

Regulations Compliance Report

nathan@darren-ev	'ans.co.uk				
• •		n, England assessed by Stroma	a FSAP 2012 program, Ver	sion: 1.0.4.9	
Printed on 20 Sept Project Informatio	tember 2017 at 10:28 on:	3:45			
Assessed By:	Michael Brogden (STRO000212)	Building Type:	Detached House	
Dwelling Details:					
	DESIGN STAGE		Total Floor Area: 6	34.96m ²	
Site Reference :	115 Frognal		Plot Reference:	115 Frognal - Gas E	3oiler with I
Address :	115 Frognal, Londo	on, NW3 6XR			
Client Details:					
Name:	Will Potter Partners	ship			
Address :	60 Arley Hill, Bristo	ו, BS6 5PP			
-	s items included wi te report of regulati	ithin the SAP calculations.			
1a TER and DER					
	ing system: Mains ga	as			
Fuel factor: 1.00 (m	nains gas)				
-	xide Emission Rate (13.96 kg/m ²		-14
Dwelling Carbon D 1b TFEE and DFI	ioxide Emission Rate	e (DER)	11.00 kg/m²		OK
	EE gy Efficiency (TFEE)		65.0 kWh/m²		
-	ergy Efficiency (DFE		57.5 kWh/m ²		
-					ок
2 Fabric U-values	S				
Element		Average	Highest		~ 14
External w Floor	Nall	0.17 (max. 0.30)	0.28 (max. 0.70)		OK
Roof	wall		. ,		
Openings	waii	0.15 (max. 0.25)	0.34 (max. 0.70)		ок
2a Thermal bridg			. ,		
<u>Za mermai briug</u>		0.15 (max. 0.25) 0.12 (max. 0.20)	0.34 (max. 0.70) 0.15 (max. 0.35)		ОК ОК
Thermal b	ging pridging calculated fre	0.15 (max. 0.25) 0.12 (max. 0.20)	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30)		ОК ОК
Thermal b 3 Air permeabilit	ging pridging calculated fro	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00)	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction		ОК ОК
Thermal b 3 Air permeabilit Air permeab	ging pridging calculated fre	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00)	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction 5.00 (design valu	re)	ОК ОК ОК
Thermal b 3 Air permeabilit Air permeab Maximum	ging bridging calculated fro ty bility at 50 pascals	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00)	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction	le)	ОК ОК
Thermal b 3 Air permeabilit Air permeab Maximum 4 Heating efficier	ging pridging calculated fro ty pility at 50 pascals ncy	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00) rom linear thermal transmittand	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction 5.00 (design valu 10.0	·	ОК ОК ОК
Thermal b 3 Air permeabilit Air permeab Maximum	ging pridging calculated fro ty pility at 50 pascals ncy	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00) rom linear thermal transmittand Boiler systems with radiators	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction 5.00 (design valu 10.0	·	ОК ОК ОК
Thermal b 3 Air permeabilit Air permeab Maximum 4 Heating efficier	ging pridging calculated fro ty pility at 50 pascals ncy	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00) rom linear thermal transmittand Boiler systems with radiators Data from manufacturer	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction 5.00 (design valu 10.0	·	ОК ОК ОК
Thermal b 3 Air permeabilit Air permeab Maximum 4 Heating efficier	ging pridging calculated fro ty pility at 50 pascals ncy	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00) rom linear thermal transmittand Boiler systems with radiators Data from manufacturer Efficiency 88.6 % SEDBUK2	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction 5.00 (design valu 10.0	·	ок
Thermal b 3 Air permeabilit Air permeab Maximum 4 Heating efficier	ging pridging calculated fro ty pility at 50 pascals ncy	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00) rom linear thermal transmittand Boiler systems with radiators Data from manufacturer	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction 5.00 (design valu 10.0	·	ОК ОК ОК
Thermal b 3 Air permeabilit Air permeab Maximum 4 Heating efficien Main Heatin	ging pridging calculated fro ty pility at 50 pascals ncy	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00) rom linear thermal transmittand Boiler systems with radiators Data from manufacturer Efficiency 88.6 % SEDBUK2	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction 5.00 (design valu 10.0	·	ок
Thermal b 3 Air permeabilit Air permeab Maximum 4 Heating efficien Main Heatin	g <mark>ing</mark> pridging calculated fro ty pility at 50 pascals ncy ng system: heating system:	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00) rom linear thermal transmittand Boiler systems with radiators Data from manufacturer Efficiency 88.6 % SEDBUK2 Minimum 88.0 %	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction 5.00 (design valu 10.0	·	ок
Thermal b 3 Air permeabilit Air permeab Maximum 4 Heating efficien Main Heatin Secondary h	ging pridging calculated fro ty pility at 50 pascals ncy ng system: heating system:	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00) rom linear thermal transmittand Data from manufacturer Efficiency 88.6 % SEDBUK2 Minimum 88.0 % None Measured cylinder loss: 2.30	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction 5.00 (design valu 10.0 rs or underfloor heating - ma 2009 0 kWh/day	·	ок
Thermal b 3 Air permeabilit Air permeab Maximum 4 Heating efficien Main Heatin Secondary h 5 Cylinder insula Hot water St	ging pridging calculated fro ty pility at 50 pascals ncy ng system: heating system:	0.15 (max. 0.25) 0.12 (max. 0.20) 1.61 (max. 2.00) rom linear thermal transmittand Data from manufacturer Efficiency 88.6 % SEDBUK2 Minimum 88.0 % None	0.34 (max. 0.70) 0.15 (max. 0.35) 1.80 (max. 3.30) ces for each junction 5.00 (design valu 10.0 rs or underfloor heating - ma 2009 0 kWh/day	·	ок

Regulations Compliance Report

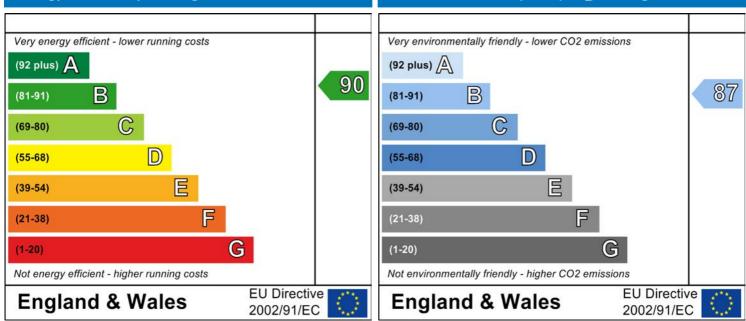
6 Controls

Space beating controls	TT7C by plumbing and alast	rical convices	ок
Space heating controls Hot water controls:	TTZC by plumbing and elect Cylinderstat	lical services	OK
That water controls.	Independent timer for DHW		OK
Boiler interlock:	Yes		OK
Low energy lights	100		
Percentage of fixed lights wi	th low-energy fittings	100.0%	
Minimum		75.0%	ОК
Mechanical ventilation			
Continuous supply and extra	ict system		
Specific fan power:		1.03	
Maximum		1.5	ОК
MVHR efficiency:		93%	
Minimum		70%	ОК
Summertime temperature			
Overheating risk (Thames va	allev):	Not significant	OK
sed on:	anoy).	Not significant	
Overshading:		Average or unknown	
Windows facing: North East		12.38m ²	
Windows facing: North East		9.8m²	
Windows facing: South East		11.54m²	
Windows facing: South East		4.84m ²	
Windows facing: South		1.96m ²	
Windows facing: South		10.04m²	
Windows facing: South Wes	t	4.93m ²	
Windows facing: South Wes		52.92m ²	
Windows facing: South Wes		4.93m ²	
Windows facing: North West		21.21m ²	
Roof windows facing: Horizo		6.84m ²	
Ventilation rate:		4.00	
Blinds/curtains:		Dark-coloured curtain or roller b	lind
		Closed 100% of daylight hours	
) Key features			
Roofs U-value		0.1 W/m²K	
External Walls Ll-value		$0.13 \text{ W/m}^{2}\text{k}$	

External Walls U-value Photovoltaic array

0.13 W/m²K

Predicted Energy Assessment


115 Frognal London NW3 6XR Dwelling type: Date of assessment: Produced by: Total floor area: Detached House 08 September 2017 Michael Brogden 634.96 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP WorkSheet: New dwelling design stage

				User D	etails:						
Assessor Name:Michael BrogdenStroma Number:STRSoftware Name:Stroma FSAP 2012Software Version:Version:											
			Р	roperty .	Address	: 115 Fro	ognal - G	as Boile	er with M	VHR and PV	
Address :		ognal, Londor	n, NW3	6XR							
1. Overall dwelling dime	ensions:			•	- (2)		A 11!			M = 1 (2	、
Basement					a(m²) 76.27	(1a) x	Av. Hei	gnt(m) 34	(2a) =	Volume(m ³) (3a)
Ground floor						(10) x (1b) x			(2b) =	721.9	(3b)
First floor								85]		4
		(4 -) . (4 -1) . (4 -	. (4			(1c) x	3.	21	(2c) =	659.3	(3c)
Total floor area TFA = (1	a)+(1b)+((1c)+(1d)+(1e)+(1r	1) 6:	34.96	(4)					_
Dwelling volume						(3a)+(3b)+(3c)+(3d))+(3e)+	.(3n) =	2146.22	(5)
2. Ventilation rate:	ma	in or	condar	•• <i>1</i>	other		total			m ³ per hou	
		ting h	eating	, 	other		เป็นได้				_
Number of chimneys		0 +	0	_ +	0] = [0		40 =	0	(6a)
Number of open flues		0 +	0	+	0	」⁼∟	0		20 =	0	(6b)
Number of intermittent fa							0		10 =	0	(7a)
Number of passive vents	3					L	0	× ′	10 =	0	(7b)
Number of flueless gas f	ires						0	X 4	40 =	0	(7c)
									Air ch	anges per ho	
Infiltration due to chimne	we flues	and fanc $-$ (6)	a)+(6b)+(7	′a)+(7h)+(7c) -	Г				 [_
If a pressurisation test has	•					continue fr	0 om (9) to (÷ (5) =	0	(8)
Number of storeys in t	he dwellir	ng (ns)								0	(9)
Additional infiltration								[(9)	-1]x0.1 =	0	(10)
Structural infiltration: (if both types of wall are p						•	uction			0	(11)
deducting areas of open			Sonaing ic	ine great	er wan are	a (allel					
If suspended wooden	floor, ente	er 0.2 (unseal	ed) or 0.	.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, er										0	(13)
Percentage of window	is and doo	ors draught st	ripped							0	(14)
Window infiltration					0.25 - [0.2					0	(15)
Infiltration rate							12) + (13) +			0	(16)
Air permeability value				•	•	•	etre of e	nvelope	area	5	(17)
If based on air permeable Air permeability value appli	•						is heina us	ed		0.25	(18)
Number of sides shelter			been den		groo un por	moubinty	io boing ao	04		1	(19)
Shelter factor					(20) = 1 -	[0.075 x (1	9)] =			0.92	(20)
Infiltration rate incorpora	ting shelte	er factor			(21) = (18)) x (20) =				0.23	(21)
Infiltration rate modified	for month	ly wind speed									
Jan Feb	Mar	Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind s	peed from	Table 7									
(22)m= 5.1 5	4.9 4	4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

SAP WorkSheet: New dwelling design stage

Wind Factor (22a)m = (22)m \div 4

	r	<u>́́</u> т		r		r	r	r		r	r	1	
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjusted infiltr	ation rat	e (allowii	ng for sł	nelter an	d wind s	peed) =	(21a) x	(22a)m					
0.29	0.29	0.28	0.25	0.25	0.22	0.22	0.21	0.23	0.25	0.26	0.27		
Calculate effect		0	ate for t	he appli	cable ca	se						0.5	(23a)
If exhaust air h			endix N, (2	:3b) = (23a	ı) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)			0.5	(23b)
If balanced with	h heat reco	overy: effici	ency in %	allowing f	or in-use f	actor (fron	n Table 4h) =				79.05	
a) If balance	ed mecha	anical ve	ntilation	with hea	at recove	əry (MVI	HR) (24a	a)m = (22	2b)m + (23b) × [1 – (23c)		
(24a)m= 0.4	0.39	0.39	0.36	0.35	0.32	0.32	0.32	0.34	0.35	0.36	0.38		(24a)
b) If balance	ed mech	anical ve	ntilation	without	heat rec	overy (N	MV) (24b)m = (22	2b)m + (2	23b)	-		
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole h				•	•								
, ,		(23b), tl		ŕ	, ·	r È	ŕ	, 	r Ì	ŕ	<u> </u>	1	
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If natural if (22b)n		on or who en (24d)ı			•				0.51				
(24d)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effective air	change	rate - en	ter (24a) or (24t	o) or (24	c) or (24	d) in boy	(25)				1	
(25)m= 0.4	0.39	0.39	0.36	0.35	0.32	0.32	0.32	0.34	0.35	0.36	0.38		(25)
												-	
3. Heat losse	es and ne	eat loss p	aramet	er:									
3. Heat losse	s and ne Gros area	SS	Openin rr	gs	Net Ar A ,r		U-valı W/m2		A X U (W/I	K)	k-value kJ/m²·l		A X k kJ/K
	Gros	SS	Openin	gs		n²				K)			
ELEMENT	Gros	SS	Openin	gs	A ,r	m²	W/m2	:К	(W/	K)			kJ/K
ELEMENT Doors Type 1	Gros area	SS	Openin	gs	A ,r 3.26	m ² x	W/m2	K	(W/ 5.868	K)			kJ/K (26)
ELEMENT Doors Type 1 Doors Type 2	Gros area	SS	Openin	gs	A ,r 3.26	m ² x x x x x	W/m2 1.8 1.8	K = [.0.04] = [(W/I 5.868 3.168	K)			kJ/K (26) (26)
ELEMENT Doors Type 1 Doors Type 2 Windows Type	Gros area e 1 e 2	SS	Openin	gs	A ,r 3.26 1.76 12.38	n ² x x x x x ¹ x ¹	W/m2 1.8 1.8 /[1/(1.6)+	K = [0.04] = [0.04] = [(W/ 5.868 3.168 18.62	K)			kJ/K (26) (26) (27)
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type	Gros area e 1 e 2 e 3	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8	n ² x x x x x x 1 x 1 x 1 x 1 x 1 x 1 x 1	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+	K = [] =	(W/) 5.868 3.168 18.62 14.74	K)			kJ/K (26) (26) (27) (27)
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type	Gros area 9 1 9 2 9 3 9 4	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8 11.54	n ² x x 3 x ¹ x ¹ x ¹ x ¹	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	K = [] =	(W/I 5.868 3.168 18.62 14.74 17.35	K)			kJ/K (26) (27) (27) (27)
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type	Gros area 2 2 3 2 4 2 5	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8 11.54 4.84	n ² x x x x x ¹ x ¹ x ¹ x ¹ x ¹	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	$K = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(W// 5.868 3.168 18.62 14.74 17.35 7.28	K)			kJ/K (26) (27) (27) (27) (27) (27)
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type	Gros area 9 1 9 2 9 3 9 4 9 5 9 6	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8 11.54 4.84 1.96	n ² x x x x x ¹ x ¹ x ¹ x ¹ x ¹ x ¹ x ¹	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	K = [] =	(W/I 5.868 3.168 18.62 14.74 17.35 7.28 2.95	K)			kJ/K (26) (27) (27) (27) (27) (27)
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 4 5 6 6 7	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8 11.54 4.84 1.96 10.04	n ² x x x x x ¹ x ¹ x ¹ x ¹ x ¹ x ¹ x ¹ x ¹	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	$K = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(W/I 5.868 3.168 18.62 14.74 17.35 7.28 2.95 15.1	K)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27)
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 4 5 6 7 8 8	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8 11.54 4.84 1.96 10.04 4.93	$ \begin{array}{c} n^{2} \\ x \\ x \\ x^{1} $	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	$K = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(W// 5.868 3.168 18.62 14.74 17.35 7.28 2.95 15.1 7.41	K)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27)
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 4 5 6 7 8 8 9 9	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8 11.54 4.84 1.96 10.04 4.93 52.92	n ² x x x x ¹ x ¹ x ¹ x ¹ x ¹ x ¹ x ¹ x ¹ x ¹	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	$K = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(W// 5.868 3.168 18.62 14.74 17.35 7.28 2.95 15.1 7.41 79.58	K)			kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 4 5 6 7 8 8 9 9	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8 11.54 4.84 1.96 10.04 4.93 52.92 4.93	$ \begin{array}{c} n^{2} \\ x \\ x \\ x^{3} \\ x^{1} $	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+	$K = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(W// 5.868 3.168 18.62 14.74 17.35 7.28 2.95 15.1 7.41 79.58 7.41				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 4 5 6 7 8 8 9 9	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8 11.54 4.84 1.96 10.04 4.93 52.92 4.93 21.21	n ² x x x x ¹ x ¹ x ¹ x ¹ x ¹ x ¹ x ¹ x ¹	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	$K = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(W// 5.868 3.168 18.62 14.74 17.35 7.28 2.95 15.1 7.41 79.58 7.41 31.89				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Rooflights	Gros area 4 5 6 7 8 8 9 9	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8 11.54 4.84 1.96 10.04 4.93 52.92 4.93 21.21 6.84	$ \begin{array}{c} n^{2} \\ x \\ x \\ x^{1} \\ x^{2} \\ x^{1} \\ x^{2} $	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	$K = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(W// 5.868 3.168 18.62 14.74 17.35 7.28 2.95 15.1 7.41 79.58 7.41 31.89 10.944				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Rooflights Floor Type 1	Gros area 4 5 6 7 8 8 9 9	SS	Openin	gs	A ,r 3.26 1.76 12.38 9.8 11.54 4.84 1.96 10.04 4.93 52.92 4.93 21.21 6.84 176.2	$ \begin{array}{c} n^{2} \\ x \\ x^{1} \\ x^{2} \\ x^{1} \\ x^{2} \\ x^$	W/m2 1.8 1.8 /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	$K = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(W// 5.868 3.168 18.62 14.74 17.35 7.28 2.95 15.1 7.41 7.41 79.58 7.41 31.89 10.944 24.6778				kJ/K (26) (27) (27) (27) (27) (27) (27) (27) (27

SAP WorkSheet: New dwelling design stage

Walls Type2 (29) 118.25 23.1 95.15 x 0.16 15.22 Walls Type3 34.05 0 34.05 0.15 5.11 (29) х = Walls Type4 135.67 0 0.13 17.64 (29) 135.67 х Walls Type5 12.28 0 12.28 0.17 2.09 (29) х = Walls Type6 227.47 0 227.47 х 0.2 45.49 (29) Walls Type7 (29) 40.28 9.77 30.51 x 0.22 = 6.71 Walls Type8 (29) 10.46 0 10.46 х 0.28 = 2.96 Roof Type1 (30) 141.25 6.84 134.41 0.13 17.47 Х Roof Type2 72.72 0 72.72 0.1 7.27 (30) х = Roof Type3 34.94 0 34.94 0.11 3.84 (30) x Roof Type4 (30) 6.92 0 6.92 x 0.12 = 0.83 Roof Type5 (30) 2.52 0 2.52 0.15 0.38 Total area of elements, m² (31)1278.13 * for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2 ** include the areas on both sides of internal walls and partitions (26)...(30) + (32) =Fabric heat loss, $W/K = S (A \times U)$ 394.81 (33) Heat capacity $Cm = S(A \times k)$ ((28)...(30) + (32) + (32a)...(32e) =111751.89 (34) Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K Indicative Value: Medium (35) 250 For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation. Thermal bridges : S (L x Y) calculated using Appendix K (36) 64.29 if details of thermal bridging are not known $(36) = 0.15 \times (31)$ Total fabric heat loss (33) + (36) =459.11 (37)Ventilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 283.01 278.92 254.35 229.78 225.69 (38)(38)m= 274.82 250.26 229.78 237.97 250.26 258.45 266.63 Heat transfer coefficient, W/K (39)m = (37) + (38)m(39)m= 742.12 738.03 733.93 713.46 709.36 688.89 688.89 684.8 697.08 709.36 717.55 725.74 (39)Average = Sum(39)1...12 /12= 712.44 Heat loss parameter (HLP), W/m²K $(40)m = (39)m \div (4)$ 1.08 (40)m= 1.17 1.16 1.16 1.12 1.12 1.08 1.08 1.1 1.12 1.13 1.14 (40) Average = Sum(40)1...12 /12= 1.12 Number of days in month (Table 1a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 31 28 31 30 31 30 31 31 30 31 30 31 (41)(41)m= 4. Water heating energy requirement: kWh/year: Assumed occupancy, N (42) 3.57 if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1 Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 (43)118.93 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43) (44)m= 130.82 126.06 121.3 116.55 111.79 107.03 107.03 111.79

Stroma FSAP 2012 Version: 1.0.4.9 (SAP 9.92) - http://www.stroma.com

 $Total = Sum(44)_{1...12} =$

121.3

126.06

130.82

116.55

1427plage 3 of 44)

SAP WorkSheet: New dwelling design stage

Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) 194 169.67 175.09 152.65 146.47 126.39 117.12 134.4 158.5 173.01 187.88 (45)m= 136 Total = Sum(45)1...12 = 1871.16 (45) If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) (46)(46)m= 29.1 25.45 26.26 22.9 21.97 18.96 17.57 20.16 20.4 23.77 25.95 28.18 Water storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel 500 (47)If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): (48)2.3 Temperature factor from Table 2b 0.54 (49)Energy lost from water storage, kWh/year $(48) \times (49) =$ 1.24 (50)b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) (51)0 If community heating see section 4.3 Volume factor from Table 2a 0 (52)Temperature factor from Table 2b 0 (53)Energy lost from water storage, kWh/year (47) x (51) x (52) x (53) = (54)0 Enter (50) or (54) in (55) 1.24 (55)Water storage loss calculated for each month $((56)m = (55) \times (41)m$ (56)m= 38.5 34.78 38.5 37.26 38.5 37.26 38.5 38.5 37.26 38.5 37.26 38.5 (56) If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) - (H11)] ÷ (50), else (57)m = (56)m where (H11) is from Appendix H 38.5 34.78 38.5 37.26 38.5 37.26 38.5 38.5 37.26 38.5 37.26 38.5 (57) (57)m= 0 (58)Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month $(59)m = (58) \div 365 \times (41)m$ (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat) (59)(59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26 23.26 22.51 23.26 22.51 23.26 Combi loss calculated for each month $(61)m = (60) \div 365 \times (41)m$ 0 0 0 0 0 0 (61)(61)m= 0 0 0 0 0 0 Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$ 236.85 225.46 212.42 178.88 (62)255.76 208.23 186.16 196.16 195.77 220.26 232.78 249.64 (62)m= Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G) (63)(63)m= 0 0 0 0 0 0 0 0 0 0 0 0 Output from water heater 255.76 225.46 236.85 178.88 (64)m= 212.42 208.23 186.16 196.16 195.77 220.26 232.78 249.64 (64)Output from water heater (annual)1...12 2598.38 Heat gains from water heating, kWh/month $0.25 (0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$ 94.1 111.88 (65)(65)m= 113.92 101.05 107.63 98.57 98.11 89.84 88.35 93.04 102.11 105.34 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Mar

Jan

Feb

SAP WorkSheet: New dwelling design stage

(00)	014.04	014.04	014.04	014.04	014.04	014.04	044.04	011.04	011.04	014.04	011.04	044.04		(66)
(66)m=	214.04	214.04	214.04	214.04	214.04	214.04	214.04	214.04	214.04	214.04	214.04	214.04	I	(66)
Lightin	g gains	(calculat	ted in Ap	pendix	_, equati	on L9 oi	r L9a), a	lso see ⁻	Table 5					
(67)m=	154.64	137.35	111.7	84.57	63.21	53.37	57.67	74.96	100.61	127.74	149.1	158.94		(67)
Applia	nces gai	ins (calc	ulated in	Append	dix L, equ	uation L	13 or L1	3a), also	see Tal	ole 5				
(68)m=	1035.6	1046.35	1019.27	961.62	888.84	820.45	774.75	764.01	791.09	848.74	921.51	989.91		(68)
Cookir	ig gains	(calcula	ted in A	opendix	L, equat	ion L15	or L15a)	, also se	e Table	5				
(69)m=	59.97	59.97	59.97	59.97	59.97	59.97	59.97	59.97	59.97	59.97	59.97	59.97		(69)
Pumps	and far	ns gains	(Table 5	āa)										
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	aporatio	n (negat	tive valu	es) (Tab	le 5)								
(71)m=	-142.7	-142.7	-142.7	-142.7	-142.7	-142.7	-142.7	-142.7	-142.7	-142.7	-142.7	-142.7		(71)
Water	heating	gains (T	able 5)				-							
(72)m=	153.11	150.37	144.66	136.91	131.87	124.78	118.75	126.48	129.22	137.25	146.31	150.38		(72)
Total i	nternal	gains =				(66)	m + (67)m	+ (68)m +	- (69)m + (70)m + (7	1)m + (72)	m		
(73)m=	1477.68	1468.39	1409.95	1317.41	1218.25	1132.91	1085.49	1099.76	1155.23	1248.05	1351.24	1433.55		(73)
6. So	lar gains	s:												

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Facto Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	12.38	x	11.28	x	0.63	x	0.8	=	48.79	(75)
Northeast 0.9x	0.77	x	9.8	x	11.28	x	0.63	x	0.8	=	38.62	(75)
Northeast 0.9x	0.77	x	12.38	x	22.97	x	0.63	x	0.8	=	99.31	(75)
Northeast 0.9x	0.77	x	9.8	x	22.97	x	0.63	x	0.8	=	78.61	(75)
Northeast 0.9x	0.77	x	12.38	x	41.38	x	0.63	x	0.8	=	178.92	(75)
Northeast 0.9x	0.77	x	9.8	x	41.38	x	0.63	x	0.8	=	141.63	(75)
Northeast 0.9x	0.77	x	12.38	x	67.96	x	0.63	x	0.8	=	293.84	(75)
Northeast 0.9x	0.77	x	9.8	x	67.96	x	0.63	x	0.8	=	232.6	(75)
Northeast 0.9x	0.77	x	12.38	×	91.35	x	0.63	x	0.8	=	394.98	(75)
Northeast 0.9x	0.77	x	9.8	x	91.35	x	0.63	x	0.8	=	312.66	(75)
Northeast 0.9x	0.77	x	12.38	x	97.38	x	0.63	x	0.8	=	421.09	(75)
Northeast 0.9x	0.77	x	9.8	×	97.38	x	0.63	x	0.8	=	333.33	(75)
Northeast 0.9x	0.77	x	12.38	x	91.1	x	0.63	x	0.8	=	393.92	(75)
Northeast 0.9x	0.77	x	9.8	x	91.1	x	0.63	x	0.8	=	311.83	(75)
Northeast 0.9x	0.77	x	12.38	×	72.63	x	0.63	x	0.8	=	314.04	(75)
Northeast 0.9x	0.77	x	9.8	x	72.63	x	0.63	x	0.8	=	248.59	(75)
Northeast 0.9x	0.77	x	12.38	x	50.42	x	0.63	x	0.8	=	218.02	(75)
Northeast 0.9x	0.77	x	9.8	x	50.42	x	0.63	x	0.8	=	172.58	(75)
Northeast 0.9x	0.77	x	12.38	x	28.07	x	0.63	x	0.8	=	121.36	(75)
Northeast 0.9x	0.77	x	9.8	x	28.07	x	0.63	x	0.8	=	96.07	(75)
Northeast 0.9x	0.77	x	12.38	x	14.2	x	0.63	x	0.8	=	61.39	(75)

SAP WorkSheet: New dwelling design stage

Northeast 0.9x	0.77	×	9.8	x	14.2	x	0.63	x	0.8] =	48.59	(75)
Northeast 0.9x	0.77]] x	12.38	x	9.21	x	0.63	x	0.8	=	39.84](75)
Northeast 0.9x	0.77) x	9.8	x	9.21	x	0.63	x	0.8	=	31.54	(75)
Southeast 0.9x	0.77	x	11.54	x	36.79	x	0.63	x	0.8	=	148.3	(77)
Southeast 0.9x	0.77	x	4.84	x	36.79	x	0.63	x	0.8	=	62.2	- (77)
Southeast 0.9x	0.77	x	11.54	x	62.67	x	0.63	x	0.8	=	252.61	(77)
Southeast 0.9x	0.77	x	4.84	x	62.67	x	0.63	x	0.8	=	105.95	(77)
Southeast 0.9x	0.77	x	11.54	x	85.75	x	0.63	x	0.8	i =	345.63	(77)
Southeast 0.9x	0.77	x	4.84	x	85.75	x	0.63	x	0.8	=	144.96	(77)
Southeast 0.9x	0.77	x	11.54	x	106.25	x	0.63	x	0.8	=	428.26	(77)
Southeast 0.9x	0.77	x	4.84	x	106.25	x	0.63	x	0.8	=	179.62	(77)
Southeast 0.9x	0.77	x	11.54	x	119.01	x	0.63	x	0.8	=	479.68	(77)
Southeast 0.9x	0.77	x	4.84	x	119.01	x	0.63	x	0.8	=	201.18	(77)
Southeast 0.9x	0.77	x	11.54	x	118.15	x	0.63	x	0.8	=	476.22	(77)
Southeast 0.9x	0.77	x	4.84	x	118.15	x	0.63	x	0.8	=	199.73	(77)
Southeast 0.9x	0.77	x	11.54	x	113.91	x	0.63	x	0.8	=	459.12	(77)
Southeast 0.9x	0.77	x	4.84	x	113.91	x	0.63	x	0.8	=	192.56	(77)
Southeast 0.9x	0.77	x	11.54	x	104.39	x	0.63	x	0.8	=	420.76	(77)
Southeast 0.9x	0.77	x	4.84	x	104.39	x	0.63	x	0.8	=	176.47	(77)
Southeast 0.9x	0.77	x	11.54	x	92.85	x	0.63	x	0.8	=	374.25	(77)
Southeast 0.9x	0.77	x	4.84	x	92.85	x	0.63	x	0.8	=	156.96	(77)
Southeast 0.9x	0.77	x	11.54	x	69.27	x	0.63	x	0.8	=	279.19	(77)
Southeast 0.9x	0.77	x	4.84	x	69.27	x	0.63	x	0.8	=	117.1	(77)
Southeast 0.9x	0.77	x	11.54	x	44.07	x	0.63	x	0.8	=	177.63	(77)
Southeast 0.9x	0.77	x	4.84	x	44.07	x	0.63	x	0.8	=	74.5	(77)
Southeast 0.9x	0.77	x	11.54	x	31.49	x	0.63	x	0.8	=	126.91	(77)
Southeast 0.9x	0.77	x	4.84	x	31.49	x	0.63	x	0.8	=	53.23	(77)
South 0.9x	0.77	x	1.96	x	46.75	x	0.63	x	0.8	=	32.01	(78)
South 0.9x	0.77	x	10.04	x	46.75	x	0.63	x	0.8	=	163.95	(78)
South 0.9x	0.77	x	1.96	x	76.57	x	0.63	x	0.8	=	52.42	(78)
South 0.9x	0.77	x	10.04	x	76.57	x	0.63	x	0.8	=	268.5	(78)
South 0.9x	0.77	x	1.96	x	97.53	x	0.63	x	0.8	=	66.77	(78)
South 0.9x	0.77	x	10.04	x	97.53	x	0.63	x	0.8	=	342.02	(78)
South 0.9x	0.77	x	1.96	x	110.23	x	0.63	x	0.8	=	75.46	(78)
South 0.9x	0.77	x	10.04	x	110.23	x	0.63	x	0.8	=	386.56	(78)
South 0.9x	0.77	x	1.96	x	114.87	x	0.63	x	0.8	=	78.64	(78)
South 0.9x	0.77	x	10.04	x	114.87	x	0.63	x	0.8	=	402.82	(78)
South 0.9x	0.77	x	1.96	x	110.55	x	0.63	x	0.8	=	75.68	(78)
South 0.9x	0.77	×	10.04	x	110.55	x	0.63	x	0.8	=	387.66	(78)
South 0.9x	0.77	×	1.96	x	108.01	x	0.63	x	0.8	=	73.94	(78)
South 0.9x	0.77	x	10.04	x	108.01	x	0.63	x	0.8	=	378.76	(78)

SAP WorkSheet: New dwelling design stage

South 0.9x x 104.89 x х 0.77 x 1.96 0.63 0.8 = 71.81 South 0.9x х х 367.83 0.77 x 10.04 х 104.89 0.63 0.8 = South 0.9x 0.77 x 1.96 х 101.89 Х 0.63 Х 0.8 = 69.75 South 0.9x 0.77 х 10.04 х 101.89 х 0.63 х 0.8 = 357.28 South 0.9x 0.77 x 1.96 Х 82.59 Х 0.63 Х 0.8 = 56.54 South 0.9x 0.77 10.04 x 82.59 х 0.63 x 0.8 = 289.6 x South 0.9x 0.77 Х 1.96 х 55.42 x 0.63 x 0.8 = 37.94 South 0.9x 0.77 10.04 55.42 х 0.63 х 0.8 = 194.33 Х х South 0.9x 0.77 Х 1.96 х 40.4 x 0.63 x 0.8 = 27.66 South 0.9x х 141.66 0.77 Х 10.04 х 40.4 0.63 Х 0.8 = Southwest_{0.9x} х = 63.36 0.77 4.93 х 36.79 0.63 0.8 Х Southwest_{0.9x} х 0.77 х 52.92 Х 36.79 0.63 0.8 = 680.08 Southwest_{0.9x} 0.77 4.93 36.79 0.63 0.8 63.36 х х х = Southwesto.9x 0.8 0.77 х 4.93 х 62.67 0.63 х = 107.92 Southwest_{0.9x} 1158.42 0.77 52.92 х 62.67 0.63 x 0.8 = X Soι Sou Soι Sou Sou Sou Sou Sou Sou

						1					
Southwest _{0.9x}	0.77	x	4.93	x	62.67]	0.63	x	0.8	=	107.92
Southwest _{0.9x}	0.77	x	4.93	x	85.75]	0.63	x	0.8	=	147.66
Southwest _{0.9x}	0.77	x	52.92	x	85.75]	0.63	x	0.8	=	1585.01
Southwest _{0.9x}	0.77	x	4.93	x	85.75]	0.63	x	0.8	=	147.66
Southwest _{0.9x}	0.77	x	4.93	x	106.25]	0.63	x	0.8	=	182.96
Southwest0.9x	0.77	x	52.92	x	106.25]	0.63	x	0.8	=	1963.9
Southwest _{0.9x}	0.77	x	4.93	x	106.25]	0.63	x	0.8	=	182.96
Southwest0.9x	0.77	x	4.93	x	119.01]	0.63	x	0.8	=	204.93
Southwest0.9x	0.77	x	52.92	x	119.01]	0.63	x	0.8	=	2199.73
Southwest0.9x	0.77	x	4.93	x	119.01]	0.63	x	0.8	=	204.93
Southwest0.9x	0.77	x	4.93	x	118.15]	0.63	x	0.8	=	203.44
Southwest0.9x	0.77	x	52.92	x	118.15]	0.63	x	0.8	=	2183.82
Southwest0.9x	0.77	x	4.93	x	118.15]	0.63	x	0.8	=	203.44
Southwest0.9x	0.77	x	4.93	x	113.91]	0.63	x	0.8	=	196.14
Southwest0.9x	0.77	x	52.92	x	113.91]	0.63	x	0.8	=	2105.44
Southwest0.9x	0.77	x	4.93	x	113.91]	0.63	x	0.8	=	196.14
Southwest0.9x	0.77	x	4.93	x	104.39]	0.63	x	0.8	=	179.75
Southwest0.9x	0.77	x	52.92	x	104.39]	0.63	x	0.8	=	1929.5
Southwest0.9x	0.77	x	4.93	x	104.39]	0.63	x	0.8	=	179.75
Southwest0.9x	0.77	x	4.93	x	92.85]	0.63	x	0.8	=	159.88
Southwest _{0.9x}	0.77	x	52.92	x	92.85]	0.63	x	0.8	=	1716.23
Southwest _{0.9x}	0.77	x	4.93	x	92.85]	0.63	x	0.8	=	159.88
Southwest _{0.9x}	0.77	x	4.93	x	69.27]	0.63	x	0.8	=	119.27

X

х

X

52.92

4.93

4.93

x

х

х

69.27

69.27

44.07

0.63

0.63

0.63

x

х

х

0.8

0.8

0.8

_

=

=

0.77

0.77

0.77

Southwesto.9x

Southwest_{0.9x}

Southwest0.9x

1280.31

119.27

75.89

(78)

(78)

(78)

(78)

(78)

(78)

(78)

(78)

(78)

(78)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

(79)

Darren Evans Assessments

SAP WorkSheet: New dwelling design stage

х

0.8

=

0.63

44.07

Southw	vest _{0.9x}	0.77		x	4.93		×	44.07]	0.63	x	0.8	=	75.89	(79)
Southw	vest _{0.9x}	0.77		x	4.93		x	31.49]	0.63	x	0.8	=	54.22	(79)
Southw	vest _{0.9x}	0.77		x	52.92		x	31.49]	0.63	x	0.8	=	582	(79)
Southw	vest _{0.9x}	0.77		x	4.93		x	31.49]	0.63	x	0.8	=	54.22	(79)
Northw	est 0.9x	0.77		x	21.21		x	11.28	x	0.63	×	0.8	=	83.58	(81)
Northw	est 0.9x	0.77		x	21.21		x	22.97	x	0.63	x	0.8	=	170.14	(81)
Northw	est 0.9x	0.77		x	21.21		x	41.38	x	0.63	x	0.8	=	306.54	(81)
Northw	est 0.9x	0.77		x	21.21		x	67.96	x	0.63	x	0.8	=	503.42	(81)
Northw	est 0.9x	0.77		x	21.21		x	91.35	x	0.63	×	0.8	=	676.7	(81)
Northw	est 0.9x	0.77		x	21.21		x	97.38	x	0.63	x	0.8	=	721.43	(81)
Northw	est 0.9x	0.77		x	21.21		x	91.1	x	0.63	x	0.8	=	674.88	(81)
Northw	est 0.9x	0.77		×	21.21		x	72.63	x	0.63	x	0.8	=	538.02	(81)
Northw	est 0.9x	0.77		x	21.21		x	50.42	x	0.63	x	0.8	=	373.52	(81)
Northw	est 0.9x	0.77		x	21.21		x	28.07	x	0.63	x	0.8	=	207.92	(81)
Northw	est 0.9x	0.77		x	21.21		x	14.2	x	0.63	x	0.8	=	105.17	(81)
Northw	est 0.9x	0.77		x	21.21		x	9.21	x	0.63	x	0.8	=	68.26	(81)
Rooflig	hts 0.9x	1		x	6.84		x	26	x	0.63	×	0.8	=	80.67	(82)
Rooflig	hts 0.9x	1		x	6.84		x	54	x	0.63	x	0.8	=	167.54	(82)
Rooflig	hts 0.9x	1		x	6.84		x	96	x	0.63	x	0.8	=	297.85	(82)
Rooflig	hts 0.9x	1		×	6.84		x	150	x	0.63	×	0.8	=	465.39	(82)
Rooflig	hts 0.9x	1		x	6.84		x	192	x	0.63	x	0.8	=	595.7	(82)
Rooflig	hts 0.9x	1		x	6.84		x	200	x	0.63	x	0.8	=	620.52	(82)
Rooflig	hts 0.9x	1		x	6.84		x	189	x	0.63	x	0.8	=	586.4	(82)
Rooflig	hts 0.9x	1		x	6.84		x	157	x	0.63	x	0.8	=	487.11	(82)
Rooflig	hts 0.9x	1		x	6.84		x	115	x	0.63	×	0.8	=	356.8	(82)
Rooflig	hts 0.9x	1		×	6.84		x	66	x	0.63	×	0.8	=	204.77	(82)
Rooflig	hts 0.9x	1		x	6.84		x	33	x	0.63	×	0.8	=	102.39	(82)
Rooflig	hts 0.9x	1		x	6.84		x	21	x	0.63	×	0.8	=	65.16	(82)
-	i – – – –	· · ·		_	for each mo				<u> </u>	= Sum(74)m .				1	
(83)m=					4894.96 575				4913	3.63 4115.16	2891.4	4 1768.28	1244.7		(83)
-				_	(84)m = (73	,	· ,							1	(0.4)
(84)m=	2942.58	4037.72	5114.6		6212.37 697	'0.2	6959.	28 6654.63	6013	3.39 5270.39	4139.4	5 3119.52	2678.25		(84)
					heating sea									ř	
-		-	-	-	eriods in the		-		ole 9	Th1 (°C)				21	(85)
Utilisa		ī			ving area, h		· ·		<u> </u>			<u> </u>		1	
(00)	Jan	Feb	Mar	╇	•	lay	Ju			ug Sep	Oct		Dec		(96)
(86)m=	1	1	0.99		0.94 0.8		0.61		0.5		0.98	1	1		(86)
		<u> </u>		n li	ving area T	<u> </u>			<u> </u>					1	
(87)m=	19.9	20.08	20.33		20.64 20.	.84	20.9	3 20.95	20.	94 20.88	20.58	20.18	19.89		(87)
Temp	erature d				eriods in res									1	
(00)	1 10 05	10.05	40.00		40.00 40	<u></u>		4 00.04	00		40.00		40.07	1	(00)

19.96

(88)m=

19.95

19.95

19.98

19.99

20.01

20.01

20.02

19.99

20

19.98

19.97

(88)

814.58

(79)

Nathan Boyle 0333 5777 577 nathan@darren-evans.co.uk

Southwesto.9x 0.77

52.92

х

х

SAP WorkSheet: New dwelling design stage

Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	1	1	0.98	0.92	0.76	0.53	0.35	0.41	0.72	0.97	1	1		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (f	ollow ste	eps 3 to	7 in Tabl	e 9c)				
(90)m=	18.46	18.72	19.09	19.55	19.81	19.93	19.94	19.94	19.87	19.47	18.9	18.46		(90)
						•			f	LA = Livin	ig area ÷ (4	4) =	0.05	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	llina) = f	LA x T1	+ (1 – fl	A) x T2			•		
(92)m=	18.54	18.79	19.15	19.6	19.87	19.98	19.99	19.99	19.93	19.53	18.97	18.54		(92)
Apply	adjustr	nent to t	he mear	n interna	l temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	18.39	18.64	19	19.45	19.72	19.83	19.84	19.84	19.78	19.38	18.82	18.39		(93)
8. Spa	ace hea	ting req	uiremen	t		•					•			
				mperatu		ned at st	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	ilisation		<u> </u>	using Ta T										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
			ains, hm	ì	0.74	0.54	0.00	0.00	0.7	0.00				(04)
(94)m=	1	0.99	0.98	0.91	0.74	0.51	0.33	0.39	0.7	0.96	1	1		(94)
(95)m=			· · · ·	4)m x (8 5625.44	· · · · · · · · · · · · · · · · · · ·	2547.07	2227.52	2348.59	3691.99	3954.91	3106.96	2676.04		(95)
				perature			2221.52	2340.39	3091.99	3934.91	5100.90	2070.04		(00)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
		-		al tempe										
			i	7529.47				<u> </u>	<u> </u>		8407.87	10296.32		(97)
Space	L heatin	g require	ement fo	r each n	nonth, k	I Wh/mon	1 = 0.02	1 24 x [(97	ı)m – (95)m] x (4	1)m			
(98)m=	5591.98	<u> </u>	3115.62	1	383.49	0	0	0	0	1692.88	·	5669.49		
I								Tota	l per year	kWh/yea	r) = Sum(9	8)15,912 =	25760.61	(98)
Space	e heatin	g require	ement in	ı kWh/m²	²/year								40.57	(99)
•		• •		ividual h	•	vetome i	ncluding	micro-C	'HD)			l		
	e heatii			i vidual fi	eating 5	ysterns i	nonuunig		, iii)					
-		-	at from s	econdar	y/supple	mentary	system]	0	(201)
Fracti	on of sp	bace hea	at from n	nain syst	em(s)		-	(202) = 1	– (201) =			ĺ	1	(202)
	-			main sys	. ,			(204) = (2	02) × [1 –	(203)] =		l	1	(204)
			-	ing syste					/ 1			l		(206)
		•		0,			- 0/					l	89.5	
ETTICIE	ency of a		· · ·	ementar	y neating	g systen	ז, % ו	r		r			0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space		ř. – –	i	alculate	i	í								
	5591.98	4119.6	3115.62	1370.91	383.49	0	0	0	0	1692.88	3816.66	5669.49		
(211)m		í	1	100 ÷ (20	· · · · · · · · · · · · · · · · · · ·				i	·	1			(211)
	6248.02	4602.9	3481.13	1531.74	428.48	0	0	0	0	1891.49		6334.62		_
								Tota	ıl (kWh/yea	ar) =Sum(2	211) _{15,1012}	=	28782.81	(211)
•		- ·		y), kWh/	month									
1			00 ÷ (20	1										
(215)m=	0	0	0	0	0	0	0	0		0	0	0	-	
								i ota	и (кууп/уеа	ar) =5um(2	215) _{15,1012}	=	0	(215)

SAP WorkSheet: New dwelling design stage

Water heating

						En	ergy			Emiss	ion fac	tor	Emissions	
12a. C	O2 em	issions ·	– Individ	ual heati	ng syste	ems inclu	uding mi	cro-CHF)					
SAP rat	ting (S	ection 1	12)										90.21	(258)
Energy	cost fa	ctor (EC	F)		[(255) x	(256)] ÷ [(4) + 45.0]	=					0.7	(257)
Energy	cost de	eflator (T	able 12)									0.42	(256)
11a. S.	AP rati	ng - indi	vidual h	eating sy	/stems									
Total e	energ	y cost			(245)(247) + (25	0)(254)	=					1136.6	(255)
Append	ix Q ite	ms: rep	eat lines	s (253) ai	nd (254)	as need	led							_
						one	of (233) to	o (235) x)		13.	19	x 0.01 =	-683.47	(252)
Addition	nal stan	iding ch	arges (T	able 12)									120	(251)
Energy	•	-				(232	2)			13.	19	x 0.01 =	144.09	(250)
			ach of (2	30a) to (230g) se	eparately	/ as app	licable a	nd apply	/ fuel pri		-	Table 12a	-
Pumps,	fans a	nd elect	ric keep	-hot		(231)			13.	19	x 0.01 =	448.61	(249)
Water h	eating	cost (ot	her fuel)			(219))			3.4	8	x 0.01 =	105.72	(247)
Space h	neating	- secon	dary			(215	5) x			13.	19	x 0.01 =	0	(242)
Space h	neating	- main s	system 2	2		(213	3) x			0)	x 0.01 =	0	(241)
Space h	neating	- main s	system 1	l		(211	l) x			3.4	18	x 0.01 =	1001.64	(240)
						Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
10a. Fi	uel cos	ts - indiv	vidual he	eating sy	stems:									-1
Electrici	ity gene	erated b	y PVs										-5181.72	(233)
Electrici	ity for li	ghting											1092.42	(232)
Total ele	ectricity	/ for the	above, l	kWh/yea	r			sum	of (230a).	(230g) =			3401.17	(231)
central	heatin	g pump	:									30		(230c)
mecha	nical v	entilatio	n - balar	nced, ext	ract or p	ositive ir	nput fror	n outside	Э			3371.17		(230a)
Electrici	ity for p	umps, f	ans and	electric	keep-ho	t								-
Water h	eating	fuel use	d										3037.91]
		fuel use	ed, main	system	1					n	, y e a		28782.81]
Annual	totals							1010			Wh/yea	r	kWh/year	(219)
(219)m=	287.36	253.57	267.02	241.39	243.08	234.46	225.29	247.05	246.56 I = Sum(2	249.7 19a) =	261.99	280.43	3037.91	(219)
(219)m_	= (64)	<u>m x 100</u>) ÷ (217)	m									I	
Ľ			kWh/m		05.07	79.4	79.4	79.4	79.4	00.21	00.00	09.02		(217)
Efficience (217)m=	cy of wa	ater hea 88.91	88.7	88	85.67	79.4	79.4	79.4	79.4	88.21	88.85	89.02	79.4	(216) (217)
L	255.76	225.46	236.85	212.42	208.23	186.16	178.88	196.16	195.77	220.26	232.78	249.64		-
Output <u>f</u>	from wa	, ater hea	ter (calc	ulated al	oove)								L	

kg CO2/kWh

Emissions kg CO2/year

Nathan Boyle 0333 5777 577 nathan@darren-evans.co.uk	eet: New dwellin	g design stag	e		
Space heating (main system 1)	(211) x	0.216	=	6217.09	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	656.19	(264)
Space and water heating	(261) + (262) + (263) + (26	64) =		6873.27	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	1765.21	(267)
Electricity for lighting	(232) x	0.519	=	566.97	(268)
Energy saving/generation technologies Item 1		0.519	=	-2689.31	(269)
Total CO2, kg/year		sum of (265)(271) =		6516.14	(272)
CO2 emissions per m ²		(272) ÷ (4) =		10.26	(273)
EI rating (section 14)				87	(274)
13a. Primary Energy					
	Energy kWh/year	Primary factor		P. Energy kWh/year	
Space heating (main system 1)	(211) x	1.22	=	35115.03	(261)
Space heating (secondary)	(215) x	3.07	=	0	(263)
Energy for water heating	(219) x	1.22	=	3706.25	(264)
Space and water heating	(261) + (262) + (263) + (26	64) =		38821.27	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	=	10441.6	(267)
Electricity for lighting	(232) x	0	=	3353.74	(268)

Energy saving/generation technologies Item 1

'Total Primary Energy

Primary energy kWh/m²/year

Darren Evans Assessments

sum of (265)...(271) = (272) ÷ (4) =

3.07

=

 -15907.88
 (269)

 36708.74
 (272)

 57.81
 (273)