 1 N/mm²) × ρ₀	/ p + 3.2 × √(f _c	* / 1 N/mm²	
		(p ₀ / p - 1)	-				
Actual span to depth ratio		h _{stem} / d = 11.4 PASS - Span to depth ratio is less than deflection control li					
		PASS	5 - Span to dep	nn ratio is less	than deflection	on control l	
Crack control - Section 7.3							
Limiting crack width		w _{max} = 0.3	mm				
Variable load factor - EN1990		$\psi_2 = 0.3$					
Serviceability bending momen		M _{sis} = 190		00 0 N/()			
Tensile stress in reinforcement	זנ		$(A_{sr.prov} \times z) = 1$	80.3 N/MM²			
Load duration Load duration factor		Long term k _t = 0.4	1				
		k, - 11 A					


Teolos	Project	51 Glouces	ster Crescent		Job no. 8	761		
Europe Constanting P	Calcs for		L PA		Start page no./F	_		
	•		nent B			5		
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved		
Effective area of concrete in t	ension	A _{c.eff} = min	(2.5 × (h - d), (l	h – x) / 3, h / 2) =	= 119664 mm²/	m		
Mean value of concrete tensil	le strength		= 3.0 N/mm ²					
Reinforcement ratio	Ū	$\rho_{p.eff} = A_{sr.p}$	rov / Ac.eff = 0.02	26				
Modular ratio		$\alpha_{e} = E_{s} / E_{s}$	_{cm} = 5.998					
Bond property coefficient		k ₁ = 0.8						
Strain distribution coefficient		k ₂ = 0.5						
		k₃ = 3.4						
		k4 = 0.425						
Maximum crack spacing - exp	p.7.11	s _{r.max} = k ₃ >	$< c_{sr} + k_1 \times k_2 \times$	$k_4 \times \varphi_{sr} \ / \ \rho_{p,eff} = 3$	300 mm			
Maximum crack width - exp.7	.8	$W_k = S_{r,max}$	× max(o _s – k _t ×	$(f_{ct.eff} / \rho_{p.eff}) \times (1)$	+ $\alpha_e \times \rho_{p.eff}$), 0	.6 × σs) / E		
		w _k = 0.19 t	nm					
		$w_k / w_{max} =$						
		PASS	5 - Maximum c	erack width is le	ess than limitii	ng crack v		
Rectangular section in she	ar - Section 6.2							
Design shear force		V = 203.8	kN/m					
		$C_{\text{Rd,c}} = 0.1$	$C_{\text{Rd,c}} = 0.18 / \gamma_{\text{C}} = 0.120$					
		k = min(1	+ √(200 mm / c	l), 2) = 1.7 45				
Longitudinal reinforcement ra	atio	$\rho_l = min(A_l)$	sr.prov / d, 0.02) :	= 0.009				
		v _{min} = 0.03	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^3$	$^{1/2} \times f_{ck}^{0.5} = 0.457$	N/mm ²			
Design shear resistance - ex	p.6.2a & 6.2b	V _{Rd.c} = ma	$x(C_{Rd.c} \times k \times (1$	00 N²/mm ⁴ × ρι >	$(f_{ck})^{1/3}, v_{min}) \times c$	ł		
		V _{Rd.c} = 228	3.8 kN/m					
		$V / V_{Rd.c} =$	0.891					
			-	hear resistance	exceeds desi	gn shear i		
Horizontal reinforcement p					_			
Minimum area of reinforceme	- ,		-	ov, 0.001 × t _{stem}) :	= 785 mm²/m			
Maximum spacing of reinforc								
Transverse reinforcement pro			's @ 200 c/c					
Area of transverse reinforcer	•			k) = 1571 mm²/m				
		f reinforcemer	nt provided is	areater than an	ea of reinforce	ement req		
	FASS - Alea U		•	3				
Check base design at toe	FASS - Alea U			9				
	FA33 - Alea U	h = 400 m	ım	J				
Check base design at toe			Im	J				
Check base design at toe Depth of section	ture - Section 6.1			J				
Check base design at toe Depth of section Rectangular section in flex	ture - Section 6.1	h = 400 m M = 158.7		-				
Check base design at toe Depth of section Rectangular section in flex Design bending moment con	ture - Section 6.1	h = 400 m M = 158.7 d = h - Сы	′ kNm/m	mm				
Check base design at toe Depth of section Rectangular section in flex Design bending moment con	ture - Section 6.1	h = 400 m M = 158.7 d = h - Сы	' kNm/m - $\phi_{\text{bb}} / 2 = 315$ $^{2} \times f_{\text{ck}} = 0.050$	mm				
Check base design at toe Depth of section Rectangular section in flex Design bending moment con	ture - Section 6.1	h = 400 m M = 158.7 d = h - c₅⊧ K = M / (d	' kNm/m $\phi_{bb} / 2 = 315$ $(^2 \times f_{ck}) = 0.050$	mm	on reinforcen	nent is req		
Check base design at toe Depth of section Rectangular section in flex Design bending moment con	ture - Section 6.1	h = 400 m M = 158.7 d = h - c _{bb} K = M / (d K' = 0.207	/ kNm/m - φ _{bb} / 2 = 315 ² × f _{ck}) = 0.050 / <i>K' > K</i>	mm				
Check base design at toe Depth of section Rectangular section in flex Design bending moment com Depth to tension reinforceme	ture - Section 6.1	h = 400 m M = 158.7 d = h - cbb K = M / (d K' = 0.207 z = min(0	/ kNm/m - φ _{bb} / 2 = 315 ² × f _{ck}) = 0.050 / <i>K' > K</i>	- mm - <i>No compressi</i> 3.53 × K) ^{0.5} , 0.95		-		
Check base design at toe Depth of section Rectangular section in flex Design bending moment com Depth to tension reinforcement Lever arm	ture - Section 6.1 nbination 1 ent	$h = 400 m$ $M = 158.7$ $d = h - c_{bb}$ $K = M / (d$ $K' = 0.207$ $z = min(0)$ $x = 2.5 \times 10^{-1}$	X' kNm/m $\phi_{bb} / 2 = 315$ $A^2 \times f_{ck} = 0.050$ K' > K' $K' > K = 0.5 \times (1 - 5)$	mm - <i>No compressi</i> 3.53 × K) ^{0.5} , 0.95 m		-		
Check base design at toe Depth of section Rectangular section in flex Design bending moment com Depth to tension reinforcement Lever arm Depth of neutral axis	ture - Section 6.1 nbination 1 ent nt required	h = 400 m M = 158.7 $d = h - C_{bb}$ K = M / (d) K' = 0.207 z = min(0) $x = 2.5 \times 10^{-1}$ $A_{bb,req} = M$	K' kNm/m $\phi - \phi_{bb} / 2 = 315$ $\phi^2 \times f_{ck} = 0.050$ K' > K $\phi - K' = 0.5 \times (1 - 3)$ (d - z) = 39 mr	mm - <i>No compressi</i> 3.53 × K) ^{0.5} , 0.95 m		-		
Check base design at toe Depth of section Rectangular section in flex Design bending moment com Depth to tension reinforcement Lever arm Depth of neutral axis Area of tension reinforcement	ture - Section 6.1 nbination 1 ent nt required ded	$h = 400 m$ $M = 158.7$ $d = h - c_{bb}$ $K = M / (d$ $K' = 0.207$ $z = min(0)$ $x = 2.5 \times 10^{-10}$ $A_{bb,req} = N$ 20 dia.ba	Y kNm/m $\phi - \phi_{bb} / 2 = 315$ $f^2 \times f_{ck} = 0.050$ K' > K $5 + 0.5 \times (1 - 3)$ (d - z) = 39 mm $f / (f_{yd} \times z) = 12$ rs @ 100 c/c	mm - <i>No compressi</i> 3.53 × K) ^{0.5} , 0.95 m) × d = 299 mm	-		
Check base design at toe Depth of section Rectangular section in flex Design bending moment com Depth to tension reinforcement Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provi	ture - Section 6.1 nbination 1 ent nt required ded nt provided	$h = 400 m$ $M = 158.7$ $d = h - C_{bb}$ $K = M / (d$ $K' = 0.207$ $z = min(0)$ $x = 2.5 \times 10^{-10}$ $A_{bb,req} = M$ 20 dia.ba $A_{bb,prov} = 10^{-10}$	Y kNm/m $p_{a} - \phi_{bb} / 2 = 315$ $p_{a}^{2} \times f_{ck}) = 0.050$ K' > K $p_{a}^{5} + 0.5 \times (1 - 3)$ (d - z) = 39 mr $h / (f_{yd} \times z) = 12$ rs @ 100 c/c $\pi \times \phi_{bb}^{2} / (4 \times s_{bb})^{2}$	mm - <i>No compressi</i> 3.53 × K) ^{0.5} , 0.95 n 2 20 mm²/m) × d = 299 mn n			
Check base design at toe Depth of section Rectangular section in flex Design bending moment com Depth to tension reinforcement Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provis Area of tension reinforcement	ture - Section 6.1 nbination 1 ent nt required ded nt provided ent - exp.9.1N	$h = 400 m$ $M = 158.7$ $d = h - c_{bb}$ $K = M / (d$ $K' = 0.207$ $z = min(0)$ $x = 2.5 \times 10^{-10}$ $A_{bb,req} = M$ $20 dia.ba$ $A_{bb,prov} = 10^{-10}$ $A_{bb,min} = 10^{-10}$	Y kNm/m $p_{a} - \phi_{bb} / 2 = 315$ $p_{a}^{2} \times f_{ck}) = 0.050$ K' > K $p_{a}^{5} + 0.5 \times (1 - 3)$ (d - z) = 39 mr $h / (f_{yd} \times z) = 12$ rs @ 100 c/c $\pi \times \phi_{bb}^{2} / (4 \times s_{bb})^{2}$	mm - <i>No compressi</i> 3.53 × K) ^{0.5} , 0.95 n 2 20 mm²/m _{bbb}) = 3142 mm²/r / fyk, 0.0013) × d) × d = 299 mn n	-		

	Project	51 Glouces	ster Crescent		Job no. 8	3761		
	Calcs for	Eler	nent B		Start page no./	Revision 6		
	Calcs by SH	Calcs date 08/05/2017	Checked by	Checked date	Approved by	Approved		
Crack control - Section 7.3		<u>,</u>		1				
Limiting crack width		$W_{max} = 0.3$	mm					
Variable load factor - EN1990	– Table A1 1	$\psi_2 = 0.3$						
Serviceability bending momen		φ2 = 0.0 M _{sis} = 117.	2 kNm/m					
Tensile stress in reinforcemen			$(A_{bb,prov} \times z) = 1$	24.7 N/mm ²				
Load duration		Long term						
Load duration factor		$k_t = 0.4$						
Effective area of concrete in te	ension		(2.5 × (h - d), (ł	n – x) / 3, h / 2) =	= 120208 mm ² /	′m		
Mean value of concrete tensile	e strenath		= 3.0 N/mm ²					
Reinforcement ratio	0		prov / Ac.eff = 0.02	26				
Modular ratio		$\alpha_e = E_s / E_s$						
Bond property coefficient		k ₁ = 0.8						
Strain distribution coefficient		k ₂ = 0.5						
		k ₃ = 3.4						
		k4 = 0.425						
Maximum crack spacing - exp.	.7.11	$s_{r,max} = k_3$	$\times c_{bb} + k_1 \times k_2 \times$	k4 × φ _{bb} / ρ _{p.eff} =	385 mm			
Maximum crack width - exp.7.8		$W_k = S_{r.max}$	× max(ơ₅ – kt ×	$(f_{\text{ct.eff}} / \rho_{\text{p.eff}}) \times (1$	+ $\alpha_e \times \rho_{p.eff}$), C	1.6 × σs) / E		
		w _k = 0.144	mm					
		$W_k / W_{max} =$						
		PASS	s - Maximum c	rack width is le	ess than limiti	ng crack		
Rectangular section in shea	r - Section 6.2							
Design shear force		V = 70.5 k	:N/m					
			8 / γ _c = 0.120					
		k = min(1	+ √(200 mm / d	l), 2) = 1.797				
Longitudinal reinforcement rat	io	$\rho_{I} = min(A_{bb,prov} / d, 0.02) = 0.010$						
•								
-		v _{min} = 0.03	$35 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	$^{\prime 2} imes f_{ck}^{0.5} = 0.477$	N/mm ²			
Design shear resistance - exp	.6.2a & 6.2b			^{/2} × f _{ck} ^{0.5} = 0.477 00 N²/mm⁴ × ρι >		ł		
-	.6.2a & 6.2b	V _{Rd.c} = ma V _{Rd.c} = 21 !	ux(C _{Rd.c} × k × (1) 5.4 kN/m			t		
-	.6.2a & 6.2b	V _{Rd.c} = ma V _{Rd.c} = 21 V / V _{Rd.c} =	lx(C _{Rd.c} × k × (1) 5.4 kN/m 0.327	00 N²/mm⁴ × թւ >	< f _{ck}) ^{1/3} , Vmin) × (
-	.6.2a & 6.2b	V _{Rd.c} = ma V _{Rd.c} = 21 V / V _{Rd.c} =	lx(C _{Rd.c} × k × (1) 5.4 kN/m 0.327		< f _{ck}) ^{1/3} , Vmin) × (
-		V _{Rd.c} = ma V _{Rd.c} = 21 V / V _{Rd.c} = PA	IX(C _{Rd.c} × k × (1) 5.4 kN/m 0.327	00 N²/mm⁴ × թւ >	< f _{ck}) ^{1/3} , Vmin) × (
Design shear resistance - exp Rectangular section in flexu Design bending moment com	ire - Section 6.1	V _{Rd.c} = ma V _{Rd.c} = 219 V / V _{Rd.c} = <i>PA</i> . M = 1.4 ki	ıx(C _{Rd.c} × k × (1) 5.4 kN/m 0.327 <i>SS - Design sh</i> Nm/m	00 N²/mm⁴ × թւ ։ near resistance	< f _{ck}) ^{1/3} , Vmin) × (
Design shear resistance - exp Rectangular section in flexu	ire - Section 6.1	V _{Rd.c} = ma V _{Rd.c} = 219 V / V _{Rd.c} = <i>PA</i> . M = 1.4 ki	IX(C _{Rd.c} × k × (1) 5.4 kN/m 0.327 SS - Design sh	00 N²/mm⁴ × թւ ։ near resistance	< f _{ck}) ^{1/3} , Vmin) × (
Design shear resistance - exp Rectangular section in flexu Design bending moment com	ire - Section 6.1	$V_{Rd,c} = ma$ $V_{Rd,c} = 21!$ $V / V_{Rd,c} = PA.$ $M = 1.4 \text{ kI}$ $d = h - c_{bt}$ $K = M / (d)$	ix(C _{Rd.c} × k × (16 5.4 kN/m 0.327 <i>SS - Design sh</i> Nm/m - φ _{bt} / 2 = 340 n ¹ ² × f _{ck}) = 0.000	00 N²/mm⁴ × թւ ։ near resistance	< f _{ck}) ^{1/3} , Vmin) × (
Design shear resistance - exp Rectangular section in flexu Design bending moment com	ire - Section 6.1	$V_{Rd,c} = ma$ $V_{Rd,c} = 21!$ $V / V_{Rd,c} =$ PA $M = 1.4 \text{ kI}$ $d = h - c_{bt}$	$IX(C_{Rd.c} \times k \times (16))$ 5.4 kN/m 0.327 SS - Design st Nm/m - $\phi_{bt} / 2 = 340$ n $I^2 \times f_{ck} = 0.000$	00 N²/mm⁴ × թւ չ near resistance nm	< f _{ck}) ^{1/3} , Vmin) × (ign shear		
Design shear resistance - exp Rectangular section in flexu Design bending moment com Depth to tension reinforcemen	ire - Section 6.1	$V_{Rd,c} = ma$ $V_{Rd,c} = 21!$ $V / V_{Rd,c} = PA$ 1 M = 1.4 kI $d = h - c_{bt}$ K = M / (d) K' = 0.207	$IX(C_{Rd,c} \times k \times (16))$ 5.4 kN/m 0.327 SS - Design sh Nm/m - $\phi_{bt} / 2 = 340$ n $I^2 \times f_{ck}) = 0.000$ K' > K -	00 N²/mm⁴ × թւ > near resistance nm • No compressi	< f _{ck}) ^{1/3} , Vmin) × 0 exceeds des on reinforcen	ign shear nent is rec		
Design shear resistance - exp Rectangular section in flexu Design bending moment com Depth to tension reinforcement	ire - Section 6.1	$V_{Rd,c} = ma$ $V_{Rd,c} = 21!$ $V / V_{Rd,c} = PA.$ M = 1.4 kl $d = h - c_{bl}$ K = M / (d) K' = 0.207 z = min(0.000)	$x(C_{Rd.c} \times k \times (16))$ 5.4 kN/m 0.327 SS - Design standard for the stan	00 №²/mm⁴ × pi > near resistance nm .53 × K) ^{0.5} , 0.95	< f _{ck}) ^{1/3} , Vmin) × 0 exceeds des on reinforcen	ign shear nent is rec		
Design shear resistance - exp Rectangular section in flexu Design bending moment com Depth to tension reinforcemen Lever arm Depth of neutral axis	ure - Section 6.1 bination 1 ht	$V_{Rd,c} = ma$ $V_{Rd,c} = 21!$ $V / V_{Rd,c} = PA$ I M = 1.4 kl $d = h - c_{bt}$ K = M / (d) K' = 0.207 z = min(0) $x = 2.5 \times 6$	$Ix(C_{Rd,c} \times k \times (16))$ 5.4 kN/m 0.327 SS - Design str Nm/m - $\phi_{bt} / 2 = 340 \text{ m}$ $I^2 \times f_{ck} = 0.000$ K' > K5 + 0.5 × (1 - 3) (d - z) = 43 mm	00 N²/mm⁴ × pi > near resistance nm .53 × K) ^{0.5} , 0.95 n	< f _{ck}) ^{1/3} , Vmin) × 0 exceeds des on reinforcen	ign shear nent is rec		
Design shear resistance - exp Rectangular section in flexu Design bending moment com Depth to tension reinforcement Lever arm Depth of neutral axis Area of tension reinforcement	tre - Section 6.1 bination 1 ht	$V_{Rd,c} = ma$ $V_{Rd,c} = 21!$ $V / V_{Rd,c} = PA.$ $M = 1.4 kI$ $d = h - c_{bt}$ $K = M / (d)$ $K' = 0.207$ $z = min(0.)$ $x = 2.5 \times 6$ $A_{bt,req} = M$	$\begin{aligned} x(C_{Rd,c} \times k \times (16) \\ 5.4 \text{ kN/m} \\ 0.327 \\ SS - Design sh \\ Nm/m \\ -\phi_{bl} / 2 = 340 \text{ n} \\ r^2 \times f_{ck}) &= 0.000 \\ K' > K - \\ .5 + 0.5 \times (1 - 3) \\ (d - z) &= 43 \text{ mm} \\ r \\ r \\ (f_{yd} \times z) &= 10 \end{aligned}$	00 N²/mm⁴ × pi > near resistance nm .53 × K) ^{0.5} , 0.95 n	< f _{ck}) ^{1/3} , Vmin) × 0 exceeds des on reinforcen	ign shear nent is rec		
Design shear resistance - exp Rectangular section in flexu Design bending moment com Depth to tension reinforcement Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provid	tre - Section 6.1 bination 1 nt t required ed	$V_{Rd,c} = ma$ $V_{Rd,c} = 219$ $V / V_{Rd,c} = PA$ 1 M = 1.4 kI $d = h - C_{bt}$ K = M / (d) K' = 0.207 z = min(0, x) $x = 2.5 \times 6$ Abt.req = M 20 dia.ba	$\begin{aligned} & \text{Ix}(C_{\text{Rd.c}} \times \text{k} \times (16) \\ & \text{5.4 kN/m} \\ & \text{0.327} \\ & \text{SS - Design stress } \\ & \text{Nm/m} \\ & -\phi_{\text{bt}} / 2 = 340 \text{ m} \\ & P_{\text{c}} \times f_{\text{ck}} = 0.000 \\ & \text{K'} > K - \\ & \text{S.5 + 0.5 } \times (1 - 3) \\ & \text{(d - z) = 43 mm} \\ & \text{I/ (f_{yd} \times z) = 10 mm} \end{aligned}$	00 N²/mm⁴ × pi > near resistance nm .53 × K) ^{0.5} , 0.95 n mm²/m	< f _{ck}) ^{1/3} , Vmin) × d • exceeds des f on reinforcen) × d = 323 mn	ign shear nent is rec		
Design shear resistance - exp Rectangular section in flexu Design bending moment com Depth to tension reinforcement Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provid Area of tension reinforcement	tre - Section 6.1 bination 1 nt t required ed t provided	$V_{Rd,c} = ma$ $V_{Rd,c} = 21!$ $V / V_{Rd,c} = PA.$ $M = 1.4 \text{ kI}$ $d = h - c_{bt}$ $K = M / (d)$ $K' = 0.207$ $z = min(0.)$ $x = 2.5 \times 6$ $A_{bt,req} = M$ 20 dia.bai $A_{bt,prov} = \pi$	$x(C_{Rd,c} \times k \times (16))$ 5.4 kN/m 0.327 $SS - Design sh$ Nm/m $-\phi_{bl} / 2 = 340 m$ $P^{2} \times f_{ck} = 0.000$ $K' > K - 0.5 \times (1 - 3)$ $(d - 2) = 43 mm$ $I / (f_{yd} \times z) = 10 m$ $S @ 200 c/c$ $t \times \phi_{bl}^{2} / (4 \times s_{bl})$	00 N²/mm⁴ × pi > near resistance nm .53 × K) ^{0.5} , 0.95 n mm²/m a = 1571 mm²/m	< f _{ck}) ^{1/3} , Vmin) × d exceeds des on reinforcen) × d = 323 mm	ign shear nent is rec		
Design shear resistance - exp Rectangular section in flexu Design bending moment com Depth to tension reinforcement Lever arm Depth of neutral axis Area of tension reinforcement Tension reinforcement provid	t required ed t provided nt - exp.9.1N	$V_{Rd,c} = ma$ $V_{Rd,c} = 21!$ $V / V_{Rd,c} = PA$ $M = 1.4 kI$ $d = h - c_{bt}$ $K = M / (d)$ $K' = 0.207$ $z = min(0.$ $x = 2.5 \times 6$ $A_{bt,req} = M$ $20 dia.bai$ $A_{bt,prov} = \pi$ $A_{bt,min} = m$	$x(C_{Rd,c} \times k \times (16))$ 5.4 kN/m 0.327 $SS - Design sh$ Nm/m $-\phi_{bl} / 2 = 340 m$ $P^{2} \times f_{ck} = 0.000$ $K' > K - 0.5 \times (1 - 3)$ $(d - 2) = 43 mm$ $I / (f_{yd} \times z) = 10 m$ $S @ 200 c/c$ $t \times \phi_{bl}^{2} / (4 \times s_{bl})$	00 N²/mm⁴ × pi > near resistance nm .53 × K) ^{0.5} , 0.95 n mm²/m i = 1571 mm²/m fyk, 0.0013) × d	< f _{ck}) ^{1/3} , Vmin) × d exceeds des on reinforcen) × d = 323 mm	ign shear nent is rec		

PASS - Area of reinforcement provided is greater than area of reinforcement required

- ILIVER	Project	51 Glouces	ter Crescent		Job no. 8	761		
Tedds	Calcs for				Start page no./R			
		Element B			7			
					Approved by	Approved da		
	SH	08/05/2017						
Crack control - Section 7.3				·				
Limiting crack width		W _{max} = 0.3 (nm					
Variable load factor - EN1990 - 1	Table A1.1	$\psi_2 = 0.3$						
Serviceability bending moment		M _{sis} = 1 kNi	m/m					
Tensile stress in reinforcement		$\sigma_s = M_{sls} / ($	$A_{bt,prov} \times z) = 1.9$) N/mm²				
Load duration		Long term	,					
Load duration factor		kt = 0.4						
Effective area of concrete in tens	ion	$A_{c,eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2) = 119167 mm^2/m$						
Mean value of concrete tensile strength Reinforcement ratio		$f_{ct.eff} = f_{etm} = 3.0 \text{ N/mm}^2$						
		$\rho_{p,eff} = A_{bt,prov} / A_{c,eff} = 0.013$						
Modular ratio		$\alpha_e = E_s / E_{cm} = 5.998$						
Bond property coefficient		k ₁ = 0.8						
Strain distribution coefficient		$k_2 = 0.5$						
		$k_2 = 0.5$ $k_3 = 3.4$						
		k ₄ = 0.425						
Maximum crack spacing - exp.7.	11		Chi + ki × ka × l	$4 \times \phi_{\rm bt} / \Omega_{\rm p} _{\rm eff} = 4$	28 mm			
Maximum crack width - exp.7.8		$s_{r,max} = k_3 \times c_{bt} + k_1 \times k_2 \times k_4 \times \phi_{bt} / \rho_{p,eff} = 428 \text{ mm}$ $W_k = s_{r,max} \times max(\sigma_k - k_1 \times (f_{st,eff} / \rho_{p,eff}) \times (1 + \sigma_k \times \rho_{p,eff}), 0.6 \times \sigma_k) / F_{st}$						
Maximum order main * exptrite		$w_{k} = s_{r,max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$ $w_{k} = 0.002 \text{ mm}$						
		Wk / Wmax =						
				ack width is les	ss than limitin	na crack w		
Rectangular section in shear -	Section 6.2					. .		
Design shear force		V = 19 kN/	m					
		$C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$						
				2) - 1 767				
Longitudinal reinforcement ratio		$k = \min(1 + \sqrt{200 \text{ mm / d}}, 2) = 1.767$						
congradinal ternoroement faile		$\rho_l = min(A_{bt,prov} / d, 0.02) = 0.005$ $v_{min} = 0.035 N^{1/2}/mm \times k^{3/2} \times f_{ck}^{0.5} = 0.465 N/mm^2$						
						1		
Design shear resistance - exp.6.	2a & 0.2D	$V_{\text{Rd,c}} = \max(C_{\text{Rd,c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{\text{ck}})^{1/3}, v_{\text{min}}) \times d$						
		V _{Rd.c} = 176.9 kN/m V / V _{Rd.c} = 0.107						
				ear resistance o	ovocodo doci	an choor f		
Secondary transverse reinford	ement to bace		io - Design sn	cai icsisidiice (ercecus uesi	ฐก อกเซสก์ ไ		
Minimum area of reinforcement			2 × Abb.prov = 62	8 mm²/m				
				5 min 7m				
Maximum spacing of reinforcem Transverse reinforcement provid	•	-	s @ 200 c/c					
-				- 1 = 71				
Area of transverse reinforcemen	•) = 1571 mm²/m preater than are	a al nature			

PASS - Area of reinforcement provided is greater than area of reinforcement required

8761: 51 Gloucester Crescent, London NW1 Structural Methodology Report

Appendix D – Resin Grouting Product Information

Stabila

P200 Soil Injection Resin

Aqua-reactive PU Injection Resin

Stabila P200 SOIL is a solvent free, one component aqua-reactive polyurethane injection resin. It is sufficiently fast reacting to cut off active or gushing water flows, even under pressure. Stabila P200 SOIL Accelerator is added to Stabila P200 SOIL to vary the speed of reaction for the application in hand.

When P200 SOIL comes into contact with water, it reacts to produce a rapidly expanding closed cell foam. This rapid expansion acts to close off flow paths and hence arrest movement of free water. The foam is moderately flexible, hydrophobic and chemically resistant. It is harmless to the environment and resists biological attack

Uses

Injecting into cracks and minor open fissures in concrete and masonry structures where water leaks are to be controlled.

Injection into open, granular soils where specialised stabilisation is required.

Advantages

An extremely efficient injection resin for leak sealing use where flowing water is encountered.

Exhibits excellent penetration into voids and porous substrates.

Application

Stabila P200 SOIL injection is by single component pump through injection packers or ports as appropriate.

Speed of reaction is dependent on percentage of accelerator used and water temperature. Cold water will increase reaction times. Where cold water, or relatively fast water flows occur, higher accelerator dosage is necessary. There is no advantage to be gained by increasing the accelerator dose beyond the recommended maximum.

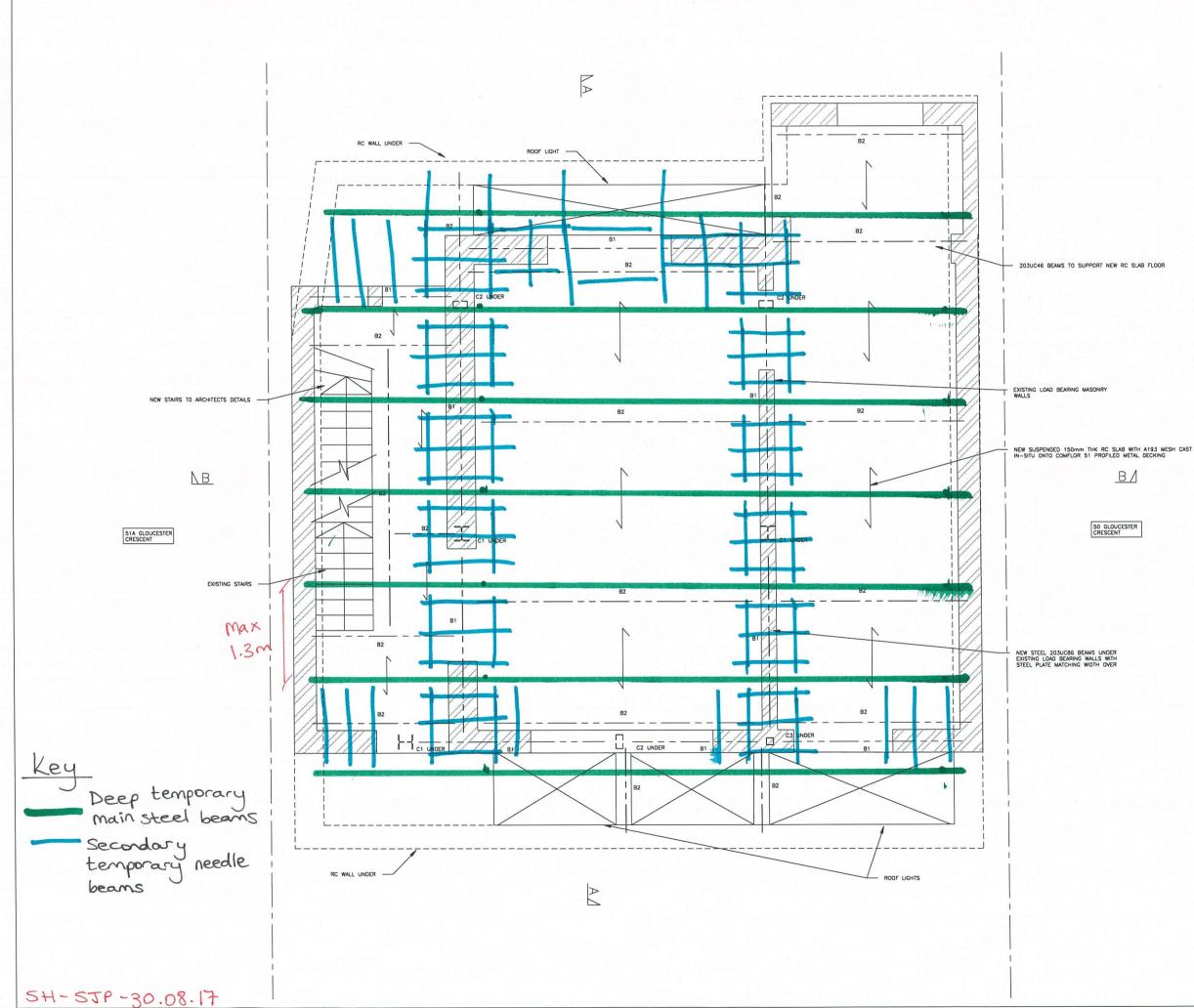
Stabila P200 SOIL may be used to control fast flowing water or water under pressure, but where such conditions are encountered, please contact our Technical Department before use.

Package & Storage

Stabila P200 SOIL is supplied in 25kg drums. P200 SOIL accelerator is supplied in 2.5kg plastic containers. Store in original containers in a dry area, protect from heat and sunlight. Once opened, use as soon as possible.

Health & Safety

Avoid contact with eyes and skin. Follow advice in separate Health & Safety data sheet.


Technical data		
Form Viscosity (25°C) Colour Specific gravity (20°C) Mixing ratio Application temp	P200 Soil Liquid 190 mPas Brown 1.10 1% to 10% Accele Not less than 5°C	
Reaction times (15° % Accel dosage 3% (by weight) 6% " 9% "	°C) Induction time 50 sec 29 sec 28 sec	Gel time 8 min 20 secs 2 min 35 secs 2 min 05 secs

Stabila UK. Oxon. OX27 7SR tel 01869 346010 fax 01869 345455

8761: 51 Gloucester Crescent, London NW1 Structural Methodology Report

Appendix E – Temporary Propping Design

SEPTEMBER 2017

NOTES: All structural engineering drawings are to be read with the specification and with all relevant Architect's and Service Engineer's drawings and specifications. Do not scale from this drawing in either paper or digital form. Use written dimensions only. To check drawing has been printed to intended scale this bar should be 50mm is
 A1 or 25mm lang
 A3:

 3. All dimensions are in millimetres and levels in metres. KEY: DENOTES EXISTING SOLID BRICKWORK DENOTES SPAN OF EXISTING RC SLAB <---> _____ DENOTES STRUCTURE UNDER BEAM SCHEDULE 203x203UC86 B1 B2 203x203UC46 THIS DRAWING IS NOT FOR CONSTRUCTION
 C
 18.05.17
 SH
 For planning

 B
 09.05.17
 SH
 For planning

 A
 05.05.17
 SH
 For planning

 24.03.17
 SH
 For comment

 Rev
 Date
 Issued
 Amendment
 Status PLANNING SINCLAIR JOHNSTON Consulting Civil & Structural Engineers 93 Great Suffolk Street London SE1 0BX T: 020 7593 1900 F: 020 7593 1910 www.sinclairjohnston.co.uk 51 Gloucester Crescent NW1 Proposed Ground Floor Drawn S Hill Scale 1:25 ot A1 Project No./Drawing No. Rev 8761/010T С

SITE BOUNDARY SITE BOUNDARY 51A GLOUCESTER CRESCENT 50 GLOUCESTER CRESCENT ASSUMED TIMBER FRAMED CONSTRUCTION EXISTING SOLID BRICK WALL NEW SUSPENDED 150mm THK RC SLAB WIT A193 MESH CAST IN-SITU ONTO COMFLOR PROFILED METAL DECKING 1/1 -1/ ∇GL **SXZ** . ?/. ? YXY. Turr NEW 203UC46 BEAM - NEW 203UC46 BEAMS ASSUMED FOOTING OF NEIGHBOURING BUILDING 3 R.C. WALL CAST IN HIT / MISS SEQUENCE, 420mm THK 400THK R.C. RAFT SLAB R.C. HEEL TO MATCH EXISTING FOOTING ABOVE 50mm BLINDING AND 150mm WELL COMPACTED TYPE 1

SH- SJP - 30.08.17

NOTES: All structural engineering drawings are to be read with the specification and with all relevant Architect's and Service Engineer's drawings and specifications. Do not scale from this drawing in either paper or digital form. Use written dimensions only. To check drawing has been printed to intended scale this bor should be 50mm long A1 or 25mm long
 A3: 3. All dimensions are in millimetres and levels in metres. KEY: 1111 DENOTES EXISTING SOLID BRICKWORK THIS DRAWING IS NOT FOR CONSTRUCTION
 C
 18.05.17
 SH
 For planning

 B
 09.05.17
 SH
 For planning

 A
 05.05.17
 SH
 For planning

 24.03.17
 SH
 For comment

 Rev
 Date
 Issued
 Amendment
 Status PLANNING SINCLAIR JOHNSTON Consulting Civil & Structural Engineers 93 Great Suffolk Street London SE1 0BX T: 020 7593 1900 F: 020 7593 1910 www.sinclairjahnstan.co.uk 51 Gloucester Crescent NW1 Proposed Section B-B Drawn S Hill Scole 1:25 at A1 Project No./Drawing No. Rev 8761/031T С

NOTES: All structural engineering drawings are to be read with the specification and with all relevant Architect's and Service Engineer's drawings and specifications. not scale from this drawing in either paper o intended scale ____ The state of sions are in millimetres and levels in metres KEY: ////// DENOTES EXISTING SOLID BRICKWORK MADE GROUND: GRAVELLY CLAY MADE GROUND: SANDY GRAVEL THIS DRAWING IS NOT FOR CONSTRUCTION MADE GROUND: SANDY CLAY
 C
 18.05.17
 SH
 For planning

 B
 09.05.17
 SH
 For planning

 A
 05.05.17
 SH
 For planning

 24.03.17
 SH
 For comment

 Rev
 Date
 Issued
 Amendment
 FIRM CLAY Status PLANNING SINCLAIR JOHNSTON Consulting Civil & Structural Engineers 93 Great Suffolk Street London SE1 0BX T: 020 7593 1900 F: 020 7593 1910 www.sinclairjahnstan.co.uk 51 Gloucester Crescent NW1 Proposed Section A-A Drawn S Hill Scole 1:25 ot A1 Project No./Drawing No. Rev 8761/030T С

Sinclair Johnston and Partners Limited

93 Great Suffolk Street London SE1 0BX

t. 020 7593 1900f. 020 7593 1910email@sinclairjohnston.co.ukwww.sinclairjohnston.co.uk