Basement Impact Assessment

Property Details 51 Lancaster Grove London NW3 4HB

Client Information: The Basement Design Studio Suite 17 Maple Court Grove Park White Waltham Berkshire SL6 3LW

Structural Design Reviewed by	Above Ground Drainage Reviewed by
Chris Tomlin	Phil Henry
MEng CEng MIStructE	BEng MEng MICE
Hydrogeology Report	Land Stability Report
(Separate Report)	(Separate Report)
Francis Williams	Francis Williams
CGeol	<u>CGeol</u>

Revision	Date	Comment
-	<u>Dec'17</u>	First Issue
LABC Pregional winner 2013 awards	onstructionline	The Institution of Structural Engineers

Croft Structural Engineers Clock Shop Mews Rear of 60 Saxon Road London SE25 5EH

T: 020 8684 4744 E: <u>enquiries@croftse.co.uk</u> W: <u>www.croftse.co.uk</u>

Contents

E۶	ecutive (non-technical) Summary	3
	Existing Property	3
	Proposed Development	3
	Stage 1 – Screening	4
	Stage 2 – Scoping	4
	Stage 3 – Site Investigation and Study	4
	Stage 4 – Impact Assessment	5
1.	Screening Stage	6
	Land Stability	6
	Subterranean Flow	6
	Surface Flow and Flooding	6
2.	Scoping Stage	9
	Land Stability	9
	Subterranean Flow	9
	Surface Flow & Flooding	9
	Conceptual Model	9
3.	Site Investigation and Desk Study	.10
	Desk Study and Walkover Survey	.10
	Proposed Development	.14
	Listed Buildings and Conservation Areas	.15
	Local topography & external features	.15
	Geology	.15
	Highways & public footpaths	.16
	London Underground and Network Rail	.16
	UK Power Networks	.16
	Proximity of Trees	.16
	Adjacent Properties	.17
	49 Lancaster Grove – Property to Left	
	53 Lancaster Grove – Property to Right	
	Monitoring, Reporting and Investigation	
	Ground Investigation	

Land Stability	20
4. Basement Impact Assessment	21
Subterranean Flow	21
Land Stability	21
Conservation and Listed Buildings	21
Surface water flow and flooding	21
Flood Risk Assessment	21
Drainage Assessment	22
Hard standing	22
SUDS Assessment	22
Ground Movement Assessment & Predicted Damage Category	22
Mitigation Measures Ground Movement	23
Monitoring of Structures	24
Risk Assessment	24
Basement Design & Construction Impacts and Initial Design Considerations	25
Foundation type	25
Intended use of structure and user requirements	25
Loading Requirements (EC1-1)	25
Part A3 Progressive collapse	25
Lateral Stability	26
Stability Design	26
Lateral Actions	26
Retained soil Parameters	26
Water Table	26
Additional loading requirements	27
Mitigation Measures -Internal Flooding	27
Mitigation Measures -Drainage and Damp-proofing	28
Mitigation Measures -Localised Dewatering	28
Temporary Works	29
Noise and Nuisance Control	30
CTMP	30
Appendix A: Structural Calculations	31
Appendix B: Construction Sequence and Plans	33
Appendix C: Structural Drawings	34

Executive (non-technical) Summary
	The London Borough of Camden requires a Basement Impact Assessment (BIA) to be prepared for developments that include basements and lightwells. This document forms the main part of the BIA and gives details on the impact of surface water flow. The scheme design for the proposed subterranean structure is also included.
	This document should be used in conjunction with the Groundwater BIA (Nov 2017, Ref. GWPR228351). These is separate reports and are referred to, where relevant, within this document.
	This BIA follows the requirements contained within Camden Council's planning guidance CGP4 – Basements and Lightwells (2015). In summary, the council will only allow basement construction to proceed if it does not:
	 cause harm to the built or natural environment and local amenity result in flooding lead to ground instability.
	In order to comply with the above clauses, a BIA must undertake five stages detailed in CPG 4. This report has been produced in line with Camden planning guidance and associated supporting documents such as CPG1, DP23, DP26, DP25 and DP27. Technical information from 'Camden geological, hydrogeological and hydrological study - Guidance for subterranean development', Issue 01, November 2010 (GSD, hereafter) was also used and is referred to in this assessment.
Existing Property	The existing property is a four-storey + basement detached residential property. Superstructure is built from traditional building materials (brickwork and timber) and the existing basement is built of reinforced concrete. There is a car park space at the front and a large garden at the back.
	In 2007 a part basement was constructed
Proposed Developmen †	The proposed development involves the extension of the existing basement. This will include a front and a rear lightwell. An approximate outline of the construction area is shown below. In addition to the basement area, this also includes areas that are likely to be temporarily occupied for construction purposes.

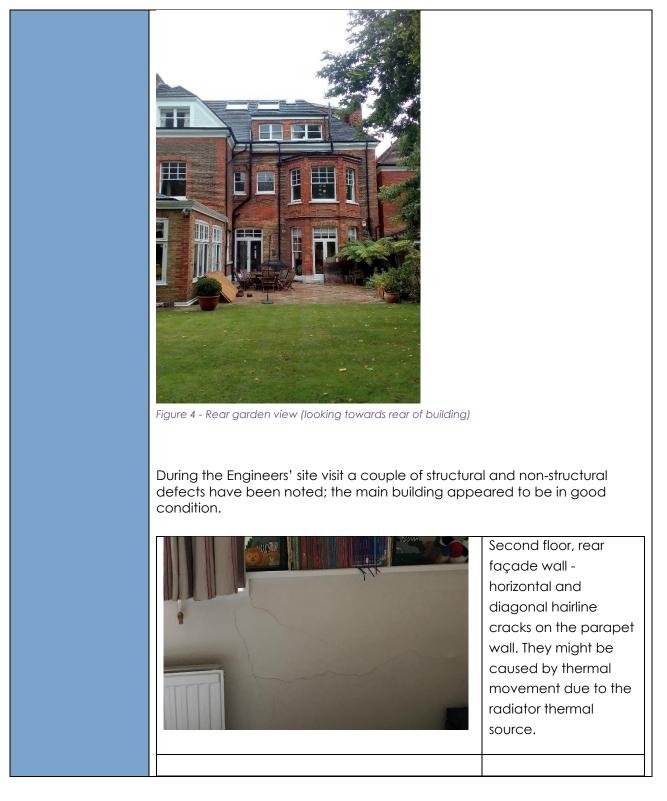
	<image/>
Stage 1 – Screening	Screening identified areas of concern and concluded a requirement to proceed to a scoping stage for the potential impacts relating to Land Stability, Hydrogeology, Surface Water and Flooding
Stage 2 – Scoping	The Scoping stage identified the potential impacts and set the parameters required for further study of the areas of concern highlighted in the Screening phase.
	A desk survey was completed by an engineer. The information from this was utilised to formulate the requirement for a ground, geology and hydrogeology investigation.
Stage 3 – Site Investigation and Study	A structural engineer inspected the building to determine the current condition of the property.
	Visual inspections were completed of the adjacent properties to determine if there were signs of structural movement.
	The neighbouring land has not been excavated on, but an engineer has assessed the age of the adjacent properties and considered the type of foundations used for that period and assumed these in the design.
	A ground investigation with deep boreholes has been completed.

	 Soils of the London Clay Formation were encountered underlying the Made Ground .The soils comprised a grey-brown and orange-brown mottled (locally sandy) silty clay. Sand is fine to medium grained. Rare selenite crystals and claystone fragments noted throughout, claystone band noted from 6.50m bgl in BH1. Laboratory testing was undertaken on the soil samples. Ground water has been measured over repeat visits to determine water levels and flows. No water present in the boreholes.
Stage 4 – Impact Assessment	Land Stability The Geologist has concluded that the basement will not make the area unstable.
	The movement assessment of the basement and its construction 'Negligible' to 'Slight' on the Burland scale.
	In terms of building damage assessment and with reference to Table 2.5 of C580 (after Burland et al, 1977), the 'Description of typical damage' given the calculated movements it was likely that the damage assessment for the adjacent properties fell into Category 1 'Very Slight Damage' to Category 0, 'Negligible Damage'. Calculations for the potential damage at each property can be seen within Appendix G of the 51 Lancaster Grove, London Ground Investigation Report.
	Hydrogeology No groundwater was encountered during the investigation. Return site visits conducted on the 27th October and 3rd November 2017 by a Ground and Water Limited Technician, to measure groundwater levels, revealed a dry borehole in the well installed to 5.00m bgl in BH1. Therefore, it was considered unlikely that the basement would be constructed below the groundwater level and the cumulative effects of basements in groundwater is not a consideration at this site. However, significant perched groundwater was likely to be encountered during construction, especially after a period of excessive rainfall.
	In relation to the basement, once constructed, the Made Ground will act as a slightly porous medium for water to migrate and additional drainage should be considered as the London Clay Formation will act as a barrier for groundwater migration.
	Drainage & Surface Water Flow The lightwells formed to the front and rear of the north-western basement extension will create new area of hardstanding. Draining these lightwells, possibly via sumps, will need to be taken into account in final design.
	Soakaway construction within the cohesive soils of the London Clay Formation is unlikely to prove satisfactory due to negligible to low anticipated infiltration rates. Therefore an alternative method of surface water disposal is required.

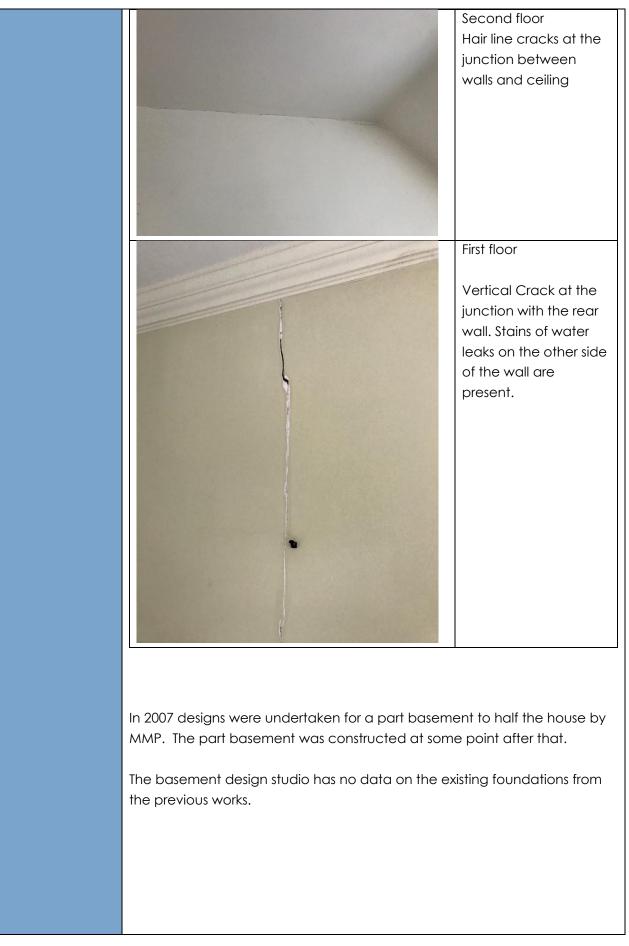
1. Screeni	ng Stage
	This stage identifies any areas for concern that should be investigated further.
Land Stability	Refer to the Groundwater BIA (Nov 2017,Ref. GWPR228351)
Subterranean Flow	Refer to the Groundwater BIA (Nov 2017,Ref. GWPR228351)
Surface Flow and Flooding	The questions below are taken from the Camden CPG 4 – Basements and Lightwells.
	Question 1: Is the site within the catchment of the pond chains on Hampstead Heath?
	Figure 2: Extract from Figure 14 of the GSD (site lies to the south of the shaded areas)

-		te drainage, will surface water flows off) be materially changed from the
	s before: wate	n the proposed development will be er is and will be collected from hard drainage system.
Question 3. Will the prop the hard surfaced /pave		ent development result in a change to eas?
No. The amount of harc		
	g term) of surfo	ent result in changes to the inflows ace water being received by adjacent es?
	n the site. This	adjacent properties and downstream is will remain the case with the
		ent result in changes to the quality of acent properties or downstream
		rom building roofs and paving, as ived downstream will therefore not
according to either the Strategic Flood Risk Ass	Local Flood Ri essment or is i basement is b	tified to have surface water flood risk sk Management Strategy or the t at risk from flooding, for example elow the static water level of nearby summarised below:
Potential Source	Potential Flood Risk at site?	Justification
Fluvial flooding	No	EA Flood Mapping Shows Flood Zone 1. Distance from nearest surface watercourse >1km
Tidal flooding	No	Site location is 'inland' and topography > 40mAOD.

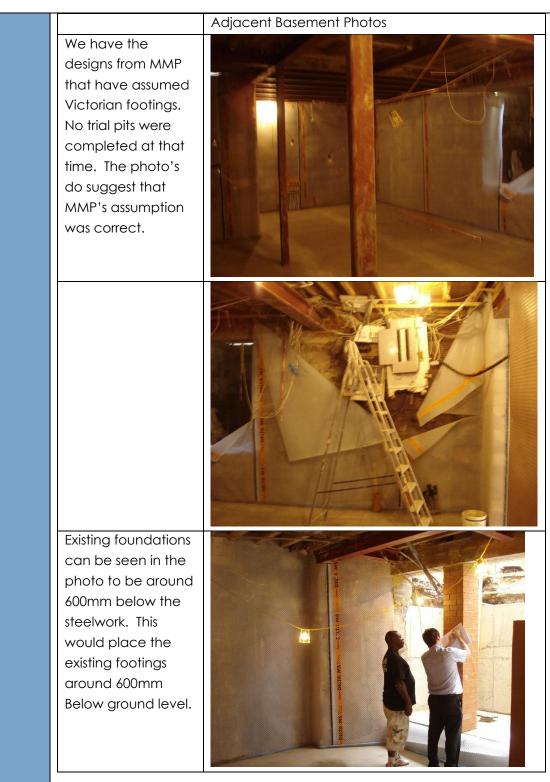
Flooding from rising / high groundwater	No	The site is located on low permeability London Clay.
Surface water (pluvial) flooding	No	51 Lancaster Grove London NW3 4HB is not on the flood street list and maps from 1975 or 2002
Flooding from infrastructure failure	Yes	Drainage at or near the site could potentially become blocked or cracked and overflow or leak. Drainage of the basement terrace areas may rely on pumping.
Flooding from reservoirs, canals and other artificial sources	No	There are no reservoirs, canals or other artificial sources in the vicinity of the site that could give rise to a flood risk.
floodplain or flood warning Hydrological Study revealed th	area. Figure 15 at Lancaster Grove	showed that the site was not situated within a the Camden Geological, Hydrogeological and immediately south of the site suffered surface). Lancaster Drive ~120m to the west was affected
A flood risk assessment is	not required	for this site.



2. Scoping	y Stage
	This stage identifies the potential impacts of the areas of concern highlighted in the Screening phase.
Land Stability	Refer to the Groundwater BIA (Nov 2017,Ref. GWPR228351)
Subterranea n Flow	Refer to the Groundwater BIA (Nov 2017,Ref. GWPR228351)
Surface Flow & Flooding	Conceptual Model The lightwells formed to the front and rear of the north-western basement extension will create new area of hardstanding. Draining these lightwells, possibly via sumps, will need to be taken into account in final design. Soakaway construction within the cohesive soils of the London Clay Formation is unlikely to prove satisfactory due to negligible to low anticipated infiltration rates. Therefore an alternative method of surface water disposal is required.



This section identifies the relevant features of the site and its immediate surroundings, providing further scoping where required. Desk Study and Walkover Survey Site & Existing Property
Figure 3 - Front facadeA structural engineer from Croft visited the property on 08 Sep 2017.The site comprises a four storey residential property with a rear garden. Paving is present to the front and rear of the property. A significant portion of the rear garden is soft-landscaped. The building is approximately 120 years old and is built from traditional building materials (brickwork and timber.The property is fully detached. At the left-hand side of the property the next-door house is positioned at 1.2m off the side wall.The land within the site boundary is relatively flat.



Trees and Vegetation

The front garden is populated on the edges with shrubs and small plants. The rear garden has herbs, shrubs on the edges and trees at the rear in the garden. This is described in more detail later in this section.

	<u>Site Drainage</u>
	Rain water pipes discharge into the existing sewer.
Proposed Development	The proposed development involves the extension of the existing basement. This will include a front and a rear lightwell. An approximate outline of the construction area is shown below. In addition to the basement area, this also includes areas that are likely to be
	temporarily occupied for construction purposes.
	ancaster Grove Crove Crove<
	Croft Structural Engineers Ltd has extensive knowledge of constructing new basements. Over the last 10 years Croft Structural Engineers has been involved in the design of over 500 basements in and around London. The method to be utilised at 51 Lancaster Grove is:
	1. Excavate front to allow for start of underpinning.
	2. Safely and securely support the existing building above
	3. Slowly work from the front to the rear inserting narrow cantilevered retaining walls sequentially using well developed and understood underpinning methods.
	4. Prop across the width of the basement, excavate central soil "dumpling"

	5. Place reinforcement and cast basement slab	
	6. Waterproof internal space with a drained cavity system. For further details of the architectural design, refer to the Architects drawings.	
Listed Buildings and Conservation Areas	The existing building is not listed. Data from Historic England shows that there are no listed buildings close by. The site is in the Belsize Park conservation area. ^{51 Lancaster Grove London NW3 4HB} ^{conservation} Camden ^{conden}	
Local topography & external features	Lancaster Grove is a public road, which runs past the front of the property. The area surrounding the property is relatively flat. Landscaping is made of hard surface at the front of the property and partial at the rear, the rest of the garden is green surface. Two drains collection points are present at the rear of the house discharging surface water collected from the building into the existing sewer. The walk over survey has confirmed that there are no surface water features (natural or man-made) within the site or on the adjacent sites.	
Geology	Refer to the Ground Investigation report and the Hydrogeological and Land Stability assessment. the Groundwater BIA (Nov 2017,Ref. GWPR228351)	

Highways & public footpaths	The site is not within 5m of the public highway.
London Underground and Network Rail	The site is more than 50m away from the nearest national rail line and the nearest subterranean train line. These are unlikely to be affected by the new basement.
UK Power Networks	There are no significant items of electrical infrastructure (such as pylons or substations) in the immediate vicinity.
Proximity of Trees	There are trees close by, in the neighbouring land, and in the rear garden. The closest tree is more than 15m away from the outline of the proposed basement.
	BS 5837: 2005 Trees in relation to construction estimates the root protection area (RPA) equivalent to a circle with a radius12 times the stem diameter. Based on the diameter of the tree as being 400mm, the diameter of this circle would be 4.8m. These would not be affected by a basement that is 15m away.

	Adjacent Properties
	The external facades of the neighbouring properties have been inspected.
	1 Just stratter
	4305 M
	that had my
	BM_58.97m
	58.4m+ LANCASTER GROVE
	A SKOVE
	-J 024
	$\neg \neg $
	Figure 6: Plan view of site (approx. area outlined in red) and the surrounding properties
	Descriptions of the properties below are given in an anti-clockwise order
	starting from the neighbouring land to the north.
49 Lancaster	Property age: mid-Victorian (~150 years old)
Grove –	Property user residential
Property to Left	Property use: residential
	Number of storeys: the property three storeys high above ground level.
	Is a basement present? : NO. A search on Camden Council's
	website show that there is no basement present.

	Figure 7: Front view of 49 Lancaster Grove Structural Defects Noted: None noted Structural assessment of ongoing movement: from observing the external façade of the building, there were no visible signs of movement.
53 Lancaster Grove –	Property age: mid-Victorian (~150 years old) Property use: residential
Property to Right	Number of storeys: the property is three storeys high above ground level. Is a basement present? : No. A search on Camden Council's website show that there is no basement present.

Figure 8: Front of 53 Lancaster grove Structural Defects Noted: None noted Structural assessment of ongoing movement: from observing the external façade of the building, there were no visible signs of movement.
Monitoring, Reporting and Investigation The ground investigation report, which has data from initial site investigations and data from subsequent monitoring, is available as a separate report.

Ground Investigation	
Ground Investigation Brief	The ground investigation was completed by [Ground & Water Ltd]. Groundwater BIA (Nov 2017,Ref. GWPR228351) From the Scoping Stage, Croft considered that their brief should cover:
	 One trial pit to confirm the extent of the existing foundations. The purpose is to consider the effect of the works on the neighbouring properties and the find the ground conditions below the site.
	 Two borehole to a depth of 6.5m below ground level (i.e. more than twice the depth of the proposed basement).

 Stand pipe to be inserted to monitor ground water; record initial strike and the water level after 1 month.
 Site testing to determine insitu soil parameters. SPT testing to be undertaken.
 Laboratory testing to confirm soil make up and properties.
 The Historic maps and walk over survey did not highlight any significant contamination sources, therefore no site test of the ground has been requested.
Factual report on soil conditions.
Interpretative reports
Calculation of bearing pressures from SPT.
 Indication of Ø (angle of friction) from SPT.
Indication of soil type
Refer to the ground investigation report by Ground & Water Ltd, which is submitted as a separate document. Data relevant to land stability and subterranean flow is examined separate documents.

Land Stability	Refer to the Groundwater BIA (Nov 2017,Ref. GWPR228351) for land stability issues addressed to Stage 3.
Subterranean Flow	Refer to the Groundwater BIA (Nov 2017,Ref. GWPR228351) for hydrogeological issues addressed to Stage 3.
Surface Flow & Flooding	A walk over survey has confirmed that there are no surface water features, either within or close to the site. The survey has also confirmed that the site is covered with hard surfaces. Rainwater from these surfaces is likely to flow in the direction of the slope of the surrounding area. This will be towards Lancaster Road, which is drained by gullies. Refer to the Ground & Water BIA dated Nov'2017 (appended) for additional information on issues relating to surface water and flooding.

4. Basement Impact Assessment	
Subterranean Flow	Refer to the Groundwater BIA (Nov 2017,Ref. GWPR228351): conclusions are stated in the Executive Summary.
Land Stability	Refer to the Groundwater BIA (Nov 2017,Ref. GWPR228351): conclusions are stated in the Executive Summary.
Conservation and Listed Buildings	If the property is in a conservation area, or it is listed then management plan for demolition and construction may be needed. This is not included in this BIA document and is not within Croft Structural Engineer's brief.
Surface water flow and flooding	There is a risk of flooding due to the failure of the pumping system, but this can be reduced to acceptable levels with appropriate design and installation measures. Measures to mitigate this risk are described later under 'Initial Design Considerations'.

Flood Risk Assessment

Examination of the Environment Agency records showed that the site was not situated within a floodplain or flood warning area. Figure 15 the Camden Geological, Hydrogeological and Hydrological Study revealed that Lancaster Grove immediately south of the site suffered surface water flooding in 1975 (see Figure 14 of this report). Lancaster Drive ~120m to the west was affected by flooding in 2002.

Refer to the Ground & Water BIA dated Nov'2017 (separate document):

Drainage Assessment		
Hard standing	Existing Hard Standing Proposed Hardstanding Percentage Increase in hard standing	= 154 m ² = 154 m ² = 0 %
SUDS Assessment	SUDS is currently achieved by the permeable landscaping in the rear garden. There is no increase in hard-standing; additional SUDS proposals would therefore be out of proportion to the changes in surface water drainage.	

Ground Movement Assessment & Predicted Damage Category

The design and construction methodology aim to limit damage to the existing building on the site, and to the neighbouring buildings, to Category 2 or lower as set out in Table 2.5 of CIRIA report C580. For this development, suitable temporary propping during the construction phase will limit the amount of movement due to the basement works. This is described in the Basement Method Statement (appended).

The ground movement assessment is contained within the Ground & Water BIA dated Nov'2017 (appended)

Mitigation Measures Ground Movement

A method statement, appended, has been formulated with Croft's experience of over 500 basements completed without error. As mentioned previously, the procedures described in this statement will mitigate the impacts that the construction of the basement will have on nearby properties.

The works must be carried out in accordance with the Party Wall Act and condition surveys will be necessary at the beginning and the end of the works. The Party Wall Approval procedure will reinforce the use of the proposed method statement and, if necessary, require it to be developed in more detail with more stringent requirements than those required at planning stage.

It is not expected that any cracking will occur in nearby structures during the works. However, Croft's experience advises that there is a risk of movement to the neighbouring property.

To reduce the risk to the development:

- Employ a reputable firm that has extensive knowledge of basement works.
- Employ suitably qualified consultants Croft Structural Engineers has completed over 500 basements in the last five years.
- Provide method statements for the contractors to follow
- Investigate the ground this has now been done.
- Record and monitor the properties close by. This is completed by a condition survey under the Party Wall Act, before and after the works are completed. Refer to the end of the appended Basement Construction Method Statement.

With the measures listed above, the maximum level of cracking anticipated is 'Hairline' cracking. This can be repaired with normal decorative works. Under the Party Wall Act, minor damage, although unwanted, can be tolerated it is permitted to occur to a neighbouring property as long as repairs are suitability undertaken to rectify this. To mitigate this risk, the Party Wall Act is to be followed and a Party Wall Surveyor will be appointed.

Monitoring of Structures		
	In order to safeguard the existing structures during underpinning and new basement construction, movement monitoring is to be undertaken.	
Risk	Monitoring Level proposed Type of Works.	
Assessment	Monitoring 4Visual inspection and production of condition survey by Party WallSurveyors at the beginning of the works and at the end of the works.Visual inspection of existing party wall during the works.Inspection of the footing to ensure that the footings are stable and adequate.Vertical monitoring movement by standard optical equipment Lateral movementsLateral movements	
	 Before the works begin, a detailed monitoring report is required to confirm the implementation of the monitoring. The items that this should cover are: Risk Assessment to determine level of monitoring Scope of Works Applicable standards Specification for Instrumentation Monitoring of Existing cracks Monitoring of movement Reporting Trigger Levels using a RED / AMBER / GREEN System Recommend levels are shown within the proposed monitoring statement (appended).	

Basement Design & Construction Impacts and Initial Design	
Considerations	

Foundation type	Reinforced concrete cantilevered retaining walls will form the new foundation of the property.
TYPC	The design of the retaining walls was calculated using software by TEDDS. The software is specifically designed for retaining walls and ensures that the construction is kept to a limit to prevent damage to the adjacent property.
	The overall stability of the walls is designed using $K_a \& K_p$ values, while the design of the wall structure uses K_0 values. This approach minimises the level of movement from the concrete affecting the adjacent properties.
	The investigations highlight that water is not present. The walls are designed to resist the hydrostatic pressure. The design of the walls considers long term scenarios. It is possible that a water main may break causing a local high water table. To account for this, the wall is designed for water 1m from the top of the wall.
	The design also considers floatation as a risk. The design has accounted for the weight of the building and the uplift forces from the water. The weight of the building is greater than the uplift, resulting in a stable structure.
Intended use of structure and user requirements	Family/domestic use (1 dwelling)
Loading	UDL Concentrated
Requirements	kN/m²Load kNDomestic Single Dwellings1.52.0
(EC1-1)	
Part A3	Number of Storeys 4+basement
Progressive collapse	Is the Building Multi Occupancy? No
	Class 2A 5 storey single occupancy houses
	Change of use
	To NHBC guidance compliance is only required to other floors if a material change of use occurs to the property.

	Initial Building Class 2A
	Proposed Building Class 2A
	If class has changed material No
	change has occurred
Lateral Stability	The above ground structure will be transfer the loads to the ground by shear masonry walls and masonry piers. The retaining walls will resist the lateral pressures below ground level.
Stability Design	The cantilevered walls are suitable for carrying the lateral loading applied from above.
Lateral Actions	Below ground level, the reinforced concrete retaining walls are designed to carry the lateral loading applied from above.
	The lateral earth pressure exerts a horizontal force on the retaining walls. The retaining walls will be checked for resistance to the overturning force this produces.
	 Lateral forces will be applied from: Soil loads Hydrostatic pressures Surcharge loading from behind the wall
	This produce retaining wall thrust. This will be restrained by the opposing retaining wall.
Retained soil Parameters	Design overall stability to $K_{\alpha} \& K_{p}$ values. Lateral movement necessary to achieve K_{α} mobilisation is height/500 (from Tomlinson). This is tighter than the deflection limits of the concrete wall.
Water Table	Has a soil investigation been carried out? Yes
	Known water table from boreholes
	Design temporary condition for water table level, If deeper than basement ignore.
	Design permanent condition for water table level: If deeper than existing, design reinforcement for water table at full basement depth to allow for local failure of water mains, drainage and storm water. Global uplift forces can be ignored when the water table is lower than the basement. BS8102 only indicates guidance.

Additional loading	Surcharge Loading
requirements	The following will be applied as surcharge loads to the front/ front lightwell retaining walls:
	 10kN/m² if within 45° of road 100kN point loads if under road or within 1.5m 5kN/m² if within 45° of Pavement Garden Surcharge 2.5kN/m² + 1 m of soil (if present above basement ceiling) 20kN/m² Surcharge for adjacent property 1.5kN/m² + 4kN/m² for concrete ground bearing slab
	<u>Highways loading:</u> The basement is within 5m of the pavement but not within 5m of the public highway.
	Adjacent Properties: All adjacent property footings within 45° to have additional geotechnical engineers input. A line at 45° from the base of the neighbours' wall footing would be intersected by the basement retaining wall. This should be accounted for in the design.
	The appended calculations show the design of one of the most heavily loaded retaining wall. The most critical parameters have been used for this.
Mitigation Measures - Internal Flooding	As described in previous sections, there are no significant risks of flooding besides those that are inherit in the construction of all subterranean structures, such as flooding due to unexpected failure of the drainage, water mains, etc. Croft would recommend the following measures to reduce these risks:
	 A pumping mechanism will be installed for the proposed basement. There is a likelihood that this may fail and allow excess water to accumulate. If this were to occur, the build-up of water would be gradual and noticeable before it becomes a significant life-threatening hazard.
	 Install a dual pumping system to maintain operation in the event of a failure. This should include a battery backup and a suitable alarm system for warning purposes.
	• To reduce the impact of surface water flooding, sustainable drainage systems such as on-site attenuation should be considered at detailed design stage.

Mitigation Measures - Drainage and Damp- proofing	 The design of drainage and damp-proofing is not within the scope of this assessment and would not normally be expected to be part of the structural engineer's remit at detailed design stage. A common and anticipated detailed design stage approach is to use internal membranes (Delta or similar). These will be integral to the waterproofing of the basement. Any water from this will enter a drainage channel below the slab. This will be pumped and discharged into the exiting sewer system. It is recommended that a waterproofing specialist is employed to ensure all the water proofing requirements are met. The waterproofing specialist must name their structural waterproofer. The structural waterproofer must inspect the structural details and confirm that he is happy with the robustness. Due to the segmental construction nature of the basement, it is not possible to water proof the joints. All waterproofing must be made by the waterproofing specialist. He should review the structural engineer's design stage details and advise if water bars and stops are necessary. The waterproofing designer must not assume that the structure is watertight. To help reduce water flow through the joints in the segmental pins, the following measures should be cleaned of all debris and detritus Faces between pins should be needle hammered to improve key for bonding All pipe work and other penetrations should have puddle flanges or hydrophilic strips
Mitigation Measures - Localised Dewatering	Monitor water levels 1 month prior to starting on site and throughout the construction process. Localised dewatering to pins may be necessary.

Temporary Works	Walls are designed to be temporarily stable. Temporary propping details will be required for the ground and this must be provided by the contractor. Their details should be forwarded to the design stage engineer.
	Particular attention should be paid to point loads from above.
	Critical areas where point loads are present from above include: Cross walls Chimney Stacks Door openings
	To demonstrate the feasibility of the works, a proposed basement construction method statement is appended.
	The land stability BIA expressed concern over groundwater that might by present during construction, in particular the potential for this to wash away fines in the soil. The majority of the basement will be excavated within the London Clay. Any groundwater seepage will be slow due to the low permeability of the clay. The groundwater in this soil can therefore be suitably controlled [eg. by sump pumping]. Full height excavations will be necessary to form the front light-well. This might involve exposing sand and gravel above the clay. The highest level of water is not much greater than the top level of the clay. Groundwater is therefore unlikely to cause significant removal of sands. However, it would be prudent to limit the size of the underpins in this area to reduce the likelihood of this. This is proposed in the land stability BIA. Segmental retaining wall construction is shown in drawing SL-10 [Appendix C]. Groundwater monitoring is proposed. Before excavation of the front light-well if the groundwater level falls below the top of the clay.

Noise and Nuisance Control	The contractor is to follow the good working practices and guidance laid down in the 'Considerate Constructors Scheme'.
Connor	The hours of working will be limited to those allowed; 8am to 6pm Monday to Friday and Saturday Morning 8am to 1pm.
	None of the practices cause undue noise that one would typically expect from a construction site (a conveyor belt typically runs at around 70dB).
	The site has car parking to the front to which the skip will be stored.
	The site will be hoarded with 8' site hoarding to prevent access.
	The hours of working will further be defined within the Party Wall Act.
	The site is to be hoarded to minimise the level of direct noise from the site.
	The ground floor slab is not being removed, minimising the vibration and sound to adjacent properties. Working in the basement generally requires hand tools to be used. The level of noise generally will be no greater than that of digging of soil. The noise is reduced and muffled by the works being undertaken underground. The level of noise from basement construction works is lower than typical ground level construction due to this.
СТМР	The council may require a Construction Traffic Management Plan (CTMP) to be produced. This is outside the brief of the Basement Impact Assessment and is not covered within Croft's brief.
	A CTMP would normally be required if the site is, or is adjacent to a listed building or is in a conservation area. This site is under conservation area.

Appendix A: Structural Calculations

CPG4 section 5 highlights that other permits and requirements will be necessary after planning. Item 5.1 highlights that Building Regulations will be required. As part of the building control pack full calculations must be undertaken and provided at detailed design stage once planning permission is granted. The calculations must be completed to a recognised Standard (BS or Euro Codes). The calculations must take into account the findings of this report and the recommendations of the auditors.

The design must resist:

- Vertical loads from the proposed works and adjacent properties
- Lateral loads from wind, soil water and adjacent properties
- Loadings in the temporary condition
- All other applied loads on the building
- Uplift forces from hydrostatic effects and soil heave

The final proposed scheme must:

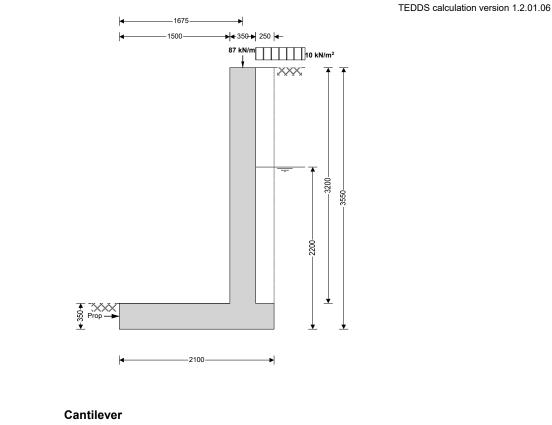
- Provide stability in the temporary condition to all forces
- Provide stability to all forces in the permanent condition

As part of the planning Croft structural engineers has considered some of the pertinent parts of the basement structure to ensure that it can be constructed. The following calculations are not a full set of calculations for the final design which must be provided for building regulations. The structural calculations we consider pertinent and included in this appendix for this development are:

- 1. Front basement foundation & retaining wall with highways loading as necessary
- 2. Party Wall foundation and retaining wall

Engineering Information Sheet

	Project: 51	Lancaster Grove	;	Section	Sheet
STRUCTURAL ENGINEERS	Date	Sep-17	Rev Date	Description	
Clock Shop Mews Rear of 60 Saxon Road		LI			
London SE25 5EH T: 020 8684 4744	Checked Job No		Status		Rev
1: 020 8684 4744 W: www.croffse.co.uk	JOD NO 17	0901	sidius		KOY
Uplift and Heav		ns.			
opini di di ledi	e odicolario	115			
Wall DL1 =	78 kN/m		Wall DL	2 78 kN/m	
Wall thickness = 0.	35 m				
	soil dept) m		
\longleftrightarrow		Span=	5 m	· •	
				Water (h _w)	= 3 m
		H	= 3 m		t
Heel= 0	Sidb Ir	slab = 2.0			
←→ 4		*	→↓		
		\$			
	Toe =	0.35 m			= 18 kN/m°
	Toewidth=	1.2 m		soil unit weight	= 18 KN/m ⁻
Uplift Calc					
Total Dead Load					
Slat	b= 22.75 kN	/m = slab thick	kness x slab weight x	25kN/m ³	
Toe and hee	l = 27.125 kN	/m = (heel len	gth + wall thickness +	toe length) x slab thicknes	s x 25kN/m ³ x 2No
RC Wal	l = 52.5 kN	/m = wall heig	ht above (from base) x wall thickness x 25kN/m ⁸	x 2No
Weight above wall	= 156 kN	/m = Wall DL1	+ Wall DL2		
Total Dead load	i = 258.375 kN	/m			
Total Uplift Force=	171 kN	/m = (wall this	kness + span + wall t	hickness) x h _w x 10kN/m ³	
F.o.3.=	1.51 No	Global Upliff			
Slab Uplift					401411 3
	Slab =	8.75 kN/m	Uplift =	30 kN/m	= n _w x 10kN/m ³
Se	rvice Moment =	-óó.4 kNm/m			
	esign moment=	-78.5 kNm/m			
Factored	d Design shear =	-62.8 kN/m			
Global Heave					
	ght of building =	258.375 kN/m			
Weight of	f soil removed =	307.8			
	% charge -	16%	place	16% of Slab area as heave p	rotection
width of hea	% change = ive protection =	0.92 m	place place	0.92 m of Slab area as heave p	

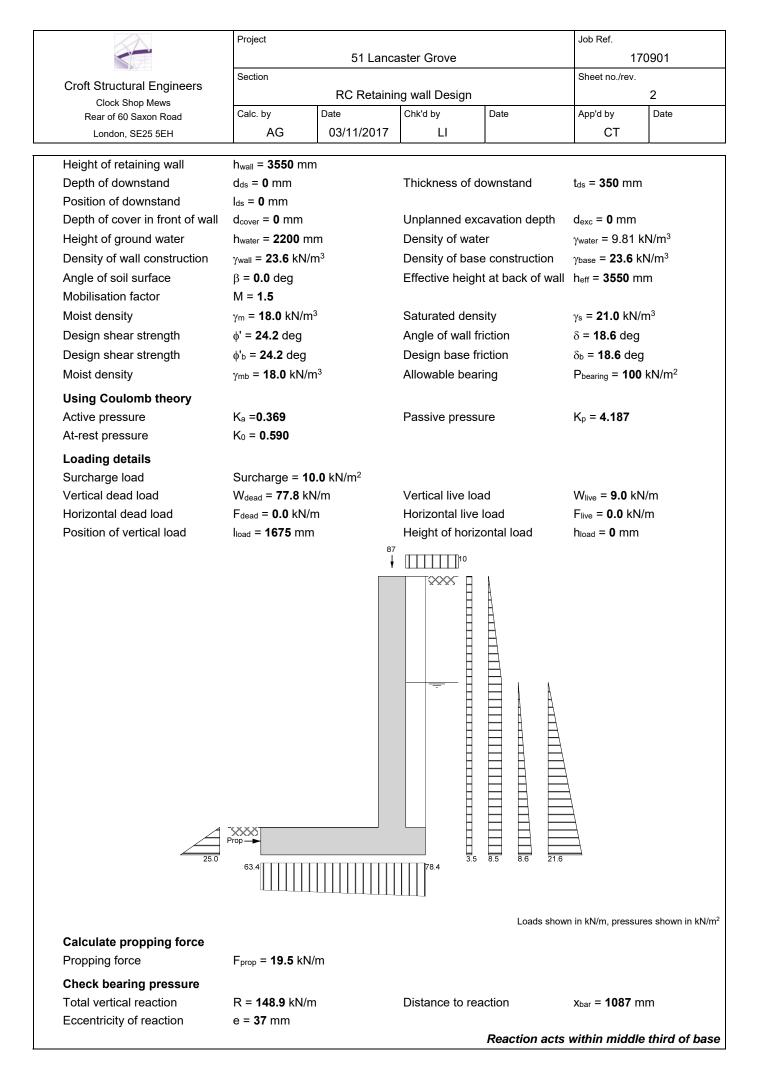

	Project				Job Ref.	
		51 Lanca	ster Grove		170	901
Croft Structural Engineera	Section				Sheet no./rev.	
Croft Structural Engineers Clock Shop Mews		RC Retainin	g wall Design			1
Rear of 60 Saxon Road	Calc. by	Date	Chk'd by	Date	App'd by	Date
London, SE25 5EH	AG	03/11/2017	LI		СТ	

SIDE WALL LOAD RUN DOWN AND DESIGN

Loading

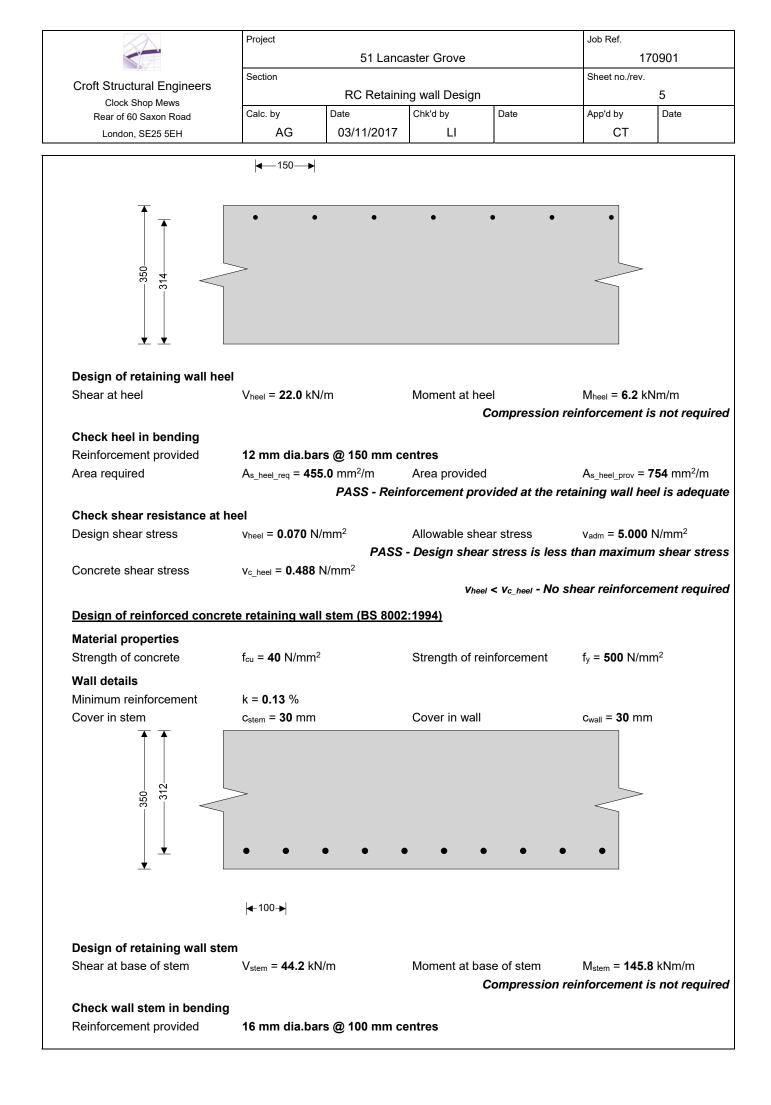
Dead load SW GF wall	DL1=7kN/m ² ×4.05m= 28.350 kN/m
Dead load SW FF wall	DL2=7kN/m ² ×3.20m= 22.400 kN/m
Dead load SW SF wall	DL3=7kN/m ² ×3.20m= 22.400 kN/m
Dead load ground floor	DL4=0.65kN/m ² ×5.00m/2= 1.625 kN/m
Dead load first floor	DL5=0.65kN/m ² ×5.00m/2= 1.625 kN/m
Dead load roof	DL6=0.95kN/m ² ×3.00m/2= 1.425 kN/m
Live load ground floor	LL1=1.50kN/m ² ×5.00m/2= 3.750 kN/m
Live load first floor	LL2=1.50kN/m ² ×5.00m/2= 3.750 kN/m
Live load first floor	LL3=0.60kN/m ² ×5.00m/2= 1.500 kN/m
Total Dead Load	TDL=DL1+DL2+DL3+DL4+DL5+DL6= 77.825 kN/m
Total Live Load	TLL=LL1+LL2+LL3 = 9.000 kN/m

RETAINING WALL ANALYSIS (BS 8002:1994)

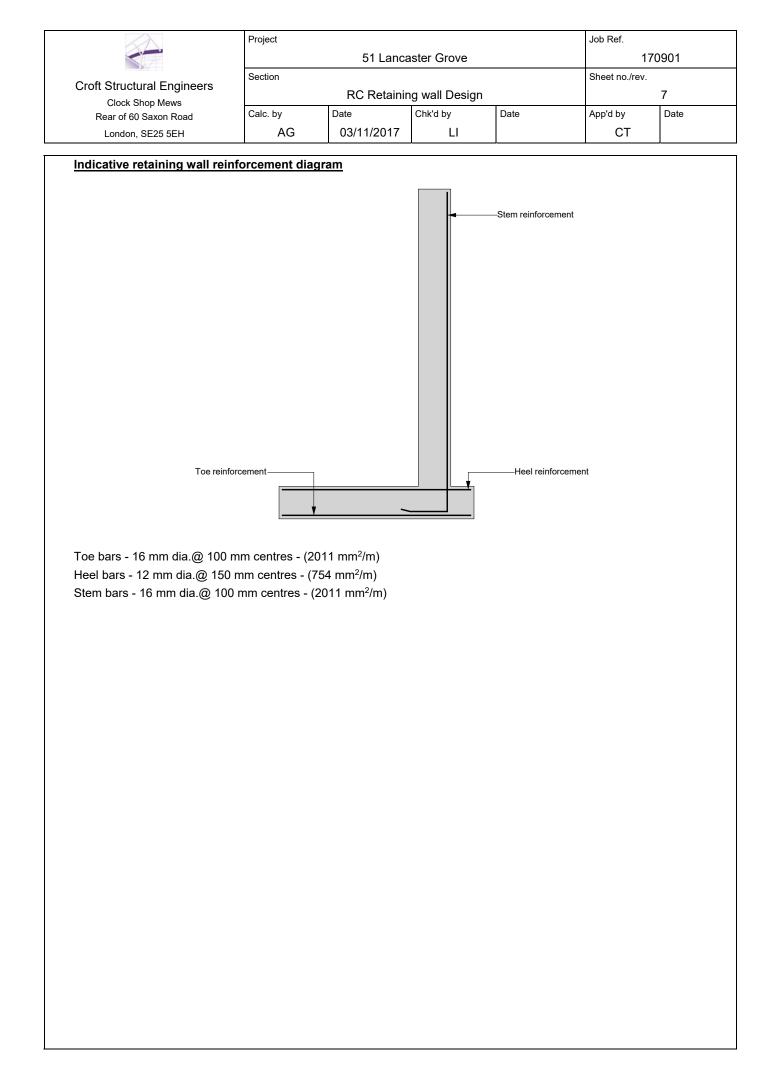

Wall details

Retaining wall type Height of wall stem Length of toe Overall length of base

h_{stem} = **3200** mm l_{toe} = **1500** mm I_{base} = **2100** mm


Wall stem thickness Length of heel Base thickness

t_{wall} = **350** mm I_{heel} = **250** mm t_{base} = **350** mm



		51 Lanca	aster Grove		1	70901
Croft Structural Engineers	Section				Sheet no./rev	
Clock Shop Mews	RC Retaining wall Design				3	
Rear of 60 Saxon Road	Calc. by	Date	Chk'd by	Date	App'd by	Date
London, SE25 5EH	AG	03/11/2017	LI		СТ	
Bearing pressure at toe	p _{toe} = 63.4 kt	N/m ²	Rearing proc	ssure at heel	p _{heel} = 78.4	kN/m ²
bearing pressure at toe						
	F	PASS - Maximum	bearing pres	sure is less u		anny pre

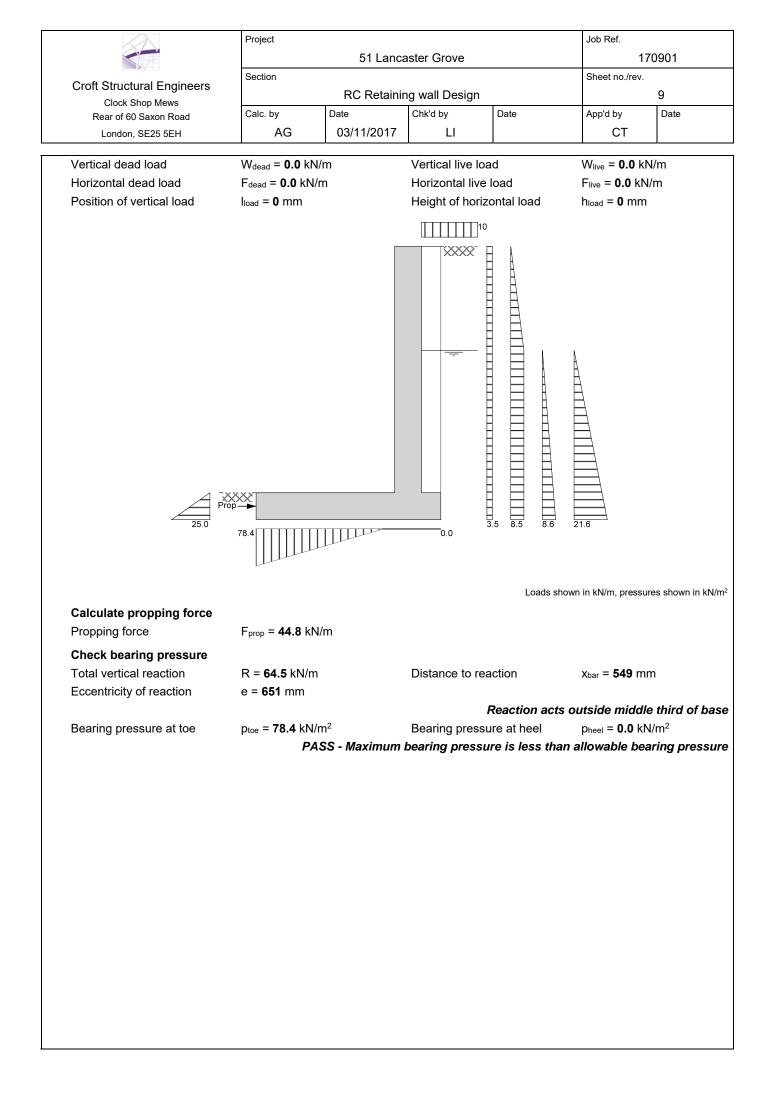
	51 Lancaster Grove				Job Ref. 170901	
Croft Structural Engineers	Section				Sheet no./rev	
Clock Shop Mews			ng wall Design	1		4
Rear of 60 Saxon Road	Calc. by	Date	Chk'd by	Date	App'd by	Date
London, SE25 5EH	AG	03/11/2017	LI		СТ	
RETAINING WALL DESIGN	l (BS 8002:1994)				TEDDS calculat	ion version 1.2.
Ultimate limit state load fac	ctors					
Dead load factor	γ _{f_d} = 1.4		Live load factor	r	γ _{f_l} = 1.6	
Earth pressure factor	$\gamma_{f_e} = 1.4$					
Calculate propping force						
Propping force	F _{prop} = 19.5 kN/r					
Design of reinforced concr	ete retaining wall t	toe (BS 8002:1	<u>1994)</u>			
Material properties Strength of concrete	f _{cu} = 40 N/mm ²		Strength of reir	forcomont	f _y = 500 N/r	mm ²
Base details	icu — 40 M/IIIII				iy — 300 IN/I	
Minimum reinforcement	k = 0.13 %		Cover in toe		c _{toe} = 30 m	m
	K - 0.13 /0					
→ 350- → 312	•••	• •	• • •	•	• •	
	● ● ● < 100->	• • •	• • •	•	• •	
Design of retaining wall too	1 1	• •	• • •	• (••	
	1 1	• • •	• •		• • • • • • • • • • • • • • • • • • •	
Design of retaining wall too Shear at heel	e	n •			• • • • • • • • • • • • • • • • • • •	
Design of retaining wall too Shear at heel Check toe in bending	e		С			
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided	e V _{toe} = 168.4 kN/i 16 mm dia.bars	a @ 100 mm co	C entres		reinforcement	t is not requ
Design of retaining wall too Shear at heel Check toe in bending	e V _{toe} = 168.4 kN/i	a @ 100 mm c o 3 mm²/m	С	compression	reinforcement A _{s_toe_prov} =	t is not requ 2011 mm ² /r
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided	e V _{toe} = 168.4 kN/r 16 mm dia.bars A _{s_toe_req} = 1390.	a @ 100 mm c o 3 mm²/m	C entres Area provided	compression	reinforcement A _{s_toe_prov} =	t is not requ 2011 mm ² /r
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required	e V _{toe} = 168.4 kN/r 16 mm dia.bars A _{s_toe_req} = 1390.	a @ 100 mm c a 3 mm ² /m <i>PASS - Rei</i> m ²	C entres Area provided nforcement pro Allowable shea	compression wided at the ar stress	reinforcement A _{s_toe_prov} = retaining wall _{Vadm} = 5.00	t is not requ 2011 mm²/r toe is adeq 0 N/mm²
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at	e V _{toe} = 168.4 kN/i 16 mm dia.bars A _{s_toe_req} = 1390. toe	a @ 100 mm cd 3 mm²/m <i>PASS - Rei</i> m² <i>PASS</i>	C entres Area provided nforcement pro	compression wided at the ar stress	reinforcement A _{s_toe_prov} = retaining wall _{Vadm} = 5.00	t is not requ 2011 mm²/r toe is adeq 0 N/mm²
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress	e V _{toe} = 168.4 kN/r 16 mm dia.bars A _{s_toe_req} = 1390. toe _{Vtoe} = 0.540 N/m	a @ 100 mm cd 3 mm²/m <i>PASS - Rei</i> m² <i>PASS</i>	C entres Area provided nforcement pro Allowable shea - Design shear	compression ovided at the ar stress stress is les	reinforcement A _{s_toe_prov} = retaining wall _{Vadm} = 5.00	t is not requ 2011 mm²/r toe is adeq 0 N/mm² un shear st
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress	e V _{toe} = 168.4 kN/i 16 mm dia.bars A _{s_toe_req} = 1390. toe _{V_{toe} = 0.540 N/m _{V_{c_toe} = 0.679 N/}}	a @ 100 mm co 3 mm²/m <i>PASS - Rei</i> m² <i>PASS</i> mm²	C entres Area provided nforcement pro Allowable shea - Design shear Vtoe	compression ovided at the ar stress stress is les	reinforcement A _{s_toe_prov} = retaining wall _{Vadm} = 5.00 s than maximu	t is not requ 2011 mm²/r toe is adeq 0 N/mm² un shear st
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress Concrete shear stress	e V _{toe} = 168.4 kN/i 16 mm dia.bars A _{s_toe_req} = 1390. toe _{V_{toe} = 0.540 N/m _{V_{c_toe} = 0.679 N/}}	a @ 100 mm co 3 mm²/m <i>PASS - Rei</i> m² <i>PASS</i> mm²	C entres Area provided nforcement pro Allowable shea - Design shear Vtoe	compression ovided at the ar stress stress is les	reinforcement A _{s_toe_prov} = retaining wall _{Vadm} = 5.00 s than maximu	t is not requ 2011 mm²/r toe is adeq 0 N/mm² un shear st
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress Concrete shear stress Design of reinforced concre	e V _{toe} = 168.4 kN/i 16 mm dia.bars A _{s_toe_req} = 1390. toe _{V_{toe} = 0.540 N/m _{V_{c_toe} = 0.679 N/}}	a @ 100 mm co 3 mm²/m <i>PASS - Rei</i> m² <i>PASS</i> mm²	C entres Area provided nforcement pro Allowable shea - Design shear Vtoe	compression ovided at the ar stress stress is less o < v _{c_toe} - No	reinforcement A _{s_toe_prov} = retaining wall _{Vadm} = 5.00 s than maximu	t is not requ 2011 mm²/r toe is adeq 0 N/mm² im shear st cement requ
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress Concrete shear stress Design of reinforced concer Material properties	e V _{toe} = 168.4 kN/i 16 mm dia.bars A _{s_toe_req} = 1390. toe v _{toe} = 0.540 N/m v _{c_toe} = 0.679 N/	a @ 100 mm co 3 mm²/m <i>PASS - Rei</i> m² <i>PASS</i> mm²	C entres Area provided nforcement pro Allowable shea - Design shear V _{toe} :1994)	compression ovided at the ar stress stress is less o < v _{c_toe} - No	reinforcement A _{s_toe_prov} = retaining wall _{Vadm} = 5.00 s than maximu shear reinforc	t is not requ 2011 mm²/r toe is adeq 0 N/mm² im shear st cement requ

$\langle \rangle$	Project				Job Ref.	
	-	51 Lanca	ster Grove		1	70901
	Section				Sheet no./rev.	
Croft Structural Engineers Clock Shop Mews		RC Retainir	ng wall Design			6
Rear of 60 Saxon Road	Calc. by	Date	Chk'd by	Date	App'd by	Date
London, SE25 5EH	AG	03/11/2017	LI		СТ	
Area required	As_stem_req = 113	0 E mm ² /m	Area provided		A	- 2011 mm ² /r
Area required	As_stem_req - 113		Area provided prcement prov	ided at the r	- As_stem_prov	= 2011 mm²/r e <i>m is adequ</i>
Check shear resistance at v	wall stom					
Design shear stress	v _{stem} = 0.142 N/r	mm ²	Allowable shea	ar stress	V _{adm} = 5.000	0 N/mm²
0					ss than maximu	
Concrete shear stress	vc_stem = 0.679 N	l/mm²				
			V _{stem} ·	< V _{c_stem} - No	shear reinforc	ement requi
Check retaining wall deflec						
Max span/depth ratio	ratio _{max} = 10.90		Actual span/de		ratio _{act} = 10	
				PASS - Sp	an to depth rati	o is accepta

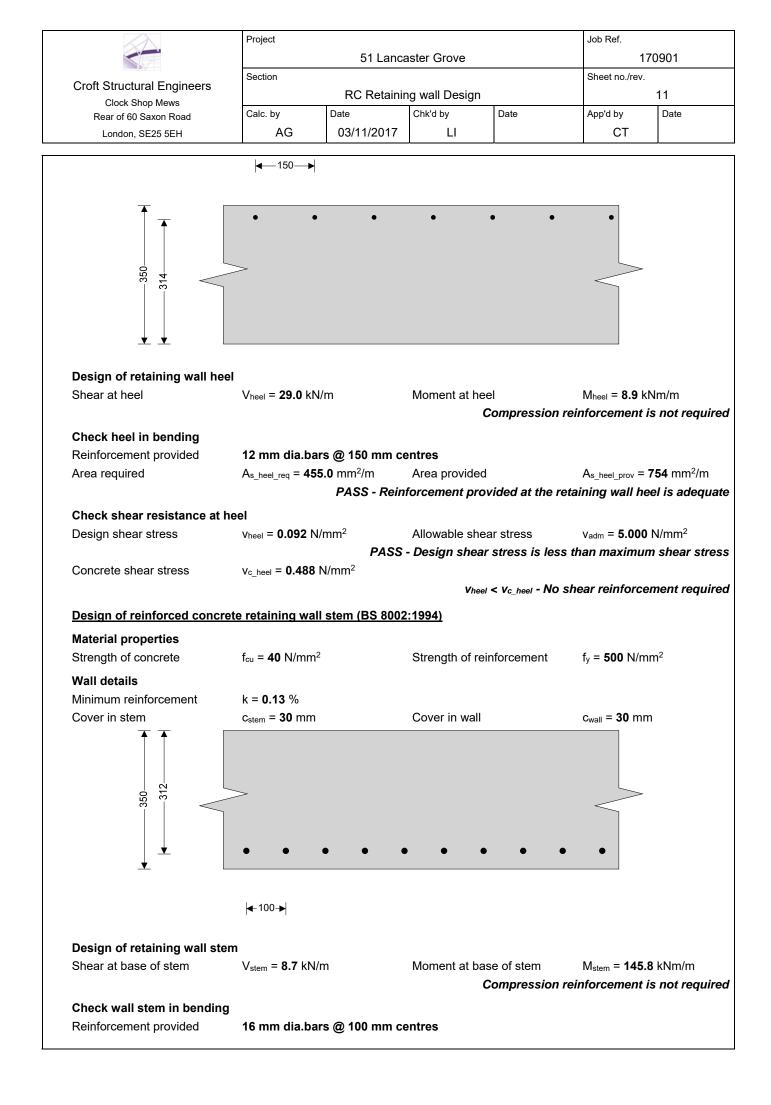
	Project				Job Ref.	
		51 Lanca	aster Grove		17	0901
Croft Structural Engineers	Section				Sheet no./rev.	
Clock Shop Mews		RC Retainir	ng wall Design			8
Rear of 60 Saxon Road	Calc. by	Date	Chk'd by	Date	App'd by	Date
London, SE25 5EH	AG	03/11/2017	LI		СТ	
WALL FRONT LIGHT	-WELL					
RETAINING WALL ANALYSI	S (BS 8002:1994))				
	<u> </u>	-	_▶ ∢350▶ 250 ∢		TEDDS calculatior	version 1.2.
		1000		10 kN/m²		
· · · · · · · · · · · · · · · · · · ·	log Prop →	2400		↓ ↓ 5200 ↓ ↓ ↓		
	Prop →	2400				
Wall details Retaining wall type	Age Prop → ↓	2400				
Wall details	◀		Wall stem thick		t _{wall} = 350 mn	n
Wall details Retaining wall type	l ∢ Cantilever		Wall stem thick Length of heel		t _{wall} = 350 mn I _{heel} = 250 mn	
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base	← Cantilever h _{stem} = 3200 mm I _{toe} = 1800 mm I _{base} = 2400 mm	1		tness	-11411	n
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall	← Cantilever h _{stem} = 3200 mm l _{toe} = 1800 mm l _{base} = 2400 mm h _{wall} = 3550 mm	1	Length of heel Base thickness	eness	$I_{heel} = 250 \text{ mm}$ $t_{base} = 350 \text{ mm}$	n m
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand	← Cantilever h _{stem} = 3200 mm I _{toe} = 1800 mm I _{base} = 2400 mm h _{wall} = 3550 mm d _{ds} = 0 mm	1	Length of heel	eness	I _{heel} = 250 mn	n m
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand	← Cantilever h _{stem} = 3200 mm l _{toe} = 1800 mm l _{base} = 2400 mm h _{wall} = 3550 mm d _{ds} = 0 mm l _{ds} = 0 mm	1	Length of heel Base thickness Thickness of de	tiness ownstand	I_{heel} = 250 mn t_{base} = 350 mn t_{ds} = 350 mm	n m
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand Depth of cover in front of wall	← Cantilever h _{stem} = 3200 mm l _{toe} = 1800 mm l _{base} = 2400 mm h _{wall} = 3550 mm d _{ds} = 0 mm l _{ds} = 0 mm d _{cover} = 0 mm	1	Length of heel Base thickness Thickness of de Unplanned exc	iness ownstand ravation depth	$I_{heel} = 250 \text{ mm}$ $t_{base} = 350 \text{ mm}$ $t_{ds} = 350 \text{ mm}$ $d_{exc} = 0 \text{ mm}$	n m
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand Depth of cover in front of wall Height of ground water	← Cantilever h _{stem} = 3200 mm l _{toe} = 1800 mm l _{base} = 2400 mm h _{wall} = 3550 mm d _{ds} = 0 mm l _{ds} = 0 mm d _{cover} = 0 mm h _{water} = 2200 mm	n	Length of heel Base thickness Thickness of de Unplanned exc Density of wate	eness ownstand eavation depth er	$I_{heel} = 250 \text{ mm}$ $t_{base} = 350 \text{ mm}$ $t_{ds} = 350 \text{ mm}$ $d_{exc} = 0 \text{ mm}$ $\gamma_{water} = 9.81 \text{ k}$	n m :N/m ³
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand Depth of cover in front of wall Height of ground water Density of wall construction	Cantilever h _{stem} = 3200 mm l _{toe} = 1800 mm l _{base} = 2400 mm h _{wall} = 3550 mm d _{ds} = 0 mm l _{ds} = 0 mm d _{cover} = 0 mm h _{water} = 2200 mm γ _{wall} = 23.6 kN/m	n	Length of heel Base thickness Thickness of de Unplanned exc Density of wate Density of base	aness ownstand eavation depth er e construction	$I_{heel} = 250 \text{ mm}$ $t_{base} = 350 \text{ mm}$ $t_{ds} = 350 \text{ mm}$ $d_{exc} = 0 \text{ mm}$ $\gamma_{water} = 9.81 \text{ k}$ $\gamma_{base} = 23.6 \text{ k}$	n m :N/m ³ N/m ³
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand Depth of cover in front of wall Height of ground water Density of wall construction Angle of soil surface	Cantilever h _{stem} = 3200 mm l _{toe} = 1800 mm l _{base} = 2400 mm h _{wall} = 3550 mm d _{ds} = 0 mm l _{ds} = 0 mm d _{cover} = 0 mm h _{water} = 2200 mm γ _{wall} = 23.6 kN/m β = 0.0 deg	n	Length of heel Base thickness Thickness of de Unplanned exc Density of wate Density of base	eness ownstand eavation depth er	$I_{heel} = 250 \text{ mm}$ $t_{base} = 350 \text{ mm}$ $t_{ds} = 350 \text{ mm}$ $d_{exc} = 0 \text{ mm}$ $\gamma_{water} = 9.81 \text{ k}$ $\gamma_{base} = 23.6 \text{ k}$	n m :N/m ³ N/m ³
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand Depth of cover in front of wall Height of ground water Density of wall construction Angle of soil surface Mobilisation factor	Cantilever h _{stem} = 3200 mm l _{toe} = 1800 mm l _{base} = 2400 mm h _{wall} = 3550 mm d _{ds} = 0 mm l _{ds} = 0 mm d _{cover} = 0 mm h _{water} = 2200 mm γ_{wall} = 23.6 kN/m β = 0.0 deg M = 1.5	n 1 ³	Length of heel Base thickness Thickness of de Unplanned exc Density of wate Density of base Effective heigh	aness ownstand eavation depth er e construction t at back of wall	$I_{heel} = 250 \text{ mm}$ $I_{base} = 350 \text{ mm}$ $I_{ds} = 350 \text{ mm}$ $I_{dexc} = 0 \text{ mm}$ $\gamma_{water} = 9.81 \text{ k}$ $\gamma_{base} = 23.6 \text{ k}$ $I_{heff} = 3550 \text{ m}$	n m :N/m ³ M/m ³ m
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand Depth of cover in front of wall Height of ground water Density of wall construction Angle of soil surface Mobilisation factor Moist density	Cantilever h _{stem} = 3200 mm l _{toe} = 1800 mm l _{base} = 2400 mm h _{wall} = 3550 mm d _{ds} = 0 mm l _{ds} = 0 mm d _{cover} = 0 mm h _{water} = 2200 mm γ _{wall} = 23.6 kN/m β = 0.0 deg M = 1.5 γ _m = 18.0 kN/m ³	n 1 ³	Length of heel Base thickness Thickness of do Unplanned exc Density of wate Density of base Effective heigh Saturated dens	eness constand cavation depth er construction t at back of wall sity	$I_{heel} = 250 \text{ mm}$ $I_{base} = 350 \text{ mm}$ $I_{ds} = 350 \text{ mm}$ $I_{ds} = 350 \text{ mm}$ $I_{dexc} = 0 \text{ mm}$ $I_{water} = 9.81 \text{ k}$ $I_{base} = 23.6 \text{ k}$ $I_{heff} = 3550 \text{ m}$ $I_{s} = 21.0 \text{ kN/r}$	n m :N/m ³ M/m ³ m
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand Depth of cover in front of wall Height of ground water Density of wall construction Angle of soil surface Mobilisation factor Moist density Design shear strength		n 1 ³	Length of heel Base thickness Thickness of de Unplanned exc Density of wate Density of base Effective heigh Saturated dens Angle of wall fr	aness ownstand eavation depth er e construction t at back of wall sity iction	$I_{heel} = 250 \text{ mm}$ $I_{base} = 350 \text{ mm}$ $I_{ds} = 350 \text{ mm}$ $I_{ds} = 350 \text{ mm}$ $I_{dexc} = 0 \text{ mm}$ $I_{ywater} = 9.81 \text{ k}$ $I_{ybase} = 23.6 \text{ kl}$ $I_{heff} = 3550 \text{ m}$ $I_{ys} = 21.0 \text{ kN/m}$ $\delta = 18.6 \text{ deg}$	n m :N/m ³ N/m ³ m
Wall details Retaining wall type Height of wall stem Length of toe Overall length of base Height of retaining wall Depth of downstand Position of downstand Depth of cover in front of wall Height of ground water Density of wall construction Angle of soil surface Mobilisation factor Moist density	Cantilever h _{stem} = 3200 mm l _{toe} = 1800 mm l _{base} = 2400 mm h _{wall} = 3550 mm d _{ds} = 0 mm l _{ds} = 0 mm d _{cover} = 0 mm h _{water} = 2200 mm γ _{wall} = 23.6 kN/m β = 0.0 deg M = 1.5 γ _m = 18.0 kN/m ³	n 1 ³	Length of heel Base thickness Thickness of do Unplanned exc Density of wate Density of base Effective heigh Saturated dens	aness ownstand eavation depth er e construction t at back of wall sity iction iction	$I_{heel} = 250 \text{ mm}$ $I_{base} = 350 \text{ mm}$ $I_{ds} = 350 \text{ mm}$ $I_{ds} = 350 \text{ mm}$ $I_{dexc} = 0 \text{ mm}$ $I_{water} = 9.81 \text{ k}$ $I_{base} = 23.6 \text{ k}$ $I_{heff} = 3550 \text{ m}$ $I_{s} = 21.0 \text{ kN/r}$	n m N/m ³ N/m ³ m m ³

Using Coulomb theory Active pressure At-rest pressure

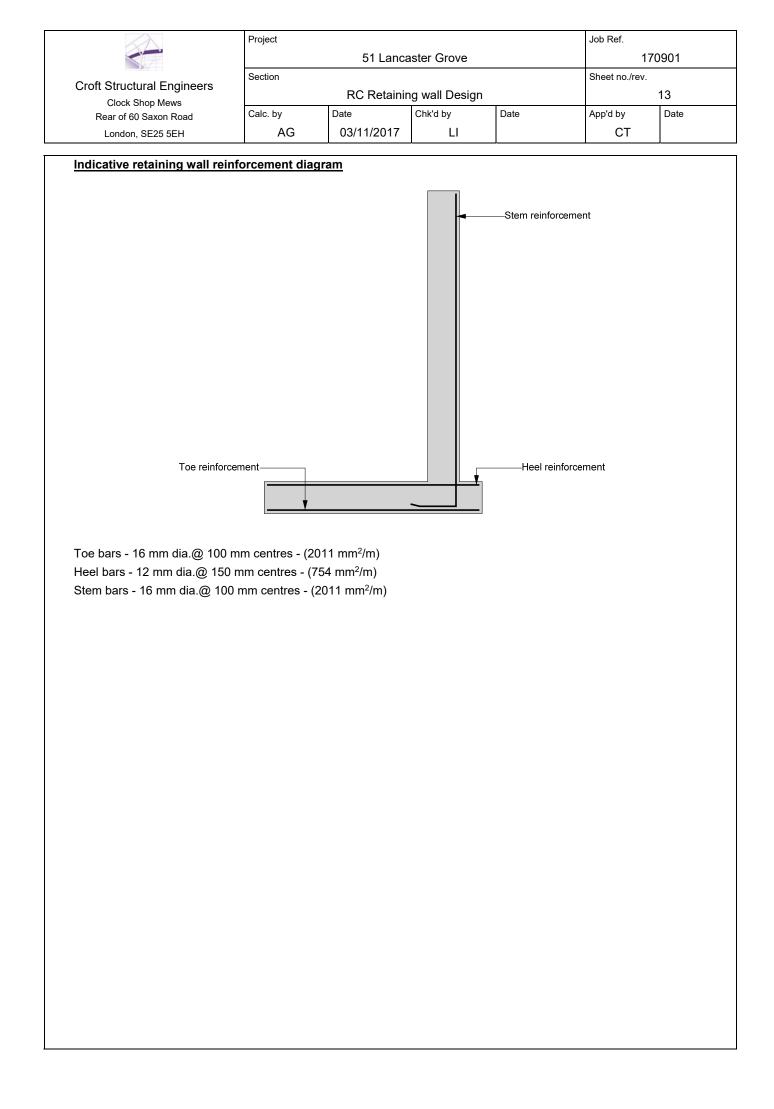
Loading details Surcharge load


Surcharge = 10.0 kN/m²

Kp = **4.187**


Passive pressure

Ka =**0.369**


K₀ = **0.590**

	Project 51 L	ancaster Grove	Job Ref. 170901
Croft Structural Engineers	Section RC Re	taining wall Design	Sheet no./rev. 10
Clock Shop Mews Rear of 60 Saxon Road	Calc. by Date	Chk'd by Date	App'd by Date
London, SE25 5EH	AG 03/11/20		CT
RETAINING WALL DESIGN			
			TEDDS calculation version 1.2.
Ultimate limit state load fac Dead load factor	ctors γ _{f d} = 1.4	Live load factor	γ _{f_l} = 1.6
Earth pressure factor	γ _{f_e} = 1.4		
Calculate propping force			
Propping force	F _{prop} = 44.8 kN/m		
	rete retaining wall toe (BS 80	<u>002:1994)</u>	
Material properties Strength of concrete	f _{cu} = 40 N/mm ²	Strength of reinforcement	f _y = 500 N/mm ²
Base details		-	
Minimum reinforcement	k = 0.13 %	Cover in toe	c _{toe} = 30 mm
350312	>		
→ 350 → 312	► • • •	• • • • •	•
Design of retaining wall too	9	• • • • •	•
		Moment at heel	M _{toe} = 22.6 kNm/m
Design of retaining wall too	9		
Design of retaining wall too Shear at heel	9	Compression	M _{toe} = 22.6 kNm/m reinforcement is not requ
Design of retaining wall too Shear at heel Check toe in bending	e V _{toe} = 20.8 kN/m	Compression	reinforcement is not requ
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required	e V _{toe} = 20.8 kN/m 16 mm dia.bars @ 100 m A _{s_toe_req} = 455.0 mm ² /m <i>PASS</i> -	Compression and contression of the contression of t	reinforcement is not requ A _{s_toe_prov} = 2011 mm²/r
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at	e V _{toe} = 20.8 kN/m 16 mm dia.bars @ 100 m A _{s_toe_req} = 455.0 mm ² /m <i>PASS</i> - toe	Compression and a centres Area provided Reinforcement provided at the a	reinforcement is not requ A _{s_toe_prov} = 2011 mm²/r retaining wall toe is adeq
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required	e V _{toe} = 20.8 kN/m 16 mm dia.bars @ 100 m A _{s_toe_req} = 455.0 mm ² /m <i>PASS</i> - toe v _{toe} = 0.067 N/mm ²	Compression m centres Area provided	reinforcement is not requ A _{s_toe_prov} = 2011 mm²/r retaining wall toe is adeq v _{adm} = 5.000 N/mm²
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at	e V _{toe} = 20.8 kN/m 16 mm dia.bars @ 100 m A _{s_toe_req} = 455.0 mm ² /m <i>PASS</i> - toe v _{toe} = 0.067 N/mm ²	Compression m centres Area provided Reinforcement provided at the Allowable shear stress ASS - Design shear stress is less	reinforcement is not requinations of the second state of the secon
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at to Design shear stress Concrete shear stress	e V _{toe} = 20.8 kN/m 16 mm dia.bars @ 100 m A _{s_toe_req} = 455.0 mm ² /m <i>PASS</i> - toe v _{toe} = 0.067 N/mm ²	Compression m centres Area provided Reinforcement provided at the Allowable shear stress ASS - Design shear stress is less Vtoe < Vc_toe - No	reinforcement is not requination of the second state of the second
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at to Design shear stress Concrete shear stress	e V _{toe} = 20.8 kN/m 16 mm dia.bars @ 100 m A _{s_toe_req} = 455.0 mm ² /m <i>PASS</i> - toe v _{toe} = 0.067 N/mm ² <i>P</i> v _{c_toe} = 0.679 N/mm ²	Compression m centres Area provided Reinforcement provided at the Allowable shear stress ASS - Design shear stress is less Vtoe < Vc_toe - No	reinforcement is not requinations of the second state of the secon
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at to Design shear stress Concrete shear stress Design of reinforced concrete	e V _{toe} = 20.8 kN/m 16 mm dia.bars @ 100 m A _{s_toe_req} = 455.0 mm ² /m <i>PASS</i> - toe v _{toe} = 0.067 N/mm ² <i>P</i> v _{c_toe} = 0.679 N/mm ²	Compression m centres Area provided Reinforcement provided at the Allowable shear stress ASS - Design shear stress is less Vtoe < Vc_toe - No	reinforcement is not requ A _{s_toe_prov} = 2011 mm²/r retaining wall toe is adeq v _{adm} = 5.000 N/mm² s than maximum shear st
Design of retaining wall too Shear at heel Check toe in bending Reinforcement provided Area required Check shear resistance at Design shear stress Concrete shear stress Design of reinforced concre Material properties	e V _{toe} = 20.8 kN/m 16 mm dia.bars @ 100 m A _{s_toe_req} = 455.0 mm ² /m <i>PASS</i> - toe v _{toe} = 0.067 N/mm ² <i>V</i> _{c_toe} = 0.679 N/mm ² rete retaining wall heel (BS 8	Compression m centres Area provided Reinforcement provided at the Allowable shear stress ASS - Design shear stress is less Vtoe < Vc_toe - No 2002:1994)	reinforcement is not requ A _{s_toe_prov} = 2011 mm²/r retaining wall toe is adeq v _{adm} = 5.000 N/mm² s than maximum shear st shear reinforcement requ

	Project				Job Ref.	
		51 Lanca	aster Grove			70901
	Section				Sheet no./rev.	
Croft Structural Engineers		RC Retainir	ng wall Design			12
Clock Shop Mews Rear of 60 Saxon Road	Calc. by	Date	Chk'd by	Date	App'd by	Date
London, SE25 5EH	AG	03/11/2017	LI		СТ	
		20 5 2/		•		0044 21
Area required	As_stem_req = 11		Area provided	ided at the m	As_stem_prov =	
		PASS - Reinfo	orcement provi	ided at the r	retaining wall st	em is adequ
Check shear resistance at v						
Design shear stress	v _{stem} = 0.028 N		Allowable shea		V _{adm} = 5.000	
Concrete shear stress	V 0.670		- Design snear	stress is les	ss than maximu	m snear str
Concrete shear stress	Vc_stem = 0.679	IN/IIIII-	Variant	- V No	o shear reinforce	omont rocu
			v stem •	< vc_stem - Ivc		ementrequ
Check retaining wall deflect		^	A - to - 1 / - -			
Max span/depth ratio	ratio _{max} = 10.9 0	U	Actual span/de	-	ratio _{act} = 10	
				r433-3p	an to depth rati	o is accepta

	Project				Job Ref.	
	51 Lancaster Grove				170901	
Croft Structural Engineera	Section				Sheet no./rev.	
Croft Structural Engineers Clock Shop Mews	RC Retaining wall Design				14	
Rear of 60 Saxon Road	Calc. by	Date	Chk'd by	Date	App'd by	Date
London, SE25 5EH	AG	03/11/2017	LI		СТ	

INTERNAL WALL MASS CONCRETE PIN

Loading

Dead load SW GF wall	DL1=7kN/m ² ×4.05m= 28.350 kN/m
Dead load SW FF wall	DL2=7kN/m ² ×3.20m= 22.400 kN/m
Dead load SW SF wall	DL3=7kN/m ² ×3.20m= 22.400 kN/m
Dead load ground floor	DL4=0.65kN/m ² ×5.00m/2= 1.625 kN/m
Dead load first floor	DL5=0.65kN/m ² ×5.00m/2= 1.625 kN/m
Dead load roof	DL6=0.95kN/m ² ×3.00m/2= 1.425 kN/m
Live load ground floor	LL1=1.50kN/m ² ×5.00m/2= 3.750 kN/m
Live load first floor	LL2=1.50kN/m ² ×5.00m/2= 3.750 kN/m
Live load first floor	LL3=0.60kN/m ² ×5.00m/2= 1.500 kN/m
Basement retaining wall	DL7 = 300mm * 25kN/m ³ * 2m = 15.000 kN/m
Total Dead Load	TDL=DL1+DL2+DL3+DL4+DL5+DL6+ DL7= 92.825 kN/m
Total Live Load	TLL=LL1+LL2+LL3 = 9.000 kN/m
Mass concrete bearing stress	σ = (TDL + TLL) / 1.1m = 92.568 kN/m²

Appendix B: Construction Sequence and Plans

•

Basement Method Statement

Site Details: 51 Lancaster Grove London NW3 4HB

Client Details: The Basement Design Studio

Revision	Date	Comment
-	Dec'2017	First Issue

Croft Structural Engineers Clock Shop Mews Rear of 60 Saxon Road London SE25 5EH

T: 020 8684 4744 E: <u>enquiries@croftse.co.uk</u> W: <u>www.croftse.co.uk</u>

Contents

1.#	Basement Formation Suggested Method Statement	3#
2.#	Enabling Works	4#
3.#	Basement Sequencing	4#
4.#	Cantilevered Walls	5#
5.#	Approval	9#
6.#	Basement Temporary Works Design Lateral Propping	10#
Tren	ch Sheet Design	11#
Cros	ss Props	16#

51 Lancaster Grove

1. Basement Formation Suggested Method Statement

- 1.1. This method statement provides an approach that will allow the basement design to be correctly considered during construction. The statement also contains proposals for the temporary support to be provided during the works. The Contractor is responsible for the works on site and the final temporary works methodology and design on this site and any adjacent sites.
- 1.2. This method statement has been written by a Chartered Engineer. The sequencing has been developed using guidance from ASUC (Association of Specialist Underpinning Contractors).
- 1.3. This method has been produced to allow for improved costings and for inclusion in the Party Wall Award. Final site conditions need there to be flexibility in the method statement: Should the site staff require alterations to the Method statement this is allowed once an alternative methodology, of the changes is provided, and an Addendum to the Party Wall Award will be required.
- 1.4. Contact Party Wall Surveyors to inform them of any changes to this method statement.
- 1.5. On this project, the cantilever pins are designed to be inherently stable without lateral support to the top of the wall. However, temporary props will be provided near the head and will provide support until the concrete has gained sufficient strength. The base benefits from propping. This is provided in the final condition by the ground slab. In the temporary condition, the edge of the slab is buttressed against the soil in the middle of the property. Also the skin friction between the concrete base and the soil provides further resistance. The central soil mass is to be removed in 1/3 portions and cross propping subsequently added as the central soil ass is removed
- 1.6. The local geological drift sheets show the ground to be Made ground over London Clay
- 1.7. The bearing pressures have been limited to 100kN/m² in refer of soil report
- 1.8. No Ground water encountered during investigation
- 1.9. The structural waterproofer (not Croft) must comment on the proposed design and ensure that he is satisfied that the proposals will provide adequate waterproofing.
- 1.1. Provide engineers with concrete mix, supplier, delivery and placement methods two weeks prior to the first pour. Site mixing of concrete should not be employed apart from in small sections (less than 1m³). The contractor must provide a method on how to achieve site mixing to the correct specification. The contractor must undertake toolbox talks with staff to ensure site quality is maintained.

2. Enabling Works

- 2.1. The site is to be hoarded with ply board sheets, at least 2.2m high, to prevent unauthorised public access.
- 2.2. Licences for skips and conveyors should be posted on the hoarding.
- 2.3. Provide protection to public where conveyor extends over footpath. Depending on the requirements of the local authority, construct a plywood bulkhead over the pavement. Hoarding to have a plywood roof covering over the footpath, night-lights and safety notices.
- 2.4. Dewater: Water is expected. This is likely to be perched water. This is to be dealt with by localised pumping. Typically achieved by a small sump pump in a bucket.
- 2.5. On commencement of construction, the contractor will determine the foundation type, width and depth. Any discrepancies will be reported to the structural engineer in order that the detailed design may be modified as necessary.

3. Basement Sequencing

- 3.1. Begin by placing cantilevered walls numbered noted on drawing SL-10. (Cantilevered walls to be placed in accordance with Section 4.)
- 3.2. Insert steel over or leave pocket in the cantilevered wall to support steel.
 - 3.2.1.Dry pack to steelwork. Ensure a minimum of 24 hours from casting cantilevered walls to drypacking.
- 3.3. Erect conveyor at front of existing basement to remove the spoil soil .
- 3.4. Continue cantilevered wall formation around perimeter of basement following the numbering sequence on the drawings.
 - 3.4.1.Excavation for the next numbered sequential sections of underpinning shall not commence until at least 8 hours after drypacking of previous works. Excavation of adjacent pin to not commence until 48 hours after drypacking. (24hours possible due to inclusion of Conbextra 100 cement accelerator to dry pack mix). No more than
 - 3.4.2.wall to be propped as excavation progresses. Steelwork to support floor to be inserted as works progress.
- 3.5. Excavate and cast floor slab
 - 3.5.1.Excavate 1/3 of the middle section of basement floor. As excavation proceeds, place Slimshore raking props at a maximum of 2.5m c/c to the ground (cast sacrificial thrust blocks below formation level as required.
 - 3.5.2.Continue excavating the next 1/3 and prop then repeat for the final 1/3.

- 3.5.3.Place below-slab drainage. Croft recommends that all drainage is encased in concrete below the slab and cast monolithically with the slab. Placing drainage on pea shingle below the slab allows greater penetration for water ingress.
- 3.5.4.Place reinforcement for basement slab. Ensure that concrete can be cast around raking props to allow for their subsequent removal.
- 3.5.5. Building Control Officer and Engineer are to be informed five working days before reinforcement is ready and invited for inspection.
- 3.5.6. Once inspected, pour concrete.
- 3.6. Provide structure to ground floor and water proofing to retaining walls as required. It is recommended to leave 3-4 weeks between completion of the basement and installing drained cavity. This period should be used to locate and fill any localised leakage of the basement

4. Cantilevered Walls

- 4.1. Excavate first section of retaining wall (no more than 1000mm wide).
- 4.2. Excavation of pins involves working in confined spaces and the following measures should be applied:
 - Operatives must wear a harness and there must be a winch above the excavation.
 - o An attendant must be present at all times, at ground level, while excavation is occupied.
 - A rescue plan must be produced prior to the works as well as a task-specific risk and method statement.

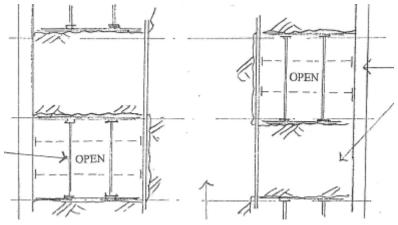


Figure 1 – Schematic Plan view of soil propping

Figure 2 Propping examples

Figure 3 Examples of excavations of pins

Figure 4 Examples of completed walls and back propping to central soil mass

4.3. Back propping of rear face: Rear face to be propped in the temporary conditions with a minimum of 2 trench sheets. Trench sheets are to extend over entire height of excavation. Trench sheets can be placed in short sections as the excavation progresses.

Figure 5 Example of trench sheet back propping

- 4.3.1. If the ground is stable, trench sheets can be removed as the wall reinforcement is placed and the shuttering is constructed.
- 4.3.2. Where trench sheets are left in a slight over spill may occur past the neighbours boundary wall line. Where this slight over spill is not allowed by the Party Wall Surveyors then cement particle board should be used as noted below.

4.3.3. Where soft spots are encountered, leave in trench sheets

or alternatively back prop with precast lintels or sacrificial boards. If the soil support to the ends of the lintels is insufficient, then brace the ends of the PC lintels with 150x150 C24 timbers and prop with Acrows diagonally back to the ground.

- 4.3.4.Prior to casting, place layer of DPM between trench sheeting (or PC lintels) and new concrete. The lintels are to be cut into the soil by 150mm either side of the pin. A site stock of a minimum of 10 lintels should be present to prevent delays due to ordering.
- 4.4. Excavate base. Concrete heels to be excavated. If soil over is unstable, prop top with PC lintel and sacrificial prop.
- 4.5. Local Authority inspection to be carried out for approval of excavation base.
- 4.6. Place blinding.
- 4.7. Place reinforcement for retaining wall base and stem. Drive H16 Bars U-bars into soil along centre line of stem to act as shear ties to adjacent wall underpin.
- 4.8. Site supervisor to inspect and sign off works before proceeding to next stage.
- 4.9. Concrete Testing:
 - 4.9.1.For first 3 pins take 4 cubes and test at 7 days then at 14 days and inform engineer of results. Test last cube at 28 days. If cube test results are low then action into concrete specification and placement method must be considered.
 - 4.9.2.If results are good from first three pins, then from the 4th pin onwards take 2 cubes of concrete from every third pin and store for testing. Test one at 28 days. If result is low, test second cube. Provide results to client and design team on request or if values are below those required.
 - 4.9.3.Ensure that concrete is of sufficient strength check engineer's specifications
 - 4.9.4.A record of dates for the concrete pouring of each pin must be kept on site.

4.9.5.The location of where cubes were taken and their reference number must be recorded.

- 4.10. Horizontal temporary prop to base of wall to be inserted. Alternatively cast base against soil.
- 4.11. After 24 hours, the temporary wall shutters can be removed.
- 4.12. Site supervisor to inspect and sign off for proceeding to the next stage. A record will be kept of the sequence of construction, which will be in strict accordance with recognised industry procedures.

5. Approval

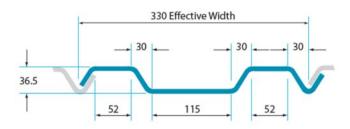
- 5.1. Building Control Officer/Approved Inspector to inspect pin bases and reinforcement prior to casting concrete.
- 5.2. Contractor to keep list of dates of pins inspected and cast.
- 5.3. One month after the work is completed, the contractor is to contact Adjoining Party Wall Surveyor to attend site and complete final condition survey and to sign off works.

6. Basement Temporary Works Design Lateral Propping

This calculation has been provided for the trench sheet and prop design of standard underpins in the temporary condition. There are gaps left between the sheeting and as such no water pressure will occur. Any water present will flow through the gaps between the sheeting and will be required to be pumped out.

Trench sheets should be placed at regular centres to deal with the ground. It is expected that the soil between the trench sheeting will arch. Looser soil will require tighter centres. It is typical for underpins to be placed at 1200c/c in this condition the highest load on a trench sheet is when 2 No.s trench sheets are used. It is for this design that these calculations have been provided.

Soil and ground conditions are variable. Typically one finds that, in the temporary condition, clays are more stable and the C_{ν} (cohesive) values in clay reduce the risk of collapse. It is this cohesive nature that allows clays to be cut into a vertical slope. For these calculations, weak sand and gravels have been assumed. The soil properties are:



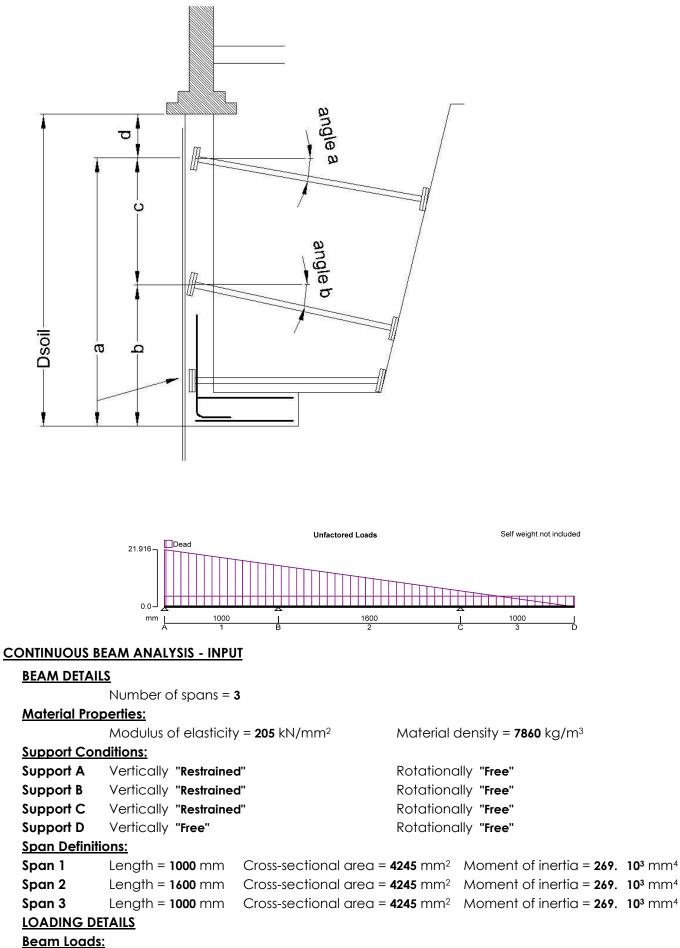
Trench Sheet Design

Soil Depth	Dsoil = 3000mm	
Surcharge	sur = 10kN/m ²	
Soil Density	= 20kN/m ³	
Angle of Friction	= 25	
	k _a = (1 - sin()) / (1 + sin()) k _p = 1 / k _a	= 0.406 = 2.464
Soil pressure bottom Surcharge pressure	soil = k _a * * Dsoil surcharge = sur * k _a	= 21.916 kN/m ² = 4.059 kN/m ²

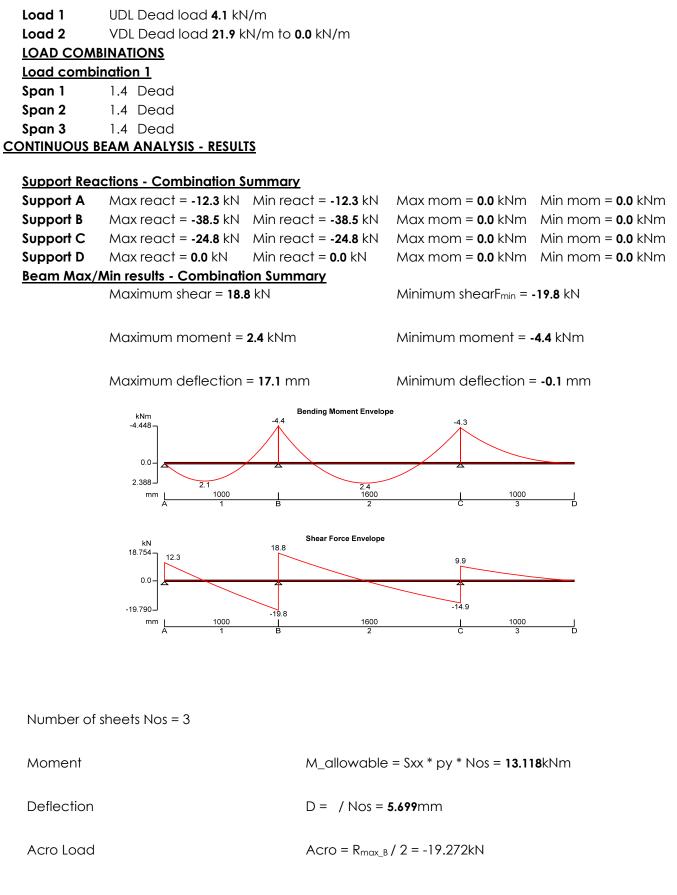
STANDARD LAP

The overlapping trench sheeting profile is designed primarily for construction work and also temporary deployment.

Job Number: 170901



Effective width per sheet (mm)	330
Thickness (mm)	3.4
Depth (mm)	35
Weight per linear metre (kg/m)	10.8
Weight per m² (kg)	32.9
Section modulus per metre width (cm³)	48.3
Section modulus per sheet (cm³)	15.9
I value per metre width (cm4)	81.7
I value per sheet (cm ⁴)	26.9
Total rolled metres per tonne	92.1



Sxx = 15.9 cm³ py = 275N/mm² lxx = 26.9cm⁴ A = (1m * 32.9kg/m²) / (7750kg/m³) = **4245.161**mm²

Sale working loads for Acrow Props -- loads given in kN

For normal purposes 1 kilo Newton (kN) = 100 kg	Height	m ft	2.0 6.6	2.25 7.4	2.5 8.2	2.75 9.0	3.0 9.8	3. 10
TABLE A Props loaded concentrically	Prop size 1 or 2		35	35	35	34	27	23
and erected vertically	Prop size 3					34	27	23
	Prop size 4							32
TABLE B Props loaded concentrically and erected 13° max. out of	Prop size 1 or 2 or 3		35	32	26	23	19	17
vertical	Prop size 4							24
TABLE C Props loaded 25 mm eccentricity and erected 11°	Prop size 1 or 2 or 3		17	17	17	17	15	13
max. out of vertical	Prop size 4							17
TABLE D Props loaded concentrically and erected 1}° out of	Prop size 3					35	33. [,]	32
vertical and laced with scaffold tubes and fittings	Prop size 4							35

Acrow Props A or B are acceptable placed 0.5m from top, middle and 1m from bottom

Cross Props

Props should be placed a third up the wall measured from the bottom slab.

Surcharge	sur = 10kN/m ²		
Soil Density	= 20kN/m ³		
Angle of Friction	= 25		
Soil Depth	Dsoil = 3000mm		
1 - sin()	k _a = (1 - sin()) / (1 + sin()) k _p = 1 / k _a = 0.577	= 0.406 = 2.464	
Soil force bottomsoilforce = $k_a * * Dsoil * Dsoil / 2 = 36.527$ kN/m			
Surcharge Force Surchargeforce = $k_a * sur * Dsoil = 12.176$ kN/m			
Place Props every other pin spacing = 2m			
Propforce Propforce = spacing * (soilforce + Surchargeforce) = 97.406kh			

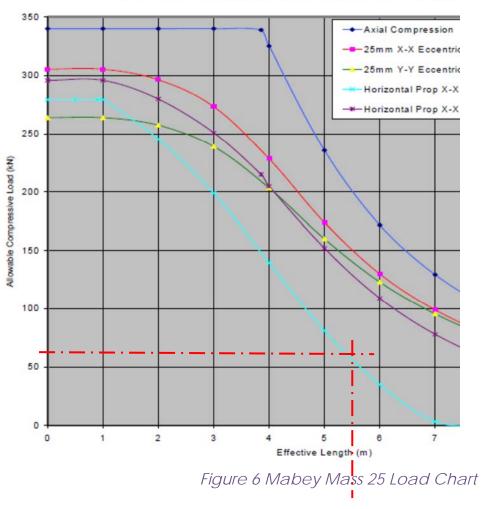


Chart A - Axial Prop Capacity to BS5950-5:1998 with min FOS increase

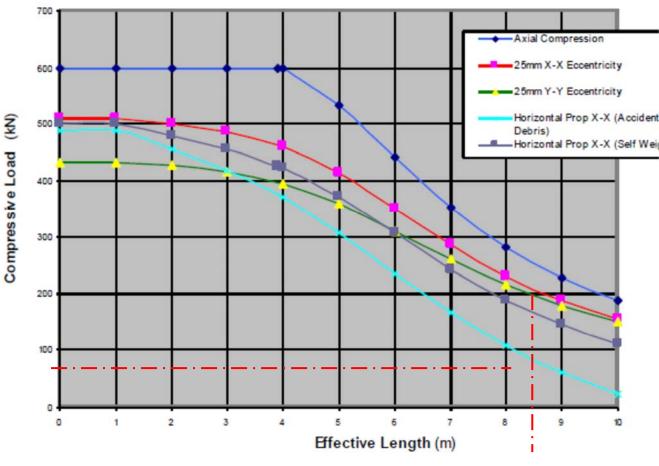
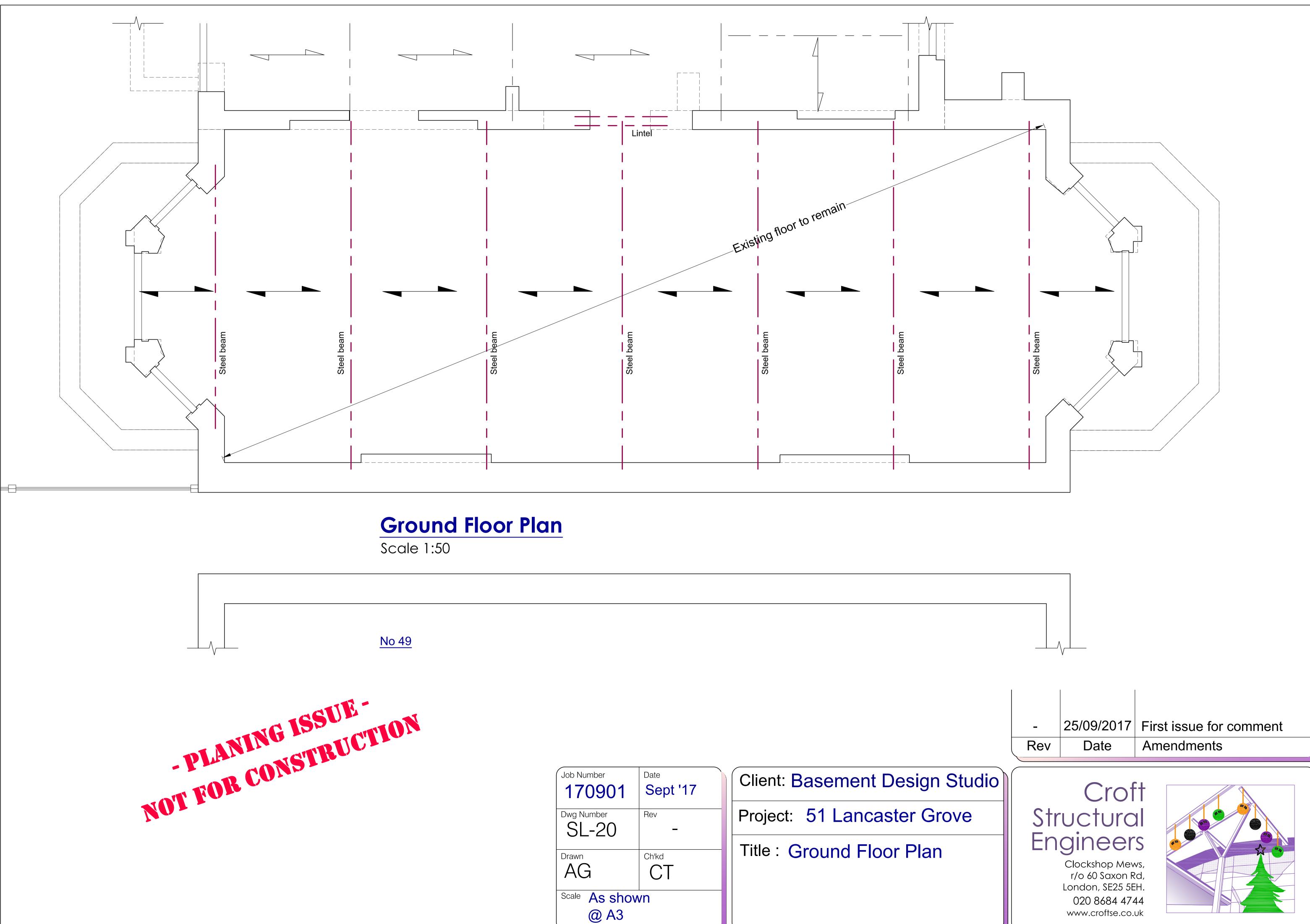
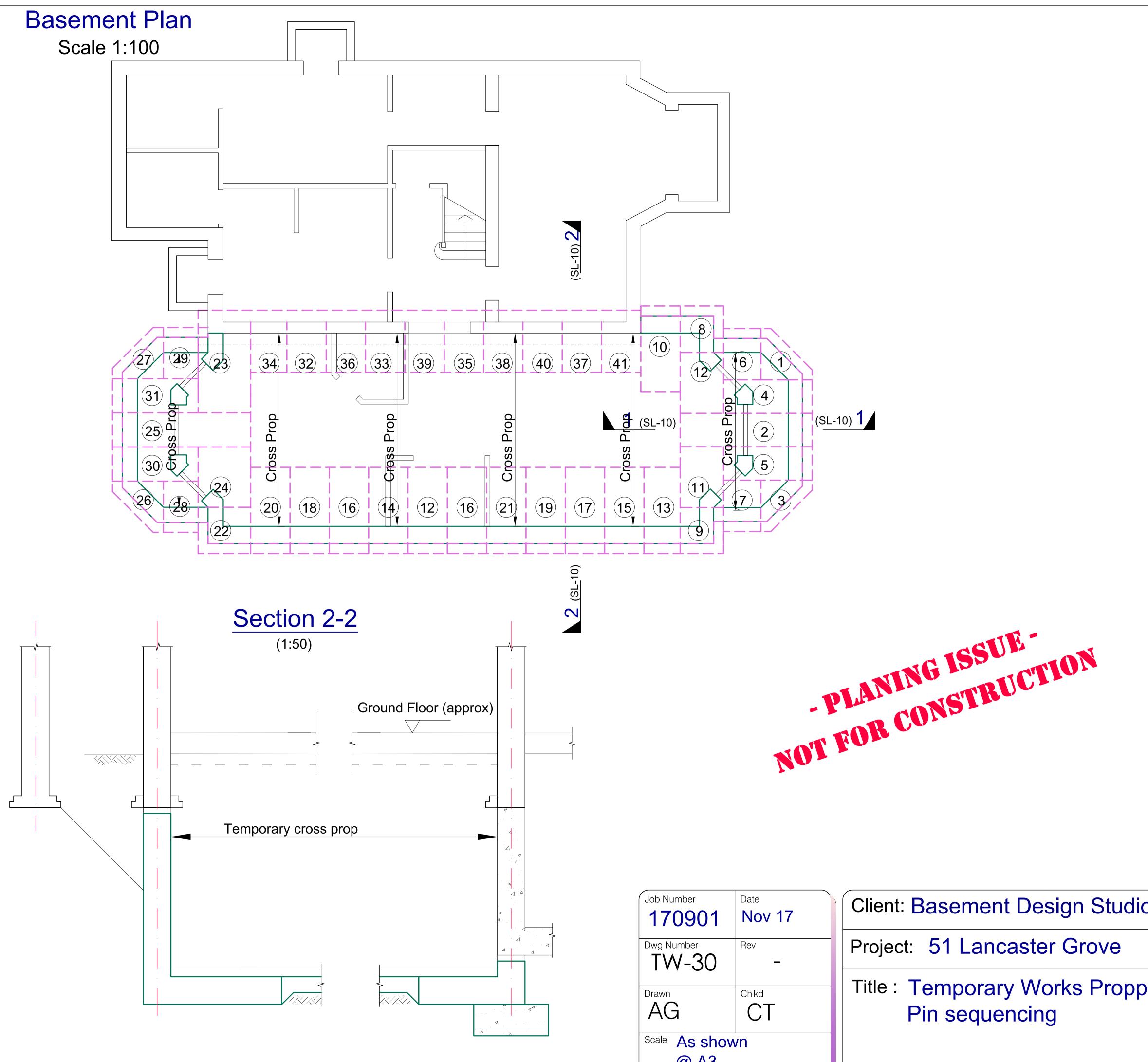


Figure 7 Mabey Mass 50 Load Chart

Provide Mabey Mass 50 at 2m Centres at 1/3 the height of the wall.


Appendix C: Structural Drawings

1:100 Basement Plan on A3 Showing Neighbouring basements if present1:100 Ground Floor plan on A3 Showing Neighbouring property1:50 Section on A3 Including section through Neighbouring Footings


Tree Plan on A3

Project [.]	51	Lancaster	Grove
riojeci.	JI	Lancaster	GIUVE

-	25/09/2017	First issue for comment
Rev	Date	Amendments

Job Number 170901	Date Nov 17	Client: Basement Design Studio
Dwg Number	Rev _	Project: 51 Lancaster Grove
Drawn AG	^{Ch'kd}	Title : Temporary Works Proppin Pin sequencing
Scale As show	vn	

-	3.11.17	First issue
Rev	Date	Amendme

020 8684 4744

www.croftse.co.uk

le for comment nents

Croft Structural Engineers Clockshop Mews, r/o 60 Saxon Rd, London, SE25 5EH.